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PREFACE

This book is about the fourth dimension and the structure of our

universe. My goal has been to present an intuitive picture of the

curved space-time we call home. There are a number of excellent

introductions to the separate topics treated here, but there has been

no prior weaving of them into a sustained visual account. I looked

for a book like this for many years—and finding none, I wrote it.

Geometry, Relativity and the Fourth Dimension is written in the

hope that any interested person can enjoy it. I would only advise the

casual reader to be willing to skim through those few sections that

may seem too purely mathematical. This book is, however, more than

a standard popular exposition. There is a great deal of original

material here, and even the experienced mathematician or physicist

will find unexpected novelties.

I am indebted to all of the authors whose work is described in

the Bibhography, but most especially to Edwin Abbott, Arthur

Eddington, Hans Reichenbach and John Wheeler.

R. V. B. R.

Geneseo, N.Y.

January 31, 1976
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THE FOURTH DIMENSION

We live in three-dimensional space. That is, motion in our space has

three degrees of freedom—no fewer and no more. In other words, we

have three mutually perpendicular types of motion (left/right, for-

ward/backward, up/down), and any point in our space can be

reached by combining the three possible types of motion (e.g., "Walk

straight ahead about 200 paces to the river, then go right about 50

paces until you come to a big oak tree. Chmb about 40 feet up it. I'll

be waiting for you there."). Normally it is difficult for us to perform

up/down motions; space is more three-dimensional for a bird or a

fish than it is for us. On the other hand, space is essentially one-di-

mensional for a car driving down a two-lane road, essentially two-di-

mensional for a snowmobile or a car driving around an empty

parking lot.

How could there be a fourth dimension, a direction perpendicu-

lar to every direction that we can indicate in our three-dimensional

space? In order to get a better understanding of what a "fourth

dimension" might mean, consider the following sequence:

We take a 0-D point (Figure 1; from now on, we'll abbreviate

"«-dimensional" by "n-D"), move the point one unit to the right (this

produces a 1-D line segment, Figure 2), move this segment one unit

downward (this, with the lines connecting the old and new segments,

produces a 2-D square. Figure 3) and move the square one unit

forward out of the paper to produce a 3-D cube (Figure 4).

Notice that we cannot actually draw a 3-D cube on this 2-D

sheet of paper. We represent the third dimension by a line that is

diagonal (rather than perpendicular) to the left/right and up/down
dimensions. Now, we don't really know anything yet about the fourth
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Fig. 1.

Fig. 2. Fig. 3.
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dimension, but couldn't we try representing it by a direction on the

paper that is perpendicular to the (diagonal) direction we used to

represent the third dimension?

If we do so, we can continue our sequence by moving the cube

one unit in the direction of the fourth dimension, producing a 4-D

hypercube (Figure 5).

/\
K
/\

V X /

X> <X/ A \

\/
X
\/Fig. 5.

This design for the hypercube is taken from a Uttle 1913 book, A
Primer of Higher Space, by Claude Bragdon, an architect who incor-

porated this and other 4-D designs into such structures as the

Rochester Chamber of Commerce Building.

It is also possible to consider a similar sequence of spheres of

various dimensions. A sphere is given by its center and its radius;

thus the sphere with center and radius 1 is the set of all points P
such that the distance between and P is \. This definition is

independent of the number of dimensions your space has. There is no
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such thing as a 0-D sphere of radius 1, since a 0-D space has only

one point. A 1-D sphere of radius 1 around consists of two points

(Figure 6).

' -I ii, W=i
Fig. 6.

-1

A 2-D sphere of radius 1 can be represented by this figure in the

jcy-plane (Figure 7).

x^+y^=l x-^ + y^ + z^= 1

Fig. 7. Fig. 8.

A 3-D sphere of radius 1 in the xyz coordinate system looks like

Figure 8.

Although, reasoning by analogy, a 4-D sphere (Jiypersphere) can

be seen to be the set of quadruples {x,y, z, t) such that x^+y-^-\- z^

+ /^ = 1 in the xyzt coordinate system, we cannot say that we have a

very good mental image of the hypersphere. Interestingly, mathemati-

cal analysis does not require an image, and we can actually use

calculus to find out how much 4-D space is inside a hypersphere of a

given radius r.

The 1-D space inside a 1-D sphere of radius r is the length 2r.

The 2-D space inside a 2-D sphere of radius r is the area irp-.

The 3-D space inside a 3-D sphere of radius r is the volume 4/3

irr-

The 4-D space inside a 4-D sphere of radius r is the hypervolume

1/2 ttV.

One of the most effective methods for imagining the fourth

dimension is the method of analogy. That is, in trying to imagine how

4-D objects might appear to us, it is a great help to consider the

analogous efforts of a 2-D being to imagine how 3-D objects might

appear to him. The 2-D being whose efforts we will consider is

named A. Square (Figure 9) and he lives in Flatland.

A. Square first appeared in the book Flatland, written by Edwin
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Fig. 9.

A. Abbott around 1884. It is not clear if Abbott was actually the

originator of this method of developing our intuition of the fourth

dimension; Plato's allegory of the cave can be seen as prefiguring the

concept of Flatland.

A. Square can move up/down or left/right or in any combina-

tion of these two types of motion, but he can never move out of the

plane of this sheet of paper. He is completely oblivious of the

existence of any dimensions other than the two he knows, and when
A. Sphere shows up one night to turn A. Square on to the third

dimension, he has a rough time.

The first thing A. Sphere tried was to simply move right through

the space in A. Square's study. When A. Sphere first came into

contact with the 2-D section of his 3-D space which was Flatland, A.

Square saw a point (Figure 10). As A. Sphere continued his motion

the point grew into a small circle (Figure 11). Which became larger

(Figure 12). And then smaller (Figure 13). And finally shrank back to

a point (Figure 14), which disappeared.

A. Square's interpretation of this strange apparition was, "He
must be no Circle at all, but some extremely clever juggler." And
what would you say if you heard a spectral voice proclaim, "I am A.

Hypersphere. I would teach you of the fourth dimension, and to that

end I will now pass through your space," and if you then saw a point

appear which slowly inflated into a good-sized sphere which then

shrank back to a point, which winked mockingly out of existence. We
can compare A. Square's experience and yours by putting them in

comic-strip form, one above the other (Figure 15).

The difference between the two experiences is that we can easily

see how to stack the circles up in the third dimension so as to

produce a sphere, but it is not at all clear how we are to stack the

spheres up in the fourth dimension so as to produce a hypersphere

(Figure 16).

We can, however, work out some possible suggestions. One is
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/ \

r II ^^
,

- -l-j-^^/X Fig. 14.

that the spheres might be just Hned up like pearls on a string, and

that a hypersphere looks like Figure 17.
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Fig. 17.

We can see that this suggestion is foohsh, because if you Hne

circles up Uke Figure 18 you certainly don't get a sphere. You only

get some sort of 2-D design. Similarly, lining the spheres up like a

string of pearls will merely give you a 3-D object, when a 4-D object

is what you're after. A further objection against the string-of-pearls

model is that it is discontinuous; that is, it consists of a finite, rather

than an infinite, collection of spheres. A final objection is that the

radii of the spheres in the "string" are not scientifically determined in

our drawing.

Let's deal more closely with the last objection. It seems reason-

able that the length of the "string" should be equal to the diameter of

the largest sphere. The idea is that we will have a sphere moving
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Fig. 18.

along this length, starting as a point, then expanding to the size of the

largest sphere, and then contracting back to a point. To get the

picture, let's talk for a minute in terms of turning a 3-D sphere into a

2-D figure. Imagine slicing a 3-D sphere up into infinitely many
circles. Then imagine simultaneously rotating each of these circles

around its vertical diameter through 90°. The sphere will thus be

turned into a 2-D figure consisting of infinitely many overlapping

circles. The process can be compared to what happens when you pull

the string on a Venetian blind to turn all the slats from a horizontal to

a vertical position. The resulting 2-D figure looks like Figure 19.

Fig. 19.

Notice that the radius of each of the component circles of this

"closed Venetian blind" version of the 3-D sphere is equal to the

vertical distance between its center and Sq, the circle whose radius is

the same as that of the 3-D sphere (Figure 20).

Now, if you take Figure 19 and replace each of its circles by a

sphere, you get something that is a solid made up of infinitely many
hollow 3-D spheres. Recall that the way in which we turned the 2-D

figure (an area made up of infinitely many circles) into a 3-D sphere

was by rotating each of its component circles 90° around its vertical
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Fig. 20. Before rotation After rotation

axis. So it seems that the way to turn the 3-D sohd that we have

imagined into a 4-D hypersphere is to rotate each of its component

spheres 90° around the plane that cuts the poles and is perpendicular

to this sheet of paper. How do you rotate a sphere around a plane?

As we'll see in a while, this isn't too hard if you can move through

the fourth dimension. What's left of a sphere after you rotate it in

this way? Well, half the sphere goes into the part of 4-D space

"under" our 3-D space and half goes into the part of 4-D space

"over" our 3-D space. And what's left in our space? Just a great

circle, the part of the sphere that lay in the plane we rotated around.

This is strictly analogous to what happens when you rotate a circle in

3-D space 90° out of this paper. All that remains on the paper is two

points of the circle, a 1-D circle.

This all requires some real thought to digest. But read on, read

on. It'll get easier in a couple of pages.

Let's return for a moment to the idea, mentioned a few hues

above, that our 3-D space divides 4-D space into two distinct regions.

A point on a hne cuts the hne in two.

A line in a plane cuts the plane in two.

A plane in a 3-D space cuts the space in two.

A 3-D space in a 4-D hyperspace cuts the hyperspace in two.

People used to view the Earth as an infinite plane dividing the

3-D universe into two halves, the upper or heavenly half and the

lower or infernal half. If we assume that the 3-D space we occupy is

flat (in a sense that we will make clear in a later chapter), then we
can conceive of Heaven and Hell as being two parts of 4-D space

which are separated only by our 3-D universe. Any angel thrown out

of Heaven has to pass through our space before he can get to Hell.

Now, if a hypersphere has been placed so that its intersection

with our 3-D space is as large a 3-D sphere as possible, it will be cut

into a heavenly hemihypersphere and a hellish hemihypersphere. We
can use this idea to get a new way of imagining the hypersphere.
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If you take a regular sphere and crush its northern and southern

hemispheres into the plane of the equator, you get a disk, or solid

circle. Similarly, we can imagine crushing the heavenly and infernal

hemihyperspheres into the space of the hypersphere's largest compo-
nent sphere to get a solid sphere. The solid sphere can be turned back

into a hypersphere if we can somehow pull its insides in two direc-

tions perpendicular to all of our space directions. How do you do
this? Well, how would you pull a solid circle out into a sphere?

Imagine that the inner concentric circles belong, alternately, to the

northern and the southern hemispheres. You can pull them in oppo-

site directions without having them pass through each other (Figure

21). So to decollapse our solid sphere we pull its concentric spheres

alternately heavenward and toward the infernal regions.

Fig. 21

In this discussion of the hypersphere I've drawn on some new
ideas about the fourth dimension: One is that you can rotate a 3-D

object about a plane to leave only a plane cross section of this object

in our space. Another is that you can "move through obstacles"

without penetrating them, by passing in the direction of the fourth

dimension. To clarify these, and other ideas, let's get back to good

old A. Square.

After the sphere showed himself to A. Square, A. Square re-

mained unconvinced. So A. Sphere did some more tricks. First he

removed an object from a sealed chest in A. Square's room—without

opening the chest and without breaking any of its walls. How was

this possible? A chest in Flatland is just a closed 2-D figure, such as a

rectangle (Figure 22). But we can reach in from the third dimension

without breaking through the trunk's "walls" (Figure 23).

The analogy is that a 4-D creature should be able to, say,

remove the yolk from an egg without breaking the shell, or take all

the money out of a safe without opening the safe or passing through

any of its walls, or appear in front of you in a closed room without

coming through the door, walls, floor or ceiling. The idea is not that
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Hinge

Fig. 22.

Fig. 23.
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the 4-D being somehow "dematerializes" or ceases to exist in order to

get through a closed door. Your finger does not have to cease to exist

for an instant in order for you to put it inside a square. The idea is

that since the fourth dimension is perpendicular to all of our normal

3-D space directions, our enclosures have no walls against this

direction. Everything on Earth lies open to a 4-D spectator, even the

inside of your heart.

The only way in which A. Sphere could finally convince A.

Square of the reahty of the third dimension was to actually lift him

out of Flatland and show him what it was like to move in three

dimensions. Is there any hope of this happening to us? Is it likely that

there are 4-D beings who, if summoned by the proper sequence of

actions, will lift us out of our cramped three dimensions and show us

the "real stuff"? A lot of people used to think so at the time of the

Spiritualist movement around 1900. The idea was that spirits were

4-D beings who could appear or disappear at any point, see every-

thing, and so on. A fairly reputable astronomer, a Professor ZoUner,

even wrote a book. Transcendental Physics, describing a series of

seances he attended in an attempt to demonstrate that the "spirits"

were actually 4-D beings. He seems, however, to have been hope-

lessly gullible, and his book is totally unconvincing. In general, the

idea of a fourth dimension seems to precipitate authors into orgies of

occultist mystification, rather than to lead to clear-sighted mathe-

matical, inquiry. The fact that something is difficult does not mean it

has to be confused. The best of the books on the fourth dimension

written from a mystical point of view is Tertium Organum by P. D.

Ouspensky, who also has a good chapter on the fourth dimension in

his book A New Model of the Universe.
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In any case, Abbott's Flatland ends shortly after A. Square takes

his "trip" into the third dimension. The Flatlanders lock him up and
throw away the key. It has been this author's great good fortune to

come into the possession of the true chronicle of the rest of A.

Square's life.

A. Square had been in jail for about ten years when suddenly his

old friend A. Sphere turned up again as a circle of variable size in

poor Square's cell. "What's happening, baby?"

"Ah, noble Sphere, would that I had never seen you, would that

I had been of too small an angularity to grasp your message."

"Man, you ain't seen nothing yet! You want me to lift you out of

this jail and put you back in your wife's bedroom? Though I oughtta

tell you, there's another mule kicking in your stall, a big sharp

Isosceles."

"Sphere, Sphere, if only they'd believe me! There's no use letting

me out. They'd just lock me up again, maybe even guillotine me. No,
I knew you'd return and I have a plan. Turn me over. Turn me over

and then my very body will be proof that the third dimension exists."

A. Square then explained his idea. He had been thinking about

Lineland some more. Lineland was a world which Square had seen in

a dream once, many years ago. Lineland consisted of a long line on
which segments (Linelanders), with sense organs at either end, slid

back and forth (Figure 24).

Fig. 24.

A. Square thought of Lineland in the same way in which we

think of Flatland. He confronted his difficulties with the third dimen-

sion by imagining the Linelanders' difficulties with the second di-

mension. In jail for having preached the subversive doctrine of the

third dimension, A. Square was understandably concerned with

having A. Sphere create some permanent change in Flatland that

would attest to the reality of the third dimension. (Note here that

Prof. Zollner was also concerned with getting the spirits to do

something that would provide a lasting and incontrovertible proof of

their four-dimensionality. His idea was a good one. He had two rings

carved out of solid wood, so that a microscopic examination would

confirm that they had never been cut open. The idea was that spirits,

being free to move in the fourth dimension, could hnk the two rings

without breaking or cutting either one. In order to ensure that the

rings had not been carved out in a Unked position, they were made of

different kinds of wood, one alder, one oak. Zollner took them to a
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seance and asked the spirits to link them, but unfortunately, they

didn't).

In his cell A. Square had pondered on the kind of permanent

change he could create in Lineland if he were back there. He could,

of course, remove one of the segments, but this would probably just

be termed a mysterious disappearance. He recalled that each Line-

lander had a voice at each end, a bass on the left and a tenor on the

right. If he turned one over, the voices would be reversed and

everyone could observe this in Lineland (Figure 25). Now, if he could

rotate a segment around a point, shouldn't A. Sphere be able to

rotate a square around a line (Figure 26)? And everyone in Flatland

would be able to tell, since everyone was built so that if the eye was

toward the north, the mouth was toward the east. A. Sphere could

turn A. Square into his own mirror image (Figure 27)!

Bass Tenor

Fig. 25.

Fig. 26.

w-

Fig. 27.

A. Square ei6up3 A

Mirror

No sooner said than done. A. Square (or, rather, erauqS .A)

called the guard: "Look, you dull-witted fool, I've rotated through

the third dimension. I'm my own mirror image. Ha, ha, ha, ha! Show
me to the High Priest! Now they will, they must believe!"

Well, the Flatlanders were quite impressed. They were so im-

pressed they decided to put A. Square to death.

Before we continue this hair-raising tale, let's think about the

analogy for us. It would seem that a 4-D being could turn us into our
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own mirror image by rotating us, in the fourth dimension, around a

plane that cuts through our body—say the plane that includes the tip

of your nose, your navel and your spine. What would it feel like to be

rotated like this? How should I know? I can tell you a few things,

though. One thing is the rather disgusting fact that when the rotation

was only half completed, all of you that would remain in our 3-D

space would be the plane around which the rotation was taking place.

That is, you would look like a single vertical cross section of a human
being—for if you look back at the pictures of A. Square's rotation,

you can see that in the middle two pictures all that a Flatlander

would see of him would be a cross section of his body. If the sphere

had paused in the middle to pump A. Square up and down through

the plane of Flatland, the guard would have been treated to a view of

all the cross sections of A. Square's body. The same goes for you.

There is actually a model of how a rotation, of a 3-D object

through 4-D space might appear. Consider the picture of A. Cube,

looking out at you from behind this sheet of paper, in Figure 28. His

right eye is triangular, but his left eye is circular. Suppose that this

sheet of paper were a mirror. In that case, A. Cube's mirror image

would be on this side of the paper with its back to you (Figure 29).

Note that there is no way in which you can move A. Cube in 3-D

space so as to turn him into his mirror image, any more than you can

turn yourself into your own mirror image by walking behind the

mirror. Your heart will always be on your left, your mirror image's

heart will always be on the right. But if we look at this picture

(Figure 30), it seems to alternate between being A. Cube and A.

Cube's mirror image. This figure, when drawn without the eyes (as in

Figure 4), is called the Necker cube. If you look at a Necker cube for

a while it spontaneously turns into its mirror image and back again.

It you watch it "do" this often enough, the twinkling sort of motion

from one state to the other begins to seem like a continuous motion.

But this motion can only be continuous if it is a rotation in 4-D

space. So perhaps we can actually produce a 4-D phenomenon in our

minds! H. A. C. Dobbs has a paper in Fraser's book (see Bibliogra-

/ /
f^

/ /
Fig. 28. Fig. 29. Fig. 30.
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phy) in which he presents this argument and concludes that our

consciousness is four-dimensional, with three space dimensions and

one dimension of "imaginary time."

Let's get back to poor old A. Square. His pals were calling him

an "object of horror to the gods," and they were getting ready to

guillotine him. Our 3-D guillotine works by interposing a plane

segment between two parts of the victim's body. The Flatland guillo-

tine worked by interposing a line segment between two parts of the

convicted polygon's body (Figure 31). Same difference.

Fig. 21. Before After

A. Square was sweating it. He was so worried he hardly had time

to enjoy being his own mirror image—writing backwards and stuff

like that. He called out to the Sphere for help many, many times, but

he only got static.

Finally, one grey, tight-stomached dawn, A. Square was led out

to the "Splitting Field," where the guillotine was located. He saw

many of his old friends, but none met his eye. His death sentence was

read out, and two sharp Isosceles began dragging him toward

the horrible instrument of destruction. And then, and then, and

then . . .



PROBLEMS ON CHAPTER 1

(1)

Complete this table: Vertexes Edges Faces Solids

Point 1 — — —
Segment 2 1 — —
Square 4 4 1 —
Cube

Hypercube

Hyperhypercube

(2) Locate the eight cubes that form the eight sohds of the hypercube

in Figure 5. It would be better to make several copies of this figure

than to draw the cubes right in the book. A simple way of duplicating

the drawing is to construct a regular octagon and then draw a square

on the inside of each edge of the octagon.

(3) How many hypercubic feet of hypervolume are there in a hyper-

cube each of whose edges is two feet long?

(4) The formula for the hypervolume of a hypersphere of radius r is

obtained by evaluating the definite integral

/ —'n(yp- — x^^dx. Where does this integral come from?

(Hint: Compare this integral to the integral

/ "n^y p- — x^ y- dx which gives the volume of a sphere of radius

r.)

(5) Suppose that every object in our space were an inch thick in the

direction of the fourth dimension. Would we notice this 4-D compo-

nent of our bodies' measurements? (Hint: Would A. Square notice if

everything in Flatland were an inch thick in the direction of the third

dimension?)

(6) Professor Zollner attempted yet another experiment to demon-
strate that "spirits" were free to move themselves and the objects of

our space in a space of four dimensions. What Zollner did was to

place a snail shell on the table and ask the spirits to turn it into its

mirror image. In what way does a spiral shell differ from its mirror

image?
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(7) Our actual retinal images of the world are 2-D. What sorts of

visual experiences cause us to believe that our visible world is

actually 3-D? How do you think A. Square manages to translate his

1-D retinal images into a mental image of a 2-D world?

(8) If you stuck the fingers of one hand through Flatland, A. Square

would see you as five irregularly shaped objects, each covered with a

tough pink hide. If a 4-D being stuck the "fingers" of one "hand"

through our space, what would you see?

(9) The goal, in part, of the Cubist painters was to combine all the

different possible views of an object into one picture. To what extent

would a photograph of an object taken from a point not in our 3-D
space accomplish this goal?

(10) Mystics have frequently maintained that our consciousness can

be higher-dimensional. If we think of A. Square's normal 2-D

thoughts as being network-like patterns on the 2-D space of Flatland

inside his head, how can we represent his "higher-dimensional"

thoughts? Why would it be difficult for him to communicate these

thoughts to his fellow Flatlanders?



2
NON-EUCLIDEAN GEOMETRY

And then along came Sphere. As the executioner began to shove the

"blade" of the guillotine home, A. Sphere fastened himself to a point

between A. Square and the "blade" and began pulling upwards. He
began stretching the space of Flatland, and he continued stretching it

until the little space between A. Square and the "blade" had become

big enough to hold the whole "blade."

The idea is that we imagine the space of Flatland to be a sort of

elastic film that can be distorted by a pull in the direction of the third

dimension.

Fig. 32.

How is it that having the sphere pull up on a point between A.

Square and the "blade" of the guillotine will make space more
spacious? Consider the effect of pulhng up at some particular point

of Flatland's space (Figure 33).

We can see that if you take a point X between two points A and

B, you can make the distance between A and B as great as you please

by pulling up on X. In particular, by pulling up on a point in between

the tip of the "blade" and A. Square, the sphere was able to make the
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Fig. 33.

distance between A. Square and the "blade-guide" greater than the

length of the "blade."

The Flatlanders were very impressed, and wouldn't you be if you
saw a man survive being guillotined—survive because the blade

couldn't manage to finish traversing the last inch to the man's neck?

And after A. Sphere plucked out the heart of the High Priest, the

Flatlanders went wild. "Free A. Square before we all get killed!" they

cried, and so it came to pass that A. Square, once a condemned
polygon, became a leading researcher at Flatland U.

A. Square was confused by his encounter with curved space. It

had never occurred to him that space could be anything but flat.

And, lest we sneer at this dimensionally impoverished creature's

difficulties, we should wonder now if our 3-D space could be in any

way "curved." We refer to a flat 2-D space as a plane, but so alien is

the idea of curved 3-D space that we do not even have an English

word to express the concept "noncurved 3-D space." Mathematicians

sometimes call a noncurved 3-D space an E3 (analogously, they call a

plane an E2 and a straight line an El). The "E" is for Euclid, who
first described the properties of flat space in a comprehensive way.

Let us all (you, me and A. Square) see what Euchd had to say

about flat space. Euclid's system consists basically of five postulates

and proofs of many propositions from these postulates. The five

postulates consist of certain assumptions about the way points and

straight lines behave in space. It is up to us to decide if these

assumptions hold in the space in which we live. It is up to A. Square

to decide if these assumptions hold in Flatland. As it turns out,

asking if Euclid's postulates hold in a space is the same as asking if

that space is "flat," or noncurved—whatever that might mean.

What are Euclid's postulates?

First Postulate:

There is exactly one straight line connecting any two distinct points

(see Figure 34). By "exactly one" we mean "at least one and no more

than one." What do we mean by "straight line"? Realistically, we
have a pretty good idea of what a straight line is in our space: the

shortest path between two points. However, in order to start with as
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little as possible in the way of assumptions, we do not make any

initial assumptions about what straight lines are. The only properties

of straight lines that we will assume will be those provable from the

postulates we decide to accept.

Second Postulate:

Every straight line can be continued endlessly (see Figure 35). This

has to do with our feeling that space has no boundaries, no edges.

You never reach a point beyond which a given straight line cannot be

continued.

Fig. 35. Fig. 36.

Third Postulate:

It is possible to draw a circle with any given center and radius (see

Figure 36). This postulate does not, on the face of it, seem to be

about points and straight lines. And what is "circle" supposed to

mean here? We cannot do better than Euclid's definition: "A circle is

a plane figure contained by one line such that all the straight lines

falling upon it from one point among those lying within the figure are

equal to one another. And the point is called the center of the circle."

But what does the ability to draw circles have to do with the

properties of space? We might be inchned to think that the abihty to

draw circles depends on owning a compass, rather than on some

fundamental property of space with respect to its straight lines and

points! But does not the fact that a compass works properly have

something to do with space? How do you know that a compass draws

a circle—that is, how do you know that the separation between the

stabbing and drawing ends of the compass remains the same as you

rotate it about the stabbing end? The idea seems to be that a material

body (or an imagined line segment) does not change its size as we
move it about in space. Thus, part of what the Third Postulate says is

that distance in space is to be defined in such a way that a line

segment's length does not change when we move it from one place to

another.

Fourth Postulate:

All right angles are equal to each other (Figure 37). The content of

this postulate is not clear until we have defined right angles: "When a

straight line set up on a straight line makes the adjacent angles equal

to one another, each of the equal angles is right." This postulate
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seems to be equivalent to the assumption that the things we are

calHng "straight Hnes" don't have any corners. Another way of

expressing this is that the Fourth Postulate says that space is "locally

flat," that is, that a small enough region of space will not betray any

curvature.

Fig. 37. Good No good

Fifth Postulate:

Given a line m and a point P not on m, there is exactly one line n

that passes through P and is parallel to m (Figure 38). It is under-

stood here that lines are said to be parallel when they do not

intersect. The Fifth Postulate could fail to hold in two different ways.

It might be that there were no lines through P parallel to m, or it

might be that there was more than one line through P parallel to m.

It turns out that both alternatives are possible, if we choose the right

kind of "straight lines."

and not

Fig. 38.

In general, we accept Euclid's first four postulates for our space.

It is certainly true that given two nearby points, there is just one

shortest path from one to the other. It is certainly true that there

seem to be no boundaries to space. It is certainly true that objects do

not seem to expand or contract as we move them around. And it is

certainly true that our "straight lines" do not have corners in them.

But the Fifth Postulate is not so easy to accept on the basis of

experience. Might it not be that even lines that start out looking

parallel come together slowly as they get farther and farther away
from us? Or, conversely, might it not be possible that Unes that start

out looking as if they will intersect bend away from each other slowly
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as they are produced out toward infinity, perhaps approaching each

other asymptotically, but never actually intersecting?

For many centuries people believed that it was not possible for

the Fifth Postulate to be false in our space. There were two sorts of

reasons given for this belief. The first reason was that God would not

have botched his work. The idea was that space was an almost

divine, eternally existing absolute form. As such, it would certainly

not be expected to contain vilely converging and diverging collec-

tions of straight lines of the type required to violate the Fifth

Postulate. The second reason given for the flatness of space is

essentially due to Immanuel Kant, the German philosopher. Kant

wrote at a time when the kind of authoritarian theological standpoint

embodied in the first argument for the Fifth Postulate was losing

ground. His argument for the truth of the Fifth Postulate was that

space is largely a creation of our own minds, that v^e cannot imagine

non-Euclidean space, and hence space is Euclidean (i.e., satisfies the

Fifth Postulate). The argument that space is a creation of our own
minds is an interesting one; the idea is that we cannot see or imagine

seeing anything that is not located in space. Space, to use Kant's

phrase, is "an ineluctable modality of our perception." Space may
not have any "real" existence, but there is no way in which we can

order our sense perceptions without using the organizing framework

of space. This is fine, but why shouldn't we be able to imagine

non-Euclidean space? Kant thought we couldn't because no one had

at the time when he wrote (around 1780). So he concluded that our

space must necessarily satisfy the Fifth Postulate, since the alterna-

tives were unimaginable.

Kant, however, was wrong. We can imagine non-Euclidean

spaces. Let's start with a space where there are no parallel lines.

Rather than working with 3-D space, let's make it easy for ourselves

and start out with 2-D space; that is, let's describe a version of

Flatland where every two lines meet somewhere.

The idea is to let Flatland constitute the surface of a large sphere

(Figure 39). A. Square and his cohorts are curved so as to stick to the

surface of the sphere. They can shde around on it to their hearts'

content, and we can imagine that they have not even noticed yet that

their space is anything other than the infinitely extended plane which

they imagine it to be. Postponing their momentous discovery that

something is amiss, let us see if the Fifth Postulate holds in a

spherical (rather than flat) 2-D space.

No, it does not. Why not? Well, first of all, what exactly is

meant by "straight line" on the surface of a sphere? Obviously, any

line that is contained in the surface of a sphere cannot be "really"
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Fig. 39. "Sphereland" Fig. 40. Great circles

Straight, and we are not allowed to tunnel under the surface to

produce lines such as the diameter of the sphere (since such lines do
not lie on the surface of the sphere; as far as A. Square is concerned,

the space inside and outside the sphere's surface does not exist). Now,
which of the lines that you can draw on a sphere's surface is the

straightest? That is, if A. Square and his friend Dr. Livingchip took a

thread and pulled it taut, what kind of line would the thread lie on?

Look at a globe map of the world. On this globe the longitude lines

and the equator look straight, but the latitude lines look curved.

There is no way you can draw a line straighter than the equator on
the sphere.

The lines on the sphere that we call "straight" are the so-called

great circles: "great" because there's no way you can make a great

circle bigger (Figure 40). Slide the equator north or south and it's

going to shrink. A great circle on a sphere has the same radius as the

sphere, and you can't beat that. If A. Square travels along a great

circle he doesn't feel as if he's curving off to the left or to the right.

He is curving, but only in the direction of the third dimension, that is,

in a direction perpendicular to his two space dimensions.

Now, the point of all this was to get a space where the Fifth

Postulate fails. It fails on the sphere when you take great circles to be

"straight lines," since every two great circles intersect each other. Say

you take a great circle m and a point P not on m and try to find a

great circle that goes through P and never hits m (that is, is parallel

to m). No can do!

Another unusual aspect of geometry on a sphere is that the First

Postulate does not hold there, either. If, for instance, you take the

north and the south poles, there are infinitely many great circles

connecting these two points, and not just one (Figure 41). (It is

possible to have no parallel lines without giving up the First Postulate

—see Problem 3.)
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Fig. 41.

Notice that we obtained our model of the "no-parallels pos-

tulate" by taking a curved space and letting our "straight lines" be

what are called the geodesies of the surface. A geodesic line on a

curved surface is a line that is as straight as possible, the kind of line

you get if you pull a thread (which cannot snap out of the surface)

taut on the surface. The great circles are geodesies on the sphere.

What if, instead of taking a curved space and straight "straight

lines," we take a flat space and curved "straight lines"?

In other words, what we'd like to do now is to find a collection

of curved lines in the regular plane such that, if we start pretending

these lines are "straight," then we'll get something that behaves just

like the sphere with its great circles. No problem. Here's what you do.

Take the plane and add a point at infinity. The idea is that if

you go out in any direction at all forever, you end up at the point at

infinity. Now draw a nice big circle on your plane and call this the

Fundamental Circle. You're going to claim that the Fundamental

Circle is a "straight line." What else is going to be a "straight hne"?

First of all, any straight line that goes through the center of the

Fundamental Circle. Note that any two of these straight lines meet in

two points, the center of the Fundamental Circle and the point at

Fig. 42. Fundamental Circle
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infinity. Since we only have one point at infinity, all four arrows here

meet at this one point at infinity (Figure 42).

Secondly, we'll call any circle that intersects the Fundamental

Circle in two diametrically opposite points a "straight line." As well

as studying Figure 43, it would be a good idea for you to get out a

compass, draw yourself a Fundamental Circle and draw a number of

circles that cut your Fundamental Circle in two diametrically oppo-

site points. Given that these circles are "straight lines," what kind of

space do we have here? Just to have a name for it, let's call it a Flat

Sphere.

Fig. 43.

Notice that, given two diametrically opposite points on the

Fundamental Circle, there are lots of "straight lines" through these

two points. We have labeled these lines according to the position of

their centers on a ^^-axis which we can imagine as having its zero-

point at the center of the Fundamental Circle (Figure 44).

Observe that all the "straight lines" in Figure 44 are the kind of

lines you would expect to be parallel if you just looked near the

^'-axis, but that they all meet each other. In other words, the plane

(plus the point at infinity) with these "straight lines" is another model

of non-Euclidean geometry. Just as on the sphere, the "no-parallels

postulate" holds and the First Postulate fails.
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Fig. 44.

What is the relation between the space called the Flat Sphere

and the surface of a real sphere? They are isomorphic. That is, we can

find a one-to-one mapping from the set of points on the sphere onto

the set of points on the plane (plus the point at infinity) such that

every "straight line" on the sphere is taken into a "straight line" of

the Flat Sphere. What is the mapping? Stereographic projection. It

works like this.

Take a sphere and set it down on a plane. Set it down so that the

south pole of the sphere is the point where the sphere touches the

plane. Now, given any point P on the surface of the sphere, draw a

straight line NP from the north pole to the point P and continue this

line until it cuts the plane. Call the point where the continuation of

NP cuts the plane P'. P' is the image of P under stereographic

projection (Figure 45).

Notice that every point P on the sphere has a unique image P'.

The image of the south pole is the point where the sphere touches the

plane. The image of the north pole is the point at infinity. We can

find the images of the great circles on the sphere by letting the image

of a great circle m be m', where m' is the set of all points P' such that

P hes on m. Let the image of the equator be the Fundamental Circle

on the plane. Observe that, given any great circle m on the sphere, its



26 / Geometry, Relativity and the Fourth Dimension

Fig. 45.

image m' is a "straight line" of the Flat Sphere. Figure 46 is a view

from directly above the north pole.

Every point in the northern hemisphere goes outside the Funda-

mental Circle, every point in the southern hemisphere goes inside the

Fundamental Circle. Great circles through the north pole go into

straight lines through the center of the Fundamental Circle. Other

great circles go into circles that cut the Fundamental Circle in two

diametrically opposite points. This is because any great circle will cut

the equator in two diametrically opposite points. The images of these

points are diametrically opposite points on the Fundamental Circle

(which is the image of the equator).

What we have indicated here is that the real sphere and the Flat

Sphere are isomorphic spaces. When we speak of a "space" we mean
a collection of points and a collection of "straight lines." When we
refer to the sphere as a space, we are thinking of the collection of

points on the sphere as our points and the collection of great circles

on the sphere as our "straight lines." When we refer to the Flat

Sphere as a space, we are thinking of the collection of the points on

the plane (plus the point at infinity) as our collection of points and

the collection of lines and circles that cut the Fundamental Circle in

two diametrically opposite points as our collection of "straight lines."

When we have two isomorphic spaces, such as the sphere and the

Flat Sphere, we can conclude that there is no way in which an

inhabitant of the one or the other can decide which one he is "really"

in. That is, A. Square might be able to learn that his space was

"spherical," but there would be no way in which he could determine

if his space was a real sphere or a Flat Sphere.

What is the difference between the real sphere and the Flat
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e' = Fundamental Circle

Fig. 46.

Sphere? The sphere is a curved surface whose "straight Hnes" are

geodesies (that is, hnes that are as short as possible; in general, on

any surface one can find the geodesic between P and Q by stretching

a thread from P \o Q so that the thread lies entirely on the surface

and is as taut as possible). The Flat Sphere is a flat surface whose

"straight lines" are curved. In the one case we have curved space and

straight lines, in the other case we have flat space and curved lines.

The first type of model is called a curved-space model, the second is

called a field model. That is, we would think of Flatland as being the

real sphere if we argued that (for some reason) the space of Flatland

was curved and that objects naturally traveled along geodesic (shor-

test) paths. On the other hand, we would think of Flatland as being

the Flat Sphere if we argued that the space of Flatland was flat, but
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that objects naturally traveled along curved paths because of some

universal field that acted on all the objects in Flatland. In the former

case, we accept an unexplained curvature of space, in the latter we
accept an unexplained field. As we shall see later, this dual view of

space is essential to Einstein's General Theory of Relativity, where

gravitational force-fields are explained in terms of the curvature of

space-time.

One difference between the real sphere and the Flat Sphere

which the alert reader will have noticed is that the latter seems to be

infinitely large, whereas the sphere has only a finite surface area. This

difference between the two models can be eliminated if we define

distance on the Flat Sphere in an unusual way. This idea will actually

enable us to give a precise definition of what it would mean for our

space to be curved (we'll go into this in Chapter 3, "Curved Space").

Right now, however, we would like to get some more models of

non-Euchdean geometry, models in which the "many-parallels pos-

tulate" holds. Recall that the Fifth Postulate said that, given a line m
and a point P not on m, there is exactly one line n that passes

through P and never intersects m. The sphere and the Flat Sphere

were models where there was no such n. Now we wish to find models

where there are many such n.

It will be easier this time to start out with a field model and only

1 : Draw new axes

at an angle of 9 to

the original ones.

2: Forget about the original

axes and mark off (o, 1) and

(o, - 1) relative to the new
axes.

Fig. 47.

3: Draw a box with corners

(0,1), («,1),(fl,-1), (0,-1).

Draw lines from the origin

out through the corners

of the box.

4: Draw the hyperbola branch

that grazes the box and has the

diagonal lines for asymptotes.
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then attempt to find the related curved-space model. We will call our

space the Flat Saddle. The points of the Flat Saddle are all the points

on the plane, and the "straight lines" of the Flat Saddle are hyper-

bolas of a certain special type.

For every angle Q such that 0° < ^ < 360° and every real

number a such that < a, we let Hg ^ be the line that is the rotation

of the right-hand branch of the hyperbola {x^/a^) —y^=\ through 9

degrees counterclockwise. Thus, to draw Hg ^ we first draw new x

and >'-axes at an angle of 9 to the old ones, then we draw asymptotes

through the origin and the points {a, 1) and (a, — 1), and then we
draw the hyperbola with these asymptotes which passes through (a,0)

(see Figure 47).

Note that if a = 0, then the hyperbola {x^/a^)—y'^ = 1 is just the

>'-axis. Thus our "straight lines" will be real straight lines that pass

through the origin as well as certain types of hyperbolas. Why didn't

Fig. 48.
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we just take every hyperbola to be a "straight Une"? Because then

there would be many "straight lines" between any two points, thus

violating the First Postulate. As it turns out, I have been able to

prove, with the help of Professor Paul Schaefer, that, given any two

points in the plane, there is exactly one Hg^ that passes through the

two given points. Thus the Flat Saddle is a model of the First

Postulate (Figure 48).

The Flat Saddle is also a model of the Second Postulate since

each of its "straight lines" does go on forever in both directions. The

Flat Saddle is not a model of the Third Postulate in the sense that a

compass draws a curve all of whose radii are equal—since "straight

lines" going out from a point in various directions are curved in

various ways. The Third Postulate does hold in the sense that, given

any direction, we should be able to measure off to a point at a

distance of r along a "straight line" in that direction. The question of

how distance is to be measured in field spaces such as the Flat

Sphere and the Flat Saddle is a touchy one. The problem is that we
have a natural feeling that "straight lines" should be geodesies. It could

even be argued that this is the content of the Third Postulate, if we
take the Third Postulate to say: "If you take a length of string and

attach one end of it to a point P and swing the string around, holding

it stretched as tight as possible, then the free end of the string will

draw a curve c which is a circle—a circle in the sense that if we take

any two 'straight lines' that pass through P, then the segments of the

'straight lines' that he between P and c are all equal"(Figure 49). This

version of the Third Postulate fails for the Flat Sphere and the Flat

Saddle if we assume that distance in these spaces is measured in the

same way as on the plane. There is nothing, however, to prevent us

from defining distance in different ways in these spaces, as we shall

see in the next chapter. If distance is defined in a suitable way, our

"straight lines" will be geodesies! A stretched string will be along a

geodesic line that is also a "straight line." Swinging a string around

will produce a closed curve that satisfies the definition of a circle,

although this curve will not resemble a circle any more than the

"straight lines" resemble straight lines (Figure 50).

The Fourth Postulate will hold on the Flat Saddle since all of the

"straight lines" are smooth (differentiable) curves. A way in which

the Fourth Postulate could fail would be for us to work with a

curved-space model that had a little peak on it somewhere. At such a

peak (like the one A. Sphere made when he pulled on Flatland) two

hnes can cross each other and make four equal angles, each of which

is less than 90°! The fourth postulate says that space has no such

"singular points."
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Fig. 49. Fig. 50.

So Euclid's first four postulates seem to hold in the space called

the Flat Saddle. How about the Fifth? This fails because, given a

"straight line" m and a point P not on m, we can find many
hyperbolas of the correct form that pass through P and miss m
(Figure 51).

Fig. 51.

We arrived at the Flat Sphere by starting out with the real

sphere and then thinking of stereographic projection (the idea for the

Flat Sphere is from Hans Reichenbach's book, The Philosophy of

Space and Time). But actually, we arrived at the Flat Saddle without

first thinking of some curved-space model. The idea behind the Flat

Saddle is that you imagine yourself to be standing at the origin of a

weird space. Your lines of sight—that is, lines that go through the

origin—are straight, but lines that do not go through the origin

appear to bend away as they go out toward infinity. This effect is

more pronounced for lines that are further away from you. If you

were standing in a corridor in this space, you would see yourself as

standing in the neck of a horizontal hourglass (assuming that your

perceptions had not yet adapted to this new space).

Is there a curved-space model that is related to the Flat Saddle

in a way similar to the way in which the real sphere was related to the

Flat Sphere? To be quite honest, I am not sure. Let me describe a
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curved-space model that may work. Consider the Saddle, the graph of

z = xy, a "hyperbolic paraboloid" (Figure 52).

Let "straight lines" be geodesies, as usual. The Saddle is a model

of the first four Postulates plus the "many-parallels postulate," just

like the Flat Saddle.

Fig. 52.

The difficult question is whether the Saddle is isomorphic to the

Flat Saddle. The obvious map would be to simply let each point

{x, y, z) that lies on the Saddle go into the point {x, y) on the Flat

Saddle. In other words, we just project each point of the Saddle

straight down (or up) onto the xy-plane. Does this map take the

geodesies of the Saddle into the "straight lines" of the Flat Saddle? If

not, can the map be fixed up to work right? These are difficult

questions, but it seems safe to say that if there is any curved-space

model at all that is isomorphic to the Flat Saddle, then it will look

something like the Saddle.

How would A. Square know what kind of space he lived in? It

would be hard, perhaps, for him to test the Fifth Postulate. On the

Flat Saddle, for instance, he could go and go and go, watching two

lines that looked as if they ought to intersect eventually, but he would

never know if they really did fail to intersect, or if he just hadn't gone

far enough out. What we are getting at is this question: Are there any

local properties of space that determine which of the three "parallel"

postulates the space satisfies?

The answer is yes. Using the Fifth . Postulate, it is possible to

prove that the sum of the angles in any triangle is 180°. Using the

Fifth Postulate, it is possible to prove the Pythagorean Theorem. It

turns out that both these proofs fail when the Fifth Postulate is false.

We'll tabulate all the relevant information in a minute, but first let
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me introduce a basic distinction between surfaces such as the sphere

and surfaces such as the Saddle. A surface is said to have positive

curvature if it is concavo-concave or convexo-convex; a surface is

said to have negative curvature if it is concavo-convex or convexo-

concave. What does this mean? Take a surface and pick a point on it.

Drav/ two hnes on the surface that cross each other at right angles at

this point and such that at least one of the lines is as curved as

possible. If the two lines are curved in the same direction (both

upward or both downward), we say the surface has positive curvature

at this point. If the two lines are curved in opposite directions (one

upward and one downward) we say the surface has negative curva-

ture at this point. The sphere has positive curvature at each of its

points, the Infinite Peak has negative curvature at each of its points.

The surface z = x'^-\-y^ has positive curvature at each of its points,

the z = — has negative curvature at most of its points. What

does it mean when a surface has zero curvature at a point? This

means that at least one of the two lines mentioned above is really

straight. A cyhnder, for example, has zero curvature at each of its

points. (See Figure 53 for illustrations.)

z = X -\- y
a positively

curved surface

x'-^y^

a negatively

curved surface

Fl=^

Fig. 53.
The infinite peak

Cylinder has

zero curvature

On the next page is a table presenting the relation between the

type of space one is in and the various properties which that space

can have.
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Given a line

m and a The square
point P not of the

on m, there hypotenuse
A curved- are The angle of a right The circum-

space model lines sum of triangle ference of a
of this type through P every with sides circle with
has parallel to triangle is a and b diameter 1

curvature. m. is Is

Positive No >180° < a2 + 62 <jr

Zero One = 180° = a2 + 62 = K

Negative Many <180° > a2 + 62 >^

PROBLEMS ON CHAPTER 2

(1) Why does a right triangle with sides 3 and 4 have hypotenuse less

than 5 on a sphere? Why does a circle with radius 2 have area greater

the Att on a Saddle?

(2) Given a point P on a sphere and some radius r (less than \ the

sphere's circumference), it is clear that one could use a string of that

length to draw the circle around P of radius r on the sphere. It is

possible to prove that the image under stereographic projection of

any circle m on the sphere is a circle m' in the plane (Figure 54). Will

P' (the image of P) he at the center of ml What does this imply

about the distance function in the plane of the Flat Sphere?

Fig. 54. Fig. 55.

(3) I mentioned that it is possible to have no parallels and still have

the first Postulate hold. One way of doing this is to take a hemisphere
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and identify certain pairs of points on the edge. That is, for each

point E on the equator (Figure 55) we choose another point E* on

the equator and pretend that E and E* are the same point. What rule

for associating E and E* should one use?

(4) Look in a mirror and imagine how you would look if you painted

all the negatively curved portions of your face blue and all the

positively curved portions red.

(5) Draw a Fundamental Circle, pick two points P and Q, and carry

out the construction of the "straight line" between two points on the

Flat Sphere, as shown in Figure 56.

Fig. 56.

How to find the "straight line" between two points on the Flat Sphere.

( 1 ) Given: Fundamental Circle and P and Q.

(2) Draw the segment PQ and construct this segment's perpendicular

bisector b.

(3) Draw line PC.

(4) Construct the tangent PT to the Fundamental Circle.

(5) Construct the perpendicular TI to PC.

(6) Find the point B such that CB = V2 IP.

(7) Construct a line BX perpendicular to CP.

(8) The circle with center X and radius XP is the "straight line"

between P and Q.



3
CURVED SPACE

Let us return to A, Square, Professor of Higher Space at Flatland

University. We find him sunk in thought in his office, muUing over

the fantastic discovery of the explorer Livingchip.

Livingchip had set out earUer that year to discover the edge of

the world. The Flatlanders, we should point out, believed that Flat-

land was the region inside a circle of a radius of about one thousand

miles, one year's travel for a Flatlander. In earlier times they had

believed that the space of Flatland was infinite, what we would call

an infinite plane, but in modem times they had come to believe that

their space was finite, although no one could say what lay beyond the

edge of space. This behef in the finitude of space came in part from

the utterances of A. Sphere, who had taken to making regular

appearances on Saturday nights at the Church of the Third Dimen-

sion in downtown Flatsburg. "Your world is round, flat peoples, it's a

big ball like me and almost as han'some. We solid folks calls your

world Etheric Sphere #666." A. Sphere's utterances were usually

cryptic, but this one seemed clear enough: the space of Flatland was

the inside of a large circle.

Something about this reasoning seemed wrong to A. Square, but

these things were so hard to think about. And, after all, it would be

impossible for the space of Flatland to actually be a sphere like A.

Sphere ... or so it seemed until Livingchip returned from his

journey to the "edge of space." Livingchip had set out due east two

years earlier. The idea was that after about a year's travel he would

reach the edge of the world. Once there he'd find out what it looked

like, take some pictures, conduct some experiments, maybe chip a

piece of it off, leave a Flatflag with the High Priest's name on it and

come home.
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Livingchip returned after two years all right, but he returned

from the west instead of the east. This would not have been so

surprising if Livingchip had not insisted that he moved in a straight

line for two whole years without ever coming to the edge of space,

that he had never turned back and never deviated from a straight

path. The High Priest suggested that Livingchip be put to death, but

the office of High Priest had become largely ceremonial since the day

of A. Square's escape. The public wished to understand Livingchip's

feat, not obliterate it, and they turned to A. Square for an explana-

tion.

You, the reader, should not be surprised to hear that he came
upon the idea that the space of Flatland was the surface of a sphere.

But rather than running through the whole song and dance in 2-D

terms, let's up it a dimension and see what it would be like if our 3-D

space was the hypersurface of a hypersphere.

First of all, we would be able to duplicate Livingchip's feat. If

we took off from the North Pole in a rocketship and continued flying

straight away from the Earth long enough, then we'd see a nice-look-

ing planet ahead of us after a while—and when we landed we'd find

ourselves at the South Pole.

Note that it is just as easy to imagine a "spherical" Lineland as it

is to imagine a spherical Flatland (Figure 57). Why is it so hard to

imagine our space as "spherical"? The reason is that the curvature of

our 3-D space would be in the direction of the fourth dimension. Our
"straight lines" would actually be curved, but in a direction unknown
to us. This becomes clearer if we consider a great circle on a sphere,

say the equator. If A. Square slides along the equator he will say,

"This Hne is straight; it bends neither to the left nor to the right. If it

is truly curved it can only be curved in the direction of the mysteri-

ous third dimension." Similarly, a line in our space may appear to

bend neither left nor right, neither toward us nor away from us, but

may still be bent in the direction of the fourth dimension.

'Spherical" Lineland
Fig. 57.

Q Flatsburg

Return from Leave toy

the west the east

Spherical Flatland
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If our space was hyperspherical, we could actually detect this

without flying around the universe, for, as we learned in the last

chapter, any triangle that we drew with straight sides would actually

have more than 180° in it. Unless, however, the radius of the

hypersphere whose hypersurface forms our 3-D space were very

small, this type of deviation would be too small to be noticed.

Leave to the north

Return from the south

Fig. 58. Fig. 59.

It is interesting to imagine what it would be like to occupy the

hypersurface of a rather small hypersphere, one with a circumference

of, say, 50 yards. If you were floating in such a 3-D space, then no

matter which direction you traveled in, you would return to your

starting point after 50 yards. Imagine yourself to be floating in such a

space. There is no matter besides you and some air, and you are

equipped with a handheld jet to propel you. To start with, you are in

a position very similar to that of an astronaut hanging in outer space.

The difference is that if you jet away from your starting point in a

straight line, you come back to your starting point after 50 yards.

What do you see? It would seem that any direction you looked in,

you would see yourself. Why? Well, what would A. Square see if he

lived on a fairly small sphere? Whichever way he looked, he'd see

himself (Figure 59). He would see a very large A. Square at a

distance of about 50 yards from himself. The image he sees is

actually even stranger than that, as we will see in a few pages.

But, returning to you floating in your tidy little spherical space

and seeing a huge image of yourself at a distance of 50 yards, let us

supply you with a large and stretchable balloon and conduct a new
experiment. Imagine that you crawl inside this deflated balloon and

begin to inflate it. You do this, let us say, by releasing compressed air

from a tank of compressed air that you happen to have with you. The

balloon begins to expand and you find yourself at the center of an
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expanding rubber sphere. A strange thing happens, though, when the

sphere's diameter gets to be 25 feet. The rubber wall that separates

you from the space outside the balloon stops being curved toward

you and begins to appear flat. You are somehow enclosed by a wall

that is completely flat, without curves or corners! When you release

more compressed air from your tank, the wall begins to curve away

from you, and soon the balloon which you started out inside of has

become a balloon which you are outside of. The picture of Donald

Duck which was on the outside surface of the balloon is now on the

inside surface of the balloon. The balloon has apparently turned

inside out, without being torn or punctured. You have passed from

the inside to the outside of the balloon without going through its

wall. Puzzled and slightly freaked-out, you turn to A. Square.

Say that the 2-D space of Flatland comprises the surface of a

sphere with a circumference of 50 yards. Your crawling into a

balloon corresponds to A. Square's getting inside some elastic closed

curve. The moment when the 2-D balloon has expanded to become a

great circle corresponds to the moment when your balloon appeared

flat (Figure 60).

In the balloon. Pumping it up. It looks flat! How'd I get outside?

Fig. 60.

The idea that our 3-D space may be spherical is not science-fic-

tion, but rather an idea that is seriously believed by many responsible

scientists. Albert Einstein was one of the first people to put this idea

forward. What is the appeal of this idea? It is perhaps that it enables

us to have a space that is not infinite but that is also without

boundaries. We certainly would not want to have boundaries to our

space. The very idea hardly makes sense, for if you could get to a

point on the boundary, what would stop you from going further? On
the other hand, there is something in us that recoils from the idea of

a space that goes on forever, populated with infinitely many stars,

infinitely many planets, infinitely many civilizations. If our 3-D space

makes up the hypersurface of a hypersphere, however, we can have

unbounded, but finite space. But wouldn't the point at the opposite

end of the universe be a sort of boundary? Not really; if you were at
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this point you would be perfectly free to move in any three-space

direction you could think of. It would just be that every one of those

directions was toward Earth. (Similarly, if you are in Australia,

you're free to sail a ship in any two-space direction you like. It's just

that every one of those directions is toward the U.S.A.).

A natural idea at this point is that just as there could be many
spherical Flatlands floating in 3-D space (Figure 61), there could be

many hyperspherical Universes floating in 4-D space. Why can't we
get off our hypersphere?

Many 2-D spherical un

Fig. 61.

The problem is that in order to move in the direction of the

fourth dimension we would have to be able to exert a force in the

direction of the fourth dimension, and this we cannot do. No matter

what A. Square does, he's only going to slide around on his sphere.

While we're on the subject of distinct 3-D universes floating in

4-D space, let us mention the idea of "parallel universes" that one

occasionally reads about in science-fiction and in occult writings.

Forget about the idea of curved space for now and just go back to

the idea of Flatland as an infinite plane. The "parallel-universe"

concept is that there would be twc , or seven, or infinitely many
Flatlands parallel to each other. In some versions people move from

one parallel universe to another until they find one that suits them,

the idea here being that every possible state of affairs is realized in at

least one of the many parallel universes. In other versions we exist

simultaneously in each of the universes; the "astral plane," for

instance, is viewed as a parallel universe in which our "astral bodies"

live (Figure 62). The astral body sometimes just copies the actions of

our physical body, but sometimes—as when we dream—our astral

body acts independently of the physical body. Guys who work on it

are said to be able to "wake up" while they are sleeping and actually

do things on the astral plane, such as travel to distant places and

bring back reports of what is going on there. To what extent your

astral body is connected to your physical body is unclear in the

writings I have consulted. There was a great deal of interest in these

ideas in the early part of this century, and recently there has been
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somewhat of a revival in occultist studies. Most of what I have read

seems, however, to contain a large amount of wishful thinking. As

life becomes less adventurous in our industrialized society, many

people try to find new paths into the unknown. Perhaps we are

actually 4-D beings and our physical bodies are only a 3-D cross

section of our full bodies, but it cannot be said that there is any

convincing evidence of this. Convincing evidence would consist of

some consistent and plausible extension of our present theory of

physics that would assume the four-dimensionality of ordinary physi-

cal bodies and predict verifiable experimental results. As long as

there is no good theory of astral bodies, psychic phenomena and so

on, no experiment can be really convincing.

Fig. 62.

Astral

plane

Flatland

Going back to the idea of hyperspherical universes floating in

4-D space, notice that we could move onto higher levels by asserting

that the 4-D space in which our hypersphere floated was actually

curved into the hyperhypersurface of a hyperhypersphere floating in

5-D space, that there were many such hyperhyperspheres, that the

5-D space was actually the hyperhyperhypersurface of a hyperhyper-

hypersphere floating in 6-D space, and so on and on. Once we start

adding dimensions there is no logical stopping place short of infinity.

Should the infinite-dimensional space be curved or flat? Mathemati-

cians have, in a different context, actually studied a sort of flat

infinite-dimensional space called Hilbert space. But, to quote

Whately Smith, "The nature of maximally dimensional space is a

question which I do not propose to discuss here as it is somewhat

conspicuously outside the sphere of practical poHtics."

Just as it was possible to get a Flat Sphere isomorphic to the real

sphere by taking your points to be the points on the plane plus the

point at infinity, and your "straight lines" to be circles and lines of a

certain type, it is possible to get a Flat Hypersphere by taking your

points to be the points in regular 3-D space, your "planes" to be

spheres and planes of a certain type, and your "straight lines" to be
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circles and lines of a certain type. Here's the way it works. Choose a

nice-looking sphere in your regular 3-D space and call it your

Fundamental Sphere. Now say that a "plane" is (i) any plane that

passes through the center of the Fundamental Sphere and (ii) any

sphere whose intersection with the Fundamental Sphere is a great

circle of the Fundamental Sphere. A "straight line" is (i) any line that

passes through the center of the Fundamental Sphere and (ii) any

circle that cuts the Fundamental Sphere in two diametrically opposite

points. This model is described in Hans Reichenbach's excellent

book, The Philosophy of Space and Time. Notice that any two

"planes" intersect each other in a "straight line." Thus, in Figure 63,

"planes" P and Q are spheres whose intersection will be a "straight

line," that is, a circle passing through the diametrically opposite

points X and Y on the Fundamental Sphere (we have not drawn in

this circle because it would make the picture too hard to read).

Fundamental Sphere

Fig. 63.

We can imagine the Flat Hypersphere as being isomorphic to a

real hypersphere under a 4-D stereographic projection. You would

take a hypersphere and an E3 that had one point in common, called

S. Let A'^ be the point on the hypersurface of the hypersphere that

was as far away from S as possible. Given any point P in the 3-D

hypersurface of the hypersphere, draw the straight line NP in 4-D

space and continue it until it hits a unique point P' of your E3. It is
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important here to realize that it is possible for a line in 4-D space to

meet a 3-D space in just one point.

Let's get back to something a httle less mind-boggling: A.

Square. It was clear to him that his space was spherical. After all,

Livingchip had traveled "around space," had he not? Surprisingly, or

perhaps not so surprisingly, A. Square's theory was universally re-

jected. "Space cannot be curved, Professor Square," his boss told him

with a trace of the guillotine in his voice; "space by its very nature is

flat. God would not create an imperfect universe." Square replied,

"But can't you see? Our space is curved in the direction of the third

dimension, how else could Livingchip have journeyed around the

universe without ever curving left or right?" His boss snapped,

"Doctor Square, the third dimension is not real. It is only a metaphor

for that which is miraculous and intrinsically inexplicable. And as for

Livingchip's trick . . . our Father Twistor is working on that small

anomaly."

Father Twistor was head preacher at the Church of the Third

Dimension. He had founded the Church during the turbulent times

following A. Square's escape from the guillotine. Confused and

frightened by this incursion of "extraordinary reality" (to use Father

Twistor's phrase) upon their lives, the Flatlanders had cast about for

a leader to make their changed world intelligible to them, and Father

Twistor gave them what they wanted. A. Square could easily have

seized power, but his trips into the third dimension and his months in

jail had soured him on the polygonal race. He was content to lead a

relatively isolated life at Flatland U. It was not hard to see him, but

few took the effort. He was, after all, something of an eccentric.

Father Twistor was a good and ingenious mathematician, but he

had a fundamental disbelief in the third dimension. He was masterful

at finding 2-D explanations for 3-D phenomena, while paying lip

service to the third dimension. He used the words "three-dimen-

sional" and "miraculous" interchangeably, and was not above pass-

ing off cheap magic tricks as "three-dimensional phenomena." The

Church of the Third Dimension was a great success because it made
something comfortably "miraculous" out of events that had initially

been uncomfortably real.

Soon after A. Square's conversation with his boss. Father Twis-

tor came to see him. "Well, Professor," Twistor began heartily, "up

to your old tricks? What's this I hear about a spherical space? Leave

the third dimension to the theologians! If there's any third dimension

in the real world, it's time; there's no third space dimension to bend

things in!"

"All right Twistor," Square answered, "you must have some
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miraculous 2-D explanation up your sleeve. Let's hear it."

"There's nothing to it," Twistor answered expansively.

"Livingchip grew as he moved away from Flatsburg. He grew so fast

that he reached Infinity after a year. There's only one Infinity, so he

was able to come back from it in any direction he liked. He
happened to pick it so he came back from the west even though he

left toward the east." Twistor beamed soothingly at A. Square's

furious countenance.

"That's ridiculous!" A. Square cried.

"Not ridiculous, dear Square, miraculous," Twistor responded.

Let's take a look at Father Twistor's idea. A. Square is thinking

in terms of the real sphere and Father Twistor is thinking in terms of

the Flat Sphere. Since the two spaces are isomorphic, I can tell you

right now that no one is going to win the argument. And this is going

to be our point: curvature of space in a higher dimension can be

explained away if you assume that objects stretch and shrink in the

right way as they are moved around your idealized flat space. Figure

64 illustrates Livingchip's journey the way Father Twistor saw it.

Notice that if you take a spherical Flatland and put a plane

touching it at Flatsburg, then the stereographic-projection image of a

square moving around the sphere as illustrated in Figure 57 looks just

the way Father Twistor says. When the square contains the point

from which the projection lines are drawn, then its image is infinite.

This makes sense, for if the residents of Flatsburg had looked

through a powerful telescope at the time when Livingchip was at the

point on Flatland's spherical space diametrically opposite from

Flatsburg—if they had looked in any direction at all—then they

would have seen Livingchip. Now if we were to see a part of some
person dimly in the background, no matter which way we pointed

our telescopes, then we would conclude that this "person" was

infinitely big. This would happen, for instance, if an astronaut was

floating at the point in space most distant from us, assuming that our

3-D space is spherical. An odd feature of this astronaut's appearance,

which is apparent from Figure 64, is that he would be "inside out";

that is, instead of his skin forming a surface on the inside of which

were his innards and on the outside of which was us, his skin would

be a surface on the outside of which was his innards and on the inside

of which was us. Would he notice anything strange? No! He would

feel perfectly normal. Only we would look infinitely large and inside

out to him. This weird behavior of the astronaut's body at "infinity"

is what is called a "coordinate singularity of space" as opposed to an

"essential singularity of space." That is, it is strange behavior of

space which is only apparent, and which can be eliminated by

looking at things in a different way.
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Everything on this side of this line is

inside Livingchip after 12 months!

t South

Fig. 64.

Getting back to the Square vs. Twistor debate, it turns out that

Twistor had actually worked out a formula for how fast Livingchip

had to grow. The idea was that the space of Flatland was an infinite

Cartesian plane—every point has an {x,y) coordinate, and we take

the point (0, 0) to be Flatsburg—but that the change in distance ds

between the two points with coordinates {x, y) and {x + dx,y -\- dy)

was not going to simply be the square root oi dx^ -\- dy^, as it would

be if everything was normal. The idea is that, given the two points

(jc, y) and {x + dx,y + dy) in their space, it is not absolutely neces-

sary that the Flatlanders assume that the "distance," or amount of

space, between these two points is automatically going to be the

square root of dx^ + dy^, as the Pythagorean Theorem would suggest.

Assuming the Pythagorean theorem is, after all, equivalent to assum-

ing Euchd's Fifth Postulate, as was pointed out in Chapter 2. Perhaps

the plane on which the Flatlanders hve was selectively stretched and

shrunk after each point had been assigned its Cartesian coordinates.

It is possible to calculate, by assuming that the distance between
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A point 5 inches from A point 3 inches from

Fig. 66.

the points P' and Q' in the plane should be defined to be the same as

the actual distance between the points' preimages P and Q on the

sphere, that the distance ds between the points with plane coordi-

nates {x, y) and (x + dx, y + dy) is given by

ds =
1

l+^(x2+/)
yjdx^ + dy'

where K is the radius of the sphere on which the Flatlanders live.

That is, Twistor said, the real distance between two points with

coordinates (x, y) and {x + dx, y + dy) is

1

1 +
AK'

{x'+y')

^]dx^+ dy'

instead of ^jdx^ + dy^ , as had been formerly beheved. A. Square

would view K as being the radius of the universe, but Twistor,

believing in flat space, would think of K as rather some sort of

universal constant with no necessary physical correlate. We can view

a plane as a sphere with infinite radius and observe that if K is

infinite, Twistor's formula for distance reduces to the ordinary dis-

tance formula.

We should pause here and mention what is meant exactly by dx

and dy. The terms dx and dy are understood to be infinitesimals,

non-zero quantities that are smaller in absolute value than any real

number. Of what use is a formula for the infinitesimal distance

between two infinitesimally close points, you may ask. The idea is

that we have in the calculus a tool for adding together infinitely

many infinitesimals to get ordinary real numbers. This process is

called integration. The distance between two points P' and Q' along

a given line m is defined to be the infinite sum of all the infinitesimal

distance elements along the line m between P' and Q' (usually
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written j$'ds), where it is normally assumed that you know which

line m you have mind. Thus the distance from Flatsburg (0, 0) to the

eastward edge of the universe (oo, 0) is

— dx

1 +

XIK arc tan -^rr-

IK

4K^

00

= 7tK,

where we have used the fact that our formula for ds gives the

distance between (x, 0) and (x + dx, 0) to be dx. Notice

here that the value -rrK is exactly the distance from a point on a

sphere of radius A" to a point on the opposite side of the sphere.

What is the relationship between Twistor's claim that the Flat-

landers grow larger as they move away from the origin and the

formula for ds which says that the greater x'^+y'^ is, the smaller will

be the distance change ds associated with a given coordinate change

dx, dyl The two ideas are essentially equivalent. Say that you have an

jc-axis on which you have labeled certain points 0, 1, 2 and so on.

Now say that you have a rod at rest on the x-axis with its left end at

the point and its right end at the point 1. Now say that you slide

the rod to the right and find that it comes to rest with its left end at

the point 2 and its right end at the point 4. There are two possible

conclusions you can draw: (a) As you moved the rod to the right it

expanded from one unit in length to two units in length, or (b) the

actual distance between the points 2 and 4 is the same as the actual

distance between the points and 1 (Figure 67).

Fig. 67. a)-H
\ \ \ \

b)-H h-

—

\ h-h
1 2 3 4

Conclusion (a) seems natural if you believe that we have a fixed

underlying Euclidean space with nice Cartesian coordinates for each

point. When apparently non-Euchdean phenomena arise in your

world, you explain that matter is subject to strange contractions and

expansions due to its position in space and insist that your underly-

ing space is none the less Euclidean.
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Conclusion (b) seems correct if you feel that a rigid body such as

a ruler should not be viewed as stretching or shrinking according to

where it is located in space. The feeling here is that if you pick up a

yardstick and carry it over to the other side of the galaxy, it is still

going to be one yard long. When apparently non-Euclidean phenom-

ena arise in your world, you explain that your space is in fact not

Euclidean, which is why any attempt to lay out Cartesian coordinates

satisfying ds^ = dx^ -H dy^ ends in failure.

The modern tendency is to take conclusion (b), arguing that

since the absolute space of conclusion (a) is unobservable it has no

real existence. The modern approach is to lay down coordinate lines

in any natural fashion and only then to bring in distance by actually

measuring at each point {x,y) the distance associated with a given

coordinate displacement. It turns out that if we assume that space is

locally flat (this means that in any small enough region, space

appears Euclidean) then there will be three functions gx\{x,y),

Sni^^y) ^^^ Siii^-^y) of position such that

ds^ = gxx{x,y) dx^-¥lg^2{x,y) dx dy + g22{x,y) dy^.

Often the three g-functions are combined into one function

G{x,y)=-
Sxii^.y) siii^^y)

whose value at each position is a matrix, or tensor. In the 3-D case

we have a similar function G{x,y, z) equal to the symmetrical matrix

G{x,y, z) =
gxx{x,y,z) g^2{x,y,z) g^^{x,y,z)

gx2{x,y,z) g22(x,y,z) giA^^y^^)

Sl3{x,y,z) g23{x,y,z) g33{X'y'^)

where

ds^ = g, ,(x, y, z) dx^ + 2gi2(x, y, z)dx dy + Ig^^ix, y, z) dx dy

+ g22{x,y,z)dy'' + 2g22(x,y,z)dy dz

+ gi2(x,y,z)dz^.

The G-function is called the metric tensor. It turns out that if you

are given an arbitrary coordinatization of space and the metric tensor

at each coordinate point, then you know all there is to know about

the structure of space. If you had laid out your coordinates differ-
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ently, you would have obtained a different metric tensor, but the new
metric tensor would be related to the old one in a certain natural

way.

As we saw before, if you take the regular Cartesian coordinates

on the plane then

G{x,y) =
1 +

4K^

1 +
4K^

leads to spherical space; that is, it makes the plane look exactly like

the Flat Sphere.

Let us clarify this. Why, if G (x, y) is as we just specified, should

our shortest paths look like the circles in Figure 43?

Or, to put it back in an ad polygonem form, how could Father

Twistor argue that his supposed expansion of someone moving away

from Flatsburg would cause the shortest path between P and Q to be

the curved line rather than the straight line (Figure 68)? The answer

is simple. Since a ruler will get longer as we move it away from 0, if

we lay the ruler down repeatedly along the curved path PQ, we will

have to lay it down less often then we would if we laid it down
repeatedly along the straight path PQ. A string stretched from P io Q
would actually go along the curved path. Notice that the triangle

OPQ is a right triangle with an angle sum of 270°.

Fig. 68.
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Now we can begin to see how to imagine our 3-D space to be

spherical. Granted that we can't readily imagine curvature in the

direction of the fourth dimension, we can imagine stretching rulers.

So the idea is to start with a mental image of nice ordinary 3-D
Euclidean space. Now assume that as any ruler or other object moves
away from the origin it expands. The expansion is determined by the

formula

ds= —^ ^Jdx^ + dy^ + dz^
,

1+ —,

where K is again the desired radius of the hypersphere whose

hypersurface we are to occupy. What this formula says is that the

distance change produced by a coordinate change (dx, dy, dz) is

x^-¥y^-\-z^
1/1+ —,

as big at the point {x,y, z) as it would have been at the origin. Put

differently, it requires

1+ ^
times as big a coordinate change at the point {x,y, z) to produce the

same distance change as such a coordinate change would have

produced at the origin. Again, this means that if we move an object

of a certain fixed size from the origin to the point {x,y, z), then the

size of the object relative to our coordinate system must increase. In

particular, the size of the object must grow rapidly enough for it to be

able to reach and pass through infinity after a finite amount of time.

An interesting situation arises if we take the radius of our

universe to be an imaginary number, say /. Consider the 2-D case

first. If A'= /, then A^^ = - 1, so we get

ds= yjdx^ -I- dy''

1 7^

The plane with this definition of distance is called the Flat Pseudo-

sphere, where a pseudosphere is a sphere with imaginary radius,

whatever that may mean.

As in the case for real K, the metric distortion at the origin is
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nonexistent, that is, at (0, 0), ds = dx^ + dy^. What happens here as

we move away from the origin? As we get closer to the circle around

the origin of radius 1, x^ -\- y^ gets closer to 4, and the denominator of

our expression for ds approaches zero. This means that as you get

close to the indicated circle, ds gets to be very large for even small

{dx, dy). This can be envisioned by imagining a yardstick that shrinks

as it approaches the circle of radius 2, shrinks so rapidly that the

distance between the points and 2 in Figure 69 is infinite!

Points on circle

are infinitely far

away from

Fig. 69.

Things get even weirder outside the circle. Here all the ds are

negative. The distance between any two points outside the circle is a

negative number. Moreover, if P is a point outside the circle, then the

distance from P to infinity is some finite negative number, while the

distance from P to any point on the circumference of the circle

is—infinity.

Before we start trying to figure out what the geodesies look like

in this situation, let me tell you that there is no curved surface (in

3-D Euchdean space) that corresponds to the Flat Pseudosphere in

the same way that the sphere corresponds to the Flat Sphere. (This

was proved by David Hilbert in 1901.) The notion, due to B.

Riemaim, of representing a surface by the Euchdean plane with a

tensor-valued function determining the form of ds is essentially richer

than the notion of representing a surface by a deformed plane in 3-D
space. There is no real Pseudosphere in our 3-D space, but we are

able to represent it analytically by the above formula for ds.

Let us restrict our attention to the region of the plane inside the

circle around the origin of radius 2. With the pseudospherical metric

this region appears to be infinite, although it is finite under the

regular Euclidean metric. This is as opposed to the spherical metric

mentioned before, which makes the entire plane appear to be a finite

region, although the plane is infinite under the regular Euclidean

metric.
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Just as we represented spherical 3-D space by thinking of

Euchdean 3-D space in which our rulers grow as they move away

from the origin, we can represent a pseudospherical 3-D space by

thinking of the inside of a sphere in regular Euclidean space in which

rulers shrink as they move away from the center and toward the

surface of the sphere. If the rulers shrink fast enough, the distance

from the center of the sphere to its surface will appear infinite. Thus

you could have a universe which went on infinitely in every direction

as far as you could tell, but which was really just the 3-D space inside

a tennis ball. It's just a matter of having everything shrink as it moves

away from the center of the ball. It's like the old paradox that you

can never leave the room you're in because you have to go half the

distance, then half the remaining distance, then half the remaining

distance, ad infinitum (Figure 70). But if every time you went one of

those halves you shrank by a factor of 1/2, then each one of those

infinitely many steps would be the same distance, say three feet, for

you. And you really couldn't get out of the room.

1 1 ]_ ~ —
T 4 8 1632 ...

Start •
1

1 1 1-|-|« Finish

Fig. 70.

The pseudospherical space is negatively curved, as opposed to

the spherical space, which was positively curved. Going back to the

plane version, what are the geodesies like? Let's just think about the

part of the plane inside the circle of radius 2 with the distance

ds= — ^dx^ + dy'

1 7^

as before. It turns out that a geodesic is an arc of a circle that cuts

the circle of radius 2 at right angles.

Figure 71 (due to Poincare) is one of the best models of

hyperbolic geometry that we have. Notice, for instance, that it is

possible to have many lines passing through a given point P which do

not intersect a given line m.

Earlier we discussed the way in which a Flatlander on a sphere

would return to his starting point if he traveled long enough in any

direction. Let us now consider a different sort of Flatland universe in

which he would return . . . but as his mirror image.

The surface depicted in Figure 72 is called a Mobius strip. You
can easily make one by taking a strip of paper and joining it so the
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Fig. 71

two ends have opposite orientation, in the sense indicated in Figure

73.

Fig. 72. Fig. 73.

Notice that when A. Square shdes around the Mobius strip he is

indeed turned into his mirror image. One might be tempted to say

that when he gets back he is "on the other side" of the sheet of space.

But if his space is really 2-D, there is no such thing as being on one

side or the other. A way of visualizing this in terms of a paper

Mobius strip would be to imagine that A. Square is drawn with ink

that soaks through the paper.

It would, of course, be unnatural for Flatland to be the surface

of a Mobius strip. The strip has edges, and no one's space should

have edges. We could make the edges unreachable by postulating a

field that caused any Flatlander to shrink and shrink when he moved

toward an edge. But there is a better way.

The surface shown in Figure 74 is a Klein bottle.* It is con-

structed, in theory, by taking a cylinder and joining the two ends so

that they have opposite orientation (Figure 75).

One thing wrong with our attempts to construct a Klein bottle in

*The Klein bottle pictures are from D. Hilbert and S. Cohn-Vossen, Geometry

and the Imagination (Chelsea Publishing Co., N.Y., 1952), p. 308.
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Fig. 74.

Fig . 75.

3-D space is that it is necessary to have this surface intersect itself.

One must pretend that an object moving in the surface is free to

move through the "wall" where the bottle penetrates itself.

In 4-D space it would be possible to make a perfect Klein bottle.

To see this, imagine the Flatlanders trying to make a Mobius strip.

They would have to proceed somewhat as in Figure 76 in order to

join two ends of a strip with opposite orientation. Of course, when

there are three dimensions to work in, you take the left end of the

strip out of the plane of the right end, turn it over and come back

into the plane to join up.

Fig. 76.
Self-intersection 2-D Mobius band

In the same way, in 4-D space, we could move the left end out of

the space of the right end, "turn it over" and then come back into the

space of the right end to join up. You can try to visualize the smooth
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Klein bottle in 4-D space by thinking of pulling at the loop of the

3-D Klein bottle until the region of self-intersection has been

eliminated.

Note that if A. Square lived on a Klein bottle, then traveling in

certain directions would bring him back to his starting point without

mirror reversal, but traveling in certain other directions would bring

him back as his mirror image. And this is how it would be if our

space was curved into the hypersurface of a Klein hyperbottle in 5-D

space.

PROBLEMS ON CHAPTER 3

(1) Assume that galaxies are uniformly distributed in space. If our

space were Euclidean, then for any r, the number of galaxies within a

distance of r of our galaxy would be r' times some fixed constant.

Would this be the case if our space were the hypersurface of a

hypersphere?

(2) Suppose that our space is hyperspherical, and that a fleet of space

ships flies directly away from Earth in many different directions.

Where will these ships first meet again?

(3) Imagine a spherical mirror (like a Christmas-tree ornament) and

imagine that the entire universe outside the mirror is reflected inside

it! As a person moves away from the mirror toward infinity, his

image moves toward the center of the mirror, shrinking all the while.

Would you notice if you actually lived in the mirror world?

(4) It is sometimes said that an object shrinks when it enters a strong

gravitational field (e.g., near the surface of the sun). Can you think of

a way of expressing this fact which allows you to say that objects do

not actually shrink or expand as they move about?

(5) It has been suggested that mirror-reversed matter would be what

is known as antimatter. It is easy to notice antimatter since it

combines with normal matter to explode. Now recall that going

around the Klein bottle in one direction would cause Flatland matter

to turn into its mirror image, but going around it in another direction

would not. If we were to observe that antimatter fell on the Earth

from only certain directions in space, what might we hypothesize?
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(6) Imagine Flatland to be a marble surface which has a heat source

at point 0. Say that the Flatlanders and their measuring instruments

all undergo expansion when they are heated. Will A. Square view the

space of Flatland as being positively, or negatively, curved in the

vicinity of the point 0?



4
TIME AS A HIGHER DIMENSION

As I write this there is a fly zooming around my desk. It's almost

winter and he has come in to get warm and eat garbage. When he is

in motion (and now that I am writing about him he is putting on

quite a show) I do not actually see a moving black object. I see,

rather, a sort of trail in space (Figure 77).

1

I

.A.

—

Fig. 77.

Pause here and wave your right hand in a complicated 3-D

pattern. Look at the trails. In what sense do they exist? What would

it be like if your hand was at each of its positions at once? What if

you move your hand from your nose to your ear and then back to

your nose—why doesn't the old hand at the nose get in the way of

the new hand at the nose?

The viewpoint we wish to develop in this chapter is that all 3-D

objects are actually trails in 4-D space-time. "Space" is a fairly

arbitrary 3-D cross section of space-time which we imagine to be

moving forward in the direction of the remaining dimension, "time."

Is, then, time the fourth dimension? Not necessarily, You could

still have four dimensions—say three to live in and one to curve

space in the direction of—and then throw in time as the fifth

dimension. It is possible and useful to view time as a higher dimen-
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sion, but the reader should not jump to the conclusion that whenever

we talk about a higher dimension we are referring to time; many of

the ideas about the fourth dimension that we have outlined are no

longer valid if you insist that the fourth dimension is simply time.

Some things that are possible in pure four-dimensional space are not

possible in four-dimensional space-time.

To get a good mental image of space-time, let us return to

Flatland. Suppose that A. Square is sitting alone in a field. At noon

he sees his father, A. Triangle, approaching from the west. A.

Triangle reaches A. Square's side at 12:05, talks to him briefly, and

then slides back to where he came from. Now, if we think of time as

being a direction perpendicular to space, then we can represent the

Flatlanders' time as a direction perpendicular to the plane of Flat-

land. Assuming that "later in time" and "higher in the third dimen-

sion" are the same thing, we can represent a motionless Flatlander by

a vertical worm or trail and a moving Flatlander by a curving worm
or trail, as we have done in Figure 78.

We can think of these 3-D space-time worms as existing time-

lessly. We can use them to produce an animated Flatland by taking a

2-D plane, moving it upward (forward in time) and watching the

motions of the figures formed by the intersections of the worms with

the moving plane. Try to imagine a picture like Figure 78 which

encompassed the entire space and time of Flatland. A vast tangle of

worms of varying thicknesses! Actually, each worm would be a

tangle of threads, where a thread would correspond to the trail of an

atom. Given the fact that every atom in one's body is replaced every

seven years or so, we can see that there is actually no single thread

that goes the whole length of one's life. A living individual is a

persistent pattern rather than a particular collection of particles.

It is an interesting mental exercise to try to see our world in

terms of space-time. Walking through a crowd of people, for in-

stance, one can try to see the people as trails in space-time rather

than as spatial objects moving forward in space-time. Under this

view what our world really consists of is "worms" in 4-D space-time.

The universe at any instant is a particular 3-D cross section of this

4-D structure.

A question that arises if we attempt to accept the view that our

universe is a static space-time configuration is, "Why can't we see the

past and the future if they really exist? What causes us to perceive

ourselves as moving forward in time?" In other words, if we take the

two worms in Figure 78 and let them exist statically, this does not

seem to provide for A. Square's feeling of moving forward in time.

One might suggest that we take the static space-time worms and
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12:10

12:05

12:00

Fig. 78.
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move an illuminated spatial cross section upward to represent A.

Square's consciousness, but this seems rather artificial. For if the past

and future coexist in the unchanging realm of space-time, should not

each cross section be permanently illuminated? But we do feel that

time is passing.

If we accept the space-time view of the world wholeheartedly,

the question becomes, "What causes the illusion of the passage of

time?" Various people have attacked this question. One of the best

attempts is David Park's article, "The Myth of the Passage of Time,"

in the Fraser anthology (see Bibliography). Park's idea is that we are

in fact at each instant of our lives. Every moment of past and future

history exists permanently in the framework of 4-D space-time. The
illusion of the passage of time is a consequence of the structure of the

universe; in particular, it is a consequence of the fact that the

memory traces of an event are always located at space-time points

whose time coordinates have greater values than the time coordinate

of the event. This fact cannot be explained; it is simply an observable

property of the universe. That is, you are going to have memories of

thoughts or events only at times "later" than the times at which these

thoughts or events occur. Each point on the individual's life-worm

finds its place in relation to the other points on the life-worm by
comparison of memories. There is no paradox in the claim that my
earlier self who drew Figure 78 still exists. I will always be drawing

that picture, typing this sentence and meeting my death. Every

instant of your Ufe exists always. Time does not pass. You might

argue, "Look, I know I am existing right now. The past is gone and
the future doesn't exist yet. If the past existed it would be possible for

me to jump my consciousness back five minutes." But there is no
consciousness to jump back or forth; you are always conscious at

each instant of your life. The consciousness of five minutes ago is

unalterable. Even if it were meaningful to speak of "jumping back
five minutes" and even if it were somehow possible to do this; you
wouldn't notice that you had done it! For if you entered back into

your body and mind of five minutes ago, you would have no memory
of having been in the future. You would think the same thoughts and
perform the same actions. You could jump back over and over, read

this chapter up to this point 50 times, and not notice. Not that I think

the idea of "jumping back" is meaningful. For this idea implicitly

includes the notion of a consciousness that "illuminates" one particu-

lar moving cross section of space-time—and this is the illusion that I

am arguing against.

Is there any other type of consciousness available to us than the

various points along our life-worm? Is there any way to be conscious
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in static space-time instead of in moving space? Such consciousness is

the goal of the mystic's quest. Practitioners of Yoga speak of im-

mortahty and freedom, consciousness of the Eternal Now, and the

transcendence of time. Are they talking about the direct perception

of the unchanging world of space-time? Reports indicate that a

period of time spent in deep meditation is recalled as an essentially

timeless period. It seems to be in fact possible to escape the feehng of

time passing. The actual experience of such "illumination" caimot

ordinarily be fully recalled in ordinary states of consciousness. Does

this mean that such states of consciousness supply a direct window

into the world of space-time? Perhaps, but perhaps not. It can be

argued that the production of a "timeless" feeling is simply a trick

that works as follows. The way in which we notice that time is

passing is that each instant of consciousness is different from the

ones just before and just after it. This is because we are always

thinking new thoughts, noticing new things. Now, the technique by

which one enters a yogic trance is to stop thinking new thoughts. This

is done either by thinking nothing at all (this is not easy!) or by

concentrating one's attention on a repetitive thought loop (e.g., a

mantra such as the currently popular "Nam myoho renge kyo" or the

"Om mane padme hum" mantra of Baba Ram Dass, author of the

excellent introduction to Yoga, Be Here Now). Now if you are

thinking nothing, there is no way to differentiate one instant from the

last instant or the next instant. If you are doing mantra there is no

way to differentiate one repetition from the last repetition or the next

repetition. Hence either of these mental exercises leads to a sensation

of timelessness (Figure 79). Let me interject here that there is nothing

peculiarily Eastern about the use of mantra; the "Hail Mary" is

Fig. 79. Normal thoughts Mantra Thinking nothing
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perhaps the most widely used Western mantra. Now, these sensations

of timelessness are pleasant and valuable, but are they really 4-D
consciousness? Perhaps not, but they are a good first place to start

one's efforts to develop a 4-D consciousness.

A different trick for developing a space-time consciousness is

described in Carlos Castaneda's book, A Separate Reality, an account

of a Mexican Indian named Don Juan and his attempts to teach or

show Castaneda a new way of interpreting reality. Certain sequences

in the book give one the impression that Don Juan was actually

trying to teach Castaneda to see in space-time. One of the exercises

which Don Juan assigned was that Castaneda should start paying

attention to sounds instead of to sights. This may sound unimportant,

but civilized man is in fact highly visually oriented. Most of our

information (e.g., the printed word) comes to us through our eyes, as

opposed, say, to a primitive hunter who depends to a much larger

degree on his ears (e.g., tribal chants and sounds of animals). The

interesting thing about our ears is that they perceive time structure

instead of space structure. In other words, you can't hear what's

going on in a room with a "glance" of your ears. It takes time to hear

what's going on. Notice, for instance the way in which you hear a

song on the radio. You do not hear it a note at a time. You hear

chords, progressions, crescendos and so on. You perceive time-struc-

ture.

Viewing events in a historical perspective is another way to get

closer to a space-time world view. That is, you can become more

aware of yourself as a space-time structure if you keep in mind the

way you were five minutes, five hours, five years ago. There are even

moments of intense recollection when we actually seem to go back to

the scene of a past event. The Argentinian writer Jorge Luis Borges

goes so far as to argue, in his paradoxically entitled essay, "A New
Refutation of Time," that when you recreate a particular state of

consciousness you actually return to the time when that original state

of consciousness existed in you.

Let us now discuss the problem of free will. A common objec-

tion to the view that all space and all time can be rolled into one

static space-time structure is that the future does not seem to be

completely determined by what has happened up to this instant. The

feeling is that we do choose from the various possible courses of

action open to us and that hence the future cannot already exist.

The easy answer to this objection is to claim that we do not have

free will, and a good case can be made for this. Whenever someone

performs an unexpected action our immediate question is, "Why did

you do that!" Imphcit in this question is our belief that there is
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always a reason for a person's action, that, in fact, he does not have

free will but responds only to the forces of internal and external

pressures.

This answer is not entirely satisfactory since there do seem to be

choices that are completely nonpredictable. Little choices, such as

which shoe to put on first, seem to be made in a random and

nonpredictable fashion. In physics we have events that seem to be

fundamentally random. If you have, for instance, an atom of uranium

there is even in principle no way to predict if it will decay and emit an

alpha particle within the next ten seconds or not. How can this

already be decided in space-time if we can't predict it?

Well, why not? After all, predetermination does not imply pre-

dictability. All of the future could already exist, including the unpre-

dictable little zigs and zags that occur. Still, there is something a httle

unsatisfying about this state of affairs. The feeling- is that if there is

nothing forcing the atom of uranium to decay or not to decay in the

next ten seconds, then it should be possible for it to do either one.

But if the future already exists, then it isn't really possible for it to do

either one. Either it's going to decay, in which case it wasn't actually

possible for it not to decay, or it isn't going to decay, in which case it

wasn't actually possible for it to decay, although we didn't know this.

Is there some way to set up the universe so that the different possible

futures are real possibilities instead of theoretical possibilities?

Yes, there is. The idea is that we can work with a branching

universe. This idea has been seriously proposed by several physicists

(see DeWitt, ed.. The Many- Worlds Interpretation of Quantum

Mechanics). To get a picture of it let's work with a zero-dimensional

space: Pointland, a space consisting of one point. Now say that this

point can decide at the end of each second whether or not to glow

during the following second. Now, if we draw the life-worm of this

point we get a line going upward (forward in time) that will be lit up

during some one-second intervals and dark during some one-second

intervals (Figure 80). Since this whole line exists in space-time, we
might conclude that the point's feeling that it was deciding at the end

of each second whether or not to glow for the next second was

illusory.

In order for the point's choices to be real, it is necessary that its

world line split in two each time it makes his glow/no-glow decision

(Figure 81). That is, all of its possible futures really exist. It will have

the illusion that it only experiences one of them, but in fact there are

many of it, experiencing every possible life. Each one of these

"selves" will have the illusion that it is unique, will have the illusion

that it has judiciously selected a particular sequence of glow/no-
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glows, will feel that its free will has realized only one of the many
possible universes. In fact, all the possible universes will exist.

If we accept this "branching-universe model" for our own uni-

verse we can see that there will be a staggering number of branches

to our universe. For every time some indeterminate quantum event

does or does not take place in an atom, the universe splits into two

branches. That's a lot of new branches per second! Would every

possible universe exist, then? Would there be, say, a universe in

which you were Superman? Sure, in order for you to fly it would just

be necessary that all the atoms in your body be coincidentally

moving upwards at the same time in the course of their random
fluctuations. Unlikely, but not impossible! To take a more reahstic

example, consider the paradox called "Schrodinger's Cat," described

by Erwin Schrodinger, one of the founders of quantum mechanics.

A cat is left in a room with a closed glass bottle of cyanide gas.

Next to the bottle is a hammer connected to a Geiger counter, which

is next to a small amount of uranium. The hammer is coupled to the

Geiger counter in such a way that if an atom of the uranium decays

between 12 noon and 12:01 p.m., the Geiger counter will sense this

and cause the hammer to smash the bottle, thus killing the cat. The
paradox is that until we return to the room, say around 6 in the

evening, and observe whether or not the cat is alive, it is not

physically meaningful (according to quantum mechanics) to say that
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the cat is definitely dead or definitely alive. There is a certain

probability that an atom decayed during the crucial minute after

noon, and until we make an observation as to what actually

happened, both possible worlds have a certain theoretical existence.

The uncertainty arises because the laws of quantum mechanics

merely describe the evolution of certain probabilities with the passage

of time; the precipitation of a particular observation out of the

probability space of quantum mechanics is not a phenomenon that

can be accounted for in any deterministic way.

Hugh Everett's solution to this situation (his paper appears with

commentaries in the DeWitt book) is to maintain that every state in

the probabihty space of quantum mechanics really exists: there is a

universe in which the cat lives and a universe in which the cat dies,

and we split and enter both universes. How many dimensions would

we need for such a branching universe?

In one sense it seems that we'd only need five: three for space,

one for time and one in the direction of which the universes could do

their branching. On the other hand, if we think of the branching

induced by any one particle as being independent of the branching

induced by any other particle, we'd want a dimension for each

particle in the universe—which is a lot of dimensions.

We discussed the idea of developing a space-time consciousness

when we started viewing time as a static dimension. Is there any

chance of being able to somehow sense all the different possible

universes, assuming with Everett that they "really" exist? Maybe we
are, in some way, aware of many possible worlds, and we shift our

attention back and forth from one to the other. One day everyone

loves you, the next everyone hates you; one minute everything is

Love, the next it's curved space-time; you see the blue sky shining

through the trees, blink and you see the green leaves in front of the

sky. No less a man than Ludwig Wittgenstein has said, "The pessi-

mist and the optimist live in different worlds"; why not take this

literally? Assuming that we have a sort of access to many possible

universes, what should we do to know them all? That is, assuming

that the true reality is composed of the many possible individual

realities, what can we do to tune in on the whole big thing instead of

the particular channels? It would be a matter of stopping the internal

process of naming, evaluating, judging, discriminating and so on that

is involved in the forming of world views. The only way not to be

tied to a particular system of interpretation is to have none. In the

words of Don Juan (from page 264 of Castaneda's A Separate

Reality), "The world is such-and-such or so-and-so only because we
tell ourselves that that is the way it is. If we stop telling ourselves that
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the world is so-and-so, the world will stop being so-and-so. At this

moment I don't think you're ready for such a momentous blow,

therefore you must start slowly to undo the world."

What is reality? NO MIND! None the less, getting there is half

the fun.

PROBLEMS ON CHAPTER 4

(1) If you say that the fourth dimension is time, then it is possible for

you to construct a hypersphere in space and time. How?

(2) Space-time is not really the same as 4-D space for a number of

reasons. For instance, the ability to move backward and forward in

time would enable you to get into a sealed room (how?), but it would

not enable you to remove someone's supper from his stomach

without disturbing him (why not?).

(3) Kurt Vonnegut's novel Slaughterhouse Five is about a guy who
lives his life in a jumbled order; for instance, first he experiences

1950, then 1946, then 1956, then 1943, etc. Would you necessarily

notice if you lived your life in this manner? Is it meaningful to claim

that you have done so? In the Vonnegut book the character does

notice his jumping about because his memory is continuous. That is,

in 1946 he remembers 1950, etc. In what way is this state of affairs

incompatible with the space-time view I argued for in this chapter?

(4) If the time of our universe really branches, is there any way in

which you can influence which branch you go into? Is this a

meaningful question? People sometimes throw coins to get a hexa-

gram which they look up in the / Ching to find out which branch of

the universe they are entering. Could one improve his world by

getting good at throwing the / Chingi

(5) In quantum mechanics a system (e.g., a person) is represented by

a "state vector" in Hilbert space that codes up the extent to which it

or he is in each of the many possible universes. A system's state

vector looks something like this: <-j^, ^, \, ^,...>, where the sum
of the entries is 1 and each entry indicates the probability that a

measurement (e.g., of position) will find the system in the state

corresponding to that slot. What would a system's state vector look
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like right after a measurement is performed, and you have forced the

system to be in only one universe?

(6) It can be maintained that we are justified in saying that event A
happens before event B only if at event B we have some evidence

(e.g., memory) that event A has taken place. Would, then, your

thoughts necessarily be linearly ordered in time?



5
SPECIAL RELATIVITY

In the first part of the last chapter I discussed the idea that the 3-D

world we live in at any moment is but a cross section of 4-D
space-time. Given the way that things are in our world, what can we
infer about the structure of space-time? What is the geometry of

space-time? What type of metric does it have?

In 1905 Albert Einstein first gave serious consideration to these

questions in his paper, "On the Electrodynamics of Moving Bodies."

This is the paper in which his celebrated Special Theory of Relativity

was first presented. The paper is rather analytical and contains no

pictures. In 1908, H. Minkowski, a young Russian mathematician,

presented a paper in which he interpreted Special Relativity as a

theory about the geometry of space-time. The paper, called "Space

and Time," introduces a type of picture called a Minkowski diagram.

Let me quote the famous first paragraph of this paper:

The views of space and time which I wish to lay before you have sprung

from the soil of experimental physics, and therein lies their strength. They

are radical. Henceforth space by itself, and time by itself, are doomed to

fade away into mere shadows, and only a kind of union of the two will

preserve an independent reahty.

To draw a Minkowski diagram, we take the aj^ -plane, call the jc-axis

"space" and call the y-axis "time." Since there is only one space

dimension, a Minkowski diagram can be thought of as the space-time

of Lineland. In Figure 78 we drew a sort of Minkowski diagram for a

2-D space. A complete Minkowski diagram for our 3-D world would,

of course, take four dimensions, but it turns out that the Lineland

Minkowski diagram is adequate for our purposes (Figure 82).

There is a familiar sense in which motion is relative. If two
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Space

Fig. 82.

World line of a

point accelerating

to the right

Time

rocket ships are drifting in empty space with their engines cut off and
if they pass each other heading in opposite directions, then it is

impossible to say for sure if one or the other or both of them are

moving. All that is certain is that they are moving relative to each

other (Figure 83).

"A is motionless and B
is moving rapidly to the

right"

"A is moving slowly to

the left and B is moving
slowly to the right"

Fig. 83.

"A is moving rapidly to

the left and B is

motionless"

Is it really impossible to decide who is moving? We know from

experience that no mechanical experiment will tell us if we are in a

state of uniform translatory motion (that is, no acceleration and no

swerving). Thus, for instance, if you're doing a steady 65 on the

thruway and you toss a beer to the guy in the back seat, the beer

doesn't smash into him at 65 miles per hour and kill him. Or if you

want to practice yoyo tricks in the aisle while flying to the convention

in Tulsa there's no need to find out your air speed and adapt your

style accordingly.

But maybe there's some tricky experiment using light rays or a

cyclotron or a fantastically accurate scale along with perfect clocks

and rulers which would enable you to tell if you were moving or not.

Einstein says no in his Principle of Relativity: "The laws by which the

states of physical systems undergo change are not affected, whether
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these changes of state be referred to the one or the the other of two

systems of coordinates in uniform translatory motion." Before the

rabbits start coming out of the hat we need one more principle, the

Constancy of the Speed of Light: whenever you measure the speed of

a light ray, you're going to get the same number; it doesn't matter if

you're moving toward or away from the source of light, and it doesn't

matter if the source is moving toward or away from you. Given the

Principle of Relativity, of course, we could delete the section "it

doesn't matter if you're moving toward or away from the source of

light, and" from the last sentence, since the Principle of Relativity

says we can always assume we are motionless and ascribe all of the

relative motion between us and the light source to the light source.

The Principle of the Constancy of the Speed of Light is hard to

swallow at first. If you run forward as you throw a rock, it goes faster

than it does if you throw it while standing still. So shouldn't the hght

coming from the headlight of a car speeding toward you be moving
faster than the light coming from the headlight of a parked car? Let

us temporarily entertain the notion of a luminiferous (light-carrying)

aether, an invisible elastic sort of substance that fills the empty space

between atoms. Light, then, is viewed as a wave in the aether, much
as sound is a wave in the air and a breaker is a wave in the water.

Now the speed at which sound travels through the air has nothing to

do with the speed of the source. A gunshot produces a high-pressure

region that is transmitted through the air at a speed that does not

depend on the motion of the gun. The ripple caused by a rock

thrown out into the lake moves at the same speed as the ripple

caused by a rock dropped into the lake. Thus we might imagine that

the speed at which a hght ray approaches us need not depend on the

motion of the hght source.

And this is in fact the case. The various stars in the sky have a

wide range of velocities relative to us, but all their light rays reach us

at the same speed. This is an experimentally tested fact. So, fine, you

may think, the reason the speed of light doesn't depend on the

motion of the source is that light is a vibration of the aether whose

rate of transmission depends solely on the aether; once a vibration is

imparted to the aether, the aether doesn't care where the vibration

came from—it just sends it along at the usual speed.

But what if you are moving relative to the aether—shouldn't that

change the speed of light? If you drive a speedboat in the proper

direction with the proper speed you can keep it right between the

same two ocean waves; so shouldn't you be able to at least slow light

down by moving away from the source through the aether? The

Principle of Relativity says that your moving away from the source is
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no different from the source's moving away from you, and we know

(by observation) that that doesn't change the speed of Ught, so it

must be that motion relative to the aether doesn't change the speed of

hght rays which you observe. So the aether is even less concrete than

we had imagined; indeed it isn't the kind of thing relative to which

you can have a motion. It turns out that if we regard the aether as an

idealized space-time instead of a mere idealized space we won't get in

trouble.

What is the speed of light anyway? It's usually represented by

the constant symbol c. It turns out that c, the speed of light, is

around one billion miles per hour. For our purposes it will be

convenient to pretend that c is exactly one bilhon miles per hour. The

scale on the space and time axes of a Minkowski diagram is normally

adjusted so that light rays have a slope of ± 1 . Thus, if our space unit

is one billion miles and our time unit is one hour, .then light travels at

a speed of one space unit per time unit (Figure 84).

In the relativistic world view, space-time is a sort of absolute

background onto which we project our distinct conceptions of space

and time. The "points" of space-time are called events. An event is a

specific location in space-time. Your birth is an event in space-time;

my typing the period of this sentence is an event in space-time. There

is no preferred way for assigning space and time coordinates to the

events of space-time, but the tracks of light rays do supply a sort of

built-in structure to space time. That is, whether or not there is a light

ray connecting two events is not a matter of opinion, something on

which different observers could disagree. If event A is the explosion

of a hydrogen bomb on the moon and event B is your noticing a

flash of light on the moon, then no observer can dispute the fact that

there is a light ray connecting event A to event B (Figure 85). The

really significant thing about the light rays is that every observer

agrees on the speed of light.

Space

Fig. 84.

hour
World line of

light ray moving
' from left to right

1 billion miles

Time Fig. 85.
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Let us see how this affects the definition of simultaneity.

Suppose that there is a long platform (say a train) moving rapidly to

the right. Let there be an observer O stationed at the middle of the

platform and say that there is a small bomb at each end of the

platform (Figure 86). The bombs are going to be detonated, and O is

going to want to decide if they were detonated at the same time. That

is, he wishes to know if the event which is the detonation of the bomb
on his left and the event which is the detonation of the bomb on his

right have the same time coordinate. It seems quite reasonable of O
to say, "I will conclude that the two bombs were exploded simulta-

neously if I see the flashes of the explosions at the same instant. For

since the bombs are located at equal distances from me the two

flashes will reach me at the same time only if they occur at the same

time." Notice, however, that if O perceives the two flashes at the

same time then it must be that we will think that the bomb on the left

exploded first. For we will reason that since he is moving away from

the left flash and toward the right flash, in order for the left flash to

catch up with him at the same time that he meets the right flash, it

must be that the left flash got started first (Figure 87). O, of course, is

free to regard himself as motionless. According to the Special Theory

of Relativity his idea of simultaneity is as valid as ours. O divides

space-time up into space and time in a way different from us. We see

space-time as a continuum of horizontal space cross sections stacked

up in the time direction. Only, if someone is moving relative to us, his

time direction is different and his idea of how to sUce the stack into

space cross sections (a space cross section being a collection of

simultaneous events) is different as well. The first difference is not so

surprising; certainly his time axis can be different from ours if he is

moving. Your time axis, after all, is the collection of all events whose

space coordinate is zero, and if you assume you are motionless at the

origin of space then your world line will be your time axis.

O sees the explosions simultaneously

ight bomb
explodes

Left bomb
explodes \^,

O's idea of simultaneity

Fig. 86. B, O 5«
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The really surprising thing is that as your time axis changes your

space axis changes along with it. It turns out that the angle your

space axis makes with the horizontal axis is the same as the angle

your time axis makes with the vertical axis. We should keep in mind

that there is no way to decide which coordinatization is "right." There

is no such thing as a "right" coordinatization; any division of

space-time into space and time is equally arbitrary. Thus O's version

of Figure 87 will have his axes orthogonal and om axes slanting

(Figure 88).

Our^
space

O's time Our time

Fig. 87.

Our space

O's

O's time Our time

Fig. 88.

The main point is that it is literally meaningless to claim that

distant events are or are not simultaneous. Simultaneity is not an

intrinsic property of space-time; it is only an artifact of the manner

in which we perceive, splitting 4-D space-time into a continuum of

3-D spaces arranged along a time axis.

This notion of simultaneity is an important one. Let us discuss it

a little more. How, if you receive a light signal from some event, do

you decide when the event actually took place? The speed of light is

to be constant at a billion miles per hour for each observer, and this

supplies us with a conversion factor between space and time. That is,

if you receive a light signal from a place which you know to be one

billion miles away, then you can conclude that the signal was emitted

one hour ago. But what if you're moving away from the place where

the signal took place? No such thing, says Einstein. Once a light

signal gets going you are free to assume that the aether that carries

the signal is moving along with you. You don't have to account for

your motion relative to the source. If you knew how to account for it

you'd know that you were moving, contradicting the Principle of

Relativity. You already know that if the source is moving away from

you, that shouldn't make any difference, since the light wave is a
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process that "forgets where it came from," and you're free to ascribe

to the source any motion of yours relative to the source. So if you're

moving away from the source of the hght flash at about half the

speed of light (from the standpoint of the person drawing this

Minkowski diagram), what's going to happen? How are you going to

decide at what point on your world line event X occurred (Figure

89)?

You see
X here World line

of light ray

from X

Your

world line

Fig. 89.

Fig. 90.

Either you're

moving away
from X or light

is slow

Light travels at

speed c in a

space at rest

with respect

to you

Either X is moving
toward you or light

is fast

We have two principles to guide us: the Principle of Relativity

and the Principle of the Constancy of the Speed of Light. What you

have to do is to pick some event T on your world line and say, "X
occurred simultaneously with T." T might be, for instance, the event

of your watch reading 12 noon. Call the event when you see the light

signal from X the event 5" (Figure 90).

Now, T must be chosen so that the space separation between X
and T is equal to c times the time separation between T and 5". If you

choose an earUer time 7^, then the light from X is going to take a

longer time to cover a shorter distance, and you will be forced to

conclude either (a) I am moving away from the space location X, or

(b) the light from X is approaching me at a speed less than one

billion miles per hour. Similarly, if you choose a later event 7}, then

you will be forced to conclude either (a') I am moving toward the

space position X, or (b') the light from X is approaching me at a

speed greater than c, since here the light covers an apparently greater

distance in a shorter time.

Note that conclusions (a) and (a') violate the Principle of Rela-

tivity, whereby you are always allowed to assume that light travels

through an aether that is at rest with respect to you; that is, you are

allowed to assume that you are at rest with respect to any given
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event. Conclusions (b) and (b'), on the other hand, violate the

Principle of the Constancy of the Speed of Light, which states that

every observer must perceive the speed of every light ray to be the

same.

So now we can see how to find the event T on any straight world

line which an individual traveling that world line must believe to be

simultaneous with any given event X. You draw a light ray's world

line from X, keeping in mind that the world lines of light rays are

always at a 45° angle to the horizontal. Find the event S where the

light ray's world line crosses the reference world line. Pick a point T
on the reference world line so that the distance XT equals the

distance ST . J" is the event which a person traveling the reference

world line must conclude is simultaneous with X. You can actually

construct the point T by taking it to be the point where the per-

pendicular bisector of XS crosses the given world line (Figure 91).

The relativity of simultaneity can lead to some paradoxical

situations. Imagine that a rocket ship is floating in space, out near

Pluto, and that it is staying at a fixed distance from the Earth. At

some time the captain decides to move on out of the Solar System, so

he turns on the ship's engines and it accelerates away from the Earth.

After a while he cuts off the engines and the ship continues to coast

away from the Earth, only now at a constant speed. They coast along

for a while and then they decide to look through their telescope and

see how good old Earth is doing. To their horror, what they see

through the telescope is the destruction of the Earth by a doomsday

device, a single bomb so powerful that it shatters the Earth into

fragments the size of asteroids.

They realize, of course, that the destruction of the Earth is not

happening as they watch; it will have taken the light from the

explosion some time to get from the Earth out to the rocket. But they
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are interested in figuring out exactly when the destruction of the

Earth did take place. In particular, they would like to know if it took

place before or after the captain accelerated the ship away from the

Earth.

The captain argues that the explosion of the Earth took place

right after he turned off the engines. "I had a feehng that Earth

needed us, so I cut power," he claims. He substantiates his argument

by pointing out on a handy Minkowski diagram that the line of

simultaneity for the ship that is coasting away from the Earth is such

that the expolsion of Earth is even with the instant when he cut

power.

The first mate argues that the explosion of the Earth took place

right before the captain turned on the engines. "The captain knew

that the Earth was about to go up in flames, so he decided he'd better

head on out of the Solar System. I think the captain is a traitorous

coward who should be depressurized!" shouts the first mate. He
substantiates his argument by pointing out that the line of simultane-

ity for the ship that was not moving away froin the Earth is such that

the explosion of the Earth is even with the instant when the captain

turned on the engines.

Fragments of the Earth

Rocket learns

of Earth's

destruction

Line of simultaneity

for accelerated rocket

Rocket ceases acceleration

(turns off engines)

Line of simultaneity

x' for unaccelerated
-—^ rocket

Rocket begins acceleration

(turns on engines)

Fig. 92.

Earth's world line Rocket's world line

Did the Earth blow up before or after the ship accelerated?
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Who is right? Did the Earth blow up before the acceleration,

after the acceleration, at both times, or at neither time (Figure 92)?

Actually, there is no real answer! What does it mean when you ask a

question about the world and there is no real answer? It means that

you're asking the wrong kind of question. In this case the moral is

that it is really meaningless to speak of two distant events as being

simultaneous.

There is worse to come. We will soon see that objects do not

have length in any absolute sense. Imagine two segments in Lineland

that move past each other at a high rate of speed. One segment

moves to the right at half the speed of light, and one segment moves

to the left at half the speed of light. Riding on the midpoint of the

segment moving to the right is a point called R, and riding on the

midpoint of the segment moving to the left is a point called L. Before

they started moving, both segments were the same length, and to us

they still appear to be the same length. However, R will say that L's

segment is shorter than his, and L will say that R 's segment is shorter

than his. How is this possible? Let's look at the Minkowski diagram

(Figure 93). We identify ourselves with a fixed point of Lineland.

We have drawn the world lines of 0, R and L and we have

drawn the world lines of the ends of the segments on which R and L
are riding. Notice that there is an event in space-time where 0, R and

L are at the same place at the same time. We have drawn the lines of

simultaneity for the three observers which pass through this event. O's

line of simultaneity is horizontal, i?'s slants up and L's slants down.

It is easy to draw in the lines of simultaneity because the angle

between any observer A"'s space axis and O's space axis must always

equal the angle between ^'s time axis and O's time axis. (This is so

that the speed of light will appear constant, i.e., so that a line going

out from the origin with a slope of 1 in one system will have a slope

of 1 in any other system.)

We are interested here in the event A and the event B. The event

A is when the tip of L's segment crosses the end of /?'s segment; the

event B is when (and where) the tip of /?'s segment crosses the end of

L's segment. According to 0, the events A and B are simultaneous.

Hence concludes that the two segments have the same length, since

there is an instant of time when they overlap each other exactly.

According to R, event A occurs after event B. For, at the instant

when R meets L, event B Hes below /?'s line of simultaneity (i.e., in

/?'s past) and event A hes above i?'s line of simultaneity (i.e., in i?'s

future). So R will say, "First the tip of my segment crosses the tail of

L's segment, and then some time later the tail of my segment crosses

the tip of L's segment." From this R will conclude that his segment is

longer. This follows if you think about it a little. Say, for instance,
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The relativity of length

L-space

0-space

y?-space

/?-time 0-time

Fig. 93.

^

L-time
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that you were driving a Cadillac to the east and someone else was

driving a VW to the west (Figure 94). When your paths crossed, your

hood ornament would be even with the VW's rear bumper first (at

this time, the VW's hood ornament would just be even with your rear

door) and then after a while your rear bumper would be even with

the VW's hood ornament. You could conclude from this that you

had a bigger car.

(^VW ) (^VW )

Caddy

(VW )-

—

A
^

Caddy
V )

Caddy

10:06:27 10:06:28 10:06:29

Fi%. 94.

Actually there's an easier way to look at the Minkowski diagram

and see that R will think L's segment is shorter than his. Just look at

the line labeled "7?-space." This is R's line of simultaneity for the

instant when his path crosses L's path. If you just think of this as R 's

space axis, then you can see that on this space axis L's segment is

shorter than R's segment.

The same kind of argument shows that L will think R 's segment

is shorter than his. L will say that event A happens before event B, so

he can conclude that his segment is longer. Or, just by looking at L's

space axis, you can see that R's segment is shorter relative to this

notion of space.

Actually, for this argument it was not really necessary to have

both R and L moving. Taking R's standpoint, we can see that R is

free to imagine that he is motionless and that it is just L that is

moving. So the upshot of this argument is that moving objects appear

to be contracted in their direction of motion. R thinks he is motionless

and L is moving, so he sees L as contracted; L thinks he is

motionless and R is moving, so he sees R as contracted. thinks R
and L are moving in opposite directions with equal speeds, so he sees

them both contracted by equal amounts. Note that we have not yet

figured out how to indicate how long R's segment and L's segment

would look to if they stopped moving. Before we can do that, we
will need the idea of the interval between two space-time events.

But first let's examine an apparently paradoxical consequence of

the relativity of length, a paradox entitled the Pole and Barn Para-

dox. Imagine a barn 10 meters long and a man running toward it

carrying a pole 20 meters long (Figure 95). The rear wall of the barn
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is paper, so he can run through it without getting killed. The plan is

to let him run into the barn and then to slam the door as soon as the

trailing end of the pole gets inside the barn. Now this guy is a really

fast runner. In fact he is running at about three-fourths the speed of

light. As it turns out, if he runs this fast, then the pole he is carrying

will appear 10 meters long to the farmer in the barn. On the other

hand, given the Principle of Relativity, the runner is going to see the

barn as being half as long as it was before their relative motion

started; that is, he's going to think the barn is only 5 meters long.

The runner sees it like this

Fig. 95.

Now, it would seem that we could decide in an absolute sense

who was right, the farmer or the runner. For once the pole gets all

the way past the barn door and the farmer slams the door, then either

the runner and his pole will be entirely inside the bam, or the runner

will already have burst through the rear wall of the bam. Right?

Wrong. Whether the runner bursts through the rear wall before or

after the farmer gets that door closed involves a judgment of which

events are simultaneous! And simultaneity of events at different

places is a relative concept!

"Wal, first I swanged the door to, 'n then I heerd him busting

out through the bam wall," the farmer says. The runner says, "When
the pole went through the rear wall I glanced back and saw the pole

still sticking way out of the bam door. He didn't get that door closed
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till I had crashed through the wall myself. And look, I thought you

said that wall was going to he paper \" The runner will feel that the

farmer thought he fitted inside the barn only because he took the

sense impression of the pole being about to hit the concrete-block

rear wall and pretended it was simultaneous with the sense impres-

sion of closing the door. The farmer will feel that the runner thought

his pole didn't fit inside the barn because he pigheadedly pretended

his crashing through the wall took place before the door closed.

Who's really right, the farmer or the runner? As with the

paradox of the Earth's explosion, there is no real answer to this. The

problem is that all that really exists is world lines in space-time.

There is no built-in division of space-time into a time component and

a space component. Different observers will accomplish this division

in different ways.

As we have seen, given two distinct events A a.ndB, there is no

absolute way of deciding if A and B are simultaneous and there is no

absolute way of deciding what is the distance between A and B
(relativity of length). It turns out that there is also no way of finding

an absolute time span between the events A and B, either, but we'll

leave that for later.

What we would like to do now is see if there is any sort of

relation between events A and B that does not depend on the

observer.

We already know of two such relations: (i) if A and B occur at

the same place and time, then every observer will agree on this fact,

and (ii) if event B is the reception of a light signal whose emission

was event A, then everyone will agree on this fact. Given these two

facts and the Principle of the Constancy of the Speed of Light, it is

possible to prove mathematically that the interval between events A
and B will be the same for every observer. We now explain what

"interval" is.

Take one observer's frame of reference. Say that he assigns

coordinates (x, t) to event A and coordinates {x', t') to event B. Then

the interval between A and B is said to be the number r such that

r;^ = c^{t'-tf-{x-xf.

Here c is the speed of light (approximately one billion miles per

hour), so we can see that the interval r will be in units of distance

(miles). As we mentioned before, one frequently chooses the units in

relativity theory to be such that the speed of light c is one distance

unit per time unit. Let us assume this has been done. Another

simplification occurs if we write ^t ior t' — t and Ax for x' — x. "A" is
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pronounced "the change in" (or "delta"). Now our definition of

interval has the form r^ = A/^ - ^x^. Writing M, "change in inter-

val," for r, we have A/^ = A/^-Ax^ or "change in interval squared

equals change in time squared minus change in space squared."

We can see that interval in the x/-plane is quite different from

distance in the xy -plane. For interval we have A7^ = A/^-Ax^

whereas for distance we have (writing s for distance) A5^ = A>'^ +

Ax^. This last equation is just the well-known Pythagorean theorem!

(^^y)

Fig. 96. y
Space

(jf + A.v./ + A/)

Space-time

Notice that the interval between two events will be zero if

Ax = ±A/. Under what circumstances will the space separation be-

tween A and B equal the time separation between A and B ? Exactly,

when there is a light ray connecting A and B, since light travels at the

speed of one space unit per time unit. In the x't' coordinate system,

their idea of a meter or of an hour may differ from what the guys in

the xt coordinate system think, but the difference in space unit and
time unit between the two systems will always be coordinated so that

the speed of light is one. That is, the speed you get by comparing

event A and event B will be either Ax/Ar or Ax'/A/'. But either way
it's got to come out to c, which is one in this discussion. Hence you
have to have Ax = A/ and Ax' = A/', and thus A/ = and A/' = 0.

Fig. 97.
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We can already see that interval in space-time is quite different

from distance in space. If there is zero distance between two points

we know that they are identical, but if there is zero interval between

two events, it does not follow that the events are identical. If two

events have zero interval between them it means only that there is (or

could be) a light ray connecting them. For instance, if there was an

explosion a billion miles away from us an hour ago, a light ray from

the explosion could reach us right now, indicating that the event of

the explosion and the event of our standing here right now have zero

interval between them. Actually, for A and B to have zero interval

between them it is not necessary that a hght ray actually be sent from

y4 to 5; it is only necessary that this be possible. In other words, it is

only necessary that Ax = ± A/.

Consider the event that is your existence at the instant you read

this sentence. You can imagine youself as being tlie origin of a 4-D

space-time system. Since we are living in 3-D space instead of a 1-D

space like Lineland, we must speak of your "space of simultaneity"

instead of your "line of simultaneity." Your space of simultaneity is

all the events in space-time that you believe to be happening at this

instant. It includes, for example, a man lighting a cigarette in the rain

somewhere in South Wales, a momentary increase of temperature at

the North Pole of the Sun, and the death of a cell in your best

friend's body.

Your time axis is a line in 4-D space time that includes your

world line, i.e., includes every event of your life, past and future. [We

remark here that there is an inaccuracy in the assertion that your

world Une can be taken to be part of the time axis of a space-time

coordinatization satisfying the Special Theory of Relativity. The

problem is that your world hne is not "straight." For instance, the

planet you live on is rotating; for instance, you're always jumping up

and changing your velocity by walking around. But if you were

floating in empty space and not somehow accelerating and decelerat-

ing, then this discussion would be accurate.]

Now, what I wish to talk about here is your light cone. Your light

cone is the collection of all the events whose interval from you is

zero. Your light cone is the collection of all the events A such that

either (i) a hght flash that took place at ^ would be seen by you right

here and now, or (ii) a light flash that took place right here and now
(if your head exploded, for instance) would be visible at the very time

and place corresponding to A. Your light cone has two halves, the

back hght cone (events satisfying [i]) and the forward light cone

(events satisfying [ii]).

To get to any event on your forward light cone you'd have to
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travel at the speed of light. As far as we know, material objects

cannot ever go as fast as light. So any event that you're going to be

able to make it to is going to lie inside your forward light cone. These

events are collectively known as your Future. The events inside your

back light cone are called your Past. If the event consisting of some

weird creature's getting in a space ship and blasting off lies in your

Past, then it is possible that he is going to arrive, right Here & Now.
If the event consisting of his blasting off does not lie in your Past,

then there's no way he could turn up Here & Now without going

faster than light.

What about the events which don't lie on or inside your back

light cone and don't lie inside or on your forward light cone? This

collection of events is called Elsewhere (Figure 98). It is soothing to

think about the events that are in your Elsewhere. There is no way
such an event can affect you right now, and there is no way that

anything you do can be affecting such a event. "Oh my gosh, what if

the Russians just launched a nuclear attack against us?" "Cool it,

man. That's Elsewhere." You see, if the Russians were indeed push-

ing that button right this instant, it still wouldn't affect your Here &
Now. Of course, in about ten seconds the event of their pushing the

button would be in your Past, but for now it's still Elsewhere.

Here & now

Fig. 98.

It is a rather striking fact that your whole space of simultaneity

is in your Elsewhere. This 3-D universe consisting of the events that

you say are occurring at this instant, there's no way you can change

anything in it, and no way anything in it can affect you Here & Now,

By the time you see and recognize anything it's in your Past. If you

throw a rock, it lands in the Future.

Going back to the Lineland Minkowski diagram, there is a

simple way to decide if an event {x,t) is Elsewhere with respect to an

observer at the origin (0, 0). The interval between (0, 0) and (x, /) is
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the square root of t^ — x^.

positive, and / = V t^ — x^

If \t\ is greater than

is a real number. If

, then t^ — X

is less than |;c

IS

then t^ — x^ is negative, and / = V f^ — x^ is an imaginary number. If

\t\ equals \x\, then t^ — x^ is zero, and / is zero as well.

If |/| is greater than \x\, then a trip between (0, 0) and (x, t)

involves traveling slower than light. If |/| is less than |jc|, then a trip

between (0, 0) and (x, t) involves traveling faster than light. This is

true since speed is distance divided by time, i.e., |x//| . . . and in this

discussion, the speed of light is 1.

If the interval between two points is real, the points are said to

have time-like separation. If the interval between two points is

imaginary, the points are said to have space-like separation. If the

interval between two points is zero, the points are said to have

light-like separation.

The remarkable thing about the interval is that it is the same no

matter who measures it. The runner and the farmer disagreed on the

space separation between the door of the barn and the rear of the

bam, and they disagreed on the time separation between the tip of

the pole breaking the rear wall and the end entering the front door.

They disagreed on both the space and time separation between these

two events. However, they would find the same interval of space-time

separation between these two events.

Because the interval is the same for everyone who measures it, if

we believe that the interval between two events A and B is time-like,

then so will every other observer. If we believe that the interval

between two events A and B is space-like, then so will every other

observer. That is, if we think it would be possible for a space ship to

have its blast-off be event A and its landing be event B, then every

other observer would think so too. In Figure 99 the interval is the

square root of 7.

fl(4,5)

Fig. 99.

2 = (5-1)'-(4-1)2
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If the separation between two events A and B is time-like, we
can meaningfully ask if B lies in /I's Past or Future. If the separation

between A and B is space-like, then we cannot assign any absolute

order in time to the events A and B. If two events have space-like

separation, some people will say they are simultaneous, some people

will say A happens first, and some people will say B happens first.

This is as opposed to the case where the separation is time-like and

everyone agrees, say, that B lies in ^'s Future.

If you turn back to Figure 93, you can see two events A and B
with a space-like separation, and you can see that R, and L will

have all the possible opinions about which event happens first.

In the xy-plane, the set of all points whose distance from the

origin is 1 constitutes a circle, the unit circle. In the jc/-plane, what

does the set of all points whose interval from the origin is 1 look like?

If the interval between (0, 0) and {x, t) is 1, then we must have

t^ — x^= 1. What is the graph of this equation in the x/-plane? The
unit hyperbola! You can see that from the fact that we must always

have |t| bigger than \x\, but that for large values, |/| and |x| are

approximately equal; so the graph is asymptotic to the lines x = / an

x= -t.

If we stick to the idea that one space unit is one billion miles and

one time unit is one hour, then we can see that each point on the

upper half of the unit hyperbola has a time-like separation of 1 (hour

or billion miles, you can put it either way, if you understand that a

billion miles of time is an hour, the length of time it takes light to

travel one biUion miles) from 0. How long would it seem to take to go

from to ^ along the line indicated in Figure 100?

Relative to the coordinate frame we have drawn in, it looks as if

Fig. 100.



Special Relativity I 87

the /-coordinate of A is about 1.2. But what about the coordinate

frame of someone whose time axis hes along the line segment 0^4?

For him, there will be no change in space when he goes from to ^4

(for instance, he might be sitting in a space ship so large that he

believes it to be motionless; he would say he "got" from one place to

another because the outside world was moving). That is, if A has

coordinates {x' , t') in his coordinate system, then we know that

x' = 0. Now the interval between and A is to be measured as 1 by

every observer. So we have I = t'^ — x'^, or 1 = t'^, or /' = 1 . In other

words, the moving observer assigns space-time coordinates (0, 1) to

A . In other words, the moving observer thinks it takes him only one

hour to get from to ^ and we thought it took him 1.2 hours!

In fact, you can travel to any point in the universe in one hour!

Say, for instance, you'd like to get to some star that is two billion

miles away, and you'd like to be there in an hour. At first it seems

that this is not possible, since light can only go one billion miles in an

hour, and you don't expect to be able to go faster than hght.

But once you take a look at the Minkowski diagram of the

situation (Figure 101), you see that if you could just take off with a

speed close enough to the speed of light you could have your arrival

be the event A whose space coordinate is 2 and which lies on the unit

hyperbola. A is a. time-like interval of 1 from 0. So if you were

traveling along the segment OA, you'd think it was your time axis (in

a state of uniform motion, one always identifies the time axis with

one's world line). So you'd assign coordinates (0, t') to the point A.

Now, since A lies on the unit hyperbola, we know that the interval

between and A appears to be one to any observer. So the moving

observer must have the interval OA = t'^ — x'^ equal to 1 . But he has

x' = 0, so it must be that t' = I. "It only took me an hour!"

How fast, precisely, would you have to go to get two space units

2hrs.--

Fig. 101.

1 hr

1 bill. mi. 2 bill. mi.
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away from earth in one time unit (i.e., two billion miles in one hour,

or two light-years in one year)? Of course, you could pretend that you

were motionless, but how fast would you be going relative to the

Earth's reference frame? The people on Earth would not think that it

just took you an hour to that star. In their reference frame, the event

A has a /-coordinate slightly greater than 2, as opposed to your

reference frame, where the event A has a /'-coordinate of 1.

If we knew what the /-coordinate of A was, we could figure out

how fast the Earthlings thought you flew. For we already know that

the x-coordinate of A is 2, and your speed relative to Earth will thus

be v = x/t = 2/t, where we are calling the /-coordinate just /. How
can you figure out what / is? You know that the interval between

and A is one. So you know that 1 = /^ — 2^. Hence / = VT ^^^ -y and

t; = 2//st; ]j of the speed of hght.

Consider the reference frames of two observers. Let the frame of

reference of the observer with whom we identify be the ^/-system,

and let the frame of reference of the moving observer be the x' /'-sys-

tem. We learned in the discussion of the Relativity of Simultaneity

that if the /'-axis is different from the /-axis, then the x'-axis is

different from the x-axis. In fact, we learned that the angle between

the /' and /-axes always equals the angle between the x' and jc-axes.

It turns out that there is another difference between the xt and

x' /'-systems. This is that the unit marks on the x' and /'-axes are

farther from the origin than in the x/-system.

As we have just been discussing, the unit time mark on the

/'-axis will be where that axis crosses the unit hyperbola. Given this

we can see where to locate the unit space mark on the x'-axis, since

the time unit and space unit have equal size. When we have drawn

everything in as in Figure 102, we can see that the speed of light will

be 1 in the x' /'-system as well as in the x/-system.

Unit

hyperbola

v' Light ray

Fig. 102.



PROBLEMS ON CHAPTER 5

(1) In this problem you will work out an argument for the relativity

of simultaneity slightly different from the one I already gave. The

situation is as follows. A rigid platform is moving to the right at, say,

half the speed of light. On the left end stands Mr. Lee, and on the

right end stands Mr. Rye (Figure 103). Mr. Lee sends a flash of light

down the platform toward Mr. Rye. Mr. Rye holds a mirror that

bounces the light flash back toward Mr. Lee. Mr. Lee receives the

return signal. Call these events A, B and C, respectively. Mr. Lee

notes the times of events A and C on his world line. After a little

thought, he figures out where the event X on his world line that is

simultaneous with B is located. Where does he put X, and why?

A

Fig. 103. Mr. Lee Mr. Rye

(2) People who do not believe in the static space-time view outlined

in Chapter 4 like to claim that time is really moving, that "now"

exists, but that the future does not in any sense exist yet. Evaluate

this claim in the hght of the following quote:

The existence of an objective lapse of time, however, means (or at least, is

equivalent to the fact) that reality consists of an infinity of layers of "now"

which come into existence successively. But, if simultaneity is something

relative in the sense just explained, reality cannot be split up into such

layers in an objectively determined way. Each observer has his own set of

"nows," and none of these various systems of layers can claim the

prerogative of representing the objective lapse of time." (K. Godel, "A
Remark about the Relationship between Relativity Theory and Idealistic

Philosophy," in the Schilpp anthology, p. 558; see Bibliography)

(3) In this problem you will see why a moving person's clock seems

to go slower than that of a stationary observer. Consider two people,

R and L, moving in opposite directions at what appear to us to be

equal speeds. Say that they pass each other at event 0, that event A is
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when L's watch shows that an hour has elapsed since 0, and that

event B is when R's watch shows that an hour has passed since 0.

For reasons of symmetry, we will percieve A and B as simultaneous

(as indicated in Figure 104). R, however, will say that A is simulta-

neous with A', and L will say that B is simultaneous with B'. Why?
What will R and L say about the other's idea of an hour, and why?

Fig. 104. R Fig. 105.

(4) How could you cause your world line to be the section of the

hyperbola x^ — t^=\ indicated in Figure 105? If this was your world

line, could a light signal from event ever reach you? How far is

from you relative to any one of your instantaneous frames of refer-

ence?

(5) Suppose that you were in a very powerful rocketship which

accelerated even faster than the one in the last problem. Say that you

accelerated away from the Earth so that the first billion miles took

you an hour of your time, the second billion miles took you a half

hour of your time, the third billion miles took you a quarter hour of

your time, and so on. In general it would take you 1/2" hours to

cover the « -I- 1st billion miles. Where would you be after two hours?

(6) Say that you are on a space station moving away from Earth at

1/2 the speed of light relative to Earth (world line of slope 2 in the

Earth's space-time diagram). You then get into a small ship and blast

off, moving away from Earth and the space station at 1/2 the speed

of light relative to the space station (world line of slope 2 in the

station's space-time diagram). Are you then moving away from Earth

at the speed of light? Combine Figure 106 and 107, and make an

estimate of how fast you will be moving relative to Earth.

(7) Say that you travel from event A to event B. If you carry a clock

with you on your travels, it turns out that, since you are free at any

instant to pretend that you are motionless {dx = 0), your clock will
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measure the interval you have gone. Which of the three indicated

paths between A and B in Figure 108 will have the longest interval?

Do you think time-like geodesies in space-time will maximize or

minimize the interval?

Small ship's

world

Fig. 106. Fig. 107. Fig. 108.



6
TIME TRAVEL

The Special Theory of Relativity implies that it is impossible for any

material object to travel as fast as light, and that it is impossible for

any type of signal to travel faster than light.

That no material object can travel faster than light is a fact that

has been experimentally tested. Given an electron in a cyclotron, one

can pile as much energy onto it as one wishes and it never reaches

the speed of hght. One reason for this is that as an object moves

faster its mass increases, so that the faster it goes, the harder it is to

make it go any faster.

Does this mean that we can never travel at the speed of light?

Not necessarily. It would perhaps be possible (this is science-fiction)

to break a person down into a complicated electrical wave-form and

transmit this wave by radio (radio waves travel at the same speed as

light) to a deprocessing station where the person would be recon-

stituted out of the information in the radio wave.

What would it feel like to travel at the speed of light? Say you

went from here to the other side of the galaxy at the speed of light;

how long would it seem to take? It would seem to the people at the

sending and receiving stations that it took the signal some hundred

thousand years to cross the galaxy. But to you the trip would seem

instantaneous! You'd step into the dematerialization booth in one

door and walk out the other side of the booth without even slowing

down. Only, when you stepped out the other side it would be 100,000

years later and on the other side of the galaxy. If you suddenly got

homesick and walked back through the booth the other way, you'd

be back on Earth, only it would be 200,000 years after you started.

And to you these 200,000 years would have seemed to consist just of
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walking back and forth through a booth. Going back and forth like

this five times would put you a million years in the future, and so on.

The reason that travel at the speed of light seems to take no time

at all is that when you reach the speed of light, your world line hes in

your space of simultaneity. That is, for someone going at the speed of

light, every event on his world line happens at the same time—and in

the same place! We can see this by looking at the three Minkowski

diagrams in Figure 109; as the time Hne slants over, the space hne

slants up, and finally meets it when you go at the speed of light.

/I -space

f/g. 109. ^-time 'fi-time

So if you can travel at the speed of light, you can get to any

event on your future light cone in no time at all. By bouncing back

and forth you can also get to any event inside the future light cone

(like right here a million years from now) in no time at all.

You can't get back, though. Why not? Is there any reason why
we shouldn't somehow be able to travel into the past? Maybe not,

but there are certain difficulties involved. Suppose you devise some

method of traveling into the past. You travel back in time an hour

and see your earher self getting the time machine ready. With an

ironical smile you shoot your earlier self in the back of the head.

What happens then? Since your earlier self is dead, you cannot have

entered the time machine to come back and kill your earlier self. So

your earlier self cannot be dead. But if your earlier self is not dead,

then you were able to come back and shoot it. Your earlier self dies if

and only if it doesn't' die. A paradoxical situation indeed.

It is this type of paradox that seems to preclude the possibility of

sending signals faster than the speed of light.

Consider the Minkowski diagram in Figure 1 10. The dotted line

^X represents a signal that A sends from to ^ faster than the speed

of light. {B is impressed by the claim that the signal goes from to X,

since to him it appears that event X occurs before event 0.)

Conversely, the dotted line Y represents a signal that B sends

from to y faster than the speed of light. (A is impressed by the
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--•A'

Fig. 110. fi-time /I -time

A s>

Fig. HI. A

claim that the signal goes from to Y, since to him it appears that

the event Y occurs before event 0.)

So if A and B are moving away from each other, then either one

of them can send signals to the other's past if they can send signals

that are sufficiently faster than light. This could lead to the following

paradoxical situation: A says to B, "I'll send you a faster-than-light

signal at noon unless I get a faster-than-light signal from you first,"

and B says to A, "I'll send you a faster-than-light signal whenever I

get a signal from you." Now, if A sends a signal at noon, B will send

back a signal that reaches A before noon, so A won't send a signal at

noon. If A doesn't send a signal at noon, then B won't get a signal

and won't send one back, so A will send a signal at noon. In other

words, A sends a signal at noon if and only if A does not send a

signal at noon (Figure 111). This seems to be impossible.

Actually, it has been proposed in recent years that there are in

fact things that travel faster than light. These things are called

tachyons ("tachy" means "fast"). But didn't we just show that you

couldn't have things going faster than light?

It would actually be all right to have tachyons around if we
couldn't detect them, so that you couldn't use them to send signals.

Physicists, however, tend to be pretty stingy with objects that are

impossible to detect. They say that if there is no possible way to

detect something, then it is meaningless to talk about the thing's

existence. Whether or not one agrees with them is essentially a

philosophical issue. In any case the modem consensus seems to be

that detectable tachyons do not exist.

There are two ways other than traveling faster than light by

which one might go into one's past.

The first way is that time might be circular. That is, the universe

would have no beginning or end. Such a universe with a straight

infinite space dimension would look like Figure 1 12.
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\ Space
f^ /World line

Fig. 112.

As we know, if you travel at the speed of light, your trip takes no

time at all (for you). Another way of putting this is that if you travel

at a speed close enough to the speed of light, you can make your trip

take as short a time as you desire.

So if the length of time (the "temporal circumference of the

universe") was a trillion years, you could travel away from the Earth

for 1/4 trillion years, travel back toward and on past it for 1/2

trillion years, then turn around and take another 1 /4 trillion years to

get back. Now, if you traveled at the speed of light, this trip would

take you no time at all, but you would have gone "forward" a trillion

years through time. So you would get back to Earth just when you

left. If you traveled just a httle less further forward in time, say a

trillion years minus 2000 years, you'd be able to prevent the Crucifix-

ion!

This technique of time travel would be possible provided the

universe had the right kind of structure (circular time). Kurt Godel

proposed something like this idea in his paper included in the Schilpp

book of essays on Einstein's work (see Bibhography). In order to

avoid the paradoxes of time travel, he asserts that it would never

actually be possible to make a trillion-light-year journey of the type

we have described—for practical reasons. First of all, it would take a

rocket the size of a galaxy to have enough fuel to make the trip;

second, you'd be thrown off course by the gravitational attraction of

the various stars and galaxies you passed, and you'd never find your

way back to the Earth. We'll discuss other possible structures for the

space-time of the universe in the next chapter.

A second way in which objects might travel backwards in time is

for them to be composed of antimatter. As far as is known, every

type of particle has a corresponding antiparticle. An antielectron is

called a positron. A positron has the same mass as the electron, but

its charge is the exact opposite of the electron's. Positrons can be

created in the laboratory (using particle accelerators) without too
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much difficulty. They don't usually last very long, however, because

whenever a positron gets near an electron, they combine and annihi-

late each other, leaving only a burst of energy. On the other hand,

whenever a positron is created an electron is created at the same

time. Consider the Minkowski diagram in Figure 113. We have an

event that consists of the simultaneous creation of electron A and

positron B. Such a simultaneous creation of a particle and its

antiparticle is called "pair production." We also have an event that

consists of the mutual annihilation of positron B and electron C

Fig. 113.

The physicist Richard Feynman has suggested that instead of

viewing this diagram as representing two electrons and a positron, we
can view it as representing a single particle that travels forward in

time as electron C, travels backward in time as positron B and then

moves forward in time again as electron A (Figure 114).

A really fascinating aspect of the Feynman approach is that

there could be only one electron in the whole universe!

Fig. 114. Time

The electron would have a complex world line, sometimes going

forward in time, sometimes backward. When it was going forward in

time it would be an electron, when it was going backward in time it
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would be a positron. But there would "really" be only one electron.

This provides a nice simple explanation of why all electrons have the

same charge!

A weak point of this theory is that there appear to be many
more electrons than positrons in the universe. Your body, for ins-

tance, is full of electrons but it is doubtful that there are ever more

than a few positrons in it at any given time. A way out of this

difficulty is to claim that there are regions of the universe where the

balance is reversed. That is, some of the galaxies we see in the night

sky may be made almost exclusively of antimatter. Their antiatoms

would consist of positrons orbiting around an antinucleus of antineu-

trons and antiprotons.

What would happen if you traveled to such an antigalaxy and

landed on an antiplanet? You and your ship would combine with a

chunk of the planet in annihilation, producing a great burst of

energy. In Feynman's terms, all the particles in your ship and body
would, with a great burst of energy, start moving backward in time.

Would you then have the experience of moving backward in time?

Probably not; turning that sharp corner would scramble you up too

much.

If we could get close to an antigalaxy and watch the people on

an anti-Earth, what would we see? There is no real consensus on this,

but it might be that we would see people living backward in time. An
antiperson's life would go something like this.

Everyone was crying. The tears welled out of their handkerchiefs

and ran into their eyes. They walked backward up to the grave,

where the casket was slowly brought up. The body was taken home
and laid in bed. As soon as the priest left, the body began breathing.

The antiman and his antiwife lived backward together for 30 years.

On their wedding day they took dirty clothes out of the hamper, went

to church together. After the service they saw each other a few times,

but then knew no longer of the other's existence. The antiman went

to college, where he unlearned a great deal. He had a good knowl-

edge of calculus, but after completing the course he knew nothing at

all about it. Homework consisted of receiving papers from the

teacher, which he erased, using the point of his pencil. He met his

parents, and eventually stopped walking. He lay in a crib, where his

mother would bring empty bottles of milk, which he would fill from

his mouth. His body took in excrement from the dirty diapers which

his mother put on him. Things got calmer and hazier until on one

joyful day he went to the hospital with his mother, where the doctor

helped him to get inside her womb. There he slowly dissolved and in

nine months he ceased to exist.
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Depressing, huh? Actually, of course, the anti-Earthlings would

feel as if they were living lives like ours, and if they saw us, they'd

think we were leading the kind of antilives just described. Who's

really right? You should know better than to ask questions like that

by now!

PROBLEMS ON CHAPTER 6

(1) While on the moon, one of our astronauts tried to send a

telepathic message to a partner on Earth to see if such a message

would travel instantaneously. What is wrong with the notion of

instantaneous communication?

(2) Say that you and I were floating in space and holding on to either

end of a thousand-mile-long rod. Why would you not be able to

communicate with me instantaneously by jiggling your end of the

rod?

(3) Show that if it were possible to build a time machine to travel

into the past, then it would not be necessary for anyone to actually

invent (as opposed to build a copy of) this machine.

(4) Science-fiction writers sometimes avoid the paradoxes of time

travel by assuming that there are parallel universes, and that when
you go back in time you actually leave the space-time of your

original universe and enter the past of some parallel universe. See

how this idea can be used to resolve the paradox of the time traveler

who kills his "past self."

(5) Say that time is circular. Build an indestructible radio beacon

and set it afloat in space near the Earth. Assume that this beacon will

endure and continue broadcasting forever. Once you set one such

beacon afloat, how many more should you be able to detect? What if

you decide to set your beacon afloat if and only if you detect no

beacons out there before the launch?

(6) Godel's model is actually rather different from the circular-time

model (invented by Reichenbach) which I discussed. Godel's uni-

verse has a sort of "rotation" that makes possible all of the world

hnes indicated in the Flatland Minkowski diagram in Figure 115. D,

for instance, would appear to A to be moving backward in time.

What would A say about C's life?
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Fig. 115.



7
THE SHAPE OF SPACE-TIME

If we just think about 1-D space, then we can imagine space-time as

a vast sheet. The sheet has a fine grain consisting of the hght cones

generated by each event on the sheet. The fine structure of the sheet

was the topic of Chapter 5. In this chapter we will begin by discuss-

ing the large-scale structure of the sheet. Is it flat, is it curved, is it

finite, is it infinite?

The structure of space-time, taken as a whole, is the subject

matter of the science called cosmology. Since you are asking about

all space and all time in cosmology, you are interested in the entire

universe, everywhere and everywhen, viewed as a static geometrical

object.

Sir Isaac Newton proposed the simplest view of the universe:

infinite flat space and infinite time. In terms of Lineland, the Newto-

nian universe is simply the infinite x/-plane. If you wished to modify

the Newtonian universe by claiming that space came into existence at

some specific past time, you'd have the upper half of the x/-plane

(Figure 116).

Around 1917 Albert Einstein proposed that space-time should be

World lines

of particles

Time of creation

Fig. 116. Nothing
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cylindrical. That is, he suggested that our space should be spherical

(i.e., 3-space should be the surface of a hypersphere) and that time

should be straight (Figure 1 17).

Space
tomorrow

Space
today

Space
yesterday

World line

of a light ray

Time

Fig. 117. Space

It was soon discovered, however, that our space is expanding.

That is, any galaxy we can see is moving away from us, and the

further away they are, the faster they are moving away from us.

If you have a flat infinite space, you can have this type of

expansion without too much difficulty. Just set down a big chunk of

primordial matter (this chunk is sometimes called ylem) at some

place in space-time and let it explode. An observer on any one of the

pieces will see the other pieces steadily receding from him. The faster

pieces will be pulling away from him, and he'll be pulling away from

the slower pieces (Figure 118).

World lines of galaxies

Space

Time

Fig. 118. Big Bang
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One thing wrong with this model is that it violates the Cosmo-
logical Principle. The Cosmological Principle says that things should

look more or less the same no matter where you are in space. But if

the universe was the result of a Big Bang in ordinary 3-D space, then

it would look different to someone who was riding on one of the

pieces from the explosion than it would to someone who was so far

away from the space location of the Big Bang that no piece had

reached him yet.

You could avoid this problem and keep ordinary space if you

assumed that all space is full of galaxies and that all space has always

been expanding. But there is a nicer solution: conical space-time.

The idea here is that we take Einstein's cylindrical universe, but

let the circumference of the universe expand as time goes on. You
again start with a Big Bang, only now the bang is not an explosion in

3-D space but an explosion of 3-D space. Before the Big Bang there is

no space; the circumference of space is zero!

The model in question here (Figure 119) consists of an expand-

ing spherical space. It is not that the galaxies are moving apart from

each other in a flat space; it is rather that 3-D space would be the

hypersurface of an expanding hypersphere.

Here, again, there is an event that can be labeled the Big Bang

or the creation of the universe. It is not really meaningful, however,

to ask where it was in our universe that the Big Bang took place,

since when it took place there was only one point in space. That is,

the Big Bang took place everywhere.

Will our universe continue expanding indefinitely? This is a

controversial point. Some cosmologists believe that eventually the

gravitational attraction between the galaxies will slow the expansion

down and even reverse it, so that the whole universe will collapse

back to a point at some future time (Figure 120).

Finish

/__\ Contracting

universe

Time

Space

Creation

Fig. 119. Fig. 120.

O
Space

Universe still

expanding
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Other cosmologists maintain that the universe will continue

expanding forever. There is a good chance that the answer to the

dispute will be experimentally decided in our lifetime.

If you assume that the universe does contract back to a point at

some future time, you are left with two questions: what happens after

the end of the universe, and what happened before the beginning of

the universe?

One viewpoint is that it is meaningless to talk about events

before the beginning of time or after the end of time. In Figure 121

we have redrawn a spherical universe that expands from a point to

some large radius, then contracts back to a point. The important idea

here is that there is no motion in this picture. That is, we are not

intended to imagine a circle that starts out around the South Pole

and slides up, becoming the Equator, the North Polar ice cap and

finally a point again. Instead we are to think, of this sphere of

space-time as simply existing. In Hermann Weyl's words, "The objec-

tive world simply is, it does not happen." Asking what happens before

the beginning of the universe here is a little like asking what conti-

nents are south of Antarctica. There is no time and space except the

one we inhabit.

Space

Time

Fig. 121.
fFiat lux 'V

Nevertheless, this picture is rather unsatisfying for reasons of

conservation of matter. What happens to all those particles that end

up at the North Pole? Where did all those particles at the South Pole

come from? One solution would be for there to be equal amounts of

matter and antimatter in the universe. What would happen at the
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North Pole would be mutual annihilation of particles; what would

happen at the South Pole would be pair production. Taking the

Feyman view of antimatter, we would have world lines that went

from South to North as electrons and came back on the other side as

positrons, forming a closed curve like a longitude line.

A different tack is to claim that there is always another universe

after this one, and that there was always one before this one. This is

the oscillating-universe or "string-of-pearls" model.

Each cycle of the universe is represented as a sphere. Space is

curved, a 1-D circle in Figure 122, the 3-D hypersurface of a

hypersphere in reality. Time is curved so that space expands and

contracts. Let us emphasize that all these drawings have been for

Lineland, 1-D space. The "pearls" on this string are like the sphere in

Figure 121; each of them should really be a hyperhypersphere whose

hyperhypersurface could serve as our 4-D space-time.

Notice that each cycle of the universe is different. It is specu-

lated that every physical constant could come out different each time

Our cycle

Our present

space

Fig. 122.
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that all the universe's matter was squeezed through the "knothole"

between two cycles.

This model makes the singularity of the beginning and end

points of each cycle less striking, but only at the cost of reintroducing

a cosmic time that goes on forever in both directions. We will now
present a model (Figure 123) that avoids this unpleasantness and

provides a satisfying answer to the questions of what came before

and what comes after.

Time

O
Space

Fig. 123.

"Torus" is the mathematical word for donut, so we call this

model toroidal space-time. This model can be obtained by taking the

spherical space-time in Figure 121 and pushing down on the North

Pole and up on the South Pole until they become the same point.

This 2-D surface has one space and one time dimension. If our

universe had toroidal space-time, we would actually require the

surface of a hyperhypertorus.

In this model we have hyperspherical space that expands from a

Big Bang, which it later contracts back to. Since our space is still

expanding, we would be located perhaps at the point labeled Here &
Now. You might be tempted to ask the question: "I can see that

space is like a circle that keeps cycling down out of the hole, up

around the donut and back into and through the hole. I wonder how

many times it has already done this?" This is exactly the wrong

question to ask! There is no last time around or next time around,

because nothing is moving. Space-time is a 4-D manifold with a

certain structure. It is there timelessly. We feel that we are going

through time, but this is an illusion.

What would happen if you tried to get into the past in the
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toroidal universe by going forward in time, through the hole and up

around to stop at some time before your departure? There's no

problem with such a trip taking too long, since, as we discussed in the

last chapter, if you traveled close enough to the speed of light the trip

could take as little of your time as you like. The problem here would

be that when you went through the point labeled "... End/Begin-

ning/End ... of universe" you would die. Why? Because at this

point space is contracted to a point, which means that you would get

squashed, as would your molecules, as would their atoms, as would

their particles, as would everything. Only pure energy can make it

through this singular point.

But what would cause space-time to curve in the first place?

Matter.

According to Einstein's General Theory of Relativity, matter

produces space-time curvature. Freely falling particles travel along

world lines that are time-like geodesies of space-time. Since space-

time is curved by matter, its geodesies are curved, and hence one

finds that particles near massive objects travel along curved world

lines.

The cause of the curving of world lines near massive objects has

traditionally been called "the force of gravity." According to General

Relativity there is no "force" as such, simply a curving of space-time

that makes it natural for the world lines to curve. General Relativity

thus provides us with an essentially geometric explanation of gravita-

tion.

What sort of space-time curvature, exactly, does matter pro-

duce? Let us imagine a massive line segment in Lineland. Forget

about time for a minute and say we are looking down on Lineland

from the direction usually called Future in our space-time diagrams.

Then the space of Lineland might look like Figure 124.

Massive line segment M
Fig. 124.

If we had a number of such massive segments distributed in the

space of Lineland, they could bend this space into a closed curve,

approximately circular (Figure 125). Whether or not our space is

actually closed—that is, curved into an approximate hyper-

sphere—depends on how much matter our universe contains!
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Fig. 125.

Now, what about the bending of the space-r/we of Lineland

owing to the presence of matter? We have two experimentally ob-

served facts to go on: (i) if a ruler is taken near a gravitating mass it

appears shorter, and (ii) if a clock is taken near a gravitating mass it

seems to run slower.

Say now that we consider the world line of the midpoint of a

massive line segment M in Lineland. Fact (i) from above tells us that

we should stretch the space coordinates near world line M, so that a

ruler moved near M will look shorter (Figure 126).

r
Ruler equals 1 unit

A
^

Regular space i

Fig. 126.

r

Ruler shorter than 1 unit

A

Stretched space
H

Fact (ii) from above tells us that we should shrink the time

coordinates near world line M, so that the ticks of a clock moved
near M will look longer (thus causing the clock to seem to tick

slowly; Figure 127).

One way to accomplish these two objectives of stretching the

r

Tick

equals -^

1 unit

r

Tick

longer

than
1 unit

--1

Fig. 127.

V. Aq "^ -*-0

Regular time Shrunken time
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space and shrinking the time near world Une M is as follows.

First stretch the space near M by pushing the world line of M
away from us. And then shrink the time near M by bending the

whole plane away from us. If we do this without stretching the

vertical lines far away from M, then the effect will be to compress the

vertical hnes near M (Figure 128).

Space

Time

Fig. 128.

M

Stretch space Shrink time

So one might expect the space-time of a Lineland with plenty of

matter to be that of an expanding circular universe (Figure 129).

Fig. 129.

Indeed, Einstein suspected, on the basis of his calculations, that

our space is both hyperspherical and expanding—and this was before

the expansion of our universe had been detected by the astronomers.

Notice that the piece of Lineland's space-time that we have

drawn in Figure 129 fits nicely into the picture of toroidal space-time

given earlier. One could take Figure 129 and fit it into the hole of the

space-time donut without any difficulty. By looking at the space-time

donut one can also see how the expansion of the universe caused by

the shrinking of the time axis near massive objects could eventually

turn into a contraction of space.



The Shape of Space-Time I 109

Do these pictures prcme that our space-time is a grooved donut,

as I suggest? I wish they did, but pictures can be misleading. A real

scientific proof must proceed analytically from assumptions that have

been made explicit, both so that the plausibility of the assumptions

and the correctness of the reasoning can be examined, and also so

that testable quantitative predictions can be extracted from the

theory.

General Relativity is analytically formulated in terms of a G-

tensor like that of Chapter 3. In flat space-time with a standard

coordinate system, the interval dl between the points with coordi-

nates (x, y, z, t) and (x + dx, y + dy, z + dz, t + dt) is given by the

equation dl^ = dt^ — dx^ — dy^ — dz^. In a curved space-time with a

reasonable coordinate system it is possible to have this equation hold

at some points, but not at all points, for if it held at all points the

space-time would be flat.

In general we will only have

dl^ = g^ J
8x^ + 2g,2 dx dy + Ig^^ dx dz +2gi4 dx dt

+ g22 dy^ + 2g23 dy dz + Ig^^ dy dt

-1-^33 dz^ + 2gj4 dz dt

+ g44dt\

The value of each gy depends on the particular (x,y, z, t) you are

working near. One usually thinks of the ten g^ functions expressed by

a single tensor-valued function G (x, y, z, t). In flat space-time, of

course,

G{x,y,z, f) =

1

0-1
0-10

1

everywhere.

Historically, the hardest part of formulating the General Theory

of Relativity was to find the "field equations" specifying the G-tensor

in terms of the distribution of mass and energy in space-time. Once

you have the G-tensor, then you can determine the interval corre-

sponding to any path in space-time by integrating (adding together)

the dPs along the path in question; and you can decide which paths

are geodesic, i.e., straightest.

There are three kinds of geodesies in space-time: space-like,

light-like and time-like. A space-like geodesic is determined, as you

would expect, by the condition that the space-like interval along it be

mininial. A light-like (null) geodesic is determined by the natural

condition that the interval along it is zero. It is perhaps surprising.
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however, that in space-time the interval along a time-like geodesic

must be maximal. These three conditions can be shown to be con-

sequences of the definition of "geodesic" as "straightest path."

In Lineland it turns out that a time-like geodesic of a particle P
moving near the massive segment M would look like Figure 130 (if

the particle were free to move through M). This world line is, of

course, that of a particle oscillating back and forth. By staying near

M, the world line gets "more time" (since the time scale is shrunken

near M) and "less space" (since the space scale is stretched near M),

and thus interval ( = Ytime^ — space^ ) is maximized.

We can't draw the curved space-time of Flatland with a massive

object (since this would require four dimensions), but it turns out that

the time-like geodesic of a freely falling particle E near a massive

particle S would look like Figure 1 3 1 in the space-time of Flatland.

Fig. 130. Fig. 131.

This picture can be thought of as representing the Earth's

motion around the Sun. According to the general relativistic view of

things, the Earth does not move around the Sun because of gravita-

tional force, but rather because by moving around the Sun the Earth

manages to maximize the interval along its world line. Again, the

Earth "wants" to maximize the interval along its world line since it is

moving freely through curved space-time and thus follows a world

line that is as straight as possible. (Recall that the straightest time-like

path can be mathematically proved to maximize interval.)

How can we see that the interval along the Earth's world line is

maximal? The idea is that since the Earth is in free fall it can (by a

generalization of the Principle of Relativity that is called the Equiva-

lence Principle) regard itself as motionless. Now if Earth is motion-

less, then anyone who flies away from it and rejoins it later will be

perceived by Earth to be in motion. But recall that if someone is in

motion relative to Earth, then his clocks run slower than Earth

clocks. So the time interval the traveler measures between leaving



The Shape of Space-Time I 111

and coming back would be less than the time interval the Earth

measured. Therefore Earth's time-like interval is maximal, so its path

must indeed be a time-like geodesic in curved space-time.

It turns out that the world lines of hght rays—null geodesies

—are also curved in the presence of matter. This "light has weight"

prediction of the General Theory of Relativity was first tested during

the solar eclipse of 1919 (see Eddington's book in BibUography).

What is more exciting, however, is the fact that the path of a light ray

that emanates from a dense enough star will be so curved that it falls

back into the star, thus rendering the star invisible to us (Figure 132).

Fig. 132.

Such invisible stars are called black holes. Nothing can escape

from a black hole. How exactly do they arise? Let us return to

Lineland. The space near a dense segment M looks like Figure 133,

as we said before.

Normally a star does not collapse under the force of its own
gravitational attraction because this attraction is counterbalanced by

the tendency to expand that a hot volume of gas has. But if a star

cools it can contract and become denser (Figure 134).

Fig. 133.

Normally the electric repulsion that the electrons of a star have

for each other will keep it from collapsing further, but if it is massive

enough this repulsion is overcome and the contraction continues

(Figure 135).

Once a star has contracted beyond a certain point there seems to

be nothing that can prevent it from actually contracting to a point.

The stretching of space and shrinking of time near such a point tend
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to infinity, and the laws of physics break down at such a point, which

is therefore called a singularity (Figure 136).

Fig. 135. Fig. 136.

We cannot hope to observe the singularity that a black hole

evolves into, because once the contraction of the star has gone far

enough its appearance from the outside does not change. No more

signals of any kind escape from the star once it gets smaller than

what is called the event horizon. Note, however, that if it were not for

the fact that the strong field would crush one out of existence one

could in principle travel to the singularity in a finite interval of time.

For although the stretching of space becomes infinite, so that the

singularity appears infinitely far away, as one approaches it the

shrinking of time becomes infinite so that one's life becomes in-

finitely long. These infinities are only relative to the space-time

outside the event horizon, however. The rash explorer of the black

hole would find that he reached the singularity after what seemed to

be only a few hours of his time.

Figure 137 shows two drawings of the space-time of a Lineland

Space-time

singularity

Space-time-

singularity

Front view Back view

Fig. 137.
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containing a dense segment that collapses to singularity. The line of

simultaneity for any individual in Lineland is bent to go under the

singularity, for an external observer views the full collapse as taking

forever. This is clear from the front view. From the back view one

can see that the distance to the singularity becomes infinite as well.

If one looks at these pictures and recalls that a light ray always

takes a world line that bisects the angle between the time axis and the

space axis, then it is also evident that light rays emitted near the

singularity cannot escape the "trough."

What actually happens at the singularity? If one has a hyper-

spherical space, then the view that all the singularities are the same
point is quite attractive. We have drawn in Figure 138 a Lineland

with circular space, and with two stars that have collapsed to singu-

larity.

Low-density star

I

^°''^P^®5-£^\ singularity ^High-density star

Medium-
density star/ /A IV Medium-

density star

Fig. 138. Collapsed star

If it were only possible to survive going through a singularity one

could travel from one side of the universe to the other quite rapidly

by flying into a black hole and expecting to come out of a different

one.

It has actually been suggested that if a star is rotating rapidly

enough when it collapses, then it may be possible to fly into such a

black hole and emerge unscathed. Suppose there were a rotating

black hole into which stuff was falling, and emerging someplace else.

What would one call the place where all the stuff came welling up? A
white hole, naturally. There is speculation that each galaxy has a

white hole at its center, so that a galaxy is something like the

spreading puddle around a mountain spring.

If we go back to the space-time donut, this whole scenario can

be envisaged in space-time. The black holes will be grooves in the

donut that become deeper and go around over the donut to the
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central singularity. White holes will be deep grooves that come
directly out from the central singularity to join the surface and flatten

out as they move on.

So it could be that all of the known space-time singularities—ini-

tial, final, black hole and white hole—are the same. What should this

one singularity be called? No name seems quite adequate.

We started out this chapter by considering the structure of the

universe in terms of the large-scale structure of space-time. We then

showed how General Relativity explains gravitation in terms of

medium-scale curvatures of space-time. It has been suggested by

certain authors that the existence of matter is to be explained in terms

of the small-scale curvature of space-time. In 1870, the mathemati-

cian William Clifford put it this way (see Misner, Thorne and
Wheeler for reference):

I hold in fact (1) that small portions of space are in fact of a nature

analogous to little hills on a surface which is on the average flat; namely

that the ordinary laws of geometry are not valid in them; (2) that this

property of being curved or distorted is continually being passed on from

one portion of space to another after the manner of a wave; (3) that this

variation of the curvature of space is what really happens in that phenome-

non which we call the motion of matter, whether ponderable or ethereal;

(4) that in the physical world nothing else takes place but this variation,

subject (possibly) to the law of continuity.

A sUghtly different view is that mass particles are actually tiny black

holes, event horizons around a singularity. If, again, all singularities

were the same point, then all of space-time, and all matter as well,

would simply be a maze of "grooves" connected to the central

singularity.

Again, it has been suggested that our space actually has a shght

4-D thickness to it, and that the elementary particles are small

hyperspheres constrained to move in our hyperplane. This slight

four-dimensionality of our space might be noticeable in the phenom-

enon of two particles moving toward each other on a direct collision

course, but somehow missing each other (compare Figure 139).

Fig. 139. Flatland with a slight 3-D thickness
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What would these httle hyperspheres be made of—^pure curved

space? Perhaps, but another interesting possibihty is that each of

these httle hyperspheres is somehow identical with the large hyper-

sphere which is our space. This notion is developed in my novel,

Spacetime Donuts.

The best thinking these days on the question of the small-scale

structure of space-time seems to be that there is really no unique

structure once you go down past the 10~^^ centimeter size level (see

the last chapter of Misner, Thorne and Wheeler). The idea is that

space-time is "foam-like" at this size scale with connections between

widely separated events continually forming and disappearing.

Wheeler has even suggested that the phenomenon of electric charge

can be explained in terms of such a multiply connected space-struc-

ture.

PROBLEMS ON CHAPTER 7

(1) Consider these two different kinds of expanding universes: Flat

Space: 12 billion years ago all the matter in the universe was

concentrated at one point in space. There was a huge explosion, and

the fragments of this explosion have been hurtling through space

away from the explosion point ever since. Spherical Space: 12 billion

years ago the radius of our hyperspherical space was zero. Space was

a single point with infinite energy density. There was a huge "explo-

sion" and space began expanding, carrying fragments of matter with

it.

Now answer these questions for the two models: (a) Where is the

space location of the beginning of the universe? (b) Is it possible for

us to see (i.e., to receive light signals from) the beginning of the

universe? (c) If the universe started contracting would there be any

way to avoid collapsing back to a point along with the rest of the

matter in the universe?

(2) If, as in the drawings we made of Lineland's space-time, we
visualize a bit of matter as being a groove in space-time, how should

one visualize a bit of antimatter, given that when matter and anti-

matter meet they both disappear?

(3) A toroidal space-time can be obtained by taking a tubular section

of the circular-time universe described in Chapter 6 and joining the
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two ends together with the same orientation (Figure 140). In 6-D
space it would be possible to join the two ends together with the time

circles having opposite orientation, to produce a "Klein bottle space-

time" (see the end of Chapter 3). What would you find upon
returning from a journey around the circular space of such a uni-

verse? Would it be possible to fit the individuals' times into a

consistent universal time in such a universe?

Time Time

Fig. 140. Two time directions match

in toroidal space-time

(4) The Twin Paradox of Special Relativity goes like this: "Say that

my twin brother flies away from Earth at almost the speed of light

for ten years, then stops his rocket and flies back in ten more of his

years. When he returns I will have aged 20 years and he will have

aged, say, one year. Could he not argue that / moved away and back

to him, so that my biological clock ran slower, and thus expect me to

have aged 19 years less than him?"(Figurel41). The answer is no,

since when the traveler turns around he shifts reference frames (see

Taylor and Wheeler for details). But what if space were hyperspheri-

cal so that the traveler would never have to " turn around "?

Fig. 141.
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CONCLUSION

Geometrical objects are unchanging forms. The goal of this book has

been to present the universe as a geometrical object that happens to

enjoy the property of being perceived by us to exist.

We showed how the passage of time and the apparent changes in

our universe could be eliminated by thinking in terms of 4-D space-

time.

The relativity of simultaneity, more than anything else, forces

the view that time is not really passing. This argument is presented in

Godel's paper, "A Remark about the Relationship between Relativity

Theory and Ideahstic Philosophy," in the Schilpp anthology. The idea

is that if simultaneity is a relative concept, then it is impossible to

think of space-time as being a stack of unique "nows" that succes-

sively appear and vanish from existence. The past and future really

exist.

This is a valuable thing to keep in mind. As John Updike writes

in Rabbit Redux, "Time is our element, not a mistaken invader." It is

a mistake to look forward to the good times and fear the bad times.

They are all part of the 4-D object which is you. The best way to get

close to the Eternal is to get close to the Now, for there is no time

right now. Time arises when we grasp at the world with our rational

mind.

Once we accept the 4-D viewpoint it is possible to see the

universe as a single object whose structure we can investigate. There

is some hope that every feature of the universe can be reduced to

some geometrical property of the space-time manifold. Einstein made
the decisive first step in this task when he reduced gravitation to

curvature of the space-time manifold.
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To see the universe as a single object is a great thing. We will

conclude with a quote on this from one of Einstein's letters:

A human being is a part of the whole, called by us "Universe," a part

limited in time and space. He experiences himself, his thoughts and

feelings, as something separated from the rest—a kind of optical delusion

of his consciousness. This delusion is a kind of prison for us, restricting us

to our personal desires and to affection for a few persons nearest to us.

Our task must be to free ourselves from this prison by widening our circle

of compassion to embrace all living creatures and the whole nature in its

beauty. Nobody is able to achieve this completely, but the striving for such

achievement is in itself a part of the liberation and a foundation for inner

security.
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Edwin A. Abbott, Flatland (Dover reprint, New York, 1952).

The one and only. Flatland first appeared around 1884. Like so many of

the writers on these topics, Abbott was an Englishman, sharing in that

national resource of solemn jocosity. Flatland is a very funny book.

It is written in the form of A. Square's autobiography, and has two

parts. Part II contains A. Square's dimensional adventures involving

Pointland, Lineland, Flatland, Spaceland and Thoughtland. Part I con-

tains very little of this and is more Swiftean social satire than anything

else.

For instance, despite the fact that he is writing his memoirs in prison,

A. Square can still recount the Flatland government's ruthless treatment

of the Irregular Polygons (the Flatland equivalent of cripples) with

Toryish approval: "Let the advocates of a falsely called Philanthropy

plead as they may for the abrogation of the Irregular Penal Laws, I for

my part have never known an Irregular who was not also what Nature

evidently intended him to be—a hypocrite, a misanthropist, and, up to

the limits of his power, a perpetrator of all manner of mischief. ... I

would suggest that the Irregular offspring be painlessly and mercifully

consumed."

In Flatland, the more sides a regular polygon has, the greater is his

social standing. Women are line segments. A. Square's remarks on

women are provoking enough to have aroused comment even in the

nineteenth Century; so much so that in the Preface to the Second

Edition (purportedly written by one of A. Square's acquaintances) it is

reported that: "It has been objected that he [A. Square] is a woman-
hater; and as this objection has been vehemently urged by those whom
Nature's decree has constituted the somewhat larger half of the Space-

land race, I should like to remove it, so far as I can honestly do so. But

the Square is so unaccustomed to the use of the moral terminology of

Spaceland that I should be doing him an injustice if I were Uterally to

transcribe his defence against this charge."
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One aspect of A. Square's Spaceland experiences in Part II seems to

be especially problematic. This is his ability to see 2-D images from

Spaceland. Thus, for example, he can look down on his house and see

the inside of every room, and the inside of the bodies of his sleeping

family. Certainly a 3-D person with a 2-D retina would see this, but A.

Square's retina is presumably 1-D, a Hne segment at the back of his flat

eye.

The point I am making is that it would seem that even if lifted above

Flatland, A. Square's visual space would continue to be a plane (that of

his body) collapsed into a line (the retinal image) with variations of

brightness. In the same sense, if we were lifted into hyperspace, our

visual space would continue to be a 3-D space (that of our body)

collapsed into a plane (the retinal image) with variations of brightness.

So if A. Square, floating above Flatland, were to rotate back and forth

he could see every possible 1-D cross section of Flatland, and perhaps

put these together to form the full 2-D image, but he would not see the

whole 2-D Flatland at once. In the same way, if we were to enter

hyperspace we could look at our space, and as we moved about see

every possible 2-D cross section of it, perhaps mentally combining these

images to form the full image (inside and out) of everything in our

space. Of course, if, upon being whisked into hyperspace, we were

equipped with an astral body complete with 4-D eyes, this problem

would not arise.

Jorge Luis Borges, A Personal Anthology (Grove Press, New York, 1967).

For our purposes, the interesting essay in here is "A New Refutation of

Time." However, the other stories and essays herein are also quite

fascinating. "The Aleph," for instance, could be viewed as a description

of how a space-time singularity might look. Borges has written a number
of other scientifically interesting stories. "The Garden of Forking

Paths," from Ficciones, for instance, furnishes the epigraph of the

DeWitt book on branching time.

In "A New Refutation of Time," Borges takes the metaphysical

idealism of Berkeley and Hume to what seems to be its necessary logical

conclusion: "I deny the existence of one single time in which all events

are linked. . . . Each moment we live exists, not the imaginary combina-

tion of these moments." So there are only separate mental states,

conventionally tied together into a time stream. To make clear the way
in which the time stream is disrupted by a full idealism, Borges reasons

thus: "We can postulate, in the mind of an individual . . . two identical

moments. . . . Are not these identical moments the same moment?" (It

is interesting to note here that Kurt Godel, who has also written on the

unreality of change, uses a similar argument to support the view that

thoughts have a reality external to us . . . since two different people can

have the same thought.)

This ideahstic destruction of time is illustrated by a beautifully written

example. Borges later closes with a terribly sad paragraph beginning,

"^^And yet, and yet ... To deny temporal succession, to deny the self, to
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deny the astronomical universe, are measures of apparent despair and of

secret consolation," and ending, "The world, unfortunately, is real; I,

unfortunately, am Borges."

Claude Bragdon, A Primer of Higher Space (Omen Press, Tucson, Arizona,

1972).

This lovely little book was originally published in Rochester in 1913.

Bragdon was a remarkable individual who not only worked as an

architect and scenic designer but also wrote some 17 books. He was tied

in with many of the mystical and occult movements of his time, and his

book on mysticism and the fourth dimension. Explorations into the

Fourth Dimension (originally, Four Dimensional Vistas), was reprinted in

1972 by the CSA Press in Lakemont, Georgia.

Dionys Burger, Sphereland (Thomas Y. Crowell Co., New York, 1965;

Apollo Editions, New York).

Originally written in Dutch, Sphereland starts with a summary of

Abbott's Flatland and then goes on to an account purportedly written

by A. Square's grandson, A. Hexagon.

This book lacks the satiric bite of Flatland, but it provides a nice

dramatic account of how the Flatlanders might discover the curvature of

their space (into a sphere) from the fact that the sum of the angles in a

sufficiently large triangle is appreciably larger than 180°; and of how the

Flatlanders might come to explain the observed recession of distant

objects by viewing their world as the surface of an expanding sphere. An
odd feature of this book is that here the Flatlanders are somewhat like

birds, that is, they live in a disk (compare: spherical atmosphere) in the

center of which is an attracting mass. Their natural paths are circles

around this central mass.

Carlos Castaneda, A Separate Reality (Simon and Schuster, New York,

1971).

Carlos Castaneda has written a series of four books about' his encounters

with a Mexican brujo or sorcerer called Don Juan. A Separate Reality is

the second in the series, and perhaps the best.

The basic idea behind Don Juan's teachings is that we create the

world around us by our assumptions. Our rational system of interpreta-

tion carves out a certain set of perceptions, connects them in a certain

way and announces, "The world is like this." Don Juan bears this in on

Carlos by forcing him to let down his guard and interpret reality in

radically different ways. Specific ways of achieving this are described:

the ritual use of psychedehcs, stopping one's internal monologue, con-

centrating on sounds rather than sights and attempting to wake up

inside your dreams.

Don Juan's goal is not so much to win Carlos over to a belief in

spirits, talking coyotes, etc., as to show him that such beliefs are as

reasonable as behef, say, in the content of the 6:30 news. What you see

depends on what you are prepared to see.

I used to think that Don Juan was trying to get Carlos to start seeing
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things in terms of space-time. One incident, in particular (where Don
Juan gets Carlos to see the same leaf fall off a tree three times in a row),

seems to support this view. But more recently 1 have come to think that

Don Juan's real teaching is that it is possible, when we realize that all

systems of interpretation are equally arbitrary, to leave this one possible

world and live for a time in what Wheeler calls Superspace.

One would think that viewing all possible worlds as equally valid

would destroy any justification for ethical considerations, but Don Juan

answers this problem: "1 choose to live, and to laugh, not because it

matters, but because that choice is the bent of my nature. ... A man of

knowledge chooses a path with heart and follows it. ... Nothing being

more important than anything else, a man of knowledge chooses any

act, and acts it out as if it matters to him" (pp. 106-107).

Bryce S. DeWitt and Neil Graham, editors. The Many- Worlds Interpretation

of Quantum Mechanics (Princeton University Press, Princeton, N.J.,

1973).

The heart of this paperback is Hugh Everett's monograph, "The Theory

of the Universal Wave Function." There is also, among other things, an

"Assessment" by John Wheeler, as well as an elementary presentation of

Everett's theory by Bryce DeWitt.

Everett's starting point is that in quantum mechanics a system can

change in two ways (given here in reverse order). Process 2: When a

system is left on its own it is not definitely in any one eigenstate. The

probabilities of its being observed in various eigenstates evolve in a

continuous way as time goes on. Process 1: When a measurement is

performed on a system a discontinuous "collapse of the state vector"

occurs, so that the probability of one particular eigenstate becomes 1

and that of all the others becomes 0.

Now say that you (or a cat) are in a room and you make a

measurement on a certain system at noon. You feel that the state vector

of the system collapses then. But for someone outside the room who
views you-plus-the-system-you-are-observing as a single larger system,

your results do not collapse into a unique eigenstate until he opens the

door and looks at you.

So, Everett suggests, since someone else can always walk in, why not

assume that we are also state vectors, existing in many different eigen-

states at once with certain probabilities, and that "one of us" observes

every possible outcome of every experiment we conduct. The image here

is that of a branching universe, although actually the branching is so

thick that a continuous Superspace of possible universes is a more

appropriate image.

If the universe is really like this, is there any way for you to ensure

that the next time you take an airplane you do not go into the "branch"

in which the airplane crashes? Somehow it is not enough to simply say

that you spHt and that a "you" goes into both of the possible futures, for

one has the compelling feeling that the life one actually lives is different
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from the other possible lives. Of course, this feeling can be written off as

an illusion on a par with one's illusion that time really passes, but there

is a nagging feeling that there is something more to it.

The question just raised is equivalent to the question of how this

model can correctly explain the observed probability distributions.

W. Dunne, An Experiment with Time (Faber and Faber, London, 1969).

This curious book was originally published in 1927. On the basis of

certain memorable experiences of what seemed to be dream precogni-

tion, Dunne had come to believe that our dreams draw upon future as

well as past events. In this book he describes his attempts to prove that

dream precognition actually occurs, as well as his theory (Serial Time) of

how such a phenomenon could be possible.

The idea behind the experimental tests was to get a large group of

people to write down all the specific dream images that they could recall

each morning, and then to keep an eye out for the realization of these

images. A number of Dunne's subjects did observe such dream precog-

nition in themselves, but, as Dunne himself points out, the greater

number of these observations can be written off to chance or autosug-

gestion. Nonetheless, the idea is an interesting one and it has been, for

instance, my experience that if you begin looking for this phenomenon

you will find rather striking instances of it.

Dunne's Serial Time theory carries what David Park has called "the

fallacy of the animated Minkowski diagram" to its logical conclusion.

That is, Dunne starts out with his world line in space-time^ but then

asserts that his consciousness is moving along this world line. Of course

the time in which his consciousness is moving is different from the frozen

physical time of the space-time block universe. (Similarly, in Vonnegut's

Slaughterhouse Five, the hero's consciousness moves in a time outside

that of physical space-time.) Now, since the consciousness exists outside

of space-time, it can range freely over it, picking a bit here and a bit

there to weave its dreams. Moreover, if the consciousness discovers

something unpleasant in the future of physical space-time as it stands, it

can alter this space-time. We thus have a space-time that is changing

while a second time (the time of consciousness) lapses.

This whole train of thought can be repeated for the frozen space-time

of the world and the consciousness, so that one ultimately has an infinite

regress of times and consciousnesses. As I have indicated in several

places, I subscribe to the view that our sensation of the passage of time

is to be viewed as an illusion, an artifact of the space-time geometry of

the universe. Nevertheless, Dunne's working out of his Serial Time

notion is quite interesting, and could perhaps be viewed as a vague

precursor of the notion of Superspace described in Misner, Thome and

Wheeler.

One phrase sticks in the mind, "Consequently, you, the ultimate,

observing you, are always outside any world of which you can make a

coherent mental picture."
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Arthur S. Eddington, Space, Time and Gravitation (Harper & Row, New
York, 1959).

This book was first published in 1920. Eddington wrote a number of

books of what one might call either popular science or philosophy of

science, and they are all excellent. One does not soon forget Eddington's

pleasant style, relaxed, slightly humorous, but totally serious; engage,

but never partisan.

Space, Time and Gravitation begins with a prologue on the nature of

geometry that brings out vividly the problem of what exactly it means to

say that the length of a ruler does or does not depend on where in the

universe it is located. The book then moves through a clear description

of special relativity in terms of Minkowski diagrams (perhaps the first

such popular presentation), a fairly detailed exposition of general relativ-

ity and a description of the experimental tests of general relativity.

Chapter 1 1 is unique in that it gives the only available popular presenta-

tion of H. Weyl's geometric theory of electromagnetism in terms of the

"gauge." (See, however, Weyl's rather difficult book. Space, Time,

Matter.) The Mathematical Theory of Relativity, Eddington's companion

piece to Space, Time and Gravitation, was reprinted in 1975 by Chelsea.

To a certain extent, the latter was written as an introduction to the

former, and the interested reader may wish to use it this way.

The last chapter of Space, Time and Gravitation presents Eddington's

striking idea that "where science has progressed the farthest, the mind

has but regained from nature that which the mind has put into nature."

That is, "Our whole theory has really been a discussion of the most

general way in which [the illusion of] permanent substance can be built

up out of relations; and it is the mind which, by insisting on regarding

only the things that are permanent, has actually imposed these laws on

an indifferent world." He develops this idea further in The Philosophy of

Physical Science (popular) and took it to an extreme in Fundamental

Theory. In this last work (which was posthumously assembled from his

notes), Eddington sets out to derive all of nature's physical constants

(e.g., Planck's constant, the mass of the electron, the radius of the

universe, etc.) on the basis of certain a priori epistemological considera-

tions. This book represents one of the earlier attempts to wed general

relativity to quantum mechanics, "a fiery marriage which has yet to be

consummated," in the words of John Wheeler.

Albert Einstein, Relativity: The Special and the General Theory (Crown
Publishers, New York, 1961).

The body of this little book is a translation of a popular exposition

written by Einstein in 1916. There is also a most interesting Appendix,

"Relativity and the Problem of Space," written in 1952.

Most popular expositions of relativity theory are in fact rehashes of

this beautiful book. It is, however, virtually impossible to improve upon
Einstein's clear and friendly presentation. The Appendix mentioned

above makes the points that "It appears therefore more natural to think
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of physical reality as a four-dimensional existence, instead of, as

hitherto, the evolution of a three-dimensional existence," and that

"Space-time does not claim existence on its own, but only as a structural

quality of the field," and ends with a brief description of Einstein's

attempts to arrive at a unified field theory.

Albert Einstein, Sidelights on Relativity (E. P. Dutton and Co., New York,

1923).

Unfortunately, this highly readable book is out of print and not easy to

get hold of. It contains translations of two of Einstein's addresses,

"Ether and the Theory of Relativity" (1920) and "Geometry and Experi-

ence" (1921).

Reading some popularizations, one gets the impression that relativity

did away with the "ether" which classical physicists had supposed to fill

the spaces between particles and provide the medium for the transmis-

sion of hght. In his first address, Einstein makes clear the limited sense

in which this is correct: "The special theory of relativity forbids us to

assume the ether to consist of particles observable through time, but the

hypothesis of ether in itself is not in confhct with the special theory of

relativity." He then goes on to describe the way in which the general

theory of relativity is, in effect, an ether theory: "The recognition of the

fact that 'empty space' in its physical relation is neither homogeneous

nor isotropic, compelling us to describe its state by ten functions (the

gravitation potentials g^^), has, I think, finally disposed of the view that

space is physically empty. But therewith the conception of the ether has

again acquired an intelligible content."

The address, "Geometry and Experience," is highly relevant to my
book. Consider this quote: "Geometry must be stripped of its merely

logical-formal character by the co-ordination of real objects of experi-

ence with the empty conceptual framework of axiomatic geometry.

. . . Geometry thus completed is evidently a natural science; we may in

fact regard it as the most ancient branch of physics." Having made this

remark, Einstein goes on to consider what might be the geometry of the

universe. In order to avoid Poincare's conventionalistic view that the

world is Euclidean and that any non-Euclidean behavior of physical

objects can be ascribed to various "forces," Einstein makes the explicit

assumption that "If two tracts are found to be equal once and anywhere,

they are equal always and everywhere." That is, rather than saying a

meter-stick shrinks near a dense object, we say that the space near the

dense object is stretched.

He ends this address with a description of the correspondence be-

tween the sphere and the "flat sphere" via stereographic projection, and

the way in which one can thus visualize a hypersphere by imagining our

space to be a "flat hypersphere."

Albert Einstein, The Meaning of Relativity (Princeton University Press,

Princeton, 1953).

The body of this book, first published in 1922, consists of the text of
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four lectures Einstein delivered at Princeton. Einstein provides us here

with a compact and sophisticated development of special and general

relativity.

An interesting answer to the question of what is reality can be found

on the first page of this book: "By the aid of speech different individuals

can, to a certain extent, compare their experiences. In this way it is

shown that certain sense perceptions of different individuals correspond

to each other, while for other sense perceptions no such correspondence

can be established. We are accustomed to regard as real those sense

perceptions which are common to different individuals, and which

therefore are, in a measure, impersonal."

A. Einstein, H. A. Lorentz, H. Weyl and H. Minkowski, The Principle of

Relativity (Dover PubHcations, New York, 1952).

This collection of translations of the original papers on the theory of

relativity was first put out in 1923.

Einstein's first relativity paper, "On the Electrodynamics of Moving

Bodies" (1905), is here, and the casual reader can expect to read the

introduction and first two subsections without undue difficulty. It is a

thrilling experience to make direct contact with the birth of relativity in

this way.

Minkowski's famous paper, "Space and Time" (1908), is here as well,

and I would urge the interested reader to go through at least the first

two sections of this paper. It was Minkowski who invented the geomet-

ric interpretation of special relativity that I have used, and he presents it

here with great clarity. Minkowski's style has a certain panache in this

translation: "With this most valiant piece of chalk I might project upon

the blackboard four world-axes. Since merely one chalky axis, as it is,

consists of molecules all a-thrill, and moreover is taking part in the

earth's travels in the universe, it already affords us ample scope for

abstraction; the somewhat greater abstraction associated with the num-

ber four is for the mathematician no infliction."

J. T. Eraser, F. C. Haber and G. H. Muller, editors, The Study of Time

(Springer-Verlag, Berlin, 1972).

This book contains the papers presented at the First Conference of the

International Society for the Study of Time in 1969. The essay, "The

Dimensions of the Sensible Present," by H. A. C. Dobbs, from which I

took the idea of the Necker cube reversal being a 4-D phenomenon,

appears here.

The most valuable essay in the book is "The Myth of the Passage of

Time," by David Park. Park argues convincingly in support of the

position that time does not really "pass"; that once you have drawn the

Minkowski diagram of a space-time, nothing is gained by "animating"

this diagram by imagining a particular spatial cross section that moves

upward through the diagram while a second time elapses.

Martin Gardner, Relativity for the Million (Macmillan, New York, 1962).
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This book is copiously and attractively illustrated. I first got hold of a

copy when I was a junior in high school. Full of ideas and pleasant to

read, it was this book that kindled my continuing hope to some day fully

understand general relativity. This is certainly one of the best elemen-

tary treatments available.

Gardner's The Ambidextrous Universe contains some interesting

material on 4-D space, and his collection entitled Mathematical Carnival

has a section on hypercubes.

S. W. Hawking and G. F. R. Elhs, The Large Scale Structure of Space- Time

(Cambridge University Press, Cambridge, 1973).

This beautifully illustrated technical work is a study of the properties of

space-time (curvature, causality, etc.) and of what happens when you

reach an "edge" of space-time, a singularity.

The authors discuss the fact that certain considerations imply "the

existence of a singularity in the past, at the beginning of the present

epoch of expansion of the universe. This singularity is in principle visible

to us. It might be interpreted as the beginning of the universe." A
number of interesting results about black holes are proved.

The average reader will not be able to follow the. arguments in detail,

but the illustrations are definitely worth looking at. This book is, for

instance, the best place to go to learn about Penrose diagrams. On page

169 there is a particularly interesting sketch of Godel's universe.

David Hilbert and Stephan Cohn-Vossen, Geometry and the Imagination

(Chelsea, New York, 1952).

This is a translation of the 1932 elaboration by Cohn-Vossen of Hilbert's

1920 lectures in Gottingen.

Section 23 of this lovely book is the most relevant here. In this section

the authors describe the six regular 4-D polytopes. Five of them are

analogous to the five regular 3-D polyhedra, and one, the 24-Cell, has

no analogue in other dimensions. In all n-dimensional spaces, for n

greater than or equal to 5, there are only three regular polytopes, the

analogues of the cube, tetrahedron and octahedron.

Geometry and the Imagination also has a fascinating and highly visual

chapter on differential geometry, as well as a very thorough discussion

of the Klein bottle and the projective plane as closed surfaces in 4-D

space.

C. Howard Hinton, The Fourth Dimension (Sonnenschein, London, 1904).

In 1888, Swann Sonnenschein & Co. published a book by C. H. Hinton

called A New Era of Thought. In this book Hinton suggests that our

space may have a slight 4-D hyperthickness, so that the ultimate

components of our nervous system are actually higher-dimensional, thus

enabling human brains to imagine 4-D space. "The particular problem

at which I have worked for more than ten years, has been completely

solved," Hinton says. "It is possible for the mind to acquire a concep-

tion of higher space as adequate as that of our three-dimensional space,
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and to use it in the same manner." He then outlines in detail a series of

mental exercises to be carried out with a set of 27 colored cubes which

fit together into a single large cube (at one time Hinton's pubhsher

actually sold sets of these cubes). The idea was that one can learn to

know the intrinsic "next to" relations in a cube independent of any

particular embedding of the cube in 3-D space; and if you can learn to

think of a cube and its mirror image as the same thing, you are on your

way to thinking in 4-D space.

Part of The Fourth Dimension is also devoted to these exercises and

variants thereof. I cannot say that I have devoted much time to the

exercises, as they seem unbearably tedious, involving the memorization

of scores of arbitrary labels. There are, in my opinion, better and more

direct ways of learning to "see" 4-D space.

However, the gradual path to enlightenment was manifestly effica-

cious in Hinton's case, as The Fourth Dimension contains a number of

interesting insights into higher-dimensional space. For instance, there is

a detailed analysis of the types of rotation which would be possible in

4-D space, leading up to a representation of electricity as a vortex ring

in a 4-D ether. There is also Hinton's remarkable anticipation of the

Minkowskian geometry which is based on interval instead of distance.

Perhaps the most interesting of Hinton's writings are those collected

in the two volumes called Scientific Romances. The First Series, pub-

lished by Swann Sonnenschein in 1904 contains, among other things, "A
Plane World," which develops the physics which would obtain in

Abbott's Flatland. The Second Series appeared in 1909, and here as

always, Hinton insists upon the beneficial effects of the higher-space

viewpoint: "And I have often thought, travelling by railway, when
between the dark underground stations the lads and errand boys bend

over the scraps of badly printed paper, reading fearful tales—I have

often thought how much better it would be if they were doing that which

I may call 'communing with space.' " This volume ends with a strange

modernistic story called "An Unfinished Communication" which deals

with a young man's experiences with an "Unlearner" and his subsequent

detemporalization. This last story is somewhat reminiscent of P. D.

Ouspensky's novel about a man who returns to his youth and finds

himself compelled to repeat all of the mistakes he made, The Strange

Life of Ivan Osokin.

William J. Kaufmann, Relativity and Cosmology (Harper and Row, New
York, 1973).

This paperback popularization is an astronomer's discussion of recent

theoretical and experimental developments in the field of cosmology. He
cites some interesting experimental evidence for the propositions that

our space is curved into the hypersurface of a hypersphere, and that

space will eventually stop expanding and contract back to a singularity.

This book also contains an intriguing discussion of the continuing
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puzzle of the quasars, as well as some relatively new material on black

holes.

Henry P. Manning, editor, The Fourth Dimension Simply Explained (Dover

Publications, New York, 1960).

Originally published in 1910, this book is a collection of some of the

essays submitted to Scientific American when that magazine offered $500

to the author of the best popular explanation of the fourth dimension.

There is a great wealth of ingenious analogies and examples to be

found here, generally along the Hnes of those I mentioned in Chapter 1.

Manning provides a very comprehensive introduction, and is careful to

point out the places where the essayists have made incorrect statements.

Charles W. Misner, Kip S. Thome and John Archibald Wheeler, Gravitation

(W. H. Freeman, San Francisco, 1973).

This book is heavy in every sense of the word. Some 1200 pages long, it

describes Einstein's theory of gravity and the many modern tests and

applications of this theory. If you want to get the inside dope on general

relativity, black holes, cosmology or the like, this is the place to go.

Gravitation is quite advanced on the whole, but the authors do

everything they can for the casual reader. There are' scores of interesting

boxes, figures and diagrams, and it is possible to skate through almost

any section in the book with some comprehension.

The last two chapters are particularly interesting, as here the authors

are working at the edge of their knowledge. The next-to-last chapter,

"Superspace: Arena for the Dynamics of Geometry," presents the truly

revolutionary idea that there is a continuum of possible universes at any

time. A space-time or "leaf of history" seems to arise when a high-prob-

ability family of spaces fit together to make a space-time. But all the

other, less likely, spaces exist as well, although it is not quite clear which

possible space-times (other than the one we perceive) are "real."

The last chapter, "Beyond the End of Time," contains ideas mostly

due to Wheeler. I thought of toroidal space-time as an answer to the

question implicit in this chapter's title. There is a great wealth of far-out

ideas in this chapter, and I urge you to read it.

Robert A. Monroe, Journeys out of the Body (Anchor Press/Doubleday,

Garden City, N.Y., 1973).

So you're tired of just reading about 4-D space and want to go see it for

yourself? This book tells you how to get there. Unfortunately, it is also a

blueprint for insanity.

Monroe describes a fairly effective method of inducing a state in

which one has the feeling of being able to leave one's body, move

through walls and so on. Although he never refers to the fourth

dimension, the idea of investigating the sort of "astral travel" he

describes with an eye to interpreting the observed phenomena in terms

of hyperspace is a tempting one.
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The technique is basically to "wake up inside your dreams." It is not

uncommon for one to have this experience during a daytime nap: that

is, that one is awake and aware although one's body is still asleep. If one

begins to look for this experience it begins to happen more often, and
then astral travel is not far behind.

I worked on this for a few months once, but finally had to give it up

as the experiences were so deeply frightening and disturbing. To be fully

conscious and aware, and to know that one is in a dream world where

anything can happen, to try to wake one's body up and not be able

to—aaauugh! Indeed, reading the book, one gets the impression that

Monroe finally scared himself into a heart attack.

But forewarned is forearmed, and perhaps some intrepid reader will

be able to make something of the old theory that we have souls that

move in hyperspace.

P. D. Ouspensky, Tertium Organum (Random House, New York, 1970).

This book was first published in 1922 and is now available as a Vintage

paperback. Claude Bragdon was involved in its original English transla-

tion. Ouspensky wrote a number of other books. His A New Model of the

Universe contains interesting chapters on "The Fourth Dimension" and
on "Experimental Mysticism" (apparently about hashish). Ouspensky's

book In Search of the Miraculous is, to my mind, the best available

description of the teachings of G. I. Gurdjieff.

Tertium Organum is about the fourth dimension, and about a number
of occult and mystical notions that can be thought of in terms of the

fourth dimension. For instance, the distinct members of the human race

can be thought of as being connected in a higher dimension, just as the

separate cross sections of your fingers in Flatland are all part of your

3-D hand. It can be argued that the consciousness of a snail is 1-D, that

of a horse 2-D, and that the goal of the mystic is to attain a conscious-

ness that is 4-D.

Ouspensky's logic is occasionally faulty, but his basic notion of

mystical consciousness as four-dimensional, both in the sense of time-

less, and in the sense of seeing a higher unity above the world's diversity,

rings true.

Robert L. Reeves, Space and the Fourth Dimension (Crescent Publishers,

Grand Rapids, Michigan, 1922).

In which the author supplies his answer to the burning question:

"Wherein is the Christian Scientist justified in making the assertion that

this revelation of Truth which came to Mrs. [Mary Baker] Eddy is

superior to Einstien's [sic] mathematical-physical deductions?"

Hans Reichenbach, The Philosophy of Space and Time (Dover Publications,

New York, 1957).

This book was originally published in German in 1927. Reichenbach

had a powerful imagination, and endeavored to "visualize" such things

as non-Euclidean space, the fourth dimension, space-time and the hy-

persphere.
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This book was most useful in the writing of Geometry and Reality. I

am indebted to Reichenbach for some of the ideas in my Chapters 2 and
3, for the circular-time model mentioned in my Chapter 6 (this appears

on page 272 of Reichenbach's book) and for the idea of using a torus to

get a surface where a circle's expansion can smoothly turn into contrac-

tion.

A particularly interesting section of the book is called "The Number
of Dimensions of Space." In this section, Reichenbach attempts to

visualize a 4-D world by using color as the fourth dimension. That is, he
asks us to think of a 3-D world in which objects pass through one
another if their colors (i.e., 4-D locations) are different. In this section he

also makes the speculation that the elementary particles might be tiny

hyperspheres.

Wolfgang Rindler, Essential Relativity (Van Nostrand Reinhold Company,
New York, 1969).

A college textbook, this work is one of the most accessible of the

rigorous presentations of special relativity, general relativity and cosmol-

ogy. The author has done original work on the paradoxes of special

relativity (such as the pole-and-barn paradox) and his discussion of

them is truly inspired.

The book's first chapter is fairly self-contained and gives us a very

lucid examination of Mach's principle and its relationship to the equiva-

lence principle of general relativity.

Paul Arthur Schilpp, Albert Einstein: Philosopher- Scientist (Harper and Row,
New York, 1959; Open Court, Lasalle, 111., 1973).

This consists mainly of essays on Einstein's work. It also includes a

45-page intellectual autobiography by Einstein (at the beginning) and

his remarks on some of the included essays (at the end). These "critical

remarks" are most interesting since they contain Einstein's reasons for

refusing to accept quantum mechanics as a final physical theory.

One of the most important of the essays in this book is Kurt Godel's

"A Remark about the Relationship between Relativity Theory and

Idealistic Philosophy." The aim of this essay is to show that the past and
future exist statically and that time does not really pass. Godel's first

point is that, given the relativity of simultaneity, it is impossible to slice

space-time into a stack of "nows" in any unique way, indicating that it is

unrealistic to suppose that the world actually consists of such a series of

fleeting "nows" with the past and future nonexistent. Godel then goes

on to describe an interesting model of the universe that he invented, in

which "the local times of the special observers . . . cannot be fitted

together into one world time." This happens because Godel's universes

(i) contain individuals whose world lines appear to us to be a pattern of

simultaneous events, and (ii) admit the logical possibility of traveling

back to points in one's own past. "Consequently, the inference drawn

above as to the non-objectivity of change doubtless applies at least in

these worlds." I have attempted my own example of such a world in

Problem 3 of Chapter 7.
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Hermann Schubert, Mathematical Essays and Recreations (Open Court Pub-

lishing Co., Chicago, 1903).

This is a translation of a book of essays that first appeared in the late

1800's. The essay that is relevant here is entitled "The Fourth Dimen-

sion."

"The Fourth Dimension" is primarily an attack on "Zollner and his

adherents," who had been claiming that spirits live in a 4-D space in

which our space is embedded. This essay contains an interesting discus-

sion of whether hyperspace really exists, and it is a rich source of

historical information about the spiritualist movement as related to the

fourth dimension.

Schubert winds up his essay with these stirring words: "The high

eminence on which the knowledge and civilization of humanity now
stands was not reached by the thoughtless employment of fanciful ideas,

nor by recourse to a four-dimensional world, but by hard, serious labor,

and slow, unceasing research. Let all men of science, therefore, band

themselves together and oppose a solid front to methods that explain

everything that is now mysterious to us by the interference of indepen-

dent spirits."

W. Whately Smith, A Theory of the Mechanism of Survival: The Fourth

Dimension and its Applications (Dutton & Co., New York, 1920).

The early part of our century marked a high point of popular interest in

the four dimension. Spiritualism, with its 4-D spirits, was all the rage,

and the Einstein-Minkowski use of the fourth dimension had given it a

sort of legitimacy in the public mind.

Smith's book contains a nice Abbott-style description of the fourth

dimension by analogy. Interestingly, he requires that the 2-D beings

crawl back and forth around the 1-D rim of a 2-D disc, just as we 3-D

beings are compelled to move back and forth on the 2-D surface of a

3-D sphere. He introduces the notion of time as a higher dimension in

terms of making a stack of pictures taken of the 2-D world.

In the second part of the book he recounts various spiritualist experi-

ences (the most compelling of which are the memories of a man who
was revived from apparent death) and attempts to tie these experiences

into the notion of the fourth dimension. Smith's idea is that one's

consciousness has a 4-D "vehicle" as well as the famiUar 3-D one. This

modeling, however, is not carried out at any level much more convinc-

ing than the observation that the fourth dimension and spiritualist

phenomena are both somehow transcendent.

One of the book's most memorable phrases arises when Smith de-

scribes, as an example of an out-and-out hallucination, the case of a

man who enters his sitting room and finds "three green cassowaries

playing nap."

Edwin F. Taylor and John A. Wheeler, Spacetime Physics (W. H. Freeman,

San Francisco, 1963).

If my book has made you want to learn more about the special theory of



Annotated Bibliography I 133

relativity, then this is the best place to go. Originally developed for the

beginning of a Freshman Physics course, Spacetime Physics will not soon

be replaced. The book's supple style and wealth of figures and tables

make it a pleasure to read, and the 90 pages of thoroughly explained

exercises encourage the reader to develop a real mastery of the material.

There is also an elegant chapter on the Einstein theory of gravitation.

Bob Toben, Jack Sarfatti and Fred Wolf, Space-Time and Beyond (E. P.

Dutton & Co., New York, 1975).

This glossy paperback consists of some 120 pages of arch drawings and

hand-printed slogans by Bob Toben, followed by a short "scientific

commentary" by Jack Sarfatti.

Some really interesting topics (e.g., Wheeler's quantum foam, sub-

atomic black and white holes, and parallel universes) are discussed, but

the authors seem determined to convince the reader of the validity of

psychic phenomena as well. The scientific ideas are more often invoked

than explained, and one leaves the book with little more than the

impression that anything goes.

Johann Carl Friederich Zollner, Transcendental Physics.

This strange book is the account of an astronomer's adventures with a

spiritualist medium called Slade. As I mentioned in Chapter 1, Slade

persuaded Zollner that he was in contact with 4-D spirits in a number of

ways, e.g., by getting them to write a message on a slate that had been

sealed in a box with a bit of chalk. Slade, however, failed whenever he

was confronted with a specific challenge, e.g., to turn the crystals of a

chemical compound into crystals of the compound whose molecules

were mirror images of the original compound.

But Zollner's enthusiasm was so great that these repeated failures

never seemed to shake him. Even if Slade could not do what he had

been asked to, he would always come up with something. For instance,

when asked to turn a seashell into its mirror image, Slade made it "pass

through the table top" instead.

All this is perhaps reminiscent of Uri Geller's recent demonstrations

of his psychic powers to certain interested scientists. Incidentally, I first

heard of Zollner in Martin Gardner's interesting book. The Ambidex-

trous Universe. In Gardner's book one can also find references to

descriptions of Slade's eventual loss of credibility.
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illustrations. 416pp. of text. 5% x 8V4. 63702-6 Pa. $6.00

BURNHAM'S CELESTIAL HANDBOOK, Robert Bumham, Jr. Thorough,

readable guide to the stars beyond our solar system. Exhaustive treatment,
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to Cetus in Vol. 1; Chamaeleon to Orion in Vol. 2; and Pavo to Vulpecvda

in Vol. 3. Hundreds of illustrations. Total of about 2000pp. BVa x 914.

23567-X, 23568-8, 23673-0 Pa., Three-vol. set $27.85

THEORY OF WING SECTIONS: INCLUDING A SUMMARY OF AIR-
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plus description of theory. 350pp. of tables. 693pp. 5% x 8%.
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statement for continental drift. Full 1966 translation of Wegener's final
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THE PRINCIPLES OF PSYCHOLOGY, William James. Famous long
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THE DISASTERS OF WAR, Francisco Goya. 83 etchings record horrors
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PEWTER-WORKING: INSTRUCTIONS AND PROJECTS, Burl N. Os-
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THE GREAT CHICAGO FIRE, edited by David Lowe. 10 dramatic, eye-

witness accounts of the 1871 disaster, including one of the aftermath and
rebuilding, plus 70 contemporary photographs and illustrations of the
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accounts of 350 bacteriologists form a separate section. No clearer, fuller
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illustrations. 448pp. 5% x 8V4. 23761-3 Pa. $6.50
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228pp. 5% X 8%. 23572-6 Pa. $3.50

ENCYCLOPEDIA OF CARD TRICKS, revised and edited by Jean Hugard.
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402pp. 5% X 8Ms. (Available in U.S. only) 21252-1 Pa. $4.95

MAGIC: STAGE ILLUSIONS, SPECIAL EFFECTS AND TRICK PHO-
TOGRAPHY, Albert A. Hopkins, Henry R. Evans. One of the great classics;
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trations. 556pp. 5% x 8%. 23344-8 Pa. $6.95

THE SECRETS OF HOUDINI, J. C. Cannell. Classic study of Houdini's

incredible magic, exposing closely-kept professional secrets and revealing,

in general terms, the whole art of stage magic. 67 illustrations. 279pp.

5% X 8%. 22913-0 Pa. $4.00

HOFFMANN'S MODERN MAGIC, Professor Hoffmann. One of the best,

and best-known, magicians' manuals of the past century. Hundreds of

tricks from card tricks and simple sleight of hand to elaborate illusions

involving construction of complicated machinery. 332 illustrations. 563pp.
5% X 8%. 23623-4 Pa. $6.00

MADAME PRUNIER'S FISH COOKERY BOOK, Mme. S. B. Prunier.

More than 1000 recipes from world famous Prunier's of Paris and London,
specially adapted here for American kitchen. Grilled toumedos with

anchovy butter. Lobster a la Bordelaise, Prunier's prized desserts, more.

Glossary. 340pp. 53/8 x 8%. (Available in U.S. only) 22679-4 Pa. $3.00

FRENCH COUNTRY COOKING FOR AMERICANS, Louis Diat. 500
easy-to-make, authentic provincial recipes compiled by former head chef

at New York's Fitz-Carlton Hotel: onion soup, lamb stew, potato pie, more.

309pp. 5% X 8%. 23665-X Pa. $3.95

SAUCES, FRENCH AND FAMOUS, Louis Diat. Complete book gives over

200 specific recipes: bechamel, Bordelaise, hollandaise, Cumberland, apri-

cot, etc. Author was one of this century's finest chefs, originator of

vichyssoise and many other dishes. Index. 156pp. 5% x 8.

23663-3 Pa. $2.75

TOLL HOUSE TRIED AND TRUE RECIPES, Ruth Graves Wakefield.

Authentic recipes from the famous Mass. restaurant: popovers, veal and

ham loaf. Toll House baked beans, chocolate cake crumb pudding, much
more. Many helpful hints. Nearly 700 recipes. Index. 376pp. 5% x 8%.

23560-2 Pa. $4.50
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THE CURVES OF LIFE, Theodore A. Cook. Examination of shells, leaves,

horns, human body, art, etc., in "the classic reference on how the golden

ratio applies to spirals and helices in nature .... "—Martin Gardner.

426 illustrations. Total of 512pp. 5% x 8\^. 23701-X Pa. $5.95

AN ILLUSTRATED FLORA OF THE NORTHERN UNITED STATES
AND CANADA, Nathaniel L. Britton, Addison Brown. Encyclopedic work

covers 4666 species, ferns on up. Everything. Full botanical information,

illustration for each. This earlier edition is preferred by many to more

recent revisions. 1913 edition. Over 4000 illustrations, total of 2087pp.

eVs X 9V4. 22642-5, 22643-3, 22644-1 Pa., Three-vol. set $25.50

MANUAL OF THE GRASSES OF THE UNITED STATES, A. S. Hitch-

cock, U.S. Dept. of Agriculture. The basic study of American grasses,

both indigenous and escapes, cultivated and vdld. Over 1400 species. Full

descriptions, information. Over 1100 maps, illustrations. Total of 1051pp.

5% X 8%. 22717-0, 22718-9 Pa., Two-vol. set $15.00

THE CACTACEAE,, Nathaniel L. Britton, John N. Rose. Exhaustive,

definitive. Every cactus in the world. Full botanical descriptions. Thorough

statement of nomenclatures, habitat, detailed finding keys. The one book

needed by every cactus enthusiast. Over 1275 illustrations. Total of 1080pp.

8 X 10y4. 21191-6, 21192-4 Clothbd., Two-vol. set $35.00

AMERICAN MEDICINAL PLANTS, Charles F. Millspaugh. Full descrip-

tions, 180 plants covered: history; physical description; methods of prepa-

ration with all chemical constituents extracted; all claimed curative or

adverse eflFects. 180 full-page plates. Classification table. 804pp. 6% x 9%.
23034-1 Pa. $12.95

A MODERN HERBAL, Margaret Grieve. Much the fullest, most exact,

most useful compilation of herbal material. Gigantic alphabetical encyclo-

pedia, from aconite to zedoary, gives botanical information, medical prop-

erties, folklore, economic uses, and much else. Indispensable to serious

reader. 161 illustrations. 888pp. 6^ x 9V4. (Available in U.S. only)

22798-7, 22799-5 Pa., Two-vol. set $13.00

THE HERBAL or GENERAL HISTORY OF PLANTS, John Gerard.

The 1633 edition revised and enlarged by Thomas Johnson. Containing

almost 2850 plant descriptions and 2705 superb illustrations, Gerard's

Herbal is a monumental work, the book all modem English herbals are

derived from, the one herbal every serious enthusiast should have in its

entirety. Original editions are worth perhaps $750. 1678pp. 8^ x 12^4.

23147-X Clothbd. $50.00

MANUAL OF THE TREES OF NORTH AMERICA, Charles S. Sargent.

The basic survey of every native tree and tree-hke shrub, 717 species in

all. Extremely full descriptions, information on habitat, growth, locales,

economics, etc. Necessary to every serious tree lover. Over 100 finding

keys. 783 illustrations. Total of 986pp. 5% x 8%.
20277-1, 20278-X Pa., Two-vol. set $11.00
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AMERICAN BIRD ENGRAVINGS, Alexander Wilson et al. All 76 plates,

from Wilson's American Ornithology (1808-14), most important ornitho-

logical work before Audubon, plus 27 plates from the supplement ( 1825-33

)

by Charles Bonaparte. Over 250 birds portrayed. 8 plates also reproduced

in full color. 111pp. 9% x 12%. 23195-X Pa. $6.00

CRUICKSHANK'S PHOTOGRAPHS OF BIRDS OF AMERICA, Allan D.

Cruickshank. Great ornithologist, photographer presents 177 closeups,

groupings, panoramas, Sightings, etc., of about 150 different birds. Ex-

panded Wings in the Wilderness. Introduction by Helen G. Cruickshank.

191pp. 8V4 X 11. 23497-5 Pa. $6.00

AMERICAN WILDLIFE AND PLANTS, A. C. Martin, et al. Describes

food habits of more than 1000 species of mammals, birds, fish. Special

treatment of important food plants. Over 300 illustrations. 500pp. 5% x 8^.
20793-5 Pa. $4.95

THE PEOPLE CALLED SHAKERS, Edward D. Andrews. Lifetime of

research, definitive study of Shakers: origins, beliefs, practices, dances,

social organization, furniture and crafts, impact on 19th-century USA,
present heritage. Indispensable to student of American history, collector.

33 illustrations. 351pp. 5% x 8%. 21081-2 Pa. $4.50

OLD NEW YORK IN EARLY PHOTOGRAPHS, Mary Black. New York

City as it was in 1853-1901, through 196 wonderful photographs from

N.-Y. Historical Society. Great Blizzard, Lincoln's funeral procession,

great buildings. 228pp. 9 x 12. 22907-6 Pa. $8.95

MR. LINCOLN'S CAMERA MAN: MATHEW BRADY, Roy Meredith.

Over 300 Brady photos reproduced directly from original negatives,

photos. Jackson, Webster, Grant, Lee, Carnegie, Bamum; Lincoln; Battle

Smoke, Death of Rebel Sniper, Atlanta Just After Capture. Lively com-

mentary. 368pp. 8% x liy4. 23021-X Pa. $8.95

TRAVELS OF WILLIAM BARTRAM, WiUiam Bartram. From 1773-8,

Bartram explored Northern Florida, Georgia, Carolinas, and reported on

>vild life, plants, Indians, early settlers. Basic account for period, enter-

taining reading. Edited by Mark Van Doren. 13 illustrations. 141pp.

5% X 8%. 20013-2 Pa. $5.00

THE GENTLEMAN AND CABINET MAKER'S DIRECTOR, Thomas
Chippendale. Full reprint, 1762 style book, most influential of all time;

chairs, tables, sofas, mirrors, cabinets, etc. 200 plates, plus 24 photographs

of surviving pieces. 249pp. QVs x 12%. 21601-2 Pa. $7.95

AMERICAN CARRIAGES, SLEIGHS, SULKIES AND CARTS, edited by
Don H. Berkebile. 168 Victorian illustrations from catalogues, trade journals,

fully captioned. Useful for artists. Author is Assoc. Curator, Div. of Trans-

portation of Smithsonian Institution. 168pp. 8% x 9%.
23328-6 Pa. $5.00
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YUCATAN BEFORE AND AFTER THE CONQUEST, Diego de Landa.

First English translation of basic book in Maya studies, the only significant

account of Yucatan written in the early post-Conquest era. Translated by
distinguished Maya scholar William Gates. Appendices, introduction, 4

maps and over 120 illustrations added by translator. 162pp. 5% x 8%.
23622-6 Pa. $3.00

THE MALAY ARCHIPELAGO, Alfred R. Wallace. Spirited travel account

by one of founders of modern biology. Touches on zoology, botany, ethnog-

raphy, geography, and geology. 62 illustrations, maps. 515pp. 5% x 8V^.

20187-2 Pa. $6.95

THE DISCOVERY OF THE TOMB OF TUTANKHAMEN, Howard
Carter, A. C. Mace. Accompany Carter in the thrill of discovery, as ruined

passage suddenly reveals unique, untouched, fabulously rich tomb. Fascin-

ating accoimt, with 106 illustrations. New introduction by J. M. White.

Total of 382pp. 5% x 8%. (Available in U.S. only) 23500-9 Pa. $4.00

THE WORLD'S GREATEST SPEECHES, edited by Lewis Copeland and

Lawrence W. Lamm. Vast collection of 278 speeches from Greeks up to

present. Powerful and effective models; unique look at history. Revised

to 1970. Indices. 842pp. 5% x 8%. 20468-5 Pa. $8.95

THE 100 GREATEST ADVERTISEMENTS, Julian Watkins. The priceless

ingredient; His master's voice; 99 44/100% pure; over 100 others. How
they were written, their impact, etc. Remarkable record. 130 illustrations.

233pp. 7% X 10 3/5. 20540-1 Pa. $5.95

CRUICKSHANK PRINTS FOR HAND COLORING, George Cruickshank.

18 illustrations, one side of a page, on fine-quality paper suitable for water-

colors. Caricatures of people in society (c. 1820) full of trenchant wit.

Very large format. 32pp. 11 x 16. 23684-6 Pa. $5.00

THIRTY-TWO COLOR POSTCARDS OF TWENTIETH-CENTURY
AMERICAN ART, Whitney Museum of American Art. Reproduced in

full color in postcard form are 31 art works and one shot of the museum.

Calder, Hopper, Rauschenberg, others. Detachable. 16pp. 8y4 x 11.

23629-3 Pa. $3.00

MUSIC OF THE SPHERES: THE MATERIAL UNIVERSE FROM
ATOM TO QUASAR SIMPLY EXPLAINED, Guy Murchie. Planets, stars,

geology, atoms, radiation, relativity, quantum theory, light, antimatter,

similar topics. 319 figures. 664pp. 5% x 8%.
21809-0, 21810-4 Pa., Two-vol. set $11.00

EINSTEIN'S THEORY OF RELATIVITY, Max Born. Finest semi-technical

account; covers Einstein, Lorentz, Minkowski, and others, with much de-

tail, much explanation of ideas and math not readily available elsewhere

on this level. For student, non-specialist. 376pp. 5% x 8^;^.

60769-0 Pa. $4.50
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THE EARLY WORK OF AUBREY BEARDSLEY, Aubrey Beardsley. 157

plates, 2 in color: Manon Lescaut, Madame Bovary, Morte Darthur, Salome,

other. Introduction by H. Marillier. 182pp. SVa x 11. 21816-3 Pa. $4.50

THE LATER WORK OF AUBREY BEARDSLEY, Aubrey Beardsley.

Exotic masterpieces of full maturity: Venus and Tamihauser, Lysistrata,

Rape of the Lock, Volpone, Savoy material, etc. 174 plates, 2 in color.

186pp. 8% X 11. 21817-1 Pa. $5.95

THOMAS NASrS CHRISTMAS DRAWINGS, Thomas Nast. Almost aU
Christmas drawings by creator of image of Santa Claus as we know it,

and one of America's foremost illustrators and political cartoonists. 66

illustrations. 3 illustrations in color on covers. 96pp. 8% x 11^.
23660-9 Pa. $3.50

THE D0R6 ILLUSTRATIONS FOR DANTE'S DIVINE COMEDY,
Gustave Dore. All 135 plates from Inferno, Purgatory, Paradise; fantastic

tortures, infernal landscapes, celestial wonders. Each plate with appropriate

(translated) verses. 141pp. 9 x 12. 23231-X Pa. $4.50

DORA'S ILLUSTRATIONS FOR RABELAIS, Gustave Dore. 252 striking

illustrations of Gargantua and Pantagruel books by foremost 19th-century

illustrator. Including 60 plates, 192 dehghtful smaller illustrations. 153pp.

9 z 12. 23656-0 Pa. $5.00

LONDON: A PILGRIMAGE, Gustave Dore, Blanchard Jerrold. Squalor,

riches, misery, beauty of mid-Victorian metropolis; 55 wonderful plates,

125 other illustrations, full social, cultural text by Jerrold. 191pp. of text.

9% X 12^4. 22306-X Pa. $7.00

THE RIME OF THE ANCIENT MARINER, Gustave Dore, S. T. Coleridge.

Dore's finest work, 34 plates capture moods, subtleties of poem. Full text.

Introduction by Millicent Rose. 77pp. 9y4 x 12. 22305-1 Pa. $3.50

THE DORE BIBLE ILLUSTRATIONS, Gustave Dore. All wonderful, de-

tailed plates: Adam and Eve, Flood, Babylon, Life of Jesus, etc. Brief

King James text with each plate. Introduction by Millicent Rose. 241
plates. 241pp. 9 x 12. 23004-X Pa. $6.00

THE COMPLETE ENGRAVINGS, ETCHINGS AND DRYPOINTS OF
ALBRECHT DURER. "Knight, Death and Devil"; "Melencolia," and
more—all Diirer's known works in all three media, including 6 works

formerly attributed to him. 120 plates. 235pp. 8% x liy4.

22851-7 Pa. $6.50

MECHANICK EXERCISES ON THE WHOLE ART OF PRINTING,
Joseph Moxon. First complete book (1683-4) ever written about typogra-

phy, a compendium of everything known about printing at the latter part

of 17th century. Reprint of 2nd (1962) Oxford Univ. Press edition. 74

illustrations. Total of 550pp. 6y8 x 9y4. 23617-X Pa. $7.95



CATALOGUE OF DOVER BOOKS

THE COMPLETE WOODCUTS OF ALBRECHT DURER, edited by
Dr. W. Kurth. 346 in all: "Old Testament," "St. Jerome," "Passion,"

"Life of Virgin," Apocalypse," many others. Introduction by Campbell
Dodgson. 285pp. 8h^ x 12y4. 21097-9 Pa. $7.50

DRAWINGS OF ALBRECHT DURER, edited by Heinrich Wolfflin. 81

plates show development from youth to fuU style. Many favorites; many
new. Introduction by Alfred Werner. 96pp. SVs x 11. 22352-3 Pa. $5.00

THE HUMAN FIGURE, Albrecht Durer. Experiments in various tech-

niques—stereometric, progressive proportional, and others. Also life studies

that rank among finest ever done. Complete reprinting of Dresden Sketch-

book. 170 plates. 355pp. 8% x liy4. 21042-1 Pa. $7.95

OF THE JUST SHAPING OF LETTERS, Albrecht Diirer. Renaissance

artist explains design of Roman majuscules by geometry, also Gothic lower

and capitals. Grolier Club edition. 43pp. 7% x 10% 21306-4 Pa. $3.00

TEN BOOKS ON ARCHITECTURE, Vitruvius. The most important book
ever written on architecture. Early Roman aesthetics, technology, classical

orders, site selection, all other aspects. Stands behind everything since.

Morgan translation. 331pp. 5% x 81/2. 20645-9 Pa. $4.50

THE FOUR BOOKS OF ARCHITECTURE, Andrea Palladio. 16th-centuiy

classic responsible for Palladian movement and style. Covers classical archi-

tectural remains. Renaissance revivals, classical orders, etc. 1738 Ware
English edition. Introduction by A. Placzek. 216 plates. 110pp. of text.

9% X 123^. 21308-0 Pa. $10.00

HORIZONS, Norman Bel Geddes. Great industrialist stage designer, "father

of streamlining," on application of aesthetics to transportation, amusement,

architecture, etc. 1932 prophetic account; function, theory, specific projects.

222 illustrations. 312pp. 7% x 10%. 23514-9 Pa. $6.95

FRANK LLOYD WRIGHT'S FALLINGWATER, Donald Hoffmann. Full,

illustrated story of conception and building of Wright's masterwork at

Bear Run, Pa. 100 photographs of site, construction, and details of com-

pleted structure. 112pp. 914 x 10. 23671-4 Pa. $5.50

THE ELEMENTS OF DRAWING, John Ruskin. Timeless classic by great

Viltorian; starts with basic ideas, works through more difficult. Many
practical exercises. 48 illustrations. Introduction by Lawrence Campbell.

228pp. 5% X 8%. 22730-8 Pa. $3.75

GIST OF ART, John Sloan. Greatest modern American teacher. Art Stu-

dents League, offers irmumerable hints, instructions, guided comments to

help you in painting. Not a formal course. 46 illustrations. Introduction

by Helen Sloan. 200pp. 53/8 x 8y2. 23435-5 Pa. $4.00
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ART FORMS IN NATURE, Ernst Haeckel. Multitude of strangely beau-
tiful natural forms: Radiolaria, Foraminifera, jellyfishes, fungi, turtles, bats,

etc. All 100 plates of the 19th-century evolutionist's Kunstformen der
Natur (1904). 100pp. 9% x 12y4. 22987-4 Pa. $5.00

CHILDREN: A PICTORIAL ARCHIVE FROM NINETEENTH-CEN-
TURY SOURCES, edited by Carol Belanger Grafton. 242 rare, copyright-

free wood engravings for artists and designers. Widest such selection

available. All illustrations in Hne. 119pp. 8% x 11%.
23694-3 Pa. $4.00

WOMEN: A PICTORIAL ARCHIVE FROM NINETEENTH-CENTURY
SOURCES, edited by Jim Harter. 391 copyright-free wood engravings for

artists and designers selected from rare periodicals. Most extensive such
collection available. All illustrations in line. 128pp. 9 x 12.

23703-6 Pa. $4.50

ARABIC ART IN COLOR, Prisse d'Avennes. From the greatest oma-
mentalists of all time—50 plates in color, rarely seen outside the Near
East, rich in suggestion and stimulus. Includes 4 plates on covers. 46pp.

9% X I2y4. 23658-7 Pa. $6.00

AUTHENTIC ALGERIAN CARPET DESIGNS AND MOTIFS, edited by
June Beveridge. Algerian carpets are world famous. Dozens of geometrical

motifs are charted on grids, color-coded, for weavers, needleworkers, crafts-

men, designers. 53 illustrations plus 4 in color. 48pp. 8^1 x 11. (Available

in U.S. only) 23650-1 Pa. $1.75

DICTIONARY OF AMERICAN PORTRAITS, edited by Hayward and
Blanche Cirker. 4000 important Americans, earliest times to 1905, mostly

in clear line. Politicians, writers, soldiers, scientists, inventors, industria-

lists, Indians, Blacks, women, outlaws, etc. Identificatory information.

756pp. 9y4 X 123/4. 21823-6 Clothbd. $40.00

HOW THE OTHER HALF LIVES, Jacob A. Riis. Journalistic record of

filth, degradation, upward drive in New York immigrant slums, shops,

around 1900. New edition includes 100 original Riis photos, monuments of

early photography. 233pp. 10 x 7y8. 22012-5 Pa. $7.00

NEW YORK IN THE THIRTIES, Berenice Abbott. Noted photographer's

fascinating study of city shows new buildings that have become famous
and old sights that have disappeared forever. Insightful commentary. 97
photographs. 97pp. 11% x 10. 22967-X Pa. $5.00

MEN AT WORK, Lewis W. Hine. Famous photographic studies of con-

struction workers, railroad men, factory workers and coal miners. New
supplement of 18 photos on Empire State building construction. New
introduction by Jonathan L. Doherty. Total of 69 photos. 63pp. 8 x 10%.

23475-4 Pa. $3.00



CATALOGUE OF DOVER BOOKS

GEOMETRY. RELATIVITY AND THE FOURTH DIMENSION, Rudolf

Rucker. Exposition of fourth dimension, means of visualization, concepts

of relativity as Flatland characters continue adventures. Popular, easily

followed yet accurate, profouiid. 141 illustrations. 133pp. 5% x 8%.
23400-2 Pa. $2.75

THE ORIGIN OF LIFE, A. I. Oparin. Modem classic in biochemistry, the

first rigorous examination of possible evolution of life from nitrocarbon com-

pounds. Non-technical, easily followed. Total of 295pp. 5% x 8%.
60213-3 Fa. $4.00

PLANETS, STARS AND GALAXIES, A. E. Fanning. Comprehensive in-

troductory survey: the sun, solar system, stars, galaxies, universe, cosmology;

quasars, radio stars, etc. 24pp. of photographs. 189pp. 5% x 8%. (Avail-

able in U.S. only) 21680-2 Pa. $3.75

THE THIRTEEN BOOKS OF EUCLID'S ELEMENTS, ta:anslated with

introduction and commentary by Sir Thomas L. Heath. Definitive edition.

Textual and linguistic notes, mathematical analysis, 2500 years of critical

commentary. Do not confuse with abridged school editions. Total of 1414pp.

5% X 8%. 60088-2, 60089-0, 60090-4 Pa., Three-vol. set $18.50

Prices subject to change without notice.

Available at your book dealer or write for free catalogue to Dept. GI, Dover

Publications, Inc., 31 East Second Street, Mineola, N.Y. 11501. Dover publishes

more than 175 books each year on science, elementary and advanced mathematics,

biology, music, art, literary history, social sciences and other areas.
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Great Ideas and Theories of Modern Cosmology, Jagjit Singh.

(20925-3) $6.75

Great Ideas in Information Theory, Lanuage and Cybernetics, Janjit

Singh. (21694-2)55.50

Great Ideas of Modern Mathematics: Their Nature and Use, Janjit

Singh. (20587-8) $5.00

Relativity for Scientists and Engineers, Ray Skinner. (64215-1) $9.95

Sources of Quantum Mechanics, B.L. Van der Waerden (ed.).

(61881-1) $6.95

Space, Time, Matter, Hermann Weyl. (60267-2) $4.50

The Theory of Groups and Quantum Mechanics, Hermann Weyl.

(60269-9) $6.50

Einstein: The Man and His Achievement, G.J. Whitrow (ed.).

(22934-3) $2.25

Variational Principles in Dynamics and Quantum Theory, Wolfgang

Yourgrau and Stanley Mandelstam. (63773-5) $4.50

Perspectives in Quantum Theory, Wolfgang Yourgrau and Alwyn van der

Merwe. (63778-6) $5.50

Paperbound unless otherwise indicated. Prices subject to change without

notice. Available at your book dealer or write for free catalogues to Dept.

Physics, Dover Publications, Inc., 180 Varick Street, New York, N.Y.

10014. Please indicate field of interest. Each year Dover publishes over 200

books on fine art, music, crafts and needlework, antiques, languages, litera-

ture, children's books, chess, cookery, nature, anthropology, science,

mathematics, and other areas.

Manufactured in the U.S.A.



GEOMETRY, RELATIVITY

AND THE FOURTH
DIMENSION
Rudolf V B.Rucker

This is a highly readable, popular exposition of the fourth dimen-

sion and the structure of the universe. A remarkable pictorial dis-

cussion of the curved space-time we call home, it achieves even

greater impact through the use of 141 excellent illustrations. This

is the first sustained visual account of many important topics in

relativity theory that up till now have only been treated separately.

Finding a perfect analogy in the situation of the geometrical

characters in Flathmd, Professor Rucker continues the adventures

of the two-dimensional world visited by a three-dimensional being

to explain our three-dimensional world in terms of the fourth

dimension. Following this adventure into the fourth dimension,

the author discusses non-Euclidean geometry, curved space, time

as a higher dimension, special relativity, time travel, and the

shape of space-time. The mathematics is sound throughout, but

the casual reader may skip those few sections that seem too purely

mathematical and still follow the line of argument. Readable and
interesting in itself, the annotated bibliography is a valuable

guide to further study.

Professor Rucker teaches mathematics at the State University of

New York in Geneseo. Students and laymen will find his discus-

sion to be unusually stimulating. Experienced mathematicians and
physicists will find a great deal of original material here and many
unexpected novelties.

Original Dover (1977) publication. Annotated bibliography. 44

problems. 141 illustrations, ix -\- 133pp. 53/^ x 8i/4. Paperbound.

A DOVER EDITION DESIGNED FOR YEARS OF USEI
We have made every effort to make this the best book possible. Our
paper is opaque, with minimal show-through; it will not discolor

or become brittle with age. Pages are sewn in signatures, in the

method traditionally used for the best books, and will not drop out,

as often happens with paperbacks held together with glue. Books
open flat for easy reference. The binding will not crack or split.

This is a permanent book.

ISBN 0-486-23400-2 $2.75 in U.S.A.


