15 Modeling and Optimizing a
Recipe for a Paint Coating

learning objectives:

— factors involved in adjusting an industrial recipe
(ingredients plus processing conditions} while
maintaining consistent results

~ identification of controlling variables as little
correlated with each other as possible

~ use of experiments to select training data

— comparison of 3-D and 2-D (sectioned) display of
the results: partial models

15.1 The Problem

This example is a typical industrial application of modeling. The
chemical, pharmaceutical, food, and many other industries rely
heavily on recipes for their products. A recipe usually consists of two
types of quantities: the first comprises the amounts of components that
should be put together or processed; the second type consists of
process parameters, like temperature of processing, pH of solvent,
time of mixing, etc., necessary to make the ingredients into a product.

In order to maintain preset levels of quality and/or price, the recipe
must be followed exactly; but components may change in price, or
suppliers may change their products, and all such difficulties require
an adjustment of the recipe.

If, for example, the pH of the process is critical, then the recipe
will have to be adjusted if some component from a new supplier has a
higher or lower acidity; and adjusting the quantity of one component
probably calls for adjustments of all other components to maintain
consistent properties and quality of the product.

Recipes are as delicate as complex circuits; adjusting one is often
considered an “art”, since an analytical dependence of product
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properties on compound properties (and on component interactions)
i5 unknown.

Remember that there are multiple product properties
that must be kept within prescribed tolerances.

We want to find a non-analytical means of adjusting the conditions
and ingredient quantities to bring product properties back within
specs; and if this is not possible, the method should tell us that, too.

15.2 The Data

The example that will be followed here was worked out by Tusar
and coworkers at the National Institute of Chemistry in Ljubljana,
Slovenia, for a chemical factory which produces different kinds of
paints, paint coatings, and related products. The goal was to obtain
full knowledge about the dependencies among the various properties
(coordinates in measurement space) of a product that we will call
simply “paint coating”.

During intensive studies of this product, it was found that there are
three highly significant and non-correlated (or only slightly
correlated) variables: concentration of the polymer component, C,,
concentration of the catalyst, €., and the temperature T used for
heating the product. Six properties have 1o be controlled and adjusted
to the norms for this product:

— hardness, H

— elasticity, £

— adhesiveness, A

— resistance to methyl-isobutyl-ketone, MIBK

— stroke resistance, SR

— contra-stroke resistance, CSR

Using standard modeling techniques, six models are set up:
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This means that we need to invent (or guess!) functions f|, f;, ..., fg
that give values of these six properties in terms of the three controlling
variables. Furthermore alt six sets of adjustable coefficients a, by, ¢y,
... should be determined in such a way that the set of experimental
values {H,, E,, A, MIBK,, SR, CSR;} will fit the set of calculated ones
at given values of {C,,, Cy,, T;} as well as possible.

As we already know, supervised neural network learning does not
require any prior assumptions or hypotheses about the function types,
numbers of parameters, etc. All that is needed is a well selected
architecture and the input data and targets to which the model should
be adapted.

The data for the model were selected using a full three-variable
three-level experimental design requiring 27 measurement points
(Figure 15-1).

Accordingly, 27 cover paints were made in the test laboratory and
for each paint all 6 properties were measured. Altogether a matrix of
27 x (3 + 6) = 243 values was obtained: 81 were used as input vectors
(27 x 3) and 162 as targets (27 x 6). A few of the experiments used in
developing the model are given in Table 15-1; output values in this
Table are given on a quality scate, on which 1.0 represents superior
quality, while values represented by 0.0 actually mean that the
measured property is so bad that it may not even be measurable.

15.3 The Network and Training

As usual in our examples, a one-hidden-layer neural network was
chosen, having three input units, six output neurons, 20 neurons in the
hidden layer, and 189 weights (Figure 15-2).

The 81 input values were normalized between 0 and 1, while the
162 output values were additionally scaled into the interval 0.2 — 0.8.
This further scaling is often recommended for output neurons having
a nonlinear squashing function (Equation (2.39)), but trained to yield
nearty linear outputs (Figure 8-15). After about ten thousand epochs,
the network became stabilized.

The Data 255

Figure 15-1: Full three-variable,
three-level experimental (factorial}
design for determining the dataset for
training and testing the model.

H E A MIBKSR CSR

Figure 15-2: 3+ 1x(20+1)x6
neural network for modeling
properties of paint coatings.
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input output

C, C. T H E A MIBK SR CSR

(%] 1% 1°C]
1 65 1.0 150 1.0 03 0.0 1.0 0.0 0.0
2 65 24 150 0.0 0.7 0.8 1.0 0.7 1.0
3 75 (3.2 150 1.0 0.9 1.0 1.0 0.0 0.0
4 75 1.0 120 0.5 1.0 0.9 0.9 0.6 0.6
5 75 1.0 1506 1.0 0.9 1.0 LO 0.7 0.8
6 75 1.0 180 1.0 0.9 1.0 1.0 0.0 0.0
7 75 24 150 1.0 0.8 0.3 0.8 1.0 0.5
8 85 0.2 150 0.0 1.0 1.0 0.0 1.0 1.0
9 ' B85 2.4 120 0.0 1.0 1.0 0.0 LO 1.0

Table 15-1:  Some of the experiments used for building the model, The output
properties are normalized between zero and one: 1.0 signifies an
excellent value ol the property, while 0.0 represents a bad (or
unmeasurable} value.

15.4 The Models

We can obtain a separate (partial) model from each of the six
outputs. In other words, the signal at each one of the six output
neurons can be taken as a substitute for one of the explicit equations
given in (15.1). An essential point of this example is that, as always,
the models are obtained without any a priori knowledge about the
behavior of the system.

Because each property (output variable) is a relatively simple
function of only three input variables, it can be visualized as a plot in
a three-dimensional space comprising variables €, C,.and T (Figure
15-3). Unfortunately, when looking at this figure, it becomes clear that
only one variable (onc surface) can be shown on one such picture.

However, even this three-dimensional display does not offer more
than a qualitative description of the property behavior. In order to get
usable quantitative output, we must produce two-dimensional maps
(each at a constant value of the third parameter). Such cross-sectional
planes are shown in Figure 15-4; once the model is obtained. these
may be drawn at any value of the third variable.

The 18 maps in Figure 15-3 show how each of the controlled
propertics H, E, A, MIBK, SR, or C5R behaves. The three maps under
each output are only three of many possible constant-7 cross-sections.

Figure 15-3: Three-dimensional
display of surface presenting possible
values of the predicted property H. A
cut 1s made at a specific temperature
and the two “boxes” have slightly been
moved apart for better visualization.

Figurce 15-4: Three two-dimensional
cross-sections describe the property H
better than the three-dimensional
surface in Figure 15-3.



As discussed above, an analogous map at any temperature between
150°C and 180°C can be obtained at any of the six outputs. These 18
maps illustrate the richness of information that can be obtained from
the trained network.

This can easily be programmed on a personal computer, a simple
user interface added and the whole package handed over to engineers
for use. Since the calculation of all six properties from any triplet of
variables Cp, C, and T can be made almost instantaneously, the entire
measurement space can be thoroughly inspected.
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Figure 15-5: Two-dimensional
sections through the 3-D input space.
Each column of three maps shows the
dependance of the indicated output
property (#. E, etc.} upon <,
(abscissa) and C,. (ordinate); cach map
is at a different constant value of 7.
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