B14
Burn Time t, = .35 Sec.
Propelient Weight Wp - .220 Oz.

B14 1/2 Wp = .110 Oz.
Average Thrust T = 51 Oz.

FIGURE 8B
Burnout Velocity (V) as a func-
tion of Initial Weight (W}) and
Ballistic Coefficient (5t).

1000p
ook
8004

1005

005

5008

4005

i)

bl
bl

3

L
ah

80

KRt

Vg - Burnout Velocity in Ft./Sec.

$d
o

e
o

15 b

14 ; i .\;I=, : ; : : ERREEAEE HAEL ) |
ok 4 . I AU AR R ) 1. 2. 2.5 3. 5, g,

V w our{ces
= Ballistic Coefficient = =
Pt CpA inch?

0 O 5725




Cé
Burn Time tp - 1.7 Sec.

Propellent Weight Wp - .440 Oz.
‘ 6 1/2 Wp = .220 0z.
Average Thrust T = 21 Oz.

FIGURE 9A

Burnout Altifude (Sg):as a func-
tion of Initial Weight (Wj) and
Ballistic Coefficient (8y).
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Sg - Burnout Altitude in Feet

A8

FIGURE 5A

A8
Burn Time tp = .32 Sec.

Propellent Weight Wp - .110 Oz.
1/2 Wp = .055 Oz.
Average Thrust T = 28 Oz.

Burnout Altitude (SB) as a func-
tion of Initial Weight (W|) and
Ballistic Coefficient (Sy).
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D12
Burn Time t,=1.48 Sec.
Propellent Weight Wp=.879 Oz.

D‘I: ! 1/2 Wp=.4395 Oz.
Average Thrust T = 48 Oz.

S - Burnout Altitude in Feet

FIGURE 10A

Burnout Altitude (Sg) as a func-
tion of Initial Weight (W|) and
Ballistic Coefficient (B¢).
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D12

FIGURE 10B

D12
Burn Time t, — 1.48 Sec.

Propellent Weight Wp=.879 Oz.
1/2 Wp=.4395 Oz.

Average Thrust T =48 Oz.

Burnout Velocity (Vg) as a func-

tion of Initial Weight

(W) and

Ballistic Coefficient (S¢).

Vg - Burnout Velocity in Ft./Sec.

Bt - Ballistic Coefficient
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S¢ - Coast Altitude in Feet

OAST ALTITUDES

FIGURE 11A

Altitude (S¢) Gained During
Coast Phase as a Function of
Burnout Velocity (Vg) and
Ballistic Coefficient (8¢).
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© CpA  inch2
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te - Coast Time in Seconds

COAST TIMES

FIGURE 11B

Time () in Seconds from Burn-
outto Peak Altitude as a function
of Burnout Velocity (VB) and
Ballistic Coefficient (S¢).
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1A Astron Alpha (no longer available)

Now let’s try a simple problem with a real model rocket,
using only the necessary information. If you do not under-
stand a step, refer back to the instructions and the sample
problem.

1. Body diameter =
Rocket empty weight =

Engine = A8-3
Weight =
Propellant weight =
=
2. CpA=

3. Thrusting B =

4. Burnout Altitude from Figure 5A =
Burnout Velocity from Figure 5B =

5. Coasting 8 =

6. Coasting Altitude =
7. Apogee point =

=379 ft.

8. Coasting Time = 4.0 sec.

Since our A8 engine also comes with a 4-second delay,
and the coasting time is 4 seconds rather than 3 seconds,
the A8-5 (no longer available) engine should be used.

Refer to page 28 for a complete solution to this
problem.
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2A BIG BERTHA®
WORK AREA

To gain experience in understanding and using this sys-
tem, calculate the performance of a Big Bertha®. After
completing you calculations, check your results with the
results shown on the next page.

1. Body diameter =
Rocket empty weight =

Engine = B4-2
Weight =
Propellant weight =
W) -
2. CpA=

3. Thrusting B8

4. Burnout Altitude from Figure 6A =
Burnout Velocity from Figure 6B =

5. Coasting g =

6. Coasting Altitude =

7. Apogee point =

8. Coasting time =

Check your answers with those on the next page.

27



1B ASTRON ALPHA (no longer available)

1. Body diameter = BT - 50 - 0.976 in.
Rocket empty weight = 0.8 oz.
Engine = A8-3
Weight = 0.57 oz.

Propellant weight = 0.110 oz.

W| = Rocket empty weight + Engine weight

= 0.8 0z. + 0.57 oz.
=1.37 oz.

2. CpA=055in.2
3. Thrusting B =W, - 1/2Wp
CpA
=1.37 0z. - 12(0.110 0z.)

0.55 in.2
= 1.37 0z. - 0.055 oz.

0.55in.2
= 1.315 oz.

0.55 in.2
=2.39 0z./in.2

4. Burnout Altitude from Figure 5A = 44 ft.
Burnout Velocity from Figure 5B = 210 ft./sec.

5. Coasting B =W, -Wp

=1.37 0z.-0.110 oz.
0.55 in.2
=1.26 oz.
0.55 in.2
=2.29 0z./in.2

6. Coasting Altitude = 335 ft.
7. Apogee point = Burnout Altitude + Coasting Altitude

= 44 ft. + 335 ft.
= 379 ft.

8. Coasting Time = 4.0 sec.

2B BIG BERTHA®

1. Body diameter = BT-60-1.637 in.
Rocket empty weight = 2.2 oz.
Engine = B4-2

Weight = 0.70 oz.
Propellant weight = 0.294 oz.

W, = Rocket empty weight + Engine weight

=2.20z.+0.70 oz.
=2.9oz.

2. CpA=155in2

3. Thrusting B =W, - 1/2 Wp
CpA
=2.90 oz. - 1/2(0.294 0z.)

1.55 in.2
=2.90 0z.- 0.1470z.

0.55 in.2
= 2.753 oz.

1.55 in.2
= 1.78 0z./in.2

4. Burnout Altitude from Figure 6A = 98 ft.
Burnout Velocity from Figure 6B = 145 ft./sec.

5. Coasting g =W, -Wp

=2.90 0z.-0.294 oz.
1.55 in.2
= 2.6060z.
1.55 in.2
= 1.68 0z./in.2

6. Coasting Altitude = 185 ft.

Burnout Altitude
7. Apogee point = +
Coasting Altitude
= 98 ft. + 185 ft.
= 283 ft.

8. Coasting time = 2.9 sec.
The B4 engine comes with a 4 second delay.

According to our figures, the B4-4 engine would be
preferable to the B4-2 engine.



3A ASTRON STREAK (no longer available)
WORK AREA

Just to be certain you have mastered this system, cal-
culate the apogee for an Astron Streak launched with an
A5-4 engine (no longer available).

1. Body diameter =
Rocket empty weight =
Engine = A5-4
Weight =
Propellant weight =

W|:

2. CpA=

3. Thrusting B

4. Burnout Altitude from Figure 4A =
Burnout Velocity from Figure 4B =

5. Coasting B

6. Coasting Altitude =
7. Apogee point =

8. Coasting time =

Check your answers with those on the next page.
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3B ASTRON STREAK (no longer available)

1. Body diameter = BT-10-0.720 in.
Rocket empty weight = 0.1 oz.
Engine = A5-4 (no longer available)
Weight = 0.64 oz.
Propellant weight = 0.110 oz.

W| = Rocket empty weight + Engine weight

=0.1 oz. + 0.64 oz.
= 0.74 oz.

2. CpA=0.30in.2

3. Thrusting B =W, - 1/2 Wp
CpA
=0.74 oz. - 1/2(0.110 o0z.)

0.30in.2
= 0.74 0z. - 0.055 oz.

0.30 in.2
= 0.685 oz.

0.30 in.2
=2.28 0z./in.2

4. Burnout Altitude from Figure 4A = 93 ft.
Burnout Velocity from Figure 4B = 370 ft./sec.

5. Coasting g =W, - Wp
CpA
=0.74 0z.- 0.110 oz.

0.30in.2
= 0.630 0z.

0.30in.2
=2.10 0z./in.2

6. Coasting Altitude = 550 ft.

7. Apogee point = Burnout Altitude + Coasting Altitude

=93 ft. + 550 ft.

= 643 ft.
8. Coasting time = 4.6 sec.

The A5 engine does not come with a delay of over 4 sec-
onds. We can go ahead and use the A5-4 with the under-
standing that the ejection discharge will occur before the
rocket has reached the apogee point.




4A Scrambler (no longer available)
WORK AREA
1. Body diameter =
Rocket empty weight =
3 engines = C6-5
Weight =
Propellant weight =

As for the Scrambler, rockets powered by a cluster of
engines employ modified formulas, since the graphs are
designed for single engine calculations. Thus we work
with the proportionate weight of the rocket being lifted by
any one of the cluster of motors.

Weight actual =

W actual =

Wi

2. CDA =

3. Thrusting g =

4. Burnout Altitude from Figure 4A =
Burnout Velocity from Figure 4B =

5. Coasting

6. Coasting Altitude =
7. Apogee point =

Check your answers with those on the next page.

a1

8. Coasting time =



4B SCRAMBLER (no longer available)

1. Body diameter = BT-65-1.796 in. (using the diameter
of the payload section, since it is
the largest diamter of the rocket)

Rocket empty weight = 2.8 oz.
3 engines = C6-5
Weight = 0.910z. each
Propellant weight = 0.440 oz. each

Weight actual =

Rocket empty weight + Engine weight

Wactual = 2.8 oz. + 3(0.91 0z.)
=2.80z.+2.73 oz.
=5.53 oz.

W, = Wactual
N
=5.53 oz.

3
=1.84 oz.

2. CpA=190in.2

3. Thrusting B =Wgctyal - N(1/2 Wp)
CpA
= 5.53 0z. - 3(0-440.02,)
1.90 in.2
=5.53 0z. - 3(0.22 0z.)

1.90 in.2
= 5.53 oz. - 0.660 0z.

1.90 in.2
=4.87 oz,
1.90 in.2
4. Burnout Altitude from Figure 9A = 440 ft.
Burnout Velocity from Figure 9B = 420 ft./sec.

5. Coasting g = Wactual - N(Wp)
CpA
=5.53 0z. - 3(0.440 0z.)

1.90 in.2
=553 0z. - 1.32 oz.

1.90 in.2
= 4.21 oz.

1.90 in.2
=222 0z./in.2

6. Coasting Altitude = 640 ft.

7. Apogee point = Burnout Altitude + Coasting Altitude

= 440 ft. + 640 ft.
= 1080 ft.

8. Coasting time = 5.0 sec.

This choice of delay time was a good one.
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5A CHEROKEE-D (no longer available) WORK AREA

1. Body diameter =
Rocket empty weight =
Engine = D13-7 (no longer available)
Weight =
Propellant weight =

W| =

2. CDA =

3. Thrusting

4. Burnout Altitude from Figure 10A =
Burnout Velocity from Figure 10B =

5. Coasting g =

6. Coasting Altitude =

7. Apogee point =

8. Coasting time =

Check your answers with those on the next page.
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5B CHEROKEE-D (no longer available)

Body diameter = BT-55-1.325 in.

Rocket empty weight = 2.75 oz.

Engine = D13-7 (no longer available)
Weight = 1.55 oz.
Propellant weight = 0.879 oz.

W| = Rocket empty weight + Engine weight

=2.750z.+1.55 oz.
=4.30 oz.

CpA = 1.00 in.2

Thrusting 8 = W - /2 Wp.
CpA
= 4.30 0z. - 1/2(0.879 oz.

1.00 in.2
=4.30 0z. - 0.440 oz.

1.00 in.2
= 3.86 0z.

1.00 in.2
=3.86 0z./in.2

4. Burnout Altitude from Figure 10A = 320 ft.

Burnout Velocity from Figure 10B = 430 ft./sec.

5. Coasting B =W, - Wp

CpA
= 4.3 0z.- 0.879 0z.

1.00 in.2
= 3.421 oz.

1.00 in.2
= 3.421 0z./in.2

6. Coasting Altitude = 820 ft.

7. Apogee point = Burnout Altitude + Coasting Altitude

= 320 ft. + 820 ft.

= 1140 ft.

8. Coasting time = 5.8 sec.

To minimize lateral drift of the rocket as it descends under

its parachute during recovery, it is desirable to use an
engine with a delay to permit the rocket to begin to

descend before the parachute ejection occurs. Thus, the

D13-7 (no longer available) would be an appropriate

engine to use.



APPENDIX |

- THE EQUATIONS
ASSUMPTIONS

The assumptions used in deriving these equations are
essentially the same as used in the June, 1964 Model
Rocket News (reference |} article. In review:

|.  Weight is assumed to be constant during thrust-
ing (an average value is used).

2. Drag is proportional to v2

D=CpAl2¥ V2 (which is quite reasonable
up to 700 fi/sec)

w

. Thrust is constantduring burning (againan aver-
age value is used):

1 = Total Impulse
Burn Time

4. The rocket is launched straight up and no cross-
wind or turbulence exists, so the flight con-
tinues straight up at zero angle-of-attack .

5. Thrust due to smoke delay burnoffisnegligible.

6. The overall drag coefficient does not increase
during the coast phase due to base drag (i.e.
the smoke delay burnoff cancels it).

7. Additional weight losses due to smoke delay
burnoff are neglected.

8. Atmospheric density is uniform and does not
vary from the launch pad value.

9. Second and subsequent stages have no time de-
lay for ignition and buildup to the average
thrust value of the next stage. An example of
the assumed time history is shown:

/ First Stage

rSecond Stage
3
3
£
&=
Time
TERMINOLOGY
The terminology used is as follows:
sinh = hyperbolic sine
cosh = hyperbolic cosine
tanh = hyperbolic tangent
tank! = arc hyperbolic tangent
In = natural logarithm
cos = cosine
tan = tangent
ron_! = arc tangent
W = weight of rocket in pounds
(a) use average weight during
thrusting
(b) use final weight during
coasting
Cp = aerodynamic drag coefficient
A = reference area in ft2 for professional

rocketry or in 2 for model rocketry
sea level density of air

=.002378 @_;4«_2
T = average thrust in pounds for professional
rocketry or ounces for model rocketry
g = earth’s gravitational constant
= 32.174 ft/sec?
t = time in seconds
S = altitude in feet
\ = velocity in feet per second

Subscript terminology:

refers to burnout

B =

C =

refers fo coasting
I = refers to first stage

2 =

refers to second stage

GENERAL EQUATIONS OF MODEL
ROCKET MOTION, TERMINOLOGY
AND ASSUMPTIONS

The equations of motion are presented here for those
rocketeerswho are interested in obtaining the complete
time history of their rocket's motion, for those with an
interest in mathematics, and for those who are curious
as to the origin of the charts.

A. THRUSTING
1. Altitude as a function of time

S=1——w—lncosh g T—-I)C Al/29 t
g CpAl/2¥? \'4 w

2. Velocity as a function of time

.
S W T s QT_ CpAl/29
V= Yepatiat tw Y “’“'h{“ W 1) W

Note that when time (1) is the burnout time
(tg) that the altitude (S) becomes the burn-
out altitude (Sg) and the ve\ccny (V) be-
comes the burnout velocity (Vg)

B. COASTING

|. Thecoastaltitude (SC) is the distance gained
between the time of burnout and the time
when the rocket reaches its peak .
Sp= L w__ 1+CQA1/29 vp?
C~ 2¢ Cpal/2s W
2. The coast time (tc) is the time it takes the
rocket to slow down tozerovelocity (V=0).

That is, the peak is reached and the rocket
will now begin to fall back to the ground.

_1 W -1\cpal 2P vp2
tC_E coAT2? tan ___W_B_

3. Additional altitude gained os a function of
time from burnout.

-5 |CDAL728,,
S c+g CDAI 759 1n cos{g, W {te -t

4. Velocityasa function of time from burnout

v=| ; UCDA&_’Q] {te - t)}

W
lcparzs Pl

C. SECOND AND SUBSEQUENT STAGES

}. Altitude gained as a function of time from
the previous stage's burnout.

=1 W ,VCDAI’ZF I,
Sz_g CpA1/Z ln{:oshl}. W 1 ﬂ

sinh[g“M( )l}

7
+Vp, FDAl 29 1

2. Velocity as a function of time

Oy PO e 4 T

+tanh’1 FDA’/ZP VB1 e
W)

Again note that when time (1) is the burnout
time (tg) that the altitude (Sp) becomes the
sgcond (or third) stage altitude increment
(°B2) and the velocity (Vp) becomes the
second (or third) stage burnout velocity

VB2)-

GENERAL EQUATIONS
CONVERTED FOR MODEL
ROCKETRY APPLICATIONS

The basic equations are converted for model rocket-
ry calculationuse by first substituting the known values
for the constants ¢ and g. Also since wedeal primari-
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ly with weights in ounces instead of pounds and frontal
areas insquare inches instead of square feet we use the
additional conversion factors:

| pound = 16 ounces
| square foot = 144 square inches

We can also shorten the repetitive calculations con-
siderably by precomputing the ballistic coefficient 18)

ounces
Square inches of frontal area

__Ww
B_C[)Am

and the drag-free acceleration (a)

a = (%- ) in g's of acceleration

(Note that the drag-free acceleration (a) is non-dimen-
sional so both thrust (T) and weight (W) must be in ounces.

With these modifications the A, B, and C equations
for altitude and velocity reduce to the following:

A. THRUSTING
I.  Altitude as a tunction of time

S = 235.26 8 In cosh [36981%t]

2. Velocity as a function ot time

V = 87.0 (@ {4 tanh [36981—%!}

Again note that when time (t) is equal to
the motor burnout time (tg) that the alti-
tude (S) equals the burnout altitude (Sp)
and the velocity (V) equals the burnout
velocity (VB).

B. COASTING

I. Thecocstalrirude(sc)isrhedisrdnceguined
between the time of burnout and the time
at which the rocket reaches its peak .

2
Sc= 117.63 8 In |14 — VB J
¢ B [*7559.3863

2. Thecoast time (tc) is the time it tokes the
rocket to slow down to zero velocity (V =
0). That is, the peak is reached on the
rocketand will now begin to fall back down.

tc = 2.7041 {B tan’ _‘%87 0 :|

Express t” -1 in radians.

3. Additional aititude gained as a general
function of time from burnout.

S = Sc+235.26 B In cos {.36981 (tm_g-:)}

4. Velocity as a general function of time from
burnout .

v= udFtan{.ssgm (g
7]

C. SECOND AND SUBSEQUENT STAGES

|.  Altitude gained as a function of time from
burnout of the previous stage.

.

Sp= 235.26 cosh |. S

2 . B ln{coshti}ﬁgsl Vﬂ—l}
B

+ W}g‘ﬁsinh [36981 ﬁqi}

2. Velocity of the second (or third) stage as a
function of time from burnout of the pre-
vious stage .

- = 1_VB
= 87. . -
VBy 7.018 (a tanh{ 36981 'FH— tanh IR }

Again note that when time (t) is equal to
the burnout time (tg) for this stage that the
altitude (Sp) becomes the second (or third)
stage altitude increment (°By) and the vel-
ocity (V2) becomes the second {or third)
stage burnout velocity (VBp).



HOW TO ANALYZE TWO
— OR THREE STAGE ROCKETS

In order to predict altitudes for multiple stage rockets
one must resort to suing equation (C1) and (C2). A
book of mathematical tables (such as reference 5)
must be obtained in order to evaluate the hyperbolic
sines, cosines, tangents and arc tangents (perhaps one
of your teachers can help you the first time through).

The first stage burnout velocity and altitude can be
found using the charts in the usual way. The ballistic
coefficient () and drag-free acceleration (a) are then
calculated for the second stage. Equations (Cl) and
(C2) use these value in conjunction with the burnout
velocity of the first stage (VB|) and the motor burn
time of second stage (tg) to obtain the altitude gained
during second stage thrusting (SBZ) and the new
velocity at second stage burnout (VBZ)'

If it is just a two-stage vehicle it will now coast to
the peak; and so the coasting chart data can be uti-
lized as usual.

A three-stage vehicle on the other hand has to
make use of equations (C1) and (C2) again to find the
third stage burnout velocity and the increment of alti-
tude gained during third-stage thrusting. The coast
altitude and time can then be found as a function of
the ballistic coefficient (as based on the empty weight
of the third stage) and the third stage burnout velocity.

Needless to say, it is important to use weight val-
ues in your calculations that properly reflect the effect
of the booster stages falling away after they burn out.

The reason that the second and third stage data
had to be calculated, instead of just simply read from
a chart, is that there were too many variable factors.

You will notice that four variables affect the velocity
and altitude gained during second or third stage
thrusting: 1) type of rocket motor, 2) weight of rocket,
3) drag of rocket, and 4) initial velocity due to previous
stage. Single-stage rockets only have three variables
that effect velocity and altitude: 1) type of rocket
motor, 2) weight of rocket, and 3) drag of rocket.
Plotting each motor type as a separate graph for sin-
gle-stage rockets essentially reduces the number of
variables from 3 to 2, thus lending itself to plotting on
two-dimensional graph paper. Using this same proce-
dure for multiple-stage rockets still leaves us with try-
ing to plot mathematical functions of three variables
on two-dimensional graph paper.
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DISCUSSION OF CALCULUS

Calculus is the branch of mathematics which allows
one to analyze movement and change. Complex mo-
tions can essentially be broken into small increments,
and the changes occurringat each instant can be inves-
tigated .

Prior to thisreport, model rocket altitudeswith aero-
dynamic drag effects were frequently determined by using
small time interval step-by-step computation methods.
At a given velocity the drag can be computed and sub-
tracted from the thrust to find the net force acting on
the rocket. This, in turn, gives the net acceleration
for that time period. The assumption is then made that
this acceleration will be constant for the next short time
period. Next the increase in velocity due to the as-
sumed constant acceleration is computed and the entire
process isready to be repeated. Wedo know, however,
that the velocity and drag do not take small jumps after
each time period but in reality are smoothly increasing
during thrusting, and are smoothly decreasing during
coasting.

The step-by-stepmethod thus introduces slight errors
in the predicted altitude. Taking smaller time periods
increases the accuracy. With calculus the time peri-
ods are infinitely small and as a result the vélocity and
drag become the perfectly smooth variables with time
thatwe know them to be. A very well illustrated, in-
teresting and simple to understand layman'sdescription
of calculus is given in Chapter 5 of the "Mathematics"
volume of the Life Science Library (reference 6). This
chapter helps very much to convey the importance of
calculusas a fundamental tool in today's modern world
of spacecraft and electronics.

The following two sections of the report can be by-
passed with no loss in continuity. These detailed de-
rivations of the thrusting and coasting equations for
model rockets are presented primarily for those persons
with the prerequisite background in the calculus oper-
ations of "differentiation" and ‘"integration", who
desire a more complete understanding of where the
equations for the altitude prediction charts originate.

DERIVATION OF THE
THRUSTING EQUATIONS

The equation of motion for the rocket during thrusting is
obtained by applying Sir Isaac Newton's first law, which
can be written as:

F = ma (1)

Where: = The summation of all external forces
applied to the rocket.
m = The mass of the rocket.
and: a = The acceleration of the rocket.

A free body diagram of the rocket with the proper forces
is shown. D=CpA1/29V2

+5V,a

!

Let us, for convenience, choose the displacement S, the
velocity V, and the acceleration a, as pogitive in the up-
ward direction. Since we are interested only in the one-
dimensional upward trajectory of the rocket we eliminate
all possible forces acting in any other direction than S.

The following forces are acting on the rocket:

1. THRUST (T)

The thrust is considered tobe constant from ign-
ition to burnout. It is easily seen that the thrust is
acting in the positive direction and thus is a positive
force.

2. WEIGHT (W)

This is the earth's gravitational field acting on
the mass of the rocket. We assume that the weight
loss from ignitionto burnout is small enough so that
taking the average weight during this period gives
sufficient accuracy. Thus, the weight will be a con-
stant and, of course, can be seen to be acting in the
negative direction.

d

DRAG (D) D=CpAl/29Vv?2
The aerodynamic drag is assumed to hold to the
V2 law for all flight speeds. It too is a negative

force.
Thus, equation (1) becomes:
T-D-W = ma (2)

From physics we know the mass (m) is equal to the weight
(W) divided by

W . (g)
m=Y the acceleration due to gravity
g

Substituting the values of m and D into equation (2) we
obtain:

T-cpa V2o v2-w=¥,

For a given rocket the term CpA 1/2 9 is a constant.
Instead of carrying all these terms through the derivation
we call it the constant K.

K=CpAl/2¢
Thus, our equation becomes:
T-w-kvZ-¥ 4

Now the acceleration (a) is the rate of change of velocity
with respect to time. In calculus this is written as:
a=atl and is called the first
derivative of velocity.
our equation now becomes:

T-w-kv2=W dV.
g dt (3)
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This is called a first order differential equation. Luck-
ily, with a bit of rearranging it can be integrated.

Multiplying both sides by T—VS-EKV
We obtain:

Next we integrate both sides:
dt from an initial time (t,) to some time (t), and dV
from an initial velocity (Vo) to velocity (V) at time (t).
thus: ¢ - v av
[ at=¥ [Tk
to Vo

The more difficult right-hand side can be reduced to the
standard integral form given on page 29 of reference 5.
This is accomplished by making the following substitutions:

a2=T-W
b2=K
U=V

__dU__1,1bU

Jaz-bZUz ap A

When applied to our equation we find that:
tow__ 1 (K v

tf == tanh A%

l g IT-WK ( T-W )]

o Vo

or:

st= Y ([ W L R
t-ty g((r-—W)Kt”mh (-WV) m mt‘mh (T—W V0>

Now at ignition time t,=0. We will have the rocket's
velocity Vo=0. Upon substitution of these values we get:

w1 (X
t_-gr,r—_w—)Ktanh (T—W V) (5)

since the value of tanh™(0) is zero.

We now find it convenient to define a constant 8, called
the density ballistic coefficient
- W W
Bo CpA1/29 K

Where K is the constant previously defined. Note that
the ''density ballistic coefficient' must be distinguished
from the "ballistic coefficient” defined in the introduction
and subsequently used throughout the report.

Seeing the ''density ballistic coefficient” terms appear-
ing ineach of the final equations summarized earlier should
give one a clue as to why the density correction factor due
to temperature and launch altitude variations can be includ-
ed right in the ''ballistic coefficient''. This correction
factor is simply the ratio of density at any altitude and
temperature (PH,T) to the sea level density (f).

Thus, the actual density is simply: Pn,'r=(mTT)?

where (Y_H;E) is the correction factor for air

density presented in Figure 9.




For values of density other than sea level we will have

[y— _ w -
°© CpAl2fur ~CpAl 2(Pm o 12°P
? .

Where our regular 8 includes the density correction term
in a mathematically acceptable manner.

B= ooy
CpA, fur )
\®
We also find it convenient to use the drag free accelera-

tion in g's
a2 = -1
W

Note that we now use the subscript “," for the dray free
acceleration as a means for distinguishing it from the true
rocket acceleration term (a) as used in Newton's basic
motion equation F= ma.

a, andfB, can be utilized by working with the constants
of equation (5). These constants are re-arranged in the
following manner:

1

WK -

"€

also: K _ _

thus, equation (5) becomes:

lz—l—v_ﬁ___‘)_ tanh~1 (¥ 6
gl ap an iﬁo%)—( )

\'oting that the identity form M = (.mh'l(N) means that
= tanh(M) gives us a method by whichwe can obtain veloc-

ny (V) as a function of time (t) from equation (6) so

LV= 03p tanh l:gv%t]

which is equation (A2) as can be verified by substituting in
the terms represented by B, and a,.

(7)

This equation gives us the velocity of the rocket at any
time (t) as long as the motor is burning. At the time (tB)
when the motor burns out, we then have the burnout veloc~
ity (Vg) of the rocket.

To find the height that the rocket will achieve as a func-
tion of time during thrusting, we note that velocity (V) is
the rate of change of displacement (or distance if you like)
with respect to time. In calculus this is written as

a8

V=4t called the first derivative of

displacement.

Thus for equation (7) we have:

=mmnh{g @:‘;{]

This is another first order differential equation and can
be solved as before;

ds= m tanh [g@_gﬂ dt

integrating both sides for ""dS" from an initial displacement
(So) to some displacement (S), and "'dt" from theinitial time
(to) to the corresponding time (t) we obtain:

&s:ﬁﬁoitun%v’%ﬂm

A standard integral form on Page 155 of reference 5 is:

Jt'.mh XdX=Incosh X
In our case

X:g%!

and the differential "d X" must have the value
dX=g |20 qt
Bo

This value is inserted as follows:

t
Sf’ds:vBoaD !Dtanh[gv‘?—;t] Bo 4¢

b5

d is now integrable.

;-l“l
S-Sy= ﬂo In cosh IE{V;%(}% In cosh [:gvp%t{l

Note that at ignition time t;=0, we have zero distance
S=0 and zero velocity. Thus we obtain:

Szﬁ In cosh (gﬁj‘)
B o

Since the value of

Performing the integration we ob-

cosh(0) =1
and In(1)=0
or In cosh(0) =0

The above equation is identical to (Al) and again can be
verified by substituting in all the terms represented by
Bo and a,. This equation gives the burnout altitude (SB)
by substituting the burnout time (tg) for t.

DERIVATION OF THE
COASTING EQUATIONS

We now return to our initial equation.
W dv

T-D-W=ma= at

It is easily seen that we have a coasting situation when

thrust (T) =0, and weight (W) equals the final weight of the

rocket at burnout. Therefore, our coasting equation be-
comes:

-Kv2-w=W dV
Kv2-w=- 0 ®

Multiplying both sides by_iv-%wwe get:

dt=-W _dV _
g (WH+KV2) 9)

whichwill be integrated from the burnout time (tB) to some
time (t), and from the burnout velocity (V) to the velocity
(V) which corresponds to time (t).

w
. JV +Kv2 (10)

The right-hand side can be reduced to the standard in-
tegral form given on page 25 of reference 5 by the follow-
ing substitutions:

a2=W
b2=K
U=V

The standard form is:

dU___ 1 y45-1 bU
a2+b2U2 _ ab a

Applying the standard form to equation (10) we obtain:

I = g (],

t

or:
w_1

b= W L 1K w_1 1K
L=~ fwg a0 (ﬁ‘ﬁ*ﬂﬁm (wVB)

In order to predict delay times easily we start counting
time from the time of motor burnout (tg). This is accom~
plished by setting tg to zero. Thus:

et (B Y et (Brg)

where t is the time from motor burnout.

t—-—

Now we again introduce the "density ballistic coefficient"
in order to reduce the complexity of the equation.

Bz W W
°7 CpAl/2? T K
now: W _1 _1 (w2
g WK ¢ Iwk
1yw
=2 I%
1

= BB

7
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also:

Therefore, equation (11) becomes:

TR TR L I

which can be rearranged as follows to solve for velocity (V)
as a function of time (t).

£ =t ()

Noting that the following is true;
If M = tan-l(N)
then N = tan{M)

we can proceed to solve for V. Thus:

V= m{mm‘(—‘ﬁ%) —%} — (3

which is essentially equation (B4), a general equation for
rocket velocity after burnout as a function of time after
burnout. (Further manipulations will get (13) intothe exact
form as presented in the report.) We can also use (13) to
determine the coast time (t¢) of the rocket. This will be
the time at which the rocket slows down to zero vertical
velocity,

Substituting V=0 on the left side of (13) and noting that
tan(0)=0 we obtain:

0= tan‘l(%%>-

Therefore:

(14)

which is equation (B2) with the proper By substitution.

Next we want to find the distance the rocket coasts as a
function of time from motor burnout. We can make a first
order differential equation relating distance (S} and time
(t) by again using the substitution:

ds
dt

thus, for equation (13) we get:

ds _ arndtan-1(V st
o v_" tdn{tan (TB-'B;)»%E-} (15)

A reduction in complexity can be accomplished by mul-
tiplying both sides of equation (14) by

gl _ ¢ -1 VBl_ tan! VB
Be - V.B(_)HMB—NH e = tan” P _(16)

thus, (15} becomes:

as tand Btc - gt
g—ts=(v = m‘um[fgrg(tc-t):l -

Note that the velocity (equation 17) is now in the form as
presented in equation (B4). Now rearranging equation (17)
and integrating d S from the burnout displacement (Sp) to
some displacement (S) and dt from the burnout time (tg)
to the time (t) corresponding to the displacement (S), we

obtain:
de: ) flun&é(tg—t)]dt
oS o) s

and can use the standard integral form on page 110 of
reference 5 to solve the right-hand side;

Jtan X ax =-1Incosx
%t -t)
O(C

and so the differential dX must have the value

X=--£_
a =

The factor is included as before and the result is:

s t
SJ;S=%:§:‘; J;an%(tc-t)]%dt)

which is now integrable. Thus:

S-Sg= -% In cos% te- t)]
- (-)_BToln cos[-'%?(tc - tBﬂ

V=

—{1T)

in this situation our X =




In order to have the burnout conditions as a reference
point to measure coast altitude and delay time, we set SB=0
and tB=0, our equation becomes:

-4 Po £ (te-t) - .'.Bﬁlncos(g—t)
S=+ o In cos 'BT)( c-t) z B (18)
it can readily be seen that when (t) the flight time equals

the coast time to peak (tc) the rocket will have reached its maxi-
mum altitude from burnout (S¢).

| Se= Z%Qh\ cos(—'%tc”

Since cos (0)=1 and In(1)=0 therefore In cos (0)=0. Note
that equation (19) is an alternate form of equation (B1) and is
useful when coast time (t;) is also computed.

(19)

Substitution for the value of t. from equation (14) into this
latest equation yields:

Sc= '—%1 In cos[f—% (‘%_0 tan-l %%):'

e In cos tan™! (—"?0-) o

The dual trigonometric functions suggest some simplifying
can be done. Let us look at the right triangle:

Se =

(The Value for the hypotenuse is found by
using the Pythagorean Theorem.)

]
"‘Q Now: tan®= LB
A3 VB Bo
: = tan-1{_VB
4 or: 6= tan ( m)
ﬁ 7 also: cos(8)= By =cos (tan'l—VB—>
) VB2+ 85 Bo

Thus our coasting altitude formula (20) can be simplified

I
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This is equation (B1)* for the coast altitude as can be veri-
fied by substitution of the terms comprising (o).

The general equation for distance at any time between
burnout and peak altitudes, which is presented in the report as
equation (B3)*, is found by substituting the value of (S¢) found
in equation (19), directly into equation (18).

Thus we obtain equation (B3) as:

= Bo 8
S= Sc+=21n cos t —t)}
cTg {W(C

Some of you may be interested in verifying that the equa-
tions degenerate to the drag free projectile equations when
drag equals zero. This can easily be done by applying L hopi-
tal’'s limit rule for Cp —>» 0.

NOTE: An easy method for finding natural logarithms of
numbers less than 1.0 that should prove useful
when doing hand computations involves noting:

that IN(AB)=InA+InB
and In(A/B)=InA-InB

Next, assume we want to compute in(.572). This can easi-
ly be accomplished as follows:

In (572) In (%): In (5.72) - In (10)
= 1.7440 - 2.3026

In (572) = .5586

A remark or two concerning the use of the equations and
graphs are in order at this point. No calculated value or
burnout altitude, burnout velocity, coast altitude and coast time
can be regarded as perfectly exact. The formulas used are
based on certain assumptions as to the magnitude and
repeatability of the average thrust durations for each type
engine Also, the slight decrease in air density as the rocket
climbs, the minor perturbations to the flight path that will surely
occur and the true propellant weight burnoff time history are

not taken into consideration.

The mathematical analysis, on the other hand, is exact
and perhaps elaborate and impressive to the uninitiated. The
disadvantage in the using of these allegedly “precise” formulas
is the possibility of being misled into thinking that the results
they yield correspond exactly to the real condition. It must be
kept in mind that the results in reality are just close approxima-
tions and are limited by the basic assumptions made.

In actuality for this work, as in altitude tracking, great pre-
cision in numerical work is not justified and slide rule calcula-
tions giving results to three significant figures are sufficient.
Admittedly, though, the crudest results obtained using the meth-
ods of this report will be much more realistic than the grossly
erroneous altitudes calculated without any consideration of
aerodynamic drag effects.

Perhaps the main value of this paper lies in the fact that it
is simple to use for all rocketeers and at the same time contains
some scientific aspects which will keep the more advanced
rocketeers busy investigating and eventually understand the
more sophisticated principles involved.

APPENDIX Il

SUGGESTIONS FOR
EXPERIMENTS

The following experiments will require precise altitude
measurement. Setting up a two station tracking system as out-
lined in Estes Industries Technical Report TR-3, “Altitude
Tracking”, should be adequate. In addition, you will need a
scale to weigh your rockets. A stopwatch to time the ascent will
also be useful.

Experiment |
DRAG VERSUS NO-DRAG
ALTITUDES

¢

In this experiment you will perform some flight tests to
compare the actual altitudes reached by one of your rockets to
altitudes computed a) with drag effects, and b) without drag
effects.* Use an aerodynamic drag

*It is convenient to calculate the no-drag altitude of any
single stage rocket by the following formula.

1T

STotal = 2 \w %-l gt g2

This formula was derived in Model Rocket News,
Volume 4, Number 2.
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coefficient of Cp=.75 to start with and be sure to use a motor
that has a delay time slightly greater than the computed coast
time (tc). This will insure that your model will reach its peak alti-
tude prior to nosecone ejection. Calculate your model’s altitude
in the same manner as outlined in the sample problem.

By performing this experiment with both large and small
diameter rockets for both large and medium total impulse
motors, you will have gained a real understanding of the impor-
tance of aerodynamic drag. It will also help you realize that
neglecting the effects of drag gives completely ridiculous
results.

Experiment 2

DRAG COEFFICIENT
MEASUREMENT

Up until now all we talked about was using Mr. G. H.
Stine’s aerodynamic drag coefficient of Cp=.75 as a standard
for every rocket, inasmuch as that value was determined using
an accurate wind tunnel. This experiment uses a method
whereby a good value for the drag coefficient of a rocket can be
determined without having to build an expensive wind tunnel. All
you will have to do is fly your birds a few times and measure the
peak altitudes. That's your favorite pastime anyway - we hope.

First calculate total altitudes for various assumed drag
coefficient values for your rocket as shown in table 1. Plot the
data as shown in Figure 11. Note that for ballistic coefficient (B)
values greater than 10 we just use B = 10 during motor burning,
and use the actual value of the coasting ballistic coefficient to
obtain our coasting altitudes and times. The reason for this can
be seen by looking at the thrusting graphs. The curves are
almost flat at B=10 and higher values of B will give no signifi-
cant increases in either burnout velocity (Vg) or burnout altitude
(Sg)- The .5 ounce and .75 ounce curves for the bigger motors
seems to disagree with what has just been said, but one must
keep in mind that these larger motors weight almost .75 ounce
each, exclusive of the rocket. The .5 ounce and 75 ounce each,
exclusive of the rocket. The .5 ounce and .75 ounce curves
were included in these graphs for theoretical comparisons only.

Once the actual altitude reached by this rocket is meas-
ured you work backwards with this graph to determine the drag
coefficient Cp. Find the point on the curve, which corresponds
with the measured altitude, and mark it. The altitude reached
will vary slightly from flight to flight so it is best to make at least
three good vertical flights and then use the average drag coeffi-
cient value obtained. You can also measure the flight time with
a stopwatch and compare that to the plotted values of total flight
time versus drag coefficient. The total flight time (tTotal) is sim-
ply the sum of the motor burn time (!8) plus the coast time (i)

otal =5 + Ic

Measuring both flight time and altitude for each flight gives
you two data points per flight to use instead of one per flight for
your drag coefficient measurement experiment. As a result you
save both time and money.

You might find it very interesting to repeat the experiment
using different total impulse motors. By ballasting the rocket
with say an NAR standard 1-ounce payload you can plot even
more curves by which the coefficient value can be verified. The
results of such experimentation will be surprisingly good as long
as you don't change the external shape of paint finish between
flights. The results of such a test should come out looking
something like the graph of figure 12 and figure 13.




Experiment 3

DETAILED TRAJECTORY
TIME HISTORIES

With natural larger logarithm, cosine, tangent, hyperbolic
sine, hyperbolic cosines and hyperbolic tangent tables (check
the math section of your library for books similar to reference 5).
A complete time history of the motion for the rocket whose drag
coefficient was previously determined can be calculated. Using
equations (A1) and (A2) for a few time increments from lift off to
burnout, we can calculate the corresponding velocity and dis-
tance. Similarly, after burnout we can use equations (B3) and
(B4) in conjunction with (B1) and (B2) to calculate the velocity
and altitude at various times.

To get the actual altitude time history we must add the altitude
gained during coasting to the altitude at burnout and the corre-
sponding coast flight times to the burnout time. Using the for-

mula

D=CpA1/2P V2 =.0001321 CpAV2
we can calculate the drag in ounces at any time. With the
formula

we obtain the net acceleration in g's on our rocket at any time
during the upward flight.

We can verify the accuracy of our time history by using
engines which will cause ejection to occur before the peak alti-
tude is reached. The altitude at the instant of ejection should
be close to the indicated time history value at that time. For
other time points a stop watch will be required. A verbal signal
to the trackers can be given for any desired time after liftoff. It
should be noted, however, that the recorded altitudes are more
susceptible to errors during the portions of the flight when the
rocket is traveling at high velocity. A time history plot of the typi-
cal performance of an A8-4 powered 1-ounce rocket is given in
Model Rocket News, Volume 4, Number 2 (A8-4 is no longer
available).

Experiment 4

EFFECTS OF TEMPERATURE AND
LAUNCH ALTITUDE ON ROCKET
PERFORMANCE

From the basic drag equation D=CDA1/2pV2 we can see
that lowering the air density (p) lowers the drag on a rocket
traveling at a given velocity and raising the air density (p)
increases the drag by a proportional amount. It turns out that
atmospheric density is a well-defined function of temperature
and altitude. Figure 9 presents a correction for the air density
(P) which properly reflects the variations in our basic motion
equations due to temperature and launch altitude.

It should be noted that rocket motor thrust is also a func-
tion of the temperature of the propellant before ignition and the
air density. Some research has been done on these effects, but
until more detailed information is available, we will just have to
neglect it.

All our previous work has been based on standard sea
level conditions, which means a temperature of 59°F and sea
level altitude (H=0 feet). To allow for this we must know the
temperature at the time of launch and the altitude above sea
level of our launch site. We can easily obtain temperature read-
ings with a thermometer at the launch site just prior to lift-off.
The best way to determine the altitude of your site is to obtain a
topographical map for your area through the U.S. Government.

The topographical maps are inexpensive and are very
interesting in themselves. Some libraries carry sets of them
and some of the larger cities have Geological Survey offices at
which you can browse through these maps at your leisure.
Some book and office supply stores carry these items.
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Each intermediate line means a rise or fall of 20’ elevation
of land surface in the sample of a topographical map shown
above. Primary lines mark each 100, and exact figures are
given for the high and low points in the topography.

Once you have this data you can try to verify the effects
on peak altitudes. Since your launch altitude is fixed, it would
probably be easiest to make flights for which only temperature
is a variable. (Flights in early morning when it is cool and also
during the warmer afternoon temperatures should prove to be
adequate). By calculating total altitudes for our rocket at differ-
ent temperatures, we can generate a theoretical graph as
shown in Figure 14. This graph should contain all information
relative to the rocket as included on this sample. Note that
points with appropriate comments have been included to repre-
sent recorded flight test data.

If nothing else it should be enlightening to consider such
facts as that the clubs in Denver, Colorado (altitude above sea
level H=5000 feet) who try for altitude records on hot days have
a definite advantage over the rest of us in the U.S.A. If a
Denver club is out in 90-degree weather the peak theoretical
altitude reached by our 1 ounce A8-4 (no longer available) sam-
ple problem rocket becomes 780 feet. This is a very good
improvement over the 700-foot altitude obtained under the stan-
dard conditions of sea level altitude and 59°F.

We anxiously await news of new altitude records obtained
by those who drive up Pike’s Peak in Colorado (elevation
14,110) to fly their rockets. Launched from the top of a moun-
tain at mid-afternoon temperature of 40°F our 1-ounce A8-4 (not
available) sample problem rocket would reach 855 feet.

The drag coefficient measurement experiment can be
refined by including temperature and launch altitude effects.

The assumption that air density is uniform through the
entire flight of a model is not particularly valid for rockets, which
reach higher altitudes. It might be wiser to use the average alti-
tude upon which to base density corrections rather than the
launch altitude. This would be similar to using the average
weight during thrusting than the full or empty weight.

Using the average altitude of a 2000-foot flight would
increase the ballistic coefficient by less than 3%. In view of the
errors that arise in tracking at such altitudes, such calculations
for most of us may not merit the time spent doing them.
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Experiment 5

CLUSTERS

Clustered rockets are primarily used for heavier payloads.
It would probably be very useful to know how high a cluster-
powered rocket can go for various payload weights and what
ejection delay times should be used. Actually, plotting this data
as a function of weight will be quite informative. Super-impos-
ing the corresponding data for a single motor booster of the
same shape and weight will give a clear understanding of the
performance improvements obtained by clustering.

Experiment 6

MULTIPLE STAGE ROCKETS

Perhaps one of the most interesting comparisons one
can make involves comparing the altitude reached by a
three-stage rocket using identical “type” motors (such as
1/2A6-0, and 1/2A6-4) to a two-stage rocket of identical ini-
tial total weight, size and shape, which has a cluster of two
motors for the first stage (such as two 1/2A6-0 motors in the
first stage and a 1/2A6-4 in the second stage). Both rockets
have the same total impulse input, but which will go higher?
Using the methods of this report you can predict the results
with confidence before the firing button is pushed and actual
tracking measurement is made. (1/2A6-0 engines are no
longer available.)

As one becomes more familiar with the effects of drag on
different shape and size rockets through the use of this report,
one eventually will be able to follow the above procedures even
before one starts building more complex original rockets in
order to decide, in fact, what is the best way to accomplish a
desired mission. This same type of pre-flight performance
analysis would carry the name “optimization study” if done by
the aerospace engineers and scientists who design our coun-
try’s big rockets.
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With natural larger logarithm, cosine, tangent, hyperbolic
sine, hyperbolic cosines and hyperbolic tangent tables (check
the math section of your library for books similar to reference 5).
A complete time history of the motion for the rocket whose drag
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burnout, we can calculate the corresponding velocity and dis-
tance. Similarly, after burnout we can use equations (B3) and
(B4) in conjunction with (B1) and (B2) to calculate the velocity
and altitude at various times.

To get the actual altitude time history we must add the altitude
gained during coasting to the altitude at burnout and the corre-
sponding coast flight times to the burnout time. Using the for-

mula

D=CpA1/2P V2 =.0001321 CpAV2
we can calculate the drag in ounces at any time. With the
formula

we obtain the net acceleration in g's on our rocket at any time
during the upward flight.

We can verify the accuracy of our time history by using
engines which will cause ejection to occur before the peak alti-
tude is reached. The altitude at the instant of ejection should
be close to the indicated time history value at that time. For
other time points a stop watch will be required. A verbal signal
to the trackers can be given for any desired time after liftoff. It
should be noted, however, that the recorded altitudes are more
susceptible to errors during the portions of the flight when the
rocket is traveling at high velocity. A time history plot of the typi-
cal performance of an A8-4 powered 1-ounce rocket is given in
Model Rocket News, Volume 4, Number 2 (A8-4 is no longer
available).
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From the basic drag equation D=CDA1/2pV2 we can see
that lowering the air density (p) lowers the drag on a rocket
traveling at a given velocity and raising the air density (p)
increases the drag by a proportional amount. It turns out that
atmospheric density is a well-defined function of temperature
and altitude. Figure 9 presents a correction for the air density
(P) which properly reflects the variations in our basic motion
equations due to temperature and launch altitude.

It should be noted that rocket motor thrust is also a func-
tion of the temperature of the propellant before ignition and the
air density. Some research has been done on these effects, but
until more detailed information is available, we will just have to
neglect it.

All our previous work has been based on standard sea
level conditions, which means a temperature of 59°F and sea
level altitude (H=0 feet). To allow for this we must know the
temperature at the time of launch and the altitude above sea
level of our launch site. We can easily obtain temperature read-
ings with a thermometer at the launch site just prior to lift-off.
The best way to determine the altitude of your site is to obtain a
topographical map for your area through the U.S. Government.

The topographical maps are inexpensive and are very
interesting in themselves. Some libraries carry sets of them
and some of the larger cities have Geological Survey offices at
which you can browse through these maps at your leisure.
Some book and office supply stores carry these items.
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Each intermediate line means a rise or fall of 20’ elevation
of land surface in the sample of a topographical map shown
above. Primary lines mark each 100, and exact figures are
given for the high and low points in the topography.

Once you have this data you can try to verify the effects
on peak altitudes. Since your launch altitude is fixed, it would
probably be easiest to make flights for which only temperature
is a variable. (Flights in early morning when it is cool and also
during the warmer afternoon temperatures should prove to be
adequate). By calculating total altitudes for our rocket at differ-
ent temperatures, we can generate a theoretical graph as
shown in Figure 14. This graph should contain all information
relative to the rocket as included on this sample. Note that
points with appropriate comments have been included to repre-
sent recorded flight test data.

If nothing else it should be enlightening to consider such
facts as that the clubs in Denver, Colorado (altitude above sea
level H=5000 feet) who try for altitude records on hot days have
a definite advantage over the rest of us in the U.S.A. If a
Denver club is out in 90-degree weather the peak theoretical
altitude reached by our 1 ounce A8-4 (no longer available) sam-
ple problem rocket becomes 780 feet. This is a very good
improvement over the 700-foot altitude obtained under the stan-
dard conditions of sea level altitude and 59°F.

We anxiously await news of new altitude records obtained
by those who drive up Pike’s Peak in Colorado (elevation
14,110) to fly their rockets. Launched from the top of a moun-
tain at mid-afternoon temperature of 40°F our 1-ounce A8-4 (not
available) sample problem rocket would reach 855 feet.

The drag coefficient measurement experiment can be
refined by including temperature and launch altitude effects.

The assumption that air density is uniform through the
entire flight of a model is not particularly valid for rockets, which
reach higher altitudes. It might be wiser to use the average alti-
tude upon which to base density corrections rather than the
launch altitude. This would be similar to using the average
weight during thrusting than the full or empty weight.

Using the average altitude of a 2000-foot flight would
increase the ballistic coefficient by less than 3%. In view of the
errors that arise in tracking at such altitudes, such calculations
for most of us may not merit the time spent doing them.
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Experiment 5

CLUSTERS

Clustered rockets are primarily used for heavier payloads.
It would probably be very useful to know how high a cluster-
powered rocket can go for various payload weights and what
ejection delay times should be used. Actually, plotting this data
as a function of weight will be quite informative. Super-impos-
ing the corresponding data for a single motor booster of the
same shape and weight will give a clear understanding of the
performance improvements obtained by clustering.

Experiment 6

MULTIPLE STAGE ROCKETS

Perhaps one of the most interesting comparisons one
can make involves comparing the altitude reached by a
three-stage rocket using identical “type” motors (such as
1/2A6-0, and 1/2A6-4) to a two-stage rocket of identical ini-
tial total weight, size and shape, which has a cluster of two
motors for the first stage (such as two 1/2A6-0 motors in the
first stage and a 1/2A6-4 in the second stage). Both rockets
have the same total impulse input, but which will go higher?
Using the methods of this report you can predict the results
with confidence before the firing button is pushed and actual
tracking measurement is made. (1/2A6-0 engines are no
longer available.)

As one becomes more familiar with the effects of drag on
different shape and size rockets through the use of this report,
one eventually will be able to follow the above procedures even
before one starts building more complex original rockets in
order to decide, in fact, what is the best way to accomplish a
desired mission. This same type of pre-flight performance
analysis would carry the name “optimization study” if done by
the aerospace engineers and scientists who design our coun-
try’s big rockets.




