20 Libraries of Chemical
Compounds

learning objectives:

separation of structures according to  their
biological activity

— autocorrelation as a mathematical transformation
producing a fixed number of descriptors

— structure coding by autocorrelation considering
the constitution of a molecule, different atomic
properties, or molecular surface properties

— perception of similarity between chemical
structures

— unalysis of chemical structure space

— definition of similarity / dissimilarity of chemical
compounds

— analysis of diversity and similarity of large
chemical libraries

— search for new lead structures

20.1 The Problems

The development of a new drug or agrochemical presently
requires, on average, the synthesis of approximately 40,000 new
compounds, and this number is still rising. This underscores that the
search for a new drug is quite often like the search for the needle in
the haystack. On the other hand, biclogical test systems have become
available that allow the testing of many compounds in a short time.
The capacity for high-throughput screening (HTS3) puts a lot of
pressure on rapidly synthesizing many new compounds. These
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requirements have recently been met by the development of paraliel
synthesis and combinatorial chemistry that provide large collections,
so-called libraries, of chemical compounds,

When synthesizing, o testing, a library of compounds one wants
to be sure that the new library is different - dissimilar - 1o the one
previously investigaled. Furthermore, in the search for a new lead
structure, first, libraries should be synthesized that span the chemical
space as broad as posstble - arc highly diverse - in order to ensure that
the kind of compounds that show the desired biological activity are
contained in the librarics. In later stages of the search, focussed
libraries (hat center on that part of the chemical space that containg
those structures having the desired biological activity should be
investigated. Thus, questions of similarity and diversity of chemical
structures and libraries become important. Figures 20-1 and 20-2
illustrate the concept of similarity and diversity of chemical libraries.

To answer those question, an appropriate structure coding has to be
chosen, a structure coding that is somehow related to the biological
activity under investigation. We will first discuss several methods for
representing chemical structures and then investigatle the capability of
one such structure coding method to differentiate between compounds
of different biclogical activity, Furthermore, we will show that this
structure representation focusses the structures with the desired
biological activity into a restricted part of the chemical space. We will
then address questions ol similarity and diversity of targe chemical
libraries 4s met in combinatorial chemistry.

20.2 Structure Coding

The question of similarity can only be defined for a specific
purpose, in our case, biological activity: structures arc considered
similar if they carry similar biological activity. Thus, the structurc
representation has to consider those properties of a chemical structure
that are deemed o be responsible lor the biological activity under
investigation. Furthermore. the structure coding scheme must produce
the same number of descriptors, irrespective of the size of a molecule.
the number of atems in a molccule. For, any automatic learning
method such as a neural network has to have a fixed number of input
units and, therefore, requires the objects under investigation to be
represented by a predetermined, constant number ol variables.

Figure 20-1: Visualization of the
concept of diversity: The data sets on
the left-hand side are not diverse
enough to fill the entire chemical
space.

ey

Figure 20-2: Visoalization of the
concept of similarity: The data sets on
the lefi-hand side are too similar to fill
the entire chemical space.




Thus, the chemical structure has somehow to be transformed to
produce a fixed number of descriptors. In this chapter we will present
one such mathematical transformation, autocorrelation, and show how
it can consider structure information of various degrees of
sophistication, either the constitution only, or molecular surfaces.
Furthermore, we will show how various physicochemical properties
of atoms, or molecular surfaces can be introduced into the structure
coding method. Structure coding by autocorrelation has already been
used in Chapter 13. A more extensive discussion of various methods
for structure representation is contained in Chapter 21.

The idea of using autocorrelation for the transformation of the
constitution of a molecule into a fixed length representation was
introduced by Moreau and Broto. The property, p, of an atom, i, is
correlated with the same property on atom j and these products are
summed over all atom pairs having a certain number of intervening
bonds, a certain topological distance, d. An example for the definition
of a topological distance is given in Figure 20-3. This gives one
element of a topological autocorrelation function A(d):

n n-1
Ay = Y, Y 8, p(i) pl) (20.1)
J=i+li=1

with 8;; = 1 if dj; = d, otherwise §;;=0

The following properties were calculated by previously published
empirical methods contained in the program package PETRA for all
atoms of a molecule: sigma charge, g,. total charge, g, sigma-
electronegativity, Yg. pi-electronegativity, ¥, lone pair-electro-
negativity, %, »» and atom polarizability, o.

In addition to these six electronic variables, the identity function,
i.e., each atom being represented by the number 1, was used in
Equation (20.1) to only account for the connectivity of the atoms.

The autocorrelation of these variables was calculated for seven
topological distances (number of intervening bonds) from two to
eight. The basic assumption thus was that the interaction of atoms
beyond eight bonds can be neglected. Thus, the descriptor for
representing motecular structures is given by Equation (20.2)
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Figure 20-3: Definition of topological
distance, dj;, as the number of bonds
between two atoms { and j.
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Appr) = Y pDp (D) (20.2)
Lie M{n)

with Min) = {(i,)) | #bond(i j) = n}

(i) is the k-th property on atom i, and #bonds (i) is the
minimum number of bonds between atoms ¢ and j.

With seven variables and seven distances an autocorrelation vector
of dimension 49 was obtained for cach molecule, irrespective of its
size or number of atoms.

Ligands and proteins interact through molecular surfaces and
therefore, clearly, representations of molecular surfaces have to be
sought in the endeavor to understand biological activity. Again, we
are under the restriction of having to represent molecular surfaces of
different size, and, again, autocorrclation was employed to achieve
this goal.

First, a set of randomliy distributed points on the molecular surface
has to be generated. Then, all distances between the surface points are
calculated and sorted inlo preset intervals according to Equation
(20.3).

1
= — [ i ’)
Ald) - ;,- P plj) (20.3)

with d!’ < dij < [IH

where p(i) and p(jy are property values at points f and j. respectively,
d,; is the distance between the points / and j, and m is the totul number
of distances in the interval [d,.d,| represented by 4. For a scries of
distance intervals with different lower and upper bounds. Jy and d,, a
vector of autocorrclation coefticients is obtained. 1t is a condensed
representation of the distribution of the properly on the molecular
surface. This coding was also used in the cxample contained in
Sections 13.6 — 13.%.

20.3 Separation of Benzodiazepine and
Dopamine Agonists

In order to investigate the potential of topological autocorrelation
functions for the distinction of biological activity, a data set ol 112
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dopamine agonists (DPA) and 60 benzodiazepine agonists (BDA) was
studied. A Kohonen network of size 10 x 7 was used to project these
172 compounds from the 49-dimensional space spanned by these
autocorrelation vectors into two dimensions. The results are shown in
Figure 20-4.

It can be seen that the two types of compounds, DPA and BDA, are
nearly completely separated in the Kohonen map, underscoring the
potential of this molecular representation to model biological activity.

20.4 Finding Active Compounds in a Large
Set of Inactive Compounds

To put this potential for comparing data sets of compounds and
clustering of compounds with a desired biological activity to a more
stringent test, this data set of 112 DPA and 60 BDA compounds was
mixed with the entire catalog of a chemical supplier consisting of
8,323 commercially available compounds comprising a wide range of
structures from alkanes to triphenyimethane dyestuffs.

The map of Figure 20-5 shows that both sets of compounds, DPA
and BDA, occupy only limited areas in the overall map. Furthermore,
the areas of DPA and BDA are quite well separated from each other,
only one neuron with BDA, intrudes into the domain of DPA and only
two neurons have conflicts, obtaining both DPA and BDA. Clearly,
the areas of neurons with DPA and BDA are larger than one probably
has hoped them to be. For, with the results obtained here the search for
new active compounds or new lead structures in a data set of
compounds of unknown activity will have to scan a fairly large area
and, correspondingly, quite a few compounds. However, compared to
the overall size of the network, the areas where DPA and BDA are to
be found are distinctly smaller and quite concentrated. Closer analysis
of the mapping shows interesting insights that are further discussed in
the original publication.

The six electronic factors and the connectivity of a molecule, their
encoding into topological autocorrelation vectors and their projection
into a two-dimensional map by the self-organizing capability of a
Kohonen network provide a powerful means for the detection of
similarity in the structure of organic molecules. Dopamine agonists
can be separated from benzodiazepine receptor agonists and this
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Figure 20-4: Kohonen map of size

10 x 7 neurons obtained for the data
set of 112 dopamine (black) and 60
benzodiazepine agonists (light gray).
The separation of the two types of
biologically active molecules is nearly
complete.
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Figure 20-5: Kohonen map of 40 x 30
neurons obtained by training with 112
dopamine (DPA), 60 benzodiazepine
agonists (BDA), and 8,323
commercially available compounds.
Only the type of compounds mapped
into the individual neurons is
indicated. Black identifies DPA, light
gray BDA, and dark gray the
compounds of unknown activity.
Empty neurons are shown in white; the
two neurons marked by a black frame
indicate conflicts where both DPA and
BDA are mapped into the same
newuron.
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separation is maintained when these two types of compounds are
embedded in a larger set of structures,

This opens the way for searching for compounds with a desired
biological activity and for discovering new lead structures in large
databases of compounds,

Furthermore, this approach can be used for the comparison of
libraries of compounds in order to decide whether a commercially
offered compound library is distinctly dilferent from the inhouse
compound collection.

20.5 Diversity and Similarity of
Combinatorial Libraries

The merit of the autocorrelation of molecular surface properties
such as the molecular electrostatic potential for the classification and
the modeling of biological activity has already becn shown in Scction
13.6. Here, we will show how this structure representation can be used
for the analysis of large combinatorial librarics.

The methods introduced in the previous sections have the
advantage that they allow for a rapid visualization of high-
dimensional descriptor spaces. The importance of this feature has
increased with the advent of the large compound collections that can
be generated by combinatorial chemistry and related techniques:
small data sets comprising tens or hundreds of compounds can he
analyzed using almost any method without reaching the limits of
currently available computer hardware. Special technigues, however,
are needed for the handling of data sets of hundreds of thousands of
compounds. To demonstrale the merits of Kohonen networks and
spatial autocorrelation descriptors in handling large data sets, we
analyzed three combinatorial libraries that together comprise more
than 87,000 compounds.

Rebek et al. published the synthesis of two combinatorial libraries
of semi-rigid compounds that were prepared by condensing a rigid
central molecule functionalized by four acid cfiforide groups with a
sct of 19 different L-amino acids. This process is summarized in
Figure 20-6. In addition to the two published libraries we included a
third, hypothetical library with adamantane as central molecule into
our study.
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Figure 20-6: Prepuration of the
xanthene and the cubene libraries by
reaction of four acid chloride
substituents on these skeletons with
four {identical or ditferent) amiino
acidy from a set of 19 amino acids.
The more symmetric cubane skeleton
gives less compounds.
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A Kohonen network with 50 x 50 neurons was trained with the
combined descriptors of the xanthene and the cubane libraries, each
molecule represented by 12 autocorrelation values calculated from the
electrostatic potential on the molecular surface by equation 20.3. The
resulting map is shown in Figure 20-7. The neurons are colored
according to the most frequent central molecule that is mapped into
them. All 2,500 neurons of the map are occupied. The compounds of
the cubane library form a cluster in the center of the map that is
separated from the compounds of the xanthene library. The neural
network can clearly separate the two libraries quite well - they both
cover different parts of chemical space - only 3 per cent of the neurons
obtain both xunthene and cubane derivatives. Consequently, they are
remarkably different and, thus, both worthwhile to be considered in a
screening program.

In a second experiment we trained the same network with the
combined data set of the three libraries of xanthene, cubane and
adamantane compounds. This resulted in the Kohonen map shown in
Figure 20-8. Again, a distinct cluster that is clearly separated from the
xanthene derivatives can be seen in the center of the map. The cubane
and adamantane derivatives, on the other hand, cannot be
distinguished by the neural network. They are tightly mixed in the
central cluster, even more than can be inferred from Figure 20-8 as
88% of the cubane and adamantane compounds are mapped into
COmMmon neurons.

The cubane and adamaniane libraries, thus, cover the same part of
the chemical space - they are so similar to each other that considering
both of them in a screening program is a waste of resources and time.
The xanthene library is evidently different from the other two libraries
so that the xanthene and one of the cubane or adamantane libraries
should be used for screening.

20.6 Deconvolution of Xanthene Sublibraries

Rebek et al. used their libraries to screen for novel irypsin
inhibitors. Only the xanthene library showed significant frypsin
inhibition, so that they concentrated further efforts on this library. In
the next round of screening they divided the xanthene library into six
sublibraries by using subsets of only 15 amine acids for the
generation cf the libraries. These subsets were generated by omitting
three amino acids in turn from a set of 18 amino acids (Figure 20-9).

Figure 20-7: Kohonen map obtained
from the two librarics of 65,341
xanthene derivatives and the 11,191
cubane compounds. The area into
which the xanthene derivatives arc
mapped is colored grey whercas the
arca into which the cubane derivatives
are mapped is colored black.
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Figure 20-8: Kohonen map obtained
from three libraries of 65,341
xanthene, 11,191 cubane and 11,191
adamantane derivatives. The center
cluster shows the area into which the
cubane {colored black) and
adamantane {colored dark grey)
compounds are mapped.
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| alkyl-1 || alkyl-2 basic - -OH/-8  aromatic  acidic
- GLY LEU ARG SER PHE GLU
ALA ILE LYS THR TYR ASP
VAL PRO HIS MET TRP ASN
central building block sublibrary
{dimethylxanthene) 25,425 compounds

This process resulted in six sublibraries cach with 25,425 compounds.
that were tested for their trypsin inhibition,

To study the diversity of the six sublibraries we first trained a
network with the complete xanthene data set resulting in a map with
all neurons occupied. Then. each one of the sublibrarics was sent
through this templale network of the complete library, altogether
giving six maps, one each tor cach sublibrary. In these maps, we then
marked, for ecach sublibrary, only those neurons containing
compounds of the respective sublibrary.

The six maps are reproduced in Figure 20-10. They show
remarkable differences: some of them are nearly completely filled,
some of them exhibit large white areas representing neurons that no
compound was mapped into. The larger these white areas are, the less
the corresponding sublibrary covers the chemical space of the original
xanthene library. For example, the omission of the basic or acidic
amine acids has led to a decrcased diversity as shown by the large
number of empty neurons., On the other hand. the omission of the
larger alkyl umino acids or the -OH and -8- substituted amino acids
from the xanthene library does not lead to a remarkable decrease in
diversity as there are only small white areas in the corresponding
maps.

Figure 20-%: Building six sublibraries
by reacting 15 amino acids with
dimethylxanthene having four acid
chioride group (see Figure 20-6). The
three aming acids that are omitled in
the present case are shown in a double
Irame. Each one of the six sublibraries
containg 25,425 compounds.
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amino acids alkyl (small)

alkyl (large)
omitted ’ . -

Bl

map of
sublibrary

unoccupied 205
neurons

amino acids -OH, -§- aromatic
omitted

map of
sublibrary

unoccupied 46
neurons

On the basis of these Kohonen maps of such sublibraries,
strategies for the deconvolution of combinatorial libraries can be
developed.

Clearly, these statements about diversity are valid only within the
chosen structure representation, i.e., on the basis of the molecular
electrostatic  potential. However, for compounds containing
aminoacids the molecular electrostatic potential is an important factor
influencing biological activity.

Figure 20-10: Kohonen maps of the
six sublibraries built according to
Figure 20-9 using the Kehonen
network of the complete xanthene
derivatives library as a template.
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