11 The Reactivity of Chemical
Bonds and the Classification of
Chemical Reactions

learning objectives:

— the electronic and energetic effects that determine
the polar reactivity of a chemical bond

— the possibility of using a neural network to classify
bonds by reactivity {susceptibility to heterolysis)

— the importance of properly choosing the training
data

— aclassical method of data selection: “experimental
{factorial) design”

— using a Kohonen network to select data to be used
to train a different network

— how the Kohonen classifying map can be inter-
preted to reveal (possibly unsuspected) relation-
ships within the data

11.1 The Problems and the Data

The prediction of the course and outcome of a chemical reaction is
one of the fundamental tasks in organic chemistry. Since chemical
reactions are initiated by the breaking of one or more bonds in a
molecule, a knowledge about reactive bonds, that is bonds that will
easily break, is indispensable for the prediction of chemical reactions.
This is the theme of the first study reported in Sections 11.1 — 11.6.

Chemists have derived their knowledge about chemical reactions
largely from individual observations, have ordered these individual
reactions, have generalized their observations by building models or
by making predictions by analogy. In this inductive learning process,
the classification of reactions into reaction types plays a major role.
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With the availability of large reaction databases with some ol them
comprising millions of reactions, the automatic classification of
reactions becomes of major interest. For, this will allow the mining of
knowledge from reaction databases, knowlcdge that can be used for
reaction prediction systems and for compuier-assisted synthesis
design. The classification of reactions is the theme of the sccond study
reported in Sections 1.7 - 11.8.

Organic reactions are largely governed by polar processes, which
break a bond in such a way as 1o generate a positive charge on one
atom and a negative charge on the other. Such a polar bond breaking,
also called heterolysis, can occur Tor each bond in two ways (Figure
11-1}; both possibilities were investigated in the first study.

This example lollows the work ot V, Simon and coworkers of the
Medel Laboratory for Computer Chemistry at the Technical
University of Munich, who have irained a neural network {for
predicting the polar breaking of bonds (Rcference 11-6). Given any
single bond in an aliphatic organic compound, such a neural network
should be able to predict whether this bond will break easily, and how
the charges will be shifted onto the atoms of the bond (Figure 11-1).

A dataset of 29 molecules is chosen so as to cover the diverse
structural variations of aliphatic molecules; these molecules contain
385 bonds capable of 770 potential polar bond breaking modes.
Considering only unique single bonds {e. g., only one C-H bond of a
mcthyl group) leaves 373 chemically different polar breaking modes.

From among these 373, a series of 149 breaking modes are
selected (hat can rather unequivocally be classificd by chemists into
43 reactive and 106 non-reactive ones.

Figure 11-2 shows four of the 29 molecules and the 11 single
functional group bonds they contain; The arrow in each bond points to
the atom that obtains the negative charge. Plain bent arrows indicate
reactive bonds, i.e., bonds that can be broken easily, while arrows with
X’s indicate non-reactive bonds. All other bands are unclassified.

The breaking of a chemical bond is influenced by a variety of
energetic, electronic or steric effects, for example: charge distribution,
the inductive, resonance. and polarizability effects, bond dissociation
energics, clc.

Organic chemists ofien discuss these effects only in a qualitative
manner, but in recent years a4 number of empirical quantitative
methods has been developed Tor such factors, We choose seven of
these Lo describe a chemical bond in this study:
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Figure 11-1: Two choices for the
heterolysis of a chemical bond.
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Figure 11-2: Four of the molecules
and eleven of the bonds considered in
this example, Plain bent arrows
indicale reactive bonds whercas
arrows that are crossed (X) show polar
breaking modes that are difficult 1o
achieve.



— the difference in total charge, Ag,,,.

— the difference in rn-charge, Agy,

— the difference in ¢-electronegativity, A,
— a measure of bond polarity, (s,

— the amount of resonance stabilization, R, available for the charges
generated upon heterolysis,

— the bond polarizability, o, and
— the bond dissociation energy, BDE.

Values of these variables are calculated and assigned to the bonds
using a program package called PETRA (Parameter Estimation for the
Treatment of Reactivity Applications; see Section 11.7, References
11-1 to 11-5).

Table 11-1 gives the values of these seven parameters for the
eleven bonds shown in Figure 11-2.

bondireac- Agy Agn Axy Oq R oy BDE
tivity  [e] le] [eV] le]  [eV] [A*  [ki/mol)
1| — 000 000 000 000 402 546 236
2| - -016 003 -208 017 000 489 240
3| + 004 000 -056 006 809 385 412
4 | + 024 000 -19 033 516 583 338
5| — -013  -001 0.61 —0.12 343 506 461
6 | — ~015 001 037 -0l 0.00 422 456
71~ -015 001 037 0.1 0.00 422 456
8 | + 045 010 -156 044 735  3.60 437
9| — -054 008 -148 -022 000 535 445
10 + 030 000 -132 031 748 693 336
1| — -004 000 -034 001 000 616 362

Table 11-1: Values of the effects influencing reactivity for the chemical bonds
shown in Figure 11-2.

Our task is now to relate these seven variables to the reactivity
classification of a particular bond. As can be seen from Table 11-1, no
single parameter suffices to separate reactive (+) and nonreactive (-}
breaking modes. Classifying the reactivity of chemical bonds is
clearly a multivariate problem.

The Problems and the Data
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11.2 Architecture of the Network for Back-
Propagation Learning

We first approach the problem of classifying breaking modes as
reactive or nonreactive by a two-layer neural network employing
back-propagation lcarning. The number of input unils is set to seven,
the number of recactivity-controlling effects. These have different
ranges, e.g., one from —(.2 to +0.2, another from 200 to 5(); since the
input units expect values between O and 1. each input value has to be
scaled separately between its minimum and ils maximum value. The
output classification is coded as 0 for nonreactive breaking modes, or
1 for reactive ones.

A two-category (binary) classification can be achieved either by
two output neurons, one for each class, or by one output neuron
which is sel to zero for one class, or to one for the other (Figure 11-3}.

In the two-neuron case, the sum of the two output values is always
LG, and the weights in the output layer have, in pairs, the same value
with opposite signs (Figure 11-4),

We decide to work with a one-output neural network because an
additional output does not provide any advantages.

Finally, we have to decide how many hidden neurons to usec. We
must always remember that having too many weights relative to the
number of training data will probably lead (o overtraining (Section
8.6.3); hence, the aim is always to work with as few ncurons as
possible.

A network with three hidden neurons turns out to be appropriate;
our final architecture is (7 x 3 x 1), with 28 weights including the
connections 1o the bias (Figure 11-5).

Figure H1-3: Twao possible schemes
for outputting a binary value.
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Figure 11-4: Two outpul neurons
cause all pairs of weights connecting
them to the level above to have the
same value with opposite sign.
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11.3 Using an Experimental Design
Technique to Select the Training Set

Two measures are used to determine the quality of a
network. The recall gives the percentage of correctly
recognized objects from the training set after training
is over. The ability for prediction gives the percentage
of correctly classified objects from a test set which
was not considered during training.

Next, we therefore have to divide the dataset into a training and a
test set. If no clear criterion exists, you can choose the training data
randomly; that’s what we did initially. However, we will show in this
section that random selection is not a very good strategy.

The initial dataset contained 116 bond breaking modes; we divided
it into 58 for training and 58 for testing. However, to cover the
measurement space better and to allow a joint comparison of the
different methods for selecting the training set, we found it necessary
o extend the dataset to 149 modes: 64 for training and 85 for testing.
Only the results obtained from this larger dataset are discussed in this
chapter.

Table 11-2 shows the results of the initial trial; we randomly
selected ten training sets (64 modes each) and trained the (7 x3 x 1)
neural network to recognize and predict reactivities of breaking
modes with each of the ten sets separately.

The most important figure of merit for a multilayer neural network
is the number of errors made in the test set. In predicted reactivity (yes
or no), the number of wrong answers (out of §5) ranged from 3 to 12,
with an average of 7.5.

reactivity

Figure 11-5: The network architecture
for the prediction of the polar breaking
of a bond.
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training sel recall crrors prediction crrors
on a test set

| 1 7
2 0 3
3 0 12
4 \) 1o
5 0 6
6 0 7
7 1 5
8 0 v
0 7

10 0 5

Table 11-2;  Recall and prediction abilily obtained on the ncural netwark after
training with 10 randomly selected datasets.

The selection of the training set is so important that it is practically
a separate area of investigation, not only for neural networks, but for
any approach on extracting knowledge from data, and even more so
when the data come from (expensive and lengthy) experiments.
Hence, a field of specialization called “experimental design™ or
“factorial design” has been developed.

Most importantly, the training set must cover the variable space in
the most representative possible manner. A standard method is to
select variables that are thought (o influence the system under
investigation, and divide the range of values of each variable into two
or three fixed levels or intervals; for example, in a three-level design,
we set up a low, a medium, and a high level. If exact valucs of the
variables are difficult to obtain, the entire range of cach variable is
divided, into, let’s say, three fixed intervals (low, medium and high),
which can bec called levels just as well. After the levels are
determined, the data are selected so that the set contains values for all
variables, representing all combinations of levels.

For example, if you have two variables lor which three levels
(intervals) of possible values are determined, the data should be
selected so that each of the 3% = 9 subspaces is filled with an
experiment or a data point (Figure 11-6),

In our present example, seven variables require 37 = 2,187 bond
breaking modes for a complete three-level experimental design. This
is a bit large, so we must look for ways to reduce the number of data

)CQ‘_

high | sk k sk

medium | 3k % %

low | zk & %k

-

low medium high x,

Figure 11-6: A complete threc-level
experimental design for a system with
two variables (x) and x5).
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while still covering the information space as comprehensively as
possible.

One way to do this is to reduce the number of variables to those
representing the largest amount of new information. The correlation
among the variables helps us make that choice: highly correlated
variables carry similar information and are thus (more or less)
redundant.

Based on an analysis of the correlation matrix shown in Table
11-3, four variables can be retained:

the difference in o-electronegativity, Ay,

the resonance stabilization of charges, R =

bond polarizability, o, and

bond polarity, Q.

Agior Ady Ly Os R Uy BDE
le] le] [eV} €] [lev] [A}  [Ki/mol]

Ade | 100 —031 -0.11 084 012 003 002
Agy 100 019  -041 014 003 001
Mg 100 -074 007 000 001
04 100 006 002  0.04
R* 100 030 -028
%, 00 -0.72
BDE 1.00

Table 11-3: Correlation matrix of seven variables for the breakability of bonds
(based on 373 data).

With four variables, a three-level experimental design requires 34
= 81 data on bond breaking modes.

Now, if we sort our 116 bonds into these 81 boxes, how many
boxes stay empty? The answer is 41. If we add the remainder of the
original 382, 20 more boxes are filled (with as-yet-unclassified
bonds), leaving 21 of the subspaces completely empty. That is, none
of the 373 breaking modes has a combination of the four variable
values that would allow it to fall into any of these 21 subspaces.

We mentioned above that the 116-bond set was extended to 149,
this was done to put data points into the 20 subspaces that can be filled
with these data; as regards the 21 that can not be filled, we must
assume that these subspaces do not have any chemical significance.

197
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For the training set, we chosc one breaking mode from each of the
60 occupied subspaces. Afterwards, we noted that four subspaces
contained both reactive and nonreactive modes. Apparently, these
subspaces are borderline cases, indicating regions where reactivity
changes. In order to account for that, both a reactive and a nonreactive
mode were sclected from these four subspaces, increasing the training
set to 64.

This, then, is the “best” training set for the back-propagation (7 x 3
x 1) neural network given the original set of 29 molecules.

Now, as we did in the random selection, we need ten different
datasets for comparison, all selected according to the same criteria,
ensuring that all of the 64 bond breakings cover all 60 subspaces. The
results of ten identical learning procedures in the same (7 x 3 x 1)
network show much better results than those obtained from the
random selection; see Table 11-4 and Table 11-2.

random sefection experimental design

ne- recall prediction recall prediction

] I 7 0 o

2 0 3 (} 3

3 0 12 V] 4

4 0 10 0 3

5 u; 6 0 4

6 0 7 0 2

7 | b 0 3

8 0 9 {) 5

9 0 0 6
10 0 5 0 3

Table 11-4:  Errors in recall and prediction obtained after training with random
training data, compared with results when the training data were
determined by experimental design.

In results for the prediction set of 85 hond breaking modes. there
are from one to six falsely classified modes, averaging 3.4. This is a
remarkable improvement over the average 7.5 errors produced when a
randomly selected dataset was used. This shows the importance and
merit of experimental design techniques,
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11.4 Application of the Kohonen Learning

The experimental design technique described above has two major
disadvantages. First, we have to reduce the number of variables from
seven to four; this is a rather tedious procedure, and necessarily leads
to loss of information. Second, the choice of boundaries between the
low, medium, and high intervals of the variable values is arbitrary and
thus subject to user bias.

Is there another method that does not suffer from these problems?
In this section we will show that a Kohonen neural network offers
such an alternative.

In order to make the results comparable to those obtained in the
previous Section, a (9 x 9) Kohonen network was chosen, containing
81 neurons that can be considered as equivalents of the “subspaces™;
see Figure 11-7. When the dataset contains bonds with similar
dependences on the seven controlling variables, they will map to the
Same Neuron.

The network stabilizes after 30 training cvcles, i.e., after all 373
polar bond breaking modes have been sent into the network 30 times.
Six neurons are empty, 56 contain classified modes and 19 are
occupied by nonclassified modes (Figure 11-8),

Remember, however, that a Kohonen network uses an
unsupervised learning technique; since it does not use the class
information when learning, it is remarkable that bonds of a particular
classification end up in the same neuron. In all, 12 neurons carry only
reactive bonds (and some unclassified ones), and 42 have only
nonreactive (and some unclassified) bonds.

Only two neurons have conflicts, carrying both reactive and
nonreactive bonds.

Also, the Kohonen map contains quite a lot of additional
information that lends itself to chemical interpretation. This is further
explained in Section 11.6.

Thus, the Kohonen network produces a basis for the selection of a
training set. Again the (7 x 3 x 1) architecture is chosen and 10
different datasets are selected. This time only 56 bond breaking modes
are necessary to caver the information space: one mode each from the
neurons containing classified bonds.

One bond is chosen from each of the 56 neurons, plus two from
those where conflicts occur. The only difference among the 10

Figure 11-7: Kohonen network for
mapping data on bond reactivity.
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empty

Figure 11-8: Kohonen map of the 373
polar bond breaking modes.
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datasets is that when a neuron carries several modes of the same type,
a different one may be selected in the next training sel.

The results of this study, combined with the contents of Tables 11-
2 and 11-4, are shown in Table 11-5.

There is one important difference between the selection of the
training set by experimentul design and by Kohonen mapping. The
Kohonen network was trained by using all seven controlling
variables, whereas in the experimental design study we had to cut the
variables down to four in order to reduce the number of subspaces
(which depends exponentially on the number of variables). Thus, one
does not have to go through the tedious and time-consuming
procedure for reducing the number of variables.

random selection experimental design Kohonen network

e recall prediction recalt prediction recall prediction

1 1 7 0 ! 0 2

2 0 3 0 3 {} 2

3 0 12 0 4 0 l

4 0 10 0 3 0 0

5 0 6 0 4 0 2

6 0 7 0 2 0 0

7 1 5 0 3 0 0

8 0 9 0 5 0 0

9 0 7 0 8] U] 0
10 0 5 0 3 0 2

Table 11-5:  Errors in recall and prediction obtained after training with random
data, with those determined by experimental design, and by
Kehonen mapping.

11.5 Application of the Trained Multilayer
Network

The chemical importance of this example is that, by applying a
combination of ncural network techniques (a onc layer (7 x 9 x 9)
Kehonen network for selecting the training set, and (7 x 3 x 1)
multilayer neural network with back-propagation learning), we end up
with a trained network that is able to predict which single bonds will
preferentially break in a polar manner and which will not in any
aliphatic molecule. In addition, it even indicates in which direction the
charges are shifted upon heterolysis.
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Let’s test this with a relatively complex molecule containing
several functional groups. For all the bonds in this molecule, the seven
controlling parameters were calculated for the two polar bond
breaking modes. With 32 bonds in the molecule, this amounted to 448
{= 32 x 2 x 7) variables, which are input into the trained (7 x 3 x 1)
network. From among the 64 bond breaking modes (two for each of
the 32 bonds), only nine are found to be reactive; these are indicated
in Figure 11-9. The corresponding unscaled values of the controtling
parameters are shown in Table 11-6.

The network correctly predicts a high reactivity for the
deprotonation of hydroxyl (9), of -NH, (7) and of methylene in o-
position to the aldehyde group (3 and 4); the loss of a hydroxyl anion
(8) is correctly predicted to be easy. It also predicts loss of the proton
at the aldehyde group (1); this is usvally not observed, since most
bases are also strong nucleophiles, and would rather make a
nucleophilic attack at the carbonyl. However, the predicted
deprotonation does occur in formic esters, which contain the H-C=0

group.

bond  Agy  Agg Mo Q4 RE o, BDE
le] lel [eV] el  [1feV] [A%  [K)/mol)
1 004 003 -213 021 000 480 356
2 048 006 -303 060 369 48l 425
3 003 000 -066 007 809 628 397
4 003 000 -066 007 809 628 397
5 032 000 -026 019 381 739 331
6 031 000 -039 020 000 597 343
7 044 000 031 024 000 537 382
8 045 000 -084 036 768 619 384
9 060 000 -088 042 000 393 437

Table 11-6:  Values of the controlling parameters for the nine reactive bond
breaking modes in the test molecule of Section 11.5. The modes are
identified in Figure 11-9.

Although the network has been trained only for single bonds, it is
able to further generalize and also assign the correct reactivity to the
C=0 double bond (2). The breaking of the two C—N bonds (5 and 6) is
also considered feasible. These bonds are quite polar, but would need
further activation in order to react.

The study of a series of other molecules has shown the overall
correctness of most of the predictions on chemical reactivity. Tt is
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Figure 11-9: Predictions of bond
breaking made by the (7 x 3 x {) neural
network trained as described above.
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tempting to take the values output by the network as probabilities for
bond breaking — as a quantitative measure of reactivity. However, this
would certainly amount to an overinterpretation of the results; the
network has been trained for classification and not for modeling.
However, it shows that the border between classilication and
modeling is not hard and fast; had we used quantitative values for the
bond reactivity instead of a mere binary classification, we could have
come up with a model that is able to predict quantitative reactivity
values.

11.6 Chemical Significance of the Kohonen
Map

We mentioned in Section 1.4 that the Kohonen map for 373 bond
breaking modes contains additional information capable of an
interesting chemical interpretation.

Figure 11-10 is just a duplicate of Figure 1[-8. Since not all the
bonds were classified as reactive or nonreactive, unclassified bonds
are spread throughout the nelwork; they are indicated only in those
ncurons that contain neither reactive nor nonreactive modes, nor
conflicts.

It can be seen thal the reactive modes form a cluster in the center
of the map (Figure 11-10). This is an indication that the self-
organization that occurs during Kohonen learning perceives the
similarity of certain types of modes and puts them into the same
neurons. The Kohonen network even goes beyond that by recognizing
the similarity of all reactive modes and putting them into neighboring
ncurons, thus forming the observed clustering of neurons with
reactive modes.

There is one intruder: a bond classificd unreactive by chemists
occurs in the cluster of reactive modes (nevron at column 3, row 6 in
Figure 11-10). This bond breaking mode is shown in Figure 11-11.
The polar breaking of this bond is not observed in this molecule, and
thus its classification as nonreactive is justified for this molecule.

However, in compounds having a bulkier group instead ot C;Hs,
the breaking of this bond is observed. Thus, the bond breaking shown

in Figure 11-11 can occur when it is not superseded by other types of

reactions. In effect, this has to be considered as a potentially reactive

123 4 5 6 7 8 9

D0 ) v Lh B D e

|

r i classified non-reactive
non-clussitied

. classified reactive

[_\_j conflict

D empty

Figure 11-10: Kohonen map of the
373 polar bond breaking modes (cf.
Figure £1-8).
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bond, which makes reasonable its occurrence in the cluster of reactive
bond breaking modes.

Neurons activated by nonreactive bond breaking modes and those
activated by reactive ones touch each other in only a few places. This
is a further indication of the success of Kohonen learning in
differentiating reactive from nonreactive modes. The cluster of
reactive bonds is surrounded by neurons mapping conflicts or
nonclassified modes. The conflicts are a consequence of the transition
from reactive to nonreactive; the nonclassified modes indicate how
cautious chemists are about classifying bonds in doubtful cases.

After discussing the general features of the Kohonen map, let’s
take a closer look at the bond breaking modes ending up in individual
neurons. In order to show some features in more detail, we have
shifted the map of Figure 11-10 two columns left and one row down
(which represents cutting the toroidal mapping surface at different
places).

First, let’s look at the reactive bonds (shaded cluster). All carbon-
heteroatom breaking modes are at the right-hand side of this cluster,
starting at the top with carbon-iodine and carbon-bromine bonds, then
carbon-chloring, carbon-oxygen and carbon-nitrogen bonds. This
“top-to-bottom” sequence shows a clear tendency of decreasing polar
reactivity.

The lefi-hand side of the shaded cluster shows modes that
correspond to the dissociation of a proton. The more acidic O-H and
N—H are more to the center of the cluster, and the less acidic C-H are
towards the outskirts.

Second, the nonreactive C—H- and C—C-bonds are distributed over
a wide area of the Kohonen map, because in the test set of molecules
they have such differing first- and second-neighbors. A discussion of
these small variations goes beyond the scope of this book (cf.
Reference 11-6).

One more major feature of this map should be pointed out: the
reactive modes are in the lower left-hand corner, while in the vicinity
of the upper right-hand corner are those cases where a polar bond is
broken against its inherent polarity (and thus are particularly unlikely
to occur).

0
I

Cc
-
HsC, O—CH;

Figure 11-11: A bond considered
unreactive by chemists that ends up in
the cluster of reactive bond breaking
modes.
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[1.7 Classification of Reactions: The Data

The results reported in Section 11.6 show that there is a lot of
chemical significance in the projection of bonds, as represented by
physicochemical descriptors, into a Kohonen map. This observation
can be taken one step further by considering all bonds that are broken
in a chemical reaction, the reaction center, and projecting them into a
two-dimensional Kohonen map. A two-dimensional arrangement of
reactions has great advantages for the comparison of chemical
reactions (Figure 11-13): the distance between two reactions in such a
map can represent the degree of similarity; different directions in such

a map can express different types of similaritics.

The Reactivity of Chemical Bonds and the Classification of Chemical Reactions

Figure 11-12: Expanded and shifted
version of Figure 11-10. Reactive bond
types arc drawn on a shaded
background; the arrow indicates the
polarization of the electron pair. The
numbers in parentheses are the
numbers of bonds mapped onto this
particular neuron.

Figurc 11-13: The representation of

the degree and the type of similarity of
reactions in a Kohonen map.



Classification of Reactions: Results

Clearly, it is rather easy 1o classify reactions that have different
reaction centers, that have different types of atoms and bonds
involved in the electron rearrangement during a reaction. Bul how
about reactions that break and make the same type of bonds during a
reaction but which chemists would classify into different reaction
types because of the functional groups and substructures that are
adjacent to the reaction center but are not directly involved in the
electron relacation during a reaction?

In order to classify such reactions we have, as a typical example,
retrieved reactions that involve the addition of a C—H bond to a C=C
as indicated by the following scheme:

~ bl

c=C" + H-C_ — = H-C-C-C-
s ~ ~ |1

AN

Ve

All those reactions, that contain this reaction center were retrieved
from the 1992 edition of the ChemlInform RX reaction database.
Altogether, 120 reactions were obtained that a chemist would classify
into different reaction types such as Michael additions, Friedel-Crafts
alkylation of aromatic compounds by olefins, radical reactions, etc.

The next step is the choice how to represent these reactions. The
most important driving forces of chemical reactions are electronic
effects and, therefore, we performed calculations on charge
disteibution, inductive  effects, as represented by orbital
electronegativities, as well as effective polarizabilities by the
empirical methods collected in the PETRA program package in order
to account for the influence of functional groups onto the reaction site.
Specifically. total charges, g,,,, o- and T-electronegativities, 3 and
%r as well as effective polarizabilities, oy, were calculated for all
atoms of the reaction site. From all these variables chemists selected
those that were deemed to be of importance for the reaction type
under study, ending up with the seven physicochemical descriptors
shown in Table 11-7.

11.8 Classification of Reactions: Results

The previous section has shown how the chemical reactions of the
chosen data set are represented as points in a seven-dimensional space
of electronic descriptors. A Kohonen network of planar topology with
12 x 12 neurons is chosen to project these 120 reactions from the
seven-dimensional space into two dimensions.
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Table 11-7: Physicochemical variables used to describe the reaction
site. An asterisk indicates the atom for which the
corresponding descriptor was used.

How was the size of the network chosen? For studies of this type,
which is basically a similarity perception, it is a good starting point to
choose approximately as many neurons (here 121) as there are objects
{here 120) to investigate. Reducing the number of neurons forces
more objects into the same neuron, reducing somewhat the resolution
of the Kohonen network.

The resulting map with the individual reactions of the data set
identified by their number is shown in Figure 11-14. How can this
map be interpreted? In order to cvaluate the chemical significance of
this mapping. all reactions of the data set were intellectually classified
into reaction types by chemists, Altogether, 14 reaction types were
identified containing between 1 and 75 reactions as members. This
assignment of reaction types was used for coloring the Kohonen map
of Figure [1-14 to give Figurc 11-15.

This Figure shows that reactions of the same type form coherent
arcas in this map. Thus, the Kohonen learning has identified on the
basis of the seven physicochemical variables reaction types much in
the same manner as they were attributed by a chemist,

The next guestion is now, how do we know where one reaction
type changes inio another one in this map? This question can be
addressed by an analysis of the weight differences between weights of
adjacent neurons. The weights do not have a uniform distribution
throughour the Kohonen network. Rather, one can identify locations
in the Kohonen network where the weight differences between
adjacent weights are larger than in other places.

Figure t1-16 shows the weight differences that exceed the selected
threshold of .5 as walls, with higher walls indicating larger weight
differcnces. It can be discerned from Figures 11-15 and 11-16 that the
barriers tn the weight ditferences between adjacent neurons coincide
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fiigure 11-14: The Kohonen map for
the 120 reactions containing the
reaction cenler shown in Table 11-7
and described by seven
physicochemical variables.
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Figure 11-15: The Kohonen map of
Figure 11-14, now with rcactions
identified by their respective reaction
types. Three of the reaction types are
identificd by names.
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with transitions from one reaction type to another. Thus, clusters of
reactions can be found in the Kohonen maps of data sets of reactions
that comprise reaction types.

A detailed discussion of the chemical inferences of these maps of
chemical reactions and reaction types that truely form landscapes with
mountains, passes, and valleys of weight differences goes beyond the
scope of this book. The interested reader is suggested to contact the
corresponding publications in journals.

Furthermore, methods have been developed that allow the
automatic assignment of reaction types, thus superceding the time-
consuming intellectual identification of reaction types.

Suffice to say that these landscapes of chemical reactions allow

Figure 11-16: The Kohonen map of
Figure 11-15 with the weight
— the identification of reaction types, differences that exceed the threshold

. . . . 1.5 shown as walls.
— the clustering of reaction databases and of hits from reaction

searches,
— the location of transitions between reaction types,
— the definition of the scope of a reaction type,
— the identification of special reactions,

— the extraction of knowledge from reaction databases for reaction
prediction,

— the mining of reaction databases for synthesis design.
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