13 Quantitative Structure-Activity
Relationships

learning objectives:

— the basis for Quantitative Structure-Activity
Relationships (QSAR)

— identification of factors controlling anticarcino-
genic activity of carboquinones related to the
identities of substituents on the basic skeleton

— use of a neural net to associate biological activity
with a given profile (set of values for the
controlling factors)

— comparison of neural network approach with
classical statistical approach

— representation of structures of different size with
the same number of descriptors

— selection of appropriate  descriptors  for
representing the input objects

— using a combination of unsupervised and
supervised neural networks to study a data set

— application of a genetic algorithm for the reduction
in the number of variables

13.1 The Problem

“QSAR” stands for Quantitative Structure-Activity Relationships,
that is, quantitative relationships between a chemical structure and its
physical, chemical, or biological activity. The search for such
relationships is one of the most imporiant applications of modeling
techniques.

Correlating the chemical structures of drugs with their
pharmacological activities is of particular interest. Because of the
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large development costs of new drugs, a reliable guantitative
prediction of activity before the compound is made is of great interest
to synthesis laboratories.

Because neural networks can be developed into complex modcls
they have gained large prominence in QSAR research. Particularly in
pharmaceutical research and development many investigations on the
relationships between structure and biological activity have been
made. We will here investigate three different dala sets, in the first and
the third one, all compounds have the same skeleton and only the
substituents on this skeleton have been varied. Such data sets are
typical for many investigations that deal with the optimization of a
pharmaceutical lead structure. The second data set encompasses a
variety of structures having different skeletons. Such data sets are met
in the search for a lead structure,

As a typical example, we will first discuss the work of Aoyama,
Suzuki and Ichikawa (References 13-1 and 13-2). They chose a
dataset that had previously been studied by Yoshimoto and coworkers
(Reference 13-3) using traditional modeling techniques, (such as
multilinear regression analysis (MLRA)), in order to comparc thosc
results with the results of a neural network. Aoyama and couuthors did
their best to keep all variables, along with the selection of the training
and test sets, as similar to the classical studies as possible.

The second data set comprises structures having different
skeletons and different numbers of atoms in the molecules. Here, one
has to face the problem of representing such a data set by a uniform
set of descriptors, having the same number of variables for molecules
of different size.

Neural networks, as any learning method, be it statistical or pattern
recognition methods or neural networks, need the objects of a study to
be represented by the same number of descriptors (variables).

The third data set is a collection of 35 biologically active flavonoid
compounds, inhibitors of the enzyme tyrosine kinasc. They all have
the same skeleton on which different substituents are attached al
different positions. Due to the initial 180-dimensional spectrum-like
representation (for details on this representation see Chapter 21,
Section 21.4) of their 3D structures the task to be solved in the
example is the reduction of the 180 variable set into a smaller and
more easily manageable set of variables which still contains the most
relevant information about the biological activity of the lavonoids in
guestion.



13.2 Dataset 1

The dataset in this study involves modifications of the basic
carboquinone skeleton shown in Figure 13-1. Many carboquinones
exhibit varying degrees of anticarcinogenic activity.

This quantitative structure-activity relationship
designed to predict the minimum dose of a drug required to produce a
40 percent extension of the lives of the test animals, BDF| mice that
had been inoculated with lymphoid leukemia L-1210 cells.

This minimum effective dose depends on the concentration, C, of
the substance necessary to give the desired effect, and is given as
log(1/C). The more effective the drug is, the smaller will be the
concentration necessary. {(Since the required concentrations of
different drugs vary over several orders of magnitude, it is more
convenient to use the logarithm, log(1/C), as a measure of the
effective dose.)

As expected, the anticarcinogenic activity depends on the
identities of the substituents R' and R%. In the standard multilinear
analyses, this substituent is described by physicochemical variables
that describe the combined influence of the substituents R! and R*:

study was

— the molar refractivity MR, ,

— the substituents’ contribution to the hydrophobicity % 5

— the sum of the substituent constants for the feld effect F

— the sum of the substituent constants for the resonance effect %

along with two local variables, describing only the intfluence of one
substituent R!:

— the molar refractivity M%;
— the contribution to the hydrophobicity xt;.

The assignment of substituents as R' and R? is based on their
molar refractivities: M#&; < MRy,

The study used eleven different substituents R! (consisting
primarily of short alkyl groups like methyl, ethyl, and propyl) and
about 30 different substituents R? {mostly substituents having longer
chains and bearing additional functionalities like —CH,CH,OCH; and
—~CH(OCH;)CH,0CONH,). Two of the compounds are shown in
Figure 13-2.
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Figure 13-1: The characteristic
structurc of carboquinones, a class of
compounds with anticarcinogenic
activity. The substituents on the
skeleton can be quite varied (see
Figure 13-2).
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Figure 13-2: The most (a) and the
least (b) anticarcinogenic compound
among the carboquinoncs.
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Altogether, 35 different carboquinenes were selected: for all of
them, six variables, M%, 5, T 5 MR, T, % and X were either
measured (M%) or taken from the literature (m, 4 %), and the minimum
effective dose was mcasured and given as log(1/0).

13.3 Architecture and Learning Procedure

Our inputs consist of variables (MR, MR, m, Tj> F R)
describing the structure, and our target data are values of log(1/C);
thus, a supervised learning method should be used. In this example.
we will try to find a model that can predict the minimum effective
dose log(1/C) for each set of the six input variables, MR, 5, | 5, MRy,
m, % and K for any carboquinone derivative. Hence, our network
requires six input units and one output neuron.

As in most applications. one hidden layer turns out to be sufficient;
after some trial and crror, twelve neurons were placed into the hidden
layer (Figure 13-3).

The (6 x 12 x 1) neural network, with one hidden and one output
layer, was trained with 35 carboquinones by the back-propagation
algorithm; afterwards the log(1/C) ouiput values were compared with
those oblained by multilinear regression analysis on the same set of 35
compounds.

The anticarcinogenic activity of 17 of the carboquinones iy
predicted with higher accuracy than in the multilincar regression
analysis study, for six compounds the results are ol about egual
quality, and for 12 structures they are worse, Overall, the resulis of the
neural network {NN) are significantly (but not dramatically) better
than those obtained by mulltilinear regression analysis (MLRA).

Table 13-1 will give you an impression of the data and results for
six of these structures.

Apparently, the problem under investigation is adequately handied
by a linear model, but the neural network does lead to slight
improvements. Nonlinear QSAR problems will show much larger
improvements when modeled by neural networks.

13.4 Prospects of the Method

In investigations of the biological activity of a series of
compounds, several different biological activities are often moniiored.

MRy2 MR m, w  F R

PR S

Figure 13-3: Network architecture for
studying the anticarcinogenic activity
of carboguinones.
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substitutents variables log(1/C)
. R! R* MR, M MR, W 7 x exp. MLRA NN
1 CH; COCH;4 169 005 -0.355 0.57 0.28 0.07 3.94 4.12 4.39
3 CH, (CH;,)3,CgHj5 4.50 3.66 3.16 057 -0.08 -0.26 3.93 4.23 4.18
CH, CH,CgHs 357 251 201 057 -0.12 014 474 477 4.67
10 CHs  C,Hs 206 200 100 103 -0.08 026 494 501 4.99
32 CHs  (CHp,CONH,  3.09 095 -0.05 103 -008 -026 598 5.55 5.59
38 CH, N{(CH,), 2.13 0.68 ¢.57 0.18 0.06 -1.05 6.54 6.30 6.31
Table 13-1: TInput and output variables of six compounds used in the QSAR
study of anticarcinogenicity of carboquinenes by Aoyama and
coworkers.,
For example, when investigating the anesthetic activity of a
compound, one will also monitor its toxicity; or, in investigations of
the carcinogenicity of a compound, two different types of
carcinogenicity tests might be performed.
The two — or more — different biological activities quite often
depend on the same types of structural variables, e. g., the value of the
coefficient, logP, indicating the distribution of the compound between
aqueous and lipid phases. In such cases, as we have mentioned in
previous examples (see, for example Section 9.3) standard techniques logP

develop separate modeling equations for the two biological activities,
expressed as logarithms of the inverses of some threshold
concentrations C and C5:

1Oga = ¢yt e logP + (13.1)
1
logc_z = ('02+ "'+Ci210gP + ... (132)

With neural networks, however, it becomes feasible to model both
biological activities simultaneously in one network. Then, one output
neuron will be used to output the first activity (expressed as log(1/
C)), whereas a second output neuron is used to indicate the second
activity (log(1/C5)).

Figure 13-4 shows the part of a two-layer neural network that
expresses the influence of logP on two biological activities. Thus,
while MLRA requires two coefficients to express the influence of
logP on the two activities, a neural network with one hidden layer
containing, say, three neurons provides mine weights for expressing

log(1/C)) log(1/Cy)

Figure 13-4: Propagation of the
influence of one input variable (logP)
on two different biological activities
by a two-layer neural network with
three hidden neurons.
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these influences. With # neurons in the hidden layer, 3n weights are
available to convey the influence of one input variable onto two
activities. This indicates quite clearly the higher flexibility of a neural
network compared to a statistical analysis.

13.5 Dataset Il

The second data set comprises 31 steroids having different binding
affinity to the corticosteroid binding globulin (CBG) receptor. Table
13-2 gives the full hist of compounds with their binding affinity data
and a classification into high, intermediate, or low affinity.

_ CBG CBG
compd affinity (pK} activity class” compd affinity (pK) aclivity clags”%
1 ~6.279 2 17 -5.225 3
2 ~5.000 3 18 -5.000 3
3 -5.000 3 v -7.380 l
4 —5.763 3 20 -7.740 t
5 -5.613 3 21 -6.724 2
6 -7.881 1 22 -7.512 t low
7 —~7.881 1 23 -7.553 L
8 —6.892 2 24 -6.779 2
Figure 13-5: One steroid each with
9 —5.000 3 8 -7.200 ! high. intermediate, or low binding
10 -7.653 1 26 -6.144 2 allinity 1o the corticosteroid binding
K —_7.881 I 17 -6.247 9 | globulin (CBG) receptor.
12 5919 2 28 7,120 2
13 —5.000 3 29 6.817 2 |
14 -5.000 3 30 -7.088 i :
s -5.000 3 3l -5.797 2
16 -5.225 3 ‘

Table 13-2:  Corticosteroid binding globulin (CBG) affinity data.
41, high; 2, intermediate; 3, low; this classification was obtaincd by
dividing the data set into three classes of comparable size.

Figurc 13-5 shows one structure each with high. intermediate, or
low binding affinity 10 the CBG receptor, respectively. The full data
set. with the structures encoded as connection tables, is contained on
the web site for this book

(http:/mww2.ccc.uni-erlangen.de/ANN-book/).

See the Appendix for further information.
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This data set was chosen because it had been selected for the
introduction of the widely used CoMFA method and has also been
studied by a variety of other methods. Although all compounds of this
data set are steroids they, nevertheless, comprise different skeletons
having A- and B-rings with or without double bonds or, in some cases,
aromaltic A-rings. Furthermore, the substituents at various positions
differ quite extensively, and the number of atoms in the set of
compounds also varies.

13.6 Structure Representation by
Autocorrelation of the Molecular
Electrostatic Potential

Neural networks, as many learning methods, need the objects of
study to be represented by the same number of input descriptors.
Thus, with a data set as just described, one is faced with the task of
transforming the structure into a preset number of descriptors. In this
book, we will present a variety of methods for such a mathematical
transformation of chemical structure information into a set of
descriptors (cf. Chapter 21). The choice on the structure encoding
scheme should somehow take into consideration the factors that are
thought to be involved in the property investigated.

The electrostatic potential on the surface of a molecule (cf. Figures
19-2, 19-13, and 19-14) is one of the most important factors for
binding a ligand to its receptor. The questicn is then, how can this
property be encoded into a fixed number of descriptors? This task was
achieved by autocorrelation, as indicated in Equation (13.3)

Ald) = iz (i) p(j) withd;<dy<d,  (133)
iJ

First, the molecular electrostatic potential (MEP) is calculated for
a set of points evenly distributed over the van der Waals surface of the
molecule with a selected density. Then, the products of this property,
p. (the MEP), at points i and j is calculated whereby the distance d;;
between these two points must be between a lower, o, and upper, d,,
bound (say, between 3A and 4A). All these products are collected into
a single value of A(d); in this case, A(3). This value is normalized by
the total number, m, of distances in this interval (Figure 13-6). With a
series of distance intervals with different upper and lower bounds, a

Figure 13-6: Autocorrelation of a
property on a molecular surface (see
Equaticn 13.3).
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vector of autocorrelation coefficients is oblained. In our case, we have
collected the products between 1A and 2A, all the way (o I2A and
13A, thus providing an autocorrelation vector of length | 2. The values
of A(d) are displayed at the center of each interval. Figure 13-7
illustrates this process of calcutating an autocorrelation vector of the
MEP using the steroid corticosterone as an example. In effect, the
molecular electrostatic potential at the van der Waals surface was
encoded into an autocorrelation vector of 12 values lor each of the 31
steroids. Clearly, this encoding scheme is a drastic reduction of the
information on the MEP. However, the goal, to encode a molecule into
a preset number of descriptors (here 12), irrespective of the size of the
molecule, was achieved.

13.7 Verification of Structure Representation
by Unsupervised Learning

The final goal of this study was (o find a quantitative relationship
between a structure encoding and the binding affinities to the CBG
receptor by a back-propagation neural network. The back-propagation
algorithm is such a powerful modeling technique that it will establish
apparent relationships, albeit of low predictive power, aven between
tnput and output data that have only a small correlation. We have,
therefore, found it highly recommendabte to first establish whether the
variables describing the objects are, in fact, significant for the
property under investigation. In our case, the question is: Is there a
relationship between the encoding of the MEP of a steroid by a 12-
dimensional autocorrelation vector and the activity of binding o the
CBG receptor?

This question can be answered by an unsupervised learning
technique such as the one contained in Kohonen neural network
learning. The 12-dimensional descriptor space was projected into a
toroidal plane using a Kohonen network in order to visualize the
distribution of the objects in the high-dimensional descriptor space.
The projection into a Kohonen map was performed by training a
network that consisted of 13 x 15 neurons, with each neuron having 12
weights corresponding to the |2-dimensional autocorrelation vector
describing the MEP of a steroid. After projection of the data set of 31
steroids into this two-dimensional Kohonen map. the projection was
visualized by marking those neurons having obtained a steroid with

246 8 w2 diAl

Figure 13-7: Calculation of the
autocorrelation vector of the molecular
ctectrostatic potential for
cortfcosterone,
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high, intermediate, or low binding affinity with a filled square, an
asterisk, or with a cross, respectively. {(Recall, that this activity level
was not used in the training of the Kohonen network).

The Kohonen network used had the topology of a torus, ie.,
neurons at the left and the right side of the network, and neurons at the
upper and the lower part of the networks are directly connected {cf.
Figures 6-6 and 6-7). Therefore, four identical copies of the resulting
Kohonen map were arranged like tiles (cf. Figure 6-14) in Figure 13-8
in order to better present the clusters formed by the steroids. The
compounds of high, intermediate, and low activity form three clearly
perceivable clusters in the Kohonen map as indicated in Figure 13-8.
Only one compound, a steroid of intermediate activity, is not grouped
together with compounds of the same activity class, but is surrounded
by highly active compounds, instead.

The ability of the Kohonen network to here distinguish between
compounds belonging to different activity classes shows, that the
autocorrelation vector fulfills one of the prerequisites for a successful
quantitative analysis: compounds that are similar to each other in the
descriptor space exhibit similar biological activity. The visualization
proved that the compounds group together in the descriptor space
corresponding to their biological activity. Therefore, we were
encouraged to quantitatively model the binding affinity with a feed-
forward neural network trained by back-propagation as the next step.

We have also investigated the 12-dimensional descriptor space by
another unsupervised learning method, a principal component
analysis (PCA). Figure 13-9 shows the clustering of the steroids in a
plot of the first against the second principal component. The
compounds are by far not as well separated as in the Kohonen map of
Figure 13-8. The principal component analysis performs a rotation of
the coordinate axes of a high-dimensional space, trying to put as much
variance as possible into the first few component. In our case, we are
apparently left with more than two components and, thus, a plot of
only two components cannot quite separate the compounds into their
activity classes. The learning in a Kohonen network, on the other
hand, knows from the very beginning that it has to end up with two
dimensions and therefore places as much information as possible into
these two dimensions.

227

CBG-Affinity:
M high

¥  medium
+ Tow

Figure 13-8: Arrangement of four
identical Kohonen maps obtained from
the 12-dimensional MEP
autocorrelation space showing the
separation of steroids of high
{squares), intermediate {asterisks),
and low activity (crosses).
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Figure 13-9: Plot of the first two
components of a principal component
analysis of the 12-dimensional
descriptor space.
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13.8 Modeling of Biological Activity by
Supervised Learning

Projection of the 12-dimensional descriptor space by a Kohonen
network had indicated that the cncoding by autocorrelation of the
molecular electrostatic potential has a relationship to the binding
affinity to the CBG receptor. We, therefore, generated a quantitative
model of CBG activity by a feed-forward neural network trained by
back-propagation. The architecture of the network used was as
input units corresponding  to  the (welve
autocorrelation coefficients, two hidden neurons, and an output

follows: twelve
neuron (Figure 13-10).

In order to estimate the predictive power ol the approach, cross-
validation following the leave-one-out scheme was performed. In 31
independent experiments, the network was trained with the data of 30
steroids. After training, the network was used to predict the activity of
the 31° compound. This procedure was repeated 31 times, until the
biological activity of each compound had been predicted by a neural
network that had not included this compound in the training set.
Figure 13-11 shows the results in the form of a plot of the predicted
affinity values against the experimental ones. Although the predicted
values show the correct trend, the quality of the predictions is not
quite satisfactory, having a cross-validated correlation coefficient »* of
0.63. Especially one outlier (marked by a circle) can be identified -
the very same outlier already identified in the Kohonen map of Figure
13-8. This compound is the only one in the entire data sct bearing a
fluorine substiteent and, thus, apparently outside the structure space
covered by the other compounds, After omitting this compound from
the data set and repeating the cross-validation, a much better
predictive power is obtained, with a cross-validated +° of 0.84. It is
interesting to note that the Comparative Molecular Field Analysis
{CoMFA) method that was introduced with this data set achieved only
a cross-validated #* of 0.66, on a subset of 21 steroids.

13.9 Data Set III

The third set of data consists of 55 flavonoid derivatives which are
low molecular weight substances found in most parts of all plants.
Due to their broad variety of biological activities they are often called

12 sutocorretation cocfficients

CBG-affinjey

Figure 13-10: Architecture of the
feed-forward network used for
modeling CBG binding affinity from
the 12 autocorrelation coeflicients.

pK {predicted)

pK (experimental)

Figare 13-11: Crossvalidation of CBG
activity of 3t steroids modeled by
back-propagation.
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“bioflavonoids”. In this particular case, we shall explore flavonoid
substances which are inhibitors of the protein tyrosine kinase (PTK)
and are, therefore, important factors in cellular signal transduction.
The skeleton of the flavonoids is given in Figure 13-13. The
biological activity, a, in this study is the logarithm of the inverse
experimental biological activity IC50, i.e., the molar concentration
necessary for 50% of maximal intibition of PTK in comparison with
the experiment without the flavonoid. Table 13-3 gives the full list of
55 compounds and their corresponding activities. The compounds are
described with their substituents and the positions at which they are
bonded to the flavonoid skeleton. The data are taken from three papers
by Cushman et al (References to Chapter 13).

13.10 Structure Representation by Spectrum-—
Like Uniform Representation

It has been explained many times that modeling either with
artificial neural networks or any other method requires uniform
representation of input data. Because different molecules are
assembled from different number of atoms a direct 3D description by
coordinate triplets (x,y,z); of each of the constituent atom j does not
fulfill the requirement of uniformness. One of the possible alternatives
which is used in QSAR modeling quite often is a description of a
molecule by several topological and electronic descriptors. In the
present case a different approach featuring the so called spectrum-like
structure representation will be used. In this Section only a brief
explanation of the coding principles are given while in Section 21.4 a
more detailed description how to calculate such a representation for
any molecule is outlined.

The main idea of the spectrum-like representation is to mimic a
“light source” placed somewhere close to the molecule which casts
“shadows™ of atoms onto the surface of an imaginary sphere drawn
around the light source (Figure 13-14). The positions and intensities
of the shadows of the atoms on the surface of the sphere depend on the
relative positions of the atoms and the light source. The complete
shadow of all atoms on an arbitrary equator of the imaginary sphere
resembles a “spectrum” (Figure 13-15), hence, the name of the
representation.

pK (predicted)

pK (experimental)

Figure 13-12: Crossvalidation of CBG
activity of 30 steroids modeled by
back-propagation.
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Figure 13-13: The flavonoid skeleton.
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Figure 13-14: Shadows of atoms on a
spherical surface with an arbitrary
radius.
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R3 RS R6 R7 RS R R4 RS activity a class |

38  NH, OH NHy NH, 74 6
39 NH, OH NH, NH, 434 s
40 OCH; NH, NH, 425 5
41 NH, NH, 399 4
42 NH, NH, NH, 397 4
43 OR NH, NH, 393 4
44 NH, NH; 391 4
P45 NH, OH NH; 3.85 4
46 NH, NH, 370 3
47 OH NH, NH, 365 3
48 OH NH, NH; 349 3
49 OH NH, NH, 348 3
50 OCH, NH, NH, 342 3
51 NH, OH NH, 330 2
52 NH, OH NH, NH, 312 2
53 OH 281 I
54 OCH, NH, NH, 279
55 OH  NO, NO, 273 I

Table 13-3:  Flavonoid compounds with activities ¢. The substituents are marked

{continued) according to the assignment of atoms in Figure 13-13. The activity
values are divided into nine classes. The substituent OR stands for
0Si(Me),C(Me)s.

In order to compare spectrum-like representations of several
compounds their structures must be aligned in the same manner. For
example, tc compare the flavonoids all their skeletons must be
oriented in the same direction and superimposed onto each other. In
other words the coordinate origin of the “light source” must be placed
at exactly the same relative position of the internal coordinate system
of the skeletons. In the present example the coordinate origin (or the
“light source™) for all representations is placed at the point {-1 TA,
3.9A, —0.6A relative to atom no. 2 in the benzopyran ring system)
within the benzene ring as shown in Figure 13-13.

The intensity s; of the shadow of an atom j on the equator at point
i is described by the Lorentzian function (Equation 13.4). The
Lorentzian function is chosen because of its simplicity. It could be any
other appropriate function. In order to acquire information of the
entire 3D siructure, the “shadows” of the atoms are projected onto
three mutually perpendicular circles. Figure 13-15 shows how for
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each atom j its shadow's intensily s depends on the angle @; on one
circle:

_ P

- t— (|34)
(9,-9) +o;

i
The position of the atom j is determined by the polar coordinates
(P;.9;) in the internal coordinate system of the “light source™. The
peak width parameter o; of the Lorentzian function (Equation 13.4) is
used to describe any individual property of the atom j (atomic or jonic
radius, atomic number, ionization cnergy, clectron affinity, charge,
etc.). Throughout this example for all atoms in all molccules the
paramelers G;
atom j is negative ¢; is less than /, otherwisc it is larger than 7.
If more atoms j are taken into account the intensities s; at all
positions @, are clearly additive. The cumulative formula for any

are set to 6; = [ + charge on atom j. If the charge on

variable s; of the additive spectrum-like representation of the whole
structure consisting of » atoms can be wrillen as;
i
.
- J
"i = 2 ﬁ (|35)
i=1{9;~9,) +0;

with ¢; running from @ to Q40

The number of variables s; in each representation depends on the
number of angles @; which divides the equator around the molecule —
the finer the division, the more precise the description. 1f the
resolution of 17 radial degree is chosen for the projection on each
equator, one spectrum has 360 intensities. Hence, a complete
spectrum-like tepresentation of each molecule (projections of its
structure into three perpendicular equators) has 1080 intensity values,

As can be easily understood, such representations are too large for
most applications. In the present example the interval of division on
cach circle is 6°. Therefore, the spectrum on one circle is composed of
60 intensities, what means that the entire spectrum-like representation
of any flavenoid has 180 intensities. Although much smaller, even (his
number is too high for handling 55 compounds and must therefore be
reduced.
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13.11 Selection of the Most Important
Variables Using a Genetic Algorithm

A genetic algorithm is one of the most effective optimization
methods for problems involving large number of variables. Its idea is
to mimic the optimization by natural selection of living organisms in
real life. The three main factors governing the natural selection are:

— survival of the fittest,

— changing the individual genetic material by cross-over of
chromosomes, and

- changing of individual genetic material by mutation of genes.

All three mentioned factors are implemented in the computer
simulated optimization called genetic algorithm, or GA for short.
Before explaining these three factors in detail a few more parallelisms
between living organisms and the objects to be optimized must be
explained.

It is assumed that properties of each living being in nature are
determined by genes “stored” in chromosomes. The presence or
absence of genes that might be beneficial to or dangerous to the
survival of an individual influences the chance on whether the subject
will live long and have many offsprings or whether it will die having
few or no offsprings at all.

Let us consider the case that in a world of fixed and limited
resources there is a pool of living organisms that have only one
chromosome with exactly 180 genes. This means that there are only
180 properties which can be important for their lives. For increasing
the chance of survival some properties are good, some bad, and some
irrelevant. Hence, the best suited individual for the given world would
be the one whose chromosome would have only the genes assuring
the good properties and none of those causing the bad ones. The
crucial question in the optimization is how to find out which genes are
responsible for the good and which for the bad properties.
Unfortunately, we do not know this; all we know is only the
individual’s behavior in the defined world — its overall performance. If
the individual has many good genes it will survive and have a lot of
offsprings. The number of offsprings the individual “produces” is
therefore influenced by the selection criterion which ranks each
individual. For objects to be optimized this criterion is called a fitness
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function. Definition of a good fitness function is always the crucial
task in any optimization process,

Onc more parallelism between the natural sclection of living
organisms and the problem of selection of the most relevant variables
in terms of a GA is that reduced spectrum-like representations can be
described by one chromosome — like the above mentioned living

organism., Each reduced representation features different set of

intensities {(genes) picked out from thec 180 possible ones. One
reduced representation might have only three intensities, another one
fifty, still another one fourteen, and so on. How to decide which is the
best?

The best, the fittest, or the optimized, is the reduced spectrum-like
representation that would yield the best model. So, all we have to do is
to represent all 55 objects with one of the possible reduced
representations. make a model, test it; then represent the 55 objects
again with another reduced representation, make a new model, test it
and compare both results. By consecutive testing of various reduced
representation with the generated models one can gradually find better
and better representations.

The unpleasant part of such testing, however, is that a chromosome
having 180 genes (bits) offers 213 (= 10°h) possible reduced structure
representations! Because there is no real chance to check cven a
minute part of this huge number of possibilities, we will try to use a
genetic algorithm which promises to find, if not the very best, at least
a very good onc.

First, we set up a pool of 50 chromosomes each with 180 bits
randomly turned (o cither ones or zeros. These strings of bits are
“genetic codes” for 50 different reduced representations (Figure 13-
16, left part). By considering the first “generation™ of 50 reduced

)54

representations (out of the 1077 possible ones) we shall explain how

Figure 13-16; Pool ol 50
chromosomes {lefl part). The 4-th
chromosome is taken out and 55
flavonoid structures are represented by
5 intensity representation. With the set
of 55 five-dimensional spectra an
{8x8)-counter-propagation network
model is generated and the RMS on
the output layer evaluated (right part).
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the testing is carried out. Once more, all 55 flavonoids are encoded 50
times, each time with a different reduced representation as suggested
by the corresponding 180-bit-string — if the bit is turned to one, the
intensity is taken into the account and otherwise not.

With each reduced representation a small 8 x 8 x (5 + 1) counter-
propagation network (Figure 13-16, right part) is trained. The number
of weights in the Kohonen layer in each of the 50 networks depends
on the number of bits turned to one in the chromosome suggesting the
tested reduced representation. In a small network of only 64 neurons
on the average about 20-30% of neurons is expected to be excited by
two or more different objects. The fitness function, ff, and, thus, a
measure of quality of the tested representation is the RMS value (cf,
Equation 7.6} or the square root of the sum of squared differences
between the experimental activities of compounds exciting the same
neuron and the response given by this neuron:

S % (e
ff, = ==l (13.6)

R 1y

for k = 1...50 reduced representations

The first summation runs over all n, neurons that are excited at
least twice, while the second summation runs over all r; experimental
biological activities a; of compounds that have excited the j-th neuron
having in the output layer the weight (output activity) wj"“‘. The
smaller the fitness function (Equation 13.6), the beiter the reduced
representation. Once all 50 different counter-propagation models are
made, their rank list can easily be made by sorting the corresponding
outcomes of the fitness functions { ff;}.

The second step of a GA is natural selection. This step involves the
selection of the best chromosomes for mating, allowing them to have
offsprings, and omitting (“killing”} the others with low values of
fitness function. From the ranked list of fitness functions { ff;} sixteen
best ones, approximately one third of all, i.e., 50/3 = 16, are selected
and the rest is ignored. By allowing to mate each of these sixteen
chromosomes to three randomiy selected partners 48 chromosomes of
the new pgenecration are produced. Additionally, the very best
chromosome mates once more (four times altogether) and its clone
(the identical chromosome) is added to the new generation. In this
way 50 new chromosomes (reduced representations) are obtained.
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In the GA, the offsprings of the mating process are generated by
the cross-over procedure, For each mating pair, a random gene
position s determined and from that position the cross-over (twisting)
procedurc is applied. The resulting two new chromosomes arc
obtained by exchange of the twisted parts (Figure 13-17). Each of the
two offsprings has one part (lower or upper one) of the gene sequence
from one parent and the other part from the second parent.

In a relatively small population of only 50 chromosomes it may
well happen that all genes at a given position have the same value (07
or “I”) in all of them. Such gene position can never be changed by the
cross-over procedurc only. Therefore, a process called mutation is
applied. Mutation means random switching of a small percentage of
bits to its opposite value. If chosen for a mutation, the gene with value
and vice In order to not disturb the
improvements due to the cross-over breeding process too much, the
mutation procedure ought 10 be applied with care. The probability at
which a gene is subject to mutation should be low (usually below 1%

Once all three steps of a GA — natural selection, cross-over and
mutation — have been applied. new testing or fitness function

u]ﬂ

“0" turns to versd.

evaluation of all 50 chromosomes ol the new generation can start
again. Due to the tact that the clone of the best chromosome from the
previous generation is always present in the next one, constantly

increasing values of the fitness function are assured. The number of

generations required to obtain an optimum varies from case to case. In
the present example 500 generations each consisting of 50
chromosomes have been tested (Figure 13-18). In the entire GA
process, 25,000 times all 55 structures were encoded into different
reduced representation and 25,000 counter-propagation networks
were built and tested. The improvement of the RMS value as the
fitness function in the GA process is shown in Figure 13-18.

After 500 generations the best fitness function as defined by
Equation (13.15) on the 8 x 8 x (5 + 1) counter-propagation network
was RMS = 0.167. This value was obtained using a reduced
representation of 18 variables only.

Mating pair of two
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Figure [3-17: Cross-over procedure
for making two new offsprings Ab and
Ba from two mating chromosomes Aa
and Bh,

ff
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a CCL 0D ACD 600 generatuat

Figure [3-18: GA oplimization
evolution through 500 generations.
The tengths of the reduced
representations has increased Irom the
starting 7 to the final 18 intensities,
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13.12 Cross-validation of the Counter-
Propagation Model Obtained by the
Optimal Reduced Representation

The first task in the modeling process was to obtain the short
uniform representation consisting of 18 variables for all 55 a) we
flavonoids. Out of the 180 intensities of the complete spectrum-like
representation, the following 18 intensities were selected: 30™ (180°),
3204 (1929, 33 (1989), 44 (264°), and 46™ (276°) from the first
part (x.y-projection), 83 (138%), 93" (198, 98" (228%), 108™
(2889, 11t (306%), and 117t (342%) from the second part (x,z-
projection, intensities from 61 to 120) and finally, 127t (429, 129th
(54°), 1331 (78°), 1437 (138%), 145%, (150°), 146% (156°), and 166™
(276°) of the y.z-projection intensities from 121 to 180 (Figure 13-
19). In parentheses, the corresponding angle in radial degrees is given.
Because these selected variables represent defined space windows of
6° radial degrees it is easy to conclude that the presence or absence of
substituent atoms in these eighteen directions comprises the most
influential factor in the biological activity of flavonoids.

It v-va:ls mentioned in Section 13.11 that the RMS value of the Figure 13-19: Each of the selected 18
recognition results on the 8 x 8 counter-propagation neural network  yariabies define a 6° degree wide
model is applied as fitness function. At this place two more questions  window in the space where the most
have to be elaborated in more detail. The first one is why the counter-  relevant substituents are lying. There
propagation network was chosen for modeling and not the error back- ' 5 directions in the (x-y) plane a), &

. i in the (x-z) plane b), and 7 directions
propagation, and, second, why the choice was made on a 8 x 8 in the (y-z) plane c).
network and not something else, let us say a 7 x 7 or 10 x 10 network?

Both answers are relatively simple. Because in the Kohonen layer
of the counter-propagation network the formation of clusters on the
basis of input representations is achieved, one can evaluate the
formation of the optimized reduced representation that discriminates
between the compounds in question better than with the error back-
propagation which delivers only the medel and no internal
information about the representations. The other argument for the
preference of counter-propagation over the error back-propagation
model is the number of training epochs necessary for the networks to
converge. The convergence rate of the former is two orders of
magnitude better than that of the latter one.

The choice of the 8 x 8 layout of the counter-propagation network
(Figure 13-20) is based on the following reasoning. In a 49 neurons
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network (i.e., 7 x 7 layout) there is not even a theoretical chance that
each of the 55 objects would excite its own neuron. On the other hand
in a large network of, let us say, 400 = 20 x 20 neurons, each object
would almost inevitably excite its own neuron, hence no good
quantitative measure of how structurally similar vs. disstmilar and at
the same time biologically more-active vs. less-active compounds
would be clustered. Therefore, the first larger network of 64 neurons
(8x8 layout) that theoretically allows exciting of 35 different neurons
is a reasonable choice because it enables the theoretical possibility of
the formation of a network which would have an RMS value equal to
zero (each object would excite its own neuron). However, in the
optimization process, while testing different representations, the RMS
values will undoubtedly vary quite significantly, thus allowing to
make quantitative comparisons of the representations. Even more, the
final output map of the counter-propagation network will show the
distribution of all objects depending on the optimized representation.

Figure 13-20 (lower part) shows the final output map of the 8 x 8
counter-propagation network of 55 flavonoids. Nine neurons were
excited twice and three of them three times. This counter-propagation
model generated with all 35 flavonoids represented by 18 variables in
900 epochs has a correlation factor of estimates a, vs. experimental
biological activities &; of 0.95.

Figure 13-20: Counter-propagation
network used in the GA procedure and
for the linal model (above). The
distribution of 55 hits on the output
map (lower part left). Double and
triple hits are marked by the numbers 2
or 3, respectively. The final output
layer with resulting activities (lower
part right).
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In order to check the reliability of both the model and the selected
reduced representation, a cross-validation test is performed. The
cross-validation leave-one-out test is one of the possibilities how to
simulate real-life conditions in shortage of a test set. The leave-one-
out test (known also as jack-knifetest) requires to make 55 models by
the same modeling procedure with the same representation, but each
time with one object omitted from the modeling procedure. The test of
the prediction of this model obtained on 54 objects only is executed
by input of the left-out object into it as an “anknown”. The correlation
coefficient r between 55 predictions a2 %% €V in the cross-validation
procedure and the actual experimental activities a; gives a fair
estimate how the actual model obtained by the same procedure on 55
objects will perform when encountered with really unknown objects
of the same type. The cross-validation correlation factor r obtained in
our study was 0.86. The table of actual biological activities vs. the
predictions obtained by the cross-validation predictions is given in
Table 13-4
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4,88 4..74- 21 _3_50 "“3:5(] “ 4] 3.99 4.02
4.86 4,73 22 3.47 349 42 3.97 3.57
4.83 498 23 343 322 43 3.93 389
480 4.46 24 3.40 3.87 44 391 381
4.80 4.47 25 3.01 322 45 3.85 3.90
471 4,12 26 2.90 353 46 3.70 3.66
4.46 4.66 27 2.82 337 47 3.65 378
4.41 4.61 28 5.92 4. 88 48 349 374
4.22 375 29 5.13 4.97 49 3.48 377
4.16 3.53 30 4.57 4.06 50 342 370
4.00 3.9% 31 3.86 3.82 51 3.30 3.59
3.93 3.71 32 3.68 3.64 52 312 3t4
3.92 4.25 33 3.36 3.23 53 2.81 321
392 3.50 34 3.30 4.05 54 2.79 2.80
3.89 4.23 35 3.09 3.23 35 2.73 3.0
3.78 3.83 36 2.99 3.61
3.75 3.63 37 2.80 332
3.53 4.12 38 4.74 4.10
3.55 3.64 39 434 4.02
3.50 3.63 40 4.25 3.98

Table 13-4:  Comparison ol the experimental biological activities ¢; and

activities obtained by the cross-validation process a* V. The

correlation factor r between these two series is .86, The estimated
est model
(li;

better giving r={.95.

us vielded by the complete model on 55 objects arc even
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