17 Secondary Structure of Proteins

learning objectives:

— fundamentals of description of protein structure in
terms of amino acid subunits, and of protein
secondary structure: o-helix, B-sheet and coil

— how to code the amino acid sequence for input into
a network

— use of the moving window scan to process the
protein chain as a series of overlapping
neighborhoods

— comparison of results from network with results of
2 traditional structure prediction method

17.1 The Problem

Polypeptides and proteins are made up of elementary building
blocks, the amino acids (a polypeptide is a short chain of amino acids;
a protein is a long chain); apart from some special cases, only 20 of
the many different amino acids occur in proteins. Figure 17-1 shows
two of these amino acids, along with their abbreviations (a three- and
a one-letter code).

These amino acids are arranged sequentially in a protein; the exact
sequence is called the primary structure. Figure 17-2 shows the
sequence of amino acids in a segment of a protein. (Amino acids in a
protein are genericaily called “residues™.)

This linear sequence folds and turns into a unique three-
dimensional structure, which contains global features that are referred
to as the secondary structure. There are three types of secondary
structures: o-helix, B-sheet, and random coil.

In an ¢-helix structure, the protein chain turns continuously in the
same direction to form a “spiral”; in a B-sheet, two or more parts of
the same chain are aligned parallel in space; the term “coil” collects
all the other more or less irregular three-dimensional arrangements of
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Figure 17-1: Two naturally occurring
amino acids, their structures and their
three- and one-letter abbreviations.
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Figure 17-2: Part of the primary
structure of the protein insulin.
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amino acids. All of these can be found in one protein. See Figure
17-3.

The secondary structure of a protein is of utmost importance to its
biological activity.

Hence, there is much interest in predicting the secondary structures
of proteins from their primary structures. The most widely used
traditional approach is the method of Chou and Fasman (see
References 17-8 and 17-9), which allows one to predict from the
amino acid sequence whether a certain amino acid is part of an -
helix, a B-sheet, or a coil structure with about 50 — 53% correctness.

In recent years, numerous papers have been published on the use
of neural networks to predict secondary structures of polypeptides
from their amino acid sequences. The pioneers in this field were Qian

Figure 17-3: Residues | to 180 of
human lymphocyte antigen A2. The
three secondary structural features of a
protein chain (ot-helix, B-sheet, and
coil} can be clearly seen. Hy, Hy, Hy
arc three a-helices; the arrows indicate
five “pleats” of a 3-sheet; all the
remaining parts of the molecule
comprise a meandering “random coil .
(Picture courtesy by Gerhard Miiller
and Horst Kessler, Org. Chem. Institut,
TU Miinchen).
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and Sejnowski. Since quite a few other research groups adopted the
essentials of their input representation, we will look at their work in
some detail (see Reference 17-1).

The basic assumption in the work of Chou and Fasman and of
Qian and Sejnowski is that the identities of an amino acid and its
neighbors determine the secondary structure of that neighborhood. A
sort of “window scan” over a whole polypeptide segment might in
principle give the secondary structure of the whole chain (Figure 17-
4).

17.2 Representation of Amino Acids as Input
Data

In order to determine the dependence of secondary structure on the
amino acid sequence, we must input the amino acid under
consideration and a certain number (in this example six) of amino
acids preceding and following it, a total of 13 amino acids. The
sequence of 13 one-letter amino acid symbols, xP™8 (original input
variable), will be referred as to the original input vector, XOrig,

Each of the 20 naturally occurring amino acids is coded as a 21-bit
string with one specific bit turned on and the others all zero; for
example, proline is represented by a 1 in position 14 of this string. The
21% position is special, and will be explained in the next section.
Because of its discrete character, each original variable, x/™# (in this
case, each amino acid label) must be represented by 21 binary or
bipolar (see Section 4.2, Equation (4.1)) variables. Such a coding
scheme is called a distributed representation (Figure 17-5).

We discussed in Section 16.2 (Equation {16.3)) the (very good)
reasons for substituting a discrete variable by a bit string containing as
many bits as the variable has discrete values. Representing an amino
acid by a sequential number running from 1 to 21 would imply that
the numbering of amino acids is a quantitative measure for the
similarity between them,; that is, if two amino acids have numbers that

Figure 17-4: Segment (window) of the
amino acid sequence thought to
influence the secondary structure of
the protein at a site centered on the
middle amino acid (here, valine, Val).
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differ by only one (e.g. 6 and 7) this would imply that these two amino
acids are more closely related than, say, numbers 6 and 20.

However, what is important in determining secondary structure is
not similarities in the structures of the amino acids, bul similarities in
their sequence order, that is, the relative position of a given amino
acid from the center of the window plays the crucial role in the
decision making, and not its structure.

(We are speaking here from an information science point of view,
not a chemical one. Of course, the substituent groups {(“R-groups”)
that distinguish one amino acid from another are primarily responsible
for protein structure — but, as a first approximation, we do net care
why the amino acids do what they do.)

Therefore, in this example the 13 original input variables x?¢ are
replaced by a 13 x 21 = 273-element binary input vector x;. This
means that the same number, 273, of units is required for input in the
network, each input unit receiving one binary value, (0 or 1).

The i-th original input variable, x/"%, tells us which
of the twenty amino acids is presently at the (7 ~ 7)-th
posttion relative to the central amino acid inthe 2 x 6
+ 1 = 13-residue-long window.

The concept of a window bracketing a certain neighborhood,
whether of a topological, sequential, or time-dependent nature, was
used in the process control examples, See Sections 9.5 and 16.2.

Input of the entire sequence of amino acids of a protein (primary
structure) is achieved by moving this window of 13 amino acids along
the entire seguence in steps of one amino acid at a time, At each of

Figure 17-5: Coding scheme for the
amino acid sequence.
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these steps the corresponding window of amino acids is input into the
network.

Special provision has to be made when the moving window is at the
beginning or end of an amine acid chain; if it extends beyond the end,
it will span fewer that the usual 13 residues (Figure 17-6).

So as not to complicate the algorithm, we will assume that there
are always 13 residues in the window; at the beginning or end of the
chain, any empty spaces will be filled with a special code called a
spacer, coded using the 21% position of the bit vector.

(This coding scheme was inspired by Sejnowski’s (very
successful) work in training a neural network, NetTalk, to derive the
pronunciation of a letter in an English word from the letters
surrounding it.)

17.3 Architecture of the Network

In the network for predicting the secondary structure of proteins,
three output neurons were used, one each for o-helix, B-sheet, and
random coil. Qian and Sejnowski tried different numbers of hidden
neurons { 0 — 80} and decided that the optimum number is forty. Thus,
the two-layer neural network has an architecture of (273 x 40 x 3},
amounting to (273 + 1) x 40 + (40 + 1) x 3 = 11,083 weights, including
those to the bias (Figure 17-7).

The training set consists of 106 proteins, having altogether 18,105
amino acid residues. Each of these is accompanied by a specification
of the kind of secondary structure it is embedded in. (A given amino
acid can be in different types of structures in different proteins, or
even in different parts of the same protein.) Another 15 proteins with a
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Figure 17-6: When the moving
window is at the end of the chain, it
has to be filled out with spacers.
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total of 3,520 amino acids and their known participation in a
secondary structure are taken as the test set. The training is a
supervised learning process performed with the back-propagation
algorithm.

17.4 Learning and Prediction

A network consisting of more than 11,000 weights is quite a large
one. Ten epochs of training with 18,000 amino acid sequences
requires about 2 billion (11 x 10° x 18 x 107 x 10) weight corrections,
Obviously, this is a major undertaking. Commercial neural-network
software is now available, and, for problems of this size, special
accelerator boards for plugging into your PC. Some of these can
accelerate the calculation by factors of 50 or more compared 1o a 33
MHz 486 computer.

The network gave 62.7% right answers on the test set. This is a
remarkable improvement over the method of Chou and Fasman,
which has a predictive ability of only 50 — 53%.

The publication of Qian and Sejnowski stirred quite some interest
among protein-structure chemists. Since then (October, 1988), a
number of papers on this subject have been published, and a number
of improvements and suggestions have been made, from enlarging the
window to learning a larger number of amino acid sequences.

In fact, the tide of scientific work has continued to rise since
publication of the first edition of this book. The work up to 1996 has
been summarized by B. Rost. An excellent overview of all aspects of
protein structure prediction has appeared by the same author in the
Encyclopedia of Computational Chemistry.

4
o-helix ¥ coil
B-sheet

Figure 17-7: Architecture of the
neural network for deriving the
secondary structures of proteins from
their amino acid sequences.
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