14 The Electrophilic Aromatic
Substitution Reaction

learning objectives:

— structural  factors  influencing  electrophilic
aromatic substitution

— representation of molecular structures by a
connection table

— three forms of structure representation:
1) connection table

2) specifying formal charges for all atoms of the
ring

3) use of electronic and steric parameters specific
to a reaction site

14.1 The Problem

The substitution of a hydrogen atom of a menosubstituted benzene
derivative by another group (e.g., nitro, halogen, acyl, alkyl) is a
remarkable reaction on many grounds. First, it is of great industrial
importance, many basic chemicals being produced by this reaction.
Second, nearly all these reactions occur by the same fundamental
mechanism: the attack of an electrophilic group, an agent with
electron demand, on the benzene derivative.

This electrophilic substitution of a proton by another group can
occur, in principle, in three different positions: ortho (o), meta (m),
and para (p) {Figure 14-1).

The rationalization for the relative reactivities of various
monosubstituted benzene derivatives and for the distribution of ortho-
meta-, and para-substituted products is a paradigm of the methods of
physical organic chemistry. In undergraduate organic chemistry
courses, it is a standard case for explaining the influence of various
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Figure 14-1: Product distribution in
the electrophilic aromatic substitution
reaction.
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electronic effects, particularly the inductive and resonance effects, on
the reactivity and selectivity ol a chemical reaction. In spite of this
apparcntly well-settled matter, there are still a lot of unanswered
questions. The ratio ol ortho to para product is hard to predict,
although it is thought to be largely influenced by steric effects.
Reaction conditions, particularly the solvent, can have a drastic
influence on product distribution; this is hardly understood at all.

Furthermore, taking what we know about isomer distribution in the
reaction of monosubstituted benzene derivalives, and using it to
predict product ratios obtained from polysubstituted benzene
derivatives is not very successful (Figure 14-2).

Nevertheless, at an elementary level, electrophilic aromatic
substitution (EAS) shows some distinct characteristics. Most
substituents on the aromatic ring can be classified into two categories:
groups that donate electron density, either by an inductive or a
mesomeric elfect (Figure 14-3) primarily give orthe and para
substitution, while groups that are mesomeric clectron acceptors
(Figure 14-4) react by direct substitution at the mesa position.

Since the factors that determine the orthofpara product ratio are
much less understood, the yields of these two products are quite often
lumped together.

14.2 The Data

For the present example, we will use the work and data ol Elrod,
Maggiora, and Trenary (see Reference 14-1), who investigated the
distribution of products in the nitration of a series of monosubstituted
benzene derivatives. For reasons just mentioned, the yields of orthe
and para product were combined; thus, they worked with the ratio of
meta product to ortho plus para product.

Table 14-1 shows ten out of the 50 substituents used in this
example, arranged in order of increasing percentage of meta product
obtained in the electrophilic reaction,

One of the purposes of this example is to discuss the problem of
finding an appropriate coding scheme for the structures of the
compounds or substituents to be input into the neural networks. Two
coding schemes are investigated.

Any coding scheme for this problem must, of course, be capable of
representing thesc substituent effects. The first approach takes the
partial atomic charges on the six carbon atoms of the ring (as
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Figure 14-2: Predicting product
distribution in the electrophilic
aromatic substitution of disubstituted
benzenc derivatives, based on a
knowledge of product distribution in
the EAS of the two corresponding
monosubstituted benzene derivatives.



no. substituent yield of meta
preduct

1 -NH, 0

2 —-NHCOCH, 2

3 —CH; 4

5 —CH,;NH, 10

5 —CH,COOH 22

6 —SiMe;, 40

7 -CCl, 64

8 -CONH, 70

% —-COOH 80
10 -S0,CH; 100

Table 14-1:  Ten substituents, and the corresponding yield of the meta product.

calculated by a semiempirical quantum mechanical method, MOPAC
— see Reference 14-3) as a representation of the electronic effects
influencing product distribution (Figure 14-5).

In the other scheme, the structure of a substituent is represented by
a (5 x 5)-connection table, in which each row represents one atom.
The five entries are the atomic number, the ID number of this atom,
the ID number of the atom it is bonded to, the bond order of this bond
and the formal charge on this atom (Figure 14-6).

For each nonhydrogen atom of the substituent, we need a new row,
starting with the atom directly bonded to the ring. If the substituent
has fewer than five nonhydrogen atoms, the remaining rows are filled
with zeros; if the substituent contains more than five atoms, the
representation is cut after five.

Next, we need a canonicalization for the connection table, ie., a
set of rules valid in all cases to produce a unique numbering scheme
for the atoms. Particularly in larger connection tables the atoms in a
given substituent can be numbered in different ways, so that different
inputs will be produced in the neural network, and consequently many
different outputs will result.

14.3 The Network

With two essentiaily different representations for monosubstituted
benzene derivatives, we will need two different architectures for the
neural network. The first representation leads to an architecture with
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Figure 14-3: An atom X with a free
electron pair can donate electron
density 1o the ortho (0) and para (p)
positions by a so-called plus
mesomeric effect, and thus direct the
attack of the electrophile primarily to
the orthe and para positions,

Y=7: H-C=0, RO—C=0,
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Figure 14-4: A group Y=7 with a
multiple bond can reduce the electron
density at the ortho (0) and para (p)
pasitions by the so-called minus
mesomeric effect. This makes the
attack of the electrophile at these
positions particularly difficult, leading
to preferred meta substitution,
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six input units, and the connection table representation requires 25
input units.

It turns out that one hidden layer is enough for both networks; in
the first case (six input neurons), 10 neurons in the hidden layer are
enough, while in the second case (25 input neurons), only five hidden
NEUTONS are necessary.

‘Two output neurons are chosen, one for the combined percentage
of ortho and para product, the other for the percentage of metu
product. Since the total yield is 100%, it is enough to report only the
percentage of mera product.

With two neurons in the output layer, the complete architecture of
the first network is (6 x 10 x 2), with (6 + [} x 10+ {10+ 1) x 2 =92
weights. The second network, (25 x5 x2), has 25+ 1)x 5+ (5+ 1)1 x
2 = 142 weights. The architectures of both networks are shown in
Figure 14-7.

14.4 Learning and Results

The networks were trained by error back-propagation using the
product ratios of the nitration of 37 monosubstituted benzene
derivatives. The product ratios from 13 other compounds were used as
a test set.

For both networks, Elrod et al. used 100,000 epochs (1) to reduce
the errors in the training set to values as small as 0.3% in the better of
the two networks. In spite of this excellent recall ability for the
training set, the predictions had a much higher average error (12.1%);
this is still not as good as we could desire.

In order to judge the quality of the results, the authors used two
other approaches for estimating the amount of meta product: first, the
results were compared with those obtained from CAMEQ, an expert
system for predicting the products of reactions (sce Reference 14-4).
Second, the 13 examples of the test set were given to three organic
chemists, who were asked to predict the percentage of mera product.
The predictions of these three chemists for all 13 compounds were
averaged and compared with the results obtained by the two neural
networks and by the CAMEO expert system. All this is summarized in
Table 14-2.

Both neural networks gave better results than the expert system
CAMEO. The average error of the three chemists is lower than that
obtained from CAMEO and the neural network based on charge

Cl

_ |\0.001
0039, -0.039

0057 e 0.057

0.051

Figure 14-5: Partial charges on the six
atomns of the benzenoid ring of
chlorobenzene used as input
representation.
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Figure 14-6: The substituent
acetanilide and its connection table
representation.



distribution. However, the three chemists were outperformed by the
network based on the connection table representation.

system training set test set
neural network
52 19.8
(6x10x2)
neural network
3 12.1
(25x3%2) 0
CAMEQ 18.0 226
{expert system)
human experts 147

Table 14-2: Ervors in recall and predictions for the amount of meta product by

the two neural networks, by an expert system and by chemists (in
percent).

Of the two neural networks, the one built on the connection table
representation clearly shows the better results. This might be
surprising, because this representation is much simpler to obtain than
the one using partial atomic charges.

Why is the connection table network so good? A better question
might be, why the other one is worse. In fact, it is not too surprising
that the network based on the partial charges did not perform very
well. The ground state charge distribution is only one of the various
electronic factors influencing product distribution in electrophilic
aromatic substitution, and, if considered alone, is clearly insufficient
for representing the results of the nitrations.

Before continuing, it is prudent to admit that this study (like ail
studies) has limitations;

— The product ratio in the nitration of benzene derivatives depends
strongly on reaction conditions, particularly on the concentration of
sulfuric acid; this is not accounted for in the present study.

— The amounts of orthe and para product are combined, which
prevents us from studying the important problem of the ortho
effect. Furthermore, a separate treatment of the ortho and para
distribution is a prerequisite for any attempt at predicting product
distributions in di- and polysubstituted benzene derivatives.

This, of course, does not detract from the importance of the work
by Elrod, Maggiora, and Trenary; but it is important to stress that the
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Figure 14-7: Two different neural
network architectures for the two
different structure-coding schemes.
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choice of input and output representations strongly determines the
scope of an application and its prediction ability.

14.5 A Third Representation of Data

Satisfying as we might find the results obtained by the (25 x 5 x 2)
neural network, they can not give an explanation of the effects
influencing product ratios, since the connection table coding is
arbitrary, and hides the chemical effects responsible for the product
distribution.

This becomes particularly clear in the nitration of di- or
polysubstituted benzene derivatives (Figure 14-8). Then, the above
connection table representation is of no help at all in making
generalizations. First, applying this representation to disubstituted
benzene derivatives would require two (5 x 5)-connection tables; 50
input units would generate quite a different ncural network
architecture. Even worse, the two connection tables would be
identical for the ortho-, meta-, or para-disubstituted benzene
derivatives: they are insofficient to distinguish among these three
different starting materials.

Clearly, we need a better coding scheme for di- or polysubstituted
benzene derivatives. We will explore another representation that
addresses the problem at the point where the reaction occurs, L.c., at
the ortho, meta, or para position on the benzene ring.

The connection table representation is fine for predicting the yield
ratio of meia to (orthe + para) product. However, if:

— the influence of sulfuric acid is ta be accounted for
— the amounts of ortho and para product are to be distinguished

— the electronic effects governing product distribution in EAS
reactions arc to be deciphered, and

— the predictions on product ratios in the nitration of di- and
polysubstituted benzene derivatives have to be made,

we need more general representations on the input side for the starting
materials and reaction conditions, and on the output side for the
product distribution.

For example, the input vector should be coded using a reaction
site-specific representation; this meuans that the representation for a
given substituent should be different for each output ring position, so
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Figure 14-8: Ortho-, meta-, and para-
disubstituted benzene derivatives.



A Third Representation of Data

that different variables may be input for different positions (while
there is always only one answer: percent of the product corresponding
to substitution at the position for which the variables are input).

In principle, there are five hydrogens on a monosubstituted
benzene derivative that can be substituted by an electrophilic agent
(e.g., nitro), However, because the molecule has a plane of symmeiry,
there are two equivalent ortho and two equivalent meta positions, so
that only three different positions, ortho, meta and para have 10 be
considered, but because of the symmetry, ortho and meta must be
weighted twice as much as para.

Furthermore, we need one (or more) additional input units to
account for one {(or more) variables on reaction conditions; in this case
the concentration of sulfuric acid should be included.

The problem of individually representing the three substitution
positions of a monosubstituted benzene derivative was addressed by
A. Frohlich and coworkers of the Model Laboratory for Computer
Chemistry at the Technical University of Munich (see Reference
14-5). They used one steric and four electronic variables.

Figure 14-9 shows the intermediate formed in an electrophilic
aromatic substitution; we can use electronic variables for the carbon
atom where the electrophile E is bonded as controlling parameters: the
o-electronegativity, ¥4 the m-electronegativity, Xp; and both the
average inductive stabilization, yxg'(o,p), and the resonance
stabilization, R*, of the positive charge generated at this carbon atom
(Figure 14-9). These parameters can be calculated by empirical
methods.

Two additional input units are provided: one for an estimate of the
amount of steric hindrance, Ster, at the reaction position obtained
from the van der Waals radii of the atoms, and one for the
congentration of sulfuric acid, [H,504] (Figure 14-10).

The values of the input parameters for each of the three sites of
phenol are given in Table 14-3.

With a site-specific representation of the starting material, we need
only one output neuron, the amount of product at the site being
considered (meta position, in Figure 14-10). Seven hidden neurons
complete the architecture of the neural network in this study (Figure
14-10).

Note that the neural network is trained with data for each
individual position separately. This means that if we input the six
parameters X Xm X&'(o.p), R, Ster, and [HySO,] for the para
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Figure 14-9: Intermediate state
leading to the meta product in an
electrophilic aromatic substitution
(E@ is the electrophile).
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e Yo L X&) R S':'(;r [H,S0,]  yield
eVl [eV] {eV] [VeV] [A7] [ %] [%]

ortho 845 5.4 8.66 210 585 741 18.0
meta 825 534 8.38 6.0 540 74.1 0.5
parea 8.23 5.34 8.66 21.1 5.04 74.1 63.0

Table 14-3:  Site-specific input and output parameters for the three different sites
of phenol. (Note that the (otal yield is [8Xx2+0.5x2+63=100)

position, then as a target for training the network, the percentage of
para product should be given. However, it data for the orthe or meta
positions are used, the network outputs only half the expected yield,
since in actuality, each ring has (wo such positions (“statistical
factor”, or “symmetry factor™),

Thus, one single neural network is trained to predict the vield of
substitution products at each individual position.

This network was trained by back-propagation of errors, using as a
training set the product distributions in the nitration of 23
monosubstituled benzene derivalives at various concentrations of
sulfuric acid. Altogether, these 23 compounds provided 159 data on
the yields of substitution products at different positions, for different
concentrations of sulfuric acid. The data are easily learned, with an
average error of 6% on recall.

Three disubstituted benzene derivatives were then used for testing
the predictive performance of the neural network. Since each
disubstituted benzene derivative contains four sites for potential
substitution, predictions for each of the twelve sites for nitration were
individually made by inputting the electronic and steric variables of
each site together with a preset concentration of sulfuric acid (Figure
14-11). The average error in the prediction of the yield for substitution
at the various positions amounts to 10%,

Figure 14-12 summarizes the three different approaches for setting
up & multilayer ncural network capable of predicting the regio-
selectivity in electrophilic aromatic substitution, and for coding a
monosubstitued benzene derivative as input.

Figure 14-12a} shows the represemiation used by Elrod, Maggiora
and Trenary, in which the charges at the six positions of a
monosubstituted benzene derivative are input in order to predict the
yields of meta and (ortho + para) products by using two output
neurons. In Figure 14-12b), the structure of the substituent is coded
by a (5 x 5) connection table; again, the meta and (ortho + para)
product yields are obtained on two outputs.
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Figure 14-10: Architecture for
prediction of the yield of product at a
specific site {mera, in this case).

Figure 14-i1: The four sites for
potential substitution in an ortho-
disubstituted benzene derivative.
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Figure 14-12c) diagrams the site-specific neural network that takes
as input one steric and four electronic variables for one ring site, as
well as the concentration of sulfuric acid. One cutput neuron suffices
to predict the amount of product at that site.

14.6 Concluding Remarks

Go back and read the quotation of Bernhard Widrow at the very
end of Chapter 9. The important message to carry away from this
study is that your method of representing information determines the
scope of the predictions that can be made. A global representation of
the substituent in a benzene derivative by a connection table only
allows us to make global predictions, e.g., the amount of meta product
vs. the sum of ortho and para product. A [ocal representation of the
influence of a substituent on each individual ring position allows us to
make local predictions: the amount of product at each individual
position. Furthermore, only a local representation of a mono-
substituted benzene derivative can be generalized to make predictions
about product ratios in the nitration of di- and polysubstituted
derivatives.
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Figure 14-12: Three different
architectures and input representations
for learning the regioselectivity of the
electrophilic aromatic substitution
reaction: a) global charge vecior, b)
connection table of the substituent, ¢}
local electronic, steric, and reaction
condition representation.
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