12 HPLC Optimization of Wine
Analysis

learning objectives:

— an outline of the HPLC method of analysis

|

a classical method for modeling (predicting the
effectiveness of) the mobile phase of an HPLC
column

—~ modeling the mobile phase with a neural network

— comparison of two different neural nets for this
modeling task

12.1 The Problem of Modeling

The identification of individual components in a complex mixture
is very common in analytical chemistry; but before the components
can be identified and quantified, they first have to be separated.
Chromatographic methods presently play a dominant role as
separation iechniques. High Performance Liquid Chromatography
(HPLC) is a widely used method in which the mixture is distributed
between a stationary solid or liquid phase on a solid support, and a
mobile liquid phase applied at high pressure. The various components
are distributed between the two phases to different extents and thus
are separated.

Modeling is quite commonly applied in chemistry to a number of
areas or problems, particularly to all kinds of optimization from
complex procedures composed of many activities, to recipes for given
products. To opltimize a process or a recipe, or to find the best-fitting
function to a number of experimental points, a model] has to be found
first; after this, the optimization procedure is performed using the
response surface of the model as the basis for finding the best
solution.
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Without a model, optimization does not lead to a
general solution of the problem.

A model tries to describe in mathematical terms the response of a
system to appropriate stimuli. Classical modeling is based on a
refatively small number of variables — usually fewer than ten — and
one response. If more responses from the same set of variables are
required, then a separate model must normally be built for each
response when classical methods are used (see Section 9.3). However,
neural networks are able to do both one-response and multiresponse
modeling.

As a first example of modeling, we will demonstrate both methods:
classical modeling and modeling by neural networks. By comparing
all steps in both procedures from the selection of data to the checking
of the results, we can appreciate the differcnces and the advanlages
and disadvantages of both.

12.2 Modeling the Mobile Phase for HPLC
by a Standard Method

In Chapter 10, we built a system that can identify the geographical
origins of more than 500 I[talian olive oils, based on analyses lor eight
fatty acids. (Such extensive analytical work is not unusual where
products for human censumption must be checked.)

In this chapter we will follow an example worked out by the group
of Professor Rius of the Analytical Laboratory of the Chemistry
Department of the University Rovira 1 Virgili of Tarragona (sce
Section 12.5). They were faced with setting up an analytical
procedure for routine analysis of wine samples. Since hundreds of
identical analyses have to be cammed out each day, it is important to
auntomate the procedure and reduce the time needed for each analysis.

The chemical analysis was supposed to be carried out by HPLC.
The chief figure of merit is the performance factor of an analysis,
which includes two things: first, how well the components are
separated on the column, and how long it takes for the entire analysis
to be carried out.

It is evident that the performance factor is a compromise between
two fealurcs: scparability and time. Both features are influenced by
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Figure 12-1: A full two-variable three-
level experimental (factorial) design
scheme. Circles represent properties of
nine different liquid phases leading to
nine chromatograms.
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Figure 12-2: Model surface of the
performance factor PF obtained by a
standard modeling technigue.
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the selection of the mobile phase: if it passes through the column too
quickly, then some components may not be well separated; if it passes
through too slowly, then the time per analysis may be too great.

The first goal in setting up the analytical procedure is to make a
model for the mobile phase, specifically for the performance factor as
a function of its properties. Then we can select the most appropriate
mobile phase for a given analysis.

In this example, only two properties of the mobile phase will be
considered: the concentration of ethanol, C,, and the acidity of the
mobile phase (its pH). Experience has shown that C, should be
between 10 and 30%, while the pH should be between 5.0 and 6.0.

In order to build a model, we have to have some data, whether we
will be using a classical method or a neural network. To obtain the
data, a classical two-variable three-level experimental design is used,
as shown in Figure 12-1. Nine pairs of variables {C,, pH) are selected,
and HPLC chromatograms are made for each; then a performance
factor PF is assigned to each pair (Table 12-1).

no. C, pH PF
[%]
1 10 5.0 6.08
2 20 5.0 2.42
3 30 3.0 2.10
4 10 5.5 7.31
5 20 5.5 3.00
6 30 5.5 3.13
7 10 6.0 7.06
g 20 6.0 3.72
9 30 6.0 3.37

Table 12-1: The data for building a model of the HPLC process.

Standard modeling assumes & quadratic polynomial for the
performance factor:

PF = ax2+by2+cxy+dx+ey +f (12.1)

where x stands for the concentration of the ethanol, C,, and y stands
for the pH. The parameters a, b, ¢, d, e, and f are obtained by any
standard modeling or optimization technique. Setting up the model by
SIMPLEX optimization leads to the following set of coefficients:

Figure 12-3: The (2 X 6 X 1) neural
network used in modeling the HPLC
mobile phase.
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0.018 b = —1.42 e = (L0145
—0.995 e = 16.16 f =-31.86

o
i

{12.2)

Using the above parameters in (12.1) gives an expression for the
performance factor PF over the entire measurement space, as shown
in Figure 12-2. This model maximizes PF at C, = 10.2% and pH =5.7.

12.3 Modeling the Mobile Phase tfor HPLC
by a Neural Network

In the next step, we will use the same data (Table 12-1) for
building a neural net with one hidden layer employing back-
propagation learning strategy. {(Back-propagation 15 chosen for
learning becuuse building a model always involves supervised
learning.)

Evidently, the network should have two neurons for input and ong
for output. The entire training set involves only 27 different numbers,
i.e., nine input vectors each having two input values, and one target.
The number of weights trained by the back-propagation strategy
should, at least in principle, not exceed this number.

A few small neural networks with three, four, five, and six neurons
in the hidden layer were constructed and the model trained with the
nine input vectors and their targets; the result were compared with the
classical model. Tt turns out that the best model is the (2 x 6 x 1)
network, with (2 + [yx 6 + (6 + 1) x | =25 weights (Figure 12-3).

The comparison of the neural network model with the model
obtained by optimization is shown in Figure 12-4. The differences are
small indeed; the optimum in the neural network model is at C, = 10%
and pH = 5.6. The overall agreement between their responses is very
good.

Note that no hypothesis about the model function
was necessary for constructing the neural network
model.

In the classical model, we had to guess a model function.
However, this does have an advantage: the parameters of the [inal
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Figure 12-4: Above: the model
obtained by the ncural network using
back-propagation learning; below: the
model obtained by the classical
muodeling technique.
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model indicate how the response depends on the particular variables.

For example, the parameters (12.2) in combination with Equation pH
{12.1) indicate that concentration of ethanol and the pH act in the 6.0 T ‘| T o
quadratic and linear terms oppositely to each other, which apparently ‘ N | | b/

I

causes the coefficient ¢ of the mixed term to be relatively small, Such max | ‘ ‘ |

evidence of how individual variables influence the measured quantity
is very important; unfortunately, this information is missing from the
neural network model.

12.4 Comparison of Networks with Identical

Architectures
pH

First, let us take a closer look at the weights of the neural network. 6.0 [ : ]
We did two training runs of the same network with the same set of |" I || ’
nine input vectors and targets, but with different initial weights. This max (| |! | | ! /
leads to two completely different networks (as judged by the final \_ “‘ | "‘ ;‘f
weights of each network, Table 12-2). However, the maps produced 55 %I ‘| ‘I‘ |‘| ! .‘I‘ ‘," F;"" o / S
by these different networks are almost identical as can be seen in .‘“".“;".‘ g' ."‘"I /
Figure 12-5. W /

This means that the (2 x 6 x 1) network is too large for the problem, j;/ /" ;"I .""‘I f /-"'/ 4
or to be more precise, the network is too large for the amount of data 50 lbo L - y 36*
we have at disposal to train it. This fact becomes evident if one counts mﬁf C,

the number of weights in the network on Figure 12-3. This (2 x6x 1)
network has, including the biases, in the hidden layer, i.e., in the layer
between the input and the hidden nodes 3 x 6 = 18 weights and in the ~ Figure 12-5: Identical maps obtained
output layer 3 x 1 = 3 weights. Together there are 21 weights in the E(y":;ﬁ: t(ezlyx d?ﬁ)‘(crlgn':i::;r: élhav'ng
network. For nine input vectors (Table 12.1) these are far too many,
and it should not come as a surprise that virtually any new random set
of weights at the beginning of learning will yield a different set of
weights after learning ended (the weights stabilized). This result is as
anticipated because the problem of modeling the mobile phase for
HPLC is a relanvely simple case and will therefore not have many
local minima or maxima but will have a response surface that is
relatively smooth. The response surfaces vielded by both completely
different networks are almost identical (Figure 12-5).
The smallest error-backpropagation network with one hidden layer
that one can create for mine input objects represented by 2-
dimensional input vectors has 5 nodes in the layout (2 x 2 x 1) as
shown in Figure 12-6. Adding the bias weights this (2 x 2 x 1} network
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has 9 weights. Someone might expect that the small network would
now always converge 1o the same set of weights. We have tried more
than 50 different randomization and found eight different sets of
weights. For the novice to the field the result might come somewhat
unexpected. There are eight different sets of weights, however, all are
composed of the same set of absolute figures! Due to the symmetrical
nature of the normalized input vectors these eight different weight sets
turn out to be two groups of four sets with identical weights, the only
difference being that the input nodes are changing the places (Table
12.3). The changes of places and signs of weights in these “different”
sets are made in such a manner that the resulting outputs arc always
the same. Although seemingly differant, the eight neural network
models nevertheless always yield surface maps identical to those in
Figure 12-5.

The reader can check the results exposed in this Chapter by
visiting the site on the web with the address

hutp:www2. coc.uni-erlangen. de/ANN-book/

In order to obtain numbers comparable to the
experimental values, the inputs and outputs of a
neural network must be properly scaled.

i Output

Figure 12-6: The smallest possible
two layer error-back-propagation
network for the problem of nine 2-
dimensional input vectors,
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network 1 network 2

input input
wh i=1 2 bias i=1 2 bias
1 -5.49 030 =015 | -4.37 0.97 -0.78
2 0.36 1.8¢  -0.93 1.17 =321  -0.81
‘_ 3 0.85 0.67  —0.19 | -1.25 011 -115
/= 4 | -285 -061 068 | 658 —060 —0.41
5 544 032 0.15 1.45 1.64 -1.87
6 —0.95 -1.16 —1.59 | —1.45 046  -0D.16

1 451 3.26

2 2.88 -1.85

3 0.39 0.84

i= 4 1.76 -4.60

5 —147 1.84

6 0.03 0.60

bias —-0.03 1.82

Table 12-2: Weights w;,- of two (2 x 6 x 1) networks giving very similar maps.

- “\'xeights on the first  weights on the second weights on the cutput
hidden neuron hidden neuron neuren
network w[-ll i=1 2 bias wt-zl i=1 2 bias will i=1 2 bias
) A B —C D E F -G H I
2 A B -C -D -E F -G -H I
3 -A -B C D E -F G H -1
4 -A -B C -D -E F G -H I
5=1 D E -F A B -C H -G I
6=2 -D -E F A B -C -H -G |
7=3 D E -F -A -B C H G -1
§=4 -D -E F -A -B C -H G -1
Table 12-3:  Weights, wj,-l, of eight “different” (2 x 2 x 1) neural network models

which all yield the same response surface shown in Figure 12-5.
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