18 Infrared Spectrum-Structure
Correlation

Jlearning objectives:

—~ the classification of objects simultaneously into
several classes, or hierarchy of classes

— different means of spectra representation by
reduced sets of intensities, or by reduced sets of
Fourier and Hadamard coefficients,

— the possibility of using different spectrum
representations for different spectral regions (i.e.,
different functional groups)

— use of statistical methods to assist in the
interpretation of Kohonen maps

— expanding a study from a Kohonen network to a
counter-propagation network

— a mathematical transformation of the 3D structure
of a molecule into a fixed length representation

— different ways of selecting a training set

— obtaining a 3D structure from an infrared spectrum

18.1 The Problem

Previously, we have seen classification problems where an object
has to be assigned to one of several categories. Now, we will look at
an example where the object has to be assigned simultaneously to
several classes out of many possible ones.

After assigning compounds to various structure classes on the
basis of their infrared spectra, a modeling of the relationships between
structure and infrared spectra is presented that leads to the simulation
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of high quality infrared spectra. By carrying this work further it will
be demonstrated how the 3D structure of a molecule can be derived
from its infrared spectrum.

The objects of cur present example are the infrared spectra of
various compounds. The output of the neural network should be a
series of substructures that are contained in the compound whose
infrared spectrum is being investigated. Except for the immediately
preceding example (Chapter 17 - the secondary structure of proteins),
our previous examples have had rather simple neural networks with
small numbers of weights; in this application, we will meet much
larger multilayer neural networks containing 10,000 or more weights.

The eclucidation of the structure of organic compounds relies
heavily on spectroscopic methods. However, the relationships
between structure and spectral data are usually too complex to be
expressed as explicit equations. As in many complex associational
problems (medical diagnosis, for example), a series of empirical rules
has been developed. The search for structure/spectra methods can,
fortunately, build on a host of experimental data, much of which is
now available in computerized databases.

Today, along with high-resolution full-curve spectrum, the
databases also contain chemical structure coded as a connection table.
The clear (though complicated!) relationships between structure and
spectra, and the availability of large computerized datasets (50,000
spectra now, and more every year) make this field an ideal — and
important — area of application for neural networks.

The work presented in this chapter stresses the importance of
structure representation. Both, the investigations reported in Sections
18.2 - 18.3 and those in Sections 18.4 - 18.6 represent structures by a
set of functional groups. In these studies, the objective is to predict the
presence or absence of functional groups from the information
contained in an infrared spectrum. The two different studies allow a
comparison of what can be achieved with a back-propagation network
against results from a Kohonen network. On the other hand, a
representation of structures by functional groups is hopelessly
inadequate for the reverse problem, for the simulation of an infrared
spectrum over the entire frequency domain. A break-through in this
area could only be achieved by the use of a novel molecular transform
of the 3D structure. This structure representation then allowed even
the derivation of the 3D structure from the information present in an
infrared spectrum (Figure 18-1).

Figure 18-1: The problem: derivation
of substructural features from the
infrared spectrum.



The Representation of Infrared Spectra as Intensities

This chapter only deals with the application of neural networks to
structure-infrared spectrum correlations. However, work on finding
correlations between structure and data from other spectroscopic
methods like mass spectra or 13C NMR spectra with neural networks
has already been done. Some of these investigations are mentioned in
Section 18.7 (References).

18.2 The Representation of Infrared Spectra
as Intensities

Munk, Madison, and Robb, (Reference 18-1) represented infrared
spectra in the following way. As a first approach, the range of a
spectrum from 4000 — 400 cm~! was divided into 640 intervals of
width 5.6 cm™!. The transmission intensity value of one interval was
then scaled according to the equation:

x; = 1.00 - (%5 /100.0 (18.1)

where %t = % transmission

Thus the neural network would need 640 input units; but this large
number of input units caused some spurious results, and it was
reduced to 256. At the same time, they adjusted the widths of the
intervals to be narrowest at low frequencies and broadest at the high
frequency end of the spectrum (to take into account the varying
discrimination from one end of the spectrum to the other). The
formula that makes the length of the interval i dependent on the
frequency is:

i = 6.0 (frequency) °> - 120.0 (18.2)

rounded to the nearest integer. This equation assigns a frequency
interval of 10 cm ™! (from 400 — 410 cm*]) to input unit 1; on the other
end of the spectrum, it assigns a frequency interval of 20 cm™! (from
3928 — 3948 cm™!) to input unit 256. The assigned frequency interval
for each unit is then scanned for peaks; if a peak is found, its intensity
(scaled to lie between 0.000 and 1.000) is the input to this unit,
otherwise the input to the unit is zero.

The structure of the compound is described in terms of 36
functional groups (primary alcohol, phenol, tertiary amine, ester, etc.},
each represented by one output unit. Hence, the target vector is a 36-
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variate binary vector in which each 1 indicates the presence of the
associated functional group, and zero indicates its absence.

[n general, a structure can have several such functional groups, and
thus several output units might be simultaneously active. After trying
14 different networks varying from fewer than ten to more than 60
neurons in the hidden layer, 34 were found to be appropriate. Thus,
they used a neural network having just under 10,000 ((256 + 1} x 34 +
(34 + 1) x 36 = 9,998 weights. Figure 18-2 shows the network used in
this example.

18.3 The Dataset, and Learning by Back-
Propagation

If the back-propagation algorithm is used to train a large neural
network such as the one described in the previous section, we must
have a large training set. A good rule of thumb is that the number of
data values taken for training should be equal to or greater than the
number of weights to be determined in the network. Here, the dala
matrix contains about 640,000 values (2,499 spectra times 236
intensities), which is about 60 times larger than the number of
weights. An additional 416 spectra were set aside to test the prediction
ability of the trained neural network.

A relatively small learning rate 1 of 0.083 was used. One epoch of
training using the entire dataset of 2500 spectra required about 10 min
of CPU time on a VAX 3500; typically 100 epochs were needed to
stabilize the network.

The actual outputs of the network are seldom exactly zero or one.
Therefore, predicting the presence or absence of a functional group
strongly depends on where the threshold is set. For example, in this
network only 30% of the 265 primary alcohols contained in the data
set produce an output equal to 1.0. However, if the threshold is
lowered to 0.86, 50% (132) of the primary alcohols are classified
correctly. But, unfortunately, 34 compounds not having this group
produce a value higher than 0.86 on this output unit (false positives).

Any given functional group represents only a small fraction of the
entire training set; lowering the threshold value would simply
generate an excessive number of false positives.

Quite often, such false positives are not considered in the figures
of merit calculated for multicategory classifications. Therefore, they

IR spectrum

256
input
units

34
hidden
neurons

36
output
neurons

structure

Figure 18-2: The network for the
infrared spectra-structure correlation
problem.
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have to find a balance between a small percentage of reliable correct
predictions and a higher percentage of slightly less reliable ones.

To account for both correct and incorrect assignments, a reliability
index called the A350 value is taken as a measure of the reliability of
the prediction for a given functional group j:

0.5 nj

AS0 = {18.3)

0.5 nj + nwrong

where n; is the number of compounds having functional group j in the
training set, and f1,,,,,, is the number of false positives involving
group j.

NOTE: the A50 value defines the reliability of the predictions and not
the prediction ability. An A50 value of 100% would mean that at the
current threshold level for prediction, only half the objects from class
j are correctly classified, with no false positives. This means that if the
prediction is positive it is extremely reliable (Figure 18-3), but half of
the compounds having this functional group are not identified at all
(false negatives).

At a threshold value of 0.86, 132 of the 265 primary alcohols in the
training set are correctly identified, and there are 34 false positives.
This gives an A50 value of 132/(132 + 34) =79.5%. This is considered
a good reliability for predictions. Thirty out of the 36 functional
groups are determined with an equally good or better reliability.

These results, abtained with a two-layer neural network {with one
hidden layer of 34 neurons), were also compared to an earlier
investigation of the same group of authors (Reference 18-2), in which
they used only one active layer of neurons, and no hidden layer. It
turned out that the hidden layer of neurons leads to remarkable
improvements in the reliability of the predictions.

A combination of methods is often more powerful than either one
taken separately. Thus, a neural network can be incorporated into an
expert system for structure elucidation, where it could help to identify
those structures for which functional group identification can be made
with a rather high reliability. The search space for the expert system
could be narrowed to include only those compounds for which no
reliable prediction can be made by the neural network.

A further merit of this work is that even such simple
representations of the spectrum and the molecular structure lead to
practical results. This opens the door to further investigations aimed at

| 0.86

=D_—1—D_'.l=(3="-l_p
00 02 04 06 08 10
threshold vatue

Figure 18-3: Percentage of correct
classifications of primary alcohols
depending on the threshold value
(vertical line); the thin curve shows the
percentage of false positives.
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improving the representations of spectral and structural information
(See the comment by Bernhard Widrow quoted at the End of Chapter
9.

18.4 Adjustable Representation of an
Infrared Spectrum

A further refinement of the investigation discussed above is to
build a number of neural network decision modules and arrange them
mn a hierarchical manner. In this way, a wide variety of decision
possibilities can be achieved, while maintaining a short decision path.
Such a work has already been initiated by Katernan and coworkers of
the Analytical Department of the Nijmegen Catholic University (see
Reference 18-6).

The problem of priorities associated with setting up a hierarchy of
decisions was addressed in Section 9.2: how to determine which
decision or decisions to put onto the top level of the decision
hierarchy, which in the next one, etc. But another, even more
important problem is the choice of representation for each of these
decision modules.

Since the first attempts to build automated interpretation systems
for infrared spectra on the basis of the full spectral curve, all authors
have stressed the fact that different spectral regions are actually used
for each decision, so that ideally a dilferent spectral representation
should be used for each decision. The closest approach to this is
offered by a rule-based expert system, which requires a set of rules for
each structural feature in the form “if-spectral-feature then functional-
group”. Unfortunately, not all the rules necessary to interpret the
infrared spectrum have been worked out.

Although most workers are aware of the need for different
representations and have stressed it many times, a system that would
actually adapt spectral input to each decision separately has not yet
been developed.

In the following two Sections we would like to show a way that
possibly enables us to handle both problems: setting the priorities of
functional groups (i.e., their positions in the decision hierarchy), and
how to select the most suitable spectral representation for a particular
decision.

3800 intensities
linear reduction |
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Figure 18-4: The way from the full
spectral curve to areduced set of
Hadamard coefficients.
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18.5 Representing Spectra using Truncated
Sets of Fourier or Hadamard
Coefficients

We will discuss how to map spectra from a 512-dimensional
spectral space into a two-dimensional structure feature space. We will
follow the example of Novic and Zupan of the National Institute of
Chemistry in Ljubljana (see Reference 18-3). Their initial
representation of an infrared spectrum does not follow the reduction
of Equation (18.2); rather, it tries to capture the entire shape of the
spectral curve by first making a Hadamard {or Fourier) transformation
and then using as input only a truncated set (e.g., the first half or
quarter) of the coefficients (Figure 18-4).

The Fast Fourier Transformation (FFT) uses as a basis set a set of
sines and cosines of different frequencies, while the Fast Hadamard
Transformation (FHT) uses box (square wave) functions with
different frequencies (Figure 18-5). For the reduction of a
measurement space and for recovery of the original information, both
transformations have about the same merits and deficiencies (see
Reference 18-17).

Novic and Zupan preferred the Fast Hadamard Transformation
because it is 4 to 8 times faster (depending on the hardware) and
because it does not use complex coefficients (for a comparison of the
algorithms for these two fast transformations see Reference 18-4).

First, the infrared spectrum is divided into 512 intervals, in cach of
which the corresponding intensity is taken. The intervals are of two
different lengths: larger (20 cm™'} at the higher wave numbers (4000
to 2000 ¢m™') and narrower (4 cm™!) in the remaining part of the
spectrum (2000 to 352 em™ D). Applying the fast Hadamard
transformation produces 512 Hadamard coefficients; the first 64 of
these are taken as a representation of the spectrum.

This gives us: first, a considerably shorter representation (64
variables compared to 512, a factor of 8), and second, a reasonably
good reproduction of the original spectrum. Figure 18-6 shows the
same infrared spectrum after its 512 intensities are transformed with
the Fast Hadamard Transformation, then reduced, and finally
transformed back to the “original”.

The first of the two goals in this example is to find out which
functional groups are so characteristic in the infrared spectra that they

AL

Figure 18-3: A sct of square wave
(Walsh) functions used in the
Hadamard transformation.
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can be placed at the top of the decision hierarchy. First, Kohonen
maps (Section 7.6) of the 64-variale infrared spectra are made. Then,
an attempt is made to associate clusters (of spectra) with common
functional groups in the corresponding molecules.

The second goal is to obtain guidelines for the selection of the
best spectral representation for different structures. This task aims o
obtain rules (or at least some hints and suggestions) for making new
representations appropriate for infrared spectra of compounds having
one or more [unctional groups in common.

As a preliminary example, a modestlty large (I1 x 11 x 64)
Kohonen network (Figure 18-7) was trained with 150 infrared spectra
of different compounds (Table 18-1).

functional group no- of label
compounds

—O-CO- {ester} 25 E
—CO- (ketone) 21 K
-C—0-C— (ether) 17 O
—COOH facid) 15 A

(thiophene) 9 T
S\ -
ketone + cther 4 k=K+0O
ketone + thiophene 3 v=K+T
ketone + acid 2 b=K+A
ketone +  ester 2 e=K+E
cther +  ester 2 c=0+E
acid + ether 1 a=A+0

Table 18-1: Most common functional groups in the training sct, and some of the

compounds having two functional groups.

The training set contained only compounds having on¢ or two
functional groups known to have clearly distinguishable spectral
features. Table 18-1 lists some of the functional groups in the
compounds whose spectra are input to the Kohonen network.

NOTE: in this application Kohonen maps were obtained without
toroidal boundary conditions; see Section 6,2 for more details.
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Figure 18-6: Reproduction of the
same infrared spectrum from different
forms of compression, First the 512
intensitics are transformed with the
Fast Hadamard Transformation. then
reduced, and finally transformed back
to the “original”

oul,.
Xs

m

Figure 18-7; Kohonen network for
grouping infrared spectra.
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18.6 Results of Kohonen Learning

One epoch represents input of all 150 sets of 64 Hadamard
coefficients into the (11 x 11 x 64) network. Different numbers of
epochs, from 20 to 140, were tried; as a measure of how well the
network had adapted, the error produced by all 150 spectra was
calculated from all weights of the excited neuron:

150 64

2 Z ()Csr, B W:’x(‘ftedjz

s=1li=1

150

About 100 epochs are needed before the network stabilizes. Figure
18-8 shows a plot of the error at the end of training vs. the number of
epochs used. So, no essential improvement can be obtained by going
beyond 100 epochs.

In training, the learning rate constant n (Equation (6.6)) was
changed linearly, from 0.5 at the beginning to 0.1 at the end,
regardless of how many epochs were used.

After the end of training each neuron in the (11 x 11} map was
labeled with the letters for functional groups in the compound
corresponding (o the spectrum that excited it. If several spectra excite
the same neuron, all their labels are attached to its location on the
map. The labeled map is shown in Figure 18-9.

Kohonen learning did produce a map with distinct clusters of some
of the labels, which suggests that we can decide how to place the
functional groups in a decision hierarchy (of networks) by inspecting
these clusters.

The most compact clusters are esters (E) and acids (A); the other
two largest sets of compounds, ketones (K) and ethers (Q), also form
clusters, but have a few outliers; that is, a few spectra labeled “K” or
“Q” excite neurons outside (but near to} the respective clusters.

Addressing our first goal, the selection of functional groups for the
top of a decision hierarchy, E (esters) and A (acids) would seem to be
natural choices.

It is interesting to observe the locations of spectra from
compounds having twe functional groups. For example, the two
compounds labeled “k” contain both a ketone and an ether, and those
labeled “b” contain both the ketone and an acid. These compounds are

(18.4)
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For building the decision hierarchy with adjusted ’.:; 234 : g ! ;Z ISIEI
spectral representations both types of spectral 2K KKk EE eg |
regions, those of smallest and of largest similarity, 3‘ K E[LE F
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are important, S5adp K L&
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Maced between the corresponding clusiers, right on the borders where ] S b e
- . P - . |
the two clusters of the individual functional groups meet. 9 o !
. . . . . 10: T OIT T
As for our second goal, finding guidelines for representing spectra T ST
appropriate for individual functional groups, this information is stored ’ o
in the weights of the 121 neurons. s 2000 a5

The 64 weights of each neuron were obtained during training from
the truncated set of 64 Hadamard coefficients used 1o represent the
infrared spectrum. Therefore, the “adjusted” weights can be regarded
as “adjusted” Hodamard coefficients and can consequently be
transformed back with the inverse Hadamard transformation to
“adjusted” infrared specira. Figure 18-10: Top: Empty space

(The inverse Hadamard transformation of a truncated set of 64  (fcuron) which was not excited by any
ol the training spectra in the “ester”

] U ) ] ) - region. Bottom: the corresponding
ones: each intensity is repeated eight times in a row (64 x 8 = 512). adjusted spectrum stored as a weight

coefficients yields 512 intensities; however, there are only 04 different

Hence, the “adjusted” infrared spectrum has only 64 different  veclor in this neuron.
intensitics over the entire region.)

Note that these 121 adjusted spectra have now replaced the
weights of the neurons. i.e.. they can be stored in hypercolumns {as
neurons) in the Kohonen nctwork. Because the lcarning procedure
adjusts all weights in all neurons, the adjusted spectrum can be
obtained even at positions where the neuron was not excited by any
of the training spectra, i.c., from “empty spaces™ (sce Section 10.4).
One such position is marked by a small square in Figure 18-10.

Consider the group of acids (A) in Figure 18-9. The question now
is how to obtain the spectral features that contribule most to the
identification of the structural cluster marked with A's.

The spectra of compounds having a specific functional group in
common have similar spectral features in certain regions. The
hypothesis is that the adjusted spectra forming the regicn labeled “A”
are more similar to cach other than they are to the rest ol the adjusted
spectra in the network, and our goal is to find the regions where the
similarity is smallest, and those where it is largest.

The spectral region with a high degree of similarity should be
responsible for deciding whether a particular functional group is
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present, while the parts of the spectrum with lower similarities are
responsible for other decisions afterwards.

Figure 18-11 shows a comparison between one adjusted spectrum
from the left-hand side of the map (acid region) and one from the
right-hand side (ether region}.

Recall that all 121 adjusted spectra are stored as weights in 64
levels (as hypercolumns) of the (11 x 11} Kohonen network; therefore,
it is possible to inspect the maps of all weight levels.

Remember that a given level corresponds to a certain
wavelength region of the spectrum.

This is done by cutting through the Kohonen network at a certain
level (of weights), and plotting a contour map of the intensities at this
wavelength region (Figure 18-12 (a)). Figure 18-12 )b) shows the map
obtained when a cut is made across the network at weight levels 6 and
48.

Taking a closer look at all 64 contour maps, we find that some of
the contour lines in certain maps almost exactly coincide with the
borders of labeled clusters. Figure 18-13 (b) shows that on level 6 the
iso-intensity contours coincide with the cluster labeled A.

Recall that the levels correspond to different spectral regions of
“adjusted” spectra. Hence, by finding the levels having intensity
contours most similarly distributed to the cluster. of a functional
group, we will have found the most important spectral regions of this
functional group.

If a certain spectral region is highly selective for one particular
functional group then, consequently, it is less important to other
functional groups. In other words, the remaining parts of the
spectrum should play a more important role in the next steps, where
decisions about other functional groups are made.

However, visual comparison of intensity contours using the
functional group map is only a preliminary way to find the most
relevant spectral regions for a particular decision. A more unbiased
way to determine the relevant levels is to compare statistical
quantities such as means and standard deviations of weight values
{intensities) between the regions inside and outside the cluster.

First, we should determine the area on the map for which a
statistical comparison with the outside area has to be made. Figure 18-
13 (c) shows the (11 x 11) mask that identifies the “acids” region
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(ones) as distinguished from the region “outside” the acids (zcros).
This mask is applied in all 64 levels of weights, to select spectra for
calculation of the mean intensitics and their standard deviations, one
for each region. Table 18-2 gives the statistical data for intensity
distributions within and outside the “acids” region lor |8 levels.

According to statistics, levels with large differences between the
mean intensities and levels having large standard deviations of
intensities outsider the specified cluster are the most significant. That
is, Arst, a large difference between the mean intensity values inside
and outside indicates a good possibility for determining the presence
or absence of a particular functional group:; a larger mean intensity
inside the cluster than outside means that the presence (absence) of a
peak is strongly correlated with the presence (absence) of the
functional group in the compound. On the other hand. a larger mean
intensity outside the cluster than inside it would mean that the
absence of a peak is strongly correlated with the presence ol the
functional group.

At approximaltely equal values of mean intensities within and
outside the cluster, a large standard deviation outside the cluster
indicates a spectral region that is rich in information about structural
features other than the functional group specified by the cluster.

From Table 18-2 it can be seen that levels 3 to 7 (3310 — 2990 cm')
can be used for recognizing the acids because the mean intensity
inside the A region is large compared to the mean intensity outside. On
the other hand, the spectral regions represented by levels 26 to 30
(1788 to 1660 cmfl). 36039 (1468 to 1372 cm_l) which have means
of intensities and standard deviations of comparable sizes. not too
much different to each other, are quite irrelevamt for the decision
about the acid functional group.

Additional statistical caleulations and visual inspection can yield a
great deal of information about the correlation between functional
groups (represented by clusters in the Kohonen map) and spectral
regions (represented by the levels across which the Kohonen network
was cut).

With a larger Kohonen map and thousands of spectra of
compounds having a larger assortment of structures. such a study can
exlend the decision sequence to much deeper hierarchical levels.

In this short example, we have seen yet another way to exiract
information from a trained neural network. The trouble with textbook
examples, of course, is that they make it all scem so casy (1)

1Tx11

Figure [8-12: Above: if the Kohonen
network is cul across different levels,
contour plots of intensities can he
obtained. Below: these contours arc
obtained when inspecting levels & (b)
and 48 (¢) corresponding o wave
number regions 3190 =3110 and 1100
— 1068 cm™,
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level  wave no. win o/n wot o Aot
| 3470 322 1.28 1.10 1.19 2.11
2 3390 4.99 1.63 1.35 1.85 3.64
3 3310 6.46 1.58 1.28 1.91 5.18
4 3230 7.32 1.22 1.31 1.72 6.01
5 3150 7.67 .93 1.90 1.64 5.77
) 3070 7.87 0.74 2.44 1.42 5.43
7 2990 8.89 0.57 2.45 1.96 6.44
8 2910 7.95 0.67 5.39 2.40 2,56
26 1788 3.73 1.16 1.78 1.52 221
27 1756 7.23 0.86 3.86 3.15 3.37
28 1724 9.84 0.51 5.44 3.69 4.40
29 1692 8.13 1.44 4.22 2.70 391
30 1660 5.10 1.49 3.37 2.24 1.73
36 1468 4.77 1.34 5.79 1.64 -1.02
37 1276 6.53 0.87 5.97 1.57 0.56
38 1244 6.51 1.13 5.53 1.56 0.98
39 1372 53.22 1.66 5.98 1.75 -0.76
48 1084 278 1.27 4.86 2.07 0,71
49 1052 2.15 1.60 4.76 2.10 -2.61
50 1020 1.61 1.23 4.92 2.27 -3.31
51 988 1.79 0.55 3.26 1.22 —1.47
4] 66K 2,70 0.93 1.68 1.29 1.02
62 636 2.37 0.69 1.50 1.08 0.87
63 604 1.75 (.80 1.85 .06 -0.10
64 572 0.72 0.85 1.24 0.79 -(.52

Table 18-2; Means of weights, w,,, and standard deviations, &, of intensities
inside and outside the masked area (see Figure 18-13 (¢)) for some
of the levels in the (1T x 11 x 64) Kohonen network of infrared
spectra,

However, be warned that exquisite care must be taken when applying
this procedure for finding distinguishable functional groups and the
corresponding  spectral  regions relevant to  adjusting the
representation. For each node in the decision hierarchy, a new
Kohonen network, new (carefully selected) data, and a new leaming
procedure are required.
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Figurc 18-13: The resulting Kohonen
map of functional group labels (a), the
map of weights on level six (b) and the
mask (c) for sampling the intensities
from inside (ones) and outside (zeros)
the acids region A (see Figure 18-9).
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In summary, the described procedure for setting up a decision
hierarchy must be followed at each decision node. Two steps have to
be performed each time: first, on the basis of a Kohonen map. a
selection of functional groups {or the next decision must be made;
second, after the functional groups are sclected, the corresponding

spectral representations must be determined by inspecting the maps of

weights and comparing certain statistical features within and outside
the cluster regions.

18.7 A Molecular Transform of the 3D
Structure

Clearly, a representation of the structure of a molecule by a set of

functional groups, which by necessity is limited. must be insutficicnt
to model the intricate details between structure and infrared spectra.
Infrared spectroscopy monilors the vibrations of a molecule in 3D
space and a sophisticated modeling ol these relationships must take
account of the 3D structure of a molecule. As emphasized at several
places in this book, the objects of a neural networks study have to be
represented by the same number of descriptors (Figure 18-14). This
precludes the use of Cartesian coordinates for representing the 3D
structure of a molecule because, then, the number of descriptors is
directly related to the number of atoms in this molecule. The solution
to the problem came by resorting to equations used to derive the 3D
structure from an electron diffraction experiment (Figure 18-15).

The intensity, I(y), of the electron beam scattered by a molecule at
a certain angle. s, is related to the 3D structure of a molecule,
represented by the vectors, ry;, of the interatomic distances between
atoms i and j, as given by Equation (18.3):

sin (w

I (\) = Z Z [ (,1 (]85)

J=i+li= ”

In this equation, s measures the scattering angle given by
= 4qusin (0/2) /A (18.6)

with 6 being the scattering angle and A the wave length. a; and a; are
the atomic numbers of atoms in the molecule. Equation (18.5) is the
simplified form of the original ecquation obtained by assuming the
atoms o be point scatterers and the molecule to be rigid. All
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Figure 18-14: Transtforming the 30
structure of 4 molectle into a fixed-
length representation.
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Figure 18-15: An clecrron diffraction
experiment.
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instrument variables were collected into a single constant which was
setto 1.

In electron diffraction, the scattered intensity, I(s), is measured,
and the 3D structure of a molecule, given by r;;, is derived therefrom.
We, however, turned Equation (18.5) around by inputting the 3D
structure of a molecule and calculating I(s). [n addition, I(s) was
calculated only for a fixed number (e.g. 32 or 64) of discrete,
equidistant values of s,

Thus, the 3D structure was transformed into a fixed number of
descriptors. Furthermore, it is possible to use atomic properties, ;
other than atomic numbers in Equation (18.5). In most applications
for the simulation of infrared spectra we use partial atomic charges for
a; as calculated by the PEQE method. Figure 18-16 shows such a
representation of a molecule. As this molecular representation was
derived from an analysis of electron diffraction experiments, we
named it 3D-MoRSE code (3D-Molecule Representation of Structure
derived from Electron diffraction).

Clearly, such an approach requires access to the 3D coordinates of
a molecule. Although X-ray structures have been determined for
about 140,000 organic and organometallic compounds, this number is
still very small in comparison to the about 14 million known organic
compounds. In order to allow the study of the relationships between
infrared spectra and the 3D structure of molecules on a broad range, a
more universal access to the 3D structure of a molecule is required.

Fortunately, in recent years, automatic 3D structure generators
have been developed that can build a 3D model of a molecule from

Figure 18-16: The representation of
the 3D structure by the 3D-MoRSE
code,
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constitutional information embodied in a connection table. One such
automatic 3D structure generator is CORINA that has been shown to
have a broad scope by automatically converting more than 99% of a
database of over 6.5 million structures into 3D coordinates. CORINA
can be accessed on the internet

(hitp./fwww2. cocuni-erlangen.delsoftware/corina/);
see the Appendix for further details.

18.8 Learning by Counter-Propagation

The previous example in this chapter, discussed in Sections 18.5
and 18.6, has shown the merits of a Kohonen network for storing
infrared spectra of similar compounds. Similarity of structures.

however, was measured rather rudimentary, by a small number of

functional groups, only. With the structure coding developed in
section 187 we have a much more sophisticated structure
representation and are now in a position to model the relationships
between infrared spectra and structure. We must therefore use a
supervised learning technigue. In addition, we wanted to retain the
advantages of the learning lechnique embodied in a Kohonen
network. The answer is thercfore: use a counter-propagation neural
network, as this is a supervised learning method using the competitive
learning technique also contained in a Kohonen network.

Figure 18-17 shows the archilecture of the counter-propagation
network used in this study. The upper block of the network contains
the weights that are adjusted based on the intensity descriptors, I{s),
derived from the 3D structure of the molecules according to Equation
(18.5). The lower block contains the weights that are adjusted from
the infrared spectra represented as detailed in Section 18.5.

In a typical example, all mono-, di-, and tri-substituted benzene
derivatives carrying substituents with no more than eight consecutive
bonds and consisting of the atoms C, H, N, O, E, Cl, and Br were
retrieved from the Spﬁclnf0© database. This provided a data set of 871
benzene derivatives and their infrared spectra. In order to split this
data sct into a training and a test set, a planar counter-propagation
network of size 30 x 30 was trained with the entire data set. From each
of the occupied ncurons, that molecule was selected for the training
set that had a structure code most similar to the weights of this neuron.
This provided a training set of 487 molecules. All other molecules
(384) were transferred into the test set. The 3D structure of all
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Figure 18-17: Architecture of the
counter-propagation network for
learning the relationships between 312
structure and infrared spectra.
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molecules was generated by CORINA and converted into 32 intensity
coefficients according to Equation (18.5) using partial atomic charges
as calculated by the PETRA package as atom descriptors, a;. The
infrared spectrum was reported by 128 intensity values after
Hadamard transformation as described in Section 18.5.

A counter-propagation network with toroidal topology consisting
of 25 x 25 neurons was trained with these 487 molecules and their
infrared spectra.

The similarity between the experimental and the simulated
infrared spectra was measured by the correlation coefficient. Figure
18-18 gives the distribution of the correlation coefficients for the
entire training set of 487 molecules.

Clearly, the performance of this approach has to be measured by
the test set. Figure 18-19 shows the distribution of the correlation
coefficient for the entire test set of 384 compounds.

Figure 18-20 compares one of the higher quality simulated
infrared spectrum with the experimental one from the test set. The
most important result is that good correspondence can be obtained
over the entire frequency range, not only in the region of valence bond
vibrations but also in the fingerprint region. This attests to the
potential of the 3D-MoRSE code to represent the entire structure of a
molecule in its coefficients, not only parts of the structure such as
functional groups.

As with any learning procedure, the quality of prediction is
dependent on the availability of information. We have found that the
cases of predictions of poorer quality can, by and large, be attributed
to a lack of data for these types of compounds. However, all cases
with correlation coefficients of 0.7 and higher can be considered for
many applications as satisfactory.

18.9 Different Strategies for the Selection of
a Training Set

In the example given in Section 18.8, a certain group of
compounds, in this case, mono-, di-, and tri-substituted benzene
derivatives. was selected as data set to train a counter-propagation
network for the simulation of infrared spectra.

It is also possible to train a single counter-propagation network for
the simulation of infrared spectra over the entire range of organic
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Figure 18-18: Distribution of
correlation coefficients of the
experimental with the simulated
infrared spectra of the 487 molecules
of the training set of benzene
derivatives.
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chemistry.  The Speclnfo database Version 2.0 contained
approximately 15,000 infrared spectra. After elimination of duplicates
and ionic species we were left with 9,850 different structures. This
data set was split into 3,244 compounds for training a counter-
propagation network with 70 x 70 neurons, and two test scts of about
equal size.

By and large the infrared spectra simulated with this large
comprehensive neural network were quitec acceptable. Clearly,
however, the computation times for training such a huge network were
quite high and the results with smaller, dedicated networks were often
of higher quality. Thus, we rather prefer smaller networks.

In both approaches, working with a large network encompassing
the entire range of organic chemistry or when training a network for a
certain class of compounds, the training of the network can be done
once and for ail; predictions are then rather rapid, indeed.

However, it must be realized that the selection of 4 compound into
4 class of compounds might be quite arbitrary. [s the compound shown
in Figure 18-21 a quinoline derivative or a substituted furane?
(Clearly, it is both!) For such cases, we have developed an alternative
for the selection of a data set for training a network: The structure for
which an infrared spectrum should be simulated, the query structure,
determings its own training set: From the database those 50 molecules
~ and their associated infrared spectra — are selected for the training of
4 counter-propagation network, that have a structure code that is most
similar to the code of the query structure. We have found this
approach to give the most satisfactory results although in many cases.

Figure 18-20: Comparison of a
simulated with an experimental
infrared spectrum for a molecule of the
test set of beazene derivatives.
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where the definition of a class of compounds is quite clear, the
improvements are only minor.

Figure 18-21 gives the results of such a query-directed simulation
of an infrared spectrum. The disadvantage of this approach is that
each new query structure requires the training of a specific network,
one cannot work with pre-trained networks. However, with training
sets of 30 compounds the training times are quite acceptable with
about a minute on a PC.

18.10 From the Infrared Spectrum to the 3D
Structure

The architecture of Figure 18-17 shows that there is a direct
relationship between the block of weights obtained from the structure
code and the block of weights from the infrared spectra. As of now,
we have used such a counter-propagation network in a single
direction, inputting a structure code and outputting an infrared
spectrum.

However, it should be possible to also operate such a counter-
propagation network in reverse mode, inputting an infrared spectrum
and outputting a structure code (Figure 18-22). Now, remember, that
the structure code as calculated by Equation (18.5) is nothing else
than a discrete form of the c¢lectron diffraction pattern, the very
information that is used — in its full form — to derive a 3D structure
from an electron diffraction experiment. Thus, it should be possible to

Figure 18-21: Comparison of an
experimental infrared spectrum with
the simulated spectrum obtained by
the query-directed approach from a
counter-propagation network trained
with the 50 most similar structures.
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Figure 18-22: 3D structure derived
from an infrared spectrum.
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transform the structure code obtained from the counter-propagation
nelwork inte a 3D structure. In fact. we have succeeded to develop
such a method based on radial distribution functions, a structure code
quite similar to the 3D-MoRSE code (see Section 21.3). Figure 18-22
shows an example of a 3D structure directly predicted from the
infrared spectrum. This 1s the first time ever that is has become
possible to derive a 3D structure from an infrared spectrum. A
discussion of this procedure goes beyond the scope of this book. The
interested reader is referred to the original publications in journals.

The important message to carry away is that novel information can
be gained with a sophisticated structure code and a powerful learning
algorithm such as the one embodied in a counter-propagation
network,

The methods explained in Scctions 18.7 — [8.10. both for the
simulation of infrared spectra and for the derivation of the 3D
structure from an infrarcd spectrum, are made available for the
general public to use on the internet through the project TeleSpec at

http:fiwww2 cec.ani-erlangen. defresearchfir/.

Furthermore, the scientific community is invited to use and cooperale
in building a freely accessible database of infrared spectra. See the
Appendix for further details.
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