10 Clustering of Multi-Component
Analytical Data for Olive Oils

learning objectives:

— how chemists analyze samples of olive oils for
eight fatty acids, and from this can determine from
which of nine regions in Italy the oils come

— the difference in classification ability between
back-propagation and Kohonen learning

— how a Kohonen network can “associate” the
analyses and the regions and learn to classify an
oil sample as to region, given the analysis

- the way to select the appropriate Kohonen network
architecture

— the significance of empty spaces in a Kohonen
map, and how to deal with cases where objects are
mapped into empty spaces.

10.1 The Problem

Monitoring the origins of goods is an important application of
analytical chemistry in the food industry as well as among consumer
protection groups.

The problem of determining geographical origin is not as hard as it
sounds, because you are generally choosing from a limited set of
possibilities; in fact it may be better if we rephrase the problem: how
can we show that the object actually comes (or does not come) from
the place named on the label. Hence, the problem is reduced to a
standard classification.

In addition, there is the problem of how to present such results to
the customer. Consumers, especially consumer activists, are not likely
to accept a short answer like “yes” or “no”.
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In fact, there are lots of reasons for giving clear and casy-to-
understand presentations of analytical results; so, the chosen
classification method must show a clear picture, and must be easy to
justify; it should be robust enough to allow an easy classification of
unknown objects. Such a robust approach to the classification problem
can be made by mapping the original multivariate objects into a two-
dimensional plune and assigning (or trying (o assign) the clusters of
object projections formed on the map to the sought categories.

Before a procedure is accepted as a relisble classification
technique, it still has to be tested with additional “unknown™ objects.
If the proposed mapping procedure does not provide a reliable
classification, either the mapping method or the representation of the
objects has to be changed.

Before the arrival of neural networks, the best methed for mapping
mullivariate data nto a two-dimensional plane was Principal
Component  Analysis (PCA). This method first calculates the
correlation maltrix, then diagonalizes it to obtain the eigenvalues and
eigenvectors. Finally, it transforms the original data into new ones by
using the matrix of eigenvectors as a transformation matrix. The map
is obtained by plotting the transformed data against whatever two of
the new components bring the largest portion of the information mto
the correlation matrix (Figure 10-1). Although the entire procedure
can be made completely transparent to the user, such complex
statistical calculations are hard to explain to the general public.

Therefore, a simpler method seems to be desirable. We will show
here that this can be achieved by a Kohonen neural network.

Of course, it only the classification of objects is needed, the back-
propagation method can be used just as well. In the following section,
the same set of data is treated by both methods in a number of
networks, each having a different architecture.

10.2 The Data

In order to show how problems of classifying multivariale objects
can be treated by neural networks, we will use a dataset that has been
extensively studied by various statistical and pattern recognition
methods. This data set consists of analytical data from 572 ltalian
olive oils produced in nine different regions of Italy (Reference 10-1).
For each oil, a chemical analysis determined the percentage of the
following eight different fatty acids:
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This formidable analytical work produced a matrix of almost five >

thousand values (572 x 8 = 4576) (each of which a result of a careful

analysis!). Figure 10-2: Ttalian regions used in
Because the proportions of some fatty acids may differ by two  this study.

orders of magnitude, all values belonging to a given variable were

normalized.
Table 10-1 shows how the Italian regions were numbered, and how

many different oils were analyzed from each part. Figure 10-2 shows

the Ttalian regions and their numbers.

no. region no. of samples
1 North Apulia 25
2 Calabria 56
3 South Apulia 206
4 Sicily 36
5 Inner Sardinia 65
6 Coastal Sardinia 33
7 East Liguria 50
8 West Liguria 50
9 Umbria 51

total 572

Tabile 10-1: Origin and number of samples of each cil used in this study.

(The data, which are widely known among chemometricians, were
kindly supplied to us by Professor Forina of the University of Genoa,
Italy, for which we express our sincere thanks.)

Various groups of researchers have investigated this particular
dataset using a number of statistical treatments and inspection
methods, including various clustering methods, principal component
and discriminate analysis. The results of these studies are mainly
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published in the journals of chemometrics and analytical chemistry.
Some of these studies are listed in Section 10.6.

10.3 Preliminary Exploration of Possible
Networks

We started by trying a simple classification of all 372 objects of
four different back-propagation and four different Kohonen neural
networks, We just wanted to sec how different types of networks
would react to these data. The results are summarized in Table 10-2;
the back-propagation trials werc aimed at finding the most promising
architecture (i.e., the best recall), and the Kohonen to estimate the
proper size for the resulting map.

network lype dimension weighty U”_w crrorf; ot

|min| conflicts
I BPN §x SxI 51 150 138
2 BPN 8§x 10x1 101 20.0 71
3 BPN 8x 5x9 108 45.0 23
4 BPN 8x 8&x9 153 75.0 15
5 * Kohonen 10X 10X8 800 10 24
] Kohonen 15x 15x8 1800 2.0 14
7 Kohonen 7% 17x8 2512 2.5 14
8 Kohonen 20x 20x 8 3200 3.0 £2

(Koh?meh networks used the criterion of Equmon (6.1))

Table 10-2:  Characteristics of neural networks used in the preliminary step.
(BPN: back-propagation network; time¢ measured on IBM 387
compatible)

In the back-propagation network, “best recall” was defined as the
smallest number of objects that cannot be learned after 400 epochs.

Two crileria were used to evaluate the Kohonen maps: the number
of conflicts, and the amount of empty space. A conflict occurs when
two objects from different classes trigger the same neuron. The
number of conflicts is given in Table [0-2. An empty space is a neuron
that is not triggered by any of the 572 oils. Too many empty spaces
indicate either that the network is too large for the given set, or that
the network did not spread the objects well encugh across the
projection plane.
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In designing a back-propagation network, we have to decide; first,
whether to use one or nine output lines; and second, how many
neurons should be in the hidden layer. The answer to the first question
1s not hard: the networks with nine outputs perform far better than
those with one (in Table 10-2, compare the number of errors in
networks 3 and 4 against | and 2).

But the question about the number of neurons in the hidden layer is
much harder. Fortunately, there is no need to fix the number of hidden
neurons exactly at the optimum value in small networks like the ones
used here. The time needed to learn the classification using the entire
group of 572 objects was on the order of ten minutes on a SUN Sparc
workstation. Hence, computational time is not a limiting problem.
However, a network too large can increase the time considerably, with
no payback in improved results; finally, we chose back-propagation
networks with about 150 weights. (Don’t forget to count the bias in
the number of weights (see Section 2.5). Biases on Figure 10-3 are
shown, as usual, as black squares.

Considering this particular problem, it can be said that the
{20 x 20) neuron matrix is slightly too large for the given data set,
since many of the objects are rather similar to each other and end up
firing the same neuron. If we later separate the data into a training set
of 250 and a test set of 322 objects, the (20 x 20) matrix would be
populated too sparsely, Therefore (and for ancther reason that will be
explained in the next section), a slightly smaller matrix was
eventually chosen,

Another reason for selecting these particular back-propagation and
Kohonen networks was the fact that other studies on the classification
of these oils (including Principal Component Analysis (PCA), K-
nearest neighbor technique (KNN), SIMCA, or three-distance
clustering (3-DC)) gave a comparable number — 10 to 20 — of
misclassifications or errors. The numbers of bad recalls and conflicts
(“errors or conflicts” in Table 10-2) are comparable with the results
from these other methods.

The objects that cause the errors or conflicts are cither wrongly
assigned or contain excessive experimental error. In any case, in a
poo! of almost 600 complex experiments, it is hard to make fewer than
2% errors in the analytical determinations.

Table 10-2 also contains the time each network needs to learn the
572 objects. The training time of the Kohonen networks is more than
one order of magnitude smaller than for the back-propagation
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Figure 10-3: The back-propagation
networks used in the preliminary
study.
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networks, in spite of the lact that the number of weights in the
Kohonen networks is an order of magnitude larger (Figure 10-4).

The lower computation times of the Kohonen networks are due to
the lower number of learning periods {(epochs) required for the
completion of the training: between 6 and 15, compared to 40 for the
back-propagation network.

The architecture of Kohonen networks used 1n this study can be
visualized in terms of square bricks; the bas¢ of such a brick
accommodates the neurons (each of which has eight closest
neighbors). The height of the brick depends on the number of weights
in each neuron, which in turn is related to the number of inputs (the
number of variables representing each object).

In our case, each object is represented by eight variables (the
compositions of eight different tatty acids). Thus, all Kohonen neural
networks are eight units high; they differ only by their bases, the arcas
where the future maps will be formed. All four Kohonen networks
used in this study are shown schematically in Figure 10-4.

The inputs to the networks are treated as eight-dimensional

column vectors (shown at the left-hand side of each network in Figure
10-4). The same input vector (complete analysis of an olive oil) goes Figure 10-4: The Kohonen networks
to all neurons in the network simultaneously. However, ome  ygedin this study.
component of the input vector is connected to one layer of weights
{shown darker in Figurc 10-4).
NOTE: the map of oil samples was produced by training the Kohonen
network without considering toroidal boundary conditions (see
Section 6.2) when making the corrections. Thus, the projection was
not made onto the surface of a torus but onto a normal two-
dimensional plane.

Figure 10-5 shows the map obtained from 572 records of olive oil
data with the (20 x 20 x 8) Kohonen network. With respect to
geographical origin, regions which are topologically close to each
other are mapped into areas of the map that are also close together.

For example, the Sardinian oils — both those from the inner and
those from the coastal regions, classes 5 and 6 — are separated from
the rest by an obvious empty region. The oils from the northern parts
— the Liguria and Umbria regions, oils 7, 8, and 9 — form a light

cluster i the upper part of the map. Those from the southern parts of
Italy — from Apulia, Calabria, and Sicily, oils 1, 2, 3, and 4 — are again
clearly separated from the rest by an U-shaped region extending from
left to right.
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The only significant inconsistency in the Kohonen map (compared
with the actual map of oil growing regions in Italy) is the position of
the South Apulian oils (class 3), which is in the lower left instead of
the lower-right corner of the map. However, this correspondence
between the geographical map and the Kohonen map in this example
is purely fortuitous.

This clustering is remarkably good, considering the simple
learning scheme used to produce it. Not only is there a clear gap
between the southern and the northern oils, there is even a clear
separation between the two types of Sardinian oils, and of those two
types from the rest. We can safely say that there is a clear correlation
between the topology of labeled regions in the Kohonen map and the
actual positions of the oil-producing areas in Italy.

Two groups that are not as homogeneous as others are the Sicilian
and Calabrian oils, which intersect each other. It is interesting to note
that most of the errors in classification are produced by the oils from
these two regions. This exception is quite instructive: even if excellent
results are produced overall, we should remember that our input
objects do not actually have any explicit geographical information
embedded in their representation.

Figure 10-3: Mapping the data for
olive oils on the (20 x 20) neural
network.
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10.4 Learning to Make Predictions

All this preliminary work was done to observe the behavior of
different networks with a certain group of data, rather than (o inspect
the data itself. In the second part of this study, we will find out how
good our networks are at learning. We will divide the data into a
training set and a test set. We will ignore the possibility of
overtraining (Section 8.6.2); therefore we will not need a control set
for signating when to stop the training. With such simple networks as
these, it is sufficient to let the leaming process run until no further
improvements can be detected.

Table 10-3 shows how the dala were split into the two sets. We
used two conditions: first, both sets should be approximately of the
same size (if possible, the test set should be slightly larger than the
training set); second, the training set should be as homogeneous as
possible (it should contain approximately the same number of objects
from each class). An good division is 270 objects for training and 302
for testing (the 270 comprise 30 objects from cach of the 9 classes).
But not all classes have equal numbers of data, so there has to be some
tradeo!T between smaller and larger groups. Table 10-3 shows the final
distribution of the data objects.

no. region label training test
1 North Apulia NA 15 10
2 Calabria CA 33 21
3 South Apulia SA 40 166
4 Sicily S1 20 16
5 Inner Sardinia IS 30 35
6 Coastal Sardinia CSs 20 13
7 East Liguria EL 30 20
8 West Liguria WL 30 20
9 Umbria UM 30 21
ol - 250 322

Table 10-3:  Splitting the data into the training and test group.

The objects within each group were selected at random with no
prior inspection of their behavior, or knowledge of how they group
together.

The training set was first used with the four back-propagation
networks described above (Table 10-2). Although it was clear from
the beginning that the first two networks (with only one output neoron
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each) will yield worse predictions than those with nine, they were
included in the experiment to show examples of bad design (Table 10-
4).

All learning procedures were carried out by applying the set of
equations given in Section 8.7 and using value of 0.2 and 0.4 for the
learning rate 1 and the momentum (L.

errors

network dimension recall predictions
from 250 from 322

1 8x 5x1 104 (42) 121 (38)

2 8x10x1 89 (36) 117 (36)

3 8x 5%x9 5(22} 25 or 27 (8)

4 8X 8X9 1(0.4) 31(10)

Table 10-4: Prediction ability of different back-propagation neural networks
(percentages in parentheses).

The networks with only one output neuron gave almost 40%
wrong predictions and thus clearly are inadequate for a nine-class
identification. On the other hand, it is surprising that the network with
eight neurons in the hidden layer is less successful in learning
compared to the one having five (as demonstrated by the number of
errors in predictions for the test set). Although the difference is not
very large, this demonstrates that larger networks do not necessarily
yield better performance.

Thus, the best performer is the (8 x 5 x 9) network, which gives
only 25 wrong classifications for the 322 data in the test set. This 92%
prediction ability can be considered quite good. The number 27 shown
together with number 25 in Table 10-4 means that two more objects
would be classified wrongly if a stricter criterion were selected for
class membership. The issue of criteria for class membership will be
explained soon.

Now let's compare the desired output (targets) and the actual
output values.

For a neural network with nine output neurons, we have to provide
nine-¢lement target vectors ¥, In the ideal case, only one output
neuron should have an output signal equal to 1 (associated with a
particular input class), while all other output neurons produce zero.
The 9-variable targets are coded as follows:

183
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class NA CA SA SI IS CS EL WL UM
Y(lass ) = 1 0 0 0 0 0 o ¢ 0
Yiclass2) = ( O 1 O o ¢ 0 ¢ o 0
Ylass3) = 0 0 1 0 0 0 O 0o 0
Yiclass4y = ¢ 0 0 0 1 o 0o o0 0 0
Y{class$) = ¢ 0O 0 0 0O 1 0 0 0 0
Yi{class6) = ( 0 0 0O O 0O | 0 0 0
Y(class7) = ¢ 0 0 0 0 0 0 1 0 0 )
Y{lass& = 0 0 0 0 O 0 0 1 0
Yclass9) = ¢ 0 0 0 0 0 0 0 0 1)

The actual output from the networks was seldom like this; more
often the output values of neurons that should be zero were around
0.1, and the values of the neurons signaling the correct class had
values ranging from (.95 to 00.5.

All of the 25 wrong predictions produced the fargest signal on the
wrong neuron. But when a stricter criterion is uscd, the two additional
cases have to be considered. Both have their largest output on a
neuron signaling the correet class, but in one case this jargest signal
was only about 0.45, with all other signals being much smaller; in the
second case, the largest signal of the correct ncuron was (.9, but the
second largest signal was well over (.55.

Strictly speaking, the total error in both of the anomalous answers
was more than 0.5; so, we could simply dismiss them as being wrong.
But “right” and “wrong”™ are relative terms in science; if we consider
only the neuron with the largest signal, regardless of its absolute
strength, both can be regarded as correct answers.

The second learning experiment was set up on the Kohonen
networks (see Table [10-2). These were trained by the same 250-
member training set as used for the back-propagation networks, and
then tested for predictions with the remaining 322 member test set.

Because a Kohonen network is usually not used for making
predictions, we have to discuss in more detail how this can be done.

To review, the result of the Kohonen network is a two-dimensional
map of assigned ncurons, cach of which carries a “tag” or “label” of
the object that excited it at the final recall test. If more than one object
excites one neuron, 1t is hoped that all of them belong to the same
class. Even more so, it is expected that the neurons most excited by
objects of the same class will form clusters or small regions on such a
map.
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If a test object falls into such a cluster, it can be classified as
belonging to the group corresponding to this cluster. The region where
the objects of a certain class excite the neurons can form tight borders
with regions formed by other classes, or such regions can be separated
by empty spaces, corresponding to neurons not excited by any object
from the training set. Sometimes, empty spaces appear within the
region of a class (Figure 10-6). An input object that maps into an
empty space may still be classifiable, as we will now see.

Along tight borders of two or more regions, it can easily happen
that the same neuron is excited by two objects belonging to
different classes. Such cases are called conflicts and the neurons are
called conflicting neurons. Conflicts can occur in the recall process,
but much more often they happen during the later prediction phase. If
the input object excites a neuron in the wrong region, this is clearly a
conflict situation. On the other hand, if the excited neuron corresponds
to an empty region, the class membership of the neighboring neurons
can help us decide whether to consider it a conflict.

Before trying to settle this question, let’s inspect the predictions
made by ditferent Kohonen networks. Table 10-5 shows the prediction
abilities of eight Kohonen networks. Four were obtained from our
preliminary investigation and four from additional investigattons.
This table contains the correct and wrong classifications, as well as
the numbers of emply spaces.

learning predictions
network -
. ) hits into
no.  dimension map empty .
. _ conflicts correct empty  wrong
size spaces
space space
I 20x 20x8 400 193 0 216 108 8
2 17x17x8 289 108 2 215 96 11
3 15x15x8 225 64 | 251 60 11
4 10x 10x8 100 19 2 280 25 17
5 Tx Tx8 49 5 9 290 3 29
6 5x 5x8 25 2 27 285 0 37
7 4x 4x8 16 2 33 247 0 75
8 3x 3x8 9 0 57 267 0 55

Table 10-5: Performance of various Kohonen networks in learning and
predicting geographical origins of olive oils.

All objects were mapped by exactly the same Kohonen learning
procedure with the same training set of 250 objects, the only
difference being the size of the network.

empty
space
border
within  between between
region regions regions
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Figure 10-6: Borders between regions,
and empty spaces between and within
the regions representing classes.
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The learning produced only two conflicting neurons in the
(10x 10) and (17 x 17y networks, one conflicting neuron in the
(15 x 15) network, and nonc in the (20 x 20) network. Thus, it can be
said that a Kohonen network of adequate size has a good recall or
good recognition ability.

The prediction ability of each network was tested with the same
set of 322 oils, and it was found that an increase of the size of the
Kohonen maps improves the prediction ability from {7 w only 8
mistakes; however, the number of hits into empty spaces increases at
the same time by a factor of four: from 25 to 108.

The factor of four corrclatcs with the increase the size in the
Kohonen map from 100 to 400 neurons. It makes sense that the
number of empty spaces (“unused” neurons) will increase, as the
network size increases, and that the number of hits into empty spaces
also depends on network size. As Figure [0-7 shows, the latter
relationship is linear — within limits. For nerworks much larger than
(20 x 203, there will be many more empty spaces, but because of the
limited number of data the number of hits into empty spaces will level
off. With very small maps, the number of cmpty spaces cannol be
linearly related to the number of empty space hits because (here
wouldn’t be any. Rather, the number of conflicts increases (Table 10-
5).

Based on this discussion, we can see, that our network sizes were
well chosen.

Because there always exist a certain number of
interactions between certain classes, it is hard to generate a map
completely covered by hits with no empty spaces. To investigate this,

repulsive

we generale four more Kohonen networks producing 49-, 25-, 16-,
and 9-neuron maps. It was found that only the (3 x 3) map does not
contain any empty spaces; the (4 x 4) and the (5 x 5) maps have two,
while the (7 x 7) map has five empty spaces. So we see that, in
designing Kohonen networks a compromise between the number of
hits into empty spaces and the number of conflicts has to be found.

As Table 10-6 shows, when we test the network for prediction,
there are quite a number of hits into cmpty spaces. It scems therefore
worthwhile to explore these cases in more detail.

In order to make a guess about class membership for objects that
map into cmpty spaces. we can try the K-nearest neighbor (KNN)
technique, which determines the class by counting a number & of

of all objects

o o g e e

100 300 500
no. of neurons

Figure 10-7: Number of hits into
emply space as a function of map size.
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closest neighbors, with the majority determining the class of the
central object.

no. of network
class ;

objects 10x 10 15x15 17x17  20x20
] 10 0 1 (1 - =) 3 5
2 21 3 6 (4 2 -} 7
3 166 20 32 (32 - =} 59 52
4 16 2 6 (3 - 3) 7 8
5 35 0 1 (1 - =) 3 11
6 13 1 2 (- - 2) 0 4
7 20 0 5 (3 2 =) 5 10
8 20 0 7 (7 - ) 10 6
9 21 0 [V - =) 3 2

| total 322 26 60 (51 4 5) 96 108

Table 10-6: Number of hits into empty spaces in predictions on the 322-object
test set.

A detailed count was made for all 60 empty-space hits of the
(15x 15) map. The numbers of correct, undecided and wrong
classifications for each class are given in parentheses in Table 10-6.

It was found that 51 of the hits would be classified correctly based
on the majority vote of the eight closest neighbors. Four were
undecided, which means that an equal number of these neighbors
belong to two different classes; and only five would be classified
wrongly on this basis. Now, we can add these figures to the
corresponding figures (Table 10-5) for correct and wrong answers,
251 and 11, respectively, predicted by the (15 x 15). Altogether, we
infer that by considering the KNN decision for empty space hits in
addition to the predictions made by hits in labeled areas, the (15 x 15)
network produces 302 (= 51 + 251) correct, four undecided, and 16 (=
5 + 11) wrong classifications.

Figure 10-8 shows the case where an unlabeled neuren, ie., an
empty space, has two neighbors from class 2, two neighbors from
class 3 and four additional blanks.

Comparing Figures 10-8 and 10-9, it appears that the
neighborhoods of the wrong hits were quite different from those of the
hits into “empty space”. Working with a well-diversified test set
(Table 10-3), we were able to check predictions involving a variety of
topological configurations.
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Figure 10-8: Out of eight neighbors of
an unlabeled neuron, two are members
of class 2 and two are members of
class 4 the rest are blanks. The
prediction cannot be made.
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Figure 10-9: The 11 cases in the (15 x
15) network for which the predictions
were wrong.
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The (15 x 15) network makes a total of Il wrong classifications
(see Table 10-5); Figure 10-9 shows all neurons {circles)
corresponding to wrong hits during the 322-object test.

In the eleven “wrongs” shown in Figure 10-9, it can be seen that

— the West Liguria oil (8) has been assigned as an East Ligurian one
(7}, and vice versa,

— both Sicilian oil mistakes (4) were predicted on the borders of
Sicilian oils {once with North Apulia, (1), and once with South
Apulia, (3)),

— all six South Apulia oil mistakes were made within (five cases) or
in contact with (one case) the North Apulia oils, (4),

— only one case: the North Apulian oil, class (1), triggered a neuron
far away from its own group. But even this “Tar away shot” places
the North Apulian sample into the Calabrian region, (2), on the
border with the South Apulian ones.

It is encouraging to note that some valuable information can be
obtained even from the wrong predictions. All the errors involve
objects being out into neighboring classes in the geographical sense; it
turns out that the identification of origins as “Northern Italy” or
“Southern Italy” was made 100% correctly for all samples.

10.5 Concluding Remarks

The example presented in this chapter was selected to show the
advantages of the Kohonen network. It is useful when the topology of
the classes is of interest; you may also use it in all preliminary
researches where the number of clusters and the relations among them
are not known. Other uses of Kohonen networks are discussed in
Chapters 11 and 19. In many cases however, the back-propagation
methods can give considerably better results than a Kohonen network.
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