8 Back-Propagation of Errors

learning objectives:

— the differences between “back-propagation” and
“counter-propagation”

— why the back-propagation algorithm (a scheme for
correcting weights) is the most widely used
method

— how two empirical factors have been introduced
into the weight-correction equations to overcome
some problems

— how a back-propagation net can be used to
“model” the simple tennis game introduced in
Chapter 7

8.1 General

Back-propagation of errors is not the name of a specific neural
network architecture, but the name of a learning method, a strategy for
the correction of weights, First introduced by Werbos and later on
intensely popularized in connection with neural networks by
Rumelhart and coworkers, back-propagation has become the most
frequently used method in the field.

In fact, it has become so popular that for many authors the term
“neural networks” simply means the back-propagation method. A
recent study made by the authors (Reference 8-11) discovered that
almost 90 percent of all publications using neural networks in
chemistry had used the back-propagation method. Even more
interestingly, a number of applications had used this method for
clustering, as a lookup table, or as an associative memory — tasks for
which other already described methods seem to be far more suitable.

The attractiveness of the back-propagation method comes from the
well-defined and explicit set of equations for weight corrections.
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These equations are applied throughout the layers, beginning with the
correction of the weights in the tast (output) layer, and then continuing
backwards (hence the name!) towards the input layer (Figure 8-1).

The weight-correction procedure in the back-propagation
algorithm does probably not resemble the real process of changing the
weights (synaptic strengths) in the brain. However, it must be said that
the back-propagation algorithm most closely follows the description
of artificial neurons given in Chapter 2.

The back-propagation method, shown schematicatly in Figure 8-1,
is a supervised learning method; therefore, it needs a set of pairs of
objects, the inputs X and the targets ¥, (X,, ¥,). Because the objects
and targets can be represented by sets of reat variables, X (x|, x, .-
Xand Y, (v ¥, oo Vg, ). the resulting network can be regarded as a
model yiclding an m-variatc answer for each r-variable input (Figurc
8-2).

Compared to standard statistical and paticrn recognition methods
for supervised learning, three things have to be stressed. First, almost
all features known in standard model-generating techniques (choice of
variables, representation of objects, experimental design. etc.) play an
important role in the back-propagation procedure as well: the
troublesome ones as well as the desirable ones.

Second, neural networks trained by back-propagation of errors
have one very important advantage: there is no need to know the exact
form of the analytical function on which the model should be built.
This means that neither the functional type (polynomial, exponential,
logarithmic, etc.) nor the number and positions of the parameters in
the model-function need to be given.

In order to test the influence of weights on the final output, we
would need to be able to determine the effect of each input variable
on each weight separately. In a fully-connected multilayer network,
however, each input influences all weights. Since the influence of a
given input on any weight is virtually impossible (o predict in
advance, our enly hope is to input as many objects as possible and try
to observe how the weights acl. (With neural networks having a
million weights and more this is almost impossible.)

Nor can much information be obtained from the inspection of final
weights. In any more or less complex back-propagation neural
network, a large number of weights are trained to yield the correct
answers. Therefore, it is very hard, if not impossible, to establish
exactly what each weight is responsible for.
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Thus, third, a back-propagation neural network acts as a black box,
allowing no physical interpretation of its intermal parameters.

8.2 Architecture

The architecture of the network is the main feature influencing the
flexibility of the model it generates; that is, the number of layers, the
number of neurons in each layer, and the way the neurons are
connected.

Although the back-propagation algorithm was primarily designed
for use in multilayer neural networks, it can also be applied to neural
networks having only one layer. Such a network has, astde from the
input units, only one layer of active neurons, the output layer whose
weights are to be corrected via backward propagation.

The layers of neurons are usually fully connected. Figure 8-3
shows an architecture consisting of one input and three active layers
of neurons (two hidden layers and the output layer). The connections
to the biases and the bias weights are indicated by heavier lines and
black squares, respectively.

The number of layers as well as the number of neurons in each
layer depends on the application for which the neural network is set
up, and is, as a rule, determined by trial and error. In the applications
reported in the literature, as many as one million weights and as few
as ten have been used.

In most cases, neural networks consisting of two active layers —
one hidden and one output layer — are used. Only seldom have more
than three active layers been linked together. However, quite a number
of authors have used separate neural networks linked into a decision
hierarchy rather than one large network making all decisions
simultaneously (See Chapter 18).

Such designs are used either because of inadequate computer
resources, or because not enough data are available to cover the entire
variable space.

At any given time during learning by back-propagation of errors, a
considerable number of interlayer calculations may occur, involving
as many as three different layers of neurons. Great care must
therefore be taken to make clear which layer is involved in a given
operation. Therefore, we will need a comprehensive system of
notation.

Architecture 127

hidden
layers

output
layer

output

Figure 8-3: Architecture of a back-
propagation network with three active
layers.



128 Back-Propagation of Errors

In order to make things more understandable, each specific item of
data (input, output, weights, errors and corrections) will bear a
superscript referring to the layer it belongs to.

As shown in Figure 8-4 and as already discussed in Chapter 3, the
input to one layer is generally an output from the layer above, and a
layer’s output is an input to the layer of neurons below.,

To avoid confusion, all signals will be labeled as outputs
throughout this chapter; that is, the actual input signal that enters the
neural network will be labeled as Ouf’, it will produce Out' after
exiting the first layer, will in turn produce Out’ from the second layer,
and so on, until the final output is obtained and labeled Qut'*",

8.3 Learning by Back-Propagation

The fact that the learning is supervised is the most important thing
about this method, determining all of its other characteristics,
Supervised learning means that the weights are corrected so as to
produce prespecified (“correct”) target values for as many nputs as
possible.

The correction of weights, the most important step in the learning
process, can be made after each individual new input {immediate
correction), or after all inputs have been tested (deferred correction).
In the first case, the correction is made immediately after the error is
detected; in the second, the individual errors for all data pairs are
accumulated, and then the accumulated error of the entire training set
used for the correction.

Most applications use immediate correction; deferred correction is
more rare and does not offer any apparent advantage. Therefore, we
will focus on the former.

During lcarning, the object X (input vector) is presented to the
neural network and the output vector Quf is immediately compared
with the target vector ¥ (¥, ya. ..., v,,), which is the correct cutput for
X.

Once the actual error produced by the network is known, we have
to tigure out exactly how to use this to correct weights throughout the
entire neural network. Before going into the detuils, here is the final
result in condensed form:
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Learning by Back-Propagation

Remember that f is the index of the current layer, j identifies the
current neuron, and { is the index of the input source, i.e. the index of
the neuron in the upper layer. In this equation, 8!, the error introduced
by the corresponding neuron, is calculated in two ways, depending on
whether the /ast (output) layer or one of the hidden layers is under
consideration. In the following two equations, (8.2) and (8.3), a
sigmoidal transfer function is assumed (see also Table 8-1).

According to Equation (8.1), the correction of weights in the /-th
layer is composed of two terms, which pull in opposite directions: the
first one tends towards a fast “steepest-descent” convergence, while
the second is a longer-range function that prevents the solution from
getting trapped in shallow local minima. The constant 1| (the same one
as M(?) in Section 6.3 and Section 7.4, and serving the same purpose)
is called the learning rate and Y is called the momentum constant. By
taking into account the correction made on the previous cycle, B can
(to the degree you specify) prevent sudden changes in the direction in
which corrections are made: this is particularly useful for damping
oscillations. The magnitudes of these constants determine the relative
influence of the two terms.

For the output layer (I = last) the error 8} is expressed as:

last last last lasi
8, —Lyj—ourj Joutj. (l—outj J (8.2)

For ali other layers ! (I =last — | to 1) the error 5} is calculated by:

5; = [ Z Si)r lwi;]Joutj( | —out;) (8.3)

k=1

Substituting (8.3) into (8.1} gives the full expression of the weight
correction in a hidden layer:

,
{ I+1 I+1 4 li -1 I{previous)

Aw;, = n{ 2 3, Wi Joutj(l —outj)outl. + AW,
k=1 (8.4)

This equation shows that values from three layers influence the
correction of weights in any one layer: values from the current layer, [,
and the ones above (I — 1) and below (I + 1).

Section 8.4 below shows how the expressions (8.2) and (8.3) can
be derived from the delta-rule (Section 2.3, Equation (2.12}), and how
the gradient descent method is used to evaluate these terms. You may
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want to skip this section the first time you read this book, but you
should probably study it later in order to understand the essentials of
this widely-used method.

8.4 The Generalized Delta-Rule

Learning by back-propagation sends the data through the network
in one direction, and scans through it, changing weights, in the
opposite direction. The correction of the i-th weight on the j-th neuron
in the /-th layer of neurons is defined as:

{ I{new) {(old)
Aw,. =w.. — W
Ji i Ji

(8.5)

Within the j-th neuron in the I-th layer, the weight w¥; links the i-th
input with the j-th output signal. These two links, one with the upper
and one with the lower layer, (Figure 8-53), reflect the fact that the
error originates partly on the input and partly on the output side.

A well known way to consider both influences was discussed in
paragraph 2.3; it is called the delta-rule and is expressed as follows
{cf. Equations (2.22) and (2.22a)):

Aparameter = 1 g (output error} f (input) (8.6)

In its most general form, the delta-rule states that the change of
any parameter in an adapting process should be proportional to the
input signal and to the error on the output side. The proportionality
constant 1} (learning rate) determincs how fast the changes of this
parameter should be implemented in the iteration cycles.

In order to give Equation (8.6) a more familiar look, it is rewritten
by substituting into it the terms used in the neural network approach:

i_
Aw;[. =1 8; out, (8.7)

Formally, Equations (8.6} and (8.7) are identical. The parameter
which causes the error is the weight wi;’,-; Its correction Aw;,- is
proportional to the term Bj’, corresponding to the function g above
(Equation (8.6)). Although the term ourl-"*' is labeled as the output of
the (I-1)-st layer, it is at the same time the input (o the /-th layer,
which is consistent with Figure 8 4.

The function T is simply the input itself; therefore, the remaining

problem is the estimation of the function &

Figure 8-5: The weight ufﬁ" within the
layer { is linked to the next-higher and
-lower layer via the i-th input and j-th
output.



In the back-propagation algorithm the change 8} needed in the
correction of the weights is obtained using the so-called gradient
descent method, the essence of which is the observation that an error €
plotted against the parameter that causes it must show a minimum at
some (initialty} unknown value of this parameter. By observing the
slope of this curve, we can decide how to change the parameter in
order to come closer to the sought minimum. In Figure 8-6, the value
of the parameter to be changed, i.e., the weight of the neuron, is to the
right of the minimum; if the derivative de/dw is positive, the new
value of the parameter should be smaller than the old one and vice
versa. In other words, we can write:

Aw = w(ww) fw{old) = —kde/dw {8.8)

where K is just a positive numerical scaling factor; note the minus sign.
For a specific weight w}i in the layer /, the corresponding equation
is:

Aw); = ke /aw,, (8.9)

For the sake of clarity of presentation we defer the calculation of
the error € to a later part of this section and first discuss the
dependence of the error on the weight.

This error function represents that part of the error caused by this
particular weight at the output of layer {. Because the error function is
a complicated and rather indirect function of the parameters wﬁ-, we
can evaluate the derivative aellawf,- in a stepwise manner employing
the chain rule:

.

Ji

; ae" . ae" 80utj aNetj.
- (8.10)

Aw. = —K— ; ) ;
aourj aNerj) awﬁ

The derivatives of the error function ¢ are calculated

consecutively with respect to the values of outj", Netjl and wﬁ.
Because all derivatives in Equation (8.10) play an important role in
the back-propagation algorithm, we will take a closer look at each of
them separately, starting with the last one.
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Derivative aNerj"lawﬁ . In Equation (3.5) of Section 3.7:

m
{ !
Net) = 3 wx, (8.11)

i=1

we have an exact description of the dependence of the net input Netj! of
the neuron j on the corresponding set of weights. The x,-" are the
components of the vector X! that is input to the level /. According to
our convertion, all inputs are written as outputs from the layer above;
therefore:

¥ = ouf, | (8.12)

If Equation (8.11) is written as a sum of products, the derivative of
Netj'! with respect to the particular weight can clearly be seen:

{ ! (= ! I-1 ! -1
aNet. d|l w. out + ..+ w.out, +..+w. out
J J1 1 ji i Jjm n

aw ow (8.13)

M H

I-1
= ()uti

By inserting Equation (8.13) into Eguation (8.10) for the
corrections of weights, we obtain:

! e’ dout! -1
Awﬂ. = X ; i, out; (3.14)
’ aoui, aNetj.

Now we see a correspondence of terms between Equations (8.14)
and (8.7) representing the delta-rule correction in its expanded form:

!
LAl dout, B
Aw'!,. —K‘[ J¢ l} “’I outf. i
aoml. aNte (8.15)

! ! -1
Aw', 1 Sj out,

The above comparison leads directly to the delta-term:

aNet’,/awi..
K] H




! i
5 = _[ de J dout; (8.16)
! aourjf aNerjz

This result is of major importance in the back-propagation model.

Derivative aoutjllaNetjl. Because the form of the transfer or squashing
function (see Section 2.4, Figure 8-7) of the neurons is usually known
explicitly, the derivative dout,/oNet;' is not difficult to obtain,

The relationship between outjl and Netj'! was discussed extensively
in Section 2.5, where we mentioned the hard-limiter and threshold
functions. Although very convenient for evaluation, these two
squashing functions are nevertheless often passed over in favor of the
more complex sigmoidal transfer function:

! 1

out; = ; (8.17)
1+exp —Netj

The main reason why (8.17) is used instead of simpler ones is
because its derivative can be obtained analytically. As shown in
Section 2.5 (Equation {(2.32)), function (8.17) can not only be
differentiated easily, but its derivative can be expressed in terms of the
function itself:

dout! ! !
i = outj(] foutj-) (8.18)

This property is very convenient for use on computers: the
derivative is, so to speak, bundled free with the function. The
sigmoidal function (8.17) is not the only one whose derivative can be
expressed in terms of the function itself; some other squashing
fuhctions having this particular property are discussed in Section 8.5.

Derivative Bstlaoutjl. This is the last derivative remaining from
Equation (8.10). For this derivative, we have to distinguish two cases,
depending on whether or not el is explicitly known; in other words,
whether the correction is calculated for:

— the last (output) layer, or

— the hidden layers.
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The first case: correction on the last layer. This case is much
simpler te handle; since the back-propagation method is a supervised
learning method, the error €' at the very last (output) level { is always
known:

The error &'

in the output is the difference between
the expected output (target), Y (v, ¥, ..., ¥,,,), and the

actual output Out' (uuL]’, ()utzl, e OUE ).

Obviously, the error gl

!

can be expressed by subtracting the output
of each neuron j from the corresponding component v; of the
target vector ¥

()MIJ;

H

! AL
£ = Z(.\,’jf()ufj] (8]9)

j=1

Then, the derivative aella()urjl can be obtained easily:

! 8[ y fout")z a(y uom‘f)z
de L= ! AR N Ly .=
aum‘j ar)ur.j armtj. (8.20)

;
- 2(-‘;‘ - ()ufj)
!

As only the j-th component in this expansion is dependent on out;,

only this component gives a nonzero value in the derivation.

The final expression for the evaluation of the weight corrections in
the last layer of a neural network is obtained by collecting all three
derivatives, aNe;,f/awj,-’, aomjflaNetJ,-!, and aa’/anu{,’ in thc above
procedure from Equations (8.13), (8.18) and (8.20), and inserting
them into the expression for the delta-rule, (8.10),

Because the only error we know exactly (Figure 8-8} comes from
the last layer, €', the superscript / indicating the neuron’s layer must

be changed from ! to last: Furthermore, we substitute 1 for 2k,

last
de last
—_— =2 ¥;—out;

last
Bou”
laast
a(””j last faxt
— o = nutj lf(mtj.
oy F
dNet.

J



last
8Ne[j. lasr—1

' ‘

Ji

resulting in:

! last Tast fast last—1
w2 n( —our )ou fm(l—o £ Jourias (8.21)

gt

The second case; corrections on the hidden layers. The
expression we have not yet evaluated is the case where the explicit
relationship between the errcr function g and the output ou{,-l is not
known, which is the case in the hidden layers /.

In a hidden layer /, the actual output error £
directly, because the “true” values of their outputs are not known
(even in supervised learning). Therefore, the derivative Batlaoutj" can
be calculated only if we make some assumptions.

One simple, defensible assumption is that the error gl produced by
the forward process at a given layer / has been distributed evenly over
all neurons r in the lower layer { + 1:

! cannot be calculated

el = 3 gi+1 (8.22)

The summations run over all r neurons in level (I + 1) (Figure 8-9).
Therefore, the error at a level ! (which is needed to calculate the
corrections of weights on the same level) can be obtained by
collecting the errors from the level / + 1 below it.

Assuming hypothesis (8.22), the derivative ae‘/aomj is not hard to
figure out; by application of the chain rule and use of Equation (8.22),
it follows that:

/ r 3 I+1 INet i+
oe g el (8.23)

{ 1+
a()utj k=1 aNetk

!
aouﬁ

The rightmost derivative dNet{*' /dout] is obtained similarly to the
derivative described by Equations (8.11) and (8.13). The net input
Net,f“ is written as in Equation (3.5):
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t+] I+I I+l {+1 {
Z ‘. 2 “’kj ()m‘j—
ioi i=1 (8.24)

_ I+1 ! I+1 I F+1 !
=Wy outl + ... +wk,. outj+ +”’km ()mm

Thus, it follows that:

f+1

ONet, _ wh ! (8.25)

!

dout’ '

i
This result is substituted into Equation (8.23):
f+1
J | oe

G I S MRS (8.26)

! i+ IR
aOLHj k=1 oNet

Due to the differentiation over r)utjz, all terms of the expanded sum
(8.24) have vanished except for the j-th term.

The last step in this long story is to apply the chain rule again. This
time it should be applied to the remaining derivative de'™/oNer/t! -

aEH | _ aEH L
vl Jour ™
dNet, rmtk
By comparing the right-hand side of (8.27) with the middle parts
of the right-hand sides in expressions (8.15). it is easy to deduce that

the chained derivative (9&’"'/out,/" 1y (Qour! 1 /dNer{1 ) is equal to
the corrections 5”’1 on level I + 1. Hence:

( I+l
dout, (8.27)

aNc{Hl

I+1

de [+1

=38 (8.28)
INe 11+1 k

By inserting the derivative de™'/oNert! into Equation (8.23), the
following expression is obtained:

f+1 I+
Z 3, (8.29)
aout F=1



As when correcting the weights in the output layer, the three
derivatives aNezj/aw},. , aoutj!/aNetjl and aallaoutj‘! are collected from
Equations (8.13), (8.18) and (8.29), and inserted into Equation (8.10)

for the delta-rule:

!
aNE’fJ =1
= oul.
ow' ‘
Wi
i
dout, ] ;
i
;= ourj l—outj
dNet.
J
{ r
Je {41 1+1
[ Z 8k wkj
a()utj =1
resulting in:
d { [
! I+1 I+1 I -
Aw; = n[ Z 3, Wy Joutj( 1 —outjjouri (8.30)

k=1

In Equation (8.30) the learning parameter 1 has the same meaning
and the same function as the parameter 11 mentioned in Chapters 6 and
7 in Equations (6.5) - (6.7) and (7.3), respectively. In the error back-
propagation algorithm 1 is mostly held constant, however, it can be
linearly diminishing during learning according to Equation (6.5),
already explained in Chapter 6:

L—

N = (@ = dyyiy) 77 T i (6.5)

max
The result obtained in Equation (8.30) distinctly shows how values
from three different layers are involved in the calculation of the
weight correction in the hidden layer [

— the output outi"*1 of the layer above acting as the input { to the [-th
layer,

— the ourj‘! of the j-th neuron on the current layer [,

— the correction §{*! of the weight wj! from layer [ + 1.

The Generalized Delta-Rule
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8.5 Learning Algorithm

Now that we are familiar with (he equations used in back-
propagation learning, the procedure tor the weight correction will be
deseribed algorithmically. (For understanding this method, the fow of
data in the network and the timing of weight corrections are just as
important as the cquations.)

The learning procedure involves the following steps:

— input an object X (x|, %1, ... x,,,)

— label the components x; of the input object X as nurf-“ and add a
component 1 for bias; the input vector thus becomes: Qut" (our ",

()utzo, veer (}utn?, i)

— propagate Out" through the network’s layers by consecutively

evaluating the output vectors Outf; for this, we use the weights w}',

of the [-th layer and the output omf_l from the previous layer
(which acts as input to layer /):

m

P I

out, = I[ 2 wour, ]
i=1

where f is the chosen transfer function, e.g. the sigmoidal function.

— calculate the correction factor for all weights i the output layer
Sf“”, by using its output vector Qut and the target vector ¥:

last last lase ferst
8 = yi—out; jout, l —oul,

J
— correct all weights w/# on the last layer:
fust last lasi— | last (previous)
Aw. =m8, our +pAw Y
Ji i i i

— calculate consecutively layer by layer the correction factors ﬁj-" for
the hidden layers from f=faxt— 1 to I = 1:

,
[+ 1+ I !

z &, w,. r)m‘(l fnur,)
k kj J i

k=1

/

5 =
J




— correct all weights Wf'i on the layer [

Fprevious)

! i [
Awﬁ = 'ﬂﬁjou!i + AW,

— repeat the procedure with a new input-target pair (X, ¥).

Due to the widespread use of back-propagation learning, it is
important to comment on some of the steps listed in the learning
algorithm above, and to peint out some problems which may arise
when applying it.

Before the actual learning begins, three things have to be done:

— initial choice of the neural network architecture
— randomization of initial weights, and
— selection of the learning rate 1} and momentum constant [.

The initial architecture of the neural network (the number of
layers, neurons and weights) is only a starting guess. You may want to
modify the architecture after you see how the network performs
during the learning or testing phase; this will be discussed later on in
this Chapter.

The weights are initialized by setting them to small random
numbers. Be sure that not all weights are equal to zero. Usually this is
done automatically by the program package, but you will probably be
asked to specify the interval within which the weights should be
randomized. A typical choice for a layer [ is the interval between {—1/
n, 1/n}, n being the number of all weights in that layer. Because the
weights will be changed anyway, the exact starting values have no
particular significance.

The most important of these choices, apart from the neural
network architecture, is the learning rate constant N (Equations (8.1)
— (8.3)), which determines the speed at which the weights change; if
they change too quickly, the procedure may end up in a local
minimum (the steepest way downhill does not necessarily lead to the
global minimum). The gradient descent method is justified for
continuous functions and requires infinitesimally small corrections of
weights. This is not possible in the back-propagation approach. The
trick is to find a reasonable tradeoff between fast learning and
converging to the lowest minimum.

The learning rate constant 7 is generally obtained by trial and
error; good starting values are between 0.3 and 0.6.

Learning Algorithm
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The momentum constant { determining the size of the momentum
term has a close connection with 1. Figure 8-10 shows its influence.
In a real multivariate system, of course, the situation is much more
complex than shown in this one-dimensicnal picture; the paths among
the local minima are very hard to follow or predict accurately.

As can be seen from Equation (8.1), the momentum term takes into
account the most recent correction of weights; this is how Ll gets its
power to prevent sudden changes in the direction in which the
solution is being moved.

Let’s assume for simplicity that i = n; if, further, the two terms of

Equation (8.1) are equal, then:

{ /-1 {(previous)
Sour. = Aw. !
4 ! gt

(8.31)

This would cause the weight w_f,- not to be changed at all, even
though the current cycle taken by itself recommends a change equal to
T]Bf r}m,-lfl

Hence, a value of |l larger than 1 tends to suppress oscillations, but
possibly at the price of overlooking some narrow ways 0 the global
minimum. The learning rate 1 and the momenturmn constant | may
need to be systematically changed during the learning process. Then,
they are usually decreased during the iteration process.

The inclusion of the momentum term considerably increases the

need for computer memory, since in addition to the current vaiues of

the weights, we must store their valucs on the previous cycle as well.

Augmenting the input vectors by including the bias is generally an
automatic program feature. Normalization of input vectors, a
desirable if not always mandatory procedure, is included in standard
packages for neural network calculations by means of algorithms
from linear scaling in the required interval, to a statistic auto-scaling
that ensures that each variable will have a mean value ol zero and a
standard deviation of one.

It should be noted that the expression om (1 — our! ") (Equauons
(8.2) and (8.3)) results from the derlvatlve aout"laNe given by
Equation (8.18). In general, the squashing fumtlon does not always
need to have the form of (8.17}); if a different squashing function is
used, the derivative armr l/aNet will have a different form from the
one given by Equation (8 18) (see Table 8-1). Therefore, in Equations
(8.2) and (8.3), the expression oul; (1 — out} ) can be different.
Sometimes it is advisable to write lhe derwatwe aout"laNer a
shorter form:

e

.. Y
w(prﬂ‘.) W(m'mal)

[
Aw(prev. ) Aw(at.‘rual )]

Figure 8-10: Escape trom a local
minimum is possible il the momentum
term is large enough 10 “push” the
weight over the barrier.
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L = f(Nezf) (8.32)
aNetj

Table 8-1 gives a few examples of functions that can be used in the
back-propagation evaluation of weight corrections.

As can be seen from Figure 8-11, the second function in Table 8-1,
the hyperbolic tangent, tanh(x), is especially attractive. It has its
inflection point at the origin and two asymptotes at 1. This makes it
useful in applications where the input data lie between +1 and —1.

j{69] '(x) £ {f(x))
1 e
y f(x)}1 — f(x))
l+e e )
1 ¢ " 2¢ "
= : ey 1 {f(xp)?
l+e l+e
X 1
> 1 — f(x)?
1 +x (l+x)2 ( (X))
1-¢ e 1 —1(x)

Table 8-1:  Functions that can be used as transfer functions in artificial neurons;
these have the property that the first derivative is expressible in
terms of the function itself.

The last two functions are used only for argument values larger
than or equal to I; for argument values smaller than | they are
regarded as equal to zero.

In the back-propagation of errors learning scheme, one pass of all
objects through the network is called one iteration cycle or one epoch.
As a rule, many hundreds or even thousands of cycles are necessary to
achieve convergence in this learning scheme. Because the number of
weights is large even for a medium sized net, the convergence can be
quite a lengthy procedure, and may not even be achieved at all.

8.6 Example: Tennis Match

There are many different applications where the back-propagation
method can be useful in neural networks. Since back-propagation is
usually a supervised learning method, training and test sets with
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Figure 8-11: Functions for which the
derivative can be expressed in terms of
the funciion itself. The hyperbolic
tangent, l[anh(x), is especially
attractive because it is antisymmetric
with respect to the coordinate origin.
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known answers (targets) have to be selected and run through the
network until it:

— recognizes the training data, and
— predicts a proper association for new input data.

Unlike the counter-propagation method (Chapter 7), which is used
to create lookup tables, the back-propagation method is used to
develop models. This means that for cach different input vector, a
different (though possibly very similar) output vector is obtained. In
order to compare thes¢ two ncural networks (both of which are
supervised learning methods), we will use the same ¢xample here as
in Chapter 7 (learning tennis}.

When developing a neural network application, careful selection
of data is utterly crucial. We will sce from this example that data
selection is even more critical in back-propagation than in other
neural network methods.

See Section 7.5 for the details of the tennis problem. On the basis
of two variables provided by the trainer, the traince (the neural
network) should be able to return the stroke by choosing her own two
parameters correctly.

The input variables are the position, x. of the trainer on his service
line and the angle B at which the ball moves towards the traince.

The desired output values (largets) that the trainee is trying to learn
are the position, y, where the ball will cross her service line, and the
angle vy at which she should place her racket so that the ball will
bounce off towards the point z on the trainer’s service line (Figure 8-
12).

8.6.1 Choice of Data

Before beginning the training, we must construct a set of data that
will be representative of all possible cases; here, we will produce
sixteen such (raining pairs. using trigonometry rather than resorting (o
an actual tennis court.

Theoretically, the pairs of input data and desired outputs (targets),
can be expressed as follows (Figure 8-12):

Yi-

Figure 8-12: Tennis exampic. Input
values are pairs of (x, ), while outputs
are pairs (v, y).



X+ branp

0.5 (B — arctan(z%y))

The tangent function of small angles can be approximated with
good precision by the angles themselves; hence, the outputs y and y
can be approximated by:

))
(8.33)

v

y = x+bp

0.5({3—%

il

, ) (8.34)

Regardless of whether the data are simulated or real, the question
we are immediately faced with in any type of modeling is: how many
data (pairs of input and target variables) do we need to obtain a good
model? Ten, a hundred, a thousand?

In standard modeling techniques where an analytical function (say,
a quadratic polynomial of two variables) is to be used as a model, the
answer is not complicated: there must be at least one more data point
than there are parameters in the model (Figure 8-13). In the case of
neural networks, however, where there is no analytical form to fall
back on, the answer to this question is much harder to come by.

Because the output variables do not seem to be very complicated,
let us start by taking sixteen data points evenly distributed over the
entire variable space (the tennis court). Table 8-2 lists all sixteen data
points (two inputs and two targets each) chosen carefully to represent
all of the conditions that can occur.

The angles are given in radians; positive and negative angles
indicate clockwise and counterclockwise directions with respect to the
perpendicular axis.

8.6.2 Architecture and Parameters of the Network

Once we have the data, we then must decide on the network
architecture to be used: how many layers, how many neurons, how
many weights?

Because the numbers of input and output neurons are known (two
inputs and two outputs — see Figure 8-14), the input and output layers
are defined; but the “inner” architecture of the hidden layers is still
entirely up to us.
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Figure 8-13: Standard models, such as
the straight line (ax + b} or parabola
(a.r2 + bx + ¢), need at least one more
data point than there are parameters to
be determined.

input

output

Figure 8-14: The architecture of the
network is not yet defined.
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inputs targets
no.
x B ¥ Y

1 0.000 0.000 0.000 ~0.232
2 0.333 -0.165 0.000 ~0.314
3 0.667 -0.322 0.000 -0.393
4 1.000 -0.465 0.000 —0.464
5 0.000 0165 0.333 ~0.078
6 0.333 0.000 0.333 -0.161
7 0.667 ~0.167 0.333 -0.243
8 1.000 ~0.322 0.333 ~0.322
9 0.000 0.322 0.067 0.078
10 0.333 0.165 0.667 0.000
T 0.667 0.000 0.667 -0.083
12 1.000 -0.165 0.667 -0.165
13 0.000 0.465 1.000 0.232
14 0.333 0.322 1.000 0.161
15 0.667 0.165 1000 0.083
16 1.060 0.000 1.000 1.000

Table 8-2:  The sixteen calculated input-target pairs for back-propagation
learning in the tennis problem.

In a back-propagation network, the output is obtained directly
from the neurons in the output layer. Thercfore, it is advisable to scale
each component of the target to lie between 0 and |. Due to the
nonfinear character of the transfer function. it is better to scale the
entire output to lie between 0.1 and 0.9 or even between (1.2 and (0.8
(Figure 8-15). Scaling confers three advantages:

— easier comparison of the output and target data,
— proper calculation of RMS (root-mean-square) crror,
— later recalculation of the correct answer from the output neuron.

First, we will try a nctwork having onc hidden layer with six
neurons. Later on we will investigate different numbers of hidden
neurons. Each of the six neurons has three weights (o accommodate
two inputs and one bias (Figure 8-16); the seven weights on both
output neurons receive the output from each of those six neurons plus
a bias.

The last thing we do betfore running the example is to choose the
learning rate 1 and momentum [t; our first choice will be (.5 and 0.9,
arbitrarily. We shall soon see that this choice is not a very good one.

semi-linear
region

Figure 8-15: Scaling of the output into
the linear response region.



Now we can run the first learning experiment with sixteen data
points. These are randomly mixed and then input to the above (2 x 6 x
2) — or with biases, (3 x 7 x 2), — network for 1000, 2000, 3000 and
4000 epochs.

Recognition (Recall)

After each input (not after each epoch), all the weights are changed
according to Equations (8.2) to (8.4). At the end of each thousand
epochs of learning, the RMS error (Equation (7.6)), is calculated. The
results of learning the training patterns — what we call the recognition
or recall of the objects — are very good at first glance. The RMS error
is 0.008, or slightly less than 1%. Table 8-3 explicitly shows the recall
results of the sixteen target pairs. Table 8-3 also indicates what an
error of less than 1% actually looks like, in terms of actual data.

¥ ¥
no: target output errot target output error
1 0.000 0.003 0003  —0232  -0.236 0.004
2 0.000 0.001 0001 0314 0307 0.007
3 0.000 0.001 0.001  —0393  -0.392 0.001
4 0.000 0.001 0.001  —0464  -0.461 0.003
5 0333 0320 0.013  —0.078  -0073 0.005
6 0.333 0.326 0.007  -0.161  -0.156 0.004
7 0.333 0.315 0018  -0243  —0.235 0.008
8 0.333 0.312 0.021 0322 —0325 0.003
9 0.667 0.665 0.002 0.078 0.091 0.013
10 0.667 0.659 0.008 0.000  —0.006 0.006
11 0.667 0.651 0016  -0.083  —0.082 0.001
12 0667 0.661 0.006  —0.165  -0.158 0.007
13 1.000 0.998  0.002 0.232 0.223 0.009
14 1.000 0.999 0.001 0.161 0.168 0.007
15 1.000 0.998 0.002 0.083 0.078 0.003
16 1.000 0.996 0.004 0.000 0.009 0.009

Table 8-3:  The output from sisteen training data after 4000 epochs of learning
on (2 X 6 x 2) back-propagation network. The error column contains
the absolute differences between the targets and the outputs.

It can be seen clearly that the average absolute error is about 0.006
and that it can be as small as 0.001 or as large as 0.021. If the relative
errors are important for a given application, one has to be aware that
the results at lower values always have larger relative errors
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Figure 8-16: The first network used
for the application of back-
propagation learning to the tennis
problem.
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compared 1o those which are close to 1. Therefore, the training set
should contain propertionally more objects giving low outputs in
order to achieve the same relative error over the entire interval.

The next question is: can the lecarning rate and momentum
significantly influence the results of learning? To answer this question
the network was retrained several times with the same sixteen objects,
each time with a different choice of the learning rate 1 and momentum
parameter .

The result (Figure 8-17) is quile interesting. Each ise-RMS error
line on the two-dimensional 1} vs. W chart represents a constant value
of the RMS error. The full circles represent the RMS values obtained
for the learning procedures actually performed as described above.

The iso-RMS lines in Figure 8-17 tell us that rcasonable RMS
errors can be achieved in our example with higher learning rates, even
it the momentum is zero. Using the information obtained from these
preliminary runs, the best combination of the learning rate and
momentuim constant can be selected.

Prediction

After testing the recall or recognition ability of the network comes
the fun part: checking the network’s ability to predict output from new
inputs.

To do this, we took 1000 random (x, B) pairs and calculated the
correct answer pairs, (y, y), using the “tenmis equations” (Equations
(8.33)). The calculated values were then compared to the values
output by the neural nctwork. See Table 8-4 [or a small sample of
these results.

Table 8-4 gives a completely different impression from Table 8-3;
the crrors can be larger by almost an order of magnitude than when
simply recalling the training inpuls. In the worst case {(no. 2 in Table
8-4), the correct position for the player is 0.1 units from the side line.
while the program puts her/him almost at the line, 0.008. And the
errors in the angle, although at first glance smalter than the errors in
position, are quite large, especially since the error in the racket angle
18 doubled when we consider both the trajectories towards the racket
and away from it (after the stroke).

Always evaluate errors in view of your actual
application and needs,

recall

Figure 8-17: Plot of RMS error (in %)
in training versus learning rate (1) and
momentum parameter (U), showing
Hines of constant eeror,



Now let’s examine the influence of the learning constant 1 and the
momentum parameter (L on the RMS error. Again, the iso-RMS-error
lines are plotted against 1 and p. The same network as for Figure 8-17
is used for Figure 8-18.

Figure 8-18 shows that the high values of 1} and | that yield the
network having the best recall (recognition) are associated with the
worst prediction ability.

From both Figures 8-17 and 8-18, we can conclude that for the
tennis problem the best choice of these parameters lies in the shaded
area of Figure 8-19,

The sum of  and W should be more or less equal o
one:

n+u=1 (8.35)

It has to be stressed that this relationship will certainly depend on
the kind of data being investigated and therefore might not necessarily
be the best one in all cases.

Table 8-4 gave us a qualitative indication that our system for
modeling tennis is not very good; Figure 8-19 confirms this: with the
present training data set and present size of the neural network (2 x 6 x
2) we cannot expect better results than about 4% RMS error. How can
we make our “tennis brain” smarter?

¥ Y
ne- calc. output error calc, output error
1 0.074 0.020 0.054 —0.207 —0.208 0.001
2 0.097 0.008 0.089 —0.414 0.439 0.025
3 0.348 0.337 0.011 -0.301 —~(0,296 0.003
4 0412 0.385 0.073 -0.048 -0.044 0.004
5 0.671 0.665 0.006 -0.011 -0.017 0.006
6 0.755 0.833 0.078 0.108 0.125 0013
7 0.902 0.985 0.083 0.110 0.111 0.001
8 0.937 0.993 0.056 0.187 0.201 004
Table 8-4:  Output from new test data, presented after training: 4000 epochs in

the (2 X 6 x 2) back-propagation network withn =0.5and p=0.9.
The error column contains absolute differences between the targets
and the outputs.
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prediction
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&
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1
m

Figure 8-18: Plot of RMS error (in %)
in prediction output versus learning
rate and momentum, showing lines of
constant error.

Figure 8-19: The optimum region for
the learning rate 1 and momentum p
for the tennis problem.
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8.6.3 Number of Neurons in the Hidden Layer:
Overtraining

There are three things that can still be tried to improve the results:

— enlarge the number of learning steps (epochs), 1.e. train the network
longer,

— change the network design,
— expand the training data set.

(In our further attempts, we will hold 1 and [t at the values (0.5 and
0.6.)

First, let’s increase the number of training steps from 4000 to
8004, 12000, and 16000 epochs. The resulting RMS errors for recall
and prediction are given in Figure 8-20.

The recall performance of the original network (bottom curve)
improves monotonically with longer training (though the ratc of
improvements slows down considerably after 4000 epochs); but,
surprisingly, its ability to handle new data (top curve) actually gers
worse!

This is known as the overtraining effect. Overtraining can be
explained as a consequence of parameter redundancy; that is, the
system has more parameters than are needed for the solution of the
problem. In curve-fitting, we might see this in a polynomial with too
many terms: it can make a “‘better” fit to a sct of data by adapting to,
rather than smoothing out, the “wiggles” caused by noise.

For example, suppose we are fitting three points in the xy-plane to
a quadratic function ax® + bx + ¢ instead of to a straight line ax + b
{Figure 8-21). In spite of the fact that the straight line cannot go

Figurc 8-20: Recall (R} and prediction
{P) error vs. number of training
epochs.

X

Figure 8-21: In constructing a model,
more adjustabie parameters are not
necessarily better. In this example, a
three-parameter curve fits the data
better than a two-parameter (linear)
one — but it may be fitting noise, The
“worse” fil may make better
predictions.



through all three points (full circles) exactly, as the quadratic function
can, it is possible that the prediction of other points (not taken into
account before; open circles) will be much better if based on the
straight line than based on the quadratic function.

Based on the overtraining data, it appears that learning with about
4000 epochs should be optimum in our case.

The next thing to consider is changing the neural network design
and/or the training data set. While the network design can be changed
at any time, getting more data is sometimes not as easy as it may
seem. In the tennis example, it is easy to calculate as many as we like;
but when the data come from an expensive experiment, it’s a different
story!

If your problem just does not involve enough different
data, you might do well to consider some other, more
standard approaches and forget about neural
networks.

If, in spite of having a small data collection, you still insist on
using the neural network approach as a solution to your problem, then
your best chance is to find the smallest adequate design!

In the tennis problem, we will try both things: changing the design
of the network, and training the network with larger numbers of
objects.

For the first, we select four designs: (2 x 4 x 2), (2 x 6 x 2) (the
original), (2 x 8 x 2), and (2 x 10 x 2) (Figure 8-22); for the second, we
select three training sets containing 16, 36, and 100 objects at specific
locations in the variable space, and three more containing 100, 200,
and 300 randomly chosen ones. These six data sets are used to test all
four networks to see which combination gives the best results.

The RMS errors for recall and predictions for these twenty-four
cases are very informative. First of all, increasing the number of
neurons neither improves the recall nor the prediction when only
sixteen training data are used. The same behavior can be observed in
all other cases too, although to a lesser extent; when there are 300
training data, the situation is not so clear, because with more data in
the training set we are allowed to have more weights to adjust (Table
8-5 and Figures 8-23 and 8-24).

Nevertheless, it can be seen from Figure 8-24 that the best
prediction ability is achieved when the number of weights is
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Figure 8-22: Four networks (with 22,
32, 42, and 52 weights, resp.) used for
back-propagation learning in the
tennis example.
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h 4 6 8 10 ]

0 22 32 42 52
16 2.91 210 305 325 R
4.66 4.09 a1l 108 p
% | 326 179 1.93 2.19 R
4.06 3.45 342 351 p
100 207 160 125 134 R
3.50 3.37 324 3.51 p
100e | 160 111 L 0.95 0.93 R
3.66 3.36 3.29 3.29 P
200r 149 12 080 070 R
3.46 331 323 323 p
3007 144 077 .70 0.70 R
141 3.17 3.17 318 p

Table 8-5:  RMS crror of the recall (R} and prediction (P), as a function of the
size of the network (A = number of hidden neurons; w = total
number of weights) and the size of the training set (o = number of
objects; r = randomly sefected). In all cases, the training period was
4000 epochs.

approximately equal to or slightly smaller than the number of
different objects in the training sct. When the number of weights is
larger than the number of different objects in the training set,
overtraining appears.

After all this testing, we are finally in a position to select what
seems to be the appropriate training set and the best suited network for
our problem.

All training sets with more than 100 objects generaic networks that
differ only slightly in the RMS error of the predictions, regardless of
whether the objects are randomly selected or are sampled
equidistantly over the variable space. More than 200 objects would
proleng the learning time unnecessarily; thus, a choice of 200 objects
seems optimum.

Concerning architecture, the (2 x § x 2) design with 52 weights
seems adequate: it shows a remarkable stability in the RMS error for
predictions, even over long periods of training, and gives the best
RMS error of all networks we tested (Figure 8-24).

(The learning rate and the momentum were 0.5 and (0.6. Any other
values within the 0.1 interval would do equally well).

The network obtained after 4000 epochs is shown in Figure 8-25.

recail

RMS & 16

2 i
1 -
300r
..... e
2 4 6 8 10
number of

hidden neurons

Figure 8-23; The RMS error of recall
as a {unction of the numbecer of neurons
in the hidden fayer for different sizes
of the training sets. The numbers
labeled with r (e.g. 100r) refer to
randomly chosen training sets.



The predictive results of the network shown at the right are not
overwhelmingly good (RMS error of 3.1). Nevertheless, they show
very well what can be expected from back-propagation learning: what
the problems are and how to tackle some of them.

Additional examples, with practical hints and descriptions of
problems, are given in Part IV.

Modeling is not the most favorable example of back-propagation
learning in neural networks; for example, sorting multivariate objects
into classes might be more interesting or even more exciting, certainly
more “successful”; but this example better illustrates the method’s
limitations.

In classification problems, the output layer consists of as many
neurons as there are classes of objects, and the RMS error at each
output neuron need not be as small as in the tennis example. For
applications producing binary/bipolar outputs, it is adequate for the
“I” output to lie between 1.0 and 0.6, and “07, at 0.4 to 0.0. Modeling
a system with continuous output vatues, on the other hand, requires a
precision of at least a few percent.

A number of authors claim that their back-propagation networks
are able to generalize the solution of the problem; by this, they mean
that the network vyields reliable answers even outside the area of the
variable space from which the objects for the training are taken.
Unless it is shown beyond a reasonable doubt that the network has not
been overtrained (i.e., that it does not fit the training data so closely
that its predictive ability is compromised), such claims are, to put it
mildly, exaggerated.

The most important aspect of designing a network for
back-propagation learning is to ensure that it will not
become overtrained.

See Section 16.5 for a detailed comparison of the back-
propagation and counter-propagation learning techniques.
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Figure 8-24: The RMS error of

predictions as a function of the number
of neurons in the hidden layer and the
sizes of the training sets.
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Figure 8-23: The (2 x 8 x 2} neural
network obtained after 4000 epochs.
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8.7

Back-Propagation of Errors

Essentials

the back-propagation of errors enables the correction of all
weights in a multilayer network

this procedure uses a supcrvised learning method, i.e. it
requires the answers (targets) to the inputs to be known in
advance

the delta-rule and the gradient descent method are the basis
for the correction of weights

an empirical learning rate constant, 1, determines the speed
of learning in an iterative procedure

the inclusion of the momentum term, W, into the corrective
equations is necessary to avoid being trapped in small local
minima

back-propagation nets are used as modcls, especially when
the analytic form of the model relationship is not known
finding the proper network design (number of layers,
number of neurons, and number of weights) is usually a trial
and error procedure
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