16 Fault Detection and Process
Control

learning objectives:

— complex processes: priorities and problems
involved in identifying malfunctions, and in
controlling conditions to achieve constant results

— comparison of classical methods and neural
networks

— one danger of careless choice of data
representation: introducing spurious correlations
into the dataset; one way to avoid this

— special requirements of time-dependent data, and
one technique (the “moving window”) for dealing
with them

— how the counter-propagation network behaves as a
self-organizing lookup table

— example of fault detection in a catalytic
conversion reactor

— comparison of results from back-propagation and
counter-propagation networks

— relationship between forward model (input —
results) and inverse model (results — input)

16.1 The Problems

Two basic problems have to be faced in running chemical
processes; first, the recognition and detection of faults, and second,
control of the process itself. Fault detection is regarded mainly as
gualitative, since it is necessary only to identify the defective part(s)
in the system. On the other hand, controlling the process is

262 Fault Detection and Process Control

quantitative, since the values of process variables must be
continuously monitored and maintained within prescribed timits. This
information is, of course, a prerequisite for detecting (and identifying)
system faults.

Immediate recognition of fauits prevents loss of time, of
production quotas, or even of the equipment. Therefore, a permanent
on-line diagnosis based on the process variables is needed in addition
to equipment tesling and preventive maintenance, operator training,
etc.

Control of the process requires feedback calculated on the basis of
a model believed to govern the entire process. The better the model,
the more reliable are the calculated responses and the smoother is the
process. The model should be set up either on the basis of the known
chemical and technological subprocesses, or learned on the basis of
past monitoring.

There may be many sources of difficulty in achieving fault
prediction and/or process control based on continuous meonitoring of
the process variables:

— reliable models that yield accurate behavior of the process under all
circumstances are often not known

— the dependence of the behavior of the process on the controlling
variables is in most cases nonlinear

~ the data monitored as a basis for the feedback can be noisy or
uncertain

— there exists no one-to-one correspondence between the set of
observed symptoms and the correct diagnosis.

Since it ts important to know as much as possible about the
behavior of the process, especially under unusual conditions, there has
been considerable research into the theory of process control.
Different approaches to the problem have been tried:

— statistical analyses

— linear models using classical techniques
— pattern recognition

— knowledge (rule) based expert systems

— neural networks

The quality and accuracy of predictions based on rule-based expert
systems strongly depend on the extent and quality of the rule database,
which must be painstakingly collected from human experts, a time-
consuming and cxpensive process. Therefore, neural network
techniques in general and the back-propagation algorithm in particular
have stirred enormous interest among chemical engineers.

Some of the more important advantages of neural networks over
classical approaches are believed to be that:

— neural nctworks can learn from examples, making analytical
models unnecessary;

— the handling of nonlinear models is easy for nmeural networks,
because of their inherently nonlinear response;

- neural networks can perform association, ie., they can handle
incomplete or slightly corrupted data, which is important for good
modeling outside the trained regions,

— neural networks can handle continuous variables as well as discrete
ones (in rule-based expert systems, discrete variables are usually
used;

— neural networks can model inverse functions, an important feature
for generating feedback centrol systems,

Hoskins and Himmelblau (Reference 16-1) have discussed the
applications of neural networks in various areas of chemical process
engineering, such as fault detection, diagnosis, process control,
process design, and process simulation. Sometimes it is difficult to
clearly separate one task from another, but we will try to summarize
them in this chapter.

16.2 The Data

A chemical process, whether on plant or pilot scale, is monitored
by measuring a number of variables, x;, at different points of the
process, and supervised by feedback signals to various controllers.
The task of a controller is to keep the measured variables in a given
state (on/off), or at a defined level of a given variable (the set-point),
or within a defined interval. These variables may include flow-rate,
temperature, concentration, pressure, liquid level, etc. The controllers
supervise heaters, pumps, valves, stirring devices, etc.

The Data

263

264 Fault Detection and Process Controf

The assembly of all measured variables and states at a given time ¢,

x;;, 18 called the process vector P,
Po= (x, %, . SRR S (16.1)

When teaching the neural network to recognize and to predict
faults in a chemical process, the training input vectors X are sets of
measured variables known to result in a “smooth™ or ‘“no-fault”
process, along with sets that describe faulty conditions. For each of
the latter, a vector describing the faulty state(s) must be given as a
target vector ¥ that pinpoints the faults caused by that particular X.

Quite often, the causes are binary or discrete states, such as
presence or absence of fluid flow (pump working/not working), etc.
The cause of a maltunction ¢an be, of course, a combination of faulty
states.

The best way to handle multiple discrete states of a variable is to
transform it into a distributed representation, i.e., to transform it into
as many binary variables as there are different states for the original
discrete variable.

For example, suppose that a variable x, called “state of the valve”
can have one of three possible states: “left pipeline”, “shut”, and
“right pipeline” (Figure 16-1). The process vector X should have
three new sub-variables 1o describe these three states as O or 1:

X = (xlef!, x‘\‘huz’ xrﬁghr,) (162)

Then for given values of the other variables, X may be:
X, = (1,0,0,..) valve open to the left pipeline
XJ,. = (0,1,0,..)y valve shut (16.3)

X, = (0,0,1,..) valve open to the right pipeline

Obviously, any other combination, such as X =(1, 1,0, ...) or (0, 1,
1, ...} corresponds to impossible states. It might seem a waste to use
three variables and then throw away six of their nine possible states;
perhaps a new variable having three values, +1, 0 and —1, would be
more efficient.

This representation can of course be used, but it has some
unintended side effects. The sequence of values (+1, 0, —1) implies
that the states are not equivalent: the state “shut” (0) is closer to both
“open” states than these two states are to each other. Such unjustified

L R
AF 0
xvhm 1
xrigh[0

"

L R
et |
Xshur 0
xrigkr 0

Al

L o R
xlet 0
xs}mr 0
xrigk: 1

Figure 16-1: Description of three
states of a valve and the corresponding
value of the process vector.

correlation among the equivalent states, if included in the learning
procedure, may have an undesired influence on the results. The more
equivalent discrete states a variable has, the worse is the situation
when the condensed distribution is used. A very similar case of
unwanted correlation among the states of one variable is discussed in
Chapter 17, where coding of proteins by amino acids is described. The
situation is solved exactly as described here: each multistate variable
is replaced by as many binary inputs as the variable has different
states.

In order to predict how the process variable x; will vary with time,
at least two of its values in each input vector of the training set must
correspond to consecutive times, e.g., x;, and x;,, . (In terms of the
moving window technique described in Section 9.5, the past horizon
of the training vector must be at least two events long.) The same
variable x; should also appear in the target vector ¥ with the value
corresponding to the time ¢ + 2. As usual, the future horizon of the
training vector, or target, can be only one event long.

However, the future horizon during prediction may be longer than
one, if predictions are to be made several time units ahead. However,
it is advisable to keep the horizons only a few time intervals long,
because there is always noise in the measured data. Usually, the past
horizon is at least two times longer than the tuture horizon.

In order to give you a feeling for how the training vectors are
composed, a sequence of training vectors with a past horizon of length
3 and a future horizon of length 1 is given in Table 16-1. Each process
vector P, = (x| Xop -os Xips <o Xpyy) (Equation (16.1)) has the same
form. All inputs from ¢ = 0 to ¢t = r — 4 form one epoch.

In many cases, especially if the model will be used for quantitative
control, it is not necessary that all process vectors P, in the training
vector contain all process variables xq, x5, ..., X5 ..., X, only those
variables that must be controlled and those that can be manipulated
by the operators are mandatory. Although it may be desirable to
include other variables that influence the process, one must be careful
not to inject too much redundancy into the input data.

If, for example, the controlled variable is xc and the variable that
can be manipulated by the operator is xm, the training vector should
look something like this (Figure 16.2):

X, = (., xcxmp, 0 xC, Ly, XM

; palr e XC, oy XM, o) (16.4)

The Data

265

266 Fault Detection and Process Control

time input largel
t X, ¥,
0 Py, P Py (P}
| (P, Py Py (Py)
2 Py, Py, Py (Ps)
-2 (P P, P (P)
—1 (P, P. Pua} (Prs)
r P Py, Py (Pry3)
+1 P Po Py (Pris)
r=5 P,_5. P,y P,_3) P,_2)
r—4 Py P53, P._ Pry)
— new epoch —
r—3 (Py. P, Py (P3)
r-2 P P Py (Fy)
r—1 Py, Py, Py {(Ps)
r Py, Py, P (Pg)
r+1 Py, Ps. FPp) (P7)

Table 16-1: Data sequence in a moving window learning scheme: the historical
database contains r process vectors, Py to P,_).

while as target, only the manipulated variable xm can be given:

Y, = (xm,, 3) (16.5) time - ——» ¢
t o+ 4243

The “future” values of the variables should be obtained from either v 1 T
a historical database, or calculated by a theoretical model. e | R
X .
I — !
16.3 The Methods
xr
Until now, all applications of neural networks in chemical LT T
" |

engineering have used the back-propagation algorithm, becausc fault
detection, modeling of processes, and feedback control applications
require supervised learning.

The size of a network is mainly influenced by the numbers of input

[,._Y_ﬁ.__/plg

Y
input target

and output variables. All those back-propagation neural networks
. i Figurc 16-2: The shape of the moving
described in the chemical engineering literature are small compared to A 5 '

. o window can have vartous forms; here,
those used in some other applications, such as spectrum-structure , window is shown with only one

correlations, or the determination of the secondary structures of variable from the future horizon.

proteins. The number of input and output parameters in chemical
processes are 4 few tens at most, so there is no need for more neurons
in the hidden and output layers.

However, the learning times can be quite long in spite of the small
sizes of the networks, especially when models are sought, because a
large number of different input vectors must cover the problem space
quite meticulously if the model is to be reliable.

We believe that the counter-propagation architecture {see Chapter
7) offers attractive opportunities in process control applications of
neural networks. Two layers of neurons are combined in a counter-
propagation network: a Kohonen layer influenced by the input
vectors, and an output layer influenced by the targets. The counter-
propagation network acts like a self-organizing lookup table (Section
7.2): all required answers, i.e., the responses for different variables,
are pre-calculated and stored in as many lookup tables as there are
output variables.

These lookup tables are of the same size and aligned one upon the
other; hence, although the complete n-variable output vector Y (y, 2,
s ¥y) is stored in n different lookup tables, all answers vy, y2. ..., ¥
are stored in a hypercolumn that links all » lookup tables at the
corresponding row and column (Figure 16-3).

16.4 Predictions of Faults

This example follows the work by K. Watanabe, and coworkers
(Reference 16-3), who investigated the catalytic conversion of
heptane into toluene occurring in a reactor:

C'_,IH]() — C7H8 + 4H2 (166)

Three variables were measured: the outlet concentration of the
product toluene, c,, the heater outlet temperature 73, and the output
signal s, of the controller that regulates the temperature 7}, in the
reactor; five different faults can be deduced from these three measured
variables. The simplified process scheme is shown in Figure 16-4.

A constant flow of heptane is maintained by pump no. 1. The
temperature in the reactor is sustained by a heater operated by no-fault
controller and the pump (no. 2) that cycles steam between the reactor
and the heater. Toluene leaves the reactor with an outlet concentration
of ¢, and with the temperature T, depending on T,, the controller
adjusts the signal s, that goes to the heater.

Predictions of Faults 267

Figure 16-3: All components of the
output vector, i.e., the multivariable
responses, are stored in all n lookup
tables at corresponding locations.

.@\
N
@ e
3
AAAAA __/Pz
—
—
;

Figure 16-4; The catalytic reactor for
the conversion of keptane ino foluene.

268 Fault Detection and Process Controf

The input value of cach of the three variables is normalized (o ils
value in the steady state condition. Therefore, all input values are
within an interval between 0.75 and 1.33, with 1.00 corresponding to
the : “no-fault” condition.

The five possible faults to be determined from the above three
variables are:

1: deterioration of the catalyst

2: fouling of the heat exchanger in the reactor
3: fouling of the heat exchanger in the heater
4: malfunction of pump no. 1

5: malfunction of pump no. 2

Faults 4 and 5 also include the clogging of the pipes.

These faults correspond to the output values y; to ys. They are
represented in the learning procedure in two ways; first, they are used
as discrete binary variables (yes/no); second, when a fault is
confirmed, its severity is represented as a discrete variable having five
different values: 0.5, 1, 2, 3, and 4, which requires five output (yes/no)
nEurons.

To handle this fault diagnosis scheme, they set up six different
networks (Figure 16-5): one at the top level, determining which faults
have occurred (Figure 16-6), and five networks one level below, each
of which indicates the severity of each of the five faults. Each of the
five outputs describes a higher degree of deterioration; the first level
(0.5) means close to normal.

To make matters simple, the architectures of all six neural
networks are identical: they all have three input nodes, four neurons
on the hidden layer, and five output neurons. In the (raining procedure,
the learning rate 1 is set equat to 0.1, and the momentum u 10 0.9
(Equation (8.1) given in Sections 8.3 and 8.7). The input and output
vectors used in training for fault recognition (top level network) are
shown in Table 16-2,

The results of fault detection in the catalytic process were rather
encouraging: the system of six networks is able to detect the five
faults correctly. However, as Table 16-3 shows, the determination of
the exact level of fault is not as clear-cut. Nevertheless, if we take the
largest value of the output as the degree of fault, the correct answer is
always obtained.

level of fault

Figure 16-5: Six single-hidden-layer
neural networks for the prediction of
five four-level faults from three input
variables.

Modeling and Controlling a Continuously Stirred Tank Reactor (CSTR) 269

fault input X output ¥

¥ 2 A3 Yi ¥z y3 ¥4 ¥s

h Ty [

[mV] (K] 1gmol/m’]

1 219 885 498 1 0 0 0 0
2 240 206 524 0 | 0 0 0
3 248 289 524 0 0 1 0 0
4 212 878 550 0 0] 0 1 0
5 201 889 524 0 0 0 t] 1
normal 223 889 324 0 0 0 0 0

Table 16-2: Data for training the first level recognition of faults: yes/no
(Watanabe et al., AIChE Journal 1989).

Where totals are less than 100%, it is because the first network
misidentified the fault. The results are obtained from 1000 test
vectors. (Each row of Table 16-3 represents a separatc test input.
When a fault of type 1 at level 0.5 was input, the system identified it
correctly 84% of the time; 4% of the time, it identified the fault as
type 1, level 1; and 12% (100-88) of the time, it misclassified the fault
type altogether.)

16.5 Modeling and Controlling a
Continuously Stirred Tank Reactor
(CSTR)

As described earlier, two things are required in order to control a
given process reliably. First, we need a model M able to predict the
critical parameters of the process for a few time intervals in the future.
Second, it must be possible to determine adjustments to the correction
variable(s), i.c., the variable(s) that can be manipulated, from the
predicted data accurately enough so that the system will return to
normal if these adjustments are applied. In other words, a model M
inverse to the initial model M must be obtained.

This section discusses the control of a nonisothermal continuously
stirred tank reactor (CSTR). We will first follow it as it was originally
described by a group from the Department of Chemical Engineering at
the Universily of Pennsylvania (seec Reference 16-11).

Figure 16-6: One-hidden layer (3 x4 x
5) neural network for the prediction of
faults. The same (3 x4 x 5)
architecture is used for five second-
level networks, each predicting the
severity of the corresponding fault.

270 Fault Detection and Process Control

test vector ‘ predicted level of fault in %
fault level 0.5 1 2 3 4 total
0.5 84 4 0 o 0 88
] 9 63 13 0 0 85
1 2 0 12 75 13 0 160
3 0 0 3 73 3 749
4 0 0 0 2 85 87
o5 83 3 0 00 86 |
I 8 63 17 0 0 88
2 2 0 22 63 [0 1 96
3 0 0 3 49 18 70
4 0 0 0 16 70 86
- 0.5 98 0 o 0 0 98
1 2 77 I8 0 0 a7
3 2 0 22 67 11 0 100
3 0 } 1 59 15 15
4 0 0 0] i3 70 83
05 | o5 o 0 o0 95
1 2 74 8 0 0 84
4 2 0 10 81 3 O 94
3 0 0 3 86 0 89
! 4 0 0 0 2 92 92
7777777 05 91 0 0 00 91 |
1 0 98 0 0 0 98
5 2 0 1 8O 7 0 88
3 0 0 2 82 0 B4
_ 4 0 0 0 0 100 100
Table 16-3: Ability of the system of five networks to predict the type and level

of fault.

These authors used the back-propagation algorithm: we will show
that the counter-propagation approach can yield comparably good
results, and some additional information as well.

A first-order reversible reaction:

A <= R

occurs in the reactor, which is shown schematically in Figure 16-7.

A long, consecutive history of process data must be available in
real-world applications to set up a model M and its inverse model
M~ In the present case, a long sequence of data triplets measured at
equal time intervals ¢ is required: the concentration of the starting
material, A, the concentration of the product, R,, and the reaction

s

Figure 16-7: Nonisothermal
continuously stirred reactor. A; and R,
are the inlet concentrations of the
reactants, and T is the corresponding
temperature. A, R,, and T, are the same
variables at time r.

Modeling and Controlling a Continuously Stirred Tank Reactor (CSTR) 271

temperature, T,. These measurements should be influenced by as many
different circumstances as can possibly occur during the process, for
example, sudden fluctuations in the concentrations A or R, and/or

changes of temperature 7. 0.48 f\/\ \/\/
| \f A

For simple processes, a reliable theoretical model can be found. In

this exarople, the chemical process can be described by the following 0.46 7
equations: 0.44 -
dA, A;-A, 042 n T -
— = _klAr+k—-1Rt 0 10 20 t
dt T [min]
dR, R,-R
L S kA +k R, Figure 16-8: Changes of R, if the input
dt T temperatore 7™ randomly varies by
about 3%.
dr, T.-T
c_hiTh (16.7)
il -H{(kA +k_ R)
£
k =Be '
_E
k_, = De T

The inlet values A; and R; and the parameters in the model
Equations (16.7) have the values and units given in Table 16-4.

A, = 1moll R, = 0mol
B = 5x10%sec’! C = 35033K
D = 1x10%sec”! E = 755K
T = 60sec H = 35I1K/mol
T. = 410K

Table 16-4: Values and units of the parameters used in the system of Equations
(16.7).

The database of state variables A,, R, and T, can be calculated at
any time f by inserting the above parameters into Equations (16.7) and
integrating them.

The process can be manipulated mainly by the temperature at
which the reaction is run. Therefore, a historical database covering
many different cases can be obtained from Equations (16.7) by taking

272 Fault Detection and Process Control

any given triplet of variables A,, R, and T, and randomly changing the
temperature for the calculation of the new triplet A,,;, R,,;and T,,.

This randomly changed temperature is considered as an additional
variable T (manipulated temperature); T" specifies the temperature
at which the controller is holding the system. while 7, is the
temperature of the system if it is left to itself. (Of course, very few
reaction systems can be “left to themselves™!)

In the present case, the goal of the process is to maintain the yield
R, constant. As can be seen (and calculated from Equations (16.7))
any perturbation of the system variables will change R,; uncontrolled
change of the variables can lead to serious problems (Figure 16-8
shows the fluctuation of R, if the temperature 7 randomly varies by
about £3%).

Neural networks will be used twice in the construction of a
controlling device for the CSTR: first, to develop a model M that will
quantitatively predict the correct value of the yicld R, for any triplet
of data A,, R,and 7, and the manipulated temperature T"; and second,
to develop the inverse model M~ capable of predicting the needed
adjustment of 7" from four variables - the triplet A,, R,and 7, and the
yield R, . That is, we adjust 7™ to compensate for all changes away
from optimum conditions.

Because we are concerned with neural networks and not process
control as such, we will be satisfied with the scheme shown in Figure
16-9, in spite of its rather schematic form, The scope of this book does
not permit too many details; if you are interested in this arca, see the
literature cited in Section 16.6 (Bhai, Ungar, Himmelblau, Bulsari,
cte.).

As shown in Figure 16-9, there are four gencral steps in this
algorithm, as follows. The state variables A,, R, and T, of the process P
are measured at regular time intervals dz {(a). The model M checks the
outcomes of the process P by regular forward prediction (b). If the
controlled variable R, changes for some reason, corrective action must
be taken.

Therefore, the inverse model M~ calculates the corrections 7%
needed (c). This correction is input to the process P (d) and the actual
consequences of the correction are monitored by comparison of the
process data with the set-point data and/or with those predicted by the
model.

e \

Fol
- M r“c)AHlvR&l’T&]

- b}

el
r = P } =
| [,,'f' :
‘ Ml T
|
- @

Figure 16-9: Control of the process P
with the modet M and the controller C
(C=M"", the inverse model) shown in
four phases.

Modeling and Controlling a Continuously Stirred Tank Reactor (CSTR) 273

Back-propagation approach. Here, we will follow the work of
Watanabe et al. (see Reference 16-3). In back-propagation, two
networks must be used: first for learning the model, M, and second,
for learning its inverse model, ML, In the Watanabe approach, the
first network has an architecture of (4 x 8 x 3) and the second one
(4 x 8 x 1). Both networks are shown in Figures 16-10 and 16-11.
Setting up the model M is called forward learning, while setting up
the inverse model M~ is called inverse learning.

The most important requirement of the model M is that, at time ¢, it
predicts the future yield R, (at time ¢ + 1) as precisely as possible.
Forward learning thus requires input of A, R,, T, and T at time ¢, and
targets of A,, |, R,.|, and Ty at time 7 + 1.

The inverse learning, however, requires as input the state variables
A, R, and T, and the variables of the future process vector A,.j, Ry,
T,.1,» while the target is the manipulated temperature 7.

Of course, an input for the inverse model composed of two
complete consecutive triplets of state variables, (A, R, and 7,} and
(A, 1. Ryq. Tip) requires a larger network with more weights to
adjust, and consequently longer learning times. To keep the network
for M~! as small as possible, only the most important variable, i.e., the
controlled variable, R, from the future horizon, is retained for
learning M

Recall the discussion of the moving window concept (Sections 9.5
and 16.2). The calculation of the model M and its inverse Mlisa
typical application of the moving window leaming approach, although
the past and future horizons are only one time step long.

A database of about 400 triplets taken at 30 second intervals was
calculated using Equations (16.7) and the parameter values given in
Table 16-4. By varying the manipulated temperature T™ randomly
within 12 degrees around 410 K, a comparatively good distribution of
all possibilities is obtained. The first 200 triplets were taken as the
learning set and the rest as the test set.

Both networks were trained by standard back-propagation
equations (Section 8.7), with all inputs and outputs scaled between 0
and 1. As shown in Figure 16-12, the neural network predicts the yield
R,,1 within a few percent of the calculated values.

Theoretically, we should be able to perform a consistency check:
the inverse model M| should yield for any input X an output ¥,
which, if input to the forward model M, will produce an output ¥
exactly equal to the input X originally supplied to the inverse model

Figure 16-10: The neural network for
learning the model M.

™

Figure 16-11: The neural network for
learning the inverse prediction model,
M

274 Fault Detection and Process Control

M Unfortunately, because two networks have to be trained to
accomplish the entire controlling scheme from twe different scts of
data, a certain discrepancy is always present between them (see the
inputs and outputs of Figures 16-11 and 16-12).

Psichogios and Ungar (References 16-11) reported a discrepancy
of about 5% between the results obtained from M and M™'. In a
nonlinear controlling scheme, especially if the control needs to keep
the system very near the point of maximum yield, even a small error
has sufficiently large consequences to invalidate the above controlling
scheme.

Therefore, they suggested a altered (but more
sophisticated) controlling technique employing a delay device on the

slightly

actual value

A S

N

prediction
7 -

20 t

Imin}

Figure 16-12: Differences between the
calculated yield R; and the one
predicted by the neural network model

output of the model M. With this, they were able to use the forward
and inverse models developed by the neural networks without any

problems. For more details, consult Reference 16-11.

Counter-propagation approach. Here, we will try to solve the
CSTR problem using a counter-propagation neural network (see
Chapter 7). This example will show that counter-propagation can be
as good at modeling as the back-propagation model.

The training and test data sets used in this example are obtained by
the same set of Equations (16.7), using the same initial conditions. In
addition, the number and selection of input and output variables and
their scaling are the same as in the training and test sets employed by
Psichogios and Ungar in the back-propagation model.

The only difference between the data (training and test} used in the
two methods is that the datasets used in counter-propagation are more
than twice as large.

Counter-propagation learning can be regarded as a nonlirear
smoothing procedure; therefore, larger amounts of input data are
necessary for a given accuracy. Fortunately, in counter-propagation
learning, the total training time does not rise rapidly as a function of
dataset size. Since the number of epochs needed for training is similar
to those needed in Kohonen learning, the number of epochs needed
for stabilizing the counter-propagation network is orders of magnitude
smaller than for back-propagation learning.

The main goal of this example is to show that a counter-
propagation network trained as the forward model M can be used as
the inverse model, M_l, 100.

M.

Modeling and Controlling a Continuously Stirred Tank Reactor (CSTR) 275

The counter-propagation network selected for this example is
made up of 3000 neurons spread out in two (50 x 50) layers. The size
of the network (2500 neurons) offers enough room for 1000 training
vectors, (A, R,, T, , T™), without too many conflicts. (Because some of
the training vectors are quite similar to each other, conflicts cannot be
completely avoided.)

Remember, the trained counter-propagation network
is a lookup table in which all the multiresponse
answers are already calculated, stored in boxes, and
waiting to be retrieved.

Hence, a (50 x 50) network can handle 2500 multivariate answers.
The real problem actually is, to select the proper output neuron for the
needed answer. Figure 16-13 shows a three-dimensional lookup table.

The neurons in the first (Kohonen} layer have four weights that are
linked to the input signals, A, R, T,, T". The neurons in the second
{output) layer have three weights from which the output values, A, |,
R, and T, are recalled. The described counter-propagation
network, which has (50 x 50 x 4) + (50 x 50 x 3) = 35,000 weights, is
schematically shown in Figure 16-14.

Recall that in the counter-propagation network, the output is
obtained differently from other networks (see Chapter 7 for general
and Section 7.4 for particular explanations abeut output in this type of
network). The difference is that the output neurons in the counter-
propagation network do not calculate the answer from the weights
using the equations given in Chapter 2 ((2.9) and (2.39)); instead, the
adapted weights are the answers already. The output weights in the
counter-propagation network, wﬁ‘“, are labeled as ¢;; (Section 7.7), in
order to distinguish them from the weights wj; in the Kohonen layer.

A counter-propagation network uses supervised learning, which is
essentially a competitive or Kohonen learning with an additional
adaptation of weights, ¢;;, in the output layer to make them close to the
targets Y. As explained above, the targets in our example are the three
process variables, A, |, Ry, and T,y (¢ + 1 is the next time interval).

Learning begins in the Kohonen layer and consists of the self-
organization of the multivariate inputs exactly in the same way as
described in Chapter 6 for Kohonen learning.

Simultaneously with the self-organization going on in the
Kohonen layer, a similar self-organization is being carried out among

Figure 16-13: A three-dimensional
lookup table. By selecting two
coordinates, /° and j”, in the network’s
map, a “box” containing values of
three different variables is always
obtained.

Figure 16-14: The architecture of the
counter-propagation network used for
learning the forward model M.

276 Fault Detection and Process Control

the corresponding targets which arc input into the lower (output)
layer. The method has obtained the name “counter-propagation”
precisely because of these two “inputs” coming from two opposile
directions: the input vectors into the Kohonen layer and the targets
into the output layer.

The only difference between the two self-organization procedures
is that the winning neuron is determined only once — in the Kohonen
layer. Once the position (§°, /) of the winning neuron ¢ (“central”) in
the Kohonen layer is determined:

ont, min{ Y (x-w) 2} (16.8)

i=1

the neuron from the output layer at the same position {°, /") is
selected. The correction of the weights w; in the Kohonen layer uses
the input vector X according to the Kohonen strategy (Equation
(16.9); see also Equation (7.6)). The correction of weights Cji in the
output layer using the target ¥ is made according to Equation (16,10),
(7.7). For a more detailed explanation, see Chapter 7.

‘(rmw) _)(nld) _ _ ,(”M)
Wi = ow o +mnald, d.f)(ﬂ' Wi) (169)
{new) _(n.’d) , ‘(n.fd)
g = ¢y +1](!)a(d'{_ﬂti})[yjfw}.j) (16.10)

The learning rate n(¢)., which plays a more important role in
Kohonen learning than in back-propagation learning, is calculated
using Equation (6.5) (Chapter 6}:

t — i
N = (amax . amjn) - +a (16.11)

r —1 niin
Rux

The parameters a,,, and a,,, determinc the maximum and
minimum corrections of the central neuron (a {d, — dj) = (J} at the
beginning of tratning (¢ = 1, N(f) = a,,,,,). and at the end of training (r =
Lnae) = @), The values of a,,, . and a,,;, must be defined within
the interval 1.0 and 0.0.

The fact that the counter-propagation network is “merely” a
lookup table, able to give only a limited number of different answers,
may appear at first glance to be a serious drawback. Real models

X

Modeling and Controlling a Continuously Stirred Tank Reactor (CSTR)

giving continuous answers to different sets of input variables might
seem to be much better. However, more important than the number of
possible answers is the size of the error of these answers. If the
manipulated variable can take any value within a 5% interval around
the reference point, let us say £20 K around 400 K, this means that the
2500 answers can cover this interval in temperature steps as small as

0.016 K.

But in real applications, one temperature value can be associated
with different combinations of values of other variables, which means
that several boxes in the lookup table will have the same value of the
temperature — which means that the temperature steps could not be as
small as 0.016 K. Nevertheless, if the number of answers or the
precision associated with this approach is not sufficient for a given
application, the network can easily be enlarged.

In any case, the problem of evaluating the correct answer is
reduced to finding the box with the most appropriate answer in the

lookup table.

Because all the answers must be calculated in advance, rigorous
experimental design with a uniform distribution of all possible cases
is extremely important. This requirement was the basis for the initial
selection of the network size. Figure 16-15 shows the distribution on
the 50 x 50 map of the process vectors from the training set.

In the present example, 1000 input vectors X = (4, R, T;, T™) with
1000 targets ¥ = (A, Ry, Tpyy) were used for the forward model.
Altogether 20 epochs (i.e. 20,000 inputs) were needed for the network
to stabilize when the value of the correction function 1y(f) was:

n{H = (05-001)

20000 - ¢
20000 -t o (16.12)
Soogr—1 + 005

Learning for 20 epochs means that in the total training period:

— process vectors are input 20,000 times;

— the central neuron, ¢ = (f°, j), is found each time:

— all neurons in the corresponding neighborhood are corrected

the target process vector is input into the location {°, f) in the
output layer

the neurons in the corresponing neighborhood around the (j°, /)
location in the output layer are corrected.

277

278 Fault Detection and Process Control

® LI * * oh P o woe g oa o s P l
* i * « * *
v o + . * « * . %
. " »] 4 voe o * '
w P * * * LR B o=
+ ® o PR B * = owow v oo . +
* R s w ¥ * * ok a % ¥ "
4 + .o * - -
* * B . i - w I w o

*ow v s & W [* *
o ow F— L * ¥ «
* t2 o ow 1 w o4

- » PR w ¥ + 4
® 6w o + ' o o * > v
® f * * ks *
+ * + 4 B + . * *
O O » “ I « + *

B Y * x “

« * * T . “ o »
4 " ® 1 f

* - o ‘o « £

¥ [roa * * 4
. x 4 ® o * % . .
- aw - e e oW . * B B
« s * £ + * I
* L * * v + - *
4 v £ 4 4k * B " 4
o + * 4 i . = s ® *
* ® « * P ® [+ *
® « + + % v 4 " ¥ 4 «
® w ¥ + ¥ e - » x * M
- “ o* w » PR
. ® N * [S *on * :
* *ox vk + * .
+ + * . 2 5w ®
s + ot “ * 4 | v ¥
¥ * ¥ + B "

+ ' .o » » o ! "

* ' . . o “« W s oh ow ow “
- » w i ¥ v
v % ow * * P *

I * [* * - o o n s

¥ « . - * “ < "

v *

. EO— - « " w I

woa s w « " = ¥ P + ot 4 £ 4 =
* ok s I 1 ' *

EEE RN S

Once the counter-propagation network is trained, retrieval is
straightforward: the neuron in the Kohonen network having weights
most similar to the input variables is located; the weights of the
neuron al the same position (', 77) in the output layer contain the
dANSWCT.

The trained counter-propagation network was tested with the
thousand process vectors not used in the training; it has excellent
prediction ability for all three process variables (Table 16-5).

variable recall prediction
o o/ /1000 G o/ 1000
A L%] 0004 12 x10* 0005 Le xio?

R [%] 0.004 1.2 X107 0.005 L6 x107
T[K] 0.86 ¢.027 1.03 0.032

Table 16-5: Recall and prediction ability of the {50 x 50 x 4) + (50 x 50 x 3)
counter-propagation network.

Figure 16-15: Distribution on a (50 x
50) map of the process vectors used in
the training set. Because toroidal
mapping was not used, slightly more
objects (points) appear at the border
lines of the map.

Modeling and Controlling a Continuously Stirred Tank Reactor (CSTR)

The standard error ¢ of (.86 in the temperature prediction is
equivalent to an error of less than 1 degree Kelvin. Errors of the
means were calculated for 1000 tests; they have no particular
significance.

Each level of weights, whether in the Kohonen or in the output
layer, can be represented as a map (see Figures 7-16 and 7-17 of the
tennis example in Section 7.5), and “contoured” by drawing lines (iso-
value lines) connecting neurons having the same weight. The resulting
seven maps (four input and three output maps) of weights trained to
give the forward model M are shown in Figure 16-16.

These two-dimensional maps are very informative. For example, if
we overlay the fourth input map (7™), upon any of the other three
input maps (A,, R,and T,), it can be seen that the iso-value lines of 7"

279

Figure 16-16: The seven process
variable maps (four input and three
output) obtained by the counter-
propagation neural network. The first
three (input A, R,,), and the fourth
(input manipulated temperature, 7')
were obtained in the Kohonen layer,
while the three output maps (A, R, 1,
7.1} were obtained from the weights
in the output layer. The darker parts of
the map shows higher values.

280 Fault Detection and Process Control

cut the iso-value lines of T, approximately perpendicularly. This
confirms the assumption that our randomly selected values of T™
cover the entire variable space adequately: the selection of 7 does
not depend on the choice of either of the three other variables.

In addition, the iso-value lines of the predicted temperature T,
{seventh map, third output map) almost exactly follow the iso-lines of
the input 7" (manipulated temperature), though slightly shifted. This
shows that the control is executed exactly.

Of course, the most important single features of any of the maps
are the peaks in the R,.| map, because the entire goal is to keep the
system running with the highest possible yield of R.

The set of seven maps shown in Figure 16-16 offers a very
attractive idea, which was briefly addressed at the end of Chapter 7.
All seven maps are of exactly the same size, with apparently no
“natural” order (except that the upper four maps belong to the input
variables, while the lower three belong to the output). If, as shown in
Figure 16-17, the maps are rearranged in a different order, a new
network is obtained.

The new arrangement of maps is not just random; the maps are
divided into two groups: the first one consists of six maps representing
two consecutive process vectors, P and Py, |, i.e., (A, R, T}, Ay, Rygys
T,41): the 7™ map stands alone.

This rearranged stack of the weight maps can be regarded as
corresponding to a new network having a Kohonen layer capable of
accepting the six variables A, R,, T, A,.|. Ry, Ty as Input, and
yielding an output vector ¥ composed of the single variable 7. Thus:

A counter-propagation network for the inverse model
M~ can be obtained by rearranging the previous
forward model network, M.

That is, we have just designed a new (50 x 30 x 6) + (50 x 50 x 1)
counter-propagation network by rearranging the weight maps of
another one — without the need for any training.

The rearranged network, M™!, was tested twice: first, by predicting
1000 7™ values from the dataset on which the original network was
based; second, by predicting 1000 7™ values from a new sel of data
obtained from a set of random process vectors. Both results are given
in Table 16-6. Once again, remember that this network is a lookup
table: the input variatles are used to determine the neuron {j’, /), i.c.,

B Do

1+

2~

T

Figure 16-17: Rearrangement of
seven weighi maps of the forward

Modeling and Controlling a Continuously Stirred Tank Reactor (CSTR) 281

to determine the address of a neuron in the output layer, whose
weights are the desired answer.

variable 1% sex o et
o G/ 1000 c a/ 1000
TIK] 34 0.11 3.8 0.12

Table 16-6: Predictive ability of the inverse model obtained by rearranging the
forward one.

The prediction ability of the inverse model is worse than that of the
forward model; however, the standard errors are still below 4 K,
which means errors less than 1%. Figure 16-18 shows a few
predictions made by this inverse model.

It is surprising that such a simple lookup table, containing only
2500 answers and obtained as a byproduct of learning the forward
model, can produce results that good. According to some authors (see
Reference 16-15), even much more sophisticated and rigorous
methods fail to produce satisfactory inverse models, because they rely
on higher order derivatives, and are therefore highly sensitive to noise
and numerical errors. Hence, this achievement is at least comparable
to if not better than most of the other contemporary methods.

Of course, there are still a number of questions to be answered
before this method of obtaining the inverse model can be generally
accepted. For example: Is the obtained answer always the best
possible one? Is it possible that there is an even better answer in
another box that happens to show slightly worse agreement with the
input variables? If this is the case, how can such local minima be
found? How robust is this method?

« inverse model M~
X1 - predicted values

Figure 16-18: Comparison of test and
predicted values obtained by the
inverse counter-propagation model.

282

Fault Detection and Process Control

16.6 References and Suggested Readings

16-1.

16-2.

16-4.

16-5.

16-6.

16-7.

16-8.

16-9.

J. C. Hoskins and D. M. Himmelblau, “Artificial Neural
Network Models of Knowledge Representation in Chemical
Engineering”, Comput. Chem. Eng. 12 (1988) 881 — 890.

V. Venkatasubramanian, R. Vaidyanathan and Y. Yamamolo,
“Process Fault Detection and Diagnasis Using Neural Networks
1. Steady State Processes”, Comput. Chem. Eng. 14 (1990) 699
—-712.

3. K. Watanabe, 1. Matsuura, M. Abe, M. Kubota and D. M.

Himmelblau, “Incipient Fault Diagnosis of Chemical Process
via Artificial Neural Networks”, AIChE Journal 35 (1989) 1803
— 1812.

P. Bhagat, “An Introduction to Neural Nets”, Chem. Eng. Prog.
86 (1990) 55 — 60.

V. Venkatsubramantan and K. Chan, “A Neural Network
Methodology for Process Fault Diagnosis”, AIChE Journal 35
{1989) 1993 - 2002.

L. H. Ungar, B. A. Powel and 5. N. Kamens, Adaptive
Networks for Fault Diagnosis and Process Control”, Compur.
Chem. Eng. 14 (1990) 561 — 572,

N. Bhat and T. J. McAvoy, “Use of Neural Nets for Dynamic
Modeling and Control of Chemical Process Systems™, Comput.
Chem. Eng. 14 (1990) 573 — 583.

N. Bhat, P. A. Minderman, Jr., T. J. McAvoy and N. 5. Wang,
“Modeling Chemical Process Systems via Neural
Computation”, IEEE Control Systems Magazine (April 1990)
573 ~ 582.

J. Leonard and M. A. Kramer, “lmprovement of the Back-
Propagation Algorithm for Training Neural Networks™, Comput.
Chem. Eng. 14 (1990) 337 — 41,

16-10. A. Bulsari and H. Saxen, “Applicability of an Artificial Neural

Network as a Simulator for a Chemical Process™. Proc. 5-th
Intern. Symposium on Computer and Information Sciences,
Nevsehir, Turkey, (October 1990) 143 — 151.

16-11.B. C. Psichogios and L. H. Ungar, “Direct and Indirect Maodel

Based Control Using Artificial Neural Networks”, Ind. Eng.
Chem. Res. 30 (1991) 2564 — 2573.

References and Suggested Readings

16-12.1. R. Lang, H. T. Mayfield, M. V. Henly and P. R. Kromann,
“Pattern Recognition of Jet Fuel Chromatographic Data by
Artificial Neural Networks with Back-Propagation of Error”,
Anal. Chem. 63 {(1991) 1256 — 1261.

16-13.R. Hecht-Nielsen, “Counterpropagation Networks”, Appl
Optics 26 (1987) 4979 — 84.

16-14.D. G. Stork, “Counterpropagation Networks: Adaptive
Hierarchical Networks for Near Optimal Mappings™, Synapse
Connection 1 (1988) 9 - 17.

16-15.C. E. Economu and M. Morari, “Internal Model control. 5.
Extension to Nonlinear Systems”, Ind. Eng. Chem. Process Des.
Dev. 25 (1986) 403 - 411.

16-16.J. Zupan and M. Novic, “Counterpropagation Learning Strategy
in Neural Networks and Its Application in Chemistry”, in
Further Advances in Chemical Information, Ed.: H. Collier,
Roy. Soc. of Chem., Cambridge, UK, 1994, pp. 92 - 108.

283

