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9  General Comments on
Chemical Applications

learning objectives:

— the types of problems to which neural networks
can be applied

— multivariate (multiple input) and multiresponse
(multiple output) systems

~ how to choose between supervised and unsuper-
vised learning

— classification of objects into categories and
hierarchies of categories

— why modeling is simpler with neural nets than
with classical techniques ... and how that very
simplicity can be a disadvantage

— how mapping can be used in chemistry

— how neural nets can be used in process feedback
and control systems

— the crucial role of data representation in neural
network applications

— what is a moving window approach

— overview of the examples presented in Chapters
10 to 20

9.1 Introduction

In chemistry, as in all natural sciences, we would like to learn new
methods that can improve, shorten, or bring new insight into old ways
of handling experimental data. Part IV will show how different neural
network architectures and learning strategies can be applied to some
of the problems encountered in the everyday practice in chemistry.
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While we can’t show all possible applications, we will discuss certain
types of problems that can be dealt with by neural networks.

The neural network approach is basically a method for handling
multivariate and multiresponse data. Multivariate data are used to
describe one object with several variables: for example, analysis of
air samples for the pollutants NO,. 805 and CO would comprise
three-variate data.

If such multicomponent data are studied with respect to several
factors (responses) such a problem is generally also described as
multiresponse (Figure 9-1).

The relation between a multivariate object X = (x,), X0, .. Xy,)
and the putative factors Y, {(y.. ¥, ..., ¥g) can be written in the
following way:

(y.\‘l’y\"l’ “"-v,\'n) = A (x}.‘,’x.\'?ﬁ T x.\m) (91)

Here, A 18 a (s x n)-variate matrix that linearly transtorms vector
X, into vector Y. The index s, according to the convention of Section
1.4, indicates different samples: s =1, 2, ..., &

Equation {9.1) is the lincar {and therefore simplest) version of the
multivariate multiresponse problem (A can actually be a very complex
operator).

In many applications, A is not known; it may be that all you have
is a set of carefully collected m-variate data { X} accompanied by a
set of n-variate responses { ¥ }. And in some applications, even the
responses {Y,} arc not known and have still to be figured out. From
such sets of carefully measured multivariate data, conclusions are
sought that are valid for unknown samples.

The key to finding these answers 1s that the sought information is
alrcady hidden in the multivariate data. For example, an infrared
spectrum measured with a resolution of 1 em ™! between 4000 and 200
em™! comprises 3800 intensity points; these data contain the complete
information about the structure of the compound — say, which 15
groups make up the molecule, out of a pool of 200 possibilities. The
essence of this 38(00-variate 20{-response problem is to find out how
to confirm or exclude any of the 200 functional groups based on each
of the 3800-point spectra (Figure 9-2).

Problems of this type are usually not solved by ab initio
(theoretical) calculations; instead, they require various statistical,
pattern recognition, and, as we want to show, neural network methods.
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Figure 9-1: Multivariate input X
producing multiresponse output ¥,



As has been stressed previously, learning can be either supervised
or unsupervised. In supervised learning, the system must adapt itself
to yield the known correct answers to all query objects in the training
set, while unsupervised learning just maps the objects according to
some internal criterion, such as similarity, into the “virtual” arca
defined by the architecture of the network.

The choice of a supervised or an unsupervised approach depends
on the problem and the data available to solve it. In both cases, objects
with known answers are needed. In supervised learning, the answers
are directly used to influence the learning system, i.e., to calculate
changes in the weights of the neural network; in unsupervised
learning, the answers are needed only to identify and label the output
neurons.

The basic question to consider when deciding on the learning
method is: do you want to force the system to adapt itself to an already
selected representation of objects and classes, or do you want to keep
your options open? An unsupervised neural network method is more
flexible due to its many possible outputs. Thus, unsupervised learning
can be used as a screening step, allowing you to inspect the behavior
of the “response space”. After enough knowledge is accumulated, you
might be able to switch to supervised learning.

For supervised learning, the multivariate objects should be divided
into three sets:

— atraining set

— a control set for determining when to stop ftraining (see
overtraining, Section 8.6.3), and

— atest set for checking the achieved predictive ability.

For unsupervised learning, we don’t need a control set, since
learning has to continue until the network stabilizes. (This is achieved
in a Kohonen network when the neighborhood of the corrections
shrinks to a single neuron.)

The next decisive factor for the choice of the appropriate learning
strategy is the number of available objects. The number of objects
within reach for al! three sets of data (training, control, and test) is
very relevant to the efficiency of the method. A supervised learning
procedure can take tens or even hundreds of thousands of epochs (an
epoch is one pass through all the objects in the input set).
Furthermore, for each object, the corrections of thousands of weights
might be required.

Introduction
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Figure 9-2: A 3800-variate spectrum
is input to the system, and a 200-
variate output points to specific

chemical fragments.
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Hence, the efficiency of the learning process is influcnced by the
number of variables for each object {which defines the size of the
input layer), the number of weights in the hidden layers, and the
number of objects.

0.2 C(Classification

One of the simplest and most frequently uscd operations in
handling complex multivariate data is classification, which may sort
objects nto a simple set of categories, or into a hierarchy of sub-
classes within classes (Figure 9.3).

A one-level classification is made, for example. in finding the type
of secondary structure of a protein: whether a particular amino acid is
in an o-helix, B-sheet, or coil structure. Even such a simple three-
category classification can be handled by a hierarchical classification
scheme: first, whether there is any defined structure around the
particular amino acid, and second, if a structure is confirmed. to decide
whether the structure is an e-helix or B-sheet (Figure 9-3} (see
Chapter 17).

More often, hierarchical classification tnvolves many levels of
decisions, classifying an object into the proper group. sub-group,
category, sub-category, or class: for example, the prediction of
different structural features in an unknown compound on the basis of
its spectrum, or the selection of the proper chromatographic method
for a given analysis.

In many chemical applications, the object belongs to scveral
different classes simultaneously, so that the result of the
classification is a product of two or more decisions.

The spectrum-structure correlation problem is a  typical
multidecision classification: the “object” is the spectrum, while the
output is a list of fragments (classes) present in the structure that
produced the spectrum. Figure 9-4 shows the hierarchy for deciding
which of the five structural fragments A, B, C, D, and E are present in
a structure represented by its spectrum. On the first level, a four-
category decision is made: whether either, both or neither of the
fragments A and B are present in the structure (“@" = A A B = neither;
“AB”=A AB=AandB).

For each of theses decisions, an analogous second-level decision is
made regarding the fragments C and D, while at the final level a two-
category decision about E is made.

decision

‘ decision |

decision 2 coil

-
-

Figure 9-3: One-level and hierarchical
classilication.



Figure 9-4 shows one of many possible decision hierarchies that
can be set up to solve the problem.

Usually, when faced with the task of setting up a classification
hierarchy for a complex decision, you should begin with a statistical
study of the relationship between the representation of objects and
their class membership. You should consult the literature on this
matter {Section 9.8: Massart et al., Chemometrics, or Zupan,
Algorithns for Chemists).

For our purpose, it is enough to say that setting up the hierarchy of
decisions has to be done before the learning procedure is started; if
the final results are not satisfactory, it is advisable to look at the
representation of the objects and/or the way the decision hierarchy
was set up, change one or both, and try the entire procedure again.

9.3 Modeling

Some classifications systems produce a discrete answer, such as
yes or no, or an integer identifying the input object with one of several
classes. However, modeling requires a system that yields a continuous
answer for each input. In modeling, a relatively small number of data
are used to build a model that can give predictions for all possible
objects. Curve-fitting (Figures 8-13, 8-15, 9-5) falls into this category;
in most applications, it is a one-variable/one-response procedure:

=f{x,ab,..p) (9.2)

Here, the function f contains a set of unknown parameters a, &, ...,
p (in the case of polynomial models, the number and types of terms
are chosen to reproduce the degree of curvature anticipated to be in
the data). These parameters have to be determined to minimize the
discrepancy between the set of experimentally determined answers

{ygper imental} and the set of answers obtained by the model { ym"d‘?l}
at the same values of x. The following criterion is often used:
; 2
[yi.tperamenrai _ y;rwde!) s minimum (9.3)

Modeling can also be a multivariate/one-response problem, or
even a multivariate (x)/multiresponse (y) problem; in the latter case,
we need to find a different model for each response y;, i.e., a different
function form f; with a different parameter set.

In any kind of modeling, a tacit assumption is always made:
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Figure 9-4: Hierarchical classification
of an infrared spectrum according to
five classes of functional groups, A, B,
C, D, and E. A means that only group
A is present, in (AB) both groups are
present, in & both groups are absent,
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Small changes of input will cause small changes in
output.

(“Chaotic™ systems, in which this requirement is relaxed, require
specialized techniques that are beyond the scope of this book.)

By its very nature, modeling always requires supervised learning;
therefore two types of neural networks are generally applicable: the
back-propagation and the counter-propagation methods. In modeling,
the data are always composed of two parts. The first part is the
representation of the object X

X, = (&, X 5 X oo x,,.) (9.4)
and the second one is the answer or target, Y
— ' ' ' , {
Y.'f - (..\ PERS7 I }'.vj’ e "'.\'n) (9.5)

that is expected from the object X .

In multiresponse problems, neural networks have a major
advantage over classical modeling by analytical functions:
¥y, May be multi-

In neural networks the targets ¥, (v, ¥o2. -, ¥y
dimensional!

What does this mean? Simply that a multiresponse answer can be
modeled without bothering with different analytical functions or
coefficients (Figures 9-6 and 9-7).

Classical models requirc a scparate predefined
analytical function for cach response, while neural
networks can model a multiresponse vector without
any «a priori knowledge!

Of course, as a wise man said, for every silver lining there’s a
cloud; in classical modeling, the coefficients of the model function
can often be given a physical interpretation (e.g., the virial coefficients
of a gas). There is no such thing as the coefficient of a given variable
in the neural network approach because all variable values are shared
among all weights (albeit not to the same extent). Great ¢ffort has
been expended (so far, with little success) to find methods that would
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Figure 9-5: One-variable/one-
response model.
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Figure 9-6: Classical modeting.



associate specific weights or paths through the network with given
variables or combinations of them.

In many applications, especially when the experimental error is
comparatively large, we can simplify the above-mentioned
proportionality between input and output changes. In such cases, a
lookup table (Figure 9-8) is adequate, even though it gives the same
answer for a range of inputs.

Modeling is mainly used for objects having a few (one to ten)
variables, which produces neural networks much smaller and
computationally less demanding than those used for classification
problems.

In the selection of a learning strategy, the distribution of the
objects within the variable space has to be considered. If the objects
for training are few and more or less evenly spaced (some
experimental techniques make this possible), then the back-
propagation method is suitable. On the other hand, if the objects are
plentiful and scattered irregularly through the variable space, they
should first be reduced to cover the space evenly and then the counter-
propagation method is used. (The reduction of objects can be carried
out either by a Kohonen network (Chapter 6, and the examples in
Chapters 10 and 11), or with a statistical evaluation of the intervals of
the variables.)

Basically, a counter-propagation method used for modeling needs
more objects than back-propagation.

9.4 Mapping

Mapping is the transformation of an m-dimensicnal space into a
space of lower (often 2 or 3) dimension (see Section 6.4) in order to
display some features that cannot be shown in a higher-dimensional
space. All kinds of mappings can be achieved with Kohonen
networks.

To some extent, mapping is similar to the clustering or
classification of objects. The difference lies nct so much in the method
itself as in the interpretation of the results. In classification, we want
to identify which cluster or class a given object belongs to, while in
mapping we focus on the entire map and, in effect, derive the clusters
from the data.

The essence of mapping with neural networks is this:
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Figure 9-7: Modeling with neural
networks.
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Figure 9-8: A lookup table acting as a
model.
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The objects are represented by the coordinates
(topological position) of the central neuron (Section
6.3) and not by the values of the output.

The questions that mapping can answer are: what does the map as
a whole look like, how many distinguishable areas can be identified
on the map, what are the shapes of these areas, how can the map’s
features be correlated with the objects from which the map wuas
obtained.

A mapping can be either lincar or nonlinear, as illustrated in Figure
9-9.

One of the useful applications
preprocessing method (usually called “experimental design™), by
which we usually want to choose the most appropriate objects
{experiments) from an available set, for example, selecting spectra for
spectrum-structure  correlations, or  eliminating  redundant (or
overlapping) combinations of parameters to be used in a series of
experiments. In the latter case, we would monitor how often each
neuron in the plane is excited by an object (Figure 9-10), e.g., a set of
experimental parameters. All but one of the objects that excite or fire
the same neuron should be discarded. (This is also useful for selecting
the objects to be used for training a back-propagation net; see Section
11.4).

of mapping involves a

9.5 Associations; Moving Window

Among neural network applications not yet mentioned, the
following should be used more often in chemistry:

— auto- and hetero-associations
— prediction of time-dependent events

The problem of association is to find a target object associated
with an input, even if the input is corrupted or incompletely known,
for example, when identifying the baseline type in a recorded
spectrum, or the type of spectrometer malfunction responsible for a
particular  bad In a sense, then, auto- and hetero-
associations can be regarded as classifications,

spectrum.

non-linear projection

Figure 9-9: Mapping the world globe
into a plane.

no. of objects

{10 x 10) neural! network

Figure 9-10: Distribution of objects
that excite specific ncurons on the
mapping plane,
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In both examples, neither the patterns X (spectra) nor the target
responses ¥ (baselines or malfunction types) can be defined exactly.
For example, it is easy to see whether the baseline of an infrared
spectrum is concave or convex, but hard to describe the difference
mathematically. It'’s even worse in the second example, where the
“target” may be anything from a badly prepared sample to drift in the
electronic circuits.

Because associations can be learned only through examples, i.e.,
through input-target pairs, we are restricted to neural networks
capable of performing supervised learning.

Investigation of time-dependent processes is one of the main topics
in process control research (see Section 16.4). Here, the user wants a
model that will predict the behavior of a multiresponse system based
on a series of data taken over time.

In time-dependent modeling, the input and output variables are
basically the same: the only difference is that the input consists of
present and past values of process variables, while the output
predicts the future values of the same variables (Figure 9-11, for more
details see Chapter 16, particularly Table 16-1). The consecutive sets
of variables taken as cone input vector and the consecutive sets of
future values on the output side are called the past and the future
horizons of learning.

In principle, these horizons can be of arbitrary length, but in
process control the future horizon usually covers only one time step.
The moving window shown in Figure 9-11 encompasses five
consecutive time events; the past horizon is of length four: the input
contains all process variables at time f_3, ¢ 5, t.y, and f; (the current
value), while the process variables beginning with #; (in the future
horizon) are taken as targets. The “future” data used for training are
obtained either from theoretical models or from actual past
observations.

Let’s construct a vector P, containing the values at time ¢ of some
process variables, say x;, the flow rate; x,, the input temperature and
X3, the output temperature:

P, o= (x,,%y, X0 (9.6)

Then, taking into account three consecutive steps in the process,
the input vector X looks like this:

13 foh

~datato be

; predicted

past | future
present

window with

5 complete
consecutive I
evenls

network

Figure 9-11: Present, past and future
data as input/output pairs in time-
dependent models.
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X = (xlf’ T I L L N RN AR WS )
" e A [ e B R v : (97)
23
Ir PH—I P1+2

The corresponding target vector ¥ can consist of the fourth vector
P

3y

Y= (x

I.r+3’x2,r+3’ xm,r+3)

P

(9.8)
Y

P+ 3

For making a complete model ot a process, all process variables
must be trained on the output side; but not all variables in the process
have equal influence on the final results, and only few are of interest
(say, the yield of the product). These significant variables are the ones
we choose for training.

The above-described moving window procedure is used in many
kinds of problems; the variable sets under the window all shift left by
one position (equivalent to shifting the window right), so that the
oldest one is moved all the way out {and discarded), and what was the
first “future” value becomes the “present” (time = zero) valuc.

This technique can be used for any problem that deals with a
sequence of events or objects, from predicting environment
parameters in chemical process plants, to deducing the secondary
structure of a protein based on the sequence of amino acids.

We hope that these examples have prepared you to believe that:

The applicability of neural networks is limited only
by your imagination.

9.6 Overview of the Examples in Chapters
10 to 20

The diversity and number of applications of neural networks in
chemistry has increased dramatically in the last few years. This is
reflected in the number of publications dealing with the use of neural
networks o solve chemical problems:
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In the rest of the book we will present some of these applications.
With such a large number to choose from. we can necessarily give
only a fragmentary and personal overview.

‘ year no. of publications |
| 1988 3

1989 5

1990 20

1991 105

1992 290

1993 441

1994 498

1995 743

1996 855

1997 927
Table 9-1:  Number of publications on neural

networks in chemistry per year.

In the rest of the book we will present some of these applications.
With such a large number to choose from, we can necessarily give
only a fragmentary and personal overview,

While, in general, different types of problems require different
neural network architectures and different learning strategies, it turns
out that 90% of the problems described until now in the chemical
literature have used one-hidden-layer neural networks, and the back-
propagation learning strategy.

One of our goals is to encourage you to think about the problem
first and then select the proper neural network, rather than trying to
bend all your problems to the one neural network method you happen
to be familiar with.

See Table 9-2 for some hints about the kinds of problems that can
be dealt with using different neural network learning methods.

Our examples cover the area as broadly as possible and illustrate
the diversity of potential applications. For example:

— various chemical disciplines

— analyticai chemistry (Chapters 10, 12, 18),
— organic chemistry (Chapters 11, 13, 14, 18, 19),
— pharmaceutical and biochemistry {Chapters 13, 17, 19, 20),

— chemical engineering and chemical industry (Chapters 15 and
16).

167
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strategy back-propagation counter-propagation Kohonen network
problem
[ classification *
modeling ik (5)
mapping () )
assoctation i @
moving window * B3

Table 9-2:  Neural network learning strategies and their application to different
types of problems. An asterisk indicates whether this learning
method can be upplied Lo the indicated problem type.

— various types of applications

— different neural network learning methods

— different sizes of neural network architectures and datasets

Table 9-3 summarizes the essential features of the examples in the
following Chapters.

chapter problem type of problem
1} origin of olive oils classilication + mapping
11 bond reactivity classification + mapping
11 reaction classification classification
12 HPLC sepuaration modeling
13 QSAR modeling
13 QSAR classification + modeling

13 QSAR variable selection + modeling
14 electrophilic aromatic substitution modeling

15 paint coat recipe modeling

16 fuult detection. process control classification + modeling

17 protein struciure classification

18 infrared spectrum/structure correlation  classification + mapping

18 infrared spectrum simulation classification + modeling

19 molecular surfaces mapping

20 chemical libraries classification

Table 9-3:  Main features of the examples in Chapters 10 — 20 BPE: back-
propagation of error, KL: Kohonen learning, CP: counter-
propagation, MW: moving window, GA: genetic algorithm.

That’s why we have intentionally not arranged the chapters
according Lo the subdisciplines ol chemistry. Rather, we want to help
you develop an understanding and an eyc for the types of problems —

size of the
method
network

* medium BPE + KL

small KL + BPLE
medium KL

small BPE

srnall BPE
medium KL + BPE
medium GA + CP
smalt BPE

small BPE

smmali BPE + CP + MW
large BPE + MW
large BPE + KL
large CP

large KL

large KL
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classification, modeling, mapping — that can be tackled by neural
networks.

Before attempting to design a neural network
solution to a problem, you should first classify the
problem and only then attempt to identify the type of
neural network and the learning method most
appropriate to solve it.

We start with classification problems {Chapters 10 and 11) and
then turn our attention to modeling problems (Chapters 12 — 16).
However, Chapter 16 also contains a classification problem and
classification problems are the main theme again in Chapters 17 and
18 (these were placed so late in the book because they involve such
large network architectures and datasets). Chapter 19 deals with a
mapping problem, where we will show that artificial neural
networks can help us understand biological neural networks.

Mapping problems are also mentioned in Chapters 10, 11, 18, and
20). This brings up another important point:

Quite often, a certain application contains aspects of
several different types of problems and should
therefore be attacked with several different neural
network methods simultaneously.

In Chapters 10 — 20 we do exactly that — we look at many of the
problems using multiple neural network methods: multilayer networks
with learning by back-propagation of errors (BPE), counter-
propagation network (CP), Kchonen learning (KL), and the moving
window input scheme (MW).

A (perhaps the) most important issue in any application of neural
networks is the representation of information that is fed into the
network and/or obtained from it. Since neural networks are such
general-purpose problem-solvers, it is all the more important to be
very careful in choosing an appropriate representation of the
information that goes into and leaves it. We therefore put strong
emphasis on the proper representation of chemical information. The
representation chosen has to be adapted to the problem.

169
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As a case in point, the problem of how to represent the structures
of organic compounds 1s addressed — and solved in different ways —in
the examples shown in Chapters 11, 13, 14, 17, 18, 19, and 20.

Because of the overall importance of structure representation in
many chemical apphications we have added a special chapter (Chapter
21) that deals with this problem and collects the various methods that
have been used in the different chaplers.

Bernard Widrow  stressed  the importance of proper  data
representation this way:

“The three most important issucs that must be addressed in the
development of neural networks are:

1. representation
2. representation

3. representation”
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9.7 Essentials

Classification

Either supervised or unsupervised learning may be used in
creating a classification engine; in the former, one-hidden-layer
neural network architectures with back-propagation learning
are used, and Kohonen networks with the latter.

Modeling

Modeling applies only to systems in which changes in the
output are proportional to the changes in the input. Modeling
always requires supervised learning, and therefore mainly two
types of neural networks are applicable: the back-propagation
and the counter-propagation methods.

Neural net models are simpler to implement than with
classical methods, because of having no need for adjustable
parameters; but they also lack the potential for physical
interpretation that those paramelers possess.

Mapping
The essence of mapping is reduction of dimensionality. The

objects are represented by the coordinates of the position of
the “central” neuren and not by the values of the output.
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