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Editor's Note 

Physics is an experimental science since i t  
studies the fundamental laws of nature by direct 
experimentation. The experimenter asks ques- 
tions of nature in any experimental work, but 
only correctly formulated questions are answered. 
This means that unless a physical experiment is 
set up correctly, the experimenter will not get 
the desired results. An experimenter's skill, 
therefore, depends on his ability to formulate 
experiments correctly. The experimental physics 
is a fascinating science, which enables us to 
understand, explain and, sometimes, even discov- 
er new phenomena in nature. The first step in 
becoming an accomplished physicist is mastering 
of the techniques of physical experimentation. 

Modern experimental physics uses very soph- 
isticated and expensive apparatus, housed, for 
the most part, in large research institutes and 
laboratories where many of the readers of this 
book may one day conduct their own original 
research. Until then, however, the engaging 
experiments described in this book can be per- 
formed right at home. Most of the experiments 
included here were first published separately in 
the journal Kvant. 

Just as "a picture is worth a thousand words", 
an experiment once performed is worth a th~u.-  
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sand descriptions of one. I t  is recommended, 
therefore, that  readers perform the experiments 
described themselves. The means for this are 
readily available, and i t  should soon become 
obvious tha t  experimentation is a captivating 
pastime. The experiments presented here need 

I not be confining; they may be varied and expand- 
I ed, providing, in  this way, an opportunity for 
I real scientific investigation. 

The book is dedicated to Georgii Ivanovich KO- 
I 
I sourov, one of the founding fathers of Kuant. 
I Kosourov, who edited the experimental section 

of the  journal in  i ts  first year of publication, 
has contributed several very interesting articles 
to  this collection. Among the other authors 
of this book are a number of famous physicists, 
as well as young researchers just beginning their 
careers. We  hope this book will fascinate not 
only students already interested in physics who 

I intend to make i t  their lifework but also the  
friends to whom they demonstrate the experi- 
ments in a laboratory made right at  home. 

A Demons tratjon of Weightlessness 
by A .  Dozorov 

The weightless s tate is achieved in free flight. 
A satellite in orbit, a free falling stone, and a 
man during a jump are all  in  a s tate of weight- 
lessness. A weight suspended from a string weighs 
nothing in a free fall and, therefore, does not 
pull on the string. I t  is easy to make a device that  
will let you "observe" weightlessness. 

Figure 1 depicts such a device schematically. 
In  i ts  'normal' state, weight G pulls the string 

Fig. 1 Fig. 2 

aut, and elastic plate EP bends, breaking the 
ontact between terminals K1 and K2 of the  
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circuit. Naturally, lamp L, connected to the 
circuit, does not light up in this case. If the 
entire device is tossed into the air, however, 
weight G becomes weightless and does not tighten 
the string. The elastic plate straightens out and 
the terminals connect, which switches on the 
lamp. The lamp is lit only when the device is in 

l a weightless state. Note that this state is achieved 
both when the device is thrown up and as it 
returns to the ground. 

The adjustment screw S makes i t  possible to  
I 

place the terminals so that  they have a small 
clearance when the device is stationary. The 
device is fastened to the inside of a transparent 
box, as shown in Fig. 2 .  

A little practical advice about construction. 
In  order to provide for the use of a large-cell 
(flat) battery or a small one-cell battery, reserve 
space for the larger battery. Access to the battery 
compartment should be facilitated since battery 

I may have to be replaced frequently. The battery 
can be secured to the outer surface of the device, 
and two holes for connecting wires should be 
provided in the casing. 

Any thin elastic metal strip can be used as an 
elastic plate, even one half of a safety razor 
blade (after fastening the blade to the stand, you 
will see where to co lnect the string for the weight). 

The design can be simplified further, if the 
adjustment screw and terminal K 1  are combined 
and the plate functions as terminal K 2  (Fig. 3 ) .  
Figure 4 shows a design that has no adjustment 
screw at all. If you think a little, you can 
probably come up with an  even simples 
design. 

A Demonstration of Weightlessness 

Fig. 3 

,' Fig. 4 



A Cartesian Diver 
b y  A .  Vilenkin 

A toy ship made of paper will float easily, but 
if the paper gets soaked, the ship sinks. When 
the paper is dry, i t  traps air between i ts  bell 
and the surface of the water. If the bell gets 
soaked and begins to disintegrate, the air escapes 
the bell and the ship sinks. But is i t  possible 
to make a ship whose bell alternately keeps or 
releases air, making the ship float or sink as we 
wish? I t  is, indeed. The great French scholar and 
philosopher Ren6 Descartes was the first to make 
such a toy, now commonly called the 'Cartesian 
Diver' (from Cartesius, the Latin spelling of 
Descartes). Descartes* toy resembles our paper 
ship except that the 'Diver' compresses and 
expands the air instead of letting i t  in and out. 

A design of the 'Diver' is shown in Fig. 5. 
Take a milk bottle, a small medicine bottle and 
a rubber balloon (the balloon will have to be 
spoiled). Fill the milk bottle with water almost 
to i ts  neck. Then lower the medicine bottle into 
the water, neck down. Tilt the medicine bottle 
slightly to  let some of the water in. The amount 
of water inside the smaller bottle should be regu- 
lated so that the bottle floats on the surface and 
a slight push makes it sink (a straw can be used 
to blow air into the bottle while it is underwater). 
Once the medicine bottle is floating properly, 
seal the milk bottle with a piece of rubber cut 
from the balloon and fastened to the bottle with 
a thread wound around the neck. 

Press down the piece of rubber, and the 'Diver' 
will sink. Release i t ,  and the 'Diver' will rise, 
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This is becruse the air inside the milk bottle is 
compressed when the piece of rubber is pushed 
in. The pressure forces water into the medicine 

( -  --J 
Fig. 5 

bottle, which becomes heavier and sinks. As 
soon as the pressure is released, the air in the 
medicine bottle forces the extra water out, and 
the 'Diver' floats up. 

An Automatic Siphon 
by V .  Mayer and N.  Nazarov 

Most of you probably studied the workings of 
Ihe siphon, the simplest device for pumping 
liquids, while still in grade school. The famous 
American physicist Robert Wood is said to  have 
begun his scientific career when still a boy with 
just such a siphon. This is  how W. Seabrook 
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described that first experiment in his book about 
Robert Wood. He wrote that there was an eleva- 
tion over a foot high around a puddle, and every- 
body knew that  water would not flow uphill. Rob 
laid a hose on the ground and told one of the boys 
to seal its end with his finger. Then he started 
filling the hose with water until i t  was full. 
Already a born demonstrator at  that age, Rob, 
instead of leaving his end of the hose on the 
ground, let i t  dangle over .a high fence which 
separated the road from the ditch. Water flowed 
through the siphon. This was apparently Wood's 
first public scientific victory. 

The conventional siphon is so simple that  
almost no improvement in i ts  design seems 
possible. Perhaps its only disadvantage is that  
i t  is necessary to force the air from bends in the 
siphon prior to operation. Yet even this problem 
was solved, thanks to human ingenuity. Once 
inventors had understood the shortcoming in the 
design, they removed i t  by the simplest possible 
means! 

To make an automatic siphon*, you will need 
a glass tube whose length is about 60 cm and 
whose inner diameter is 3-4 mm. Bend the tube 
over a flame so that i t  has two sections, one of 
which is about 25 cm long (Fig. 6). Carefully 

33-35 mm from its end with the edge of a needle 
cut a small hole (I) in the shorter arm about 

file (wet the file first), The area of the hole should 
not be more than 0.5-1 mm2. Take a ping-pong 

and make a small hole in i t  which is then 
reamed with the file untiI the tube can be pushed 

the ball and is held there tightly. push the 

Fig. Flg. 7 

the hole until its end nearly touches 
side of the ball Opposite the hole (Fig. 6). 

he tube should fit tightly in  the opening. If the This version of the automatic siphon, invented by 
Ie is  too large, 611 the gap with plssticine. S.D. Platonov, was described in Zavodskaya Laboratoriw, 

4 ,  No. 6 (1935) (in Russian). ke another hole (2) close to the end of l h e  tube 
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inside the ball. Its initial diameter should be 
about I mm. 

Quickly lower the arm of the siphon with the 
ball at the end into a glass of water. The tube 
will fill almost immediately with a rising col- 
umn of water broken by a series of air bubbles. 
When the water reaches the bend, it will move 
down the second arm of the siphon (Fig. 7). 
and in a few moments a continuous stream of 
water will begin to flow from the end of the tube! 

If the experiment is unsuccessful at first, simply 
adjust the siphon slightly. The correct operation 
of the automatic siphon depends on the appro- 
priate choice of diameters of the holes in the 
tube and the ball. Faulty positioning of the 
glass tube and the ball or an inadequate seal 
between the tube and the ball may also spoil the 
siphon operation. The second hole in the ball 
can be gradually enlarged with a needle file to 
improve the performance of the siphon. As soon 
as the siphon is operating satisfactorily, glue 
the ball to the tube. 

How does the automatic siphon work? Look at 
Fig. 6 again. When the ball is lowered into the 
glass, water floods simultaneously into opening 2 
and into the open end of the glass tube. Water 
rises in the tube at a faster rate than in the ball. 
The water rising to opening I in the wall of t h ~  
tube seals the tube. As the ball floods with water 
the air pressure inside i t  rises. When equilibriurr 
is reached, a small air bubble is forced througf 
the opening I. The bubble cuts off a small col 
umn of water and carries i t  upward. The wate 
that follows reseals opening I, and the compressec 
air forces another air bubble into the tube, cut 

'Vortex Rings 
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ting off another portion of water. Thus, the 
section of tube with the ball has an airiwater 
mixture whose density is lower than that of 
water. Under hydrostatic pressure this mixture 
rises to the bend and flows down the second arm 
of the tube. When the ball is completely filled 
with water, pressure creates a continuous flow 
of water and the siphon begins to operate. 

EXERCISES 

1.LShow experimentally that water floods the ball a t  a 
slower rate than the tube. Explain why. 
2. To be certain that the explanation of the operation of 
the siphon is correct, replace the opaque ball with a 
small glass bottle with a rubber stopper. The design of 
 he setup with the bottle should be an exact replica of 
the original. The glass tube should go through the rubber 
stopper. Since the bottle is transparent, you will be able 
to see the aidwater mixture formin in the tube. 3. Determine whether the rise of t%e column of water 
depends on the water depth of the ball. 
4. Make an automatic siphon by replacing the glass tube 
with a rubber hose. 

Vortex Rings 
by R. W. Wood 

In the course of some experiments preparatory 
to a lecture on vortex rings I have introduced 
certain modifications which may be of interest 
to teachers and students of science. 

The classic vortex-box is too well known to 
require much description. Our apparatus, which 
is rather larger than those in common use, is 
a pine box measuring about a metre each way, 

Nature, February 28, 1901, pp. 418-420. 
2-01544 
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with a circular hole 25 cms in diameter in one 
end. Two pieces of heavy rubber tubing are 
stretched diagonally across the opposite or open 
end, which is then covered with black enamel 
cloth tacked on rather loosely. The object of the 
rubber chords is to give the recoil necessary after 
the expulsion of a ring to prepare the box for 
a second discharge. Such a box will project air 
vortices of great power, the slap of the ring 

Fig. 8 

against the brick wall of the lecture hal l  being 
distinctly aridihle resembling the sound of a flip 
with a towel. An audience can be given a vivid 
idea of the quasi-rigidity of a fluid in rotation by 
projecting these invisible rings in rapid succes- 
sion into the auditorium, the impact of the 
ring on the face reminding one of a blow with 
a compact tuft of cotton. 

a 
For rendering rings visible I have found that by 

far the  best results can he obtained by conducting 
ammonia and hydrochloric acid gases into the 
box through rubber tubes leading to two flask? 
i n  &-hioh NH,OH and HCl are boiling. Photo- 
graphs of large rings made in this way are repro- 
duced in Fig. 8, the side view being particular13 
interesting, showing the comet-like tail  former 
by the  stripping off of the outer portions of tht 

ring by atmospheric friction as i t  moves forward. 
The power of the air-rings can be shown by 

directing them against a flat pasteboard box, 
stood on end at  some distance from the vortex 
apparatus, the box being at  once overturned or 
even driven off on to the floor. A large cluster 
of burning gas jets can be extinguished by the 
impact of a ring. 

For showing the elasticity of the rings by 
bouncing one off the other, I find that the best 
plan is to drive two in  rapid succession from the 
box, the second being projected with a slightly 
greater velocity than the first, all  experiments 
(,hat I have made with twin boxes having yielded 
i~nsatisfactory results. 

Though the large vortices obtained with an  
apparatus of this description are most suitable 
for lecture purposes, I find that much more 
beautiful and symmetrical rings can be made 
with tobacco smoke blown from a paper or glass 
tube about 2.5 cm in  diameter. I t  is necessary to 
practice a lit t le to learn just the nature and 
strength of the most suitable puff. Rings blown 
in this way in  s t i l l  air near a lamp or in  full 
sunlight, when viewed laterally, show the spiral 
stream lines in  a most beautiful manner. I have 
succeeded in photographing one of these rings 
in the following way. An instantaneous drop 
shutter was fitted to the door of a dark room and 
an arclamp focussed on its aperture by means of 
a large concave mirror. The shutter was a simple 
affair, merely an aluminium slide operated with 
iln elastic band, giving an exposure of 11300 of 
il second. A photographic plate was set on edge 
in  the dark room in  such a position that i t  would 

2* 
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be illuminated by the divergent beam coming 
from the image of the arc when the shutter was 
opened. A ruby lamp was placed in front of the 
sensitive film. As soon as a good ring, symm trical 
in  form and not moving too fast, was seen to be 
in  front of the plate, a string leading to  the shut- 

I ter was pulled and the plate illuminated with a I 

dazzling flash. The ring casts a perfectly sharp 
shadow owing to the small size and distance of 

the source of light; the resulting picture is repro- 1 

duced i n  Fig. 9. The ring is seen to consist of 
l a layer of smoke and a Layer of transparent air,  I 

wound up in  a spiral of a dozen or more complete 
I turns. 

The angular velocity of rotation appears tc 
increase as the core of the ring is approached 
the inner portions being screened from friction 
if we may use the term, by the rotating layer: 
surrounding them. This can be very nicely show1 
by differentiating the core, forming an air ring 
with a smoke core. If we make a small vortex bol 
with a hole, say 2 cm i n  diameter, fill i t  wit1 
smoke and push very gently against the dia 
phragm, a fat ring emerges which rotates in  a ver: 
lazy fashion, to all  appearances. If,  however, w 
clear the air of smoke, pour in  a few drops o 
ammonia and brush a l i t t le  a strong HCl aroun 
the lower part of the aperture, the smoke form 
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in a thin layer around the under side of the hole. 
Giving the same gentle push on the diaphragm, 
we find that  the smoke goes to  the core, the  rest of 
lhe ring being invisible, the visible part of the 
vortex spinning with a surprisingly high velocity. 
Considerable knack is required to  form these 
lhin cressent-like vortices, the best results being 

C'ig. 10 Fig. 11 

~ ~ s ~ r a l l y  attained after quite a number of attempts 
have been made. A drawing of one of these 
smoke-cores is shown in Fig. 10. The actual size 
of the vortex being indicated by  dotted lines, 
i l  is instructive as showing that  the air which 
grazes the edge of the aperture goes to  the core 
of the ring. The experiment does not work very 
well on a large scale, though I have had some 
success by volatilising sal ammoniac around the 
lipper edge of the aperture by means of a zig-zag 
iron wire heated by a current. 

By taking proper precautions we can locate 
[,he smoke elsewhere, forming a perfect half-ring, 

is shown iu Fig. 11, illqstrating in  a strikiog 
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manner that the existence of the  ring depends in 
no way on the presence of the  smoke. The best 
way to form these half-rings is to breathe smoke 
very gently into a paper tube allowing i t  to flow 
along the bottom, until the end is reached, when 
a ring is expelled by a gentle puff. A large test 
tube with a hole blown in the bottom is perhaps 
preferable, since t,he condition of things inside 
can be ~ a t c h e d .  I t  is easy enough to get a ring, 
one half of which is wholly invisible, the smoke 
ending abruptly at  a sharply defined edge, as 
shown in Fig. 11, requires a good deal of practice. 
I have tried fully half-a-dozen different schemes 
for getting these half-rings on a large scale, but 
no one of them gave reslilts worth mentioning. 
The hot wire with the sal ammoniac seemed to be 
the  most promising method, but I was unable to 
get the sharp cut edge which is the most striking 
feature of the small rings blown from a tube. 

In  accounting for the formation of vortex 
rings, the rotary motion is often ascribed to 
friction between Lhe issuing air-jet and the edge 
of the aperture. I t  is, however, friction with the 
exterior air that is for the most part responsible 
for the  vortices. To illustrate this point I have 
devised a vortex box in which friction with the 
edge of tlie aperture is eliminated, or rather 
compensated, by making i t  equal over the entire 
cross-section of the issuing jet. 

The bottom of a cylindrical t in  box is drilled 
with some 200 small holes, each about 1.7 mm 
in diameter. If the box be filled with smoke and 
a sharp puff of air delivered at  the open end, 
a beautiful vortex ring will be thrown off from 
the culleiider surface (Fig. 12). We  may even 
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cover the end of a paper tube with a piece of linen 
cloth, tightly stretched, and blow smoke rings 
with it .  

In experimenting with a box provided with 
two circular apertures I have observed the fusion 
of two rings moving side by side into a single 
large ring. If the rings have a high velocity of 
rotation they will bounce apart,  but if they are 

0 Fig. 12 

sluggish they will unite. At the moment of union 
the form of the vortex is very unstable, being 
an extreme case of the vibrating elliptical ring. 
[ t  at  once springs from a horizontal dumb-bell 
irlto a vertical dumb-bell, so rapidly that the eye 
can scarcely follow the change, and then slowly 
oscillates into the circular form. Thissamephenom- 
cnon can be shown with two paper tubes held in  
opposite corners of the mouth and nearly parallel 
to each other. The air in the room must be as 
still as possible in either case. 

On Vortex Rings 
hy  S. Shabaizov and V .  Shubiit 

Formation of the Vortex Rings 

To study vortex rings in the air under labora- 
tory conditions, we used the apparatus designed 

b .  i 
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by Professor Tait (Fig. 23). One end of this cyIin- 
der, the  membrane, is covered with a flexible 
material such as leather. The other end, the 
diaphragm, has a circular opening. Two flasks, 
one containing hydrochloric acid (HCI), the other 
ammonium hydroxide (NH,OH), are placed in 
the box, where they produce a thick fog (smoke) 
of ammonium chloride particles INI-1 &I). By 

Membrane . Diaphragm 

I 

II Fig. 13 Fig. 14 

tapping the  membrane, we impart a certain veloc- 
i ty  to  the smoke layer close to  it .  As this layer 
moves forward, i t  compresses~the next layer, 
which, in turn,  compresses the layer following~it, 
in a chain reaction tha t  reaches the  diaphragm 
where smoke escapes through the opening and 
sets formerly still air in  motion. Viscous friction 
against t he  edge of the  opening twists the smoky 
air into a vortex ring. 

The edge of the opening is not the main factor 
in  the  formation of the vortex ring, however. 
We  can prove this by fitting a sieve over the  
opening i~ the Tait's apparatus. If the edge were 
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important, many small vortex rings would form. 
Yet they do not. Even with a sieve, we still  
observe a single, large vortex ring (Fig. 14). 

If the  membrane is substituted by a plunger 
that is set t o  motion, a continuous smoke jet will 
appear on the edge of the opening instead of 
vortex rings. I t  is essential t o  provide for the 

Vig. i6 Fig. 16 

intermittent outflows of smoke through The 
r~pening. 

Vortex rings can be produced in water using 
~ r l  ordinary pipette and ink. Let a few drops of 
ink fall from a height of 2-3 centimetres into an 
i q ~ ~ a r i u m  with very still  water, which has no 
:onvection flows. The formation of the ink rings 
will be very obvious in the clear water (Fig. 15). 

The set up can be changed slightly: the stream 
)fllink can be released from a pipette submerged 
n water (Fig. 16). The vortex rings obtained 
n this case are larger. 

Vortex rings in  water form similarly to those 
n the air,  and the  behaviour of the  ink in water 
q qimilar to that  of smoke in  the  air. In both 
ases viscous friction plays a vital role. Experi- 
nents show tha t  the analogy is  complete only 
P the first moments after the fp~matios of the 
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vortex, however. As i t  develops further, the vor- 
tex behaves differently i n  water and the  air. I 
Movement of the Environment 
Around the Vortex Rings 

What  happens to the environment when a vor- 
tex forms? We can answer this question with I 
the right experiments. 

Place a lighted candle 2-3 metres 'away from 
the Tait apparatus. Now direct a smoke ring SO I 

Fig. 17 

tha t  i t  passes the candle but misses the fla 
narrowly. The flame will either go out or flic 
violently, proving that  the movement of t h  
vortex involves not only the visible part of t h  
ring, but also adjacent layers of the air. 

How do these layers move? Take two pie 
of cloth, and soak one in hydrochloric acid, 
the other in ammonia solution. Hang them 
about 10-15 centimetres apart. The space betw 
thein will immediately be filled with sm 
(ammoniam chloride vapour). Now shoot a smo 
ring from the apparat~ls  into the vapour clo 
As the ring passes through the clood, the 
expands while the clolld starts moving circul 
From this we can conclude that  the air clo 
th: vortex . . .  ring , is ... circulating (Fig. 17). 

A similar experiment can be set up in water. 
Put a drop of ink in a glass full of water that  has 
been stirred slowly and continues to circulate. 
Let the water get still. You will see ink fibres 
in the water. Now put ink ring into the glass. 
When this ring passes close to the fibres, they 
twist. 

Vortex Rings in Water 

We decided to study the behaviour of vortices 
in water further. We know that  a drop of ink 

-- -- ' 
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Fig. 18 

placed into an aquarium from a height of 2-3 cen- 
l imetres will form an ink vortex ring. This ring 
soon develops into several new rings, which, in  
I lrrn, break into other smaller rings, and so on to 
form a beautiful "temple" i n  the aqnarir~m 
(Fig. 18). 
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W e  found that  the division of the initial ring 
into secondary rings was preceded by expansions 
in the large ring itself. How this can be explained? 
Since the environment through which the ink 
ring moves is nonuniform, some of i ts  parts move 
faster than others, some lag behind. The ink 
(which is heavier than water) tends to collect 
in the faster sections, where it forms swelling 
due to surface tension. These swellings give birth 
t o  new droplets. Each droplet on the initial 
vortex behaves independently, eventually produc- 
ing a new vortex ring in a cycle that  repeats 
several times. Interestingly, we could not deter- 
mine any regularity in  this cycle: the number of 
rings in  the "fourth generation" was different 
in each of ten experiments. 

W e  also found tha t  vortex rings require "liv- 
ing" space. W e  tested this by placing pipes of 
different diameters in  the path of rings in  water. 
When the diameter of the pipe was slightly larger 
than that  of the ring, the ring disintegrated 
after entering the pipe, to produce a new ring 
with a smaller diameter. When the diameter of 
the pipe was four times larger than the ring 
diameter, the ring passed through the pipe with- 
out obstruction. In  this case the vortex is not 
affected by external factors. 

Smoke Ring Scattering 
W e  conducted several experiments t o  study 

interaction between the smoke ring and thc 
opening of different diameter. W e  also studied 
the relationship between the ring and a surfacc 
a t  various angles. (We called these experiment: 
scattering tests.) 
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Consider a ring hitting a diaphragm whose 
aperture is smaller than the ring. Let us examine 
lwo cases. First, the ring may collide with the 
diaphragm when the forward motion velocity of 
the ring is perpendicular to the diaphragm plane 
and the centre of the ring passes through the 
rentre of the diaphragm. Collision, on the other 
hand, may be off-centre if the centre of the ring 
does not align with the centre of the diaphragm. 
In the first case, the ring scatters when i t  hi ts  

1,110 diaphragm, and a new ring with a smaller 
~Iiclmeterformson the other side of the diaphragm. 
'l'l~is smaller ring forms just as i t  woilld in  the 
'Fait apparatus: the air that  moves around the 
original ring passes through the aperture and 
ontrains the smoke of the scattered vortex with it .  
A similar situation can be observed when a ring 
collides centrally with an aperture of equal or 
somewhat larger diameter. The effect of an off- 
c:ontre collision is even more interesting: the 
r~uwly formed vortex emerges a t  an angle to the 
original direction of the motion (Fig. 19). Try to 
~rxplain why. 

Now let us consider an interaction of the ring 
with a surface. Experiments show that if the 
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surface is perpendicular to the velocity of the 
ring, the  ring spreads without losing its shape. 
This can be explained as follows. When the air 
stream inside the ring hits the surface, i t  produces 
a zone of elevated pressure, which forces the 
ring to expand uniformly. If the surface is at  
a slant relative to the original direction, the 
vortex recoils when colliding with i t  (Fig. 20) .  
This phenomenorl can be explained as the  effect 

1 1 ,  of elevated pressure in  the space between the ring 
1 1 "  

, ) '  

and the surf ace. 

Interaction of Rings 

The experiments with interacting rings wer 
undoubtedly the most interesting. W e  conductel 
these experiments with rings in  water and in  t h  
air. 

If we place a drop of ink into water from 
height of 1-2 cm and, a second later, let anothc 
drop fall from 2-3 cm, two vortices moving a 
different velocities will form. The second dro 
will move faster than the first (u, greater than ul 
When the rings reach the same depth, they begi 
to interact with each other in one of three possib 
ways. The second ring may overtake the  fir: 
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one without touching i t  (Fig. 21a) .  I n  this situa- 
lion the water currents generated by the rings 
rcpel one another. Sorile of the ink from the first 
ring flows over to the second ring because the 
rrlore intensive currents in  the second ring pull 
Ihe ink with them. Occasionally, some of this  

I;ig. 21 

i ~ r k  passes through the second ring and forms 
1 1  new, smaller ring. The rings then begin to  
I)roitk down, and the process contin~ies as we 
ol)served earlier. 

'l'l~e second ring may, on the other hand, touch 
I l ~ o  first while overtaking i t  (Fig. 21b) .  As a result, 
llrc more intensive flows of the second ring 
~loslroy the first one. Normally, new smaller 
vortices emerge from the remaining ink cluster 
ol' I.he first ring. 

I'inally, the rings may collide centrally (Fig. 
Z lc ) ,  in which case the second ring passes 
tlrrough the first and shrinks, whereas the first 



ring expands. As before, this is a result of 
Tornado Models 

e of the most awesome and 
a in nature. I ts  power is so 

ost nothing can withstand its force. 
adoes able to carry heavy objects 
siderable distances? How do they 

science has yet to answer these 
ions completely. 

d a t e  a tornado in the labo- 
the following two experimental 
make a water model of a tornado 

even at home. 
1. Solder a brass-or tin-plate disc about 40 mm 

in diameter and 0.5-1 mm thick to the shaft of 

I 

8 micromotor like those commonly used in toy 
~nachines. The disc must be exactly perpendicular 

I 10 the shaft to ensure that the disc will run true. 
I inera1 oil to seal the bearings of 

contact studs and the soldered 
them should be protected with 

ine cake about 5 mm thick to 
ass (or jar) about 9 cm in dia- 
high. Attach the micromotor 
earance between the lower end 
e plasticine cake. The wires 
r should be fastened to the 
ass with adhesive or plasti- 
e setup ready for operation. 

move closer. water. Then pour in a layer 
cm thick. When the wires 
are connected to a flashlight. 



battery, the disc begins rotating and causes the 
liquid i n  the glass t o  circulate. This circulation 
disturbs the surface between the water and oil, 
and a cone filled with the oil soon forms. The 
cone grows until  it touches the disc, which then 
breaks the oil into drops, turning the  liquid 
turbid. After the micromotor is shut off, the oil 

drops return to  the surface where they refa 
a continuous layer. The experiment can then 
repeated. 

Figures 24a and 24b show photographs of 
formation of the air cone. W e  modified the 
periment slightly here by filling the glass w 
water only. 

2. An even more convincing model of a tor 
db-can be constructed by soldering a piece 
capper wire (or a knitting needle) about 25 
in  liength and 2 mm in diameter to the shafl 
a 'micromotor. Solder a rectangular brass or 
plate about 0.5 X 10 X 25 mm in size a t  r i  

ringles to the wire (Fig. 25a). Switch on the motor 
i o  check the operation of this stirrer. If necessary, 
slraighten its extended shaft (the wire) t o  mini- 
r~lize wobbling. 

Lower the stirrer vertically into a glass of wa- 
I,or 15-20 cm in  diameter and 25-30 cm high. 
Switch on the motor. A cone will grow gradually 

)n]lhe water surface to form a tornado that  ex- 
,n~lds to the rotating plate (Fig. 25b, c, d). As 
Iln tornado touches the plate, many air bubbles 
Ippc?ar, signifying a vortex around the plate. If 
~ O I I  hold the motor in your hand, the tornado 
  ill behave very much like a living creature. 
Yo11 can spend hours watching its "predatory" 
1lrrge.s. 

(hnt inue  the experiment by placing a wooden 
,loc:k on the water surface. The block will be 
~~~okocl  in by the tornado. Try to  adjust the rota- 
io11 speed of the stirrer so that  the block remains 
rlltlerwater at  the same depth for a long time. 
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The tornado iwill! suck) in bodies: lying! jon:jtl 
bottom of the glass before the stirrer is switchc 
on i f  their density is greater than that of wat 
(which is not true of the wooden block).: 

Align the shaft of the motor with the axis 
the glass. You will see a cone moving down tl 
shaft and air bubbles which mark its continu 
tion under the plate (Fig. 25c). If you place sox 
well washed river sand on the bottom of t 

glass, you will be able to  observe the structure 
of the tornado under the plate. 

These experiments show that tornadoes are 
nlways caused by a vortex in a liquid or gas. 

The Aerodynamics of Boomerangs * 
hy Felix Hess 

Imagine throwing a piece of wood into the air, 
making it fly around in a large circle and having 
it come to rest gently at your feet. Preposterous! 
Yet of course this is exactly what a boomerang 
does, provided that i t  has the right shape and is 
thrown properly. 

;As is well known, boomerangs originated among 
t.ho aboriginal inhabitants of Australia. Although 
boomerang-like objects have been found in other 
pnrts of the world as well (in Egypt and India, 
for instance), these objects are not able to return, 
ns far as I know. The reader may be a IittIe 
tlisnppointed to learn that most Australian 
boomerangs also do not return. Australian boom- 
ornngs can be roughly divided into two types: 
wnr boomerangs and return boomerangs. Those 
of the first type are, as their name implies, made 
11s weapons for fighting and hunting. A good war 
boomerang can fly much farther than an ordinary 
I,l~rown stick, but i t  does not return. Return 
I)oomerangs, which exist in much smaller num- 
hers, are used almost exclusively for play. 

Actually things are not quite as simple as 
Ishis. There are many kinds of aboriginal weapons 
- 

An abridged version of an article that first appeared 
111 the November issue of Scientific American for 1968. 
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in Australia, a number of which look like boome 
angs, so that  the distinction between boomeran 
and throwing or striking clubs is not a sharp o 
Neither is the distinction between war boomer 
angs and return boomerangs. The shape of boom 
erangs can differ from tribe to  tribe (Fig. 26) 

Whether a given boomerang belongs to th  
return type or not cannot always be inferr 
easily from its appearance. Return boomeran 
however, are usually less massive and have a 1 
obtuse angle between their two arms. A typi  
return boomerang may be between 25 and 75 
timeters long, 3 to 5 centimeters wide 
0.5 to 1.3 cm thick. The angle between the 
may vary from 80 to  140 degrees. The w 
may be as much as 300 grams. 

The characteristic banana-like shape of mo 
boomerangs has hardly anything to  do with t h  
ability to  return. Boomerangs shaped like t h  
letters X ,  V, S, T, R ,  H, Y (and probab 
other letters of the alphabet) can be made 
return quite well. The essential thing is the cr 
section of the arms, which should be more conv 
on one side than on the other, like the wi 
profile of an airplane (see Fig. 27). I t  is only f 
reasons of stability that  the overall shape of 
boomerang must lie more or less in a plane. T h  
if you make a boomerdng out of one piece 
natural wood, a smoothly curved shape followi 
the grain of the wood is perhaps the most obvi 
choice. If you use other materials, such 
plywood, plastics or metals, there are consi 
rably more possibilities. 

How does one throw a return boomerang? 
a rule i t  is taken with the right hand by one 

Pig. 28 
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its extremities and held vertically upward, the 
more convex, or upper, side to the left. There are 
two possibilities: either the free extremity points 
forward-as is the practice among the Austra- 
lians-or it points backward. The choice depends 
entirely on one's personal preference. Next, the 

Fig. 27 

right arm is brought behind the shorilder and 
the boomerang is thrown forward in a horizontal 
or slightly upward direction. For successful 
throwing, two things are important. First, the 
plane of the boomerang a t  the moment of its 
release should be nearly vertical or somewhat 
inclined to the right, but certainly not horizontal. 
Second, the boomerang should be given a rapid 
rotation. This is accomplished by stopping the 
throwing motion of the right arm abruptly just 
before the release. Because of its inertia the 
boomerang will rotate momentarily around a 
point situated in the thrower's right hand. Hence 
i t  will acquire a forward velocity and a rotation- 
al velocity a t  the same time. 

At first the boomerang just seems to  fly away, 
but soon i ts  path curves to  the left and often 
upward. Then it may describe a wide, more or 
less circular loop and come down somewhere near 
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the thrower's feet, or describe a second loop 
before dropping to the ground. Sometimes the 
second loop curves to the right, so that the path 
as a whole has the shape of a figure eight (Fig. 28). 
I t  is a splendid sight if the boomerang,l 'quite 
near again after describing"a,\loop, losesrlspeed, 

Fig. 28 

hovers some 3 meters above your head for a while 
and then slowly descends like a helicopter. 

Every boomerang has its own characteristics 
with respect to  ease of throwing, shape of path 
and hovering ability. Moreover, one boomerang 
can often describe very different orbits depending 
on the way i t  is thrown. The precision of return 
depends to a large extent on the skill of the 
thrower, who must take into account such factors 
as the influence of wind. The greatest distance 
during a flight may be 40 meters, but i t  can also 
be much less or perhaps twice as much; the 



42 Felix Hess 

highest point can be as high as 15  meters above 
the ground or as low as 1.5 meters. I have heard 
that  with modern boomerangs of Australian make 
distances of more than 100 meters can be attained, 
still  followed by a perfect return, but I regret 
t o  say that  so far 1 have not been able to make a 
boomerang go beyond about 50 meters. 

I n  the foregoing general description i t  was 
tacitly assumed that  the thrower was right- 
handed and used a "right-handed" boomerang. 
If one were to look at  an ordinary right-handed 
boomerang from i ts  convex side while i t  was in  
flight, i ts  direction of rotation would be counter- 
clockwise. Hence one can speak of the leading 
edge and the trailing edge of each boomerang 
arm. Both the leading and the  trailing edges of an 
aboriginal boomerang are more or less sharp. 
The leading edge of a modern boomerang arm is 
blunt, like the leading edge of an airplane wing. 
Sometimes the arms have a slight twist, so that  
their leading edges are raised a t  the ends. 

The entire phenomenon must of course be 
explained i n  terms of the interaction of the 
boomerang with the air; in a vacuum even a boo- 
merang would describe nothing but a parabola. 
This interaction, however, is difficult to calculate 
exactly because of the complicated nature of the 
problem. Let us nonetheless look a t  the matter 
in a simple way. 

If one throws a boomerang in a horizontal 
direction, with i ts  plane of rotation vertical, 
each boomerang arm will "wing" the air. Because 
of the special profile of the  arms the air will 
exert a force on them directed from the flatter, 
or lower, side to the  more canvex, or upper, side 
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(Fig. 29). This force is the  same as the  lifting 
force exerted on the wings of an  airplane. In  
a right-handed throw the force will be directed 
from the right to the left as  viewed by the thrower. 

- V e l o c ~ t y  ( v )  

Fig. 29 Fig. 30 

This force alone, however, is  not sufficient t o  
make a boomerang curve to  the  left. 

Following one boomerang arm during its mo- 
tion, one can see that  its velocity with respect 
t o  the  air is  not constant. When the  arm points 
upward, the forward velocity of the  boomerang 
adds to the velocity due to the rotation; when i t  
points downward, the two velocities are in oppo- 
site directions, so that the resultant speed will 
be smaller or even vanish at  some points (see 
Fig. 30). Thus on the average the boomerang 
experiences not only a force from the right t o  the 
left but also a torque acting around a horizontal 
axis, which tends to cant the boomerang with 
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its upper part to the left. Actually this turning 
over will not be observed because the boomerang 
is spinning rapidly and hence behaves like : 
gyroscope. 

Now, a gyroscope (which really is nothing more 
than a rapidly spinning flywheel) has the property 
that, when a torque is exerted on it, i t  does not 
give way to that torque but changes its orienta- 
tion around an axis that is perpendicular to both 
the axis of rotation and,the axis of the exerted 
torque; in the case of a boomerang the orienta- 
tion turns to the left. This motion is called 
precession. Thus the boomerang changes its 
orientation to the left, so that its plane would 
make a gradually increasing angle to  its path 
were it not for the rapidly increasing forces that 
try to direct the path parallel to the boomerang 
plane again. The result is that the path curves 
to the left, the angle between boomerang plane 
and path being kept very small. 

In  actuaI practice one often sees that, although 
the plane of the boomerang is nearly vertical a t  
the start of the flight, it is approximately hori- 
zontal at the end. In other words, the plane of the 
boomerang slowly turns over with its upper part 
to the right; the boomerang in effect "lies down". 
Let us now consider the question in more detail. 

Because much is known about the aerodynamic 
forces on airfoils (airplane wings), it  is conve- 
nient to regard each boomerang arm as an airfoil. 
Looking a t  one such wing, we see that it moves 
forward and a t  the same time rotates around 
the boomerang's center of mass. We explicitly 
assume that there is no motion perpendicular 
to the plane of the boomerang. With a cross 
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boomerang (as] with the rotor of a helicopter) 
the center of mass lies a t  the intersection of the 
wings, but this is not the case with an ordinary 
boomerang. Here one arm precedes the center of 
mass, whereas the other arm follows it. We call 
both arms "eccentric", the eccentricity being the 
distance from the arm to the center of mass. 
A preceding arm has a positive eccentricity, a 
following arm a negative eccentricity. A fixed 
point of a wing feels an airstream that changes 
continuously in magnitude and direction with 
respect to that part of the wing. Sometimes the 
airstream may even blow against the trailing 
edge of the wing profile, which can easily be 
imagined if  one thinks of a slowly rotating 
boomerang with high forward velocity and looks 
at the arm pointing downward. What are the 
forces on an airfoil moving in this special man- 
ner? 

Let us first look at a simpler case: an airfoil 
moving in a straight line with a constant veloci- 
ty v with respect to the air (Fig. 31). I t  is cus- 
tomary to resolve the aerodynamic force into two 
components: the lift L (perpendicular to v) and 
the drag D (opposite to v). These are both pro- 
portional to v2. If the spanwise direction of the 
wing is not perpendicular to the velocity, v has 
a component parallel to the wing that has no 
influence; therefore we replace v by i ts  component 
perpendicular to the wing, or the "effective 
velocity" Veff .  In  this case the forces are pro- 
portional to (V,ff)2. 
,Looking at the boomerang arm again, i t  is 
clear that oach point on the arm takes part in the 
boomerang's forward velocity v. The velocity 
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with respect to  the air due to the rotation, how- 
ever, is  different for each point. For a rotational 
velocity o and a point a t  a distance r from the 
axis of rotation (which passes through the  boo- 
merang's center of mass), this velocity is or. 
For each point on the arm one can reduce the 
velocities u and wr to  one resultant velocity. 
I ts  component perpendicular to the arm is  Veff 

Fig. 31 Fig. 32 

(Fig. 32). Of course, the va111e of Veff for a partic- 
ular point on the arm will change continuously 
during one period of revolution. One assumes 
tha t  the contributions to  the lift and drag of 
each part of a boomerang arm at each moment 
are again proportional to (Vefr)'. 

CalcnIat~ions were made of the following forces 
and torques, averaged over one period of revolu- 
tion: the average lift force L; the average torque 
T, with i ts  components TI around an axis paral- 
1 1 1 1  to a (which makes the boomerang turn to  the 
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left) and T, around an  axis perpendicular to  v 
(which makes the boomerang "lie down") (Fig. 33); 
the average drag D, which slows down the forward 
velocity v, and the average drag torque TD,  
which slows down the rotational velocity o. 
I t  turns out that  none of these quantities except 
T, depends on the  eccentricity for boomerang 

Fig. 33 Fig. 34 

arms tha t  are otherwise identical; T, is exactly 
proportional to the eccentricity. 

The forces and torques acting on a boomerang 
as a whole are obtained by adding their values 
for each of i ts  arms. The contributions to T, 
by arms with opposite eccentricity may partly or 
completely cancel each other. -- ~ o w  we come to the important question: How 
does a boomerang move under the influence of 
these aerodynamic forces and torques (and of the 
force of gravity, of course)? As mentioned earlier. 
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the average torque T causes the gyroscopic pre- 
cession of a boomerang. Let us take a closer look 
a t  the gyroscope. If a gyroscope spins around i ts  
axis with a rotational velocity o and one exerts 
a torque T on i t ,  acting around an axis perpendic- 
ular t o  the spin axis, the  gyroscope precesses 
around an axis perpendicular to  both the spin 
axis and the torque axis (Fig. 34). The angular 
velocity of the  precession is called 51. A very 
simple connection exists between 51, a, T and 
the gyroscope's moment of inertia I ,  namely 
51 = T1I.o. W e  have seen that  for a boomerang 
T is proportional t o  ov, so that  the velocity of 
precession 51 must be proportional to wvllo, 
or vlI. Hence the velocity of precession does 
not depend on a, the rotational velocity of the 
boomerang. 

An even more striking conclusion can be drawn. 
The velocity of precession is proportional to vlI, 
the factor of proportionality depending on tho 
exact shape of the boomerang. Therefore one can 
write 51 = cv, with c a cllaracteristic parameter 
for a certain boomerang. Now let the boomerang 
have a velocity twice as fast; i t  then changes the 
orientation of its plane twice as fast. That im- 
plies,',however, that  the boomerang flies through 
the same curve! 

Thus, roughly speaking, the diameter of a 
boomerang's orbit depends neither on the rota- 
tional velocity of the boomerang nor on i ts  
forward velocity. This means tha t  a boomerang 
has its path diameter more or less built in. 

The dimensions of a boomerang's flight path 
are proportional to the moment of inertia of the 
boomerang, and they are smaller i f  the profile of 

the arms gives more lift. Therefore if one wants 
a boomerang to describe a small orbit (for instance 
in a room), i t  should be made out of light 
material. For very large orbits a heavy boomerang 
is needed with a profile giving not much lift 
(and of course as little drag as possible). 

Now one has everything needed to form the 
equations of motion for a theoretical boomerang. 
These equations can be solved numerically on a 
computer, giving velocity, orientation and posi- 
tion of the boomerang a t  each instant. 

How do these calculated paths compare with 
real boomerang flights? For an  objective compari- 
son i t  would be necessary to record the position 
01 a boomerang during its flight. This could be 
done by means of two cameras. I n  order to 
control the initial conditions, a boomerang- 
throwing machine would be necessary. As yet 
I have had no opportunity to do such experi- 
ments, but I did manage to record one projection 
of experimental boomerang paths with a single 
camera. I n  the wing t ip of a boomerang a tiny 
electric lamp was mounted, fed by two small 
1.5-volt cells connected in  series, placed in  
a hollow in  the central part of the boomerang 
(see Fig. 35). I n  this way the boomerang was 
made to carry during i ts  flight a light source 
strong enough to be photographed a t  night. 
Some of the  paths recorded in  this manner are 
shown in  Fig. 36; calculated orbits are added for 
comparison in Fig. 37. 

Because the camera was not very far from the 
thrower, those parts of the trajectories where the 
boomerang was close to the camera appear exag- 
gerated in  the photographs. This effect of perspec- I 
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hy G.  I .  Pokrovsky 

Fig. 35 

Fill a standard test tube with water, and, 
holding it a few cenlimeters above the table top, 

tive was taken into accourlt i n  the accompanying 
calculated paths. The reader may decide for 
himself whether or not he finds the agreement 
between theory and experiment satisfactory. At 
any rate, the general appearance and peculiari- 
ties of real boomerang paths are reproduced 
reasonably well by this theory. 

A Hydrodynamic Mechanism 
in a Falling Test Tube 

Fig. 38 

let i t  drop vertically (see Fig. 38). The surface 
of the table should be sufficiently hard to produce 
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an elastic impact. During impact, the meniscus 
of the water in the test tube, which is normally 
concave because of capillary force, will rapidly 
level out, and a thin stream of water will sud- 
denly burst lipward from the centre. Figure 38 
shows the water surface before impact (broken 
line) and after impact (solid line). The stream 
upward separates into drops, and the uppermost 
drop reaches a height substantiaIly higher than 
that  from which the tube is dropped. This indi- 
cates that  the energy in the water is redistributed 
during impact so that  a small fraction of water 
close to the centre of the meniscus shoots out of 
the tube at  high velocity. 

A device that  redistributes energy is called 
a mechanism. Usually, this word is applied to 
solid parts (levers, toothed wheels, stc.), al- 
though there are liquid and even gaseous mech- 
anisms. The water in  the tube is just one example 
of such a mechanism. 

Hydrodynamic mechanisms are especially im- 
portant when very great forces that cannot be 
withstood by conventional solid parts are in- 
volved. The force of explosive material in  a 
cartridge, for example, can be partially concen- 
trated by  making a concave cavity in the cart- 
ridge, which is lined with a metal sheet. The force 
of the explosion compresses the metal and pro- 
duces a thin metallic jet whose velocity (if the 
shape of the lining is correct) may reach the 
escape velocity of a rocket. 

Thus, this modest experiment on a very simple 
phenomenon i n  a test tube relates to  one of the 
most interesting problems of the hydrodynamics 
of ultra high speeds. 
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An Instructive Experiment 
with a Cumulative Jet 

by V .  Mayer 

I n  Professor (2.1. Pokrovsky's simple and 
elegant experiment on the hydrodynamics in a 
test tube, a tube partially filled with water is 
dropped from a few centimetres above a hard 
surface, thus producing a jet of water from the 
tube upon impact. Since the water at  the edges 
clings slightly to the glass of the tube, the me- 
niscus is concave. Upon impact the tube and 
the water in i t  stop sharply, which causes the 
water to  accelerate rapidly. Tlie water behaves 
as if it  were very heavy and its surface levels 
out. The water around the edges resides, and 
a thin jet of water gushes out from the center of 
the tube for a short time. 

You can set up a similar, perhaps even more 
striking experiment. Carefully cut off the bottom 
of a test tube to make a glass pipe 15 mm in  
diameter and about 100 mm long. Seal the fluted 
end of the pipe with a piece of rubber cut from 
a toy balloon. Fill the pipe with water and, 
covering the open end with your finger, lower 
that  end into a glass of water. Remove your finger 
and adjust the pipe so that about a centimetre of 
water is left inside the pipe. The water inside 
the pipe should be level with the water snrface 
in  the glass. Fix the pipe vertically to a support. 
Now slightly tap the piece of rubber stretched 
over the pipe. A cumulative jet of water will 
immediately rise inside the pipe and reach the 
piece of rubber itself, 
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Figures 39 and 40 show drawings of photo- 
graphs taken a t  different moments during this 
experiment. They depict different stages of the 
formation and disintegration of various cumula- 
tive jets. The top two pictures show the jet 
proper; the bottom two depict the break-up of 
t he  jet into individual drops. 

Try to explain the results of this experiment 
by  comparing i t  with the one described by 
Pokrovsky. This setup is especially interesting 
because i t  allows us to observe the actual forma- 
tion of a cumulative jet, which is more difficult 
in the experiment with a falling test tube be- 
cause the human eye is not fast enough to  register 
the phenomena that  take place during impact. 
Nevertheless, we advise you to return to the 
experiment with the falling tuhe once more 
to examine the details of the formation of the 
jet. With this in  mind wc suggest you solve the 
following problems. 

EXERCISES 

i. Determine whether the shape of the test tube bot- 
tom affects stream formation. Does the stream develop 
because the bottom directs the shock wave in the water? 
To answer this question, solder a tin bottom of any 
shape (plane or concave, for example) to a thin-wall 
copper pipe. Use theee modified test tubes in the exper- 
iments described above to prove that the shape of the 
bottom does not influence the formation of the stream. 
Thus, the results of this experiment cannot be explained 
as the direction of the wave by the bottom. 
2. Determine wliet,her i t  is necessary for the liquid 
to wet the walls of the test tuhe. Place a small piece of 
paraffin inside a glass test tube, and melt the paraffin 
over the flame of a dry fuel. Rotate the tuhe over the 
flame to coat the inside with a thin paraffin film. Now, 
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Fig. 39 

Fig. 4 
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repeat the Pokrovsky experiment with this coated test 
tube. The cumulative jet should not form, which means 
that the walls of the tube must be wet for the experiment 
to work properly. 
3. What other experiments can be set up to obtain 
a climulative jet in a tube that is stationary relative 
to the observer? 

Magic with Physics 

b y  V .  Mayer and E. Mamaeva 

Take a glass pipe, one end of which is tapered 
like that of a pipette, and show the pipe to your 
audience. Hold a glass of water (heated to 80- 
90 "C) by i t s  rim in  your other hand, and show 
i t  to your audience, too. Now, lower the tapered 
end of the pipe into the glass, and let the pipe 
fill with water. Close the upper end of the pipe 
with vour finger and remove the  ~ i p e  from the 

A - 
glass " ( ~ i ~ .  41). 

Your audience will be able to see air bubbles 
appear at  the lower end of the  pipe. They grow, 
leave the walls of the pipe, and rise to the top 
of the pipe. But  the water stays in  the pipe! 
Now, empty the pipe back into the glass by 
removing your finger from the  upper end, and 
wave the pipe i n  the air several times before 
taking some more water. Close the lipper end 
with your finger again, and quickly pull the pipe 
out of the glass and turn i t  upside down (Fig. 42). 
A strong stream of water over a metre high will 
burst out of the pipe. 

Although the secret of this trick is very simple 
indeed, your audience is tinlikely to guess it, 
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Fig. 41 

Fig. 42 

The glass contains water heated to 80-90 O C  

whereas the  pipe is room temperature (about 
20 "C). You should be able to explain why no 
water leaves the pipe at first without any hints. 
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The explanation for the powerful stream of 
water is more complicated. When hot water 
enters the pipe from the glass, the air in  the upper 
part of the pipe remains a t  room temperature 
because the pipe conducts heat poorly. After you 
have closed the upper opening and turned the 
pipe upside down, the hot water streams down- 
ward, heating the air quickly. The pressure rises, 
and the expanding air shoots the remaining water 
out through the tapered end of the pipe. 

Use a glass pipe 8-12 mm i n  diameter and 
30-40 cm long for this experiment. The smaller 
opening should be about 1 mm in  diameter. 
Between tricks the pipe should be well cooled 
(you can even blow through i t )  because the height 
of the fountain will depend on the temperature 
difference between the air and the water in  the 
pipe. The optimal amount of water in the pipe 
fluctuates from 114 to 113 of i ts  volume and can 
easily be determined empirically. 

A Drop on a Hot Surface 

by M.  Golubev and A. Kagalenko 

Turning an iron upside down and levelling i t  
horizontally, let a little water drop on its hot 
surface. If the temperature of the iron is slightly 
over 100 OC, the drop will diffuse as expected and 
evaporate within n few seconds. I f ,  however, 
the iron is much hotter (300-350 "C) ,  something 
unusual will happen: the drop will bounce be- 
tween 1 and 5 millimetres of1 tlie iron (as a ball 
bounces off the floor) and will then move over 
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the hot surface without touching i t .  The stability 
of such a state depends, first of all, on the tem- 
perature of the surface: the hotter the iron, the 
calmer the drop. Moreover, the "longevity" of 
the drop, the time before i t  evaporates complete- 
ly, increases many times over. The rate of 
evaporation depends on the size of the drop. 
Larger drops shrink quickly to 3-5 mm, whereas 
smaller drops last longer, without noticeable 
changes. In  one of our experiments a drop 3 mm 
in diameter remained for about 5 minutes (300 
seconds) before evaporating completely. 

What is the explanation for this strange phenom- 
enon? When the drop first touches the heated 
surface, i ts  temperature is about 20 "C. Within 
fractions of a second, i ts  lower layer are heated 
to 100 OC, and their evaporation begins a t  so fast 
a rate that  the pressure of the vapour becomes 
greater than the weight of the drop. The drop 
recoils and drops to the surface again. A few 
bounces are enough to heat the drop through 
to boiling temperature. If the iron is well heated, 
the drop calms down and moves over the iron a t  
a distance slightly above the  iron. Obviously, 
the vapour pressure balances the weight of the 
drop in this condition. Once such a steady state 
is reached, the drop is fairly stable and can 
"live" a long time. 

When the drop is small, i ts  shape is roughly 
that  of a sphere. Larger drops are vertically 
compressed. On a hot surface the drop seems to 
be supported by a vapour cushion. The reaction 
force that  develops as a result causes the deforma- 
tion of the drop. The larger the drop, the more 
noticeable the deformation. 
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Oscillations, for example, compression, ten- 
sion, or even more complex oscillation, may 
develop, especially in large drops (Figs. 43 and 

44). The photograph in Fig. 43 shows a dark 
spot in the centre of the drop. This is vapour 
bubble. In  large drops several sue11 bubbles may 
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appear. Occasionally, a drop assulnes the shape 
of a ring with a single, big vapour bubble in the 
middle. When this occurs the  evaporation pro- 
ceeds so intensively that the drop shrinks visibly. 
Figure 44 shows one of the most interesting kinds 
of oscillations: a "trigonal" drop. 

Keep the following advice in mind when con- 
ducting experiments like those described above. 

1. The iron should be as smooth as possible, 
without scratches or irregularities. When a drop 
runs into such an irregularity, i t s  life is consider- 
ably reduced. Why? 

2. The iron should be fastened to a support 
horizontally. I n  our experiments we used a tripod 
for geodetical instruments. 

3. Safety precautions should not be neglected. 
The conductors of the iron should be reliably 
insulated, take care not to scald your hands with 
boiling water. 

Surface Tension Draws a Hyperbola 

by I. Vorobiev 

The coefficient of the surface tension of a liquid 
can be determined by measuring the rise of wet- 
ting liquid in  a capillary tube. Capillary tubes 
and a microscope for measuring their inner 
diameters are not always readily available, how- 
ever. Fortunately, the tubes can be easily re- 
placed with two glass plates. Lower the plates into 
a glass of water, and draw them together gradual- 
ly. The water between them will rise: i t  is  sucked 
in by the force of surface tension (Fig. 45). 
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The coefficient of surface tension o can easily 
be calculated from the rise of the  water y and 
the clearance between the plates d .  The force 
of the surface tension is F = 2 o L ,  where L is 
the length of the plate (multiplied by 2 because 
the water contacts both plates). This force re- 
tains a layer of water tha t  weighs rn = pL d y ,  

Fig. 45 Fig. 46 
where p is  the water density. Consequenlly, 
2 o L  = pLdyg 
Hence, the coefficient of the surface tension is 
a = 1/2pgdy (2) 

A more interesting effect can be obtained by 
pressing the plates together on one side and leav- 
ing a small clearance on the  other (Fig. 46). 
I n  this case the  water will rise, and the surface 
between the  plates will be very regular and 
smooth (provided the  glass is clean and dry). 

I t  is easy to infer that  the vertical cross section 
of the surface is  a hyperbola. And we can prove 
this by replacing d with a new expression for the 

Z 
clearance in formula (1). Then d -- D follows 

from the  similarity of the  triangles (see Fig. 46). 
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Here D is  the clearance at  the  edge of the plates; 
L is the length of the plate, and x is the distance 
from the  line of contact to the  point where the 
clearance and the rise of the water are measured. 
Thus, 

Equation (2) is  really the equation of the hyper- 
bola. 

The plates for this experiment should be about 
10 cm by 20 c.m size. The clearance on the  open 
side sliool(l be rougl~ly the thickness of a match 

Fig. 47 Fig. 48 
stick. Use a deep tub like those photographers use 
in developing pictures t o  hold the  water. For 
ease in reading the results, attach a piece of 
graph paper to one of the plates. Once we have 
a graph drawn by the water, we can check whether 
the curve is  actually a hyperbola. All the rectan- 
g u l a r ~  under the curve should have the same 
area (Fig. 47). I 

I 
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If yo11 have a thernlon~eter, you can study the 
dependence of surface tension of water tempera- 
ture. You can also study the influence of additives 
on water tension. 

The force of surface tension F is directed at  
right angles to the line of contact between the 
water and the glass (Fig. 48). The vertical com- 
ponent of the force is balanced by the weight 
of the water column. Try to explain what ba- 
lances i t s  horizontal component. 

Experiments with a Spoonful of Broth 
b y  V. Mayer 

The next time you are served bouillon for din- 
ner, scoop up a big spoonful, don't swallow i t  im- 
mediately. Looli carefully at  the broth instead: 

--c-- - - - __ - - Fig. 49 

you will see large drops of f a t  i n  i t .  Note the size 
of these droplets. Now pour some of the broth 
back into your soup bowl, and look again a t  the 
broth i n  the spoon. The drop of fat should have 
diffused and gotten thinner but bigger in  diame- 
ter. What is  the  reason behind this phenomenon? 

First let us see under what conditions a drop 
of fat can lie on the surface of the broth without 
diffusing. Look at  Fig. 49. A drop of liquid 2 
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(the fat) lies on the surface of liquid I (the broth). 
The drop is shaped roughly like a lens. The en- 
vironment 3 above the bowl is a mixture of the  
vapours of liquids I and 2. Media I ,  2, and 3 
meet at  the  circumference of the  drop. Isolate 
an increment of this circumference (close to 
point 0 in Fig. 49) of A1 length. Three forces of 
surface tension act upon this increment. At the 
interface of liquids I and 2, force F12 acts, tan- 
gential to the interface and equal in  module to  

1 Fi2 I = ui2AL 

where a,, is the surface tension a t  the interface of 
media I and 2. Similar forces F, ,  and F,,  act 
at  the interfaces of I and 3: 

1 Fi3 I = ~ , 3 A l  
and 2 and 3: 

I F ~ s  I =02sAE. 
Here a,, and a23 are the appropriate surface 
tensions. 

Obviously, the drop reaches equilibrium if the 
total of all  these forces equals zero 

F12 + F , ,  + F23 = 0 

or their projections on coordinates X and Y 
(after the substitution of appropriate absolute 
values and the cancellation of A l )  are 

0 1 3  = 0 1 2  COS 01 f ( J 2 3  cos 0 2 ,  (1 ) 
01, sin 8 ,  = 0 2 ,  sin 8, 

Here, 8 ,  and 8 ,  are the angles between the tan- 
gents to  the  surface of medium 2 and the surface 
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of medium I. These angles are called angles of 
contact. 

I t  follows from Eq. (1) tha t  equilibrium of the  
drop is possible if the surface tensions are relat- 
ed as 

a13 < 01, -t- a 2 3 .  

Since surface phenomena i n  a liquid are practi- 
cally independent of the gaseous environment 
over it, we assume that  
a13 = al and a,, = a,. 

W e  call al and a, surface tensions of liquids I 
and 2, respectively. I n  this case these values re- 
fer t o  the surface tensions of both the broth and 
the fat. 

So, a drop of fat  will float on the surface of 
the broth without diffusing if the surface ten- 
sion of the broth is less than the total of the sur- 
face tensions of the fat  and the interface between 
the broth and the fat: 

01 < 0, -t- 01, (2) 

If the drop is very thin (almost flat), and 8, 
will be small (el = O2 =0)  and the equilibrium 
condition for the drop will  be 

=a,-t-(J1, 

When al > a, 4- al, there are no angles 
and €la for which Eq. (1) would hold true. There- 
fore, liquid 2 does not make a drop on the sur- 
face of liquid I i n  this case, but diffuses on i ts  sur- 
face in  a thin layer. 

Now let us t ry  to  explain the results of our ex- 
periment with a spoonful of broth. Drops of fa t  

Experiments with a Spoonful of Broth 67 

float on the broth, which means that  Eq. (2) 
holds. Why do they diffuse on the surface of the 
broth if the amount of broth is reduced? What 
has changed? Since the surface tensions of the 
fat a, and of the broth-fat interface a,, remain 
unchanged, we have to assume tha t  by pollring 
out some of the broth, we change the surface ten- 
sion of the broth a,. But the broth is water (to a 
first approximation). Can the surface tension of 
water be changed by simply decreasing the 
amount? Obviouslynot. The broth, however, is not 
plain water but rather water covered with a th in  
layer of fat.  By  pouring out some of the broth, 
we reduce the amount of fat ,  and i ts  layer on the 
broth surface becomes thinner. This apparently 
reduces the surface tension of the broth and as a 
result, the fat drops diffuse. 

To test this hypothesis, t ry  the following ex- 
periment. Pour some tap  water into a clean sau- 
cer which has no traces of fat. Put  a t iny drop of 
sunflower oil on i ts  surface (a pipette or a clean 
refill from a ball-point pen can be used for the 
purpose). The first drop should diffuse completely 
over the surface, while the next drops do not dif- 
fuse but form a lens. Carefully pour out some of 
the water, and the drops will diffuse again. 

Now return to the experiment with the spoon- 
ful of broth. If you watch the behaviour of the 
fat closely, you will notice that  the drops rupture 
and reunite. Figures 50-55 show photograph of 
one such experiment. W e  filled a clean glass dish 
with t ap  water coloured with Indian ink tha t  
contains no alcohol. W e  placed eight very small 
drops of sunflower oil on the surface with a thin 
glass tube (see Fig. 50). When we sucked a small 

5' 
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amount of water out with a rubber bulb, the 
drops enlarged. When more water was removed, 
the drops became even larger and changed shapt3 
(because of the water currents). The beginnihgs 
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Fig. 

Fig. 

of future ruptures also appeared (see Fig. 51). 
Further modifications occued rrspontaneously. 
The ruptures grew and united ,into a single large 
rupture. The-drop became alring, which finally 

- - 
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Fig. 54 

Fig. 55 

broke and rearranged into a new drop (Figs. 
52-55). 

Perhaps now you will agree that  i t  is worth- 
while watching your soup before putting i t  into 
your mouth! 

How to Grow a Crystal 

How to Grow a Crystal 

by M. Kliya 

Modern industry cannot do without a wide va- 
riety of crystals. Crystals are used in  watches, 
transistorized radioes, computors, lasers, and 
many other machines. Even nature's enormous 
laboratory is no longer able to meet the demands 
of developing technology, and special factories 
have appeared where various crystals, ranging in  
size from very small crystals to large crystals 
weighing several kilos, are grown. 

The methods for growing crystals vary and 
often require high temperatures and tremendous 
pressure (for example, when growing artificial 
diamonds). But  some crystals can be grown even 
in  your home laboratory. The simplest crystals 
t o  grow a t  home are potash alum crystals, 
KAl(SO,), .12H,O. This absolutely harmless 
substance is widely available (alums are occa- 
sionally used to purify tap  water). Before growing 
our own crystals, however, let us take a closer 

I I 

look a t  the process itself. 
When a substance is dissolved in  water a t  a 

constant temperature, dissolution stops after a 
certain time, and such a solution is said to  be 
saturated. Solubility refers to the maximal quan- 
t i ty  of the substance that  dissolves a t  a given 
temperature in  100 grams of water. Normally, 
solubility rises with a rise in  temperature. A so- 
lution tha t  is: saturated a t  one temperature be- 
comes unsaturated a t  a higher temperature. 
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If a saturated solution is cooled, the excess of 
the substance will precipitate. Figure 56 shows 
the dependence of potash alum solubility on tem- 
perature. According to  the graph, if 100 grams of 
a solution saturated a t  30 "C are cooled to 10 OC, 
over 10 grams of the substance should precipi- 

So lu t ion  temperature Fig. 56 

tate. Consequently, crystals can be grown by 
cooling a saturated solution. 

Crystals can also be grown by evaporation. 
When a saturated solution evaporates, i ts  vol- 
ume decreases, while the amount of dissolved sub- 
stance remains unchanged. The excess of sub- 
stance thus produced falls as a precipitate. To see 
how this occurs, heat a saturated solution, and 
then cover the jar containing the unsaturated so- 
lution with a glass plate and allow i t  to cool to 
a temperature below the saturation temperature. 
The substance may not precipitate with this meth- 
od, in  which case we will be left with a supersat- 
urated solution. This is because we need a seed, 
a tiny crystal or even a speck of the same sub- 
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stance, to form a crystal. Usually, multiple small 
crystals can be generated simply by shaking the 
jar or removing the cover. To grow large crystals, 
the number of seed crystals should be limited. 
As an  artificial seed, a crystal grown earlier works 
best of all. 

The seed crystal can be grown as follows. 
Take two clean glass jars. Pour warm water into 
one of them, and then add alum. Stir the mix- 
ture, and watch the dissolution process closely. 
When dissolution stops, carefully drain the so- 
lution into another jar, taking care not to  pour 
any of the undissolved substance into the second 
jar. Cover the jar with a glass plate. When the 
solution has become cool, remove the plate. Af- 
ter a short time, you should see many crystals 
in the jar. Let them take their time to grow, be- 
fore selecting the [largest as a seed crystal. 

Now we are ready to  grow our own crystal. 
First of all, we need proper glassware. To remove 
undesirable nuclei from the walls of the ves- 
sels, sterilize them over the spout of a boiling 

I teapot. Then make another warm saturated so- 
lution in one jar, and drain i t  into another. Heat 
this warm saturated solution of alum a little 
more. Then cover the jar with a plate, and set 
it aside to cool. As the temperature of the solu- 
tion approaches the saturation temperature, 
lower the seed crystal you made earlier into the 
jar. Since the solution is still  unsaturated, the 
seed crystal will begin to dissolve. But  as soon 1 
as the temperature drops to the saturation point, 
the seed crystal stops dissolving and starts grow- 
ing. (If your seed crystal dissolves complete- 

1 
ly, introduce a n ~ t h e r  crystal.) The crystal will ~ 
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continue t o  grow once the solution has cooled, if 
you lift the cover and let the water evaporate. 
Do not let dust enter the jar. Growth will con- 
tinue for two or three days. 

When growing crystals t ry not to  move or 
touch the jar. After a crystal has developed, re- 

move i t  from the solution, and dry i t  carefully 
with a paper napkin so it will retain its shine. 

The crystals develop differently, depending on 
whether the seed crystal is placed on the bottom 
of the jar or suspended from a thread (Fig. 57). 
You can even grow 'a necklace' by running a 
thread several times over the seed crystal before 
suspending i t  in  the solution. 

Growing crystals is an art ,  and you may not 
be completely successful right away. Do not get 
disappointed. With a little persistence and care, 
you can produce beautiful crystals. 

Crystals Made of Spheres 
by G .  Kosourov 

Before we can predict, explain, or understand 
the properties of a crystal, we must determine i ts  

Crystals Made of Spheres 75 

structure. If  we know the arrangement and the 
symmetry of atoms in  the crystal lattice, we 
can tell whether the crystal is piezoelectric, i.e., 
whether a certain voltage is generated a t  its 
edges under mechanical compression, whether the 
crystal is capable of ferroelectric transition, which 
develops a t  a specific temperature and is charac- 
terized by the formation of an intrinsic electric 
field, whether the crystal generates a light wave 
of double frequency when transmitting a laser 
beam, and so on. The structure of the cryst(a1 car- 
ries abundant information about the crystal it- 
self. 

Different atomic arrangements in crystals (:an 
be studied with a few simple props. We can build 
models of crystals, following the principles used 
in nature with ordinary ball bearings. Even crys- 
tallographers use these three-dimensional mod- 
els, which clearly show the specifics of atomic 
arrangements in complex structures. Before start- 
ing our experiments, we should make a few the- 
oretical observations. 

Crystal lattices result from the interaction of 
atomic forces. When the atoms are close together, 
repulsive forces prevail and increase sharply with 
attempts to  bring the atoms together. Attractive 
forces prevail a t  greater distances and decrease 
rather gradually with distance. When atoms are 
drawn together by attractive force, the potential 
energy of their interaction decreases, just as the 
potential energy of a falling stone decreases. This 
potential energy is minimal a t  the point at  which 
attractive and repulsive forces are equal, and 
i t  increases sharply as the atoms draw closer. 
The dependence of potential energy on distance 
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is shown in  Fig, 58. I n  equilibrium, atoms as- 
sume places of minimal potential energy. If there 
are many atoms, this tendency leads to the repeat- 
ed formation of the most energy-efficient con- 
figuration of a small group of atoms. This con- 
figuration is called the unit cell. 

Some substances have very complex structures. 
The unit cell of some silicates, for example, 

Fig. 58 Fig. 59 

contains over 200 atoms. Other substances, many 
metals, for example, form their crystal lattice 
by a very simple algorithm. Naturally, we 
shall start from the simplest coordinations. I n  
our experiments atoms are represented by metal 
spheres. Elastic forces, developing as a result of 
the conjugation of the spheres, serve as the repul- 
sive force, and the attractive force is .provided by 
gravity. 

Stretch a thin piece of rubber (this may be a 
piece of a surgical glove) over the opening of a 
jar, box, or section of pipe, and fasten i t  with a 
rubber band. Place two spheres on the piece of 
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rubber. The rubber will sag slightly, and the 
spheres will be attracted to one another. Their po- 
tential energy, which'depends on distance,!is shown 
approximately i n  Fig. 59 and is very similar to 
the dependence in Fig. 58. If we put about 30 
spheres on the piece of rubber and shake them 
slightly, they will arrange themselves in regular 
rows (Fig. 60). The centres of the spheres will lie 

Fig. 60 

a t  the apexes of equilateral triangles, every side 
of which equals the diameter of the sphere. The 
spheres will fill the whole plane forming a lat- 
tice called a hexagonal (Gr. hes six and gonia 
a corner, angle). Each sphere is surrounded 
by six spheres touching each other. Their centres 
form regular hexagons. 

If you turn the lattice one-sixth of a revolution 
around an axis through the centre of any one of 
the spheres, some of the spheres will change places, 
but the overal arrangement of the system i n  
space will remain the same. The lattice of spheres 
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will translate itself into the original position. 
After six such rotations each sphere resumes its 
original position. In such cases crystallographers 
say that the axis of symmetry of the sixth order, 
which is oriented perpendicular to the plane of the 
lattice, passes through the centre of each sphere. 
This axis makes the lattice "hexagonal". In addi- 
tion to the symmetry axes of the sixth order, 
third-order symmetry axes pass through the cent- 
res of the holes formed by neighbouring spheres. 
(The third-order symmetry axis is a straight 
line; each time the lattice is rotated 120 degrees 
around this axis, the original configuration re- 
peats. Irregularly shaped bodies have first-order 
symmetry axes since they return to the original 
position after a single complete revolution. Con- 
versely, the symmetry axis of infinite order passes 
through the plane of a circle at  right angles 
since the circle translates itself into the original 
position a t  an infinitely small angle of ro- 
tation.) 

The following discussions will be clear only 
if you have spheres for building models of differ- 
ent crystals. Consider the holes on either side 
of a row of spheres (Fig. 61). Since the number of 
holes in either row equals the number of spheres 
in a row, an  infinite lattice of spheres has twice 
as many holes as spheres. The holes form two 
hexagonal lattices, similar to those formed by the 
centres of the spheres. These three lattices are 
shifted relative to one another in such a way that 
the sixth-order symmetry axes of each lattice 
coincide with the third-order symmetry axes of 
the other two lattices. 

The second layer of spheres fills one of the lat- 
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tices of holes to form a hexagonal lattice of con- 
tiguous spheres, similar to the first such lattice. 
The elasticity of the piece of rubber, however, 
may not provide enough attractive force to hold 
the spheres of the second and third layers. There- 
fore, since we know how the spheres in the bot- 
tom layer lie, let us make an equilateral triangle 
from plywood (Fig. 62), the sides of which equal 
an integer number of spheres (seven in our model), 
and fill i t  with spheres of the bottom layer. 

Fig. 61 Fig. 62 

The second layer of spheres can fill any lattice 
of holes, but when we reach the third layer, we 
find the holes are not equivalent. The centres of one 
of the lattices are arranged over the centres of the 
spheres in  the bottom layer, whereas the second 
lattice lies over the vacant holes of the bottom 
layer. We shall begin by putting spheres into 
the holes above the spheres of the bottom layer. 
In  this case the third layer will be an exact 
replica of the bottom arrangement of spheres; 
the fourth layer will repeat the second layer, and 
so on. Each layer will repeat itself every second 



layer, Our pyramid will be rather fragile (Fig. 
63) because the "attractive" force in  our model 
acts downwards only, and the spheres in  the 
holes along the edges are easily pressed out by 
the spheres of the layers above. 

This kind of packing, called hexagonal closest 
packing, is typical of beryllium, magnesium, cad- 
mium, and helium crystals a t  low temperatures 
and pressures over twenty five atmospheres. This 
packing has only one system of closely packed, 
parallel layers. The third-order symmetry axis, 
which passes through the centre of each sphere, is 
perpendicular to  this system of layers. The sym- 
metry ordei J;S thus reduced: when the axis passes 
through centkes of the even-layered spheres, 
the lattice Iias'lthe sixth-order symmetry; the 
same axis passes through the centres of the holes 
in the odd layers, and the symmetry of the odd 
layers, relative to  thi$ axis, is, therefore, only 
of the third order. Nevertheless, this packing is 
called hexagonal, because i t  can be viewed as two 
hexagonal lattices of even and odd layers. Note 
also that the empty holes in all  layers are arranged 
one over the other and channels pass through the 
whole hexagonal structure, into which rods, 
whose diameter is 0.155 that  of the diameter of 
the sphere can be inserted. Tbe centre lines of 
these channels are the third-order symmetry 
axes. Figure 63 shows the model of a hexagonal 
structure with rods placed in the channels. 

Now let us put the spheres from the third layer 
into the holes above the vacant holes of the bot- 
tom layer. We can construct two different pyra- 
mids (Figs. 64 and 65), depending on the system 
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of holes we select for the second layer of spheres. 
The faces of the first pyramid are equilateral 
triangles with hexagonal packing, which do not 
differ from the packing of the bottom layer of 
the pyramid. I n  other words, our pyramid is a 
tetrahedron, one of the five possible regular poly- 
hedrons. This packing has four families of close- 
ly packed layers, whose normals coincide with 
the third-order symmetry axes of the tetrahedron 
which pass through its apexes. I n  such a packing 
the layers repeat every third layer. The lateral 
faces of the second pyramid are isosceles triangles, 
and the pyramid itself is part of a cube, intercept- 
ed by the plane formed by the diagonals of the 
faces with a common apex (Fig. 66). The packing 
in the lateral faces of such a pyramid forms a 
square lattice with i ts  rows parallel to  the diag- 
onals of the cube face. 

Obviously, we have only one type of packing 
with two different orientations. If we remove the 
spheres from the edges of the tetrahedron, the 
faces of the cube will emerge. Conversely, by re- 
moving the spheres that  make up the edges of 
the cube, we turn the cube into a tetrahedron. 
This packing, called cubic closest packing, is 
characteristic of neon, argon, copper, gold, pla- 
tinum and lead crystals. Cubic closest packing 
possesses al l  the elements of cubic symmetry. 
I n  particular, the third-order symmetry axes of 
the tetrahedron coincide with the space cube di- 
agonals, which are also third-order symmetry 
axes for the c.ube.This packing is based on a cube 
of fourteen spheres. Eight of the spheres form 
the cube, and six form the centres of its faces. 
If  you look closely at  the second pyramid 
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(Fig. 66), you will find' this elementary cube a t  
the apex. Cubic closest packing can be viewed as 
a combination of four simple cubic lattices. 
The equality of all the spheres of the packing is 
especially noticeable from this angle. Since the 
hexagonal and cubic closest packings can be pro- 
duced by superimposing hexagonal layers onto 
one another, the two obviously have the same 
density, or space factor, despite the difference 
in symmetry. 

Fig. 66 Fig. 67 

If we build a square form and place spheres in  
a square lattice, we shall get another close pack- 
ing. Although the spheres in each layer are 
not packed in the closest possible way, the holes 
between them are deeper, and, therefore, the lay- 
ers lie closer than in a hexagonal structure. If 
we complete the packing, we will get a tetra- 
hedral pyramid (Fig. 67) whose side faces are equi- 
lateral triangles in  which the spheres are packed 
hexagonally. If we add another such pyramid 
with i ts  apex downward, we shall get a third po- 
lyhedron (after the tetrahedron and the cube): 
an octahedron with eight faces. Obviously, this 
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is also the cubic closest packing with the faces 
of the cube parallel to the plane of the base. Re- 
move the spheres forming the edges, and you will 
find five spheres in the upper intercept plane 
which form the face of an elementary cube. 

These models can be used in  a number of physi- 
cal experiments. By shaking the piece of rubber, 

Fig. 68 Fig. 69 

for example, you ,can simulate the heat-induced 
motion of atoms. (You will see how 'a rise in  
temperature' destroys the packing of the spheres.) 

Since eacl hexagonal layer occupies relatively 
shallow holes of the next layer, the layers are 
loosely bound, and slippage develops easily. If 
you slide one hexagonal layer against another, 
you will see that  easy slippage, in  which the lay- 
ers move as a whole, occurs in three directions. 
A similar situation can be observed in  real crys- 
tals, which explains the specifics of plastic de- 
formation in crystals. 

Models can be built from any kind of sphere. 
If you do not have ball bearings, use large 
necklace beads or even small apples. Figures 68 
and 69 show unit cells of cubic and hexagonal 
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packings made of ping-pong balls glued together. 
Ping-pong balls, which are readily available and 
make workable models, are highly recommended, 
especially for junior-high and high-school 
physics classes. 

Various packings of contiguous balls are impor- 
tant  i n  crystallography, and we shall discuss 
them again. Meanwhile, get some balls and build 
models1 

A Bubble Model of Crystal 
by Ya. Geguzin 

On Simulation 

In  the difficult process of interpreting experi- 
mental facts or theoretical propositions, almost 
everyone needs an image, a visible presentation, 
a simplified model of the subject. Perhaps one 
of the most important skills a scholar or teacher 
needs is the ability to construct images, analo- 
gies, and models, which can illustrate certain 
physical phenomenon and, thus, enlarge our 
understanding of them. What  should such a 
model be? What must i t  be able to  show? What 
can one expect from the model and what are 
i ts  constraints? First, we expect our model to  
be a learning aid. I t  must contain no false data 
but must include a t  least a fraction of the 
truth pertinent to  the subject. In  everyday life, 
of course, we scorn halftruth. But  'halftruth' 
is a term of high approbation i n  relation to 
models. Finally, the model should be clear and 
easily comprehensible without dull commentary. 



86 Ya. Geguzin 

The very best model needs no explanation at  
all since its clarity gives i t  the force of a proof. 

There are many convincing and elegant models 
in physics, particularly in solid state physics. 
In  this article we shall discuss a 'live' model, 
which ill~lstrates and reflects the structure flaws, 
and complicated interactions of real crystal very 
well. This is not a new model. I t  was conceived 
by the outstanding British physicist L. Bragg 
in  the early 1940s and realized by Bragg and his 
colleagues V. Lomer and D. Naem. Therefore, 
we shall call i t  the BLN model after Bragg, Lo- 
mer, and Naem. 

What Do We Want to Simulate? 

The answer is clear: real crystal. Real crystal 
is a vast set of identical atoms or molecules ar- 
ranged in  strict order to form a crystal lattice. 
Occasionally, this order is disturbed, signifying 
the presence of defects in the crystal. Another 
very important characteristic of crystals is the 
interaction of the atoms forming the crystal. 
We will discuss this interaction a bit later. Now 
we will simply state that they do interact! 
Without interaction, the atoms would form a 
heap of disorderly arranged atoms rather than a 
crystal. The maintenance of order in crystals 
is a direct consequence of this interaction. 

Another widely used model is the so-called dead 
model of crystal, in which wooden or clay balls 
are bound by straight wires. The balls represent 
atoms, and the wires are the symbols of their 
bonds in 'frozen' state. The model is 'dead' 
since it 'freezes' the interaction sf the atoms. In 
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this reasonable and very useful model, different 
kinds of atoms are represented by balls of differ- 
ent colour and size, and wires of different length 
represent the distance between the atoms. Al- 
though the model does not reflect all the truth 
about the crystal, it' does convey the truth with- 
out false assertions. The model, of course, can- 
not depict the motion of the atoms, but i t  reflects 
the order of their position very clearly. The dead 
model is an outstanding aid in depicting the  
space arrangement ,of atoms or in identifying the 
most likely directions of deformation or electric 
current in a crystal. The model is indispensable 
in representing the possible arrangement of 
atoms in unidentified or little studied crystals 
on the basis of experimental data and so-called 
general considerations. This technique of model- 
ing with balls and wires aided in one of the most 
important discoveries of the twentieth century, 
the identification of the structure of the DNA 
molecule, which certainly speaks well for the 
usefulness of the dead model! 

Our objective, however, is to simulate a 'live* 
rather than a 'dead* crystal. Obviously, to do so, 
we need to simulate the interaction of atoms in  
crystal, to revitalize the interaction that is fro- 
zen in the wires and balls. 

The Interaction of Atoms in Crystal 

Perhaps the most important characteristic of 
such interaction stems directly from the simple 
fact that the distance between two neighbouring 
atoms in real crystal has a definite value at  a 
constant temperature, (We are speaking, of course, 
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about the distance between the positions around 
which atoms fluctuate in heat induced mo- 
tion. The amplitude of these fluctuations is con- 
siderably smaller than the distance between 
atoms.) The distance has a definite value since if  
we try to stretch i t ,  the atoms resist the effort and 
attract one another, and if we try to reduce the 
distance, the atoms repel each other. The fact 
that  this distance is determinate allows us to 
conclude that  atomic interaction is character- 
ized by attraction and repulsion simultaneously. 
At a certain distance between atoms (we call i t  
determinate), the forces of attraction and repul- 
sion become equivalent in absolute values. The 
atoms in the lattice are located a t  exactly this 
distance. 

I t  would be useful to be able to  simulate the 
competition of attractive and repulsive forces, 
Such a technique would revitalize atomic inter- 
action in crystal. The authors of the BLN model 
created just such a method. Instead of wooden and 
clay balls, they used tiny soap bubbles. 

The Interaction of Soap Bubbles 
on Water Surface 

Two soap bubbles on the surface of a body 
of water are not indifferent to each other: they 
are first attracted to one another but, after touch- 
ing, are repelled. This phenomenon can be ob- 
served in  a very simple experiment, for which we 
will need a shallow bowl, a needle from a syr- 
inge, the inner balloon from a volley ball, and an 
adjustable clamp to  control the compression of 
the nozzle of the balloon. Fill the bowl with 

soapy water almost to the top, and add a few drops 
of glycerol to stabilize the bubbles that we will 
blow onto the surface of the water. Inflate the 
balloon. Then clamp the nozzle, and insert the 
needle into it (the butt end first, of course). Im- 
merse the other end of the needle into the water 
(not deeply) and release the clamping pressure 
slightly (Fig. 70). The air that escapes the nee- 
dle at regular intervals will develop into identical 

soap bubbles. We shall need many such bubbles 
in future experiments, but for this first experi- 
ment, try to make only two bubbles, some dis- 
tance from one another. If you are not successful 
immediately, try again. You should succeed by 
the fourth or fifth time, a t  least. Bubbles 1-2 mm 
in diameter work the best. 

Once the bubbles are made, you can watch 
their movements. The bubbles will move (without 
our interference) towards one another, slowly a t  
first and then more rapidly. When they coIlide, 
they do not touch at a single point but make dents 
on the surface. The interaction of a pair of iden- 
tical bubbles will vary from that of a pair of bnb- ' bles of different size. Watch! 

Now let us consider the origin of the force that  
drives the bubbles together spontaneously. Thiok 
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of two matchsticks lying on the surface of the wa- 
ter. Since the bubbles and the matchsticks are 
both soaked by the water, the  nature of their in- 
teraction is  generally the same. Two bubbles float- 
ing close together form a very complex surface 
with the water, however, whereas that  of the  
two matchsticks is  much simpler and, thus, eas- 
ier to study (Fig. 71). The force that  brings the 

- - - -2r  - -- _ _ _ - _ _ _ _ Fig. 71 

two floating matchsticks together develops as fol- 
lows. Water  soaks the  matchsticks, and the sur- 
face of the  water near the sticks is, therefore, 
curved. This curvature generates force that acts 
upon the liquid. The force is determined by sur- 
face tension and directed, in  this case, upward 
(we shall assmxe the matchsticks are completely 
soaked). Under the effect of this force, the liquid 
rises along the  sides of the matchsticks, the rise 
being more pronounced in the region between the  
sticks (Fig. 71). The liquid appears to  stret,ch, 
and the pressure in the liquid drops relative to  
the  atmospheric pressure, by an additional pres- 

20 a 
sure Ap = - = - where o is the coefficient of 

d r '  
surface tension, d is the distance between the 
matchsticks, and r = dl2 is the  curvature radius of 
the surface of the  liquid. Consequently, the  ab- 
solute value of the pressure of the  liquid on the  
matchsticks in the area between them is less t h a s  
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the atmospheric pressure tha t  acts upon the sticks 1 from the outside. Thus, the absolute value of the 
force that  draws the sticks together is 

From this we can predict an interesting phenom- 
I 

enon. Since F -- l / d 2 ,  in a viscous environment 
I the matchsticks should draw together with a ve- 

locity that increases as the distance between them 
decreases. The bubbles also accelerate as they 
draw closer (Fig. 72). W e  filmed the movement of 
the bubbles in our laboratory by pIacing a movie 
camera over the bowl containing the soap solu- 
tion. As soon as the bubbles started moving, we 
switched the camera on (Fig. 73). W e  were able 
t o  watch the  bubbles drawing together right up 
to  their collision. Once they have collided, a re- 
pulsive force starts acting. The force is caused 
by an increase of gas pressure in the mutually 
compressed bubbles (Fig. 74), which pushes the 
bubbles apart. 

Soap bubbles are apparently suitable crystal 
models, if we create a number of identical bub- 
bles on the ~ u r f a c e  of the soap s o l u t i o ~  rather than 
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Fig. 73 

simply one or two. If the radius of a bubble is 
R = 5 X cm, then N--  (R,IR)2- 4 X 
X lo4 bubbles can fit on the surface of a soap so- 
lution on an ordinary dinner plate whose radius 
is R p  % 10 cm. Such a raft of bubbles, con- 
tained by attractive and repulsive forces, is aatwo- 
dimensional model of crystal. The authors of 
this very beautiful model have shown, for exam- 
ple, that bubbles whose radius is R - 10-I cm 

interact very similarly to atoms in copper 
crystals. 

The Model in Action 

The film of the BLN model in action is inter- 
esting since i t  shows an ideal crystal, a crystal 
with moving and interacting defects, and many 
other simple and complex processes that develop 
in a real crystal. In an article, however, it is on- 
ly possible to show a few photographs to illus- 
trate the possibilities of the model. 
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The BLN model can be used to  verify certain 
corollaries to  the theory of crystal that is abso- 
lutely free of defects, i.e. the so-called ideal crys- 
tal. I t  is almost impossible to obtain such a crys- 
tal  in nature, but i t  proved rather simple and 
easy to construct one made of bubbles (Fig. 75). 

One of the most common defects in crystal is 
a vacant position at  a point in  the lattice, which 
is not filled by an atom. Physicists call this phe- 
nomenon a vacancy. In the BLN model a vacancy 
is represented by an exploded bubble (Fig. 76). 
As both common sense and experiments with real 
crystals lead us to expect, the BLN model shows 
that the volume of a vacancy is a little less than 
that of an occupied position. When a bubble ex- 
plodes, neighbouring bubbles move slightly in- 
to the hole left by the explosion and reduce its 
size. This is almost impossible to detect with the 
naked eye, but if we project a photograph of the 
bubbles onto a screen and carefully measure the 
distances between bobbles, we can see that the 
vacancy is somewhat compressed in comparison 
with an occupied position. For physicists this is 
evidence of both a qualitative and a quantita- 
tive change. 

Very often, crystal contains an  impurity, in- 
troduced in the early stages of its history, that 
deforms its structure. To solve many problems of 
crystal physics, i t  is very important to know how 
the atoms surrounding the impurity have changed 
position. Incidentally, the presence of an impu- 
rity is left not only by the nearest neighbours but 
also by the atoms a considerable distance from it. 
The BLN model reflects this clearly (Fig. 76). 

Most crystalline bodies are represented by po- 
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lycrystals made of many small, randomly oriented 
crystals separated by boundaries. We expect many 
properties of the polycrystaIs (such as mechan- 
ical strength or electrical resistance) to depend 
on the structure of the boundaries, and, in  fact, 
the BLN model bears this out. I t  showed crystal 
physicists that the structure of such boundaries 
varies according to the mutual orientation of 
boundary crystals, the presence of impurities at  
the boundary, and many other factors. Some parts 
of the polycrystals (grains), for example, may 
enlarge at  the expense of others. As a result, aver- 
age grain size increases. This process, called re- 
crystallization, develops for a very explicit rea- 
son: the greater the size of the grain, the less its 
total boundary surface area, which means that 
i t  has lower excess energy linked to the bounda- 
ries. The energy of a polycrystal is reduced in re- 
crystallization, and, therefore, the process may 
occur spontaneously (since i t  moves the system 
to a more stable equilibrium, a t  which energy 
storage is minimal). The series of photographs in 
Fig. 77 illustrates a large grain 'devouring' a 
smaller grain inside i t  in successive stages. 

The moving boundary between the grains ap- 
pears to 'swallow' the vacancies i t  comes across 
(this was predicted by theorists and carefully 
studied by experimenters in real crystals). The 
boundary does not change its structure in this 
process, as the BLN model clearly illustrates 
(Fig. 78). 

Restrictions of the BLN Model 
Without depreciating the usefulness of the 

BLN model, we should point out that i t  does 

Pig. 77 
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Fig. 78 

have drawbacks. The model can simulate only 
one structure-a two-dimensional, hexagonal, and 
closely packed crystal. But real crystals have 
a variety of structures. In this respect, the dead 
model has infinitely more potential because 
atoms can be arranged in i t  i n  many differ- 
ent ways, and, consequently, any structure can 
be simulated. The BLN model in its contempora- 
ry modification is severely restricted by its two- 
dimensionality. Its authors tried to make a three- 
dimensional (multilayer) bubble model, but i ts  
operation was difficult, and the model was finally 
rejected. I n  our laboratory we built both two- and 
three-dimensional models and found the latter 
to be impractical. Despite these and other weak- 
nesses, however, the BLN model is an indispen- 
sable aid in the study of crystals. 

Determining the Poles of a Magnet 
by B. Aleinikov 

At first glance it may seem simple to determine 
the poles of a magnet. But because we cannot 

1 be sure that the poles of a given magnet have 
not simply been painted to make them look 
different, i.e. without reference to  their true 
magnetism, the question is more complicated 
than it appears. Occasionally, magnets are not 
marked at all, i n  which case we need a methoti 
to differentiate the positive from the negative 
pole. For this experiment, we need a permanent 
horseshoe magnet (the poles need not be markcrl; 
in fact, it  is even more challenging if they are 
not) and . . . a television set. I t  is best to coadt~ct 
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the experiment i n  the daytime, when a test 
pattern for tuning the television is broadcast. 

Turn the television set on, and put your mag- 
net against the screen, as shown in  Fig. 79. The 
image will immediately become distorted. The 
small circle in  the center of the test pattern will 

Fig. 79 

shift noticeably upward or downward, depending 
on the position of the poles. 

An image on the television screen is produced 
by an electron beam directed from inside the pic- 
ture tube towards the viewer. Our magnet devi- 
ates the electrons emitted, and the image is 
distorted. The direction in  which the magnetic 
field deviates the moving charge is determined by 
the left-hand rnle. If the palm is positioned so 
that  the lines of force enter i t ,  the fingers when ex- 
tended indicate the direction of the current. I n  
this position, the thumb when held a t  a right 
angle to the fingers, will show the direction i n  
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which the moving charge i s  deviated. The lines 
of force go from the northern to  the southern 
pole of the magnet. The direction of current ac- 
cording to  the left-hand rule is the so-called "tech- 
nical" direction from plus to  minus in which po- 
sitively charged particles would move. I n  the 
cathode tube, however, the electrons move and 
are directed towards us. This is the equivalent 
of positive charges heading away from us. There- 
fore, the extended fingers of the left hand should 
be directed towards the screen. The rest is 
clear. By the displacement of the central circle, 
we can determine whether the northern or the 
southern pole of the magnet been placed against 
the screen. 

I t  is also possible to  identify poles of an un- 
marked battery with the help of a television. For 
this experiment, in addition to a television, we 
need a battery, an electric magnet with an arched 
core, a resistor, and a conductor. Connect the bat- 
tery in series to the electromagnet, and the resis- 
tor, rated to  limit the current t o  admissible level. 
Hold the electromagnet near the screen, and iden- 
tify its poles using the left-hand rule. Then use 
the corkscrew rule to determine the direction of 
the current and, consequently, the poles of the 
battery. 

A Peculiar Pendulum 
by N.  Minz 

The familiar simple pendulum does not change 
the plane in which i t  swings. This property of 
the pendulum was used in  a well-known demon- 
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stration of the Earth's rotation, i.e. the Foucault 
pendulum. The pendulum suspended on a long 
wire oscillates. A circle under i t  is marked as a 
clock face. Since the plane of oscillations rela- 
tive to  the motionless stars does not shift, while 
the Earth rotates on its axis, the pendulum passes 
through markings on the clock in succession. 
At either of the Earth's pole, the circle under the 

Fig. 80 

pendulum makes one complete rotation in twen- 
ty-four hours. This experiment was carried out 
by the French physicist L. Foucault in 1851, 
when a pendulum 67 metres long was suspended 
from the cupola of the Pantheon i n  Paris. 

Do all pendulums keep the same plane of oscil- 
lation? The suspension, after al l ,  allows oscilla- 
tions in any vertical plane. To make the pendu- 
lum shown in Fig. 80a, fold a string in half, and 
attach another string in  the middle. Tie the loose 
end of the second string to  a spoon, a pair of 
scissors, or any other object, and your pendulum 
is ready. (The vertical suspension should be long- 
er or at  least equal in length to  tha t  of the first 
string.) 
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Tack the ends of the horizontal string between 
the jambs of a doorway. Now, pull the pendulum 
back (at rest, i t  is in  the position of equilibri- 
um), and release it .  The pendulum will describe 
an ellipse that  constantly changes shape, prolat- 
ing to one side or the other. W h y  does i t  behave 
this way? 

A single suspension pendulum (Fig. 80b) has 
an undetermined plane of oscillation. This means 
that  regardless of the initial deviation of the 
pendulum, all the forces influencing i t  lie in  one 
plane. Be careful, however, not to propel i t  
sideways when setting i t  free. 

Now let us draw a plane through the initial 
and deviated positions of the penduluin. Obvi- 
ously, both the  gravity force mg, and the tension 
force of the string T lie i n  this  plane. Conse- 
quently, the resultant of the two forces, which 
makes the pendulum oscillate, acts in  the same 
plane. Thus, since there is no force to  propel the 
pendulum out of the plane, i t  keeps i t s  plane of 
oscillation. 

Our pendulum is quite another thing. In  this  
case, the initial plane of oscillation is deter- 
mined by the attachment of the horizontal string 
and by the plumb line of the vertical string. There- 
fore, the pendulum is deviated from the very 
beginning so that  i t  lies outside of the plane," 

The tension force (Fig. 80c) has a component 
perpendicular t o  the initial plane, and the  ac- 

- 
* Of course, if the deviation of the pendulum in the plane 
is strictly perpendicular to the plane of suspension, the 
pendulum will oscillate in this plane only. In practice, 
however, a departure from this plane and velocity direct- 
ed away from the plane always exist. 



tion of this component forces the pendulum out of 
the plane. Since the tension force varies, its per- 
pendicular component also varies. As i t  swings 
to the opposite side, the pendulum pulls the other 
half of the horizontal string taut. This develops a 
force that acts in the opposite direction. At the 

Fig. 81 Fig. 82 

same time, as the experiment shows, the pendu- 
lum oscillates in two perpendicular planes. 

The curves described by our pendulum are 
called Lissajous figures, after the French physicist 
who was the first to describe them in 1863. A 
Lissajous figure results from the combination of 
two perpendicular oscillations. The figure may 
be rather complicated, especially if the frequen- 
cies of longitudinal and latitudinal oscillations 
are close. If the frequencies are the same, the re- 
sultant trajectory will be an ellipse. Figure 
81 shows the figure drawn by a pendulum whose 
motion can be described as x = sin 3t ,  y = 
sin 51. Figure 82 shows the oscillations des- 
cribed as x = sin 3t ,  y = sin 4t ,  
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The ratio of the frequencies can be varied by 
varying the ratio of the length of the vertical 
and horizontal strings. Althoilgh it is fairly dif- 
ficult to calculate the frequencies of pendulum 0s- 
cillations, the figures drawn by the pendulum 
can be demonstrated rather easily. To make the 
Lissajous figures visible, tie a mall  bucket with 

Fig. 83 Fig. 84 

a perforated bottom to the pendulum. Fill the 
bucket with sand, and put a piece of dark card- 
board under i t  on the floor. The pendulum will 
draw a clear trajectory of its motion. 

Photographs of the motion of the pendulum can 
also be made. Paint a weight or a small, heavy 
ball white, and make the suspension of dark 
string. Put a sheet of dark paper on the floor, the 
paper should be mat, since glossy paper reflects 
light and would spoil the pictures. Set the cam- 
era above the pendulum, with the lens placed 
horizontally. If the exposure is long enough, the 
pictures will show clear trajectories. Figures 83 
and 84 show trajectories photographed in this way. 
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Changes in  the direction of the oscillations 
are obvious. The change is especially sudden 
in Fig. 83. The exposures of the two photographs 
were different, which is obvious from the differ- 
ent lengths of the trajectories. The curves seem 
to be inscribed within a parallelogram, although 
in reality, they should be inscribed within a rec- 
tangle. W e  did not get a rectangle simply be- 
cause the   lane of our camera was not strictly 
horizontal.- 

A reasonably correct trajectory can be obtained 
in experiments with a hendulum if damping 
is insignificant. The oscillations of a pendulum 
with low mass and large volume will damp quick- 
ly. Such a pendulum will swing several times 
with quickly diminishing amplitude. Natlirally 
changes i n  the oscillations of a pendulum with 
such strong attenuation can hardly be photo- - 
graphed. 

Lissajous figures are common with perpendicu- 
lar oscillations. They are unavoidable, for in- 
stance, in  tuning oscillographs. 

Lissajous Figures 
by N .  Minz 

The simplest oscillations of a body are those in 
which the deviation of the body from i ts  equi- 
librium position x is described as 

x = a sin ( o t  + cp) 
where a is the amplitude, o is the frequency, and 
cp is the initial phase of sscillation, Such sscilla- 

tions are called harmonic. A simple pendulum, 
a weight on a spring, or voltage in an electric 
circuit can oscillate harmonicallv. - - 

I n  this article we shall discuss ;body with two 
simultaneous harmonic oscillations. If both oscil- 
lations occur along the same straight line, the re- 

Fig. 85 

sultant equation of the motion of the body will 
be a sum of the equations of each motion: 

x = A1 sin ( o l t  + 9,) + A2 sin ( 0 2 t  + cp,) 

I t  is easy to  make a graph of the body displace- 
ment from equilibrium over time. For this, the 
ordinates of the curves related to the first and 
second motions should be added. Figure 85 
illustrates how two harmonic oscillations can be 



108 N. Minz 

added (solid sinusoids). The broken line repre- 
sents the resulting oscillation, which is no 
longer harmonic. 

More complicated trajectories appear if two 
mutually perpendicular oscillations are added. 
The body in Fig. 86 moves along such a trajecto- 
ry. I t s  form depends on the ratios of frequencies, 
amplitudes, and phases of the two mutually per- 
pendicular oscillations. As we know, such trajec- 
tories are called Lissajous figures. The setup used 
by Lissajous in  his experiments is shown in  Fig. 
87. The tuning fork T' oscillates in a horizontal 
plane, whereas T is vertical. A Iight beam pas- 
sing through a lens is reflected by a mirror at- 
tached to  T' towards a second mirror fixed on T. 
The reflection of the second mirror is seen on a 
screen. If only one tuning fork oscillates, the 
light spot on the screen will move along a straight 
line. If both tuning forks oscillate, the spot will 
draw intricate trajectories. 

The trajectory of a .body with two simulta- 
neous, mut~ia l ly  perpendicular oscillations is de- 
scribed by a system of equations 

x = A, sin (o,t f cp,), 

y = A, sin (02t 4- cp,), 

where x and y are the projections of the body dis- 
placement on X and Y axes. 

For simplicity, assume cpl = cp, = 0 and ol = 
- 
- 0, = O. Then 

x =Ai  sin o t ,  

g = A 8  sin w t .  

I Lissajous Figures 

Fig. 86 

Fig. 87 
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A2 Thus, y = - x. Consequently, Eq. (2) de- 
A ,  

scribes a straight line segment. Slope a with 
respect to X axis is 

3n; Now let cpl = rpi + T .  Then 

x = A, cos (o,t  + q;), 
y =A2 sin (02t + v2). 

Consider first the simplest case, where Al = 
= A,, cp; = v2 = 0 and ol = o2 = o ,  that is 

x = A c o s  o t ,  
y = A sin o t .  

A point with x and y coordinates determined by 
the above equations makes a circle of A radius. 
And, in fact, x2 + y2 = A 2  cos2 o t  + A2sin2 o t  = 
=A2,  which means that the trajectory of mo- 
tion is a circle. 

Now let A, #A2 .  Let us plot a trajectory for 
A, = 1 and A, = 2. At the moment of maximal 
displacement, x = A, = 1,  tha t  is, cos o t  = 

= 1,  o t  = 0. Consequently, y = 2 sin o t  = 0. 
Similarly, when x = 0,  y equals two, and when 

-r/z - 
x = -, y equals 1/2, and so on. 2 

The graph plotted with these coordinates will 
be an ellipse whose major semiaxis is  A, and 
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whose minor semiaxis is A,, tha t  is, the ellipse 
elongated along Y axis (Fig. 88a).* 

I t  is easy to  show that  when A, = 2 and A,  = 
= 1, we get an  ellipse elongated along X (Fig. 
88b). Clearly, by changing the amplitude ratio, 
we can get different ellipses. 

Now let o, = 2 0 ,  o2 = o ,  cp; = 0 and cp,= 

I 

((0 1 11 ) Fig. 88 

= 0. The system of equations (3) will then be- 
come 
x = A1 cos 2ot ,  
y = A, sin a t .  

Transform the equation with respect to x in the 
following way 

x - A, (coss o t  - sin3 o t )  = 

* The fact that the system of equations 
x = A,  cos at 
y = A ,  sin at 
describes an ellipse can be shown analytically: 

i.e., a point with coordinates x and y lies on the ellipse. 
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This curve is part of a parabola with i t s  axis along 
X and the apex at  x = A1 (Fig. 89). Thus, we 
have an open curve. 

Fig. 89 Fig. 90 

Now let us check the effects of the frequency on 
the shape of the  trajectory. W e  will assign equal 
amplitudes to  the  lateral and longitudinal oscil- 
lations described by system (3). 

Let us plot curves, for example, described by 
the following equations: 

x = A cos o t ,  y = A sin 2o t ,  
x = A cos a t ,  y = A sin 4ot .  

The easiest way to  do this is  t o  draw a circle of 
A radius (Fig. 90) and mark the  points corre- 

n n 3n 
sponding to  angles wt, which equal 0, s, T, - 8 '  

n 5n 3n 7n - - - -  
3 '  , , , , n ,  . . ., 2n. To determine the points - - - -  

with coordinates x = A  cos wt and y = A  sin 2wt, 
remember that  for the circle whose radius is  
equal t o  unity (r = 1) the  cos o t  is numerically 
equal to  a projection of the vector radius r (ot)  

I Lissa jous Figures 

onto X, whereas the sin wt is equal to  the projec- 
tion onto Y. Since we have drawn a circle of A 
radius, the coordinates x and y of each point of 
the circle are the projections of the vector radii 

( 0 )  
1 

( b )  

Fig. 91 
of the points onto X and Y .  Once we have de- 1 termined all the  points by their coordinates, we 

I 
can connect them with a solid line (Fig. 90). 

1 Fig. 92 

I n  both cases we obtain closed curves, whose loop 
number is defined by the ratio n = 5 (Fig. 

'"1 
91a, b). 

The figure in Fig. 92 is open. I t  is described by 
1 - 0 1 6 4 4  



the following system of equations 

5 = COS 2ot ,  
y = sin 3ot. 

When do open figures occur? Are there any com- 
mon regularities in their origin? Consider the 
following equations 

z = A1 cos po t ,  
y = A ,  sin qot. 

First, note that  at  the point where the curve re- 
verses along the same trajectory, the velocities 
of the body along the X and Y axes become equal 
to zero simultaneously. The body moving along 
the curve stops at exactly this moment and then 
starts moving back. If x = A ,  cos po t ,  then 

When t, sz tl  = t (the difference between t ,  
and tl is small), 

pota -pot1 ru P W I - P ~ ~ I  
sin - 2 

As a result, 

u, = - A,po sin po t .  

Similarly, for a, 
V ,  = A 2  q o  cos got. 

Liasajous Figures i 15 

When the velocities v, and v, are equal to zero, 

v,=O if p o t  = kn, 

From these conditions i t  becomes obvious that 
Lissajous figure are open when 

The curve in Fig. 92, for example, meets this con- 
dition. 

Lissajol~s figure can be observed on the screen 
of an oscilloscope. A vertical sweep indicates 
one harmonic oscillation, whereas another oscil- 
lation appears on a horizontal sweep. Their to- 
tal may assume different forms if the frequency 
of the alternating voltage at  the plate of the oscil- 
loscope is varied. 

Anyone can make a simple device for observ- 
ing and photographing Lissajolls figures. Twist 
a simple metal ruler so that the plane of one half 
of the  ruler is perpendicular to the plane of the  
other half. Fix one of the ends of the ruler in a 
bench vice. When the free end is depressed and 
then released, i t  will draw intricate Lissajous 
figures in the air. 

The motion of the free end of the ruler is the 
sum of the independent oscillations of its two 
parts. The first section is measured from the vice 
to the bend in the ruler and the second from the 
bend to the free end. The oscillation of each part 
is  perpendicular to  the plane of the vibrating 

section. Since the  bend angle of the ruler is ;, 
the oscillations are mutually perpendicular. The 



shape of the trajectory of the end depends on the 
length and the width of the ruler, as well as on 
the place of bend. 

The same ruler can be used to ohtain different 
figures, to  vary vertical and horizontal oscilla- 
tion ratios, simply clamp the ruler at  different 
places. Since the freqiiency of oscillations~depends 
on the length of the ruler, you can vary the fre- 

Fig. 93 

quency ratio of mutually perpendicular oscil- 
lations of the end of the ruler by changing the ra- 
tio of the length of its parts. This will result in 
different trajectories of the end. 

To photograph the figures, attach the light 
bulb from a flashlight to the free end of the ruler. 
Connect the bulb to  a battery by wires placed 
along the ruler (see Fig. 93). Place this complex 
pendulum in a dark room, and experiment a few 
times to find the right exposure time for photo- 
graphs. A fairly long exposure will probably 
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work best. Figure 94 shows photograph obtained 
exactly in this way. 

Now try similar experiments for yourself. 

EXERCISES 

1. Prove that all curves described by the following system 
of equations are open: 

2. Derive an equation for a curve with the following 
parameters 
z = A ,  cos at, y = A ,  cos 2 0 t  

Waves in a Flat Plate 
(Interference) 
by A .  Kosourov 

Wave propagation is perhaps the most univer- 
sal phenomenon i n  nature. Water, waves, sound, 
liglit and radio, even deformation transfer from 
one part of a solid to another are examples of 
this phenomenon. According to quantum mechan- 
ics, the motion of microscopic particles is also 
controlled by the laws of wave propagation. The 
physical nature, velocity of propagation, fre- 
quency and wavelength of all  these waves are 
different, hut despite these differences, the mo- 
tion of all  waves is similar in many respects. 
The laws of one kind of wa le  motion can be ap- 
plied almost without modification to waves of 
another nature. The most convenient way to stu- 
dy these laws is to study waves on the surface of 
a bodv of water. 

Waves in a Flat Plate (Interference) 1.19 

What is a wave? Throw a stone into a pond. 
The calm horizontal surface of the pond will de- 
velop circles that ripple outwards. Points on the  
surface of the water reached by the wave will 
begin to oscillate relative to  the  position of equi- 
librium, which corresponds t o  the horizontal 
surface O F  the water. The farther a point is from 
the centre of the circle, the longer the point will 
take to 'learn' about the  stone that  has been 
thrown. The disturbance travels a t  a determi- 
nate speed. Points that are reached simultaneously 
by the disturbance are said to  be in the  same stage 
or phase of oscillation. 

All waves dist~irh some physical object with 
their action by causing the object to deviate 
from the state  of equilibrium. Sound waves, for 
example, cause the periodic rise and drop of pres- 
sure. Radio waves and light cause rapid changes 
of tension in  electric and magnetic fields. The 
properties of all media without exception are 
such that a disturbance, which originates in a 
specific area, propagates by passing from one 
point to another with a final speed. This speed 
depends on the  nature of the disturbance and the  
medium. 

The disturbance tha t  generates a wave must 
have a source, that  is an external cause tha t  
breaks the equilibrium in a certain area of the 
medium. A small disturbance, a stone thrown into 
water, for example, radiates spherical waves (in 
this case, circles on the water surface) that travel 
radially in a uniform medium (a medium in which 
wave velocity does not depend on the  direction 
of i ts  propagation). Such sources are called 
point sources, 
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One of the main principles of elementary wave 
theory is the principle of wave independence, al- 
so called the principle of superposition. The prin- 
ciple states that  a disturbance caused by a wave 
at  a point of observation is not influenced by 
other waves passing through the same point. The 
principle of superposition is, in fact, a simple 
rule for determining the summary effect of waves 
from different sources. A summary oscillation is 
simply a sum of the oscillations caused by each 
source independently. 

Interference is a characteristic feature of wave 
processes. Interference is the  combination of 
phenomena that develop in a medium in which 
waves propagating from two or more sources os- 
cillate synchronously. The oscillations of some 
points of the medium may be stronger or weaker 
under the action of the two simultaneous sources 
than they would be under the effect of either 
source in isolation. Synchronized waves may even 
suppress each other completely. 

Let us t ry to produce interference that we can 
see with our own eyes. An experienced observer 
can easily see the interference caused by the 
waves from two stones thrown into a pond. This 
method is unsuitable for study of interference, 
however. We  need, instead, a stahle pictllre of 
interfering waves in the laboratory. 

The first thing we will need for this experi- 
ment is a vessel for water. The vessel should 
have gently sloping walls to avoid masking waves 
from the source with reflections from the walls. 
A shallow saucer will work well, if the water near- 
ly reaches the rim, in which case the waves roll 
onto the walls and are damped quickly, almost 
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without reflections. An electric bell without i ts  
cap is a good wave generator. Wire the hammer of 
the bell, and attach a cork ball to the wire. This 
cork will be our wave source. Be sure that the 
electric wires are well insulated. 

The bell should be mol~nted on a swing above 
the saucer so that  i t  can be lowered into the wa- 
ter at  the rim of the saucer. Power should be fur- 
nished by an autotransformer, which will en- 
able us to vary the amplitude of the oscillations. 
The ailtotransformer from either a toy electric 
train or an electric burning-out machine will 
serve this purpose. When we switch on the selup, 
we will see circular waves on the water surface. 
The average distance between neighbollring crests, 
that  is, the wavelength, will be about 1 cm 
(Fig. 95). 

The waves can best be observed by watching 
the shadows on the bottom of the saucer under di- 
rect sunlight or strong lamplight. Every wave 
acts like a cylindrical lens and casts a bright band 
on the bottom that  repeats the  configuration of 
the wave front. Since the waves move at  about 
10 cent,imetres per second, however, they may 
seem to merge if you keep your eyes fixed on the 
plate. They are visible only close to the source 
where their amplitude is high, and you will need 
to turn your head quickly to trace individual 
waves on the  surface, ji~st as yo11 would need to 
move your head rapidly to trace the motion of 
individual spokes in a rotating wheel. The waves 
are very clear on the mat plate of a camera, es- 
pecially one with a large format. By holding 
such a camera by hand and rocking i t  gently, you 
can easily find a position from which the waves, 
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which appear to move very slowly can be seen 
over the entire surface. A mirror can also be used 
to watch the water surface. The most expedient 
way to observe the waves is with a stroboscope. 
If we illuminate the setup with short flashes of 

Fig. 95 

light with the same frequency as the wave gener- 
ator, the wave will move over one wavelength 
from one flash to  the next, and as a result, the 
wave picture will appear stationary. To obtain this 
effect, simply wire a small lamp into the circuit, 
parallel to the electric bell magnet winding. At 
a distance of 0.5-1 m, the lamp will illuminate 
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the saucer uniformly, and the stationary wave 
picture will appear clearly. I t  is better to use di- 
rect sunlight for photographs. 

Now replace the single cork ball on the ham- 
mer of the bell with a wire fork to which two 
pieces of cork have been attached at  the ends. The 
distance between the ends should be 2-3 cm. If 
Lhe corks touch the water surface simultaneously, 
you will get two sources of waves that oscillate 
not only synchronously, i.e. in time, but in 
phase, which means that the waves from the two 
sources will appear in the same instance of time. 
The picture will look approximately like in Fig. 
96 (here 2dlh = 4). The fan-shaped distribution 
of high-amplitude zones incliides intermittent 
'silence' zones. The central zone of high ampli- 
tudes is perpendicular to the line connecting the 
sources, and both types of zones are located be- 
tween the sources. 

According to  the interference picture, the dis- 
tance between neighbouring peaks on the line 
connecting the sources is one-half of the distance 
between two crests, that is, one-half of a wave- 
length. If we change the distance between the 
sources, the number of high-amplitude zone will 
change too. I n  Fig. 97 the characteristic ratio is 
2dlh = 2. The larger the distance between sources, 

1 the more 'feathers' we have in our fan. But 
I l l ~ e  distance between crests on the line connecting 
1 the sources is always one-half of a wavelength. 
I Thus, the total number of high-amplitude zones 

will always be twice the number of wavelengths 
in the distance between sources. Hence, we can 
concli~de that  if this distance is less than one- 
half of a wavelength, the waves will not inter- 
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Fig. 96 

Fig. 97 

fere at  all. Such sources act as one, producing a 
single system of circular waves. This can be de- 
monstrated by grad~ially reducing the distance 
between sources. Note also that  if a wavefront 
continues from a high-amplitude zone to a neigh- 
bouring zone, i t  will pass from a crest to a trough. 
In  other words, as a wave passes through the ze- 
ro phase, the phase of the wave changes by one- 
half of a complete cycle. 

Now imagine that instead of two cork balls 
creating waves in the water we have two light 
sources emitting light waves. If we place a screen 
perpendicl~lar to  the water surface in the path 
of the lightwaves, we will see illliminated places, 
which indicate high-amplitude zones, and shad- 
ows. Now let us t ry to explain these dark and 
light interference binds. - 

Draw the two wave systems on paper, as if 
the waves were frozen in their tracks (Fig. 98). 
Indicate the crests with light, solid lines and the 
troughs with broken lines. Assign every wave a 
number, giving identical nlimbers to those that 
originate from the sources simultaneously. As is 
clear from the drawing, waves with the same nom- 
ber covered the distance equivalent for both 
sources simnltaneously. Obvioasly, this occurs 
because all points a t  this distance are reached by 

I waves that  travel the same distance. By applying 
the law of superposition, we can conclude that  ' the heights of the crests and depths of the 
troiighs will double a t  this distance. The resulting 
crests should be marked in the drawing with 
heavy, solid lines; mark the troughs with heavy, 
broken lines. To the right and left of line 00 are 
points a t  urhich the crests of one system of waves 
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coincide with tho troughs of another. The waves 
from one source cause upward deviation a t  these 
points, while the waves from the second source 
cause downward deviation, and, as a result, to- 

Pig. 98 

tal  deviation is close to zero. Connect all such 
points with a solid lino. If we analyse the numbers 
of the crosts and troughs, we will see that all the 
points of the right line are reached by waves from 
the left, which travel half a wavelength farther 
than waves from the right. 
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To the right and left of the zero lines lie the 
points of intersection of the first crest with the 
second, the second with the third, and so on. I t  
is easy to see that these are maxima points. If 
we connect these points, we get a line that is 
reached by one wave system with the delay of 
one wavelength. 

By analysing the drawing further we can find 
all the zero and maxima lines. Such lines are hy- 
perbolas. 

I t  is now clear why the distance between neigh- 
bouring maxima on the line connecting the 
sources equals one-half a wavelength. Indeed, the 
midpoint of this line is reached by waves of the 
two systems, which move in the same phase and 
enhance one another. If we move off the point by 
one-half a wavelength, the distance travelled by 
one wave will increase by one-half a wavelength, 
whereas the distance covered by another will 
decrease by the same value. The difference be- 
tween the distances travelled by both waves will 
equal one wavelength, and the waves will en- 
hance one another again. This will reoccur every 
half wavelength. 

A maximum observed when the difference in 
the distance travelled is zero is called the zero 
maximum or the zero order of interference. Ma- 
xima observed when the distance is one wave- 
length are called first-order interference, and so 
on. A maximal order of interference is deter- 
mined by the integer closest to 2dlh, where d is the 
distance between sources and h is the wavelength. 
Now try to  predict from the drawing or from ex- 
periments what changes will occur if one of the 
sources radiates waves with half a period (or a 
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fraction of a period) delay. What  will happen if 
the phase shift is random? To study this pheno- 
menon experimentally, simply make the ends of 
the wire fork different lengths. 

How to Make a Ripple Tank 
to Examine Wave Phenomena * 
by C. L. Stong 

Waves of one kind or another are found at  work 
everywhere in the universe, ranging from gamma 
rays of minute wavelength emitted by nuclear 
particles to  the immense iindulations in clouds 
of dust scattered thinly between the stars. Be- 
cause waves of all kinds have in  common the func- 
tion of carrying energy, i t  is not surprising that  all 
waves behave milch alike. They move in straight 
lines and at  constant velocities through uni- 
form mediums and to  some extent change dire- 
ction and velocity at  junctions where the physi- 
cal properties of the mediums change. The part 
of a solind wave in  air that strikes a hard object 
such as a brick wall, for example, bounces back 
to the source as an echo. 

By learning how waves of one kind behave the 
experimenter learns what behaviour to  expect of 
others, and problems solved by the study of 
waves in one medium can be applied, with appro- 
priate modification, to those in  other mediums. 

The pan of a simple ripple tank that  can be 
made in the home consists of a picture frame 6 

* An abridged version of an article that first appeared 
in the November issue of Scientific Americar~ for 1962. 
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about five centimeters thick and 0.6 m2 square, 
closed at  the bottom by a sheet of glass calked to  
hold water, as  shown ~ I I  Fig. 99. The tank is sup- 
ported about 60 cm above the  floor by four sheet- 
metal legs. A soiirce of light t o  cast shadows of 

Fig. 99. Ripple tank 
for demonstrating 
wave behavior: 
(1) dowels, ( 2 )  aluminized 
cardboard. (3) hole for 
light, (4) ill.-volt motor 
vibrator, ( 5 )  100-watt bare 
straight filament lamp 
with filament vertical (6) 
gicture frame with ;lass 

ottom set In mastic, (7)  
paraffin, reflector, ( 8 )  alli- 
gator clip and steel spring 
for adjusting motor speed 
( 0 )  white paper displa): 
screen, (10) slots for 
leveling 

ripples tliroi~gh the glass onto a screen 9 below i s  
provided by a 100-watt clear lamp 5 with a 
straight filament. Because the lamp is suspended 
above the tank with the filament axis vertical, the 
end of the filament approximates a point source 
and casts sharp shadows. The lamp, partly en- 
closed by a fireproof cardboard housing 2, is sus- 
pended about 60 cm above the tank on a frame- 
work of dowels I. The wave generator hangs on 
rubber bands from a second framework made of 



a pair of metal brackets notched at  the upper end 
to receive a wooden crossbar. The distance be- 
tween the wave generator and the water can be ad- 
justed either by changing the angle of the metal 
brackets or by lifting the crossbar from the sup- 
porting notches and winding the rubber bands up 
or down as required. The agitator of thewavegen- 

11 

Fig. 100. Details of ripple generator: 
(1) shaft passes through hole in screw, (2)  eccentric wei ht 
for adjusting amplitude of oscillation @) ill,-volt rno%or 
clamped ,in clpthes-pin, (4) bead on'w~re can be tuned 
down to glve po~nt source of waves, (5) rubber-band supports 

erator is a rectangular wooden rod. A wooden 
clothespin 3 a t  i ts  center grasps a 1.5 volt toy 
motor driven by a dry-cell battery. Several glass 
or plastic beads 4 are attached to the agitator by 
stiff wires, bent a t  right angles, that fit snugly in- 
to  any of a series of holes spaced about five cen- 
timeters apart. Details of the wave generator are 
shown in  Fig. 100. Attached to  the shaft of the 
motor is an eccentric weight, a 10-24 machine 
screw about 2.5cm long. The shaft 1 runs through 
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a transverse hole driIIed near the head of the 
screw, which is locked to the motor by a nut run 
tight against the shaft; another nut 2 is run partly 
up the screw. The speed of the motor is adjusted 
by a simple rheostat: a helical spring of thin 
steel wire (approximately No. 26 gauge) and a 
small alligator clip. One end of the spring is at- 
tached to a battery terminal, and the alligator 
clip is made fast to one lead of the motor. The 
desired motor speed is selected by clipping the 
motor lead to the spring at various points deter- 
mined experimentally. (A 15-ohm rheostat ol 
the kind used in  radio sets can be substituted for 
the spring-and-clip arrangement.) 

The inner edges of the tank are lined with for~r 
lengths of aluminium fly screening 1 7.6 cm wide 
bent into a right angle along their length and cov- 
ered with a single layer of cotton gauze bandage 
2, either spiraled around the screening as shown 
in Fig. 101 or draped as a strip over t l ~ e  top. The 
combination of gauze and screening absorbs the 
energy of ripples launched by the generator and 
so prevents reflection at  the edges of the tank that 
wolild otherwise interfere with wave patterns of 
interest. 

The assembled apparatl~s is placed in opera- 
tion by leveling the tank and filling i t  with water 
to  a depth of about 20 rnm, turning on the lamp, 
clipping the motor lead to the steel spring and 
adjusting the height of the wave generator until 
the t ip of one glass head makes contact with the 
water. The rotation of the eccentric weight makes 
the rectangular bar oscillate and the bead bob 
up and down in the water. The height, or ampli- 
tude, of the r e s~~ l t ing  ripples can be adjusted by 

9. 



altering thr! pbsition of the free nbt on the ma- 
chihescrew. The wavelength, which is the distance 
between the ci-ests of adjacent waves, can be al- 
tered by changing the speed of the  motor. The 
amount of contrast between light and shadow i n  
the wave patterns projected on the  screen can be  

Fig. 101. Details of tank 
brackets and wave ab- 
sorbers: 
( I )  wave absorber, fly screen. 
(2) gauze bandage (3) 
strap iron, ( 4 )  suppoit for 
light source ( 5 )  support for 
wave generitor. (6) Water, 
(7)  glass ( 8 )  glass set In 
mastic cilking ,compound. 
(9) 16-G alumlnlum legs 

altered by rotating the lamp. The wave generator 
should be equipped with at  least one pair of beads 
so that  ripples can be launched from two point 
sources. Waves with straight fronts (analogues 
of plane waves that travel in  mediums of three 
dimensions) are launched by turning the bead sup- 
ports up and lowering the rectangular bar into 
the water. 

As an introductory experiment, set up  the  
generator to launch plane waves spaced about 
five centimeters from crest to crest. If the appa- 
ratus functions properly, the train of ripples will 
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flow smoothly across the tank from the generator 
and disappear into the absorbing screen at the 
front edge. Adjust the lamp for maximum contrast. 
Then place a series of paraffin blocks (of the 
kind sold in grocery stores for sealing jelly), 
butted end to end, diagonally across the tank 
at  an angle of about 45 degrees. Observe how the 
paraffin barrier reflects waves to one side, as in 
Fig. 102(top). In  particular, note tha t  the angle 
made between the path of the incident waves and a 
line perpendicular to the barrier (€Ir) eqi~als  the 
angle made by the path of the reflected rays and 
the same perpendici~lar (0,). Set the barrier at  
other angles larger and smaller than 45 degrees 
with respect t o  the wave generator and also vary 
the wavelength and amplitude of the waves. I t  
will be found that the angle of incidence equals 
the angle of reflection whatever the position of 
the barrier, a law of reflection that  describes 
waves of all kinds. 

Next replace the paraffin barrier with a slab of 
plate glass about 15 cm wide and 30 cm long and 
supported so that  its top surface is about 12 mm 
above the tank floor. Adjust the water level 
until  i t  is between 1.5 and 3.2 mm above the 
glass and launch a series of plane waves. Observe 
how the waves from the generator slow down 
when they cross the edge of the  glass and encoun- 
ter shallow water, as shown in Fig. 102 (bottom). 
As a result of the change in speed the waves 
travel in  a new direction above the glass, just 
as a rank of soldiers might do if they marched off 
a dry pavement obliquely into a muddy field. In  
this experiment waves have been diverted from 
their initial direction by refraction, an effect 



Fig. 102. Wave and refraction: 
top: ( I )  wave enerator. ( 2 )  straight barrier, (3)  incident 
waves, ( 4 )  reiected waves; bottom: ( I )  wave generator 
(8 )  deep water, (3) ahallow water, ( 4 )  refracted wav; 
fronta, 5 )  reflected WaTP Ironts, ( 6 )  Incident wave lronts 

I How to Examine Wave Phenomena 1 35 

observed in waves of all kinds when they cross 
obliquely from one medium to  another in w!?ich 
they travel at a different velocity. Water waves 
are unique in that they travel at different speeds 
when the thickness, or depth, of the medium 
changes. To a very good approximation'the ratio of 
wave velocity in shallow and deep water i s  
proportional to  the ratio of the depths of the 

Fig. 103 

water. This ratio is in effect theUindex of refraction" 
of the two "mediums". I n  the case of electro- 
magnetic waves (such as light) or mechanical 
waves (such as sound) the velocity of wave pro- 
pagation varies with the density of the mediums. 

The net reflection a t  the disjunction between 
the deep and shallow water can be minimized by 
beveling the edge of the glass (or any other 
smooth, solid material substituted for glass) 
as shown i n  Fig. 103. 

Wave energy can also be focused, dispersed 
and otherwise distributed as desired by harriers 
of appropriate shape, as exemplified by the 
parabolic reflectors used in telescopes, search- 
lights, radars and even orchestra shells. The 
effect can be demonstrated in two dimensions by 
the ripple tank. Make a barrier of paraffin blocks 
or rubber hose in  the shape of a parabola and 



direct plane waves toward it. At every point 
along the  barrier the angle made by the incident 
waves and the perpendicular to  the parabola is 
such that  the reflected wave travels to a common 
point: the focus of the parabola. Conversely, a 
circular wave that originates at  the focus reflects 
as a plane wave from the parabolic barrier, as 
shown in  Fig. 104 (top). I n  this experiment the 
wave was generated by a drop of water. 

Interference effects can be demonstrated in the 
ripple tank by adjlisting a pair of beads so that 
they make contact with the water about five 
centimeters apart. A typical interference pattern 
made by two beads vibrating i n  step with each 
other is shown in Fig. 104 (bottom). Observe 
that  maximum amplitude occurs along paths 
where the wave crests coincide and that nodes 
appear along paths where crests coincide with 
troughs. The angles at  which maxima and nodes 
occur can he calculated easily. The trigonometric 
sine of the angles for maxima, for example, i s  
equal to nhld, where n is the order of the maxir 
mum (the central maximum, extending as a per- 
pendicular to the line joining the source, is the 
"zeroth" order, and the curving maxima extending 
radially on each side are numbered "first", "sec- 
ond", "third" and so on consecutively), h. is the 
wavelength and d is the distance between sources. 
Similarly, minima lie along angular paths given 
by the equation sin 8 = (m - 112) hld, where m is 
the order of the minima and the other terms 
are as previously defined. 

Barriers need not be solid to  reflect waves. 
A two-dimensional lattice of uniformly s'paced 
pegs arranged as in  Fig. 105 will reflect waves in 
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1 Fig. 104. Reflection from a ~arabolic  barrier: 
top: (1) parabolic reflector, (2) reflected wave fronts, 
(3) normal to parabolic reflector (4) incident wave 
fronts; bottom: ( I )  central maxi&um, (2) maximum, 
(s) node 
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the rippIe tank that bear a required geometrical 
relation to the lattice. When a train of plane 
waves impinges obliquely against the lattice, 

Fig. 105 

circillac waves are scattered by each peg and 
interfere to  produce a coherent train of plane 
waves. The maximum amplitnde of this train 
malies an angle with respect to the rows making 

Fig. 106 

up the lattice such that  sin 0 max = n1/2d, 
where sin 8 max designates the direction of 
maxim~im wave amplitude, n the order, h the 
wavelength and d the spacing between adjacent 
rows of pegs (the lattice spqcing) (Fig, $06). 
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This equation, known as Bragg's law in honor of 
its British discoverers, the father-and-son team 
of Sir  William Brapq and Si r  Lawrence Bragg., 
has been wideIy applied in computing the lattice 
structure of crystal solids from photographs of 
wave maxima made by the reflection of X-ray 
waves from crystals. 

Another of the many aspects of wave behavior 
that  can he investigated with the rippIe tank is 
the Doppler effect, first studied intensively by 
the Austrian physicist Christian Jahann DoppIer. 
He recopnized the simiIarity in  wave behavior 
that explains the apparent increase in pitch of 
an onrushing. train whistle and the sIight shift 
toward the blue end of the spectrum i n  the color 
of a star speeding toward the earth. Both effects 
are observed becailse i t  is possible for moving 
wave sources t o  overtake and i n  some cases t o  
outrlin their own wave disturbances. To demons- 
trate the Doppler effect in  the ripple tank, substit- 
ute for the agitator bar a small tube that directs 
evenly timed piiffs of air from a solenoid-actuated 
heIlows against the surface of the water while 
s imuItaneo~~sly moving across the tank at  a 
controlled and iiniform speed. (A few lengths of 
track from a toy train can be mounted along the 
edge of the tank and a puffer can be improvised 
on a toy car.) 

When the p11fIer moves across the tank at a 
speed slower than that of the waves, crests in  
front of the puifer crowd closely together, whereas 
those behind spread apart, as  shown in  Fig. 106 
(top). 

The Doppler effect is observed in  waves of al l  
kinds, including radio signals. By means of 



relatively simple apparatus the effect can be. 
applied to  determine the direction and velocity 
of an artificial satellite from i ts  radio signals. 

These experiments merely suggest the many wave 
phenomena that can be demonstrated by the ripple 
tank. 

Anyone who builds and operates a ripple tank 
will find i t  appropriate for enough fascinating 
experiments to occupy many rainy afternoons. 

An Artificial Representation 
of a Total Solar Eclipse * 
by R. W. Wood 

In  preparing for polarisation experiments on 
the solar corona, i t  is extremely desirable to 
have an artificial corona as nearly as possible 
resembling the reality. The apparatus described 
below is aimed at this end. The artificial corona 
in this case resenlbles the real so closely, as to 
startle one who has act~lal ly witnessed a total 
solar eclipse. The polarisation is radial, and is 
produced in the same way as in  the sun's surround- 
ings, and the misty gradations of brilliance are 
present as well. So perfect was the representation 
that I added several features of purely aesthetic 
nature to heighten the effect, and finally succeeded 
in getting a reproduction of a solar eclipse which 
could hardly be distinguished from the reality, 
except that  the polar streamers are straight, in- 
stead of being curved, as all  the recent photo- 
graphs show them. The curious greenish-blue 

* Nature, January 10, 1901, pp. 250-251. 
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colour of the sky, and the peculiar ~ b a r l y  lustre 
and misty appearance are faithfully reproduced. 
Por lecture purposes an artificial eclipse of this 
sort would be admirably adapted, and I know of 
no other way in  which an audience could be given 
so vivid idea of the beauty of the phenomenon. 
Drawings and photographs are wholly inadequate 
in giving any notion of the actual appearance of 
the sun's surroundings, and I feel sure that any 
one will feel amply repaid for the small amount 
of trouble necessary in  fitting up the arrangement 
which I shall describe. 

A rectangular glass tank about a 30 x 30 cm 
square on the front and 12 or 15 centimeters wide, 
and a six candle-power incandescent lamp are all  
that is necessary. The dimensions of the tank are 
not of much importance, a small aquarium being 
admirably adapted to the purpose. The tank 
should be nearly filled with clean water, and a 
spoonflll or two of an  alcoholic solution of mastic 
added. The mastic is at  once thrown down as an 
exceedingly fine precipitate, giving the water a 
milky appearance. 

The wires leading to the lamp should be passed 
througli a short glass tube, and the lamp fastened 
to the end of the tube with sealing wax, taking 
care to make a tight joint t o  prevent the water 
from entering the tube (Fig. 107). Five or six 
strips of tinfoil are now fastened with shellac 
along the sides of the lamp, leaving a space of 
from 0.5 to  1 mm between them. The strips 
should be of aboilt the same width as the clear 
spaces. They aro to be mounted in two groups 
on opposite aides of the lamp, and the rays pas- 
sing between them produce the polar streamers. 
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The proper number, width and distribution of the 
strips necessary to  produce the most realistic 
effect can be easily determined by experiment. 

A circular disc of metal a trifle larger than the 
lamp, should be fastened to  the t i p  of the l a a p  
with sealing-wax, or any soft, water-resisting 
cement; this cuts off the direct light of the lamp 

Fig. 107 Fig. 108 

and represents the dark disc of the moon. The 
whole is t o  be immersed i n  the tank with the 
lamp in  a horizontal position and the metal disc 
close against the front glass plate (Fig. 108). I t  is 
a good plan t o  have a rheostat in circuit with 
the lamp to regulate the intensity of the illumi- 
nation. On turning on the current and seating 
ourselves in  front of the tank, we shall see a 
most beautiful corona, caused by the scattering 
of the light of the lamp by the small particles of 
mastic suspended in the water. If we look a t  i t  
through a Nicol prism we shall find that  i t  is 
radially polarized, a dark area appearing on each 
side of the lamp, which turns as we turn the 
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Nicol. The illumination is not uniform around 
the lamp, owing to unsymmetrical distribution 
of the candle-power, and this heightens the effect. 
If the polar streamers are found to  be too sharply 
defined or too wide, the defect can be easily 
remedied by altering the tinfoil strips. 

The eclipse is not yet perfect, however, the 

illumination of the sky background being too 
white and too brilliant in comparison. By adding 
a solution of some bluish-green aniline dye (I used 
malachite-green), the sky can be given its weird 
colour and the corona brought out much more 
distinctly. If the proper amount of the dye be 
added, the sky can be strongly coloured without 
apparently changing the colour of the corona in  
the slightest degree, a rather surprising circum- 
stancesince both are produced by the same means. 

W e  should have now a most beautiful and 
perfect reproduction of the wonderful atmosphere 
around the sun, a corona of pure golden white 
light, with pearly lustre and exquisite texture, 
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the misty streamers stretching out until lost on 
the bluish-green background of the sky. The rifts 
or darker areas due to the unequal illumination 
are present as well as the polar streamers. The 
effect is heightened if the eyes are partially 
closed. 

A photograph of one of this ar t i f~cial  eclipses 
is reproduced in  Fig. 109. Much of the fine detail 
present i n  the negative is lost i n  the print. 

Believe I t  or Not 
by G. Kosourov 

Vision i s  our main source of information about 
the environment, and we are used to trusting 
our eyes. The expression 'I can't believe my 
eyes', for example, indicates extreme surprise, 
and normally, our reliance on our eyes is justified. 
The eyes, with the appropriate parts of the brain, 
are a sophisticated analytical apparatus which 
serves our purposes under diverse conditions- 
in a bright sunlight, or darkness, with slow or 
rapid movements. The image that  reaches the  
retina appears free of defects. The image seems 
quite sharp, and the perspective is correct. 
Straight lines seem straight. Objects lack irides- 
cence, i.e., chromatic aberration. 

Our eyes are not ideal instruments, however. 
Objective studies show that  the eye possesses all  
the drawbacks of a lens. Our brain, however, 
constructs a correct image from the incorrect 
picture of the environment on the retina of the  
eye. For example, a man, who develops short- 
sightedness gets a very distorted perspective 
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when he puts on glasses for the first t ime in  his 
life. Straight lines seem curved; planes are 
irregular and sloping. Sometimes this causes 
slight giddiness. But  as time passes, the man 
begins to perceive perspective and straight lines 
correctly. The world again appears undistorted, 
even though i ts  pictiire on the retina remains 
askew. 

Under unusual conditions-when the eyes get 
conflicting information, when contrasts are great, 
when correct perception of distances, dimensions, 
and ratios is difficult, or when certain parts of 
the retina are tired from constant stimulation- 
our brain falters, and various optical illusions 
can occur. W e  shall give you some illustrations 
of how our eyes can be mistaken. W e  do not 
want to undermine your trust i n  your eyes but 
to show you the importance of the synthesis 
performed by the brain in  forming images. 

For the first experiment, which is usually used 
as proof that  the image on the retina, like that  
on a camera, is upside down, we need two pieces 
of cardboard. Two postcards, for example, will 
do. Make an  opening about 0.5 mm in  diameter 
in one of the cards with a large needle, and hold 
i t  about 2-3 cm from your eye. Look through the 
hole a t  a bright landscape, sky, or lamp. Now 
gradually shade the pupil by slowly moving the 
edge of the second postcard upwards. The shadow 
of the edge of the postcard will appear to move 
downwards from above into the field of vision. 

Let us discuss the optical outlay of the experi- 
ment in  more detail. As long as the  postcard with 
the opening is not held in  front of the eye, al l  
points in  the field of vision send their rays over 
10-01544 
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the entire surface of the pupil into the eye 
(Fig. 110a). And the light from every point of 
the pupil is distributed over the entire surface 
of the retina. When we place the first postcard 
in  front of the eye, every point in the field of 
vision is represented by rays passing through 
a small portion of the pupil (Fig. 110b). The 
upper points are transmitted by rays passing 

Fig. 110 

through the lower part of the pupil, whereas lower 
points are transmitted by rays passing through 
the upper portion of the pupil. By shadowing 
the lower portion of the pupil with the edge of 
the postcard, we block the upper field of vision, 
and we see the edge of the card descending from 
above. This unusual experiment is obviously not 
dependent on the path rays take to the eye and, 
therefore, cannot be used as proof that the image 
in the retina is  upturned. The field of vision is 
formed before the light rays enter the pupil. This 
can easily be proved if the image is projected 
onto a mat glass plate instead of the human eye. 

Our second experiment will show how the eyes 
handle conflicting information. Place a paper 
tube about 2 cm in diameter over one eye, and 
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look through i t  at  objects in front of you. Now 
hold the palm of your hand in  front of your 
other eye about 20-25 cm away from your face 
and close to the tube. You will clearly see a hole 
in  the palm, through which objects can be seen. 
The image of the centre of the palm is completely 
suppressed by the images seen through the tube. 

A more refined experiment can be performed 
with the different information the right and left 
eyes receive. Tie a small white object to a white 
thread. Now start this pendulum swinging in 
one plane, and then step back 2-3 m. Hold a 
light filter of any density and colour in front of 
one eye, and watch the pendulum. You will see 
that i t  is not swinging in one plane but making 
an ellipse. If you move the light filter in front 
of the other eye, the motion of the pendulum will 
reverse. 

The optical illusion in Fig. l l l a  is well known: 
the straight line seems to break when i t  intersects 
the black strip. Not many people know, however, 
that if the figure is completed by drawing a 
winch and a load (Fig. I l lb) ,  prompting the 
brain to believe that the line is a taut winch line, 
the illusion of a broken line disappears. 

Our last experiment shows how an image is 
formed when the brain is given a choice of alter- 
natives. Figure 112 shows two pictures of the 
lunar landscape in the area of the Mare Humorum 
and Apennine Ridge. I n  one of the pictures you 
see circular lunar mountains and in the other 
circular lunar craters, i.e., an inverse landscape. 
Turn the pictures, and the landscape will reverse. 
These pictures are absolutely identical, but one 
of them is upside down. The effect of inverse 

10. 
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relief is often observed when the Moon is viewed 
througl~ a telescope. The astronauts who visited 
the Moon had difficulty correctly perceiving the 
landscape which lacked atmospheric perspective 
in  the highly contrastive surroundings. The 
effects of reverse motion can be observed by 

Fig. 111 

watching the silhouette of a dish-shaped radar 
aerial as i t  rotates. You will notice that  the 
aerial bluntly reverses the direction of its rota- 
tion at  certain moments. Students used to be 
advised to study this phenomenon by observing 
the silhouette of a windmill. 

Many interesting illusions are related to  colour 
perception. Optical illusions are not simply 
amusing tricks, since studies of the organs of 
sight under unusual conditions can help explain 
the complex processes in the eye and brain during 
thesynthesis of images of the environment. Readers 
who wish to  learn more about physiologi- 
cal optics are referred to  Experiments in Visual 
Science by J. Gregg.* The book contains a 

* Gregg James R .  Ezperiments in  Visual Science. For 
Home and School. New York. Ronald, 1966, 158 p. 

Fig. 
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number of simple experiments with visual per- 
ception. All of them are quite manageable by 
school children, and many are particularly 
instructive. Unfortunately, the language used to  
describe phvsical optics is far from scientific. 

Colour Shadows 
by B. Kogan 

A Green Shadow 

I n  a room l i t  by normal white light, turn on 
a desk lamp with a red bulb. Place a sheet of 
white paper on the desk and then hold a small 
object, a pencil, for example, between the lamp 
and the desk. The paper will cast a shadow, which 
will not be black or grey but green. This effect 
seems to relate more to physiology and psychology 
than to physics. The shadow of the object appears 
green becailse i t  contrasts with the backgronnd, 
which, although actiially reddish, we perceive 
as white since we know the paper is white. The 
absence of the colour red in the area covered by 
the shadow is apparently interpreted by our 
brain as the colour green. But  why green? 

Red and green are complementary coloiirs, i.c., 
when combined, they prodircc white. What  does 
this mean? As early as the seventeenth centi~ry,  
Newton found that white s i~nlight  is complex 
and combines thc primary coloi~rs violet, blue, 
grce~~-hllle,  qreen. yellow, orange, and red. This 
can be ill~istrated wilh a glass prism. If a narrow 
beam of sunlight is passed throiigh the prism, 
a coloured image of the beam will appear. Newton 
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also used a lens to combine al l  these colours and 
obtain the colour white again. I t  was found tha t  
when one of the colours, green, for example, is 
'intercepted', the beam becomes coloured, in  
this case, red. When yellow is intercepted, the 
beam becomes blue, and so on. Thus, green and 
red, yellow and blue, and similar pairs of colours 
are complementary. 

This interesting experiment can also be carried 
out with light bulbs of other colours. If the light 
bulb is green, for example, the shadow will be red. 
If the bulb is blue, the shadow will be yellow, 
and if the bulb is yellow, the shadow will be 
blue. Generally, the colour of the shadow will 
always be complementary to the colour of the 
bulb. The above phenomenon can easily be 
observed in winter time near neon advertisements 
in the city. Shadows from the neon, which are 
complementary to the colours of the advertise- 
ment itself, should show up clearly when the 
ground is covered with snow. 

Red Leaves 

Turn off the light in your room, and switch on 
a lamp with a blue bulb. Look a t  the leaves of 
plants in  the room: the green leaves look red, 
rather than green or blue, in  the blue light. What  
causes this? Actually, the glass of the blue light 
bulb passes a certain amount of red light along 
with the blue. At the same time, plant leaves 
reflect not only green but red light to some extent 
as well, while absorbing other colours. Therefore, 
when the leaves are illuminated with blue light, 
they reflect only red and, therefore, appear as 
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such in our eyes. This same effect can be obtained 
in a different way by looking at  the leaves through 
blue spectacles or a blue light filter. The famous 
Soviet scientist K .  Timiryazev was speaking 
about such eye-glasses when he wrote: "You have 
only to put them on, and the whole world looks 
rosy for you. Under a clear blue sky a fantastic 
landscape of coral-red meadows and forests rolls 
out . . ." 

What Colour is Brilliant Green? 
b y  E. Pal'chikov 

What colour is the 'brilliant green' often used 
as an antiseptic for minor bruises and wounds? 
Many would probably answer that i t  is green 
(and they would be right). But look through a 
bottle of tlie brilliant green at  a bright light 
source, the sun, the filament in an electric bulb, 
or an arc discharge, for example. You will see 
that the brilliant green transmits only the colonr 
red. So, is the 'green' tincture red? 

Pour a brilliant green sol~ltion* into several 
developing trays of various depth or thin-wall 
glass beaker, and examine i t  in the light. Thin 
layers of the solution are, indeed, green, but 
thicker layers have a grayish t int  (with purple 
hues), whereas the thickest layers appear reddish. 
In  other words, the colour depends on the thick- 
ness of the layer of solution. How this can be 
explained? Two transparency bands-a broad 

* The tincture is not diluted, the vessels mljst be 
e~trerqely shallow: 

What Colour is Brilliant Green? 153 

blue-green band and a narrow red band (Fig. 113) - 
are visible in the transmission band of a thin 
layer of brilliant green. I n  reality, however, the 
red band is not narrow: i t  extends into the in- 
frared range, although the human eye can detect 
only a small fraction of the band. The absorption 

Transmission band 
ot a t h ~ n  layer 

t- 
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in the red band is lower than that  irl the blue- 
green band (the transmission factor for the red 
hand is substantially greater than that for the 
blue-green). But  the blue-green band is wider 
than the red, and i t  is situated in the part of the 
spectrum where the eye is most sensitive. There- 
fore, a solution of brilliant green in a thin layer 
will appear green. 

Now let us double the thickness of the layer 
~r place two layers over one another, which 
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will .have the same effect. Obviously, the trans- 
mission factor will decrease. To get the  value of 
this new transmission, we multiply the factors 
of the first and second layers. I n  other words, the 
transmission factor for the total  layer should be 
squared. I n  this case, the transmission factor for 
the blue-green band will decrease very signifi- 

cantly, whereas i t  will remain almost the same 
for the red band. 

Figure 114 shows changes in  the  transmission 
factors for the blue-green and red bands with 
increases in the thickness of the brilliant green. 
The proportion of blue-green to red obviously 
decreases. At  a certain thickness, the solution 
will transmit only red light. Now answer the  
questioi~ again. What  is the real colour of brilliant 
green? 

A11 Orange Sky 
by G .  Kosourov 

A number of interesting experiments concern 
~ o l o n r  perception. Those we suggest here involve, 
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various optical illusions caused by unusual visual 
conditions or eye fatigue. 

Colour perception is a very complex mechanism, 
which has not yet been studied adequately. The 
retina of the  eye contains two types of colour- 
sensitive cells called rods and cones. The rods 
contain photochemically sensitive pigment, i.e., 
purpura or rhodopsin. When acted upon by light, 
rhodopsin decolourizes and reacts with the nerve 
fibres, which transmit signals to the  brain. I n  
very bright light, the pigment decolourizes com- 
pletely, and the rods are blinded. The process is 
reversed i n  the dark, i.e., purpura is recovered. 
Rod or twilight vision is very sensitive but 
achromatic, since the rods cannot distinguish 
colours. In  fairly bright light, cone vision, which 
is sensitive to colour, takes over. Many convincing 
experiments indicate tha t  the cones contain three 
kinds of photochemically sensitive pigments 
which are maximally sensitive in the red, green, 
and blue bands of the spectrum. The variable 
degree of their decolourization produces the 
sensation of colour in the brain and allows us to 
see the world in different colours, tints, halftones, 
and hues. This principle of trichromatic vision 
is used in  motion pictures, colorlr television, 
photography, and printing. Methods for meas- 
uring colours quantitatively are also based on 
the trichromatic principle. 

Colour perception can be generated not only 
by colour itself but by intermittent illnmination, 
for example. To test this, draw the hlack-and- 
white circles shown in Fig. 115a-d with India 
ink. Your circles should be approximately 8- 
12 cm in  diameter. Cut out the discs, and spin 



156 G. Kosourov 

them slowly, e.g., 1-3 revolutions per second, 
on the axis of a film projector, record player, 
tape recorder, or a child's top. Instead of black 
arcs you will see coloured circles. The colour 

( c )  

Fig. 115 

depends on the velocity of the revol~ltions, the 
illumination, and the design on the circle itself. 
On the disc in Fig. 115a, for example, the arcs 
that follow the black sectors (in the direction of 
rotation) appear red when poorly lighted, and 
yellow under dazzling light. At a certain speed 
and brightness, the black sectors appear blue, 

An Orange Sky 157 

This phenomenon is still  incompletely under- 
stood. 

Colours are distinguished not only by shade or 
variety but also by saturation. If we slowly add 
white paint t o  red, the red will gradually become 
pinker. I n  paintings and, particularly, in  printed 
copies of paintings, i t  is very difficult to obtain 
well saturated tones and a broad spectrum of 
brightness. The brightness ratio of the brightest 
white paint t o  the deepest black barely reaches 
one hundred, whereas in nature the ratios reach 
many thousands. Reproductions of paintings, 
therefore, often appear either washed out or too 
dark, and one of the most important elements of 
steric perception-atmospheric perspective-is, 
thus, lost. The image of a landscape or a genre 
scene i n  such paintings seem two-dimensional. 
The range of brightness in projections of slides 
onto a screen is much broader. That  is why photo- 
graphs on colour reversible film are so expressive 
and have such wonderful perspective. 

The perception of a painting can be improved 
considerably by illuminating i t  in  a special way. 
Make a negative from a colour picture out of 
a magazine and then use a contact printing proc- 
ess to make a black-and-white slide of the 
negative. Now project the slide onto the original 
using a projector with a powerful light source. 
Make sure that  the projected slide lines up exactly 
with the original. The result will make you 
glad you made the effort. The picture will seem 
livelier; i t  will seem to gain dimension and a 
special charm. Now turn off the projector, and 
you will see how dull and inexpressive tho original 
is with uniform lighting. 
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The followi~lg experiments deal with so-called 
sliccessive colour images. Complete recovery of 
colour-sensitive pigment is a rather slow process. 
If you look a t  a monochromatic picture for a 
long time and then shift your eyes to  a piece 
of white paper or a white wall or ceiling, the 
white will appear to  lack the colour tha t  has 
tired the eyes. The same picture will appear on 
the white surface but i t  will be i n  the complemen- 
tary colour. Cut out red, orange, yellow, green, 
blue, and violet paper squares 2 by  2 cm in size. 
Put  one of these coloured squares on a piece of 
white paper in  front of you and look a t  i t ,  without 
straining your eyes, for about 30 seconds. Stare 
fixedly a t  one point, and do not let the image 
shift on the retina. Now shift your gaze to  a field 
of white, and after a second you will see a clear 
afterimage of the square in  a complementary 
colour. This shows that  the complementary to  
red is green, to blue-orange, and to  yellow- 
violet. Each pair of complementaries, if mixed, 
should produce achromatic white or grey. 

To mix complementaries place two 'complemen- 
tary' squares (red and green, for example) close 
together, and put a glass plate between them 
upright (Fig. 116). Now position your eye so that  
one of the squares is visible through the glass and 
the other reflected i n  it .  By  varying the angle of 
the plate and thus changing the ratio of the 
light fluxes from the squares, you can almost 
completely decolourize the superimposed images. 
To achieve complete achromatization of the 
image, the colours must match perfectly. A dull 
brown colour is most often obtained. But if the 
colours are absolutely uncomplementary, green 
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and yellow or red and violet, for example, the 
resulting colour will always be bright. The 
images appear even brighter if the squares are 
placed against a complementary. rather than 
white background. 

The most striking and inexplicable colour 
illusion is illustrated by our last experiment. 
We  know tha t  colour reproduction is based on 

the principle of trichromatism. If we photograph 
the same scene three times using three different 
light filters-red, green, and blue-and then 
project the  pictures from three different projec- 
tors onto the  same screen, the resulting picture 
will have realistic colours. The light filters 
should produce the colour white when combined. 
Try this experiment with only two complementary 
light filters, red and green, for example. The 
transmission of colour should be good in this  
case too, although not as perfect as in the three- 
colour projection. Experiments show that  even 
one filter is enough for projection. 

Photograph the same scene twice on panchro - 
matic film without moving the camera. Use a red 
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light filter for the first picture and a greenyfilter 
for the second. The filters from a school kit will 
suit this purpose since they need not be care- 
fully matched. Use a contact printing technique 
to make positives, and then project the two slides 

Fig. i i 7  

from two projectors onto a single screen. Line 
the images u p  exactly. Now place a red filter i n  
front of the projector with the slide taken with 
a 'red filter. Leave the picture in the second pro- 
jector black and white (Fig. 117). The result 
will be a colour picture full of tones and hues 
even though you are projecting only red and black 
and white pictures in which the distribution of 
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light and shade differs. Objective investigations 
of the light reflected from the various places on 
the screen show only the colour red, although 
with different degrees of clarity and saturation. 
Colour perception in this particular case is entire- 
ly subjective. The projectors should be powered 
by separate autotransformers so that the illumi- 
nation from each can be controlled independently. 
Normally, the colour seems natural when the 
screen is dimly lit. 

Thus, phenomena that seem simple and obvious 
are actually full of secrets and mystery. 

The Green Red Lamp 
by V.  Mayer 

In his excellent book 1 he Universe 
of Light, W .  Bragg describes an elegant 
experiment to demonstrate a peculiar 
property of the human eye. The experiment is 
simple enough to be reproduced a t  home without 
much difficulty. The necessary equipment can be 
assembled from a toy constructor kit (Fig. 118). 
Attach a micromotor (2) by an aluminium or 
tinplate mount to an aluminium baseplatc ( I )  
15 X 60 X 110 mm in size. Insert a shaft (4) 
with a pulley (5) whose inner diameter is 15- 
25 mm into the openings of two risers (3) about 
60 mm in height. 

Attach a cardbdard disc (6) 100-140 mm 
in diameter to one end of the shaft before instal- 
ling (if the shaft is threaded, the disc can be 
-- 

'' The Universe of Light. By Sir William Bragg, 
London, Dover, 1950. 

i i - 0 1 5 4 4  



V. id aye^ The Green Red Lamp 

Fig. 

Fig. 

fastened with nuts). Fix another riser (7) t o  the 
same base plate with an opening for a small light 
bulb (8). Connect the shaft of t b e  micromotor and 
the pulley with a rubber ring (9). The motor 
should be connected to one or two flashlight 
batteries connected i n  series. According to Bragg, 
the disc should rotate a t  a speed of 2 or 3 revo- 
lutions per second. The speed can be controlled 
to a certain extent by slowing the pulley with 
one finger. 

Test the setup before beginning the experi- 
ment. Then cut a sector i n  the cardboard disc 
whose arc is about 45". Glue white paper t o  one 
half of the remaining sector and black paper to 
the other half (Fig. 110). Paint the bulb of the 
flashlight, which should be rated for 3.5 V, with 
red nitrocellulose enamel (fingernail polish will 
do). When the enamel has dried, insert the light 
bulb into the opening in  the riser, and supply 
i t  with wires to the batteries. Place a desk lamp 
20-50 cm i n  front of the disc t o  illuminate i t  
squarely. Now connect the bulb to the batteries, 
and switch on the motor. 

If the disc rotates so that on each revolution 
the bulb is first shaded by  the  black sector, the 
bulb will appear red regardless of the strength 
of illumination or rotation speed. If we change ' directions by changing the polarity of the bat- 
teries so that  the bulb is shaded first by the white 
sector, the bulb will appear green or blue-green! 
If the conditions of the experiment (the speed of 
rotation or the colour of the enamel) have not 
been carefully fulfilled, the lamp will appear 
light blue with a whitish tinge rather than 
blue-green. 
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Now let us try to explain the results of the 
experiment. The disk spins rapidly, and each 
time the red bulb is  revealed through the cut-out 
sector, a brief red image reaches the retina of the 
eye. If the white sector shades the bulb as the 
rotation continues, the retina receives a reflection 
of the scattered white light from the desk lamp. 
This white light acts on the retina for a longer 
time than the red. After the black sector passess 
before the eye, the process starts again, and the 
lamp appears blue-green since the eye perceives 
the colour complementary to the red bulb. 

The retina apparently becomes more sensitive 
to the other spectral components of white after 
brief illumination with red light. When the 
eye, which 'tires' of the colour red, is illuminated 
by white light, i t  perceives the white without 
a 'red component'. The retina has become more 
sensitive to the colour complementary to red- 
blue-green. Since the retina is  exposed to the 
white light much longer than to the red, the 
light bulb appears blue-green rather than red. 
This hypothesis is supported by the result of 
rotation in  the opposite direction so when the 
bulb is shaded first by the black sector. During 
exposure to the colour black the part of the 
retina on which the red image of the bulb appears 
is able to recover. Therefore, when the white 
half of the disc appears, the eye perceives all the 
colours that compose white equally. Since the 
red light acts on the retina for a longer time 
than all other components (first the red compo- 
nent of the white colour appears and then the 
red colour of the bulb itself), the bulb looks 
red. 
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Measuring Light Wavelength 
with a Wire 
by N. Rostovtsev 

Stretch a thin wire (W) 0.05-0.12 mm in dia- 
metre vertically about 2-3 mm in front of an 
imaginary eye (E). Now direct a beam of light 
from a point source towards the eye (Fig. 120). 
To the right and left of the point source, we will 

A (  Fig. 120 

see a bright thin band. The band, which appears 
as a result of the diffraction of light is called a 
diffraction fringe. We will use an ordinary light 
bulb or a bulb from a flashlight as a light source 
i n  our observations. Place the light behind a 
small opening (0) in a screen ( A )  1-1.5 m away 
from the observation point. The wire (W) can be 
replaced with a thin filament or hair. 

If we examine the centre of the diffraction 
fringe careflllly, we can detect a white band with 
reddish edges. This band is called the central 
maximum. J t  is bounded on either side by darker 
bands, which are called first minima. Colour 
bands follow next, which, as we move from the 
centre to the edges, change gradually from green- 



ish-blue to red. Darker bands, called second 
minima, reappear at the edge of the red. This 
pattern then repeats, although the minima become 
paler, and the light bands finally merge into a 
continuous band. Observations with wires of 
different diametres show that the smaller the 
wire diametre, the greater the distance between 
adjacent minima. 

To perform interesting experiment place the 
wire used for diffraction observations between 
the jaws of a vernier caliper. Tighten the caliper 
slightly, and then carefully remove the wire. The 
width of the slit between the jaws will equal the 
diametre of the wire exactly. Now look through 
this slit from the same distance from which you 
made your diffraction observations, and align 
the slit with the light source 0. On either side 
of the source, you should see a diffraction fringe 
whose minima and maxima are exactly the same 
distance apart as those in the diffraction of the 
wire. This observation is an excellent illustration 
of the Babinet principle, according to which 
diffraction patterns from a screen and an opening 
of the same width are identical outside the area 
of a direct ray. 

Now coil the piece of wire we have been using 
for our observations of the diffraction fringe into 
a disc whose diametre is about half the diametre 
of a dime. For this we will need a wire 2-3 m long. 
Hold this disc in front of one eye, and look a t  
a point source. You should see a number of 
haloes: a central white circle with reddish fringe, 
surrounded by coloured circles. The haloes are 
separated from one another by narrow dark 
circles, i.e. the minima. Each such minimum 
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follows the red fringe of the preceding halo. If 
the observation is made from the same distance 
as in the experiment with the diffraction of the 
wire, the diametres of the dark circles will equal 
the distances between the respective minima of 
the diffraction fringe. The finer the diametre of 
the wire, the more visible the haloes will he. 

Whv do such haloes appear if a coil of wire is 
placed in the path of rays from a point source? 
Each small section of the wire in front of the 
eye produces its own diffraction fringe, which is  
symmetrical with respect to the light source. 
Since every section in the coil is oriented differ- 
ently, the resulting diffraction fringes are tilted 
differently around a single point, which coincides 
with the light source. Since the thickness of the 
wire is uniform, minima of the same order are 
located the same distance from the light scurce 
in all diffraction fringes and merge to produce 
dark circles. The coloured sections between the 
minima also merge to produce coloured circles. 

Now let us determine the conditions in which 
minima appear in the diffraction pattern pro- 
diicod by a wire with d diametre and a slit of 
the same width. Since the distance between the 
miriima is the same in both cases, either the wire 
or the slit can be analysed. To simplify the 
calculation, we shall select the slit. Let us exam- 
ine the waves that do not change direction after 
passing through the slit (in Fig. 121 they are 
represented h y  dotted lines). The eye converges 
them on the retina at point 0. Waves from all 
points of the slit enhance each other a t  this spot 
because they reach the eye regardless of the 
distance travelled, and at point 0 they ari  in 
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the same phase. Therefore, the central maximum 
is formed in the neighbourhood of the point 0. 

The eye converges waves diffracted a t  angle cp 
to the initial direction at point K, where the 
waves interfere as a result of superposition. The 
result of the interference will depend on the 
difference in the distance travelled by the rays 
emanating from the extreme points A and B of 

K 
0 

Fig. 121 

the slit. Draw a section BC perpendicular to the 
ray emanating from point A. The new intercept 
AC equals the difference between the distances 
travelled by the two extreme rays. I t  follows 
from Fig. 121 that AC = d sin cp,  where d is  
the slit width.  

Calculations show that in the diffraction pat- 
tern produced by a rectangular slit, minima are 
observed when the difference in the distance 
travelled by the waves emanating from the ex- 
treme points of the slit is 

d sin q = kh 

where h is the light wavelength and k is the 
number (order) of a minimum (k = 1,  2, 3. . . .). 

Now we shall test the validity of formula (1) 
for the first minimum, i.e. k = 4. Let the second- 
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ary waves that emanate from all points of the 
slit travel a t  an angle cp so that 
d sin cp = h (2) 
Divide the slit into two imaginary rectangular 
strips (zones) AD and DB, both of width d/2. 
According to definition (2) the difference in the 
distance travelled by rays from points A and D 
is h/2. The difference between rays from any two 
points dl2 apart on the slit will be the same. 
The waves that travel h/2 suppress one another 
by superposition and, therefore, if condition (2) 
is observed, the waves from zone AD will suppress 
the waves from DB. As a result the first minimum 
will appear a t  point K. 

Similarly, we can show that the next (second) 
minimum will appear if d sin cp = 2A. In  this 
case, the slit should be divided equally into four 
zones. The difference in travel for the waves both 
from the first and second, and from the third 
and fourth zones will be h/2. Therefore, the wave 
from the first zone will suppress that of the 
second, and the wave of the third zone will sup- 
press that of the fourth. The second minimum 
appears on the retina where these waves are 
superimposed. 

According to formula ( I ) ,  the light wavelength 
can be determined from the formula 

d sin cp A=- 
k (3) 

Measurements of li, can be simplified considerably 
by using a primitive metre called an eriometre. 
You can make an eriometre from a square piece 
of cardboard whose sides are 10-15 cm long. 



Draw a circle with a radius of 20-30 mm in  the 
middle of the square. Make an  opening of 2-3 mm 
in  diametre in  the centre and 6-8 openings of 
smaller diametre around the circumference. 

Place the eriometre A directly in front of a n  
electric biilb. Now stand 1-2 m away from the 
instrument so that  rays pass directly from a 
sector of the incandescent filament through open- 
ing 0 t o  the eye. Hold a coil of wire in  front of 
one eye, and move i t  perpendicular to  the rays 
until  the haloes are clearly visible. Vary the  
distance between the instrument and your eye 
to  find a position from which the perforated 
circiimference of the eriometre coincides with 
the middle of dark ring of k order (in Fig. 120, 
k = 2). 

As is obvious from the figure. the tangent of 
the diffraction angle cp for a dark ring is calc~ilated 
from tan cp = rl l ,  where r is the radius of the  
circumference of the eriometre and I is the dis- 
tancefrom the instrument to the coil of wire. At 
low diffraction angles, which are common in such 
measnrements, the following relationship is true 

sin cp tan cp=' 1 

By b~~bst i tu t ing  the value of sin cp in  expression 
( I ) ,  we get a formula for wavelength 

We already know the radius of the eriometre r. 
The distance I can be easily measured. The order 
of a dark ring k is determined by obsarving the 
haloes. The wire diametre d i s  measured with a 
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micrometre. If the measurements are taken i n  
white light, we can determine the effective light 
wavelength to which the human eye is most 
sensitive with formula (4). This wave i~ approx- 
imately 0.56 pm long, and waves of this length 
correspond to  the green section of the colo~ir 
spectrum. 

Haloes may appear in  diffraction patterns 
caused by round obstacles. They can be observed 
by spreading a small amount of lycopodium pow- 
der (composed of the spores of a club moss, i t  
can be obtained in  any drugstore) on a glass plate. 
Gently tap the edge of the plate against your desk 
to remove excess powder. Now, look through the 
plate at a light source. You should see haloes 
formed by the round spores, whirl1 act as obsta- 
cles. Especially bright haloes appear around a 
drop of blood pressed between two glass plates. 
I n  this case the diffraction is caused by red blood 
cells called erythrocytes. 

The haloes produced by round and rectangular 
obstacles differ slightly. The minimum condition 
for haloes from rectangular obstacles is de- 
scribed by formula (1). The minimum condition 
for haloes from round obstacles is 
d sin cp = 1.22h; 2.23h; . . . (5) 
Here d is the diametre of a round screen. With 
the help of an  eriometre and formula (5 ) ,  we can 
determine the average diametre of club moss 
spores and erythrocytes without a microscope! 

Haloes can be observed around the Sun, the 
Moon, and even other planets. These haloes 
appear when light passes through clusters of 
water drops or ice crystals suspended in  the 
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atmosphere (through a thin cloud, for example). 
Clear haloes appear only if the  cloud is  made 
of drops of equal diametre or crystals of the same 
thickness. If the drops or crystals vary in  size, 
however, rings of different colours superimpose 
to produce a whitish corona. This is  why a halo 
appears around the Moon, particularly a t  twilight 
on a clear day. The water vapour in  the atmo- 
sphere condenses slightly on such nights and 
produces small drops or crystals of the same 
size. Haloes sometimes occur when the light 
from a distant lamp passes through a fog or a 
window pane covered with a thin layer of ice 
crystals or condensed vapour. 

EXERCISES 

i. The effective light wavelength . is approximately 
0.56 ym. Using an eriometre, determine the diametre of 
the strands in nylon stockings and ribbons. 
2. How does the appearance of the halo indicate whether 
the cloud contains water droplets or ice crystals? 
3. The angular diametre of the Moon is 32 minutes. 
Determine the diametre of the drops in a cloud, if the 
angular radius of the central circle of its halo is four 
times the angular diametre of the Moon. 

Measuring Light 
with a Phonograph Record 
by A. Bondar 

One of the  most accurate ways of determining 
the spectral composition of radiation is the 
method based on diffraction. A diffraction grating 
is a good spectral instrument. We can observe 
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diffraction and even measure the wavele~~gth  of 
visible light with a standard phonograph record. 
I n  acoustic recording evenly spaced grooves are 
cut on the surface of a disk. These grooves scatter 
light, whereas the  intervals between them reflect 
it. I n  this way the disk becomes a reflecting 
diffraction grating. If the  width of reflecting 
strips is  a and the  width of scattering strips is b, 
then the  value d = a + b is the  period of the 
grating. 

Consider a plane monochromatic wave of length 
h which is  incident a t  angle 0 to  a grating with 
period d. According to  the Huygen-Fresnel prin- 
ciple, every point of a reflecting surface becomes 
an individual point source sending out light in  
all possible directions. Consider the waves travel- 
ling a t  an  angle cp t o  the grating (see Fig. 122). 
These waves can be collected a t  one point with a 
condensing lens (the crystalline lens of the eye, 
for example). Let us determine under what com- 
bination of conditions the waves will enhance 
one another. 

The difference between distances travelled by 
rays I and 2 issued by points A and B from 
neighbouring reflecting areas (Fig. 123) is  
( A K ) = = =  I N B I = d s i n r p - d s i n O =  

= d (sin rp - sin 0) 

(KB is the front of the reflected wave directed a t  
angle rp, A N  is the front of the incident wave). 
If the difference is  a common multiple of the 
wavelength, the phases of oscillations travelling 
from points A and B will be equivalent and will 
enhance each other. All other reflecting areas of 
the grating behave similarly. Therefore, the 
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condition of central maximum is described a s  

d (sin cp - sin 9) = kh (1) 

where k = 0,  1 ,  2, . . .. Hence we can determine 
the wavelength h. For this we need to  know the 
grating period d, the incidence angle 9 for the 
wave with respect t o  the grating, and the angle 

Fig. 122 Fig. 123 

of its direction to a corresponding maximum cp. 
Normally, the grating period is much larger than 
the wavelength (d is mncli larger than h), and 
angles cp are, therefore, small. This means that  
the central maxima are situated very close to  one 
another, and the diffraction pattern is rather 
hazy. The larger the incidence angle (9), however, I 
the larger the cp angles and, conseqnently, the 1 
more convenient the measurements. Thus, the I 
rays should be directed towards the grating at  
an  angle. 

So far we have been discussing monochromatic 
light. What if complex white light strikes such 
a grating? I t  is clear from equation (1) that  the 
location of every central maximum depends on 
wavelength. The shorter the wavelength, the , 
smaller the angle cp corresponding to  the maxi- ' 
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mum. Thus, all  maxima (except for the central) 
stretch out i n  a spectrum whose violet end is 
directed towards the centre of the diffraction 
pattern and whose red end is directed outward. 
Two spectra of the first order, followed by two 
spectra of the second order, and so on lie on 
either side of the central (zero) maximum. The 
distance between corresponding lines of spectra 
increases with an  increase in the order of the 
spectrum. As a result, spectra may overlap. I n  
the spectrum of the Sun, for example, second- 
and third-order spectra overlap partially. 

Now let us turn to the experiment itself. To 
measure the wavelength of a specific colour, we 
need to determine the period of grating (d), the 
sine of the incidence angle of the ray with respect 
t o  the grating (sin 9), and the sine of the angle 
that  determines the direction towards a maximum, 
for example, the maximum of the first order 
(sin cp,). Tho period of the lattice can easily be 
determincd by playing the record: 

AR d = - 
n At 

Here AR is the absolute displacement of the 
stylus along [,he radius of the record i n  A t  time, 
and n i s  the number of revolutions per unit of 
time. Usually, d is approximately 0.01 cm. 

A desk lamp can be used as a light source. 
Make a scroon with a slit out of cardboard, and 
cover the lamp to  avoid light interference in  
diffraction pattern analysis. The filament of the 
bulb should be visible through the slit. Place 
the lamp closo to  one wall of the room. Place the 
record horizort tally near the opposite wall. Now 
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find the image of the  slit (see Fig. 224). You 
should see the  diffused colour bands that indicate 
the spectrum of the first order (k = 1) simultan- 
eously. I t  is  easy to  prove tha t  the greater the 
angle 0, the wider the colour image of the slit 
and the more accurate measurements of the  angle 
a t  which the ray in question i s  diffracted will be. 

Fig. 124 
I 

To determine sin ply have a friend hold a pencil 
(or some other object) over the slit so that its 
image coincides with the selected spectrum band 
in  the light reflected from the grating (as from a 
flat mirror) (zee Fig. 124). Once we have measured 
a. b. and h with a ruler, we can determine sin cpl 
a6d ' sin 0 

sin Ti= 

sin 0 = 
a 

fa1 + ha 

These expressions could be somewhat simplified. 
Since b << a, and h << a ,  then 

a 1 - - , I - - -  1 b2 

fl- = f l q ? p  2 as 

I ha - b= h = d (sin q4 - sin 0)wd - 
2aa 

I t  is interesting to compare the estimated 
wavelengths of various colours with the values 
in  the reference tables. I n  our experiments the 
error, with very careful measurements, was on 
the order of m. This level of accuracy is  
quite acceptable for wavelength in  the visible 
band ( h  is approximately m). 

( A Ball for a Lens 

Geometrical optics is  based on the idea that 
light rays move in straight lines. You can prove 
this for yourself experimentally. Replace the 
objective lens of your camera with a sheet of 
black paper with a very small opening in  it .  
Brightly illuminated objects can be photographed 
with such a device, called a camera obscura. The 
picture in  Fig. 125, for example, was taken with 
an ordinary camera whose objective lens was 
replaced with a sheet of black paper in which an ' opening 0.22 mm in  diametre had been made. 1 The ASA 80 film was exposed for 5 seconds. The 
image on the  film coincides exactly with the cen- ' tralprojection of thepointsof the object by straight 

I 1 1  1 2 - 0 1 5 4 4  



lines passing through the opening. The image is 
a hard evidence that  light rays travel in  straight 
lines. 

A shadow on a white screen cast by an opaque 
object is explained as a projection of the coritour 
of the object on the plane of the screen by rays 

Fig. 125 

from every point of the light source. Since the 
light source is usually rather large, the dark 
centre of the shadow called the umbra is bounded 
by a diffused semishadow or penumbra. We  
might expect t o  reduce or even eliminate the 
penumbra by reducing the size of the light 
soiirce. Experiments show quite the opposite, 
however. When the light source is fairly small, 
i t  reveals phenomena that  were earlier masked 
by the penumbra. For example, the straight edge 
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of an opaque plate casts the shadow shown in  
Fig. 126. The shadow was photographed a t  a 
distance of 0.5 m from the screen in  white light 
through a red filter, and the picture was then 
enlarged. The distance between the first two dark 
bands is 0.6 mm. The edge of the shadow is di- 
ff used, and dark and bright bands of diminishing 
contrast lie parallel to the edge. If the light 
source is white, the bands are all  the colours of 
the spectrum. 

A shadow cast by a thin wire (Fig. 127) also 
has a complex structure. The edges are fringed 
with bands similar to those of the opaque plate, 
but there are dark and bright bands within the 
umbra whose width reduces with the thickness 
of the wire. (This picture was taken in white 
light througll a red filter. The wire diameter is 
1.2 mm, and the distance from the wire to the 
camera is 0.5 m.) 

The shadow cast by a ball or a small opaque 
disk is quite unusual (Fig. 128). I n  addition to the 
familiar dark and bright circles surrounding the 
shadow, a bright spot appears in the centre of 
the umbra as though there were a small opening 
in the centre of the disk. (For this picture weused 
a ball 2.5 mm in diametre and a red filter. 
R1 = RO = 0.5 m.) 

Diffraction refers to the phenomena that  result 
when light does not propagate i n  strict accor- 
dance with the principles of geometrical optics. 
These phenomena can be explained by the wave 
nature of light. We can get a more exact descrip- 

I 
tion of light propagation not from the  structure of 
the rays but from the patterns of light wave 
propagation themselves. 
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Fig. 126 

Fig. 127 

Fig. 128 
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Consider the circuIar waves that appear when 
a stone disturbs the calm surface of a pond. If 
the waves reach a log floating on the surface, a 
clearly defined shadow appears in the wake of 
the log. The shadow is bounded by the rays drawn 
from the point a t  which the stone hits the surface 
of the water through the ends of the log. Within 
the shadow, diHraction creates less noticeable 
waves, which scarcely disturb the pattern of the 
geometrical shadow. If the waves run into a 
pile, the wave pattern for a very short distance 
behind the pile does not resemble a geometrical 
shadow. Finally, if the waves hit  a thin pole 
sticking out of the water, no shadow appears at 
all since waves move freely around small obsta- 
cles. In  this case onIy a weak circular wave caused 
by the pole is visible on the surface. 

Thus, sometimes straight rays accurately de- 
scribe the patterns of wave propagation, and some- 
times diffraction patterns dominate. The pattern 
depends on the relationship between the wave- 
length, the dimensions of the obstacle (or open- 
ing) that limit wave propagation, and the dis- 
tance to the plane of observation. This relation- 
ship can be formulated as follows: if the obstacle 
or opening can be seen from the points of the 
screen on which we observe the shadow at an 
angle greater than the angle at which the entire 
wavelength can be seen from the distance equal 
to the width of the obstacle, then the diffraction 
does not strongly distort the picture of the rays. 

a h  In the resulting formula >> ;, a is the size 
of the opening, R is the distance t o  the screen on 
which the shadow is observed, and h is the wave- 
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length. If the angles are comparable, however, 
or if the first angle is less than the second, i.e., 
a h  << ;, diffraction plays decisive role, and the 

rays cannot be described as linear. In  optics the 
angles are normally comparable since visible 
light wavelengths are very small (from0.7 pm 
for the colour red to 0.4 pmforviolet).  But at  
great distances from a thin opening or wire, the 
first angle may be less than the second. 

Light diffraction patterns can be observed with 
a very simple setup. Make an  opening 0.1-0.2 mm 
in diametre in a piece of foil with a sharp needle, 
and glue the foil to  a piece of cardboard in  which 
an  opening has been made. The cardboard is 
needed only to  prevent the interference of the 
light source (this can be a desk lamp). Attach the 
cardboard to  a mount, and project a magnified 
image of the filament of the bulb onto i t  with 
a lens capable of close-ups from 4 to 6 cnl away. 
Make certain that  part of the image falls on the 
opening in  the foil. The light cone that forms 
behind the screen can easily be projected onto a 
mat plate of glass or detected with the human 
eye (if the light cone catches the eye, the opening 
will seem dazzling). Now place objects for ob- 
servation about 0.5 m away from the opening; 
our observations of the diffraction pattern will be 
made another 0.5 m behind the object. Make 
your observations through a weak magnifying 
glass or a lens capable of close-ups from 2 to 5 cm 
that  has been fixed to  a mount. Stand so that  the 
whole lens is brightly illuminated. The Cdiffrac- 
tion pattern can be clearly seen against a bright 
background. 
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Figure 129 shows the setup, with which all  the 
diffraction patterns reproduced in  this article 
were obtained. We used an optical bench in  the 
experiments. This is not mandatory, of course, 
althoiigh the diffraction patterns can be moved 

Fig. 129: 
( I )  lamp: (2) projecting lens, (3)  point diaphragm 
with a light screen ( 4 )  clamp for d~ffractlng 
obiects. ( 5 )  liehtotbof tube. (6)  photographic 
cainera. without objective 

more easily into the centre of the field of vision 
if you have supports with screw displacements. 

The shadow from a straight-edged, opaque 
screen can be provided with the blade of a safety 
razor. Use two such razor blades, t o  make a slit 
0.3-1 mm wide. A piece of wire up t o  1 mm in  
diametre will give you the diffraction pattern 
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of a narrow screen. The t ip  of a needle also 
produces a n  interesting pattern. 

To produce a bright spot in  the centre of a 
shadow cast by a round object use a steel ball 
bearing 2-4 mm in diametre. Attach the balI to 
a glass plate with a drop of glue. (The glue should 
not be visible beyond the contour of the ball, 
and the surfaces of the plate and the ball should 
be clean.) When the glue is dry, fix the plate in  
the setup. Adjust the plate until  the shadow of the 
ball is in  the centre of the field of vision. I n  
this position both the outer diffraction circles 
and the spot in  the centre surrounded by dark 
and bright circles will be clearly visible. 

The diffraction patterns can easily be photo- 
graphed with a camera from which the objective 
lens has been removed. The shadow of the object 
should be projected directly onto the film in the 
camera. To increase the resolution and the num- 
ber of diffraction fringes, the opening, which 
serves as a light source, should be covered with 
a light filter. A red filter works best since there 
are many red rays in the spectrum of light 
from a conventional electric bulb. Normally, an 
exposure of 5 or 10 seconds is sufficient. To 
avoid overexposure the camera and setup should 
be connected by  a tube with a black lining. 

Displacement of the light source would cause 
displacement of the shadow, and hence the spot 
itself. Therefore, if you use a slide instead of a 
point source in  your setup, every transparent 
point on the slide will cast i ts  own, slightly 
displaced shadow of the ball with i ts  own bright 
spot. As a result, the outer diffraction circles 
will diffuse, and an image of the slide will 
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appear in the centre of the shadow. The ball will 
act as a lens. The image of Planck's constant in  
Fig. 130 was obtained in this way. The photo- 
graph was made with a ball 4 mm in diametre. 
The height of the symbol f i  is 1 mm. The original 
slide was made with contrast film by photo- 

graphing a letter drawn in  India ink on white 
paper. 

If you drill an opening about 2 mm in diametre 
in a thin tinplate, you can see how the diffraction 
pattern of the opening changes a t  various dis- 
tances. Cover the opening with a light filter, and 
move closer to i t .  From a distance of 1-2 m, you 
should be abIe to see black circIes in the centre 
of the pattern with a magnifying glass. As you 
move closer, the circles change to  dark rings, 
diffusing towards the boundary of the shadow. 
The number of dark rings, including the dark 
spot in the centre, is determined by the difference 
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in the distances travelled by the central ray and 
the ray from the edge of the opening. This fact 
can be used to  determine the light wavelength if 
the opening diametre, the distance from the 
light source to the opening, and the distance 
from the opening to the image are known. The 
plane of the image can be determined by placing 

Fig. 131 

a) i mm in diametre. R1=Ra=0.5  m. Red filter. The opening 
shows two zones. Rlack spot In the centre; ( b )  i mm in di- 
ametre. Rt=Rz=0 .5  m. Blue filter. The opening shows almost 
three zones; ( c )  1.5  mm In diametre. R1=Rs=0.5 m. Red filter. 
The opening shows slightly more than four zones 

n needle in front of the magnifying glass and 
moving i t  until  i t  resolves sharply against the 
background of the diffraction pattern. We will 
discuss the derivation of the calculation formula 
later. 

You can observe the beautiful variation in the 
coIour of diffraction circles in  white light. These 
colours, which do not resemble spectral colours, 
are called complementaries. They can be observed 
when one spectral band is missing from the com- 
plete spectrum of white light. In  this case, for 
example, when green is represented by a dark 
centre spot, the remaining parts of the spectrum, 
i.e. red-orange and violet, make the centre of 
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the picture look purple. The absence of rod 
produces the complementary green-blue colol~r, 
and so on. Figure 131 shows examples of diffrac- 
tion patterns from a round opening. 

Why do we have a black spot in the centre of 
the pattern, which the light rays seem to reach 
without interference? Let us return to our obser- 
vation of waves on the s~lrface of a pond. Consider 
two stones thrown simultaneously into the pond 
and the resulting two systems of waves. Imagine 
points on the surface reached by the crests of the 

Fig. 132 Fig. 133 

two wave systems simultaneously. With  time 
the same points will be reached by the troughs, 
and the waves will become larger (Fig. 132). 
This enhancement will occur a t  points that  lie 
a t  various distances from the wave sources. The 
waves will also be enhanced at  points that lie 
an entire wavelength, two wavelength, and so 
on from the source. When the crests of one wave 
system meet the troughs of another, the waves 
dampen one another (Fig. 133). This interference 
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plays the decisive role in forming diffraction 
patterns. 

Every point in space that is pierced by a light 
wave can also be regarded as a source of a second- 
ary spherical wave (Fig. 134). If the light passes 
through a round opening, we can replace the 
light source with secondary light sources distri- 
buted over the area of the opening. All these 
sources will fluctuate in concord with the first 
wave to reach the opening. The amplitude of the 

fluctuations at a point behind the screen is cal- 
culated as the sum of the fluctuations caused a t  
the observation point by each secondary source. 
Waves from different sources traveI different dis- 
tances and can enhance or dampen one another 
when combined. 

Let us observe changes in the amplitude of 
oscillations around the axis of a round opening 
illuminated by a point source. When the distance 
to an observation point is very great in com- 
parison with the diametre of the opening, the 
waves from all secondary sources travel almost 
the same distance and enhance one another when 
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they reach the observation point. As we move 
closer to the opening, the secondary waves from 
the sources a t  the edge will lag significantly 
behind waves travelling from the centre, and 
the resulting amplitude will decrease. When the 
ray from the edge to the observation point be- 
comes an entire wavelength longer than the 
central ray, the oscillations are completely 
dampened (compensated), and a black spot ap- 
pears in the centre of the diffraction pattern. 
If we move even closer to the opening, we disturb 
the dampening of oscillations on the axis, and 
the centre becomes bright again. This time the 
dampening will take place at a distance from the 
axis, and the centre of the diffraction pattern will 
be surrounded by a dark ring. When the ray on 
the edge lags two wavelengths behind the central 
ray, the dampening at the axis reoccnrs. The 
diffraction pattern in this case will be a bright 
spot with a dark centre and one dark ring. 

The dark spot in the centre will appear periodi- 
cally as we move closer to the opening. We can 
tell how many oscillations occurred at the axis 
by counting the number of dark rings. The same 
phenomenon can be seen if we change the radius 
of the opening rather than the distance to it .  
These explanations are enough for you to derive 
a formula to determine wavelength. 

Good luck! 
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