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PREFACE TO THE FOURTH
RUSSIAN EDITION

After many years I decided to return to an unfinished
book that I wrote together with Dau, as his friends called
the remarkable scientist and great-hearted man Lev
Davidovich Landau. The book was Physics for Everyone.

Many readers in letters had reproached me for not
continuing the book. But I found it difficult because the
book was a truly joint venture.

So here now is a new edition of Physics for Everyone,
which I have divided into four small books, each one
taking the reader deeper into the structure of matter.
Hence the titles Physical Bodies, Molecules, Electrons,
and Photons and Nuclei. The books encompass all the
main laws of physics. Perhaps there is a need to continue
Physics for Everyone and to devote subsequent issues to
the basics of various fields of science and technology.

The first two 'books have undergone only slight changes,
but in places the material has been considerably augment-
ed. The other two were written by me.

The careful reader, I realize, will feel the difference.
But I have tried to preserve the presentation principles
.that Dau and I followed. These are the deductive principle
and the logical principle rather than the historical. We
also felt it would be well to use the language of everyday
life and inject some humour. At the same time we did
:not oversimplify. If the reader wants to fully understand
gi\ﬂie subject, he must be prepared to read some places
sgoany times and pause for thought.
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The new edition differs from the old in the following
way. When Dau and I wrote the previous book, we viewed
it as a kind of primer in physics; we even thought it might
compete with school textbooks. Reader’s comment and
the experience of teachers, however, showed that the
users of the book were teachers, engineers, and school
students who wanted to make physics their profession.
Nobody considered it a textbook. It was thought of as
a popular science book intended to broaden knowledge
gained at school and to focus attention on questions that
for some reason are not included in the physics syllabus.

Therefore, in preparing the new edition I thought of
my reader as a person more or less acquainted with phys-
ics and thus felt freer in selecting the topics and believed
it possible to choose an informal style.

The subject matter of Physical Bodies has undergone
the least change. It is largely the first half of the previous
edition of Physics for Everyone.

‘Since the first book of the new edition contains phenom-
ena that do not require a knowledge of the structure of
matter, it was natural to call it Physical Bodies. Of
course, another possibility was to use, as is usually done,
the title Mechanics (i.e. the science of motion). But the
theory of heat, which is covered in the second book,
Molecules, also studies motion except that what is moving
is the invisible molecules and atoms. So I think the title
Physical Bodies is a better choice.

Physical Bodies deals largely with the laws of motion
and gravitational attraction. These laws will always re-
main the foundation of physics and for this reason of
science as a whole.

September 1977
A.I. Kitaigorodsky
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1. Basic Concepts

The Centimeire and the Second

Everyone has to measure lengths, reckon time and
weigh various bodies. Therefore, everyone knows just
what a centimetre, a second and a gram are. But these
measures are especially important for a physicist—they
are necessary for making judgements about most physical
phenomena. People try to measure distances, intervals
of time and mass, which are called the basic concepts of
physics, as accurately as possible.

Modern physical apparatuses permit us to determine
a difference in length between two-metre long rods, even
if it is less than one-billionth of a metre. It is possible to
distinguish intervals of time differing by one-millionth
of a second. Good scales can determine the mass of a poppy
seed with a very high degree of accuracy.

Measurement techniques started developing only a few
hundred years ago, and agreement on what segment of
length and what mass of a body to take as units has been
reached relatively recently.

But why were the centimetre and the second chosen
to be such as we know them? As a matter of fact, it is
clear that there is no special significance to whether the
~centimetre or the second be longer.

A unit of measurement should be convenient—we re--
quire nothing further of it. It is very good for a unit of
measurement to be at hand, and simplest of all to take
:the hand itself for such a unit. This is precisely what was
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-done in ancient times; the very names of the units testify
to this: for example, an “ell” or “cubit” is the distance
between the elbow and the fingertips of a stretched-out
hand, an “inch” is the width of a thumb at its base. The
foot was also used for measurement—hence the name of
the length “foot”

Although these units of measurement are very conve-
nient in that they are always part of oneself, their dis-
advantages are obvious: there are just too many differ-
-ences between individuals for a hand or a foot to serve
as a unit of measurement which does not give rise to
-controversy.

With the development of trade, the need for agreeing
-on units of measurement arose. Standards of length and
mass were at first established within a separate market,
‘then for a city, later for an entire country and, finally,
for the whole world. A standard is a model measure:
a ruler, a weight. Governments carefully preserve these
standards, and other rulers and weights must be made to
correspond exactly to them.

The basic measures of weight and length in tsarist
Russia—they were called the pound and the arshin—
were first made in 1747. Demands on the accuracy of
measurements‘increased in the 19th century, and these
standards turned out to be imperfect. The complicated
and responsible task of creating exact standards was car-
ried out from 1893 to 1898 under the guidance of Dmitri
Ivanovich Mendeleev. The great chemist considered the
establishment of exact standards to be very important.
The Central Bureau of Weights and Measures, where the
standards are kept and their copies made, was founded
at the end of the 19th century on his initiative.

Some distances are expressed in large units, others in
smaller ones. As a matter of fact, we wouldn’t think of
expressing the distance from Moscow to Leningrad in
centimetres, or the mass of a railroad train in grams.
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. People therefore agreed on definite relationships between
large and small units. As everyone knows, in the system
of units which we use, large units differ from smaller ones

¢ by a factor of 10, 100, 1000 or, in general, a power of ten.

giSuch a condition is very convenient and simplifies all
 computations. However, this convenient system has not

.~ been adopted in all countries. Metres, centimetres and

t kilometres as well as grams and kilograms are still used

; infrequently in England and the USA in spite of the

. obviousness of the metric system’'s conveniences.*

¢ In the 17th century the idea arose of choosing a standard

~which exists in nature and does not change in the course

“of years and even centuries. In 1664 Christiaan Huygens
proposed that the length of a pendulum making one

“oscillation a second be taken as the unit of length. About

;@ hundred years later, in 1771, it was suggested that

“the length of the path of a freely falling body during the
first second be regarded as the standard. However, both
-variants proved to be inconvenient and were not accept-
ed. A revolution was necessary for the emergence of the
modern units of measurement—the Great French Revo-
lution gave birth to the kilogram and the metre.

In 1790 the French Assembly created a special com-
‘mission containing the best physicists and mathemati-
cians for the establishment of a unified system of meas-
urements. From all the suggested variants of a unit of
length, the commission chose one-ten-millionth of the
Earth’s meridian quadrant, calling this unit the metre.

*The following measures of lerigth were officially adopted in
England: the nautical mile (equals 1852 m); the ordinary mile
(1609 m); the foot (30.48 cm), a foot is equal to 12 inches; an
inch is 2.54 cm; a yard, 0.9144 m, is the “tailors’ measure”
used to mark off the amount of material needed for a suit.
In Anglo-Saxon countries, mass is measured in pounds (454 g).
Small fractions of a pound are an ounce (1/16 pound) and a
- grain (1/7000 pound); these measures are used by druggists in
% weighing out medicine.
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Its standard was made in 1799 and given to the Archives
of the Republic for safe keeping.

Soon, however, it became clear that the theoretically
correct idea about the advisability of choosing models for
our measures by borrowmg them from nature cannot be
_fully carried out in practice. More exact measurements
“performed in the 19th century showed that the standard
made for the metre is approximately 0.08 of a millimetre
shorter than one-forty-millionth of the Earth’s meridian.
It became obvious that new corrections would be in-
troduced as measurement techniques developed. If the
definition of the metre as a fraction of the Earth’s meri-
dian were to be retained, it would be necessary to make
a new standard and recalculate all lengths anew after
each new measurement of the meridian. It was therefore
decided after discussions at the International Congresses
of 1870, 1872 and 1875 to regard the standard of the metre,
made in 1799 and now kept at the Bureau of Weights and
Measures at Sévres, near Paris, rather than one-forty-
millionth of a meridian, as the unit of length.

Together with the metre, there arose its fractions: one-
thousandth, called the mzllzmetre, one-millionth, called
the micron, and the one which is used most frequently,
one-hundredth—the centimetre.

Let us now say a few words about the second. It is much
older than the centimetre. There were no disagreements
in establishing a unit for measuring time. This is under-
standable: the alternation of day and night and the
eternal revolution of the Sun suggest a natural means of
choosing a unit of time. THe expression “determine time
by means of the Sun” is well known to everyone. When
the Sun is high up in the sky, it is noon, and, by measur-
ing the length of the shadow cast by a pole, it is not dif-
ficult to determine the moment when it is at its summit.
The same instant of the next day can be marked off in
the same way. The interval of time which elapses con-
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stitutes a day. And the further division of a day into
hours, minutes and seconds is all that remains to be
done.

The large units of measurement—the year and the
day—were given to us by nature itself. But the hour, the
minute and the second were devised by man.

The modern division of the day goes far back to antig-
uity. The sexagesimal, rather than the decimal, number
system was prevalent in Babylon. Since 60 is divisible
by 12 without any remainder, the Babylonians divided
the day into 12 equal parts.

The division of the day into 24 hours was introduced
in Ancient Egypt. Minutes and seconds appeared later.
“The fact that 60 minutes make an hour and 60 seconds
:make a minute is also a legacy of Babylon’s sexagesimal
;system.

“ In Ancient Times and the Middle Ages, time was meas-
ured with the aid of sun dials, water clocks (by the amount
; of time required for water to drip out of large vessels) and
?a series of subtle but rather imprecise devices.

. With the aid of modern clocks it is easy to convince
Foneself that the duration of a day is not exactly the same
rat all times of the year. It was therefore stipulated that
Lthe average solar day for an entire year would be taken
%as the unit of measurement. One-twenty-fourth of this
vyearly average interval of time is what we call an hour.
¥, But in establishing units of time—the hour, the minute
+and the second—by dividing the day into equal parts,
fFwe assume that the Earth rotates uniformly. However,
tlunar-solar ocean tides slow down, although to an insig-
fnificant degree, the rotation of the Earth. Thus, our unit
gof time—the day—is incessantly becoming longer.

- This slowing down of the Earth’s rotation is so insig-
punificant that only recently, with the invention of atomic
felocks measuring intervals of time with great accuracy—
1‘ p to a millionth of a second —has it become possible to

)
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measure it directly. The change in the length of a day
amounts to 1-2 milliseconds in 100 years.

But a standard should exclude, when possible, even
such an insignificant error. On p. 20 we shall show how
this is done.

Weight and Mass

Weight is the force with which a body is attracted by
the Earth. This force can be measured with a spring
balance. The more the body weighs, the more the spring
on which it is suspended will be stretched. With the aid
of a weight taken as the unit it is possible to calibrate
the spring—make marks which will indicate how much
the spring has been stretched by a weight of one, two,
three, etc., kilograms. If, after this, a body is suspended
on such a scale, we shall be able to find the force (gravity)
of its attraction by the Earth, by observing the stretch-
ing of the spring (Figure 1.1a). For measuring weights,
one uses not only stretching but also contracting springs
(Figure 1.16). Using springs of various thickness, one
can make scales for measuring very large and also very
small weights. Not only coarse commercial scales are
constructed on the basis of this principle but also precise
instruments used for physical measurements.

A calibrated spring can serve for measuring not only
the force of the Earth’s attraction, i.e. weight, but also
other forces. Such an instrument is called a dynamometer,
which means a measurer of forces. You may have seen
how a dynamometer is used for measuring a person’s mus-
cular force. It is also convenient to measure the tractive
force of amotor by means of a stretching spring (Figure 1.2).

The weight of a body is one of its very important prop-
erties. However, the weight depends not only on the
body itself. As a matter of fact, the. Earth attracts it.
And what if we were on the Moon? It is obvious that
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its weight would be different—about six times less, as
shown by computations. In fact, even on the Earth,
weight is different at various latitudes. At a pole, for
example, a body weighs 0.5% more than at the equator.

However, for all its changeability, weight possesses a
remarkable peculiarity—the ratio of the weights of two
bodies remains unchanged under any conditions, as ex-
periments have shown. If two different loads stretch a
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Figure 1.3

spring identically at a pole, this identity is completely
preserved even at the equator.

In measuring weight by comparing it with the weight
of a standard, we find a new property of bodies, which
is called mass.

The physical meaning of this new concept—mass—is
telated in the most intimate way to the identity in com-
paring weights which we have just noted.

Unlike weight, mass is an invariant property of a body
depending on nothing except the given body.

A comparison of weights, i.e. measurement of mass,
is most conveniently carried out with the aid of ordinary
balance scales (Figure 1.3). We say that the masses of two
bodies are equal if the balance scale on whose pans these
bodies are placed is in perfect equilibrium. If a load is
in equilibrium on a balance scale at the equator, and
then the load and the weights are transported to a pole,
the load and the weights change their weight identically.
‘Weighing at the pole will therefore yield the same result:
the scale will remain balanced.

We can even verify this state of affairs on the Moon.
Since the ratio of bodies’ weights will not change there
either, a load placed on a scale will be balanced by the
same weights there. The mass of a body remains the same
no matter where it is.

Units of mass and weight are related to the choice of
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a standard weight. Just as in the case of the metre and
the second, people tried to find a natural standard of
mass. The same commission used a definite alloy to make
a weight which balanced one cubic decimetre of water
at four degrees Centigrade*. This standard was called
the kilogram.

Later, however, it became clear that it isn’'t so easy
to “take” one cubic decimetre of water. Firstly, the
decimetre, as a fraction of the metre, changed along with
the refinement of the metre’s standard. Secondly, what
kind of water should we take? Chemically pure water?
Twice distilled? Without any trace of air? And what
should be done about admixtures of “heavy water”? To
top off all our misfortunes, accuracy in measuring a vol-
ume is noticeably less than that in weighing.

It again became necessary to reject a natural unit and
accept a specially made weight as the unit of mass. This
weight is also kept in Paris together with the standard
for the metre.

One-thousandth and one-millionth of a kilogram—the
gram and the milligram—are widely used for measuring
mass. The Tenth and Eleventh General Conferences of
Weights and Measures developed the International Sys-
tem of Units (SI), which was then ratified by most coun-
‘tries as national standards. The name “kilogram” (kg)
is retained by mass in this system. Every force, including
of course weight, is measured in newtons (N) in this
system. We shall find out a bit later why this unit was
given such a name and how it is defined.

*This temperature was not chosen by chance. Its significance
lies in the fact that the volume of water changes with heating
in a very peculiar manner, unlike most bodies. A body ordinarily
expands when heated, but water contracts as its temperature
rises from O to 4 °C, and only starts expanding after it gets above
4 °C. Thus, 4 °C is the temperature at which water stops to con-
tract and begins to expand.

2—-0876
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The new system will undoubtedly not be immediately
and universally applied, and so it is still helpful to recall
that the kilogram of mass (kg) and the kilogram of force
(kgf) are units of different physical quantities, and it is
impossible to perform arithmetical operations on them.
Writing 5 kg 4 2 kgf = 7 is just as meaningless as add-
ing metres to seconds.

The International System of Units
and Standards of Measurement

We began our discourse from the simplest things. For
what can be simpler than measuring distances, time
intervals and mass? Indeed, this was so in the early days
of physics, but today the methods used in measuring
length, time and mass are so sophisticated that they
require a knowledge of all branches of physics. What we
are going to discuss now in more or less detail is studied
in the fourth book, Photons and Nuclei. With this in
mind, I suggest that if this is your first book in physics,
postpone reading this section until later.

The International System of Units, abbreviated SI
from the French “Le Systéme International d'Unites”,
was adopted in 1960. Slowly but surely it is gaining
recognition. But even now when these lines are being
written (on the threshold of 1977) the good “old” units of
measurement are still in use. If you ask a car owner what
engine his car has, his first reaction will be “a 100 horse-
power” (just as, say, ten years ago) but not “a 74 kilowatt”,
I believe that the SI system will become predominant
only after two generations have passed and the books
whose authors refuse to recognize it have gone out of
print.

The SI system is based on seven base units: the metre,
the kilogram, the second, the mole, the ampere, the
kelvin and the candela.
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: Let us start with the first four. My purpose is to em-
phasize a significant tendency of a general nature rather
‘than to expound the details of measuring the correspond-
ing quantities. The tendency is to discard material (i.e.
man-made) standards and instead use natural standards,
that is, standards whose values do not depend on the
measuring devices and do not change with time, at
least from the viewpoint of today’s physics.

We will begin with the metre. In the spectrum of a par-
ticular isotope of krypton, Kr®, there is a sharp spectral
line. By using methods which we will discuss later it
was established that each spectral line is characterized
by the initial and final energy levels. The line we are
interested in is the tramsition from the 5d; level to the
2p;, level. Specifically, one metre is 1 650 763.73 wave-
lengths in vacuum of the radiation corresponding to the
transition between the levels 2p;, and 5ds of the krypton-
86 atom. There is no use in adding another significant
digit to the above nine-digit number, since the accuracy
in measuring this wavelength is not more than 4 parts
in 10°%. We see that this definition is in no way connected
with a material standard. There is also no reason to believe
that the wavelength of a specific transition changes over
the ages. So we have achieved our goal.

Well and good, my reader may say. But how does one
calibrate an ordinary yardstick with the aid of such a
non-material standard? Physicists know how to do this
~using interference methods, which we will examine in

“the fourth book.

There is every reason to assume that this definition
;will undergo a change in the near future. The point is
»that using a laser beam (say, of a helium-neon laser
;stabilized with iodine vapour) we can achieve an accuracy
rof 1 part in 10 or even 1 part in 10'2. It may prove

kexpedlent to use another spectral line for the natural
:standard.



Physical Bodles 20

The definition of the second is quite similar. The tran-
sition used is between two close energy levels of the
caesium-133 atom. The inverse of the frequency of such
a transition gives the time needed for the completion of
one vibration, the period. One second is taken as
9192 631 770 such periods. Since these vibrations lie
in the microwave range, we can apply radio methods to
divide the frequency and thus calibrate any clock. The
error is 1 second in 300 000 years.

It was the dream of metrologists to use one energy
transition for defining the unit of length (expressed in a
certain number of wavelengths) and the unit of time
(expressed in a certain number of vibration peri-
ods).

In 1973 scientists showed how this could be done. The
measurements were made using a helium-neon laser
stabilized with methane. The wavelength was 3.39 mil-
limicrons, and the frequency was 88 X 10-1% c¢ycles per
second. The precision was so high that the product of these
two numbers gave the speed of light in vacuum as
2991'(7)992 458 metres per second with an accuracy of 4 parts
in .

In contrast to these brilliant achievements and still
greater prospects, the precision in measuring mass leaves
much to be desired. The “material” kilogram is still in
use, unfortunately. True, balances are constantly being
perfected, but still a precision of 1 part in 10° is achieved
only in rare cases and only in comparing two masses.
The accuracy in measuring the mass of a body in grams
and in measuring the gravitational constant in the law
of m:’iversal gravitation still does not exceed 1 part
in 10°.

The Fourteenth General Conference of Weights and
Measures (1971) introduced into the SI system a new
base unit of amount of substance, the mole. The introduc-
tion of the mole as an independent unit of amount of
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substance is due to the new definition of the Avogadro
pumber.

It was agreed that the Avogadro number was not just
the number of atoms in one gram-atom but the number
of atoms in 12 grams of the isotope of carbon with mass
number 12, that is C!2. If we denote the number of atoms
in 12 grams of C!? as N,, we define a mole as the amount
of substance that contains N, particles. The particle
may be an atom, a molecule, an ion, a radical, an elec-
tron, etc., or a specified group of such entities.

What makes it necessary to introduce not only a new
base unit but a new physical concept is the fact that we
inadmissibly apply the concept of mass to elementary
particles, whereas mass is a quantity measured with a
beam balance.

Today the amount of substance (the Avogadro number
and, hence, atomic mass) is determined with a lower
accuracy than mass proper. But, understandably, the
accuracy of measuring the amount of substance cannot
exceed the accuracy of measuring mass.

My reader may think that the introduction of a new
unit is no more than a formality. However, the existence
of two concepts of mass is justified by the difference in
precision of measurement. If it ever proves possible to
express the kilogram as a multiple of the mass of an
atom, the case will be reviewed and the kilogram will
become a quantity of the same type as the metre or
second.

Density

What do we mean when we say: as heavy as lead and
as light as a feather? It is clear that a grain of lead will
be light, while a mountain of feathers has considerable
mass, Those who use such comparisons have in mind not
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the mass of a body but the density of the material of
which it consists.

The mass of a unit volume of a body is called its density.
It is evident that a grain of lead and a massive block of
lead have the same density.

In denoting density, we usually indicate how many
grams (g) a cubic centimetre (cm®) of the body weighs—
after this number we place the symbol g/cm3. In order
to determine the density, the number of grams must be
divided by the number of cubic centimetres; the solidus
in the symbol reminds us of this.

Certain metals are among the heaviest materials—
osmium whose density is equal to 22.5 g/cm?3, iridium
(22.4), platinum (21.5), tungsten and gold (19.3). The
density of iron is 7.88, that of copper 8.93.

The lightest metals are magnesium (1.74), beryllium
(1.83) and aluminium (2.70). Still lighter bodies should
be sought among organic materials: various sorts of wood
and plastic may have a density as low as 0.4.

It should be stipulated that we are dealing with contin-
uous bodies. If there are pores in a solid, it will of course
be lighter. Porous bodies—cork, foam glass—are fre-
quently used in technology. The density of foam glass
may be less than 0.5, although the solid matter from
which it is made has a density greater than 1 g/cm3.
As all other bodies whose density is less than 1 g/cm?,
foam glass floats superbly on water.

The lightest liquid is liquid hydrogen; it can only be
obtained at extremely low temperatures. One cubic
centimetre of liquid hydrogen has a mass of 0.07 g. Organ-
ic liquids—alcohol, benzine, kerosene—do not differ
significantly from water in density. Mercury is very
heavy—it has a density of 13.6 g/cm3.

And how can the density of gases be characterized?
For gases, as is well known, occupy whatever volumes
we let them. If we empty gas-bags with the same mass of
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f??gas into vessels of different volumes, the gas will always
*fill them up uniformly. How then can we speak of density?

We define the density of gases under so-called normal
conditions—a temperature of 0°C and a pressure of
{ atm. The density of air under normal conditions is
-equal to 0.001 29 g/cm3, of chlorine 0.003 22 g/cm3.
Gaseous hydrogen, just as the liquid one, holds the
record: the density of this lightest gas is equal to
0.000 09 g/cm3.

The next lightest gas is helium; it is twice as heavy
as hydrogen. Carbon dioxide is heavier than air by a
factor of 1.5. In Italy, near Naples, there is a famous
“canine cave”; carbon dioxide continually exudes from
its lower part, hangs low and slowly escapes from the
cave. A person can enter this cave without difficulty, but
such a stroll will end badly for a dog. Hence the cave's
name.

The density of gases is extremely sensitive to external
conditions—pressure and temperature. Without an indi-
cation of the external conditions, the values of the density
of gases have no meaning. The densities of liquids and
solids also depend on temperature and pressure, but the
.dependence is considerably weaker.

The Law of Conservation of Mass

If we dissolve some sugar in water, the mass of the
solution will be precisely equal to the sum of the masses
of the sugar and the water.

This and an infinite number of similar experiments
show that the mass of a body is an invariable property.
No matter how the body is crushed or dissolved, its
‘mass remains fixed.

The same also holds for arbitrary chemical transforma-
tions. Suppose that coal burns up. It is possible to estab-
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Mikhail Lomonosov ({1711-1765)—an outstanding Russian scientist,
the initiator of science in Russia, a great educator. In the field
of physics, Lomonosov struggled resolutely against the notions
widespread in the 18th century of electrical and thermal “fluids”,
upholding the molecular-kinetic theory of matter. Lomonosov wag
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lish by means of careful weighings that the mass of the
coal and the oxygen from the air which was used up during
the burning will be exactly equal to the mass of the end
products of the combustion.

The law of conservation of mass was verified for the
last time at the end of the 19th century, when the tech-
nique of fine weighing had already been highly developed.
It turned out that mass does not even change by an in-
significant fraction of its value during the course of any
chemical transformation.

Mass was considered to be invariable as far back as
Ancient Times. This law first underwent an actual exper-
imental verification in 1756. This was done by Mikhail
Lomonosov, who proved the conservation of mass during
the sintering of metals by means of experiments
in 1756, and demonstrated the scientific significance
{_the law.
ofMass is the most important invariable characteristic
of a body. The majority of the properties of a body is, so
to say, in the hands of human beings. An iron bar that
can be easily bent by hand can be made hard and brittle
by tempering it. With the aid of ultrasonic waves, one
can make a turbid solution transparent. Mechanical,
electrical and thermal properties can be changed by
means of external actions. If no matter is added to a
body and not a single particle is separated from it, it is

the first to experimentally prove the constancy of the mass of
matter participating in chemical transformations. Lomonosov car-
ried out extensive research in the field of atmospheric electricity
and meteorology. He constructed a series of remarkable optical
instruments and discovered the atmosphere on Venus. Lomonosov
created the basis of scientific Russian; he succeeded in translating
the basic physical and chemical terms from the Latin exceptional-
Iv well,
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impossible* to change its mass, regardless of what exter-
nal actions we resort to.

Action and Reaction

We frequently fail to notice that every action of a
force is accompanied by a reaction. If a valise is placed
on a bed with a spring mattress, the bed will sag. The fact
that the weight of the valise acts on the bed is obvious
to everyone. Sometimes, however, we forget that the bed
also exerts a force on the valise. As a matter of fact,
the valise lying on the bed does not fall; this means that
there is a force acting on it equal to the weight of the
valise and directed upwards.

Forces which are opposite in direction to gravity are
often called reactions of the support. The word “reaction”
means “counteraction” The action of a table on a book
which is lying on it and the action of a bed on a valise
which has been placed upon it are reactions of the sup-
port.

As we have just said, the weight of a body can be deter-
mined with the aid of a spring balance. The pressure of
the body on the spring which has been placed under it,
or the force stretching the spring on which the load has
been suspended, is equal to the weight of the body. It is
obvious, however, that the contraction or tension of the
spring can just as well be used to obtain the value of the
reaction of the support.

Thus, measuring the magnitude of some force by means
of a spring, we measure the value of not one but of two
forces opposite in direction. Spring balances measure
the pressure exerted by the load on the pan, and also the
reaction of the support—the action of the pan on the

*The reader will later discover that there are certain limitations
to this assertion,
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load. Fastening a spring to a wall and pulling it by
hand, we can measure the force with which our hand pulls
the spring and, simultaneously, the force with which
the spring pulls our hand.

Therefore, forces possess a remarkable property: they
are always found in pairs and are, moreover, equal in
magnitude and opposite in direction. It is these two forces
which are usually called action and reaction.

“Single” forces do not exist in nature—only mutual
reactions between bodies have a real existence; more-
over, the forces of action and reaction are invariably
equal —they are related to each other as an object is
related to its mirror image.

One should not confuse balancing forces with forces
of action and reaction. We say that forces are balanced
if they are applied to a single body; thus, the weight of
a book lying on a table (the action of the Earth on the
book) is balanced by the reaction of the table (the action
of the table on the book).

In contrast to the forces which arise in balancing two
interactions, the forces of action and reaction characterize
one interaction, for example, of a table with a book. The
action is “table-book” and the reaction is “book-table”
These forces, of course, are applied to different bodies.

Let us try to clear up the following traditional misun-
derstanding: “The horse is pulling the waggon, but the
waggon is also pulling the horse; why then do they move?”
First of all, we must recall that the horse will not move
the waggon if the road is slippery. Hence, in order to
explain the motion, we must take into account not one
but two interactions—not only “waggon-horse” but also
“horse-road”. The motion will begin when the force of
the interaction “horse-road” (the force with which the
horse pushes off from the road) exceeds that of the inter-
action “waggon-horse” (the force with which the waggon
pulls the horse). As for the forces “waggon oulls horse”
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and “horse pulls waggon”, they characterize one and the
same interaction, and will therefore be identical in
magnitude when at rest and at any instant during the
course of the motion.

How Velocities Are Added

If I waited half an hour and then another hour, I would
lose one and a half hours of time all told. If I were given
a rouble and then two more, I would receive three roubles
in all. If I bought 200 g of grapes and then another 400 g,
I would have 600 g of grapes. We say that time, mass
and other similar quantities are added arithmetically.

However, not every quantity can be added and sub-
tracted so simply. If I say that it is 100 km from Moscow
to Kolomna and 40 km from Kolomna to Kashira, it
does not follow from this that Kashira is located at a
distance of 140 km from Moscow. Distances are not
added arithmetically.

How else can quantities be added? We shall easily
find the required rule on the basis of our example. Let us
draw three points on a piece of paper indicating the
relative locations of the three places of interest to us
(Figure 1.4). We can construct a triangle with these three
points as vertices. If two of its sides are known, it is
possible to find the third. For this, however, we must
know the angle between the two given segments.

The trip from Moscow to Kolomna can be represented
by an arrow whose direction shows where we are moving
to. Such arrows are called vectors. So the trip from Kolom-
na to Kashira is represented by another vector.

Now, how do we show the trip from Moscow to Kashira?
With a vector, of course. We will start this vector at the
beginning of the first vector and end it at the end of the
second. The sought path will be the line that completes
the triangle,



1. Basic Concepts 29

-

Figure 1.4

The kind of addition just described is called geometrical
and the quantities which are added in this manner are
called wvectors.

In order to distinguish the initial point of a segment
from its end point, we add an arrow to it. Such a seg-
ment—a vector—indicates a length and a direction.

This rule is also applied in adding several vectors.
Passing from the first point to the second, from the second
to the third, etc., we cover a path which can be repre-
sented by a broken line. But it is possible to go directly
from the starting point to the terminal point. This segment
closing up the polygon will be precisely the vector sum.

A vector triangle also shows, of course, how to subtract
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one vector from another. For this we draw them from one
point. The vector drawn from the end point of the second
vector to the end point of the first will be the vector
difference.

Besides the triangle rule, one may make use of the
equivalent parallelogram rule (Figure 1.4 in the lower
left corner). This rule requires that we construct a paral-
lelogram on the vectors we are adding, and draw the
diagonal from the point of their intersection. It is clear
from the figure that the diagonal of the parallelogram is
precisely the segment which closes up the triangle. Hence,
both rules are equally suitable.

Vectors are used for describing not only displacements.
Vector quantities are frequently found in physics.

Consider, for example, a velocity of motion. Velocity
is the displacement during a unit of time. Since the dis-
placement is a vector, the velocity is also a vector, and
it has the same direction. In the course of motion along
a curve, the direction of displacement is changing all
the time. How then can we answer the question about
the direction? A small segment of a curve has the same
direction as a tangent. Therefore, the displacement and
velocity of a body are directed along the tangent to the
path of motion at each given instant.

In many cases one must add and subtract velocities
according to the rule for vectors. The need to add veloc-
ities arises when a body participates simultaneously in
two motions. Such cases are not uncommon: a person
walks inside a train and, in addition, moves together
with the train; a drop of water trickling down the win-
dow pane of a train moves downwards under the action
of its weight and travels along with the train; the Earth
moves around the Sun and together with the Sun moves
with respect to the other stars. In all these and other
similar cases, velocities are added in accordance with
the rule for adding vectors.
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Figure 1.5

If both motions take place along a single line, then
vector addition reduces to ordinary addition when both
motions have the same direction, and to subtraction when
they have opposite directions.

But what if the motions take place at an angle? Then we
turn to geometrical addition.

If in crossing a swiftly flowing river you steer perpen-
dicular to the current, you will be carried downstream.
The boat participates in two motions: across the river
and along the river. The total velocity of the boat is
shown in Figure 1.5.

Another example. What does the motion of a stream
of raindrops look like from the window of a train? You
have no doubt observed rain from train windows. Even
in windless weather it moves slantwise, as if a wind
blowing towards the train from ahead were deflecting it
(Figure 1.6).

If the weather is windless, a raindrop falls vertically
downwards. But during the time the drop is falling near
the window, the train has travelled a fair distance leaving
the vertical line of fall behind; this is why the rain seems
‘to be slanting.

If the velocity of the train is vi, and the velocity of
the raindrop is v,, then the velocity of its fall relative
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Figure 1.6

to a passenger of the train is obtained by the vector
subtraction of v; from v;.* The velocity triangle is shown
in Figure 1.6. The direction of the slanting vector indi-
cates the direction of the rain; now it is clear why we see
the rain slanting. The length of the slantwise arrow yields
the magnitude of this velocity in the chosen scale. The
faster the train goes and the slower the raindrop falls,
the more the stream of raindrops seems to slant.

Force Is a Vector

Force, just as velocity, is a vector quantity. For it
always acts in a definite direction. Therefore, forces should
also be added according to the rules which we have just
discussed.

We often observe examples in real life which illustrate
the vector addition of forces. A rope on which a pack-
age is hanging is shown in Figure 1.7. A person is pulling
the package to one side with a string. The rope is being
stretched by the action of two forces: the force of the

*Here and in what follows we shall use bold-face letters to
denote vectors, i.e. characteristics for which not only magni-
tude but also direction is of significance.
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weight of the package and the force that the person
exerts on it.

The rule of vector addition of forces allows us to deter-
mine the direction of the rope and compute the tension.
The package is at rest; hence, the sum of the forces acting
on it must be equal to zero. And we can also put it this
way—the tension in the rope must be equal to the sum
of the weight of the package and the force pulling it to
one side with the aid of the string. The sum of these
forces yields the diagonal of a parallelogram which will
be directed along the rope (for otherwise it could not be
“annihilated” by the tension in the rope). The length
of this arrow will represent the tension. The two forces
acting on the package could be replaced by such a force.
The vector sum of forces is therefore sometimes called
the resultant.

There very often arises a problem which is inverse to

3—0376
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RESULTANT TENSION

Figure 1.8

the addition of forces. A lamp is suspended on two ropes.
In order to determine the tension in the ropes, we must
decompose the weight of the lamp along these two direc-
tions.

From the end point of the resultant vector (Figure 1.8)
we draw lines parallel to the ropes up to the points of
intersection. The parallelogram of forces is constructed.
Measuring the lengths of the sides of the parallelogram,
we find (in the same scale in which the weight is repre-
sented) the magnitude of the tension in the rope.

Such a construction is called a decomposition of force.
Every number can be represented in an infinite number of
ways as the sum of two or several numbers; the same
thing can also be done with a force vector: any force
can be decomposed into two forces—sides of a parallelo-
gram—one of which can always be chosen arbitrarily.
It is also clear that to each vector there can be attached
an arbitrary polygon.

It is often convenient to decompose a force into two
mutually perpendicular forces—one along a direction of
interest to us and the other perpendicular to this direction.
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Figure 1.9

They are called the tangential and normal (perpendicular)
components of force.

The component of force in a particular direction, con-
structed by a decomposition along the sides of a rectangle,
is also called the projection of the force in this direction.

It is clear that in Figure 1.9

F2=F1+Fh

where F; and F, are the projections of the force in the
chosen direction and normal to it.

Those who know some trigonometry will establish
without difficulty that

Fy=Fcosa

where o is the angle between the force vector and the
direction onto which it is projected.

A very curious example of the decomposition of forces
is given by the motion of a sailboat. How does it manage
to sail against the wind? If you ever watched a sailboat
doing this, you might have noticed that it zigzagged.
Sailors call such a motion tacking.

Of course, it is impossible to sail directly against

3
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Figure 1.10
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the wind, but why is it possible to sail against the wind
at all, if only at an angle?

The possibility of beating against the wind is based
on two circumstances. The wind always pushes the sail
at right angles to the latter’s plane. Look at Figure 1.10a:
the force of wind is decomposed into two components—
one of them Fg,, makes the air slip past the sail and,
hence, does not act on the sail, and the other—the normal
component—exerts pressure on the sail.

But why does the boat move not in the direction of
the wind but roughly in the direction of the bow? This is
explained by the fact that a movement of a boat across
its keel line would meet with a very strong resistance on
the part of the water. Therefore, in order for a boat to
move forward, it is necessary that the force pressing on the
sail should have a forward component along the keel
line. This aspect is illustrated in Figure 1.10b.

In order to find the force which drives the boat forward,
we must decompose the force of the wind a second time.
We have to decompose the normal component along and
across the keel line. It is just the tangential component
that drives the boat at an angle towards the wind, and
the normal component is balanced by the pressure of the
water exerted on the keel. The sail is set in such a way
that its plane bisects the angle between the direction of
the path of the boat and that of the wind.

Inclined Plane

It is more difficult to overcome a steep rise than a
gradual one. It is easier to roll a body up an inclined
plane than to lift it vertically. Why is this so, and how
much easier is it? The law of the addition of forces per-
mits us to gain an understanding of these matters.

Figure 1.11 depicts a waggon on wheels which is held
on an inclined plane by the tension in a string. Besides
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Figure 1.11

this pull, two other forces are acting on the waggon—its
weight and the force of the reaction of the support which
always acts along the normal to a surface, regardless of
whether the surface of the support is horizontal or in-
clined.

As has already been said, if a body rests on a support,
the latter counteracts the pressure or, as we say, creates
the reaction force.

We want to know to what degree it is easier to pull
a waggon up along an inclined plane than to lift it verti-
cally.

We decompose the forces in such a way that one com-
ponent is directed along, and the other perpendicular to,
the surface on which the body is moving. In order for the
body to be at rest on the inclined plane, the tension in
the string must balance only the tangential component.
As for the second component, it is balanced by the reac-
tion of the support.

We can find the force we are interested in, i.e. the
tension 7 in the rope, either by means of a geometrical
construction or with the aid of trigonometry. The geomet-
rical construction consists in dropping a perpendicular
from the end point of the weight vector P to the plane.

One can find two similar triangles in the figure. The
ratio of the length [ of the inclined plane to its height
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h is equal to tho ratio of the corresponding sides of the
force triangle. Thus,

T _h

P T

The less the plane is inclined (the smaller the value of
h/l), the easier it will be, of course, to pull the body up-
wards.

And now, for those who are acquainted with trigono-
metry: since the angle between the normal component of
the weight and the weight vector is equal to the angle of
inclination o of the plane (these are angles with mutually
perpendicular sides), we have
f-—sina and T=Psina

Therefore, it is 1/sin a times easier to wheel a waggon
up a plane with the angle of inclination o than to lift
it vertically.

It is helpful to memorize the values of the trigonomet-
ric functions for angles of 30, 45 and 60° Knowing these

numbers for the sine (sin 30° = 1/2; sin 45° = |/ 2/2;

sin 60° = V' 3/2), we get a good idea of the amount of
force saved by moving up an inclined plane.

It is evident from our formulas that for a 30° angle
of inclination, the force we exert will be half the weight
of the body: T = P/2. For angles of 45 and 60°, we have
to pull the rope with forces equal to about 0.7 and 0.9 of
the weight of the waggon. As we see, such steeply in-
clined planes do not make our task much easier,
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Various Points of View
About Motion

The valise is standing in the baggage rack. At the same
time, it is moving together with the train. The house is
standing on the Earth, but it is also moving together
with it. It is possible to say about one and the same
body: it is moving in a straight line, it is at rest, it is
rotating. And all these statements will be true, but
from different points of view.

Not only the graph of the motion but also its proper-
ties can be entirely different if regarded from different
points of view.

Recall what happens to objects on a ship which is being
rocked by the sea. How they misbehave! The ash-tray on
the table overturned and dove headlong under the bed.
The water splashes in the bottle, and the lamp vibrates
like a pendulum. Without any visible cause, some ob-
jects begin moving and others stop. An observer on such
a ship might say that the basic law of motion is that
at any moment an unfastened object can start travelling
in any direction with an arbitrary speed.

This example shows that among the various points
of view on motion there are those which are really awk-
ward.

But what point of view is the most “reasonable”?

If suddenly, for no reason whatsoever, the lamp on the
table were to bend over, or the paper-weight were to
jump, then at first you would think that it was only
your imagination, If these miracles were repeated, you
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would urgently start looking for the cause which drove
these bodies out of the state of rest.

It is therefore perfectly natural to regard the point of
view on motion, according to which bodies at rest do
not budge without the action of a force, as a rational one.
Such a point of view seems quite natural: a body is at
rest—hence, the sum of the forces acting on it is equal
to zero; it moved—this happened under the action of
a force.

This point of view presupposes the presence of an
observer. However, it is not the observer himself who
is of interest to us, but his location. Therefore, instead
of “point of view on motion”, we shall say “frame of refer-
ence in which the motion is regarded”, or simply “frame
of reference”.

For us, inhabitants of the Earth, an important frame
of reference is the Earth. However, bodies moving on the
Earth, say, a ship or a train, can also frequently serve
as frames of reference.

Let us now return to the “point of view” on motion which
we called rational. This frame of reference has a name—
it is called inertial.

We shall see a bit later where this term comes from.

Consequently, the properties of an inertial frame of
reference are as follows: bodies in a state of rest with
respect to such a frame of reference do not feel the action
of forces. Therefore, not a single motion in such a frame
of reference is begun without the action of a force. The
simplicity and convenience of such a frame of reference
are obvious. It would pay to study motion in
them.

The fact that the frame of reference associated with
the Earth does not differ greatly from an inertial one is
extremely important. We can therefore begin our inves-
tigation of the basic regularities of motion considering
them from the point of view of the Earth. Nevertheless,
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we must bear in mind that, strictly speaking, everything
that will be said in the next section deals with an inertial
frame of reference.

The Law of Inertia

There can be no quarrel —an inertial frame of reference
is convenient and has invaluable advantages.

But is such a frame of reference unique or do there,
perhaps, exist many inertial frames of reference? The
Ancient Greeks, for example, took the former point of
view. In their writings we find many naive reflections
on the causes of motion. These ideas find their completion
in Aristotle. In the opinion of this philosopher, the
natural state of a body is rest—of course, with respect
to the Earth. Every displacement of a body with respect
to the Earth must have a cause—a force. But if there is
nothing causing a body to keep moving, it must halt,
return to its natural state. And this is what rest with
respect to the Earth is. From this point of view, the
Earth is the unique inertial frame of reference.

We are indebted to the great Italian Galileo Galilei
(1564-1642) for discovering the truth and disproving
this false but congenial to naive psychology opinion.

Let us think over the Aristotelian explanation of
motion and search familiar phenomena for confirmation
or refutation of the idea that rest is the natural state
of bodies on the Earth.

Imagine that we are in an airplane taking off from an
airport at dawn. The Sun has not yet warmed up the air,
so there are no “air-pockets”, which cause many passen-
gers unpleasantness. The airplane is moving smoothly,
imperceptibly. If you don’t look out of the window, you
won't even notice that you're flying. A book is lying on
an empty seat; an apple is at rest on a table. All objects
inside the airplane are motionless. Is this how things
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should be if Aristotle were right? Of course not. As a
matter of fact, according to Aristotle, the natural state
of a body is rest on the Earth. But then why are all the
objects not piled up at the rear wall of the airplane
trying to lag behind its motion, “wanting” to return to
the state of “true” rest? What makes the apple lying on
the table, hardly touching the surface of the table, move
with an enormous speed of several hundred kilometres
an hour?

What is the correct answer to the question of the
cause of motion? Let us first take up the question of why
moving bodies come to a stop. For example, why does
a ball rolling along the Earth’s surface come to a stop?
In order to give a correct answer, we should consider
in which cases a ball comes to a stop quickly, and in
which cases slowly. We don’t need any special experi-
ments for this. We know perfectly well from our practical
experience that the smoother the surface on which a ball
is moving, the farther it will roll. From these and similar
experiences, there arises the natural idea of the force
of friction as a hindrance to motion, as the cause for the
slowing down of an object which is rolling or slipping
along the Earth. Friction can be decreased in various
ways. The more we work on the destruction of every
kind of resistance to motion (for example, the smoother
we construct our roads, the better we lubricate our engines
and the more we perfect our ball bearings), the greater
the distance a moving body will cover freely without
being acted on by any external force.

The following question arises: What would happen if
there were no resistance, if the force of friction were
absent? Obviously, in such a case a motion would continue
infinitely, with a constant speed and along one and the
same straight line.

We have formulated the law of inertia in about the
same form as it was first given by Galiles. Inertia is
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Galileo Galilei (1564-1642)—a great Italian physicist and astron-
omer, the first to apply the experimental method of investigation
in science. Galileo introduced the concept of inertia, established
the relativity of motion, investigated the laws of free fall, of the
motion of bodies on an inclined plane, and of the motion of an
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a brief designation for this ability of a body to move recti-
linearly and uniformly  without any cause, contrary to
Aristotle. Inertia is an inalienable property of each
particle in the Universe.

In what way can we check the validity of this remark-
able law? As a matter of fact, it is impossible to create
conditions under which no forces would be acting on a
moving body. Even though this is true, we can, on the
other hand, observe the opposite. In every case when
a body changes the speed or direction of its motion, it
is always possible to find a cause—a force responsible
for this change.

A body acquires speed in falling to the Earth; the cause
is the Earth’s gravitation. A stone twirls on a string
circumscribing a circle; the cause deflecting the stone
from a rectilinear path is the tension in the string. If
the string breaks, the stone will fly off in the same direc-
tion in which it was moving at the moment the string
broke. An automobile running with the motor turned ofi
slows down; the causes are air resistance, friction between
the tires and the road, and imperfections in the ball
bearings.

The law of inertia is the foundation on which the
entire study of the motion of bodies rests.

object thrown at an angle to the horizontal, used a pendulum for
the measurement of time. For the first time in the history of
mankind, he looked at the sky through a telescope, discovered
many new stars, proved that the Milky Way consists of an enor-
mous number of stars, discovered Jupiter's satellites, sunspots and
the rotation of the Sun, investigated the structure of the Moon’s
surface. Galileo actively supported Copernicus’ heliocentric system
banned in those days by the Catholic church. Persecution by the
Inquisition darkened the last ten years of the great scientist’s
life.
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Motion Is Relative

The law of inertia leads to the derivation of the mul-
tiplicity of inertial frames of reference.

Not one but many frames of reference exclude “cause-
less” motions.

If one such frame of reference is found, we can imme-
diately find another, moving (without rotation) uniformly
and rectilinearly with respect to the first. Moreover, one
inertial frame of reference is not the least bit better
than the others, does not in any way differ from the others.
It is in no way possible to find a best frame of reference
among the multitude of inertfal frames of reference. The
laws of motion of bodies are identical in all inertial
frames of reference: a body is brought into motion only
under the action of forces, is slowed down by forces, and
in the absence of any forces acting on it either remains
at rest or moves uniformly and rectilinearly.

The impossibility of distinguishing some particular
inertial frame of reference with respect to the others by
means of any experiments whatsoever constitutes the
essence of the Galilean principle of relativity—one of the
most important laws of physics.

But even though the points of view of observers study-
ing phenomena in two inertial frames of reference are
fully equivalent, their judgements about one and the
same fact will differ. For example, one of the observers
will say that the seat on which he is sitting in a moving
train is located at the same place in space all the time,
but another observer standing on the platform will as-
sert that this seat is moving from one place to another.
Or one observer firing a rifle will say that the bullet flew
out with a speed of 500 m/s, while another observer, if
he is in a frame of reference which is moving in the same
direction with a speed of 200 m/s, will say that the bullet
is flying considerably slower, with a speed of 300 m/s,
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Who of the two is right? Both. For the principle of the
relativity of motion does not allow a preference to be
given to any single inertial frame of reference.

It turns out that no unconditionally true (as is said,
absolute) statements can be made about a region of space
or the velocity of motion. The concepts of a region of
space and the velocity of motion are relative. In speaking
about such relative concepts, it is necessary to indicate
which inertial frame of reference one has in mind.

Therefore, the absence of a single unique “correct” point
of view on motion leads us to recognize the relativity of
space. Space could have been called absolute only if we
were able to find a body at rest in it—at rest from the
point of view of all observers. But this is precisely what
is impossible to do.

The relativity of space means that space may not be
pictured as something into which bodies have been im-
mersed.

The relativity of space was not recognized immediately
by science. Even such a brilliant scientist as Newton
regarded space as absolute, although he also understood
that it would be impossible to prove this. This false point
of view was widespread among a considerable number of
physicists up to the end of the 19th century. The reasons
for this are apparently of a psychological nature: we are
simply very much accustomed to see the immovable
“same places in space” around us.

We must now figure out what absolute judgements can
be made about the character of motion.

If bodies move with respect to one frame of reference
with velocities v, and v,, then their difference (vector,
of course) v; — v, will be identical for any inertial
observer, since both of the velocities v, and v, undergo
the same change when the frame of reference is changed.

Thus, the vector difference between the velocities of
two bodies is absolute. If so, the vector increment in the
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velocity of one and the same body for a definite interval
of time is also absolute, i.e. its value is identical for all
inertial observers.

The Point of View
of a Celestial Observer

We decided to study motion from the point of view of
an inertial frame of reference. Won't we then have to
reject the services of the terrestrial observer? As a matter
of fact, the Earth rotates about its axis and revolves
around the Sun, as was proved by Nicolaus Copernicus
(1473-1543). It may be difficult for the reader to feel now
how revolutionary Copernicus’ discovery was to realize
that Giordano Bruno was burned at the stake, and Galileo
suffered humiliation and exile for championing the truth
of Copernicus’ ideas.

What was it that Copernicus’ genius accomplished?
Why may we place the discovery of the Earth’s rotation
and revolution on one plane with the ideas of human jus-
tice for which progressive-minded people have been will-
ing to give up their lives?

In his Dialogue on the Two Chief Systems of the World
(the Ptolemaic and the Copernican), for whose writing
he was persecuted by the Inquisition, Galileo gave the
opponent of the Copernican system the name Simplicio,
which means “simpleton”.

In fact, from the point of view of a simple direct observ-
er of the world, that which is not very aptly called
“common sense”, the Copernican system seems mad. How
can the Earth rotate? As a matter of fact, I see it and
it is stationary, but the Sun and the stars are really
moving.

The attitude of theologians to Copernicus’ discovery
is shown by the following conclusion of the Assembly of
Theologians (1616):
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“The doctrine that the Sun is located at the centre of
the world and is immovable is false and absurd, formally
heretical and contrary to the Bible. More than that, the
doctrine that the Earth does not lie at the centre of
the world and moves, possessing in addition a daily
rotation, is false and absurd from the philosophical point
of view and at least erroneous from the theological one.”

This conclusion, in which a lack of understanding of the
laws of nature and a belief in the infallibility of religious
dogmas are mixed up with a false “common sense”, testi-
fies better than anything else to the strength of Coperni-
cus’ spirit and mind, and those of his disciples having
so resolutely broken with the “truths” of the 17th century.

But let us return to the question posed above.

If the velocity of an observer’s motion changes or if
he rotates, he must be deleted from the list of “correct”
observers. But it is precisely under these conditions that
an observer on the Earth is found. However, if the change
in velocity or the observer’s rotation during the time
he is investigating a motion is small, such an observer
may be conditionally regarded as “correct” Will this
pertain to an observer on the Earth?

During a second the Earth will turn 1/240 of a degree,
i.e. about 0.000 07 radian. This isn't very much. The
Earth is therefore quite inertial with respect to a great
many phenomena.

Nevertheless, one can no longer forget about the Earth’s
rotation when dealing with prolonged phenomena.

Under the dome of St. Isaac Cathedral in Leningrad
hangs an enormous pendulum. If we start oscillating this
pendulum, within a short time it will be possible to notice
that the plane of its oscillation is slowly turning. After
several hours, the plane of oscillation will turn through
a noticeable angle. Such an experiment with this kind of
pendulum was first performed by the French scientist
Léon Foucault (1819-1868), and has born his name ever

4—0376
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Figure 2.1

since. The Foucault experiment yields a visual demon-
stration of the Earth’s rotation (Figure 2.1).

Thus, if the observed motion continues for a long time,
we shall be forced to reject the services of the terrestrial
observer and take a frame of reference associated with the
Sun and the stars as our ba sis. Such a frame of reference
was used by Copernicus assuming the Sun and the sur-
rounding stars to be fixed. However, in reality Coper-
nicus’ frame of reference is not completely inertial.

The Universe consists of a great number of star-clus-
ters—islands of the Universe, which are called galaxies.
In the galaxy to which our solar system belongs, there
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are approximately one-hundred billion stars. The Sun
is revolving around the centre of this galaxy with a period
of about 180 million years and a speed of 250 km/s.

What error will be made by assuming a solar observer
to be inertial?

For a comparison of the merits of terrestrial and solar
observers, let us compute the angle through which the
solar frame of reference turns during a second. If a com-
plete revolution takes place every 180 X 108 years
(6 X 10'® s), then in one second the solar frame of refer-
ence will turn through an angle of 6 X 10~1¢ degree or
10-1® radian. We may say that the solar observer is
100 billion times “better” than the terrestrial one.

Desiring an even closer approximation to an inertial
frame of reference, astronomers take a frame of reference
associated with several galaxies as a basis. Such a frame
of reference is the most inertial of all possible kinds. It
is impossible to find a better frame of reference.

Astronomers may be called star gazers in two senses:
they observe stars and describe the motions of heavenly
bodies from the point of view of the stars.

Acceleration and Force

In order to characterize the velocities that are not
constant, physicists use the concept of acceleration.

The change in velocity during a unit of time is called
acceleration. Instead of saying “the velocity of a body
changed by a in 1 second,” we say more briefly “the accel-
eration of a body is equal to a.”

If we denote by v; the speed of a rectilinear motion at
the first instant, and by v, at the next, the rule for cal-
culating the acceleration a is expressed by the formula
Vy-— Uy

t
where ¢ is the time during which the speed builds up.

a—=

‘*
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Speed is measured in cm/s (or m/s, etc.), time in sec-
onds. Hence, acceleration is measured in cm/s per
second. A number of centimetres per second is divided
by seconds. Thus, the unit of acceleration will be cm/s?
(or m/s?, etc.).

Of course, the acceleration can change during the course
of a motion. However, we shall not complicate our treat-
ment with this inessential fact. We shall implicitly as-
sume that the velocity changes uniformly during the
course of a motion. Such a motion is called uniformly
accelerated.

What is acceleration of curvilinear motion?

Since velocity is a vector, a change (difference) in veloc-
ity is a vector, and so acceleration is also a vector. In
order to find the acceleration vector, one must divide
the vector difference between the velocities by the time.
But we have already described how to construct a vector
change in velocity.

The highway takes a turn. lL.et us note two nearby
positions of a car and represent its velocities by vectors
(Figure 2.2). Subtracting these vectors, we obtain a
quantity which is by no means equal to zero; dividing
it by the elapsed time, we find the acceleration vector.
An acceleration took place even when the speed around
the turn did not change. Curvilinear motion is always
accelerated. Only uniform rectilinear motion is unaccel-
erated.

In speaking about the velocity of motion of a body,
we always stipulated what our point of view was with
regard to the motion. The velocity of a body is relative.
From the point of view of one inertial frame of reference
it can be great, and from the point of view of another
inertial frame of reference it can be small. Don’t we have
to make the same kind of stipulations when speaking
about acceleration? Of course not. Unlike velocity, accel-
eration is absolute. From the point of view of all imagin-
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Figure 2.2

able inertial frames of reference acceleration will be
identical. As a matter of fact, acceleration depends on
the difference in the velocity of a body between the first
and second instants of time, and this difference, as we
already know, wii! be identical from all points of view,
i.e. is absolute.

If no force is acting on a body, it can only move with-
out acceleration. Conversely, the action of a force on
a body accelerates it; moreover, the greater the force,
the greater will be the acceleration. The faster we want
to move a loaded waggon, the more we have to strain
our muscles. As a rule, two forces act on a moving body:
accelerating—the pull, and decelerating—the force of
friction or air resistance.

The difference between these two forces, the so-called
resultant force, may be directed along or against the
motion. In the first case, the body speeds up its motion;
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in the second case, it slows it down. If these oppositely
acting forces are equal to each other, the body will move
uniformly, just as though there were no forces acting
on it.

But how is a force related to the acceleration it creates?
The answer turns out to be very simple. The acceleration
is proportional to the force:

aoc F

(The symbol o« denotes “is proportional to”.)

Another question still remains to be answered: How do
the properties of a body influence its ability to accelerate
its motion under the action of one or another force? For
it is clear that one and the same force acting on different
bodies will give them different accelerations.

We shall find the answer to the question we have posed
in the remarkable fact that all bodies fall to the Earth
with the same acceleration. This acceleration is denoted
by the letter g. In the vicinity of Moscow g = 981 cm/s2.

Direct observation will not, at first sight, confirm the
identity of acceleration for all bodies. The fact is that
when a body is falling under ordinary conditions, besides
gravity there is another, “hindering” force acting on it—
air resistance. Philosophers of antiquity were quite con-
fused by the difference in the way light and heavy bodies
fall. A piece of iron falls quickly, but a feather glides
through the air. A sheet of paper falls slowly to the ground,
but if we roll it up, this same sheet will fall con-
siderably faster. The fact that the atmosphere distorts
the “true” picture of the motion of a body under the action
of the Earth was already understood by the Ancient
Greeks. However, Democritus thought that even if the
air were deleted, heavy bodies would always fall faster
than light ones. But air resistance can have the opposite
effect, for example, a sheet of aluminium foil (all un-
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rolled) will fall more slowly than a small ball made by
crumpling a piece of paper.

Incidentally, metallic wire of such a thinness (several
microns) is so manufactured now that it glides through
the air like a feather.

Aristotle thought that all bodies should fall identically
in a vacuum. However, he used this theoretical conclusion
to make the following paradoxical deduction: “The falling
of different bodies with the same speed is so absurd that
the impossibility of the existence of vacuum is
clear.”

None of the scientists of antiquity or the Middle Ages
guessed that it could be experimentally verified whether
bodies fall to the Earth with different or the same acceler-
ations. Only Galileo demonstrated by means of his re-
markable experiments (he investigated the motion of
balls down an inclined plane and the fall of Dbodies
thrown from the top of the leaning tower of Pisa) that
at any given point on the Earth all bodies fall with the
same acceleration, regardless of their mass. At the pres-
ent time such experiments are quite easily performed
with the aid of a long tube out of which the air has been
pumped. A feather and a stone fall identically in such
a tube: only one force acts on the bodies, and that is
weight; air resistance has been reduced to zero. In the
absence of air resistance, the fall of any body is a uni-
formly accelerated motion.

Let us now return to the question posed above. How
does the ability of a body to accelerate its motion under
the action of a given force depend on its properties?

Galileo’s law states that all bodies, regardless of their
masses, fall with one and the same acceleration; hence,
a mass of m kg under the action of a force of F kgf moves
with an acceleration g.

Now suppose we are no longer talking about falling
bodies, and a force of 1 kgf is acting on a mass of m kg.
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Since acceleration is proportional to force, it will be m
times less than g.

We have arrived at the conclusion that the acceleration
a of a body for a given force (1 kgf in our example) is
inversely proportional to its mass.

Uniting both conclusions, we may write:

F
a o —
m

i.e. for a constant mass the acceleration is directly pro-
portional to the force, and for a constant force inversely
proportional to the mass.

This law, relating acceleration to the mass of a body
and the force acting on it, was discovered by the great
English scientist Sir Isaac Newton (1643-1727), and
bears his name.*

Acceleration is directly proportional to the acting
force and inversely proportional to the mass of a body,
and does not depend on any other properties of the body.
It follows from Newton’s law that it is precisely the mass
which is the measure of the “inertness” of a body. For
identical forces, it is more difficult to accelerate a body
of greater mass. We see that the concept of mass, which
we first knew as a “modest” quantity determined by
weighing a body on a balance scale, has acquired a new
deep meaning: the mass characterizes the dynamic prop-
erties of a body.

Newton’s law may be written as follows:

kF = ma

where k is a constant coefficient. This coefficient depends
on the chosen units.

*Newton himself showed that motion is subject to three laws,
The law which we are now discussing appears on Newton's
list as the second. He called the law of inertia the first law,
and the law of action and reaction the third.
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Instead of making use of the unit of force (kgf) we
already have available, we shall act in a different manner.
Just as physicists often try to do, we shall choose our
unit of force in such a way that the coefficient of pro-
portionality in Newton's law becomes equal to unity.
Then Newton’s law takes the following form:

F =ma

As we have already said, in physics it is customary to
measure mass in grams, distance in centimetres, and time
in seconds. The system of units based on these three fun-
damental quantities is called the cgs system.

Let us now choose, using the principle formulated
above, the unit of force. A force will then obviously be
equal to unity when it imparts the acceleration of 1 cm/s?
to the mass of 1 g. Such a force received the name dyne
(dyn) in this system.

According to Newton’s law, F = ma, the force will
be expressed in dynes if we multiply m g by a cm/s?. One
therefore makes use of the following notation:

1 dyn =1 g-cm/s?

The weight of a body is usually denoted by the letter
P, The force P gives the body an acceleration g, and in
dynes we obviously have

P =mg

But we already had a unit of force—the kilogram-force
(kgf). We immediately find the relation between our
new and old units from the last formula:

1 kgf = 981 000 dyn

A dyne is a very small force. It is equal to about one
milligram of weight.
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Sir Isaac Newton (1643-1727)—a brilliant English physicist and
mathematician, one of the greatest scientists in the history of
mankind. Newton formulated the basic concepts and laws of
mechanics, discovered the law of universal gravitation, creating
by the same token a physical picture of the world with re-
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We have already mentioned the system of units (SI).
The name for the new unit of force, newton (N), is fully
deserved. For such a choice of units, Newton’s law will
look as simple as possible; this new unit is defined as
follows:

1 N =1 kg-m/s?

i.e. 1 N is the force necessary to impart the acceleration
of 1 m/s? to the mass of 1 kg.

It is not difficult to relate this new unit to the dyne
and the kilogram-force:

1 N = 100 000 dyn = 0.102 kgf

Rectilinear Motion
with Constant Acceleration

Such motion arises, according to Newton's law, when
the resultant force acting on a body, speeding it up or
slowing it down, is constant.

Such conditions arise rather frequently, even though
only approximately: a car moving with its motor cut off
slows down under the action of the more or less constant

mained inviolable until the beginning of the 20th century. He
developed a theory of the motion of celestial bodies, explained
the most important special features of the Moon’s motion and
gave an explanation for the tides. In optics, some remarkable
discoveries facilitating the rapid growth of this branch of physics
are due to Newton. Newton devised a powerful method of the
mathematical investigation of nature; the honour of creating the
differential and integral calculus belongs to him. This exerted an
enormous influence on the entire subsequent development of
physics and facilitated the introduction of mathematical methods
of research.
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force of friction: a weighty object falls from a height
under the action of the constant force of gravity.
Knowing the magnitude of the resultant force, and
also the mass of a body, we can find the magnitude of the
acceleration according to the formula a = F/m. Since

v—1,

a=
t

where ¢ is the time of the motion, v is the final speed, and
v, is the initial speed, with the aid of this formula it is
possible to answer a series of questions of, say, the fol-
lowing type: How long will it take a train to come to a
halt if the decelerating force, the mass of the train and
the initial speed are known? Or how much speed will a
car gather if the power of the motor, the resistance, the
mass of the car and the duration of acceleration are
known?

~ We are often interested in knowing the distance covered
by a body in a uniformly accelerated motion. If the
motion is uniform, the distance covered is found by mul-
tiplying the speed of the motion by its time. If the motion
is uniformly accelerated, the calculation of the distance
covered is carried out as though the body were moving
uniformly for the same time ¢ with the speed equal to
half the sum of the initial and final speeds:

s=%(vo+v)t

Thus, for uniformly accelerated (or decelerated) motion,
the distance covered by a body is equal to the product
of half the sum of the initial and final speeds by the time
of the motion. The same distance would be covered during
the same time in a uniform motion with speed (v, + v)/2.
In this sense, one can say that (v, + v)/2 is the average
speed of the uniformly accelerated motion.

It is helpful to compose a formula which would.show
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the dependence of the distance covered on the accelera-
tion. Substituting v = v, + at in the last formula, we
find:

s=v¢,t—l—%at2
or, if the motion occurs without any initial speed,
1 .
-—Tat

If a body travels 5 m in one second, then in two seconds
it will travel (4 X 5) m, in three seconds (9 X 5) m,
etc. The distance travelled grows in proportion to the
square of the time.

A heavy body falls from a height in accordance with
this law. The acceleration of free fall is equal to g, and
our formula acquires the following form:

_ o,

-2
if ¢ is expressed in seconds and g in centimetres per
second per second.

If a body could fall without hindrance for some 100 s,
it would cover an enormous distance from the beginning
of its fall—about 50 km. Moreover, only a mere 0.5 km
would be covered in the first 10 s—this is what accelerated
motion means.

But what speed will a body develop in falling from a
given height? To answer this question we shall need for-
mulas relating the covered distance to the acceleration
and the speed. Substituting the time of the motion
t = (@ —vy)/a in s = (1/2) (v, + v) t, we obtain:

1
s =5~ (V2—1))
or, if the initial speed is equal to zero,

s=2 . v=V2as
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Ten metres is the height of a small two- or three-storey
house. Why is it dangerous to jump to the ground from
the roof of such a house? A simple calculation shows that
the speed of such a free fall would reach the value v =
=V2x 9.8 x 10 m/s = 14 m/s ~ 50 km/h, and this
is, after all, the speed of a car within city limits.

Air resistance will not reduce this speed much.

The formulas we have singled out are employed for
the most varied computations. Let us apply them in order
to see how motions take place on the Moon.

In H. G. Wells’ novel The First Men in the Moon we read
about the surprises experienced by travellers in their
fantastic trips. On the Moon, the acceleration of gravity
is approximately six times less than terrestrial. If a fall-
ing body on the Earth covers 5 m in the first second, it
will “float” down only 80 cm in all on the Moon (the
acceleration there is about 1.6 m/s?).

The formulas we have written out permit us to rapidly
calculate the lunar “miracles”.

A jump from a height of 2 m takes ¢ = }/ 2h/g s. Since
lunar acceleration is six times less than terrestrial, the
jump will require )/ 6 ~ 2.45 times more time on the
Moon. By how many times will the final speed of the
jump be, decreased (v =}/ 2gh)?

One can jump safely from the roof of a three-storey
house on the Moon. The height of a jump with the same
initial speed will be increased by a factor of six (b = v?/2g).
A child will be able to jump higher than the record set
on the Earth.

Path of a Bullet

People have been solving the problem of throwing an
object as far as possible from time immemorial. A stone
thrown by hand or shot from a sling, an arrow flown from
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Figure 2.3

a bow, a rifle bullet, an artillery shell, a ballistic mis-
sile—here is a brief list of successes in this field.

The thrown object will move in a curved line called
a parabola. It can be constructed without difficulty if
we regard the motion of a thrown body as the sum of two
motions—horizontal and vertical —taking place simulta-
neously and independently. The acceleration of free fall
is vertical, and so a flying bullet moves horizontally by
inertia with a constant velocity and simultaneously falls
to the Earth vertically with a constant acceleration. But
how can we add these two motions?

Let us begin with a simple case—when the initial
velocity is horizontal (say, we are dealing with a shot
from a rifle whose barrel is horizontal).

Take a sheet of graph paper and draw a vertical and a
horizontal lines (Figure 2.3). Since the two motions are
taking place independently, in ¢ seconds the body is
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h,

Figure 2.4

displaced by an interval of vy to the right and an interval
of gt?/2 downwards. Mark off the segment v ¢ along the
horizontal line, and from its end point, the vertical seg-
ment gt%2. The end point of the vertical segment repre-
sents the point where the body will be in ¢ seconds.

This construction must be carried out for several points,
i.e. for several instants of time. A smooth curve—the
parabola representing the trajectory of the body—will
pass through these points. The more frequently one lays
off these points, the more accurately will the trajectory
of the flight of the bullet be constructed.

A trajectory has been constructed in Figure 2.4 for the
case when the initial velocity v, is directed at an angle.

The vector v, should first of all be decomposed into its
vertical and horizontal components. On the horizontal
line we mark off v,ot—the distance through which the
bullet will move horizontally in ¢ seconds.
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But the bullet simultaneously performs an upward
motion. In ¢ seconds it will rise to a height of A =
= Uyert — gt%/2. By means of this formula, substituting
in it the instants of time of interest to us, we can compute
the vertical displacements and mark them off on the
vertical axis. The values of » will first increase (rise)
and then decrease.

It now remains to mark the points of the trajectory on
the graph, just as we did in the preceding example, and
draw a smooth curve through them.

If the rifle barrel is held horizontally, the bullet will
soon burrow into the ground; if the barrel is vertical, it
will fall at the place where the shot was fired. Therefore,
in order to shoot as far as possible, one must fix the barrel
of the rifle at some angle to the horizontal. But at what
angle?

Let us again employ the same device—decompose the
initial velocity vector into its two components: a vertical
vector equal to v;, and a horizontal vector to v,. The
time between the moment the shot is fired until the moment
the bullet reaches its highest point is equal to v,/g. Note
that the bullet will be falling downwards for the same
length of time, i.e. the complete time of the flight of the
bullet until it lands on the ground is 2v,/g.

Since the horizontal motion is uniform, the range of
the flight is equal to

S=M
g

(we have ignored the height of the rifle above ground level
in our calculation).

We have obtained a formula which shows that the range
of the flight is proportional to the product of the velocity
components. For what firing direction will this product
be greatest? This question can be expressed by means of
the geometrical rule of the addition of vectors. The veloc-

5—0376
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ities v; and v, form the sides of the velocity rectangle;
a diagonal in it is the total velocity v. The product v,v,
is equal to the area of this rectangle.

Our question reduces to the following: Given the length
of a diagonal, what sides must be taken for the area of
the rectangle to be maximum? It is proved in geometry
that this condition is satisfied by a square. Therefore, the
range of the flight of the bullet will be greatest when
V; = U,, i.e. when the velocity rectangle reduces to a
square. A diagonal of the velocity square forms an angle
of 45° with the horizontal—this is precisely the angle
at which the rifle must be held for the bullet to fly as far
as possible.

If v is the total velocity of the bullet, then in the case
of a square we have v; = v, = v/} 2. The range-of-flight
formula for this optimal case looks as follows: s = v?/g,
i.e. the range will be twice as great as the maximum height
of a bullet fired upwards with the same initial speed.

The maximum height of a bullet fired at an angle of
45° will be h = v}/2g = v¥*/4g, i.e. four times less than
the range of flight.

It should be admitted that the formulas we have been
applying yield exact results only in the case, quite remote
from practice, when air is absent. In many cases air
resistance plays a decisive role and radically changes
the entire picture.

Circular Motion

If a point moves around a circle, the motion is ac-
celerated, if only because the velocity is changing its
direction all the time. The speed may remain constant,
and we shall confine our attention to precisely such a
case.

We shall draw the velocity vectors at successive time
intervals and transfer their initial points to a single
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Figure 2.5

point. (We have the right to do this.) If a velocity vector
is rotated through a small angle, the change in velocity,
as we know, will be represented by the base of an isosceles
triangle. Let us construct the changes in velocity during
the course of a complete revolution of the body (Figure 2.5).
The sum of the magnitudes of the changes in velocity
during a complete revolution will be equal to the sum
of the sides of the depicted polygon. In constructing each
small triangle, we have implicitly assumed that the
velocity vector changed by jumps, but its direction is
actually changing continuously. It is perfectly clear that
the smaller we take the vertex angles of the small tri-
angles, the less will be our error. The smaller the sides of
our polygon, the closer will they cling to the circle of
radius v. Consequently, the exact value of the sum of the
magnitudes of the changes in velocity during the course
of the revolution of a point will be the circumference

34
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Figure 2.6

2nv of the circle. The magnitude of the acceleration is
found by dividing it by the time of a complete revolu-
tion T: a = 2w/ T.

The time of a complete revolution in motion around
a circle of radius R can be expressed in the form 7 =
= 2nR/v. Substituting this expression in the preceding
formula, we obtain the following for the acceleration:
a = v¥R.

For a constant radius of rotation, the acceleration is
proportional to the square of the speed. For a given speed,
the acceleration is inversely proportional to the radius.

This same reasoning shows us how the acceleration of
a circular motion is directed at each given instant. The
smaller the vertex angle of the isosceles triangles which
we used for our proof, the nearer the angle between the
increment in velocity and the velocity will be to 90°.

Therefore, the acceleration of a uniform circular motion
is directed perpendicular to the velocity; and how are the
velocity and acceleration directed relative to the tra-
jectory? Since the velocity is tangent to the path, the
acceleration is directed along the radius towards the
centre of the circle. These relationships are clearly seen
in Figure 2.6.
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Try to twirl a stone on a string. You will clearly feel
the need for muscular exertion in order to do this. And
why is force necessary? After all, isn’t the body moving
uniformly? The whole point here is that it isn’t! The body
is moving with a constant speed, but the continuous change
in the direction of the velocity makes this motion accel-
erated. Force is necessary in order to deflect the body
from an inertial straight path. Force is needed in order
to create the acceleration v*/R, which we have just
computed.

According to Newton's law, force in always pointed
in the direction of the corresponding acceleration. Con-
sequently, a body revolving around a circle with a con-
stant speed should be subject to the action of a force
directed along a radius towards the centre of the circle.
The force acting on the stone exerted by the string is
called centripetal; it is just this force that supplies the
acceleration v¥ R. Hence, the magnitude of this force
is mv¥/R.

The string pulls the stone; the stone pulls the string.
In these two forces we recognize “an object and its mirror
image” —forces of action and reaction. The force with
which the stone acts on the string is frequently called
centrifugal. The centrifugal force is, of course, equal to
mv* R and directed along the radius out from the centre
of the circle. The centrifugal force acts on the body coun-
teracting the tendency of the revolving body to move
rectilinearly.

What we have said applies also to the case when the
role of the string is played by gravity. The Moon revolves
around the Earth. What is it that retains our satellite?
Why doesn’t it go off, following the law of inertia, in
an interplanetary trip? The Earth is holding on to the
Moon with an “invisible string”—a gravitational force.
This force is equal to mv?/ R, where v is the speed of the
motion along the lunar orbit, and R is the distance to the
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Moon. The centrifugal force in this case acts on the Earth,
but, because of the Earth’s great mass, it only slightly
fnfluences the character of our planet’s motion.

Suppose that it is required to send an artificial Earth
satellite into a circular orbit at a distance of 300 km from
the Earth’s surface. What should be the speed of such a
satellite? At a distance of 300 km, the acceleration of
free fall is somewhat less than on the surface of the Earth,
and is equal to 8.9 m/s?. The acceleration of a satellite
moving in a circle is equal to v¥/ R, where R is the distance
from the centre of the circle (i.e. from the centre of the
Earth)—about 6600 km = 6.6 x 10°® m. On the other
hand, this acceleration is equal to the acceleration of free
fall, g. Consequently, g = v¥R, from which we find
the speed of the satellite’s orbital motion:

v=)gR=¥Y8.9 X 6.6 x 108 = 7700 m/s = 7.7 km/s

The minimum speed necessary for a body thrown hori-
zontally to become an Earth satellite is called the orbital
velocity. It is clear from the example we have given that
this speed is close to 8 kmy/s.

Life at g Zero

Above we found a “reasonable point of view” on motion.
True, the “reasonable” points of view, which we called
inertial frames of reference, turned out to be infinite in
number.

Now, armed with a knowledge of the laws of motion,
we can become interested in what motion looks like
from an “unreasonable” point of view. Our interest in
how inhabitants of non-inertial frames of reference live
is by no means idle, if only because we ourselves are
dwelling in such a system,
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Let us imagine that having grabbed our measuring
instruments we settled down in an interplanetary space-
ship and went travelling in the starry world.

Time flies quickly. The Sun already resembles a little
star. The engine has been cut off and the ship is far away
from gravitating bodies.

Let us now see what’s going on in our flying laboratory.
Why does the thermometer that slid off its nail float in
the air and not fall to the floor? In what a strange position
deviating from the “vertical” has the pendulum hanging
on the wall got stuck! We immediately find the solution:
after all, the ship is not on the Earth but in interplanetary
space. The objects have lost their weight.

Having feasted our eyes on this extraordinary scene,
we decide to change our course. We turn on the jet engine
by pressing a button, and suddenly ... the objects sur-
rounding us seemed to come to life. All bodies which
hadn’t been made fast were brought into motion. The
thermometer fell down, the pendulum began oscillating
and gradually coming to rest assumed a vertical position,
the pillow obediently sagged under the weight of the
valise lying on it. Let us take a look at the instruments
which indicate the direction in which our ship started
accelerating. Upwards, of course! The instruments show
that we chose a motion with an acceleration of 9.8 m/s?,
not very great considering the possibilities of our ship.
Our sensations are quite ordinary; we feel the way we did
on Earth. But why so? As before, we are unimaginably
far from gravitational masses, there is no gravity but
objects have acquired weight.

Let us drop a marble and measure the acceleration
with which it falls to the floor of the spaceship. It turns
out that the acceleration is equal to 9.8 m/s?. This is the
number we have just read on the instruments measuring
the acceleration of the rocket. The ship is moving up-
wards with the same acceleration with which the bodies
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in our flying laboratory are falling downwards.

But what is “up” or “down” in a flying ship? How simple
things were when we lived on the Earth. There the sky
was up and the Earth was down. And here? Our up has
one unquestionable property—it is the direction of the
acceleration of the rocket.

It isn’t difficult to understand the meaning of our
observations: no forces were acting on the marble we
dropped. It moves by inertia, whereas the rocket moves
with an acceleration relative to the marble. To us who
are inside the rocket it seems that the marble is falling
in the direction opposite to that of the acceleration of the
rocket. Naturally, the acceleration of this fall is equal
in magnitude to the true acceleration of the rocket. It
is also clear that all bodies in the rocket will “fall” with
the same acceleration.

We may draw an interesting conclusion from all that
has been said. Bodies start “weighing” when the rocket
accelerates. Moreover, the “gravitational force” has a
direction opposite to that of the acceleration of the rocket,
and the acceleration of free “fall” is equal in magnitude
to that of the motion of the jet ship. And what is most
remarkable is the fact that in practice we are unable to
distinguish the accelerated motion of a frame of reference
from the corresponding gravitational force.* If we were
inside a spaceship with closed windows, we could not tell
whether we were at rest on the Earth or moving with
an acceleration of 9.8 m/s?. This indistinguishability of
an acceleration from the action of a gravitational force
is called in physics the equivalence principle.

*Only in practice. There is a difference in principle. Gravi-

tational forces on the Earth are directed along radii towards

the Earth’s centre. This means that the directions of acceler-
ation at two different points form an angle. In a rocket moving
with an acceleration, the directions of weight are strictly paral-

lel at all points. Acceleration also changes with height on the
Earth; this effect is absent in an accelerating rocket.
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Figure 2.7

This principle, as we shall now see illustrated by a
series of examples, permits one. to quickly solve many
problems by adding to real forces the fictitious gravita-
tional force existing in an accelerating frame of reference.

The elevator can serve as our first example. Let us take
along a spring balance with weights and go up in an
elevator. We shall follow the behaviour of the pointer
of the scale after placing a kilogram of vegetables on it
(Figure 2.7). The ascent has begun; we see that the scale
reading has increased, as though the weight weighed more
than a kilogram. The equivalence principle will easily
explain this fact. During the upward motion of the
elevator with an acceleration a, there arises an additional
gravitational force directed downwards. Since the accel-
eration of this force is equal to a, the additional weight
is equal to ma. Hence, the scale shows a weight of mg +
+ ma. The acceleration has ended, and the elevator is
moving uniformly—the scale has returned to its initial
position and shows a weight of 1 kg. We are getting close
to the top.floor, and the motion of the elevator is slowing
down. What will now happen to the spring balance?
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Well, of course, the load now weighs less than one kilo-
gram. When the motion is slowing down, the acceleration
vector points downwards. Therefore, an additional fic-
titious gravitational force is directed upwards, opposite
to the direction of the Earth’s gravitation. Now a is
negative, and so the scale shows a quantity less than mg.
After the elevator comes to a halt, the scale returns to
its initial position. Let us begin the descent. The motion
of the elevator speeds up; the acceleration vector is
directed downwards; hence, an additional gravitational
force is directed upwards. The load now weighs less than
a kilogram. When the motion becomes uniform, the addi-
tional weight disappears, and towards the end of our
trip on the elevator—when the downward motion is
decelerating —the load will weigh more than a kilo-
gram.

The unpleasant sensations experienced in rapidly ac-
celerating and decelerating elevators are related to the
change in weight under consideration.

If an elevator is falling with an acceleration, the bodies
inside it seem to become lighter. The greater this accel-
eration, the greater will be the loss of weight. But what
will happen when a frame of reference falls freely? The
answer is clear: in this case, bodies stop pressing down
on the scale—cease weighing: the Earth's gravitation
will be balanced by the additional gravitational force
existing in such a freely falling frame of reference. Being
in such an “elevator”, one can calmly place a ton on one’s
shoulders.

At the beginning of this section, we described life at
g zero in an interplanetary spaceship which has left the
sphere of gravitation. There is no weight in such a space-
ship during uniform rectilinear motion, but the same
thing also takes place during the free fall of a frame of
reference. Hence, there is no need to leave the sphere of
gravitation, Weight is absent in every interplanetary
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ship which is moving with its engine cut off. A free
fall leads to the loss of weight in such systems. The equiv-
alence principle brought us to the conclusion that a
frame of reference moving rectilinearly and uniformly
far from the action of gravitational forces is almost (see
the footnote on p. 72) completely equivalent to a frame
of reference falling freely under the action of its weight.
In the first system there is no weight, and in the second
the “downward weight” is balanced out by the “upward
weight” We will not detect any difference between these
systems.

Life at g zero begins in an artificial Earth satellite
at the moment when the ship is orbited and begins mov-
ing without the aid of a rocket.

The first space traveller was the dog Laika, and soon
afterwards a human being adapted to life at g zero in the
cabin of the spaceship. The Soviet cosmonaut, Yuri
Gagarin, was the first to do so.

Life in the cabin of a spaceship cannot be called ordi-
nary. A great deal of inventiveness and ingenuity were
needed in order to make objects so easily subordinated
by gravity obedient. Is it possible, for example, to pour
water from a bottle into a glass? For water pours “down-
wards” under the action of gravity. Is it possible to cook
food if water cannot be heated on a stove? (Warm water
will not mix with cold one.) How can one write with
a pencil on paper if a slight push of the former against
a table is enough to drive him aside? Neither a match
nor a candle nor a gas burner will burn, since burned-up
gases will not rise upwards (after all, there is no up!l) to
make room for oxygen. It was even necessary to think
about how to guarantee a normal course for the natural
processes occurring in the human organism, for these
processes are “accustomed” to the Earth’'s gravita-
tion,
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Motion from an “Unreasonable”
Point of View

Let us now take up the question of physical observa-
tions in an accelerating bus or streetcar. A peculiarity of
this example distinguishing it from the preceding one
consists in the following. In the example with the eleva-
tor, the additional weight and the Earth’'s gravitation
were directed along a single line. In a decelerating or
accelerating streetcar, the additional weight is directed
at right angles to the Earth’s gravitation. This induces
distinctive, although customary, semsation in the pas-
senger. If the streetcar increases its speed, there arises
an additional force opposite in direction to that of motion.
Let us add this force to that of the Earth’s gravitation.
The resultant force acting on a person in the car will be
directed at an obtuse angle to the direction of the motion.
Standing, as usual, face forward in the car, we sense
that our “upwards” has moved. In order not to fall, we
shall want to become “vertical”’—as shown in Figure 2.8a.
Our “vertical” is slanting. It is inclined at an acute angle
to the direction of the motion. If a person stands at
right angles to the motion without holding on to any-
thing, he will be sure to fall backwards.

Finally, the motion of the streetcar becomes uniform,
and we can stand calmly. However, we are drawing close
to the next stop. The driver applies the brakes and  our
“vertical” is deviating. It is now directed, as can be seen
from the drawing in Figure 2.8b, at an obtuse angle to
the motion. In order not to fall, the passenger leans
backwards. However, he won’'t remain long in such
a position. The car comes to a halt, the deceleration
disappears, and the “vertical” is now directed at right
angles to the Earth. The position of one’s body must
again be changed. Check your sensations. Isn’t it true
that when the deceleration began you seemed to be
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Figure 2.8

pushed from behind, and when the car came to a halt
you seemed to be pushed in your chest.

Similar phenomena also occur when a streetcar moves
around a curve. We know that motion around a circle,
even with a constant speed, is accelerated. The faster the
streetcar moves and the smaller the radius of curva-
ture R, the greater the acceleration v?/R. The acceleration
of such a motion is directed along a radius towards the
centre. But this is equivalent to the appearance of an
additional force directed outwards from the centre.
Therefore, an additional force of mv?)/R will be acting
on a streetcar passenger during a turn throwing him out
towards the external side of the curve. The radial force
mv?/R is called centrifugal. We have already met this
force before, on p. 69 (true, considered from a somewhat
different point of view).

The action of a centrifugal force during the turning
of a streetcar or a bus can only lead to a slight unpleasant-
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ness. The force mv?/R is not large in this case. However,
during a speedy motion around a curve, the centrifugal
force can become great enough to pose a threat to one’s
life. Pilots come across large values of mv®/R when their
airplanes “loop-the-loop” While the airplane is de-
scribing a circle, the centrifugal force acts on the pilot
pinning him to his seat. The smaller the circumference
of the loop, the greater the additional force with which
the pilot is pinned to the seat. If this “weight” becomes
large enough, a person can be “torn” because tissues of
living organism possess limited strength and cannot
withstand an arbitrary weight.

But how much weight can a person “put on” without
seriously endangering his life? That depends on the
duration of the overload. If it lasts a fraction of a second,
a person is capable of withstanding an overload from
7g to 9g¢. During ten seconds a pilot can withstand an
overload from 3g to 5g. Cosmonauts are interested in the
kind of overload a person is able to bear for tens of minutes
and even, perhaps, hours. In such cases, it is likely that
the overload should be considerably lighter.

Let us compute the radii of a loop which an airplane
flying at various speeds can describe without any danger
to the pilot. We shall use the acceleration v*/R = 4g.
Then R = v%*/4g, and for a speed of 360 km/h = 100 m/s
the radius of the loop is 250 m. But if the speed is four
times greater, i.e. 1440 km/h (and such speeds have
already been surpassed by modern jet airplanes), the
radius of the loop should be increased by a factor
of 16. The minimum radius of the loop becomes equal
to 4 km.

Nor shall we leave a more modest form of transporta-
tion—the bicycle—without attention. Everyone has seen
how a cyclist inclines while rounding a turn. Let us
suggest to a cyclist that he should ride around a circle
of radius R with speed v, i.e. move with an acceleration
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Figure 2.9

v*/R directed towards the centre. Then besides the Earth’s
gravitation an additional centrifugal force directed
horizontally outwards from the centre of the circle will
act on the cyclist. These forces and their sum are shown
in Figure 2.9. It is clear that the cyclist should hold him-
self “vertically”, or else he will fall down. But ... his
vertical does not coincide with that of the Earth. It
can be seen from the figure that the vectors mv* R and
mg are the legs of a right triangle. The ratio of the leg
opposite angle o to the adjacent one is called the tangent
of angle o in trigonometry. We have tan o = v?/Rg;
the mass has been cancelled out in full agreement with
the equivalence principle. Hence, the cyclist’s angle of
inclination does not depend on his mass—both a stout
and a thin riders must incline identically. The formula
and the triangle drawn in the figure show the dependence
of the incline on the speed of motion (it grows as the
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Figure 2.10

latter increases) and the radius of the circle (it increases
as the latter decreases). We have explained why the
vertical of the cyclist does not coincide with that of
the Earth. What then will he feel? We must rotate
Figure 2.9 in order to find it out. The road now looks
like the slope of a mountain (Figure 2.10a), and it becomes
clear to us that if the force of friction between the
tires and the asphalt is insufficient (for example, when
the road is wet), the bicycle may slip and a sharp turn
may end with a fall into a ditch.

In order to forestall this, highways are built with
sharp turns inclined, i.e. horizontal for a cyclist—as
shown in Figure 2.10b. In this way, the tendency to slip
can be greatly diminished, or even entirely eliminated.
This is precisely how turns are constructed in bicycle
tracks and superhighways.
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Centrifugal Forces

Let us now deal with rotating systems. The motion of
such a system is determined by the number of revolutions
per second which it makes about an axis. It is also neces-
sary, of course, to know the direction of the axis of rota-
tion.

In order to better understand the peculiarities of life
in rotating systems, let us consider the “wheel of laughs” —
a well-known ride. Its construction is rather simple.
A smooth disc, several metres in diameter, rotates rapidly.
Those who so desire are invited to get on it and to try
to keep their balance. Even people who know no physics
quickly acquire the secret of success: one must go to
the centre of the disc, since the farther one is from the
centre, the more difficult it is to keep one’s balance.

Such a disc is a non-inertial frame of reference with
several special features. Every object attached to the
disc moves around a circle of radius R with speed v,
i.e. with acceleration v?/R. As we already know, from
the point of view of a non-inertial observer this implies
the presence of an additional force muv?/R directed along
the radius outwards from the centre. This radial force
will act at each point of the “devilish wheel” creating
there a radial acceleration v?/R. The magnitude of this
acceleration will be identical for points lying on the same
circle. And what about points on different circles? Don’t
rush to answer that according to the formula v?/R the
smaller the distance from the centre, the greater will be
the acceleration. This isn’'t true because the speed of
points farther from the centre of the wheel will be greater.
In fact, if the wheel makes n revolutions per second,
the path traversed by a point on the rim of the wheel
in one second (the speed of this point) is 2nRn.

The speed of a point is directly proportional to its
distance from the centre. We may now rewrite our for-

6—0376
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mula for the acceleration:

a = 4n’n*R

Since the number of revolutions made in a second is the
same for all points of the wheel, we arrive at the follow-
ing result: the acceleration due to the force exerted by
the “radial gravity” acting on a rotating wheel grows in
proportion to the distance of a point from the centre
of the wheel.

In this interesting non-inertial frame of reference the
force of gravity is different on different circles. Therefore,
the directions of the “verticals” will also be different for
bodies located at different distances from the centre.
The Earth’s gravitational force is, of course, the same
at all points of the wheel. But the vector characterizing
the additional radial force becomes longer as the distance
from the centre increases. Therefore, the diagonals of
the rectangles deviate more and more from the vertical
(normal to the Earth's surface).

If we imagine the successive sensations of a person
slipping off the “wheel of laughs”, from his point of view
it can be said that the farther one gets from the centre,
the more the disc “inclines” making it impossible to stay
on it. To keep his place on the turntable, he must try
to place his centre of gravity on a “vertical” inclined in
such a way that the farther he is from the rotation axis,
the greater the inclination angle (Figure 2.11).

However, could it be possible to invent a contraption
analogous to an inclined highway for this inertial frame
of reference? Of course it is, but the disc would have to
be replaced by such a surface that the resultant gravi-
tational force is perpendicular to it at each of its points.
The form of such a surface can be computed. It is called
a paraboloid. This name isn't accidental: every vertical
cut of a paraboloid is a parabola—the curve along which
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Figure 2.11

bodies fall. A paraboloid is obtained by rotating a para-
bola around its axis.

It is very easy to create such a surface by making a ves-
sel containing water rotate rapidly. The surface of the
rotating liquid is precisely a paraboloid. The water
particles will stop moving just when the force pressing
each particle to the surface is perpendicular to it. To
every rotational velocity there corresponds a distinct
paraboloid (Figure 2.12).

It is possible to demonstrate this property by making
a solid paraboloid. A small ball placed at any point
of a paraboloid rotating with a definite velocity will
remain at rest. This means that the force acting on it
will be perpendicular to the surface. In other words, a
rotating paraboloid behaves as a flat surface. One can
walk along such a surface and feel stable, just as on the
Earth. However, the direction of the vertical will change
during the walk.

Centrifugal phenomena are widely employed in tech-
nology. For example, the construction of a centrifuge
is based on the use of these phenomena.

6%
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Figure 2.12

A centrifuge is a drum which rotates rapidly around its
axis. What will happen if various objects are thrown into
such a drum filled to the brim with water?

Let us drop a metal ball into the water—it will go to
the bottom but not along our vertical; in moving away
from the axis of rotation all the time it will come to
a halt at the side. Now let us throw a cork ball into the
drum—it, on the contrary, will immediately begin
moving towards the axis of rotation and settle there.

If the drum of this model of a centrifuge has a large
diameter, we shall notice that the acceleration increases
sharply as the ball moves away from the centre.

The phenomena which take place do not puzzle us at
all. There is an additional radial force within the centri-
fuge. If the centrifuge is rotating rapidly enough, its
“bottom” is the lateral surface of the drum. The metal
ball “sinks” in the water, but the cork ball “floats” The
farther a body “falling” in the water is from the axis of
rotation, the “heavier” it becomes.

In sufficiently perfected centrifuges, the rotational
velocity can be raised to 60 000 rpm, i.e. 103 rps. At
a distance of 10 cm from the axis of rotation, the accelera-
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tion due to the radial gravitational force will be approx-
imately equal to

40 X 108 X 0.1 = 4 X 108 m/s?

i.e. 400 000 times greater than terrestrial acceleration.

It is clear that the Earth’s gravitation may be neglect-
ed for such machines; we really have the right to regard
the lateral surface of the drum as the “bottom” in a cen-
trifuge.

The fields of application of a centrifuge become clear
from what we have said. If we want to separate the heavy
particles in a mixture from the light ones, it is always
advisable to apply a centrifuge. Everybody knows the
expression: “The muddy liquid has settled.” If dirty
water stands long enough, the sediment (usually heavier
than the water) will settle to the bottom. However, the
process of settling may take months, but with the aid
of a good centrifuge it is possible to clean up the water
instantly.

Centrifuges rotating with velocities of tens of thousands
of revolutions per minute are capable of separating the
finest particles of sediment not only from water but also
from viscous fluids. .

Centrifuges are applied in the chemical industry for
separating crystals from the solution out of which they
grew, for dehydrating salts and for cleaning varnishes;
they are used in the food industry for separating syrup
from sugar.

The centrifuges which are applied in separating solid
or liquid components from a large number of fluids are
called separators. Their main application is the processing
of milk. Milk separators whirl with velocities of 2000-
6000 rpm; the diameters of their drums are as large
as 5 m.

Centrifugal casting is widely applied in metallurgy.
Even at velocities of 300-500 rpm the liquid metal flowing
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Figure 2.13

into the rotating cast is pressed against its outer surface
with a considerable force. Metal pipes cast by this method
are denser, more uniform and without blisters or cracks.

Here is another application of centrifugal force. A
simple instrument that serves as a governor of the number
of revolutions of the rotating parts of a machine is depict-
ed in Figure 2.13. This instrument is called a centri-
fugal governor. As the velocity of rotation increases,
the centrifugal force grows, and the small balls of the
governor move farther away from its axis. The rods
attached to the balls are deflected, and when the deflection
reaches a definite level computed by an engineer, some
electrical contacts may be broken, and in the case of
a steam engine, for example, valves may be opened let-
ting out excess steam. This will decrease the velocity of
rotation and return the rods to their normal position.

Here is an interesting experiment. Place a small card-
board disc on the axis of an electric motor. Switch on
the electricity and bring a piece of wood in contact with
the whirling disc. A fairly thick beam can be sawed
in half as easily as by a steel saw.

An attempt to saw wood by means of cardboard can
only evince a smile if one employs it as a hand saw.
Why then does the rotating cardboard cut wood? The
cardboard particles on the boundary of the disc experience
an enormous centrifugal force. The lateral forces which
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might alter the plane of the cardboard are insignificant in
comparison with the centrifugal ones. By keeping its plane
fixed, the cardboard disc acquires the ability of gnawing
into the wood.

The centrifugal force arising as a result of the Earth’s
rotation leads to the differences in the weight of a body
at various latitudes that we spoke of above.

A body weighs less at the equator than at a pole for
two reasons. Bodies lying on the Earth’s surface are at
different distances from the Earth’s axis depending on
the latitude of their locations. Of course, this distance
grows in passing from a pole to the equator. Moreover, a
body located at a pole is on the axis of rotation, so the
centrifugal acceleration is

a = 4n%n?R =0

(the distance from the axis of rotation R = (0). At the
equator, on the contrary, this acceleration is maximum.
The centrifugal force reduces the gravitational force.
Therefore, the pressure exerted by a body on a scale
(the weight of the body) is minimum at the equator.

If the Earth had a precisely spherical form, then a kilo-
gram weight carried from a pole to the equator would lose
3.5 g in weight. You can easily find this number if you
use the expression 4m?n?Rm and substitute n = 1 revo-
lution per day, R = 6300 km, and m = 1000 g. Only
don’t forget to convert the units of measurements to
seconds and centimetres.

However, a kilogram weight will actually lose 5.3 g,
and not 3.5 g. This is the case because the Earth is an
oblate sphere called an ellipsoid in geometry. The distance
from a pole to the centre of the Earth is about 1/300 less
than a terrestrial radius extended to the equator.

This contraction of the Earth was caused by the very
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same centrifugal force. In fact, it is exerted on all the
particles of the Earth. In remote times, the centrifugal
force “moulded” our planet-—gave it an oblate form.

Coriolis Forces

The peculiarities of the world of rotating systems are
not exhausted by the existence of radial gravitational
forces. We shall become acquainted with still another
interesting effect whose theory was presented in 1835
by the Frenchman Gaspard Gustave de Coriolis (1792-
1843).

Let us pose the following question: What does recti-
linear motion look like from the point of view of a rotat-
ing laboratory? A design of such a laboratory is depicted
in Figure 2.14. The rectilinear trajectory of some body is
shown by means of a ray passing through the centre. We
are considering the case when the path of the body passes
through the centre of rotation of our laboratory. The
disc on which the laboratory is standing rotates uni-
formly; five positions of the laboratory with respect to the
rectilinear trajectory are shown in the figure. This is
how the relative positions of the laboratory and the
trajectory of the body look after one, two, three, etc.,
seconds. The laboratory, as you see, is rotating counter-
clockwise if looked upon from above.

Arrows corresponding to the segments through which
the body passes during one, two, three, etc., seconds have
been drawn on the line of its path. The body covers the
same distance during each second, since we are dealing
with uniform and rectilinear motion from the point
of view of a fixed observer.

Imagine that the moving body is a freshly painted ball
rolling along the disc. What kind of trace will remain on
the disc? Qur construction yields the answer to this
question. The points which mark the ends of the arrows
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Figure 2.14

have been transferred from our five drawings to a single
diagram. It remains to connect these points by a smooth
curve. The result of our construction will not surprise
us: rectilinear and uniform motion looks like curvilinear
motion from the point of view of a rotating observer. The
following rule attracts our attention: a moving body is
deflected to the right of its path during the entire course
of the motion. We now assume that the disc is rotating in
the clockwise direction, and leave the repetition of our
construction to the reader. It will show that, in this
case, a moving body is deflected to the left of its path
from the point of view of a rotating observer.

We know that a centrifugal force arises in rotating
systems. However, its action cannot serve as the cause of
the deformation of the path, for it is directed along the
radius. Hence, besides the centrifugal force another
additional force arises in rotating systems. It is called
the Coriolis force.

Why is it that in the previous examples we did not
come across the Coriolis force and managed superbly with
only centrifugal? The reason is that until now we have
not regarded motion from the point of view of a rotating
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observer, and a Coriolis force arises only in such a case.
Only a centrifugal force is exerted on bodies which are
stationary in rotating systems. A table in a rotating
laboratory is screwed on to the floor—only a centrifugal
force is exerted on it. But on a ball which has fallen
from the table and rolled along the floor of the rotating
laboratory besides a centrifugal force a Coriolis force
is also exerted.

On what quantities does the magnitude of a Coriolis
force depend? It can be calculated, but the computations
are too complicated to be given here. We shall therefore
present only the result of these computations.

Unlike a centrifugal force whose magnitude depends
on the distance from the axis of rotation, a Coriolis force
is independent of the position of a body. It is determined
by the velocity vector (i.e. not only by its magnitude,
but also by its direction with respect to the axis of rota-
tion). If the body moves along the axis of rotation, the
Coriolis force is equal to zero. The greater the angle
between the velocity vector and the axis of rotation, the
greater will be the Coriolis force; this force assumes its
maximum value when the motion of the body is at right
angles to the axis. As we know, it is always possible to
decompose a velocity vector into any pair of its compo-
nents and consider separately the two resulting motions
in which the body is simultaneously involved.

If the velocity of a body is decomposed into compo-
nents v, and v, —parallel and perpendicular to the axis
of rotation—then the first motion will not be subject
to the action of a Coriolis force. The magnitude of the
Coriolis force F¢ is determined by the component v,
of the velocity. Computations lead to the formula

Fo = 4nnv,m

Here m is the mass of the body, and n is the number of
revolutions made by the rotating system in a unit of
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time. As can be seen from the formula, the faster the
system rotates and the faster the body moves, the greater
will be the Coriolis force.

Calculations also established the direction of a Cori-
olis force. This force is always perpendicular to the axis
of rotation and the direction of the motion. Moreover,
as has already been said above, the force is directed to the
right of its path in a system rotating counterclockwise.

Many interesting phenomena occurring on the Earth
are explained by the action of Coriolis forces. The Earth
is a sphere, and not a disc. This makes the effect of
Coriolis forces more complicated. These forces will not
only influence motion along the Earth’s surface but also
the falling of bodies to the Earth.

Does a body fall exactly along a vertical? Not quite.
Only at a pole does a body fall exactly along a vertical.
Here the direction of the motion and the Earth’s axis of
rotation coincide, so there is no Coriolis force. The situ-
ation is different at the equator; here the direction of
the motion forms right angles with the Earth’s axis.
If looked upon from the North Pole, the Earth’s rotation
will appear to be counterclockwise. Hence, a freely falling
body should be deflected to the right of its path, i.e.
to the East. The magnitude of this eastward deflection,
the greatest at the equator, decreases to zero as the poles
are approached.

Let us compute the magnitude of the deflection at the
equator. Since a freely falling body moves with a uniform
acceleration, the Coriolis force increases as the Earth
is approached. We shall therefore restrict ourselves to
an approximate computation. If the body falls from a
height, say, of 80 m, its fall will last about 4 s according
to the formula ¢ = }/2h/g. The average speed for the
fall will be equal to 20 m/s.

This is the speed that we shall substitute in our formula
for the Coriolis acceleration, 4nnv. Let us convert the
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value n = 1 revolution in 24 hours to the number of
revolutions per second; 24 X 3600 seconds are contained
in 24 hours, so n is equal to 1/86 400 rps; consequently,
the acceleration created by the Coriolis force is equal to
n/4080 m/s?. The distance covered during 4 s with such
an acceleration is equal to (1/2) (n/1080) X 42 = 2.3 cm.
This is precisely the magnitude of the eastward deflection
in our example. An exact computation, taking into
account the non-uniformity of the fall, yields a close but
somewhat different number.

While the deflection of a freely falling body is maxi-
mum at the equator and equal to zero at the poles, we shall
see the opposite picture in the case of the deflection of
a body moving in a horizontal plane under the action
of a Coriolis force.

A horizontal site on the North or South Pole does not
differ at all from the rotating disc with which we began
our study of Coriolis forces. A body moving along such a
site will be deflected to the right of its path by the Coriolis
force at the North Pole, and to the left at the South Pole.
Using the same formula for the Coriolis acceleration, the
reader can calculate without difficulty that a bullet fired
from a rifle with an initial speed of 500 m/s will be deflect-
ed from the target by 3.5 cm in a horizontal plane during
one second (i.e. while it travels 500 m).

But why should the deflection in a horizontal plane at
the equator be equal to zero? Without rigorous proofs,
it is clear that this should be the case. At the North
Pole a body is deflected to the right of its path, and at
the South Pole to the left, hence, half-way between the
poles, i.e. at the equator, the deflection will be equal to ze-
ro. Let us recall the experiment with the Foucault pendu-
lum. A pendulum oscillating at a pole preserves the plane
of its oscillations. The Earth in its rotation moves away
from under the pendulum. This is how the stellar observer
oxplains the Foucault experiment. But the observer
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Figure 2.15

rotating together with the Earth explains this experiment
by means of a Coriolis force. As a matter of fact, a Coriolis
force is directed perpendicularly to the Earth's axis
and perpendicularly to the direction of the motion of the
pendulum; in other words, the force is perpendicular
to the plane of the oscillation of the pendulum and will
continually turn this plane. It can be arranged so that
the end of the pendulum traces the trajectory of the
motion. This trajectory is represented by the “rosette”
shown in Figure 2.15. It can be seen from this figure
that the “Earth” completes one quarter of a rotation
during one and a half periods of the oscillation of the
pendulum. The Foucault pendulum turns much more
slowly. At a pole, the plane of oscillation of the pendulum
will turn through one-fourth of a degree during one
minute. At the North Pole the plane will be turned to
the right of the path of the pendulum, and at the South
Pole to the left.

The Coriolis effect will be somewhat less at Central
European latitudes than at the equator. A bullet in the
example we have just given will be deflected not by
3.5 cm but by 2.5 em. The Foucault pendulum will
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Figure 2.16

be turned by about one-sixth of a degree during one minute.

Must a gunner take the Coriolis force into account?
Big Bertha used by the Germans to shell Paris during
World War I was situated 110 km from the target. The
Coriolis deflection is as much as 1600 m in such a case.
This is no longer a small quantity. If a flying projectile
is sent very far without taking the Coriolis force into
account, it will be deflected significantly from its course.
This effect is large not because the force is great (for a ten-
ton projectile having a speed of 1000 km/h, the Coriolis
force will be about 25 kgf) but because it is exerted
continually for a long period of time.

Of course, the influence of wind on a rocket projectile
may be no less significant. Flight corrections made by
a pilot depend on the action of the wind, the Coriolis
effect and imperfections in the airplane or flying bomb.

What specialists besides aviators and gunners should
be aware of the Coriolis effect? Strange as it may seem,
among such specialists are railroaders. Under the action
of the Coriolis force, one of the rails of a railroad wears
out on the inside noticeably more than the other. We
know just which one: in the Northern Hemisphere it will
be the right rail (relative to the motion of a train), and
in the Southern Hemisphere the left one. Only the rail-
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Figure 2.17

roaders in equatorial countries are saved from trouble
in connection with this.

The washing away of right banks in the Northern
Hemisphere is explained in exactly the same way as the
wearing out of rails. The deviation of a river bed is to
a large extent related to the action of the Coriolis force.
It turns out that rivers in the Northern Hemisphere pass
obstacles on the right.

It is known that streams of air flow into a low-pressure
area. But why is such a wind called a cyclone? After all,
the root of this word suggests a circular (cyclic) motion.

This is precisely the case—a circular motion of air
masses arises in a low-pressure area (Figure 2.16). The
cause lies in the action of the Coriolis force. In the Nor-
thern Hemisphere all air streams directed towards the low-
pressure area are deflected to the right of their motion.
Take a look at Figure 2.17—you see that this leads to
a westward deflection of the winds blowing in both hemi-
spheres from the tropics to the equator (trade-winds).

Why does such a small force play such a big role in
the motion of air masses? This is explained by the insig-
nificance of the frictional forces. Air is extremely mobile,
and a small but constantly acting force can lead to impor-
tant consequences. .
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Recoil

Even those who have not been at war know that when
a gun is fired it jumps back abruptly. When a rifle is
fired, recoil in the shoulder occurs. But it is possible
to become acquainted with recoil without having recourse
to firearms. Pour some water into a test tube, cork it up
and suspend it horizontally on two threads (Figure 3.1).
Now turn on a burner under the test tube, the water will
begin boiling, and in a couple of minutes the cork will
fly out in one direction, while the test tube will be deflect-
ed in the opposite direction.

The force which drove the cork out of the test tube is
steam pressure. And the force deflecting the test tube is
also steam pressure. Both motions arose under the action
of one and the same force. The same thing also happens in
shooting, only there the action is not that of steam but
of gunpowder gas.

Recoil is an inevitable consequence of the principle
of equality between an action and its reaction. If the
steam acts on the cork, the cork also acts on the steam
in the opposite direction, and the steam transmits this
reaction to the test tube.

Perhaps the following objection occurs to you: Can one
and the same force really lead to such dissimilar effects?
The rifle moves backwards only slightly, but the bullet
flies far away. We hope, however, that such an objection
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Figure 3.1

has not occurred to the reader. Identical forces certainly
can lead to different effects: for the acceleration which
a body receives (and this is precisely the effect of the
action of the force) is inversely proportional to its mass.
We must write out the acceleration of one of the bodies
(shell, bullet, cork) in the form a, = F/m,; the acceler-
ation of the body experiencing recoil (gun, rifle, test
tube) is then a, = F/m,. Since the force is one and the
same, we arrive at an important conclusion: the acceler-
ations imparted by the interaction of two bodies par-
ticipating in a “shot” will be inversely proportional to
their masses:

a; _ my

@y my

This means that the acceleration imparted to the gun
when it recoils will be as many times less than the accel-
eraﬁon of the shell as the gun weighs more than the
shell.

The acceleration of the bullet, and also of the rifle
during recoil, lasts as long as the bullet is moving through
the muzzle. Let us denote this time by . When this time
has elapsed, the accelerated motion will become uniform.

7~0376
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For the sake of simplicity, we shall assume the accelera-
tion to be constant. Then the speed with which the bullet
flies out of the muzzle of the rifle is v, = a;f, and the
speed of recoil is v, = a,t. Since the time during which
the accelerations act is one and the same, then v,/v, =
= a,/a,, and so

Uy __ My

vy omy
The speeds with which the bodies fly apart after the inter-
action will be inversely proportional to their masses.

If we recall the vector nature of velocity, we can re-
write the last relation as follows: m;v, = —m,v,; the
minus sign indicates that the velocities v, and v, are
oppositely directed.

Finally, let us rewrite our equation once again bring-
ing the products of mass by velocity to one side:

m1V1 ‘-l" m2V2 = 0

The Law of Conservation of Momentum

The product of the mass of a body by its velocity is
called the momentum of the body (another name for it is
linear momentum). Since velocity is a vector, momentum
is also a vector quantity. Of course, the direction of the
momentum coincides with that of the velocity of motion
of the body.

With the aid of our new concept, Newton’s law, F =
= ma, can be expressed differently. Since a = (v, — v,)/t,
we have F = (mv, — mv)/t, or Ft = mv, — mv,. The
product of the force by the duration of its action is equal
to the change in the momentum of the body.

Let us return to recoil.

The result of our investigation of the recoil of a gun
can now be formulated more concisely: the sum of the
momenta of the gun and the shell will remain equal to
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zero after the firing. It is obvious that this was also the
case before the firing, when the gun and the shell were
in a state of rest.

The wvelocities occurring in the equation v, +
+ myv, = 0 are the velocities immediately after the
firing. During the subsequent motion of the shell and
the gun, the force of gravity and air resistance will begin
acting on them, and the Earth will exert an additional
frictional force on the gun. But if the shot were fired in
a vacuum from a gun hanging in the void, the motion
with the velocities v, and v, would continue arbitrarily
long. The gun would move in one direction, and the shell
in the opposite direction.

Guns mounted on a platform and firing while in motion
are widely applied in current artillery practice. How
should the equation we derived be changed in order that
it be applicable to a shot fired from such a gun? We may
write:

mu, + meu, = 0

where u; and u, are the velocities of the shell and the gun
relative to the moving platform. If the velocity of the
platform is V, then the velocities of the shell and the
gun relative to an observer who is at rest will be v, =
=u; + Vand v, =u, + V.

Substituting for u, and u, in our previous equation, we
obtain:

(my + my) V. =myv, + myv,

In the right-hand side of the equation we have the sum
of the momenta of the shell and the gun after the firing.
And in the left-hand side? Before the firing, the gun and
the shell with a total mass of m; + m, move together
with the velocity V. Therefore, in the left-hand side of
the equation there is also the total momentum of the shell
and the gun, but before the firing.

T*
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We have proved a very important law of nature, which
is called the law of conservation of momentum. We proved
it for two bodies, but it can easily be proved that the
same result also holds for any number of bodies. What is
the content of this law? The law of conservation of mo-
mentum asserts that the sum of the momenta of a number
of interacting bodies does not change as a result of this
interaction.

It is clear that the law of conservation of momentum
will only be valid when no outside forces are exerted on
the group of bodies under consideration. Such a group of
bodies is called closed in physics.

A rifle and a bullet behave like a closed group of two
bodies during a shooting in spite of the fact that they
are subject to the Earth’s gravitation. The weight of
the bullet is small in comparison with the force exerted
by gunpowder gases, and recoil occurs in accordance with
one and the same laws, regardless of where the shot will
be fired—on the Earth or in a rocket flying through inter-
planetary space.

The law of conservation of momentum allows us to
easily solve various problems dealing with colliding
bodies. Let us try to strike one clay ball with another—
they will stick together and continue the motion together;
if we shoot from a rifle at a wooden ball, it will roll to-
gether with the bullet stuck in it; a standing cart will roll
if a person takes a running jump into it. All the examples
we have given are very similar from the point of view of
physics. The rule relating the velocities of the bodies
involved in such kinds of collisions can be immediately
obtained from the law of conservation of momentum.

The momenta of the bodies prior to their collision were
m,v, and m,v,, they united after the collision, and their
total mass is equal to m; + m,. Denoting the velocity
of the united body by V, we obtain:

myvy + mevy = (my + my) V
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Figure 3.2

or

V= myV1+ MgV,
my—+my

Let us recall the vector nature of the law of conservation
of momentum. The momenta mv in the numerator of the
formula must be added like vectors.

The “uniting hit” when bodies moving at an angle to
each other meet is shown in Figure 3.2. In order to find
the speed, we must divide the length of a diagonal of the
parallelogram formed by the momentum vectors of the
colliding bodies by the sum of their masses.

Jet Propulsion

A person moves by pushing off from the Earth; a boat
sails because the rowers push against the water with their
oars; a ship also pushes against the water, only not with
oars but with propellers; a train moving on rails and an
automobile also push off from the Earth—remember how
hard it is for an automobile to get started on an icy road.

Thus, pushing off from a support seems to be a necessary
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condition for motion; even an airplane moves by pushing
the air with its propeller.

But is it really? Might there not be some intricate
means of moving without pushing off from anything. If
you ice-skate, you can easily convince yourself on the
basis of your experience that such motion is quite pos-
sible. Pick up a heavy stick and get on the ice. Throw the
stick forward—what will happen? You will glide back-
wards, although the thought of pushing against the ice
with your foot didn’t even cross your mind.

Recoil, which we have just studied, yields us the clue
to carrying out motion without support, without pushing
off. Recoil presents a possibility of accelerating motion
even in a vacuum, where there really is absolutely nothing
to push off from.

The recoil caused by a steam jet being driven out of
a vessel (the reaction of the jet) was used back in Ancient
Times for creating curious toys. An ancienl steam turbine
invented in the second century B.C. is pictured in Fig-
ure 3.3. A spherical cauldron was supported by a vertical
axis. Escaping from the cauldron through elbow-shaped
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pipes, the steam pushed these pipes in the opposite direc-
tion, and the sphere rotated.

These days the use of jet propulsion has already gone
far beyond the realm of the creation of toys and the col-
lection of interesting observations. The twentieth century
is sometimes called the century of atomic energy, but
with no less reason one could call it the century of jet
propulsion, since the far-reaching consequences of the
use of powerful jet engines can scarcely be exaggerated.
This is not only a revolution in aircraft construction but
the beginning of mankind’s contact with the Universe.

The principle of jet propulsion permits the creation
of airplanes moving with a speed of several thousand
kilometres per hour, flying missiles rising hundreds of
kilometres above the Earth, artificial Earth satellites and
cosmic rockets carrying out interplanetary flights.

A jet engine is a machine from which gases formed by
the combustion of fuel are ejected with great force. The
rocket moves in the direction opposite to that of the gas
stream.

How strong is the thrust carrying the rocket off into
space? We know that the force is equal to the change in:
momentum during a unit of time. According to our con-
servation law, the momentum of the rocket changes by
the total momentum mv of the ejected gas.

This law of nature allows us to compute, for example,
the relation between the force of the jet propulsion and
the expenditure of fuel necessary for this. In doing so,
one must assume a value for the speed of discharge of the
combustion products. Let us take, say, the following
values: the gases are ejected with a speed of 2000 m/s
at the rate of 10 tons per second. Then the force in the jet
propulsion will be about 2 x 102 dyn, i.e. approximately
2000 tonf.

Let us determine the change in speed of a rocket moving
in interplanetary space,
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The momentum of the mass AM of gas ejected with
speed u is equal to u AM. The momentum of a rocket of
mass M will increase by the amount M AV. According
to our conservation law, these two quantities must be
equal to each other:

uAM=MAV, ie AV=ull

However, if we wish to compute the speed of a rocket
when the ejected mass is comparable to the mass of the
rocket, the formula we have derived turns out to be
useless. In fact, it assumes that the mass of the rocket
is constant. However, the following important result
remains valid: identical relative changes in mass lead
to one and the same change in speed.

A reader acquainted with the basics of integral calculus
will at once obtain the true formula. It has the form

Min

V=uln i

=2.3ulog ﬂﬁ}i

If you use a slide rule, you will find that when the mass
of the rocket is cut in half, its speed will reach 0.7u.

In order to raise the speed of the rocket to 3u, it is
necessary to burn up a mass m = (19/20) M. This means
that only one-twentieth of the mass of the rocket can
be preserved if we wish to raise its speed to 3u, i.e. to
6-8 km/s.

In order to attain a speed of 7u, the mass of the rocket
must decrease by 1000 times during the speed-up.

These calculations warn us against striving to increase
the mass of the fuel which can be put in the rocket. The
more fuel we take, the more we must burn. For a given
speed of gas ejection, it is very difficult to achieve an
increase in the speed of the rocket.

The increase in the speed of gas ejection is the basic
means of attaining high rocket speeds. In this respect,
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a significant role must be played by the application to
rockets of engines running on a new atomic fuel.

For a constant speed of gas ejection, a gain in speed
with the same mass of fuel is obtained by using multi-
stage rockets. In a single-stage rocket, the mass of the
fuel decreases, but the empty tanks keep moving with
the rocket. An additional energy is required to accelerate
the mass of the unnecessary fuel tanks. It would be
expedient to throw away the fuel tanks whose fuel has
been consumed. In modern multi-stage rockets, not only
are the fuel tanks and piping thrown away but also the
engines of the used stages.

Of course, it would be best to continuously throw away
the unnecessary mass of the rocket. Such a construction
does not yet exist. The take-off weight of a three-stage
rocket can be made six times less than that of a single-
stage rocket with the same “ceiling” A “continuous”
rocket would be more profitable in this sense than a three-
stage rocket by an additional 15%.

Motion Under the Action of Gravity

We shall roll a small cart down two very smooth
inclined planes. Let us take two boards, one much shorter
than the other, and place them on one and the same sup-
port. Then one inclined plane will be steep, and the
other will be gently sloping. The tops of both boards—
the starting places of the cart—will be at the same height.
In which case do you suppose will the cart acquire the
greater speed by rolling down its inclined plane? Many
people will decide that it will be the one which rolls
down the steeper board.

An experiment will show that they are wrong—in both
cases the cart will acquire the same speed. While a body
is moving along an inclined plane, it is subject to the
action of a constant force, namely (Figure 3.4), the com-
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Figure 3.4

ponent of gravity directed along the line of its motion.
The speed v which a body acquires moving with accelera-
tion a along a path of length s is equal, as we know, to
V 2as.

What makes it evident that this magnitude does not
depend on the angle of inclination of the plane? We see
two triangles in Figure 3.4. One of them depicts the
inclined plane. The small leg of this triangle denoted by
k is the height from which the motion begins; the hypo-
tenuse s is the path through which the body passes in its
accelerated motion. The small force triangle with leg
ma and hypotenuse mg is similar to the large one, since
they are right triangles, and their angles as angles with
mutually perpendicular sides are equal. Hence, the ratio
of the legs should be equal to that of the hypotenuses, i.e.

h s

e =g T as=gh
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We have proved that the product as, and hence the
final speed of a body rolling down an inclined plane, is
independent of the angle of inclination but depends only
on the height from which the downward motion began.

The speed v = )/ 2gh for all inclined planes subject to the
sole condition that the motion began from one and the
same height %. This speed turned out to be equal to the
speed of free fall from height A.

Let us measure the speed of a body at two places on
the inclined plane—at heights 2; and k,. Denote the
speed of the body when it passes through the first point
by v,, and its speed when it passes through the second
point by v,.

If the initial height from which the motion began is &,
the square of the speed of the body at the first point
will be v} = 2g ( — h,), and at the second point v} =
= 2g (h — h,). Subtracting the former from the latter,
we shall find out how the speeds of the body at the initial
and end points of an arbitrary piece of an inclined plane
are related to the heights of these points:

v;—vi=2g (hy—hy)

The difference between the squares of the speeds depends
only on the difference in height. Note that the equation
we have obtained is equally suitable for upward motion
and downward motion. If the first height is less than the
second (ascent), the second speed is less than the first.

This formula can be rewritten in the following way:

2 2
o+ g =5+ ghs

We wish to emphasize by means of this formulation
that the sum of half the square of the speed and g times
the height is identical for all the points on the inclined
plane. One may say that the quantity (v¥2) + gh is con-
served during the motion,
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What is most remarkable in the law we have found is
that it is valid for frictionless motion on any hill and,
in general, along any path consisting of alternating
ascents and descents of various slopes. This follows from
the fact that any path can be broken up into rectilinear
portions. The smaller we take the segments, the closer
will the broken line approximate the curve. Each straight
line segment into which the curvilinear path has been
broken up may be regarded as part of an inclined plane,
and the rule we have found may be applied to it.

Therefore, the sum (v%2) + gh is identical for all the
voints of the trajectory. Consequently, a change in the
square of the speed does not depend on the form or length
of the path along which a body moved but is determined
solely by the difference in height of the initial and end
points of het motion.

It may seem to the reader that our conclusion does not
coincide with his daily experience: on a long, gently
sloping path a body does not gather any speed at all,
and eventually comes to a halt. This is the way things are,
but we haven’t taken the force of friction into account
in our reasoning. The above formula is valid for motion
within the Earth's gravitational field under the action of
only the single force of gravity. If the frictional force
is small, the derived law will be satisfied rather well.
A sled with metal runners slides down smooth icy moun-
tains with very little friction. 1t is possible to build
long icy paths that begin with a steep descent on which
a great speed is gathered and then twist up and down
fantastically. The end of a trip on such a hill (when the
sled stops by itself) would occur at a height equal to
that of the start, provided that friction were entirely
absent. But since it is impossible to avoid friction, the
point at which the motion of the sled started will be
higher than the place where it stops.

The law which asserts that the final speed of a motion
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subject to the force of gravity is independent of the form
of the path can be applied to the solution of various
interesting problems.

“Looping-the-loop” in a vertical circle has been fre-
quently presented at circuses as an exciting stunt. A cy-
clist or a cart with an acrobat in it is placed on a high
platform. He then accelerates while descending. Now
he is ascending. Look, he is in an upside-down position,
then again a descent, and the loop has been looped. Let
us consider a problem which a circus engineer must solve.
At what height should the platform from which the de-
scent begins be made, so that the acrobat might loop-the-
loop within falling? We know a necessary condition:
the centrifugal force pressing the acrobat against the cart
must balance the oppositely directed gravitational force.
Hence mg << mv?*/r, where r is the radius of the loop,
and v is the speed of the motion at the top of the loop.
In order that this speed be attained, it is necessary to
begin the motion from a place which is a certain quantity
h higher than the top of the loop. Since the initial speed
of the acrobat is equal to zero, we have v? = 2gh at the
top of the loop. But, on the other hand, v? == gr. Hence,
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between the height 2 and the radius of the loop there is
the relation 2 > r/2. The platform must be raised by
at least half the radius of the loop above the top of the
loop. Taking into account the inevitable frictional force,
we shall, of course, have to choose our height with a mar-
gin of safety.

And here is another problem. Let us take a large, very
smooth dome so that friction is minimum. Let us place
a small object at the top and give it the opportunity
of sliding down the dome by means of hardly noticeable
push. Sooner or later the sliding body will get detached
from the dome and start falling. We can easily answer the
question as to just when the body breaks away from the
surface of the dome: at the moment of the break the
centrifugal force must equal the radial component of
the weight (at this instant the body will cease pressing
the dome, and this is precisely the moment of the break).
Two similar triangles can be seen in Figure 3.5; the
moment of the break is depicted. Let us form the ratio
of a leg to the hypotenuse for the force triangle and set
it equal to the corresponding ratio for the other triangle:

mvifr  r—h

mg r

Here r is the radius of the spherical dome, and % is the
difference in height between the start and finish of the
sliding. Let us now make use of the independence of the
final speed of the form of the path. Since the initial
speed of a body is assumed equal to zero, we have v? =
= 2gh. Substituting this value in the above proportion
and performing arithmetical transformations, we find

= r/3. Hence, the body will break away from the dome
at a height which is one-third of a radius lower than the
top of the dome.
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The Law of Conservation
of Mechanical Energy

We have convinced ourselves in the examples just con-
sidered how helpful it is to know a quantity not changing
its numerical value (conserving it) throughout a motion.

So far we know such a quantity for one body only. But
if several associated bodies are moving within a gravi-
tational field? It is evident that we may not assume that
the expression (v*2) 4 gh remains constant for each
of them, since each of the bodies is subject to the action
of not only the force of gravity but also of the neigh-
bouring bodies. Perhaps the sum of such expressions
taken over the group of bodies under consideration is
conserved?

We shall now show that this assumption is false. There
exists a quantity conserved throughout the motion of
many bodies; however, it is not equal to the sum

(5 +eh), ., +(F+er),,. ,+

body 2
but rather to the sum of such expressions multiplied by
the masses of the corresponding bodies; in other words,
the sum

my (S +gh), +my (5 +gh) + -

body 1

is conserved.

For the proof of this important law of mechanics, we
turn to the following example.

Two loads are connected by a cord passing over a pul-
ley, the large one of mass M, and the small one of mass m.
The large load pulls the small one, and this group of two
bodies will move with increasing speed.

The driving force is the difference in weight of these
bodies, Mg — mg. Since the masses of both bodies par-
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ticipate in the accelerated motion, Newton’s law for this
case will be written out as follows:

(M—m)g=(M-+m)a

Let us conside: two instants durmg the motion and
show that the sum of the expressions (12/2) + gh multi-
plied by the corresponding masses really remains un-
changed. Thus, it is required to prove the equality

m (B4 ghy) + M (St gH,) =
=m (% +ghy) +M(2L +eH,)

Capital letters denote physical quantities characterizing
the large load. The subscripts 1 and 2Jrefer here to the
two instants which we are considering.

Since the loadsTare connected by a cord, v, = V; and
v, = V,. Using these simplifications and transferring
all summands containing heights to the right-hand side,
and summands with speeds to the left-hand side, we
obtain:

m+M

(v3—vi) =mghy+MgH,—mgh,— MgH, =
=mg (hy—hy)+Mg (H— H,)

The differences in height of the loads are, of course,

equal (but opposite in sign since one load rises and the
other falls). Therefore,

m

2 A—vt) =g (M —m)s

where s is the distance covered.

We learned on p. 61 that the difference between the
squares of the speeds at the initial and end points of a
segment of length s of a path traversed with acceleration a
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is equal to:

v} —v;=2as
Substituting this expression in the preceding formula,
we find:

m+ M)a=(M—m)g

But this is Newton’s law, which we have written out
above for our example. With this we have proved what
was required: for two bodies the sum of the expressions
(v¥2) + gh multiplied by the corresponding masses*
remains constant during the motion, or, as one says, is
conserved, i.e.

( m;z +mgh) + (-MTW+MgH) = const

For the case of a single body, this formula reduces to
the one proved earlier:

v2
-+ gh =const

Half the produet of the mass by the square of the speed
is called the kinetic energy K:

muv?
K= 2

The product of the weight of a body by its height is
called the potential energy U of the gravitational attrac-
tion of the body to the Earth:

U = mgh

We have proved that during the motion of a two-body
system (and it is possible to prove the same thing for a

*Of course, the expression (v%/2) 4 gh could equally. well be
multiplied by 2m, or m/2, and, more generally, by an arbitrary
factor. We agreed to act in the simplest manner, i.e. to multiply
it simply by m.

8—0376
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system consisting of many bodies) the sum of the kinetic
and potential energies of the bodies remains constant.

In other words, an increase in the kinetic energy of a
group of bodies can only occur at the expense of a decrease
in the potential energy of this system (and, of course,
conversely).

The law just proved is called the lew of conservation
of mechanical energy.

The law of conservation of mechanical energy is a very
important law of nature. We have not yet shown its sig-
nificance in full measure. Later, when we have become ac-
quainted with the motion of molecules, its universality
and its applicability to all natural phenomena will be
evident.

Work

If we push or pull a body meeting no hindrance to
what we are doing, the result will be an acceleration of
the body. The increase in kinetic energy taking place in
this connection is called the work A performed by the
force:

2 2

A— muvg my?

According to Newton’s law, the acceleration of a body
and hence also the increase in its kinetic energy, is de-
termined by the vector sum of all the forces applied to it.
Therefore, in the case of many forces, the formula 4 =
= (mv3/2) — (mv}/2) expresses the work performed by
the resultant force. Let us express the work 4 in terms of
the magnitude of the force.

For the sake of simplicity, we shall restrict ourselves
to the case when motion is possible only in one direction—
we shall push (or pull) a cart of mass m, standing on rails
(Figure 3.6).
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Figure 3.6

According to our general formula for uniformly accel-
erated motion, v} — v{ = 2as. Therefore, the work per-
formed by all the forces over a distance s is

The product ma is equal to the component of the total
force in the direction of the motion. Consequently, 4 =
= fss.

The work done by a force is measured by the product of
the distance by the component of the force along the
direction of the displacement.

This formula for the work is valid for forces of any
origin and for motions along any trajectory.

Note that the work may be equal to zero even when
forces act on a moving body.

For example, the work done by a Coriolis force is equal
to zero, because such a force is perpendicular to the di-
rection of the motion. It has no tangential component,
so the work is equal to zero.

Any twist in the trajectory which is not accompanied
by a change in speed requires no work, for the kinetic
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energy does not change under such conditions.

Can work be negative? Of course, if the force is directed
at an obtuse angle to the motion, then it does not help
but hinders the motion. The tangential component of the
force in the direction of the motion will be negative. In
this case we do say that the force performs negative work.
The force of friction always slows down a motion, i.e.
does negative work.

On the basis of the increase in kinetic energy, one can
only judge the work done by the resultant force.

As for the wo:k done by the individual forces, we should
compute them as the products f;s. An automobile is mov-
ing uniformly along a highway. There is no increase in
kinetic energy, so the work done by the resultant force
is equal to zero. But the work done by the motor is, of
course, not equal to zero—it is equal to the product of
the thrust of the motor by the distance covered, and is
fully compensated by the negative work done by the force
of friction and resistance.

Using the concept of “work”, we can describe more
briefly and clearly the interesting peculiarities of the
gravitational force with which we have just become ac-
quainted. If a body goes from one place to another under
the action of gravity, its kinetic energy will change. This
change in kinetic energy is equal to the work A. But we
know from the law of conservation of energy that an
increase in kinetic energy takes place at the expense of
a decrease in potential one.

Therefore, the work done by gravity is equal to the
decrease in potential energy:

A=U1'—"U2

It is obvious that a loss (or gain) of potential energy,
and hence an increase (or decrease) in kinetic energy,
will be the same, regardless of the path along which a body
moved. This implies that the work performed by gravity
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does not depend on the form of the path. If a body went
from the first point to the second with an increase in
kinetic energy, it will go from the second point to the
first with a decrease in kinetic energy by exactly the same
amount. Moreover, it makes no difference whether or
not the form of the path “there” coincides with the form
of the path “back”. Hence, the work “there” and “back”
will also be identical. And if the body takes a long trip
with the initial and end points of its path coinciding, the
work will be equal to zero.

Imagine a canal whose form is as fantastic as possible,
through which a body slides without friction. Let us send
it off on a trip from the highest point. The body rushes
downwards gathering speed. At the expense of the kinet-
ic energy so obtained, the body will surmount ascents and
return finally to the station where it departed. With
what speed? With the same, of course, with which it
left the station. Its potential energy will return to its
previous value. But if so, then its kinetic energy could
neither have decreased nor increased. Hence, the work
is equal to zero.

Not for all forces is the work done along a circular
(physicists say: a closed) path equal to zero. There is no
need to prove that the longer the path, the greater will
be the work performed by friction, for example.

in What Units Work and Energy
Are Measured

Since work is equal to the change in energy, then work
and energy—potential as well as kinetic, of course—are
measured in one and the same units. Work is equal to
the product of a force by a distance. The work done by a
force of one dyne over a distance of one centimetre is
called the erg:

1 erg =1 dyn-1 cm
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This is a very small work. Such a work is performed against
gravity by a mosquito in order to fly from the thumb to
the forefinger of someone’s hand. A larger unit of work and
energy used in physics is the joule (J). It is 10 million times
as great as an erg:

1 J = 107 ergs

A unit of work which is quite often used is 1 kilogram-
force-metre (1 kgf-m). This is the work which a force of
1 kgf performs in a displacement of 1 m. About this much
work is done by a kilogram weight falling off a table to the
floor.

As we know, a force of 1 kgf = 981 000 dyn, 1 m =
= 100 cm. Hence, 1 kgf-m = 9.81 x 107 ergs = 9.81 J.
Conversely, 1 J = 0.102 kgf-m.

The SI system of units requires that we drop the kilo-
gram-force-metre as the unit of work and energy and use
the joule instead, 1 J is the work done by a force of 1 N
over a distance of 1 m. Knowing how easily force is de-
fined in this case, one has no difficulty in understanding
the reason for the advantages of the SI system of units.

Power and Efficiency of Machines

To estimate the potential of a machine to perform work
and the consumption of energy, the concept of power was
introduced. Power is work per unit time, or the time rate
of doing work.

There are many different units of power. In the cgs
system, the unit is the erg per second (erg/s). One erg
per second, however, is very little power and, hence, not
useful in practical life. A unit in much wider use is the
joule per second, or watt (W): 1 W =1 J/s = 107 erg/s.
When this unit is not enough, it is multiplied by a thou-
sand. The new unit is called a kilowatt (kW).
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From the early days of technology we have inherited
the unit of power called korsepower (hp). This name had
a special meaning at that time. A person buying a 10-
horsepower machine would conclude that it took the place
of 10 horses, even if he knew nothing of units of power.
Naturally, there are no two horses alike. The first person
to introduce this unit of power apparently thought that
the average horse can do 75 kgf-m of work per second.
Thus, one horsepower was arbitrarily defined as 75 kgf-m/s.
A heavy draught-horse can work at a rate greater than
1 hp; especially when starting. But the power of an aver-
age horse is about 0.5 hp. The relation of horsepower to
kilowatt is 1 hp = 0.735 kW.

In everyday life and in technology we deal with a
great variety of machines. The motor of the turntable of
a record player has a power output of about 10 W, the
engine of the Soviet car Volga 100 hp or 73 kW, and the
engines of the Soviet passenger airliner “IL-18” 16 000 hp.
A small electric power station used to supply a coopera-
tive farm with electricity has a power output of about
100 kW, whereas the Krasnoyarsk hydroelectric plant on
the Yenisei river in Siberia has a record power output of
5 million kilowatts.

The units of power we have elaborated on give us a clue
to a unit of work or energy used exclusively for electricity,
namely the kilowatt-hour (kW-h). A kilowatt-hour is
the work produced by a source with the power output of
one kilowatt in the course of one hour. From this new unit
it is easy to transfer to the old omes: 1 kW-h = 3.6 X
X 108 J = 861 kcal = 367 000 kgf-m.

But with so many units of energy was there any need
to introduce one more? Yes, there was. The idea of energy
is used in a great variety of fields of physics, so for the
sake of convenience physicists introduced a new unit for
each field. The same happened with other units of meas-
urement. Finally, there appeared a need for a umified
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system of units (the SI system) for all fields of physics.
Some time will have to pass, however, before the “old”
units will make way for the favoured one, the joule. The
kilowatt-hour is thus not the'last “outsider” that the reader
will meet in his study of physics.

What are machines needed for? Obviously, to use sources
of energy to do work: to lift loads, move other machines,
or transport cargo or passengers. For any machine the
amount of energy supplied to it and the output work done
by it can be calculated. In all cases the work output is
less than the work input: part of the energy is lost in
the machine. The ratio of the work output for any ma-
chine to the work input is called efficiency and is usually
expressed in per cent. For example, a machine whose
efficiency is 90 per cent loses only 10 per cent of the in-
put energy. On the other hand, an efficiency of 10 per cent
means that the machine uses only 10 per cent of the input
energy.

The efficiency of a machine that transforms mechanical
energy into work can be made very high if the unavoidable
friction is reduced. We can bring the efficiency closer to
100 per cent by improving lubrication, using better bear-
ings, reducing the resistance of the medium in which the
movement takes place, etc.

When mechanical energy is transformed into work,
therelis often an intermediate stage (as in hydroelectric
plants), namely transmission of electric energy. Naturally,
this stage introduces new losses. But these are small, so
that even when this stage is present, the total loss in
transforming mechanical energy into work can be brought
down to a small percentage.

Energy Loss

The reader has probably noticed that while illustrating
the law of conservation of mechanical energy we per-
sistently repeat: “in the absence of friction, if there were
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no friction... .” But friction inevitably accompanies any
motion. What is the significance of a law which doesn’t
take into account such an important practical circum-
stance? We shall put off answering this question and con-
sider now some consequences of friction.

Frictional forces are directed against motion, and so
perform negative work. This causes an unavoidable loss
of mechanical energy.

Will this inevitable loss of mechanical energy lead to
a cessation of the motion? It is not difficult to convince
oneself that not every motion can be stopped by friction.

Imagine a closed system consisting of several interact-
ing bodies. The law of conservation of momentum is
valid, as we know, in relation to such a closed system. A
closed system cannot change its momentum, so it moves
rectilinearly and uniformly. Friction within such a sys-
tem can change relative motions of parts of the system,
but cannot affect the speed and direction of the motion
of the entire system as a whole.

There exists still another law of nature, called the law
of conservation of angular momentum (we shall make its
acquaintance later), which does not permit friction to
destroy the uniform rotation of an entire closed system.

Therefore, the presence of friction leads to the {cessa-
tion of all motions within a closed system of bodies, not
obstructing only the uniform rectilinear and the uniform
rotational motion of this system as a whole.

If the Earth does slightly change the !speed of its rota-
tion, the cause of this is not the friction exerted by ter-
restrial bodies against one another, but the fact that the
Earth is not an isolated system.

As for the motions of bodies on the Earth, they are
all subject to friction and lose their mechanical energy.
Therefore, such motion will always cease if not supported
from without.
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This is a law of nature. But if one avceeded in tricking
nature? Then... then one might be able to bring about
perpetuum mobile, which is Latin for “perpetual motion”

Perpetuum Mobile

Bertold, a hero of Pushkin’s Scenes from the Days of
Knighthood, dreamed of bringing about perpetuum mobile.
“What is perpetuum mobile?” asks his interlocutor. “It
is perpetual motion,” answers Bertold. “If I find perpet-
ual motion, I see no bounds to human creativity. To
make gold is a tempting problem, a discovery can be
curious and profitable, but to find a solution to the prob-
lem of perpetuum mobile... .”

Perpetuum mobile, or a perpetual motion machine, is
a machine working not only contrary to the law of loss of
mechanical energy, but also in violation of the law of
conservation of mechanical energy, which, as we now
know, holds only under ideal unattainable conditions—in
the absence of friction. A perpetual motion machine must,
as soon as it is constructed, begin working “by itself”,
for example, turning a wheel or lifting up a load. This
work should take place perpetually and continually, and
the machine should require neither fuel nor human hands
nor the energy of falling water—in short, nothing got
from without.

The earliest reliable document known so far dealing
with the “realization” of a perpetual motion machine
goes back to the 13th century. It is a curious fact that
after six centuries, in 1910, exactly the same “project”
was presented for “consideration” in one of Moscow’s
scientific institutions.

The project for this perpetual motion machine is de-
picted in Figure 3.7. As the wheel rotates, the loads are
thrown back and, according to the inventor, support the
motion, since these loads, acting at a greater distance from
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Figure 3.7

the axis, press down much harder than the others. Hav-
ing constructed this by no means complicated “machine”,
the inventor convinces himself that after turning once
or twice by inertia, the wheel comes to a halt. But this
does not make him lose heart. An error has been commit-
ted: the levers should have been made longer, the protu-
berances must be changed in form. And the fruitless la-
bour to which many self-made inventors have devoted
their lives continues, but of course with the same suc-
cess.

On the whole, there have not been many variants of
proposed perpetual motion maehines: various self-moving
wheels not differing in principle from the one described;
hydraulic machines, for example, the machine shown in
Figure 3.8, which was invented in 1634; machines using
siphons or capillary tubes (Figure 3.9), the loss of weight
in water (Figure 3.10) or the attraction of iron bodies to
magnets. It is by no means always possible to guess at
the expense of what, according to the inventor, the per-
petual motion should have occurred.

Even before the law of conservation of energy was es-
tablished, we find the assertion of the impossibility of
perpetuum mobile in an official declaration of the French
Academy, made in 1775, when it decided not to accept any
more projects for perpetual motion machines to be exam-
ined and tested.
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Figure 3.9 Figure 3.10
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Many 17th and 18th century physicists had already
assumed the axiom of the impossibility of perpetuum mo-
bile as a basis of their proofs, in spite of the fact that the
concept of energy and the law of conservation of energy
entered science much later.

At the present time it is clear that inventors who try
to create a perpetual motion machine not only come into
-.contradiction with experiment, but also commit an error
in elementary logic, for the impossibility of perpetuum
mobile is a direct consequence of the laws of mechanics,
which is what they proceed from in justifying their “in-
ventions”.

In spite of their complete fruitlessness, searches for
perpetual motion machines probably played, neverthe-
less, some sort of useful role, since they led in the final
analysis to the discovery of the law of conservation of
energy.

Collisions

Momentum is conserved in every collision between two
bodies. As for energy, it will necessarily decrease, as we
have just explained, because of various kinds of friction.

However, if the colliding bodies are made of elastic
material, say of ivory or steel, the energy loss will be
insignificant. Such collisions, for which the sums of the
kinetic energies before and after the collision are identi-
cal, are called ideally elastic.

A small loss of kinetic energy takes place even in colli-
sions of the most elastic materials; it reaches, for example,
3-4% with ivory billiard balls.

The conservation of kinetic energy in elastic collisions
permits us to solve a number of problems.

Consider, for example, a head-on collision between
balls of different mass. The momentum equation has the
form (we assume that the second ball has been stationary
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prior to the collision)
myvy = m,; + ml,

and the energy equation

myvd _ mguf mgud
5 — 3 T3

where v, is the speed of the first ball before the collision,
and u, and u, are the speeds of the balls after the colli-
sion.

Since the motion takes place along a straight line (the
one passing through the centres of the balls—this is just
what is meant by a head-on collision), the bold-face type
denoting vectors has been replaced by italics.

From the first equation we have:

Ug = %: (vi—uy)

Substituting this expression for u, in the energy equation,
we obtain:

2
%—(vi—uf) =% [r‘%nl—:' (vy— ut)]

One of the solutions of this equation is u, = v;, which
yields u, = 0. But this answer doesn’t interest us, since
the equalities u; = v, and u, = 0 imply that the balls
did not collide at all. We therefore look for another solu-
tion of the equation. Dividing by m, (v, — u,), we obtain:

1 1 m

5 (U1t uy) =’2—#2" V1—uy)
i.e.

MmaVy + maly = mv; — myly
or

(my — my) vy = (my + m,y) u,
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which yields the following value for the speed of the first
ball after the collision:

m, —my

Uy=——>=y
1 my ot my

In a head-on collision with a stationary ball, the mov-
ing ball rebounds (negative u,) if its mass is less. If m,
is greater than mg, both the balls continue the motion in
the direction of the collision.

In case of an exact head-on collision during a game of
billiards, one often observes the following scene: the
driving ball comes to a sudden stop, and the target ball
heads for a pocket. This is explained by the equation we
have just found. The masses of the balls are equal, the
equation yields u, = 0, and so u, = v;. The colliding
ball halts, and the second ball begins its motion with the
former’s previous speed. It is as though the balls have
exchanged speeds.

Let us consider another example of a collision between
bodies in accordance with the law of elastic collisions,
namely an oblique collision between bodies of equal mass
(Figure 3.11). The second body was stationary prior to
the collision, so the laws of conservation of momentum
and energy have the form:

mvy = mu; + mu,

2 2 2
mvi  mu} muj

2—2+2

Cancelling the mass, we obtain:
Vi=Uu + U,
2__ ,,2 2
v =uU U,

Vector v, is the vector sum of u, and u,, but this means
that the lengths of the velocity vectors form a triangle.



Figure 3.11

What kind of triangle is this? Recall the Pythagorean
theorem. Our second equation is an expression of it.
This means that the velocity triangle must be a right
triangle with hypotenuse v, and legs u; and u,. Hence,
u, and u, form right angles with each other. This interest-
ing result shows that in any oblique elastic collision,
bodies of equal mass fly apart at right angles.



4. Oscillations

Equilibrium

In certain cases it is very difficult to maintain an equi-
librium —try to walk across a tightrope. At the same time,
nobody rewards a person sitting in a rocking-chair with
applause. But he is also maintaining his equilibrium.

What is the difference between these two examples?
In which case is equilibrium maintained “by itself’?

The condition for equilibrium seems to be obvious. For
a body not to be displaced from its position, the forces
exerted on it must balance; in other words, the sum of
these forces must be equal to zero. This condition is
really necessary for the equilibrium of a body, but is it
sufficient?

A side-view of a hill easily built out of cardboard paper
is depicted in Figure 4.1. A ball will behave in different
ways depending on the part of the hill where it is placed.
A force which makes it roll down will be exerted on the
ball at any point on the slope of the hill. This active force
is gravity, or rather its projection on the tangent to the
section of the hill passing through the point which is of
interest to us. It is therefore clear that the more gentle
the slope, the smaller the force acting on the ball.

We are interested above all in the points at which the
force of gravity is completely balanced by the reaction
of the support, and hence the resultant force acting on
the ball is equal to zero. This condition will be fulfilled
at the top of the hill and at its lowest points—the hollows.

: 9-—0376
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Figure 4.1

The tangents are horizontal at tliese points, and the re-
sultant forces acting on the ball are equal to zero.

However, in spite of the fact that the resultant force
is equal to zero at the top, we won’t be able to put a ball
there, but even if we could, we would immediately detect
the accessory cause of cur success—friction. A small
push or a light puff will overcome the frictional force, and
the ball will leave its place and roll down.

For a smooth ball on a smooth hill, only the low points
of the hollows will be positions of equilibrium. If a
push or an air stream displaces the ball from such a po-
sition, it will return there by itself.

A body in a hollow (a hole or a depression) is undoubt-
édly in equilibrium. If we deflect it from such a position,
a force returns it back. The picture is different at the top
of the hill: if a body has left such a position, the force
exerted on it tends to take it further away rather than
bring it back. Consequently, the resultant force equal to
zero is-a necessary but not a sufficient condition for stable
equilibrium.

The equilibrium of a ball on a hill can also be regarded
from another point of view. The hollows correspond to
minima, and the top to maxima of potential energy. The
law of conservati?on of energy prevents a change in posi-
tions for which the potential energy is minimum. Such a
change would make the kinetic energy negative, which,
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however, is impossible. The situation is entirely different
at the top. A departure from these points entails a de-
crease in potential energy, and hence not a decrease, but
an increase in kinetic energy.

Thus, in a position of equilibrium, the potential energy
must assume a minimum value with respect to its values
at neighbouring points.

The deeper the hole, the greater will be the stability.
Since we know the law of conservation of energy, we can
immediately say under what conditions a body will roll
out of a depression. For this it is necessary to impart to
the body the kinetic energy which would be enough for
raising it to the edge of the hole. The deeper the hole,
the greater will be the kinetic energy needed for disturbing
the stable equilibrium.

Simple Oscillations

If a ball lying in a depression is pushed, it will begin
moving up the hill, gradually losing its kinetic energy.
When it is completely lost, an instantaneous halt will
occur and a downward motion will begin. Its potential
energy will now be transformed into kinetic one. The
ball will gain speed, rush past the equilibrium position
by inertia and begin ascending again, only in the opposite
direction. If the friction is insignificant, such an “up-
ward-downward” motion can continue very long, while
in the ideal case—in the absence of friction—it will con-
tinue indefinitely.

Therefore, motions near the position of stable equi-
librium always have an oscillatory nature.

For studying oscillation, a pendulum is perhaps more
suitable than a ball rolling back and forth in a hole, at
least to the extent that it is easier to reduce the friction
exerted on a pendulum to a minimum.
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When a pendulum bob is deflected to its highest posi-
tion, its speed and kinetic energy are equal to zero. Its
potential energy is greatest at this moment. The bob goes
down—the potential energy decreases and is transformed
into kinetic one. Hence, the speed of the motion increases
too. When the bob passes through its lowest position, its
potential energy is least, and correspondingly the kinet-
ic energy and speed are maximum. As the motion con-
tinues, the bob again rises. The speed now diminishes
and the potential energy increases.

If we abstract from the friction losses, the bob will
be deflected by the same distance to the right as it was
originally deflected to the left. Its potential energy was
transformed into kinetic one and then the same amount of
“new” potential energy was created. We have described the
first half of a single oscillation. The second half takes
place in the same way, only the bob moves in the opposite
direction.

Oscillatory motion is a repeating or, asone says, per-
iodic motion. Returning to its starting point, the bob
repeats its motion each time (if the changes resulting
from friction are not taken into account) both with re-
spect to its path and to its velocity and acceleration. The
time spent on a single oscillation, i.e. in returning to the
starting point, is identical for the first, second and all
subsequent oscillations. This time—one of the most im-
portant characteristics of an oscillation is called the
period; we shall denote it by T. After this time, the mo-
tion is repeated, i.e. after the time 7', we shall always find
a vibrating body at the same point in space and moving
in the same direction. After a half-period, the displace-
ment of the body and also the direction of the motion
change sign. Since the period 7 is the time for one os-
cillation, the number n of oscillations in a unit of time
will be equal to 1/T.
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Figure 4.2

But what does the period of vibration of a body moving
not far from the position of stable equilibrium depend on?
In particular, what does the period of oscillation of a
pendulum depend on? Galileo was the first to pose and
solve this problem. We shall now derive Galileo’s formula.

However, it is difficult to apply the laws of mechanics
to non-uniformly accelerated motion in an elementary
manner. Therefore, in order to bypass this difficulty, we
shall not make the pendulum bob oscillate in a vertical
plane, but have it describe a circle, remaining at a fixed
height all the time. It isn’t difficult to create such a
motion—one merely has to remove the pendulum from its
equilibrium position and give it an initial push with
a properly chosen force in the direction exactly perpen-
dicular to the radius of deflection.

Such a “conical pendulum” is depicted in Figure 4.2.

The bob of mass m moves around a circle. Hence, besides
the force of gravity mg, a centrifugal force of mv%r,
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which we may also represent in the form 4n?n%m, is
exerted on it. Here n is the number of revolutions per
second. We may therefore also write out our expression
for the centrifugal force as follows: 4n2rm/T?. The result-
ant of these two forces pulls on the cord of the pendulum.

Two similar triangles—the force triangle and the
distance triangle—are shaded in the figure. The ratios of
the corresponding legs are equal; hence

mgT? h

——4ng2rm =—, or TI=2n [/%

What factors does the period of oscillation of a pen-
dulum depend on? If we perform experiments at one and
the same location on the Earth (g doesn’t change), the
period of oscillation depends only on the difference in
height between the point of suspension and the point
where the bob is. The mass of the bob, as always in a
gravitational field, does not affect the period of oscil-
lation.

The following circumstance is of interest. We are
investigating motion near the position of stable equi-
librium. For small deflections, we may replace the differ-
ence in height 2 by the length I of the pendulum. It is
easy to verify this. If the length of the pendulum is 1 m
and the radius of deflection is 1 cm, then

h=VY10000 — 1 = 99.995 cm

The difference between 2 and ! will reach 1% only when
the deflection is 14 cm. Consequently, the period of the
free oscillations of a pendulum for not too large a deflec-
tion from the equilibrium position is

r—2x )/ L

i.e. depends only on the length of the pendulum and the
value of the acceleration of free fall at the place where the
experiment is performed, but does not depend on the
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magnitude of the deflection of the pendulum from--its-
equilibrium position.

The formula 7 = 2n V'1/g has been proved for a conical
pendulum. What will it look like for a simple “plane”
pendulum? It turns out that this formula retains its
form. We shall not prove this rigorously, but call atten-
tion to the fact that the shadow cast onto a wall by the
bob of a conical pendulum will oscillate almost like
a plane pendulum: the shadow completes one oscillation
during just the same time in which the bob describes
a circle.

The use of small oscillations about an equilibrium
position permits the measurement of time with very
great accuracy.

According to legend, Galileo established the independ-
ence of the period of oscillation of a pendulum of its
amplitude and mass while observing during services in
a cathedral how two enormous chandeliers were swinging.

Therefore, the period of oscillation of a pendulum is
proportional to the square root of its length. Thus, the
period of oscillation of a metre-long pendulum is twice
that of a 25-cm pendulum. It also follows from our for-
mula for the period of oscillation of a pendulum that
one and the same pendulum will not oscillate equally fast
at different latitudes on the Earth. As we move closer.
to the equator, the acceleration of free fall decreases
and the period of oscillation grows.

It is possible to measure a period of oscillation with a
very great degree of accuracy. Therefore, experiments
with pendulums enable us to measure the acceleration
of free fall very accurately.

Displaying Oscillations

Let us attach a piece of soft lead to the bob of a pen-
dulum and hang the pendulum over a sheet of paper in
such a way that the lead touches the paper (Figure 4.3).
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Figure 4.3

Now we deflect the pendulum slightly. The oscillating
lead will trace a small line segment on the paper. At the
midpoint of the oscillation, when the pendulum is pass-
ing through its equilibrium position, the pencil line will
be thicker, since in this position the lead presses down
harder on the paper. If we pull the sheet of paper in the
direction perpendicular to the plane of the oscillation,
the curve depicted in Figure 4.3 will be traced. It is not
difficult to see that the wavelets so obtained will be
dense if the paper is pulled slowly, and sparse if the
sheet of paper moves with a considerable speed. In order
for the curve to turn out accurate, it is necessary that
the sheet of paper move uniformly.

In this manner we have in a sense “displayed” the
oscillations.

The display is needed in order to say where the bob of
the pendulum was located and where it was moving at
one or another instant. Imagine that the paper moves
with a speed of 1 cm/s from the time when the pendulum
was as far as possible from, say, to the left of, the mid-
point. This initial position corresponds to the point
on our graph which has been marked with the number 1.
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After a quarter of the period the pendulum will pass
through the midpoint. During this time the paper has
moved 7/4 centimetres (point 2 in the figure). The pen-
dulum now moves to the right and the paper simulta-
neously crawls along. When the pendulum comes to its
extreme right position, the paper will have moved 7/2
centimetres (point 3 in the figure). The pendulum again
moves towards the midpoint and arrives at its equilib-
rium position in 37/4 (point 4 in the diagram). Point §
finishes a complete oscillation, after which the motion is
repeated every T seconds or every T centimetres on our
graph.

Thus, a vertical line on the graph is the scale of the
displacement of a point from the equilibrium position,
and the central horizontal line is the time scale.

The two quantities which characterize an oscillation
in an exhaustive manner are easily found from such
a graph. The period can be determined by the distance
between two equivalent points, for example, between
two neighbouring summits. The maximum displacement
of a point from the equilibrium position can also be
measured at once. This displacement is called the ampli-
tude of the oscillation.

Displaying an oscillation permits us, moreover, to
answer the question posed above: Where is an oscillating
point at one or another instant? For example, where will
an oscillating point be in 11 seconds if the period of
oscillation is equal to 3 seconds and the motion began
at the extreme left position? The oscillation begins from
the very same point in every 3 seconds. Therefore, in
9 seconds the body will also be at the extreme left position.

Consequently, there is no need of a graph in which the
curve is extended over several periods; a graph depicting
the curve corresponding to one oscillation is quite enough.
In 11 seconds the state of an oscillating point will be
the same as in 2 seconds if the period is 3 seconds. Laying
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off 2 centimetres in our diagram (for we stipulated that
the paper be pulled with a speed of 1 cm/s or, in other
words, that the scale of our diagram be 1 second to 1 cen-
timetre), we see that in 11 seconds the point will be on
its way from the extreme right position to that of equi-
librium. The magnitude of the displacement at this
instant can be found from the figure.

It isn’t necessary to turn to a graph in order to find
the magnitude of the displacement of a point making
small oscillations about its equilibrium position. Theory
shows that in this case the curve depicting the dependence
of the displacement on the time is a sinusoid. If we denote
the displacement of a point by y, the amplitude by a,
and the period of the oscillation by 7, we can find the
magnitude of the displacement at a time ¢ after the begin-
ning of the oscillation by means of the formula:

y=asin2xn %

An oscillation taking place in accordance with this law
is called harmonic. The argument of the sine is equal to
the product of 2n by #/T. The quantity 2n#/T is called
the phase.

Having trigonometric tables at hand and knowing the
period and amplitude, we can easily compute the mag-
nitude of the displacement of a point, and figure out on
!,he basis of the value of the phase in which direction it
is moving.

It is not difficult to derive the formula for vibratory
motion by considering the motion of the shadow cast on a
wall by a bob moving around a circle (Figure 4.4).

We shall mark off the displacements of the shadow from
its central position. At the extreme positions, the dis-
placement y is equal to the radius a of the circle. This
is the amplitude of the oscillation of the shadow.

If the bob has moved along the circle through an angle
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Figure 4.4

¢ from the central position, its shadow will deviate from
the midpoint by a sin ¢.

Let the period of the motion of the bob (which, of
course, is also the period of oscillation of the shadow)
be T; this means that the bob passes through 2n radians
during the time 7. We may form the proportion ¢/t =
= 2n/T, where ¢ is the time required for a revolution
through an angle .

Consequently, ¢ = 2xt/T and y = a sin 2nt/T. This is
precisely what we wished to prove.

The velocity of an oscillating point also changes
according to a sinusoidal law. The same kind of reason-
ing about the movement of the shadow of a bob describing
a circle will lead us to this conclusion. The velocity of
the bob is a vector of constant length v,. The velocity
vector revolves together with the bob. Let us think of
the velocity vector as a physical arrow capable of casting
a shadow. At the extreme positions of the bob, the vector
will lie along a ray of light and will not create a shadow.
When the bob moves around the circle from an extreme
position through an angle 08, the vector velocity will
turn through the same angle and its projection will be
equal to v, sin 6. But on the same basis as before, 8/t =
= 2n/T, and so the instantaneous speed of the vibrating
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.2

V=, SIN —— t

Note that in the formula for determining the magnitude
of the displacement, the time is equal to zero at the
central position, and in the formula for the speed at the
extreme positions. The displacement of a pendulum equals
zero when the bob is at the central position, and the
speed of oscillation is zero at the extreme positions.

There is a simple relation between the maximum speed
v, of an oscillation and the maximum displacement (or
amplitude): the bob describes a circle with a circumference
2nta during the period T of the oscillation. Therefore,

2na 2na . 2m
Vo= S~ and v=-""sin-o

T T T

Force and Potential Energy
in Oscillations

During every oscillation about an equilibrium position,
there is a force acting on the vibrating body “desiring”
to return it to the equilibrium position. When a point
is receding from its equilibrium position, the force
decelerates its motion; when it is approaching this posi-
tion, the force accelerates its motion.

Let us examine this force in the case of a pendulum
(Figure 4.5). The bob of the pendulum is acted upon by
the force of gravity and tension in the string. Let us
decompose the force of gravity into two components—
one directed along the string and the other perpendicular
to it, along the tangent to the path. Only the tangential
component of the gravitational force is of significance for
the motion. It is precisely the restoring force in this case.
As for the force directed along the string, it is balanced
by the reaction on the part of the nail on which the pen-
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Figure 4.5

dulum is hanging, and it is only necessary to take it
into account when we are interested in whether the string
will withstand the weight of the vibrating body.

Denote the magnitude of the displacement of the bob
by z. The motion takes place along an arc, but we have
agreed to investigate oscillations near an equilibrium
position. We therefore make no distinction between the
magnitude of a displacement along the arc and the devia-
tion of the bob from the vertical. Let us consider two
similar triangles. The ratio of the corresponding legs is
equal to the ratio of the hypotenuses, i.e.

—i— = ":—g , or F= #— x

The quantity mg/! does not change during the oscilla-
tion. If we denote this constant by k, then the restoring
force F is given by the formula F = kx. We arrive at the
following conclusion: the magnitude of the restoring
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force is directly proportional to that of the displacement
of an oscillating point from its equilibrium position.
The restoring force is maximum at the extreme positions
of a vibrating body. When the body passes through the
midpoint, the force vanishes and changes sign or, in
other words, direction. While the body is displaced to
the right, the force is directed to the left, and conversely.

The pendulum serves as the simplest example of ap
oscillating body. However, we are interested in the pos-
sibility of extending the formulas and laws which we
find to arbitrary vibrations. |

The period of oscillation of a pendulum was expressed
in terms of its length. Such a formula applies only to
a pendulum. But we can express the period of free oscilla-
tions in terms of the restoring force constant k. Since
k = mg/l, we have l/g = m/k, and so

fm
T=—"2ﬂl/ T

This formula extends to all cases of oscillations, since
any free oscillation takes place under the action of a re-
storing force.

Let us now express the potential energy of a pendulum
in terms of its displacement z from the equilibrium posi-
tion. We may take the potential energy of the bob to be
zero when it passes through the lowest point, and then
the height of its ascent should be measured from this
point. Denoting the difference in height between the
point of suspension and the level of the deflected bob
by h, we express the potential energy as follows: U =
= mg (Il — k) or, using the formula for the difference

of squares,
U 12—h2
=mE&T

But, as can be seen from the figure, 12 — h? = 22, I and
h differ very slightly and, therefore, 2/ may be substitut-
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ed for ! + k. Thus, U = mga?/2l, or

kz?

U==-

The potential energy of an oscillating body is propor-
tional to the square of its displacement from the equi-
librium position.

Let us check the correctness of the formula we have just
derived. The loss of potential energy must be equal to the
work performed by the restoring force. Consider two of the
body’s positions, z, and z;. The difference in potential
energy

ka3 ka3 k
—U,—U =2t M _ L@
But a difference of squares may be written as the product
of the sum by the difference. Hence,

k
U,—Uy==5(22+2) (xz—l’t):_kﬁ#i(xz—xt)

But 2, — z, is the length of the path covered by the body,
kz, and kz, are the magnitudes of the restoring force at
the beginning and end of the motion, and (]ca:1 + kz,)/2
is equal to the average force.

Our formula led us to the correct result: the loss of
potential energy is equal to the work performed.

Spring Vibrations

It is easy to make a ball oscillate by hanging it on a
spring. Let us fasten one end of the spring and pull the
ball (Figure 4.6). The spring will be in a stretched posi-
tion as long as we pull the ball with our hand. If we
let go, the spring will unstretch and the ball will begin
moving towards its equilibrium position. Just as the
pendulum, the spring will not come to a state of rest
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Figure 4.6

immediately. The equilibrium position will be passed by
inertia, and the spring will begin compressing. The ball
slows down, and at a certain instant it comes to a halt in
order to start moving at once in the opposite direction.
There arises an oscillation with the same typical features
with which our study of the pendulum acquainted us.

In the absence of friction, the oscillation would con-
tinue indefinitely. In the presence of friction, the oscil-
lations are damped; moreover, the greater the friction,
the faster they are damped.

The roles of a spring and a pendulum are frequently
analogous. Both one and the other serve to maintain con-
stancy in the period of clocks. The precise movement of
modern spring watches is ensured by the oscillatory mo-
tion of a small flywheel balance. Itisset oscillating by a
spring which winds and unwinds tens of thousands of
times a day.

For the ball on a string, the role of the restoring force
was played by the tangential component of gravity. For
the ball on a spring, the restoring force is the elastic force
of a contracted or stretched spring. Therefore, the magni-
tude of the elastic force is directly proportional to the
displacement: F = kx.

The coefficient k& has another meaning in this case. It
is now the stiffness of the spring. A stiff spring is one which
is difficult to stretch or contract. The coefficient % has
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precisely such a meaning. The following is clear from the
formula: k& is equal to the force necessary for the stretch-
ing or contraction of the spring by a unit of length.

Knowing the stiffness of the spring and the mass of
the load hung on it, we find the period of free oscillation
with the aid of the formula T = 2n )/ m/k. For example,
a load of mass 10 g on a spring with a stiffness coefficient
10° dyn/cm (this is a rather stiff spring—a hundred-gram
weight will stretch it by 1 cm) will oscillate with a period
T = 6.28 X 10~% s. During one second, 16 oscillations
will take place.

The more flexible the spring, the slower will be the
vibration. An increase in the mass of the load has the
same effect.

Let us apply the law of conservation of energy to a ball
on a spring.

We know that the sum of the kinetic and potential
energies, K + U, for a pendulum does not vary:

K 4 U is conserved
We know the values of K and U for a pendulum. The law
of conservation of energy states that

my? kxz? .
T+ 5 18 conserved

But the same thing is also true for a ball on a spring.
The deduction which we must inevitably make is quite
interesting. Aside from the potential energy with which
we became acquainted earlier, there also exists, therefore,
a potential energy of a different kind. The former is called
gravitational potential energy. 1f the spring were hanging
horizontally, the gravitational potential energy would,
of course, not change during the vibration. The new po-
tential energy we discovered is called elastic potential
energy. In our case it is equal to kz%/2, i.e. it depends on
the stiffness of the spring and is directly proportional to

10—-0376
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the square of the magnitude of contraction or stretching.

The total energy of the vibration, remaining constant,
may be expressed in the following form: £ = ka?/2, or
E = mv}/2.

The quantities a and v, occurring in the last formulas
are the maximum values which the displacement and
speed take on during the vibration. (They are sometimes
called the amplitude values of, the displacement and
speed.) The origin of these formulas is quite clear. ln
an extreme position, when z = a, the kinetic energy of
vibration is equal to zero, and the total energy is equal to
the potential energy. In the central position, the displace-
ment of the point from the equilibrium position, and
hence the potential energy, is equal to zero, the speed at
this instant is maximum, v = vy, and the total energy
is equal to the kinetic energy.

The study of oscillations is an extensive branch of
physics. One often has to deal with pendulums and
springs. But this, of course, does not exhaust the list of
bodies whose oscillations must be investigated. Mountings
vibrate; bridges, parts of buildings, beams and high-
voltage lines can begin vibrating. Sound is a vibration
of the air.

We have listed several examples of mechanical vibra-
tions. However, the concept of oscillation may refer not
only to mechanical displacements of bodies or particles
from an equilibrium position. We also come across os-
cillations in many electrical phenomena, moreover, these
oscillations occur in accordance with laws closely resem-
bling those which we have considered above. The study
of oscillations permeates all branches of physics.

More Compiex Oscillations

What has been said so far refers to oscillations near an
equilibrium position, taking place under the action of a
restoring force whose magnitude is directly proportional
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Figure 4.7

to the displacement of a point from its equilibrium posi-
tion. Such motions occur in accordance with a sinusoidal
law. They are called harmonic. The period of harmonic
oscillations is independent of the amplitude.

Oscillations with a large amplitude are much more com-
plex. Such oscillations do not occur in accordance with
a sinusoidal law, and their display yields more compli-
cated curves different for various oscillating systems. The
period is no longer a characteristic property of the oscil-
lation and depends on the amplitude.

Friction will significantly change any oscillations In
the presence of friction, oscillations gradually damp. The
greater the friction, the faster the damping occurs. Try
making a pendulum immersed in water oscillate. It is
unlikely that you will succeed in getting the pendulum to
complete more than one or two oscillations. If a pendu-
_lum is immersed in a very viscous medium, there may fail

10*
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to be any oscillation at all. The deflected pendulum will
simply return to its equilibrium position. A typical graph
for a damped oscillation is shown in Figure 4.7. The de-
viation from the equilibrium position has been plotted
along the vertical axis, and the time along the horizon-
tal one. The amplitude of a damped oscillation dimin-
ishes with each oscillation.

Resonance

A child is seated on a swing. His feet do not reach the
ground. In order to swing him, one can, of course, raise
the swing high up and then let it go. But this would be
rather difficult and also quite unnecessary; it is enough
to gently push the swing in time with the oscillations,
and in a short time the child will be really swinging!

In order to swing a body, it is necessary to act in time
with the oscillations. In other words, it is necessary to
make one’s pushes occur with the same period as that of
the free oscillations of a body. In such cases one speaks of
resonance.

Resonance, widespread in nature and technology, mer-
its careful consideration.

You can observe a very amusing and peculiar occur-
rence of resonance if you construct the following appara-
tus. Extend a string horizontally and hang three pendu-
lums on it (Figure 4.8), two short ones of identical length
and a longer one. Now deflect and release one of the short
pendulums. In a few seconds you will see how the other
pendulum of the same length will gradually begin oscil-
lating too. A few more seconds—and the second short pen-
dulum will swing, so that it will no longer be possible to
tell which of the two pendulums first began moving.

What is the reason for this? Pendulums of the same
length have identical periods of free oscillations. The
first pendulum swings the second. The oscillations are
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transmitted from one to the other through the string con-
necting them. True, but there is yet another pendulum,
of different length, hanging on the string. And what will
happen to it? Nothing will happen to it. The period of
this pendulum is different, and a short pendulum will not
be able to swing it. The third pendulum will be present
at this interesting energy “transfusion” from one pendu-
lum to another, taking no part in it.

Each of us often comes across mechanical resonance
phenomena. Perhaps you simply did not pay any atten-
tion to them, even though resonance is sometimes very
bothersome. A streetcar passed by your window, and the
dishes in the sideboard began jingling. What is the mat-
ter? Oscillations of the ground were transmitted to the
building and simultaneously to the floor of your room,
so your sideboard and the dishes in it started to vibrate.
The oscillation was propagated so far and through so
many objects. This happened as a result of resonance.
The external oscillations were in resonance with the free
oscillations of the bodies. Almost any rattling which
we hear in a room, a factory or a car occurs because of
resonance.
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Resonance, as, incidentally, many phenomena, can be
both useful and harmful.

A machine is standing on a mounting. Its moving parts
move rhythmically, with a definite period. Imagine that
this period coincides with that of free oscillation of the
mounting. What will happen? The mounting will be soon
vibrating, which could result in a breakdown.

The following fact is known. A company of soldiers
was marching in step across a bridge in St. Petersburg.
The bridge collapsed. An investigation into this matter
was begun. It seemed that there were no grounds for
anxiety over the fate of the bridge or the people: how
many times had crowds gathered on this bridge, had heavy
vehicles weighing much more than a company of soldiers
slowly crossed it!

But a bridge sags by an insignificant amount under the
action of a heavy weight. An incomparably greater sag-
ging occurs when a bridge swings. Theresonance’amplitude
of an oscillation can be thousands of times greater than
the displacement caused by a stationary load of the same
weight. This is precisely what the investigation showed —
the period of free oscillation of the bridge coincided with
that of an ordinary marching step.

Therefore, when a military subunit crosses a bridge,
a command is given to break step. If people’s movements
are not coordinated, resonance will not set in and bridges
will not swing. Incidentally, this tragedy is well remem-
bered by engineers. In designing bridges, they try to make
its period of free oscillation far from the period of a march-
ing step.

Designers of mountings have similar problems. They
try to make the mounting in such a way that its period
of oscillation be as far as possible from that of the moving
parts of a machine.



5. Motion
of Solid Bodies

Torque

Try to get a heavy flywheel rotating by hand. Pull
one of the spokes. You will find it difficult if you grasp
it too near to the axle. Move your hand towards the rim,
and things will become easier.

But what has changed? After all, the force is the'same
in both cases. The point of application of the force has
changed.

ITn all that preceded, the question of where a force is
applied did not arise, since the form and size of a body
played no role in the problems under consideration. What
we essentially did was to conceptually replace a body by
a point. _

The example with the rotation of a wheel shows that
the question of the point of application of a force is-far
from idle when we are dealing with the rotation or revo-
Intion of a body.

In order to understand the role of the point of applica-
tion of a force, let us compute the work which must be
performed to turn a body through a certain angle. In
this calculation, of course, it is assumed that all the par-
ticles of the body are rigidly bound to one another (we
are ignoring at present the ability of a body to bend, con-
tract and., in general, to change its form). Therefore, a
force applied to one point of a body imparts kinetic ener-
gy to all its parts.

In computing this work, the role of the point of appli-
cation of a force is clearly seen.
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Figure 5.1

A body fastened to an axis is shown in Figure 5.1.
When the body turns through a small angle ¢, the point
of application of a force moves along an arc—it is dis-
placed by a distance s.

Projecting the force onto the direction of the motion,
i.e. onto the tangent to the circle around which the point
of application moves, we find a familiar expression for
the work A:

A =Fs

But the arc s may be represented as follows:

s=rg
where r is the distance from the axis of rotation to the
point of application of the force. Thus,

A = Fygo
Turning the body through one and the same angle in
various ways, we may expend different amounts of work
depending on where the force is applied.

If the angle is given, the work is determined by the
product F,r. This product is called the moment of force,
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Figure 5.2

or the torque:
M= F,r

Our formula for the torque can be given another form.
Let O be the axis of rotation, and B the point of applica-
tion of the force (Figure 5.2). The length of the Fperpen-
dicular dropped from O to the direction of the force is de-
noted by d. The two triangles constructed in the figure
are similar. Therefore,

Ti-:-;— , or Fgo=Fd

The quantity d is called the arm, or the lever arm, of
the force.

Our new formula M = Fd reads as follows: the torque
is equal to the product of the force by its lever arm.

If we displace the point of application of the force along
its direction, then the lever arm d and with it the torque
M will not be changed. Hence, it makes no difference
just where the point of application lies on the line of
action of the force.
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With the aid of the new concept, the formula for the
work can be written out more concisely.”

A= Mo

i.e. the work is equal to the product of the torque by the
angle of rotation.

Let two forces act on a body with moments M, and M,.
When the body is rotated through an angle o, the work
done will be M0 + M,0 = (M, + M.) ¢. This equality
shows that two forces with moments M; and M, rotate
a body just as a single force with moment M = M, +
4 M, would. Moments of force can help, as well as hin-
der, each other. If torques M, and M, tend to rotate a
body in one and the same direction, we should regard
them as magnitudes having the same sign. On the con-
trary, torques rotating a body in opposite directions have
different signs.

As we know, the work done by all the forces acting on
a body effects a change in its kinetic energy.

The rotation of a body slowed down or speeded'up, hence,
its kinetic energy changed. This can only take place
in case the resultant torque is not equal to zero.

And what if the resultant torque is equal to zero? The
answer is obvious—the kinetic energy does not change;
consequently, the body either rotates uniformly by iner-
tia or remains stationary

Thus, the equilibrium of a body capable of rotating
requires the balancing of all the torques acting on it.
If there are two such torques, the equilibrium requires
that

M1+M2=0

While we were interested in problems in which a body
could be regarded as a point, the conditions for equilib-
rium were simple: in order for a body to remain station-
ary or move uniformly, stated Newton’s law for such prob-
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lems, it is necessary that the resultant force be equal to
zero; the forces acting upwards must balance those di-
rected downwards; the rightward force must compensate
for the leftward one.

This law is also valid for our case. If a flywheel is sta-
tionary, the forces acting on it are balanced by the reac-
tion of the axle around which the wheel can turn.

But these necessary conditions become insufficient.
Besides the balancing of forces, the balancing of torques
is also required. The balancing of moments of force is the
second necessary condition for the rest or uniform rota-
tion of a solid body.

Torques, if there are several of them, can be easily
separated into two groups: some tend to rotate a body
clockwise, and others counterclockwise. These are pre-
cisely the moments of force which must compensate for
each other,

Lever

Can a person keep 100 tons from falling? Can one crush
a piece of iron with one’s hand? Can a child resist a strong
man? Yes, they can.

Ask a strong man to turn a flywheel in the clockwise
direction while holding a spoke near the axle. The torque
will be small in this case: the force is great but the lever
arm is short. If a child pulls the wheel in the opposite
direction, holding a spoke near the rim, the torque may
turn out to be large: the force is small but the lever arm
is long. The condition for equilibrium will be

M] =M2, or F1d1=F2d2

Using the law of moments, a person can acquire
fabulous strength.

The action of levers serves as the most striking example
of this.
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You want to lift an enormous stone with the aid of a
crow-bar. This task will turn out to be possible for you
to accomplish, even though the stone weighs several tons.
The crow-bar is placed on a pivot and is the solid body
of our problem. The pivot is the centre of rotation. Two
torques act on the body: a hindering one from the weight
of the stone, and a helping one from your hand. If the
subscript 1 refers to the muscular force, and the subscript
2 to the weight of the stone, the possibility of lifting
the stone can be expressed concisely: M; must be
greater than M,.

The stone can be supported above the ground provided
that

Ml = M2’ i.e. Fldl = dez

If the short lever arm (from the pivot to the stone) is
fifteen times smaller than the long one (from the pivot
to the hand), then a person acting with his entire weight
on the long end of the lever will support a one-ton stone
in a raised position.

A crow-bar placed on a pivot is a rather widespread and
the simplest example of a lever. A ten- to twenty-fold
gain in force is usually achieved with the aid of a crow-
bar. The length of a crow-bar is about 1.5 m, but it is
usually difficult to place the pivot nearer than 10 cm
from its bottom. Therefore, one of the lever arms will be
from fifteen to twenty times as long as the other, and so
this will also be the gain in force.

A chauffeur will easily raise an automobile weighing
several tons with the aid of a jack. A jack is a lever, of
the same type as a crow-bar, placed on a pivot. The points
of application of the forces (the hand, the weight of the
car) lie on opposite sides of pivot of the jack. Here the
gain in force is about forty- to fifty-fold, which makes
it possible to easily lift an enormous weight.
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Figure 5.4

A pair of scissors, a nutcracker, pliers, pincers, nippers
and many other instruments are all levers. You can easily
find the centres of rotation (pivots) of the solid bodies
depicted in Figure 5.3, as well as the points of applica-
tion of the two forces—active and hindering.

In cutting tin-plate with a pair of scissors, vne tries
to open them as wide as possible. What ‘is accomplished
by this? One succeeds in slipping the piece of metal closer
to the centre of rotation. The lever arm of the torque one
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is overcoming becomes shorter, and so the gain in force
is greater. When moving a pair of scissors, or nippers, an
adult ordinarily acts with a force of 40-50 kgf. One of
the lever arms can be twenty times longer than the other.
It turns out that we are able to cut into metal with a
force of 1000 kgf. And this with the aid of such simple
instruments.

The windlass is a variety of lever. With the aid of a
windlass (Figure 5.4), water is taken out of a well in many
villages.

Loss in Path

Instruments make a person strong, but it by no means
follows from this that instruments permit one to expend
a little work and obtain a lot. The law of conservation of
energy convinces us that a gain in work, i.e. the creation
of work out of “nothing”, is impossible.

The work obtained cannot be greater than the work
performed. On the contrary, the inevitable energy loss
due to friction leads to the fact that the work obtained
with the aid of an instrument will always be less than that
performed. In the ideal case, these works can be equal.

Properly speaking, we are wasting time by explaining
this obvious truth: for the rule of torques was derived from
the condition of equality of the work performed by the
active and overcome forces.

If the points of application of the forces moved distances
s; and s,, the condition of equality of the work assumes
the foliowing form:

Fisi = F;Sz

In overcoming some force F, along a path of length s,
with the aid of a lever, we can make this by means of
force F, much less than F,. But the displacement s; of
our hand must be as many times greater than s, as the
muscular force F; is less than F,.
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This law is often expressed by the following brief sen-
tence: the gain in force is equal to the loss in path.

The law of the lever was discovered by the greatest
scientist of antiquity—Archimedes. Amazed at the
strength of his proof, this remarkable scientist of anti-
quity wrote to King Hiero Il of Syracuse: “If there were
another world and I could go to it, I would move this one.”
A very long lever whose pivot is near the Earth would
make it possible to solve such a problem.

We shall not grieve with Archimedes over the absence
of a fulecrum, which, as he thought, was all that he lacked
to move the Earth.

Let us dream: take the strongest possible lever, place
it on a pivot and “suspend a small sphere” of weight...
6 X 10% kgf on its short end. This modest number shows
how much the Earth “pressed into a small sphere” weighs.
Now apply muscular force to the long end of the lever.

If the force exerted by Archimedes can be taken as
60 kgf, then in order to displace the “Earth nut” by 1 cm,
Archimedes’ hand would have to cover a distance
(6 x 10%)/60 = 10*® times greater. But 10%® cm are
10'® km, which is three billion times greater than the
diameter of the Earth's orbit!

This fantastic example clearly demonstrates the scale
of the “loss in path” involved in the work of a lever.

Any of the examples considered by us above can be
used to illustrate not only a gain in force but also a loss
in path. The hand of the chautfeur jacking up his car cov-
ers a path which will be as many_times longer than the
height to which he raises it as his muscular force is less
than the weight of the automobile. Moving a pair of scis-
sors in order to cut a sheet of tin-plate, we perform work
along a path which is as many times longer than the depth
of the cut as our muscular force is less than the resistance
of the tin-plate. The stone lifted by the crow-bar will
rise to a height as many times less than that by which the
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Archimedes [circa 287-212 B.C.)—the greatest mathematician,
physicist and engineer of antiquity. Archimedes computed the
volume and the surface area of a sphere and its parts, of a
cylinder and of bodies formed by rotating an ellipse, hyperbola
or parabola. He was the first to compute the ratio of the circum-
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hand is lowered_as the muscular force is less than the
weight of the stone. This rule clarifies the principle of the
screw’s action. Imagine that we are screwing in a bolt,
whose threading has a 1-mm screw pitch, with the aid of
a wrench of length 30 cm. The bolt will advance 1 mm
along its axis during a single turn, while our hand will
cover a 2-m path during the same time. Our gain in force
is two thousand-fold, and we either safely fasten the com-
ponents together or move a heavy weight with a slight
effort of our hand.

Other Very Simple Machines

A loss in path as payment for a gain in force is a gen-
eral law not only for levers but also for all other devices
and mechanisms used by man.

A tackle is widely used for lifting loads. This is what
we call a system consisting of several movable pulleys
joined to one or several fixed pulleys. The load in Figure
5.5 is suspended by six strings. It is clear that the weight
is distributed among the strings, and so the tension in
a string will be six times less than the weight. The lift-
ing of a one-ton load will require an application of
1000/6 = 167 kgf. However, it is not difficult to see that
in order to raise the load by 1 m, one must haul in 6 m

ference of a circle to its diameter with a high degree of accuracy,
showing that it satisfies the inequalities 3%)< <L 3%, In me-

chanics he established the laws of lever, the conditions governing
floating bodies (Archimedes’ principle), the composition of par-
allel forces. Archimedes invented the machine for pumping water
(Archimedean screw, used in our times for transporting free-flow-
ing or viscous cargo), systems of levers and blocks for raising
heavy weights, and military engines successfully employed during
the siege of his native city, Syracuse, by the Romans.

11-0378
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Figure 5.5

of string. For raising the load by 1 m, 1000 kgf-m of
work are needed. We must supply this work in “some
form” —a force of 1000/6 kgf must act along a 6-m path, a
force of 10 kgf along a 100-m path, and a force of 1 kgf
along a 1-km path.

An inclined plane, which we discussed on p. 37, is also
a device permitting a gain in force at the expense of a
loss in path.

A blow is a distinctive means of multiplying forces.
Alblow with a hammer, an axe, a ram and even a blow with
a fist can create an enormous force. The secret of a strong
blow isn’t complicated. Driving a nail into an unyielding
wall with a hammer, one must take a good wind-up. A
big swing, i.e. a long path along which the force acts,
generates a significant kinetic energy in the hammer.
This energy is released along a small path. If the swing
covers 1/2 m and the nail enters 1/2 ¢m into the wall, the
force is intensified by a factor of 100. But if the wall is
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harder and the nail, after the same swing of the hand,
enters 1/2 mm into the wall, the blow will be ten times
as strong as in the former case. The nail does not enter
a hard wall as deeply, and the same work is expended on
a shorter path. It turns out that a hammer works like
an automaton: it strikes harder where the wall is harder.
If a hammer of 1 kg is “speeded up”, it will strike a
nail with a force of 100 kgf. Also, in splitting logs with
a heavy wood-chopper, we break the wood with a force of
several thousands kgf’s. Heavy forging hammers fall
from small heights, of the order of a metre. Flattening
a forged piece by 1-2 mm, a hammer of 1000 kg comes
down on it with an enormous force, that of 108 kgf.

How to Add Parallel Forces
Acting on a Solid Body

While solving mechanical problems in which a body
was conceptually replaced by a point, the question of
how to add forces was answered simply on the preceding
pages. The parallelogram law of forces yielded an answer
to this question, and if the forces were parallel, we added
their magnitudes like numbers.

Now matters are more complicated. For the effect of
a force on an object is characterized not only by its magni-
tude and direction but also by the point of its application,
or—we have explained above that this is the same thing—
its line of action.

To add forces means to replace them by a single force.
This is by no means always possible.

The replacement of parallel forces by a single resultant
is a problem which can always be solved (except in a
special case, which will be discussed at the end of this
section). Let us consider the addition of parallel forces.
Of course, the sum of forces of 3 kgf and 5 kgf is equal to
8 kgf, provided that they have the same direction. The

11+
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Figure 5.6

problem consists in finding the point of application (line
of action) of the resultant force.

Two forces acting on a body are depicted in Figure 5.6.
The resultant force F replaces the forces F, and F,, but
this means not only that F = F, + F,; the action of
F will be equivalent to that of /#; and F, in case the
torque produced by F is equal to the sum of the torques
produced by F; and F,.

We are looking for the line of action of the resultant
force F. Of course, it is parallel to the forces F,; and F,,
but how far is this line from F, and F,?

A point lying on the segment joining the points of ap-
plication of F, and F, is depicted in the figure as F’s
point of application. With respect to the chosen point,
the moment of F is, of course, equal to zero. But then the
sum of the moments of F, and F, with respect to this
point should also be equal to zero, i.e. the torques pro-
duced by F, and F, opposite in sign will be equal in mag-
nitude.

Denoting the lever arms of F; and F, by d, and d,, we
may write out this condition as follows:

. F d
Fid’=F2d2, 1.e. —F':—=T:-
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It follows from the similarity of the shaded triangles
that d,/d, = 1,/1,, i.e. the point of application of the
resultant force divides the distance on the uniting seg-
ment between the added forces into parts, I, and I,
which are inversely proportional to the forces.

Denote the distance between the points of application
of F, and F, by l. It is obvious that I =1, 4 [,.

Let us solve the following system of two equations in
two variables

Flll_FZZZ = 0

L+1l,=1

We obtain
[ Fal U
VT F+F, Y 2T Fi+-F,

By means of these formulas, we can find the point of
application of the resultant force not only in the case
when the forces have the same direction but also in the
case of the forces with opposite directions (antiparallel
forces, as we say). If the forces have different directions,
they have opposite signs, and the resultant is equal to the
difference F, — F, of the forces and not to their sum.
Taking the smaller of the two forces, F,, to be negative,
we see by our formulas that I, becomes negative. This
means that the point of application of F, lies not to the
left (as before) but to the right of the point of application
of the resultant force (Figure 5.7); moreover, as in the
previous case,

Fi _ L

F, 1

An interesting result is obtained for equal antiparallel
forces. Then F, 4+ F, = 0. The formulas show that I,-
and !, will then become infinitely large. What is the
physical meaning of this assertion? Since it is meaning-
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Figure 5.7

less to put the resultant at infinity, it is therefore impos-
sible to replace equal antiparallel forces by a single force.
Such a combination of forces is called a couple.

The action of a couple cannot be reduced to the action
of one force. Any other pair of parallel or antiparallel
forces can be balanced by a single force, but a couple
cannot.

Of course, it would be false to say that the forces con-
stituting a couple cancel each other. A couple has quite a
significant effect—it rotates a body; the peculiarity of
the action of a couple consists in the fact that it does not
produce a translational motion.

In certain cases, the question may arise not of adding
parallel forces but of decomposing a given force into two
parallel ones.

Two persons carrying a heavy basket together on a
pole are depicted in Figure 5.8. The weight of the basket
is distributed between the two of them. If the load presses
down on the centre of the pole, they both feel the same
weight. If the distances from the point of appplication
of the load to the hands which carry it are d, and d,, the
force F is decomposed into forces F, and F, according to
the rule

£ _ 4

Fy, 7 4y
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Figure 5.8

The stronger person should take hold of the polé nearer
to the load.

Centre of Gravity

All particles of a body possess weight. Therefore, a
solid body is subject to the action of an infinite number of
gravitational forces. Moreover, all these forces are paral-
lel. If so, it is possible to add them according to the rules
which we have just considered and replace them by a
single force. The point of application of the resultant
force is called the centre of gravity. It is as if the weight
of a body were concentrated at this point.

Let us suspend a body by one of its points. How will
it then be situated? Since we may conceptually replace
the body by one load concentrated at the centre of grav-
ity, it is clear that in equilibrium this load will lie on
the vertical passing through the pivot. In other words, in
equilibrium the centre of gravity lies on the vertical pass-
ing through the pivot, and is at its lowest possible posi-
tion.

One can place the centre of gravity on the vertical pass-
ing through the axis and above the pivot. It will be very
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difficult to do this and only because of the presence of
friction. Such an equilibrium is unstable.

We have already discussed the condition for stable equi-
librium—the potential energy must be minimum. This
is precisely the case when the centre of gravity lies below
the pivot. Any deflection raises the centre of gravity and,
therefore, increases the potential energy. On the contrary,
when the centre of gravity lies above the pivot, any puft
removing the body from this position leads to a decrease
in potential energy. Such a position is unstable.

Cut a figure out of cardboard. In order to find its centre
of gravity, hang it up twice, attaching the suspending
thread first to one and then to another point of the body.
Attach the figure to an axis passing through its centre of
gravity. Turn the figure to one position, a second, a
third, ... . We observe the complete neutrality of the body
towards our operations. A special case of equilibrium is
attained in any position. This is just what we call it—
neutral.

The reason for this is clear—in any position of the
figure, the material point replacing it is located at one
and the same place.

In a number of cases, the centre of gravity can be found
without any experiments or computations. It is clear,
for example, that the centres of gravity of a sphere, cir-
cle, square and rectangle are located at the centres of
these figures, since they are symmetrical. If we concep-
tually break up a symmetrical body into small parts,
each of them will correspond to another located symmetri-
cally on the other side of the centre. And for each pair of
such particles, the centre of the figure will be the centre
of gravity.

The centre of gravity of a triangle lies at the inter-
section of its medians. In fact, let us break up a triangle
into narrow strips parallel to one of the sides. A median
divides each of the strips in half. But the centre of grav-
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Figure 5.9 @ |

ity of a strip lies, of course, half-way along it, i.e. on the
median. The centres of gravity of all the strips occur on the
median, and when we add their weights, we arrive at the
conclusion that the centre of gravity of the triangle lies
somewhere on the median. But this argument is valid
with respect to any of the medians. Therefore, the centre
of gravity must lie at their intersection.

But perhaps you are not convinced that the three me-
dians intersect in a single point. This is proved in geo-
metry; but our argument also proves this interesting
theorem. For a body cannot have several centres of grav-
ity; but since the centre of gravity is one and lies on a
median, no matter from which vertex we draw it, all the
three medians therefore intersect in a single point. The
formulation of a physical problem helped us prove a
geometric theorem.

It is more difficult to find the centre of gravity of a
homogeneous cone. It is only clear from considerations of
symmetry that the centre of gravity lies on the axis.
Computations show that it is located at the distance of
a quarter of the height from the base.

The centre of gravity is not necessarily located inside
a body. For example, the centre of gravity of a ring is
located at its centre, i.e. outside the ring.

Can a pin be placed in a vertical position on a glass
pedestal and stay stable?
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Figure 5.10

It is shown in Figure 5.9 how to do this. A small appara-
tus consisting of wires in the form of a double yoke with
four small loads should be rigidly fastened to the pin.
Since the loads are hanging lower down than the pivot,
and the weight of the pin is small, the centre of gravity
lies below the pivot. The position is stable.

So far we have been dealing with bodies possessing a
point of support. What is the situation in those cases when
a body is supported over an entire area element?

It is clear that in this case the location of the centre
of gravity above the support does not at all imply that
the equilibrium is unstable. How else could glasses stand
on a table? It is necessary for stability that the line of
action of the gravitational force drawn from the centre
of gravity pass through the area of support. On the con-
trary, if the line of action passes outside the area of sup-
port, the body will fall. '

Stability may differ greatly depending on how high
above the support the centre of gravity is. Only a vety
clumsy person will overturn a glass of tea, but a flower
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Figure 5.11

vase with a small base can be overturned by a careless
touch. What is the point here?

Take a look at Figure 5.10. Identical horizontal forces
are applied to the centres of gravity of two vases. The
vase at the right will overturn, since the resultant force
doesn’t pass through its base but is directed to one side.

We have said that for a body to be stable, the force ap-
plied to it must pass through the area of support. But the
area of support needed for equilibrium does not always
correspond to the actual area of support. A body whose
area of support has the form of a crescent is depicted in
Figure 5.11. It is easy to see that the stability of the body
will not change if the crescent is completed to a solid
half-disc. Thus, the area of support determining the con-
dition for equilibrium may be greater than the actual one.

In order to find the area of support for the tripod de-
picted in Figure 5.12, one must join its tips with straight-
line segments.

Why is it so hard to walk a tightrope? Because the area
of support has sharply decreased. It isn’t easy to walk
a tightrope, and skilful tightrope walkers aren’t rewarded
with applause for nothing. However, sometimes viewers
make the mistake of acclaiming clever tricks simplifying
the task as the epitome of artistry. The performer takes
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Figure 5.12

a heavily bent yoke with two pails of water; the pails
turn out to be on the level of the tightrope. With a
straight face, while the orchestra has ceased playing,
the performer takes his walk along the tightrope. How
complicated has the trick become, thinks the inexperi-
enced viewer. As a matter of fact, the performer has sim-
plified his task by lowering the centre of gravity.

Centre of Mass

It is entirely legitimate to ask the following question:
Where is the centre of gravity of a group of bodies? If
many people are on a raft, its stability will depend on
the location of their (together with the raft’s) centre of
gravity.

The meaning of this concept remains the same. The
centre of gravity is the point of application of the sum of
the gravitational forces of all the bodies in the group
under consideration.

We know the result of the computation for two bodies.
If two bodies of weights F, and F, are located at a distance
z from each other, their centre of gravity'is situated at
distances x; from the first body and z, from the second,
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where
Fy, _ x,
Fy Tz

Since weight may be represented as a product mg, the
centre of gravity of the pair of bodies satisfies the con-
dition

Mm%y = MoZy

i.e. lies at the point which divides the distance between
the masses into segments inversely proportional to the
masses.

Let us now recall the firing of a gun attached to a plat-
form. The momenta of the gun and the shell are equal in
magnitude and opposite in direction. The following equal-
ities hold:

Ve my

myvy = Myly, or v—l- = g

z,+z,=2 and

where the ratio of the speeds retains this value during
the entire interaction. In the course of the motion aris-
ing as a result of the recoil, the gun and the shell are
displaced with respect to their initial positions by dis-
tances z, and z, in opposite directions. The distances
z; and z,—the paths covered by the two bodies—increase,
but for a constant ratio of speeds, they will also be in
the same ratio to each other all the time:

Fr M

£5 1 My

Here z, and z, are the distances of the gun and the shell
from their original positions. Comparing this formula
with the formula determining the position of the centre
of gravity, we observe their complete identity. It imme-
diately follows from this that the centre of gravity of the
gun and the shell remains at its original position all the
time after the firing.

In other words, we have arrived at the very interesting
result—the centre of gravity of the gun and the shell

N or XTymy=Tymgy



Physical Bodies 174

remains stationary after the firing.

Such a conclusion is always true: if the centre of grav-
ity of two bodies was initially stationary, ,their interac-
tion, regardless of its nature, cannot change the position
of the centre of gravity. This is precisely why it is impos-
sible to pick oneself up by the hair or pull oneself up to the
Moon by the method of the French writer Cyrano de Ber-
gerac, who proposed (jokingly, of course) to this end that
one threw a magnet upwards while holding a piece of
iron which would be attracted by the magnet.

A stationary centre of gravity is moving uniformly from
the point of view of a different inertial frame of refer-
ence. Hence, a centre of gravity is either 'stationary or
moving uniformly and rectilinearly.

What we have said about the centre of gravity of two
bodies is also true for a group of many bodies. Of course,
for an isolated group of bodies; this is always stipulated
when we are applying the law of conservation of momen-
tum.

Consequently, every group of interacting bodies has
a point which is stationary or is moving uniformly, and
this point is their centre of gravity.

To emphasize the new property of this point, we give
it an additional name: the centre of mass. As a matter of
fact, the question of, say, the weight of the solar system
(and hence its centre of gravity) can have only a hypo-
thetical meaning.

No matter how the bodies forming a closed group move,
the centre of mass (gravity) will be stationary or, in
another frame of reference, will move by inertia.

Angular Momentum

We shall now become acquainted with another mechan-
ical concept, which permits us to formulate a new im-
portant law of motion. This concept is called angular
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momentum, or moment of momentum. The very names
suggest that we are dealing with the quantity which
somehow resembles a moment of force.

A moment of momentum, just as a moment of force,
requires the indication of the point with respect to which
the moment is defined. In order to define the angular
momentum relative to some point, one must construct
the momentum vector and drop a perpendicular from the
point to its direction. The product of the momentum mv
by the lever arm d is precisely the angular momentum,
;which we shall denote by the letter N:

N = mvd

If a body is moving freely, its velocity does not change,
the lever arm with respect to any point also remains con-
stant, since the motion takes place along a straight line.
Consequently, the angular momentum also remains con-
stant during such a motion.

Just as for the moment of force, we can also obtain a
different formula for the moment of momentum. Draw
a radius between the position of the body and the point
with respect to which we are interested in the angular mo-
mentum (Figure 5.13). Construct also the projection of
the velocity onto the direction perpendicular to the ra-
dius. It follows from the similar triangles constructed in
the figure that v/v, = r/d. Therefore, vd =v,r, and the
formula for angular momentum may also be written in
the following form: N = muv,r.

During free motion, as we have just said, angular mo-
mentum remains constant. Well, but if a force is acting
on the body? Computations show that the change in an-
gular momentum during a second is equal to the torque.

This law can be extended without difficulty to systems
of bodies. If - we add the changes in the angular momenta
of all the bodies belonging to the system in a unit of time,
their sum turns out to be equal to the sum of the torques
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Figure 5.13

acting on the bodies. Consequently, the following state-
ment is valid for a group of bodies: the change in the total
moment of momentum in a unit of time is equal to the
sum of the moments of all the forces.

Law of Conservation
of Angular Momentum

If two stones are connected with a string and one of
them is hurled, the other stone will fly after the first at
the end of the stretched string. Each stone will pass the
other, and this forward motion will be accompanied by
a rotation. Let us forget about the gravitational field—
assume that the throw was made in interstellar space.

The forces acting on the stones are equal in magnitude
and directed towards each other along the string (for
these are forces of action and reaction). But then the
lever arms of both forces with respect to an arbitrary point
will also be the same. Equal lever arms and equal but
oppositely directed forces yield torques which are equal
in magnitude and opposite in sign.
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The resultant torque will be equal to zero. But it fol-
lows from this that the change in angular momentum will
also equal zero, i.e. that the angular momentum of such
a system remains constant.

We only needed the string connecting the stones for
visualization. The lew of conservation of angular momen-
tum is valid for any pair of interacting bodies, no matter
what the nature of this interaction.

Yes, and not only for a pair. If a closed system of bod-
ies is being investigated, the forces acting between the
bodies can always be divided up into an equal number of
forces of action and reaction whose moments will cancel
each other in pairs.

The law of conservation of total angular momentum is
universal, it is valid for any closed system of bodies.

If a body is rotating about an axis, its angular momen-
tum is

N = mor

where m is the mass, v is the speed, and r is the distance
from the axis. Expressing the speed in terms of the num-
ber n of revolutions per second, we have:

v=2mxnr and N = 2nmnr?

i.e. the angular momentum is proportional to the square
of the distance from the axis.

Sit down on a swivel stool. Pick up heavy weights,
spread your arms wide apart and ask somebody to get
you rotating slowly. Now press your arms to your chest
rapidly—you will suddenly begin rotating faster. Arms
out—the motion slows down, arms in—the motion speeds
up. Until the stool stops turning because of friction, you
will have time to change your rotational velocity several
times.

Why does this happen?

12—-0376
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For a constant number of revolutions per second, the
angular momentum would decrease in case the weights
approached the axis. In order to “compensate” for this
decrease, the rotational velocity increases.

Acrobats make good use of the law of conservation of
angular momentum. How does an acrobat turn a somer-
sault in mid-air? First of all, by pushing off from an elas-
tic floor or his partner’s hand. When pushing off, his body
bends forward and his weight, together with the force of
the push, creates an instantaneous torque. The force of
the push creates a forward motion, and the torque causes
a rotation. However, this rotation is slow, incapable of
impressing the audience. The acrobat bends his knees.
“Gathering his body” closer to the axis of rotation, the
acrobat greatly increases the rotational velocity and
quickly turns over. This is the mechanics of the somer-
sault.

The movements of a ballerina performing a succession
of rapid turns are based on this same principle. Ordinarily
the initial angular momentum is imparted to the balle-
rina by her partner. At this instant the dancer’s body is
bent; a slow rotation begins, then a graceful and rapid
movement—the ballerina straightens up. Now all points
of her body are closer to the axis of rotation, and conser-
vation of angular momentum leads to a sharp increase in
speed.

Angular Momentum as a Vector

So far we have been dealing with the magnitude of
angular momentum. But angular momentum has the
properties of a vector.

Consider the rotation of a point with respect to some
“centre” Two nearby positions of the point are depicted
in Figure 5.14. The motion in which we are interested is
characterized by the magnitude of its angular momentum
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Figure 5.14

and the plane in which it takes place. The plane of the
motion is shaded in the figure—it is the area swept out
by the radius drawn from the “centre” to the movingz
point.

Information about the direction of the plane of the
motion and about the magnitude of the angular momen-
tum can be combined. The angular momentum vector,
directed along the normal to the plane of motion and
equal in magnitude to the absolute value of the angular
momentum, serves for this purpose. However, this is
still not all—one must take into account the direction
of the motion in the plane: for a body can rotate about a
centre in the clockwise as well as in the counterclockwise
direction.

It is customary to draw an angular momentum vector
in such a manner that we see the point rotating in the
counterclockwise direction when we look at it facing the
vector. This can also be said otherwise: the direction of
the angular momentum vector is related to the direction
of the rotation in the same way as the direction of a turn-
ing corkscrew is related to the direction of the motion of
its handle.

Thus, if we know the angular momentum vector, we
can determine the magnitude of the angular momentum,
the position of the plane of motion in space, and the di-
rection of the rotation with respect to the “centre”.

12*
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If the motion takes place in one and the same plane,
and the lever arm and speed change, the angular momen-
tum vector preserves its direction in space, but changes
in length. And in the case of an arbitrary motion, the
angular momentum vector changes both in direction and
in magnitude. It may seem that such a fusion into one
concept of the direction of the plane of motion and the
magnitude of an angular momentum serves only the purpose
of saving words. In reality, however, when we are dealing
with a system of bodies moving in more than one plane,
we obtain the law of conservation of angular momentum
only when we add moments of momentum as vectors.
This circumstance shows that the attribution of a vec-
tor nature to angular momentum has a profound content.

Angular momentum is always defined with respect to
some conditionally chosen “centre” It is only natural that
this quantity depends, generally speaking, on the choice
of this point. Nevertheless, it can be shown that if the
system of bodies under consideration is stationary on the
whole (its total momentum is equal to zero), its angular
momentum vector is independent of our choice of “centre”
This angular momentum may be called the internal an-
gular momentum of the system of bodies.

The law of conservation of angular momentum vector
is the third and last conservation law in mechanics. How-
ever, we are not being entirely precise when speaking of
three conservation laws. In fact, momentum and angular
momentum are vector quantities, and a law of conserva-
tion of a vector quantity implies that not only its magni-
tude remains constant but also its direction. To put it
otherwise, the three components of a vector in three mu-
tually perpendicular directions in space remain constant.
Energy is a scalar quantity, momentum is a vector quan-
tity, and angular momentum is also a vector quantity.
It would therefore be more precise to say that seven con-
servation laws hold in mechanics.
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Tops

Try to place a plate topside up on a thin stick and keep
it in a position of equilibrium. Nothing will come of your
efforts. However, this is a favourite trick of Chinese
jugglers. They succeed in performing it with several sticks
simultaneously. A juggler doesn’t even attempt to main-
tain his thin sticks in a vertical position. It appears to
be a miracle that the plates slightly supported by the
ends of the horizontally inclined sticks do not fall and
practically hang in the air.

If you have the opportunity of observing jugglers at
work at close range, note the following significant detail:
the juggler twists the plates in such a fashion that they
rotate rapidly in their planes.

Juggling maces, rings or hats, the performer will in
all cases impart a spin to them. Only then will the objects
return to his hand in the same state in which they were
put at the beginning.

What is the cause of such stability? It is related to
the law of conservation of angular momentum. For when
there is change in the direction of the axis of rotation,
the direction of the angular momentum vector also changes.
Just as a force is needed to change the direction of
velocity, so a torque is needed to change the direction
of rotation; the faster the body rotates, the greater the
torque required.

The tendency of a rapidly rotating body to preserve
the direction of its axis of rotation can be observed in
many cases similar to those mentioned. Thus, a spinning
top does not tip over even if its axis is inclined.

Try to overturn a spinning top with your hand. It
proves to be not so easy to do this.

The stability of a rotating body is utilized in the artil-
lery. You have probably heard that gun barrels are rifled.
An outgoing projectile spins about its axis and, because
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Figure 5.15

of this, does not “tumble” through the air. A rifled gun
gives incomparably better aiming and greater range than
an unrifled one.

It is necessary for a pilot or a sea navigator to always
be aware of the location of the true terrestrial vertical
relative to the position of the airplane or the ship at the
given instant. The use of a plumb-line is unsuitable for
this purpose, since it is deflected during an accelerated
motion. A rapidly spinning top of special construction
is therefore employed—it is called a gyrovertical. If we
set its axis of rotation along a terrestrial vertical, it will
then remain in this position, regardless of how the air-
plane changes its position in space.

But what does the top stand on? If it is located on a
support which is turning together with the airplane, how
can its axis of rotation preserve its direction?

An apparatus like the Cardan suspension (Figure 5.15)
serves as the support. In this apparatus, with a minimum
of friction at the pivots, a top can behave as though it
were suspended in air.

With the aid of spinning tops, it is possible to automat-
ically keep torpedoes and airplanes on a given course.
This is done by means of mechanisms “watching” the
deviation of the direction of the torpedo’s axis from that
of the top’s axis,
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Such an important instrument as the gyrocompass is
based on the application of the spinning top. It can be
proved that under the action of the Coriolis force and
friction, the top’s axis eventually settles down parallel
to the Earth’s axis, and so points to the North.

Gyrocompasses are widely applied in navigation. Their
main part is an engine with a heavy flywheel which does
up to 25000 rpm.

In spite of a number of difficulties involved in the elim-
ination of various hindrances, in particular those due
to the pitching of a ship, gyrocompasses have an advan-
tage over magnetic compasses. The drawback of the latter
is the distortion of the readings because of the influence
of iron objects and electrical appliances aboard the ship.

Flexible Shaft

Shafts are important parts of modern steam turbines.
The manufacture of such shafts which are 10 m in length
and 0.5 m in diameter is a complex technological prob-
lem. The shaft of a powerful turbine can withstand a
load of about 200 t and rotate with a speed of 3000 rpm.

At first glance, it might seem that such a shaft should
be exceptionally hard and durable. This, however, is
not so. At tens of thousands of revolutions per minute,
a rigidly fastened and unbendable shaft will inevitably
break, no matter how strong it may be.

It isn't difficult to see why rigid shafts are unsuitable.
No matter how precisely engineers work, they cannot
avoid at least a slight asymmetry in the wheel of a turbine.
Enormous centrifugal forces arise when such a wheel
rotates; recall that their magnitudes are proportional to
the square of the rotational speed. If they are not exactly
balanced, the shaft will start “beating” against the ball
bearings (for the unbalanced centrifugal forces “rotate”
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together with the machine), break them and smash the
turbine.

At one time, this phenomenon created an unsurmoun-
table obstacle to the increase in the rotational speed of
a turbine. A way out of the situation was found at the
last turn of the century. The flexible shaft was introduced
into the technology of turbine construction.

In order to understand the idea behind this remarkable
invention, we must compute the total effect of the centri-
fugal forces. But how can these forces be added? It turns
out that the resultant of all the centrifugal forces acts
at the centre of gravity of the shaft and has the same mag-
nitude as if the entire mass of the wheel of the turbine were
concentrated at the centre of gravity.

Let us denote the distance from the centre of gravity
of the wheel of the turbine to its axis, distinct from zero
because of a slight asymmetry in the wheel, by a. During
rotation, centrifugal forces will act on the shaft which
will bend. Denote the displacement of the shaft by I.
Let us compute this magnitude. We know the formula
for centrifugal force (see p. 81). This force is proportional
to the distance from the centre of gravity to the axis,
which is now a + I, and is equal to 4n?*n*M (a + 1),
where n is the number of revolutions per minute, and M
is the mass of the rotating parts. The centrifugal force is
balanced by the elastic force, which is proportional to the
magnitude of the displacement of the shaft and is equal
to kI, where the coefficient k characterizes the rigidity of
the shaft. Thus:

kl = 4n®*n®M (a + 1)
whence

l=——2
T k/an®niM —1

Judging by this formula, fast rotations are no problem
for a flexible shaft. For very large (even infinitely large)
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values of n, the deflection ! of the shaft does not grow
without bound. The value of k/4n%n?M figuring in our
last formula tends to zero, and the deflection ! of the shaft
becomes equal in magnitude to the asymmetry, but op-
posite in sign.

This computational result implies that, for fast rota-
tions, the asymmetrical wheel, instead of smashing the
shaft, bends it in such a way as to cancel the effect of
asymmetry. The bending shaft centres the rotating parts,
transfers the centre of gravity to the axis of rotation by
means of its deformation, and thus nullifies the action of
the centrifugal force.

The flexibility of the shaft is by no means a drawback;
on the contrary, it is a necessary condition for stability.
As a matter of fact, it is necessary for stability that the
shaft bend by a distance of the order of a without break-
ing.

An attentive reader may have noticed an error in the
reasoning employed. If we displace a shaft “centring”
during fast rotations from the position of equilibrium we
have found and consider only centrifugal and elastic
forces, it is easy to see that this equilibrium is unstable.
It turns out, however, that Coriolis forces save the situa-
tion and make this equilibrium quite stable.

A turbine starts turning slowly. At first, when #n is
very small, the fraction k/4n2n2M will be great. As long
as this fraction is greater than unity with increasing r,
the deflection of the shaft will have the same sign as that
of the original displacement of the centre of gravity of
the wheel. Therefore, at the beginning of the motion the
bending shaft does not centre the wheel, but, on the con-
trary, increases the total displacement of the centre of
gravity by means of its deformation, and hence also the
centrifugal force. To the degree that n increases (with
the condition k/4n2n2M > 1 preserved), the displacement
grows and, finally, the critical moment is reached. The
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denominator of our formula for the displacement ! van-
ishes when k/4n2n?M = 1, and so the deflection of the
shaft formally becomes infinitely large. The shaft will
break at such a speed of rotation. In starting a turbine.
this moment must be passed very quickly; it is necessary
to slip by the critical number of revolutions per minute
and pass over to a much faster motion of the turbine for
which the phenomenon of self-centring described above
will begin.

But what is this critical moment? We can rewrite its
condition in the following form:

M 1
2 M2
4 =
Or, expressing the number of revolutions per minute in
terms of the period of rotation by means of the relation
rn = 1/T and extracting square roots, we can rewrite it
as follows:

r—2x)/ L

But what kind of quantity have we obtained in the right-
hand side of the equality? Our formula looks rather fa-
miliar. Turning to p. 142, we see that the period of free
vibration of the wheel on the shaft figures in our right-
hand side. The period 2n V M/k is that with which the
wheel of a turbine of mass M would vibrate on a shaft of
rigidity & if we were to deflect the wheel to one side, so
that it might vibrate by itself.

Thus, the dangerous instant is when the rotational
period of the wheel of the turbine coincides with the pe-
riod of free vibration of the system turbine-shaft. Res-
onance is responsible for the existence of a critical num-
ber of revolutions per minute,
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What Holds the Earth Up!

In the distant past, people gave a simple answer to
this question: the three whales. True, it remained unclear
what was holding the whales up. However, this did not
disturb our naive forefathers.

Correct ideas about the nature of the Earth’s motion,
the Earth’s form and many regularities in the motion of
the planets around the Sun had arisen long before an
answer was given to the question of the causes for the
motion of the planets.

And really, what “holds up” the Earth and the plan-
ets? Why do they move around the Sun along definite
paths instead of flying away from it?

There was no answer to these questions for a long time,
and the Church, struggling against the Copernican sys-
tem of the Universe, used this to negate the fact of the
Earth’s motion.

We are obliged to the great English scientist Isaac New-
ton for his discovery of the true answers.

A well-known historical anecdote asserts that while
sitting in an orchard under an apple-tree, thoughtfully
observing how one apple after another fell to the ground
because of gusts of wind, Newton arrived at the idea of
the existence of gravitational forces between all bodies
in the Universe.

As a result of Newton’s discovery, it became clear that
many apparently miscellaneous phenomena—the free
fall of bodies to the Earth, the apparent motions of the
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Moon and the Sun, the ocean tides, etc.—are manifesta-
tions of one and the same law of nature—the law of uni-
versal gravitation.

Between all bodies in the Universe, asserts this law,
be they grains of sand, peas, stones or planets, forces of
mutual attraction arve exerted.

At first sight, this law seems false: we somehow haven’t
noticed that the objects surrounding us were attract-
ed to each other. The Earth attracts all bodies to itself;
no one will have any doubt about this. But perhaps this
is a special property of the Earth? No, that isn’t so. The
attraction of two arbitrary objects is slight, and this is
the only reason why it doesn’t arrest our attention. Nev-
ertheless, it can be detected by means of special exper-
iments. But more about that later.

The presence of universal gravitation, and nothing else,
explains the stability of the solar system and the motion
of the planets and other celestial bodies.

The Moon is kept in orbit by terrestrial gravitational
forces, and the Earth on its trajectory by solar gravita-
tional forces.

The circular motion of celestial bodies occurs in the
same way as the circular motion of a stone twirled on
a string. The forces of universal gravitation are invisible
“ropes” compelling celestial bodies to move along definite
paths.

The assertion of the existence of universal gravitational
forces didn’t really mean much. Newton discovered the
law of gravitation and showed what these forces depend
on.

Law of Universal Gravitation

The first question which Newton asked himself was the
following: How does the Moon's acceleration differ from
that of an apple? To put it otherwise, what is the differ-
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ence between the acceleration g which the Earth creates
on its surface, i.e. at the distance r from its centre, and
the acceleration created by the Earth at the distance R
at which the Moon is located from the Earth?

In order to calculate this acceleration, v?/R, it is nec-
essary to know the speed of the Moon’s motion and its
distance from the Earth. Both these figures were known
by Newton. The Moon’s acceleration turned out to be
approximately equal to 0.27 cm/s?. This is about 3600
times less than the value of g, 980 cm/s?.

Hence, the acceleration created by the Earth decreases
as one recedes from the centre of the Earth. But how rap-
idly? The distance from the Earth to the Moon equals
sixty terrestrial radii. But 3600 is the square of 60. In-
creasing the distance by a factor of 60, we decrease the
acceleration by a factor of 602

Newton concluded that the acceleration, and therefore
also the gravitational force, is inversely proportional to
the square of the distance. Further, we already know that
the force exerted on a body in a gravitational field is pro-
portional to its mass. Therefore, the first body attracts
the second with the force proportional to the mass of the
second body; the second body attracts the first with the
force proportional to the mass of the first body.

We are dealing with identically equal forces—forces of
action and reaction. Consequently, the mutual gravita-
tional force must be proportional to the mass of the first
body as well as to that of the second or, to put it other-
wise, to the product of the masses.

Thus,

F=@ Mm

r2

This is precisely the law of universal gravitation. Newton
assumed that this law will be valid for any pair of bodies.
This bold hypothesis is now completely proved. There-
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fore, the force of attraction between two bodies is di-
rectly proportional to the product of their masses and
inversely proportional to the square of the distance be-
tween them.

But what is this G that entered the formula? This is
the coefficient of proportionality. May we assume it to
be equal to unity, as we have already repeatedly done?
No, we may not: we have agreed to measure mass in
grams, distance in centimetres, and force in dynes. The
value of G is equal to the force of attraction between two
masses of 1 g located at a distance of 1 cm from each other.
We cannot assume that the force is equal to anything
(in particular, to one dyne). The coefficient G must be
measured.

In order to find G, we don't, of course, have to measure
the forces of attraction between gram weights. We are
interested in carrying out measurements on massive bod-
ies—the force will be greater then.

If we determine the mass of two bodies, know the dis-
tance between them and measure the force of attraction,
then G will be found by a simple calculation.

Such experiments were performed many times. They
showed that the value of G is always one and the same,
independent of the material of the attracting bodies and
also of the properties of the medium in which they are
situated. The quantity G is called the gravitational con-
stant. It is equal to 6.67 X 10-% cm3/g.s2.

The diagram of one of the experiments on measuring
G is shown in Figure 6.1. Two balls of identical mass are
suspended from the ends of a beam of scales. One of them
is situated above a lead plate, the other beneath it. By
means of its attraction, the lead (100 tons of it are taken
for the experiment) increases the weight of the ball on the
right and decreases that of the ball on the left. The for-
mer outweighs the latter. The value of Gis computed on the
basis of the magnitude of the deflection of the beam.



Figure 6.1

The difficulty in detecting gravitational forces between
two objects is explained by the negligible value of G.

Two heavy 1000-kg loads pull each other with a negligi-
ble force equal in all to only 6.7 dyn, i.e. 0.007 gf, if these
objects are situated, say, at a distance of 1 m from each
other.

But how great are the forces of attraction between ce-
lestial bodies? Between the Moon and the Earth

_a 6X1027 % 0.74 x 1026
F=6.7x108 (38 % 109 =
=2 x 102 dyn =~ 2 x 10'° kgf
between the Earth and the Sun
R o 2% 1083 x 6 x 1027
F=06.7x10"8 55 10792 =

=3.6 x 1027 dyn ~ 3.6 x 102! kgf

Weighing the Earth

Before beginning to make use of the law of universal
gravitation, we must turn our attention to an important
detail.

We have just calculated the force of attraction between
two loads located at a distance of 1 m from each other.
But if this distance were 1 ¢cm? What would we then sub-
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stitute in the formula—the distance between the surfaces
of bodies or the distance between their centres of gravity
or some other value?

The law of universal gravitation, F = Gmym,/r?, can
be applied with complete rigour when such doubts do not
arise. The distance between the bodies should be much
greater than their dimensions; we should have the right
to regard the bodies as points. But how should we apply
the law to two nearby bodies? This is simple in principle:
we must conceptually break up the bodies into small
pieces, calculate the force F for each pair and then add
(vectorially) all the forces.

In principle this is simple, but it is rather complicated
in practice.

However, nature has helped us. Computations show that
if the particles of a body interact with a force proportion-
al to 1/r%, spherical bodies possess the property of attract-
ing like points located at the centres of the spheres. For
two nearby spheres, the formula F = Gm;m,/r? is exactly
valid, just as for distant spheres, if r is the distance be-
tween their centres. We have already used this rule above
in computing the acceleration on the Earth’s surface.

We now have the right to apply the gravitational for-
mula for computing the forces with which the Earth
attracts bodies. We should take the distance from the
centre of the Earth to the body as r.

Let M be the mass, and R the radius of the Earth.
Then the force of attraction acting on a body of mass m
at the Earth’s surface

M

But this is in fact the body’s weight, which we always
express as mg. Hence, the acceleration of free fall

M
§=Cqr
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Now at last we can say how the Earth was weighed.
The quantities g, G and R are known, so the Earth’s
mass can be computed from this formula. The Sun can
also be weighed in the same manner.

But can we really call such a procedure weighing?
Of course we can; indirect measurements play at least
as great a role in physics as direct measurements.

Let us now solve a curious problem.

An essential role in the plans for creating world-wide
television is played by the creation of a “24-hour satel-
lite”, i.e. one which will always be situated over one
point on the Earth’s surface. Will such a satellite expe-
rience a significant frictional force? This depends on
how far from the Earth it will have to perform its rota-
tion.

A 24-hour satellite should revolve with a period T
equal to 24 hours. If r is the distance from the satellite
to the centre of the Earth, then its speed v = 2nr/T
and its acceleration v*/r = 4n?/T?. On the other hand,
this acceleration whose source is the Earth’s attraction
is equal to GM/r> = gR?/r?. Equating our two expressions
for the acceleration, we obtain:

: 4y R2T?
gf—zzT, i.e. r3=im-
Substituting the rounded-off values of g = 10 m/s?,

R=6X10® m and 7 = 9 X 10* s, we obtain: r® =
=7 X 1022 m3, i.e. r & 4 X 10" m = 40 000 km. There
is no air friction at such a height, and a 24-hour satel-
lite will not slow down its “motionless orbiting”.

Measuring g in the Service
of Prospecting

The topic is geological prospecting whose aim is te
find deposits of useful minerals under the Earth without
digging a pit or sinking a shaft.

13—-0376
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Figure 6.2

There exist several methods of determining the accel-
eration of free fall very accurately. It is possible to
find g by simply weighing a standard weight on a spring
balance. Geologlcal balances should be extremely sen-
sitive—their spring changes its tension when a load of
less than a millionth of a gram is added. Quartz torsion
balances yleld excellent results. Their construction isn’t
complicated in prmmple To a. horizontally stretched
quartz thread a lever is welded whose weight slightly
twists the thread (Figure 6.2).

A pendulum is used for the same purposes. Not very
long ago pendulum methods of measuring g were the
only ones, and only in the last 10-20 years have the more
convenient and precise balance methods begun to supplant
them. In any case, measuring the period of oscillation
of a pendulum one can find the value of g accurately

enough from the formula 7 = 2n }/I/g.

Measuring values of g at different places with the same
apparatus, we can detect relative changes in the free
fall up to one-millionth.

Measuring the value of g at some place on the Earth’s
surface, the experimenter ascertains: here the value is
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anomalous, it is so much less than the norm or such an
amount greater than the norm.

But what is the norm for the value of g?

There are two natural changes which have long been
observed and are well known to researchers in the value
of the acceleration of free fall on the Earth’s surface.

First of all, g decreases from a pole to the equator.
This has been spoken of above. Let us only recall that
such a change occurs as a result of two causes: firstly,
the Earth isn't a sphere, and a body at a pole will be
nearer to the centre of the Earth; secondly, the more a body
advances towards the equator, the more will the force
of gravity be weakened by the centrifugal force.

The second change in g is the decrease due to elevation.
The greater the distance from the Earth's centre, the
smaller will be the value of g in accordance with the
formula g = GM/(R + h)?, where R is the radius of the
Earth, and % is the height above sea level.

Therefore, at one and the same latitude and at one and
the same height above sea level, the acceleration of free
fall should be identical.

Accurate measurements show that deviations from
this norm—gravitational anomalies—are found quite
often. The cause of an anomaly consists in the hetero-
geneity of the mass distribution near the place of meas-
urement.

As we explained, the gravitational force due to a large
body can be conceptually represented as the sum of forces
emanating from the individual particles of the large body.
The attraction of a pendulum to the Earth is the result
of the action of all the particles of the Earth on it. But
it is clear that the nearby particles make the greatest
contribution to the resultant force, for the attraction
is inversely proportional to the square of the distance.

If heavy masses are concentrated near the place of
measurement, g will be greater than the norm; in the

13+
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opposite case, g will be smaller than the norm.

If, for example, we measure g on a mountain and in an
airplane flying over a sea at an altitude equal to the
mountain’s height, a greater value will be obtained in
the former case. For example, the value of g is 0.292 cm/s?
greater than the norm on Mount Etnain Italy. The value
of g is also higher than the norm on isolated ocean islands.
It is clear that in both cases the growth of g is explained
by the concentration of additional masses at the place
of measurement.

Not only the value of g but also the direction of the
force of gravity can deviate from the norm. If a load
is suspended on a thread, the stretched thread will indi-
cate the vertical for the given place. This vertical may
deviate from the norm. A normal vertical can be deter-
mined by the stars, since it has been calculated for any
geographical point at what place in the sky the vertical
to the “ideal” form of the Earth is “set” at a given instant
of a day and year.

Imagine that you are performing experiments with
a plumb-line at the foot of a large mountain. The load of
the plumb-line is attracted by the Earth towards its
centre, and by the mountain to one side. Under such
conditions, the plumb-line must be deflected from the
direction of a normal vertical (Figure 6.3). Since the
Earth’s mass is much greater than that of the mountain,
such a deflection will not exceed several seconds of arc.

Plumb-line deflections sometimes yield strange results.
For example, in Florence the influence of the Appenines
leads not to an attraction, but to a repulsion of a plumb-
line. The explanation can only be as follows: there are
enormous empty spaces in mountains.

Measurements of the acceleration of free fall to the
scale of continents and oceans yield remarkable results.
Continents are considerably heavier than oceans; therefore,
it would seem that the values of g over continents should
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Figure 6.3

be greater than those over oceans. But in reality, the
values of g measured along a single latitude over oceans
and continents are identical, on the average. Again there
is only one explanation: continents lie on lighter bed-
rocks, and oceans on heavier ones. And as a matter of
fact, where direct prospecting is possible, geologists
ascertain that oceans lie on heavy basaltic bed-rocks,
and continents on light granite ones.

But the following question immediately arises: Why do
heavy and light bed-rocks compensate so exactly for the
difference in weight between continents and oceans? Such
a compensation cannot be a matter of chance; its cause
must be rooted in the construction of the Earth's shell.

Geologists assume that it is as though the upper layers
of the Earth’s shell were floating on an underlying plastic
(i.e. easily deformed like wet clay) mass. The pressure
at depths of about 100 km should be identical everywhere,
just as the pressure at the bottom of a vessel filled with
water in which pieces of wood of various weights are
floating is identical everywhere. Consequently, a column
of matter with an area of 1 m? from the surface to a depth
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of 100 km should have the same weight under an ocean
and under a continent.

This levelling of pressures (it is called isostasy) is just
what leads to the situation where along a single latitude
over oceans and continents the values of the acceleration
of free fall g do not differ significantly.

Local gravitational anomalies serve us just as the
magic wand, which banged on the ground where there
was gold or silver, served little Mook in Hauf’s fairy-tale.

One must look for heavy ore in those places where g is
maximum. On the contrary, light salt deposits are dis-
covered by finding localities with lowered values of g.
It is possible to measure g with an accuracy up to a hun-
dred-thousandth of 1 cm/s.

Prospecting with the aid of pendulums and superexact
scales is called gravitational. It is of great practical
value, in particular when looking for oil. The fact is
that with gravitational prospecting, it is easy to discover
underground salt domes. It so happens that often oil is
found at those places too. Moreover, the oil lies at some
depth, while the salt is nearer to the Earth’s surface.
Oil was discovered in Kazakhstan and in other places
by gravitational prospecting.

Weight Underground

It remains for us to throw light on another interesting
question. How will the force of gravity change if we go
deep underground?

The weight of an object is the result of the tension in,
so to say, invisible “threads” reaching out to this object
from every piece of matter in the Earth. Weight is the
resultant force, the result of the addition of the elemen-
tary forces exerted on the object by the Earth’s particles.
All these forces, even though directed at different angles,
pull a body “down”—towards the centre of the Earth.
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Figure 6.4

But what will be the weight of an object in an under-
ground laboratory? Forces of attraction will be exerted
on it both by the internal and external layers of the
Earth.

Consider the gravitational forces exerted' at a point
lying inside the Earth by an external layer. If we break
up this layer into thin shells, cut out in one of them a
small square with side a, and draw lines from the vertices
of the square through the point O (we are interested in
the weight at those points), then on the opposite side
of the shell we obtain a small square of a different size
with side a, (Figure 6.4). The forces of attraction exerted
at the point O by thé two small squares are oppositely
directed and proportional according to the law of gravi-
tation to.m,/r} and m,/r§. But the masses of the squares,
m, and m,, are proportional to their areas. Therefore
the gravitational forces are proportional to the expres-
sions a}/r} and ad/r3.

T suggest that the reader prove that these ratios are the
same, that is, that the forces of attraction at point O
acting from the two small squares balance.
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Having broken up a thin shell into pairs of “opposite”
similar squares, we established a remarkable fact: a thin
hemogeneous spherical shell does not act on a point
within it. But this is true for all the thin shells into which:
we bhroke up the spherical layer lying above the under-
ground point we are interested in.

Hence, the layer of the Earth lying above the body
might just as well be absent. The action of its individual
parts on the body is neutralized, and the resultant force
of attraction exerted by the external layer is equal
to zero.

Of course, throughout this reasoning we have assumed
the Earth’s density to be constant within each shell.

The result of our reasoning permits us to easily obtain
a formula for the gravitational force exerted at any
depth H under the Earth. A point situated at depth H
only experiences the attraction exerted by the internal
layers of the Earth. The formula for the acceleration due
to gravity, g = GM/R?, also applies to this case, where M
and R are the mass and radius not of the entire Earth
but of its “internal” part with respect to this point.

If the Earth had the same density in all its layers, the
formula for g would assume the following form:

S (R—HY

(R—H)?

where p is the density, and R is the Earth’s radius.

This implies that g would be directly proportional to
(R — H): the greater the depth H, the smaller would be g.

But as a matter of fact, the behaviour of g near the
Earth’s surface—we are able to observe it up to a depth
of 5 km (below sea level)—does not obey this law at all.
Experiments show that g, on the contrary, increases with
depth within these layers. The lack of agreement between
the experiments and our formula is explained by the fact

4
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that the difference in density at various depths was not
taken into account.

The average density of the Earth is easily found by
dividing its mass by its volume. This yields a value of
5.52. At the same time, the density of the surface bed-
rocks is much smaller—it is equal to 2.75. The density
of the Earth’s layers increases with depth. Within the
surface layers of the Earth, this effect dominates the
ideal decrease which follows from the formula just de-
rived, and so the value of g increases.

Gravitational Energy

We have already become acquainted with gravitational
energy through a simple example. A body raised to
height & above the Earth possesses potential energy mgh.

However, this formula may be used only when height
h is much smaller than the Earth’s radius.

Gravitational energy is an important quantity, and
it would be interesting to obtain a formula for it which
would apply to a body raised to an arbitrary height above
the Earth and also, more generally, for two masses
attracting each other in accordance with the universal
law:

e Mymy
F=6=7

Let us assume that the bodies approached each other
somewhat under the action of their mutual attraction.
The distance between them was r;, but it became r,.
Moreover, the work 4 = F (r; — r,) is performed. The
value of the force must be taken at some intermediate
point. Thus,

A=G =t (ri—ry)

2
Tint
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If r; and r, do not differ much, we may replace r§,; by the
product ryr,. We obtain:

A=0C ‘mym, —C mym,
Ty 51

This work is performed at the expense of the gravitational
energy:

A=U, —U,

where U, is the initial and U, the final value of the
gravitational potential energy.

Comparing these two formulas, we find the following
expression for the potential energy:

S Rie e B
r

It resembles the formula for the gravitational force,
but r is raised to the first power in the denominator.

According to this formula, the potential energy U = 0
for very large r’s. This is reasonable, since the attraction
will no longer be felt at such distances. But when the
bodies approach each other, the potential energy should
decrease. After all, the work takes place at its expense.

But in what direction can it decrease from zero? In the
negative direction. Hence there is a minus sign in the
formula. After all, —5 is less than zero, and —10 is less
than —5.

If we are dealing with motion near the Earth’s surface,
we may replace the general expression for the gravita-
tional force by mg. Then with greater accuracy we have
U, — U, = mgh.

But on the Earth’s surface, a body has potential energy
—GMm/R, where R is the Earth’s radius. Therefore,
at height h above the Earth’s surface,

U=—6 27 +mgh
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When we first introduced the formula for potential
energy, U = mgh, we agreed to measure height and
energy from the Earth’s surface. Using the formula
U = mgh, we discard the constant term —GMm/R,
regarding it as conditionally equal to zero. Since we are
interested only in energy differences, for it is work which
is an energy difference that is ordinarily measured, the
presence of the constant term —GMm/R in the potential
energy formula does not play any role.

Gravitational energy determines the strength of the
“chains” binding a body to the Earth. How can we break
these “chains”? How can we ensure that a body thrown
from the Earth will not return to the Earth? It is clear
that to do this we must impart a large initial velocity
to the body. But what is the minimum velocity that is
required?]

As a body (missile, rocket) thrown from the Earth
increases its distance from the Earth, its potential energy
will rise (the absolute value of U will fall); its kinetic
energy will fall. If its kinetic energy becomes equal to
zero prematurely, before we break the Earth’s gravita-
tional “chains”, the missile that was thrown will fall
back to the Earth.

It is necessary for the body to conserve its kinetic
energy until its potential energy practically vanishes.
Before its departure, a missile had potential energy
—GMm/R (M and R are the mass and radius of the
Earth). Therefore, the missile must be given the velocity
which would make its total energy positive. A body with
a negative total energy (the magnitude of its potential
energy is greater than that of its kinetic energy) will
not get beyond the bounds of gravity.

Hence, we arrive at the simple condition. In order for
a body of mass m to break away from the Earth, it must,
as has been already said, overcome the gravitational
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potential energy
G Mm
R
For this, the speed of the missile should be increased
to the value of the escape velocity from the Earth, v,,
which is easily computed by equating its kinetic and
potential energies:

mv§ o Mm . 2 M
—5- —G———R , l.e. vi=2G =
or, since g = GM/R?,

vi=2gR

The value of v, computed by means of this formula is
11 km/s, of course, without taking air resistance into
account. This speed is V2 = 1.41 times as great as the
orbital velocity v;  J/ gR of an artificial satellite whose

orbit is near the Earth’s surface, i.e. v, =}/ 2v,.

The mass of the Moon is 81 times as small as that of
the Earth; the radius of the Moon is four times as small
as that of the Earth. Consequently, the gravitational
energy on the Moon is twenty times less than that on the
Earth, and a speed of 2.5 km/s is sufficient to break away
from the Moon.

Kinetic energy mv3/2 is spent in order to break the
gravitational “chains” to the planet—the take-off station.
If we want the rocket which has overcome gravity to
move with speed v, then additional energy mv?®/2 is needed
for this. In such a case, when launching the rocket, it is
necessary to impart it energy mv}/2 = mlv/2 4+ mv?/2.
Therefore, the three speeds in question are connected by
the simple relation:

vy =vj; + 12
What should be the speed v, necessary for overcorning
the gravitation of the Earth and the Sun—the minimum
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speed of a missile sent to distant stars? We denoted this
speed by v; because it is called the escape velocity from
the solar system.

First of all, let us determine the speed necessary for
overcoming only the single attraction of the Sun.

As we have just shown, the speed needed to escape
from the Earth’s attraction by a missile sent on a flight

is /' 2 times as great as the speed with which an Earth
satellite is sent into orbit. Our reasoning is equally valid
or the Sun, i.e. the speed needed to escape from the Sun

is V2 times as great as the speed of a satellite of the Sun
(i.e. the Earth). Since the speed of the Earth’s motion
around the Sun is about 30 km/s, the speed needed to
escape from the sphere of the Sun’s attraction is 42 km/s.
This is a very great speed, but for sending a missile to
distant stars, we must, of course, use the Earth’'s motion
~nd launch the body in the direction in which the Earth
is moving. We then need to add only 42 — 30 = 12 km/s.

Now we can finally compute the escape velocity from
the solar system. This is the speed with which a rocket
must be launched in order that, escaping from the
Earth’s attraction, it have a speed of 12 km/s. Using
the formula just adduced, we obtain:

vi=112122

from which vy = 16 km/s.

Thus, having a speed of about 11 km/s, a body will
leave the Earth, but such a missile will not go “far” away;
the Earth let it go, but the Sun will not free it. It will
turn into a satellite of the Sun.

It turns out that the speed necessary for interstellar
travel is only one and a half times as great as the speed
needed for travelling through the solar system within the
Earth’s orbit. True, as has been already said, every
appreciable increase in the initial speed of a missile is
accompanied by many technical difficulties (see p. 104f).
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How Planets Move

The question as to how planets move can be answered
briefly: obeying the law of gravitation. For the forces
of gravitation are the only forces applied to planets.

Since the mass of the planets is much less than that
of the Sun, the forces of interaction between the planets
do not play a large role. Each of the planets moves almost
the way the gravitational force of the Sun alone dictates,
as though the other planets did not even exist.

The laws of planetary motion around the Sun follow
from the law of universal gravitation.

Incidentally, this isn’t the way things developed
historically. The laws of planetary motion were discov-
ered by the outstanding German astronomer Johannes
Kepler (1571-1630), before Newton and without the aid
of the law of gravitation, on the basis of an almost twenty-
year. processing of astronomical observations.

The paths or, as astronomers say, the orbits which
planets describe around the Sun are very close to circles.

How is the period of revolution of a planet related
to the radius of its orbit?

The gravitational force exerted on a planet by the Sun
is equal to

F=gXMr
-

where M is the mass of the Sun, m is the mass of the
planet, and r is the distance between them.

But F/m is, according to the basic law of mechanics,
none other than the acceleration; moreover, it is cen-

tripetal:
F_2
m- r

The speed of the planet can be represented as the
length 2nr of the circumference divided by the period of
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revolution 7. Substituting v = 2nr/T and the value
of the force F in the acceleration formula, we obtain:

2 . 4m2
——4;; ————-(i}aw , le. TI?= GT;/[ r3

The coefficient of proportionality preceding r® is the
quantity depending only on the mass of the Sun; it is
identical for any planet. Consequently, the following
relation holds for two planets:

¢ _ 1

37

F2

The ratio of the squares of the periods of revolution
of planets turns out to be equal to the ratio of the cubes
of their orbital radii. This interesting law was derived
empirically by Kepler. The law of universal gravitation
explained Kepler’'s ‘observations.

A circular motion of one celestial body around another
is only one of the possibilities.

The trajectories of one body revolving around another
due to gravitational forces can be very difierent. However,
as” shown by calculations and as Kepler had observed
before any calculations were made, they all belong to
one and the same class of curves, called ellipses.

If we tie a thread to two pins stuck in a sheet of draw-
ing paper, stretch the thread with the point of a pencil
and move the pencil in such a way that the thread remains
stretched, a closed curve will eventually be drawn on
the paper—this is an ellipse (Figure 6.5). The points
where the pins are stuck will be the foci of the ellipse.

Ellipses can have various forms. If the thread is taken
much longer than the distance between the pins, then
the ellipse will be very similar to a circle. If, on the
confrary, the length of the thread barely exceeds the dis-
tance between the pins, then an elongated ellipse—
almost a stick—will he obtained.
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Figure 6.5

A planet describes an ellipse at one of whose foci is
the Sun.

But what kind of ellipses do planets describe? It turns
out that they are very close to circles.

The path of the planet nearest to the Sun—Mercury—
differs most from a circle. But even in this case, the
longest diameter of the ellipse is only 2% greater than
the shortest one. The situation is different with the
orbits of artificial satellites. Take a look at Figure 6.6.
You can’t distinguish the orbit of Mars from a circle.

However, since the Sun is located at one of the foci
of the ellipse and not at its centre, the distance of a planet
from the Sun changes more noticeably. Let us draw a line
through the two foci of an ellipse. This line intersects
the ellipse at two places. The point nearest to the Sun
is called the perihelion, the farthest from the Sun the
aphelion. Mercury, when located at the perihelion, is
1.5 times closer to the Sun than at the aphelion.

The major planets describe ellipses around the Sun
which are close to circles. However, there are celestial
bodies which move around the Sun in greatly flattened
ellipses. Among them are comets. Their orbits are not
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Figure 6.6

at all comparable with respect to elongation to those
of the planets. With regard to the celestial bodies moving
in ellipses it can be said that they belong to the solar
family. However, casual newcomers also drop in at our
system.

There have been observed comets describing curves
around the Sun whose forms suggest the following conclu-
sion: the comet will not return; it does not belong to the
family of the solar system. The “open” curves described
by comets are called hyperbolas.

Such comets move especially fast when passing near
the Sun. This is understandable, since the total energy
of a comet is constant and, when approaching the- Sun,
it has the minimum potential energy. Hence, its kinetic
energy is maximum at this time. Of course, such an
effect takes place for all the planets and for our Earth:
However, this effect is slight, since the difference in the
potential energies at the aphelion and perihelion is small,

14—0376
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Figure 6.7

An interesting law f planetary motion follows from
the law offconservation of angular momentum.

Two positions of a planet are depicted in Figure 6.7.
From the Sun, i.e. from a focus of the ellipse, the two
radii are drawn to the two positions of the planet, and
the sector so formed is shaded. We are to determine the
area swept out by a radius in a unit of time. For a small
angle, the sector swept out by a radius in a second may
be replaced by a triangle. The base of the triangle is
the speed v (the distance covered in a second), while
the altitude of the triangle is equal to the lever arm d
of the velocity. Therefore, the area of the triangle is vd/2.

The constancy of the quantity mvd during the motion
follows from the law of conservation of angular momen-
tum. But if mvd is constant, so is the area of the triangle
vd/2. We can draw sectors for any interval of time—they
will turn out identical in area. The speed of a planet
changes, but the so-called areal velocity remains constant.

Not all stars are surrounded by planetary systems.
There are quite a few double stars in the sky. Two enor-
mous celestial bodies revolve around each other.

The Sun’s enormous mass makes it the centre of the
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Figure 6.8

family. In double stars, both celestial bodies have masses
of the same order of magnitude. In this case, we may not
assume that one of the two stars is stationary. But how
does the motion proceed in this case? We know that each
closed system has one stationary (or uniformly moving)
point—its centre of mass. Both the stars revolve around
this point. Moreover, they describe similar ellipses,
which follows from the condition written on p. 173,
my/m, = ry/ry. The ellipse for one star is as many times
greater than that for the other as the mass of one star
is less than that of the other (Figure 6.8). In the case of
equal masses, both the stars will describe identical
trajectories around the centre of mass.

The planets of the solar system are in ideal conditions:
they are not subject to friction.

The small, artificial celestial bodies created by people—
satellites—are not in such an ideal position: frictional
forces, however insignificant they may be at first, but none
the less perceptible, interfere decisively in their motion.

The total energy of a planet remains constant. The
total energy of a satellite falls slightly with every revolu-
tion. At first sight, it would seem that friction will slow

14*
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down the motion of a satellite. In reality, the opposite
occurs.
First of all, recall that the speed of a satellite is equal

to YV gR or Y GMI/R, where R is its distance from the
centre of the Earth, and M its mass.

The total energy of a satellite is equal to

, Mm mu?

E=—G3+—5

Substituting the value of the speed of the satellite,
we find the expression GMm/2R for the kinetic energy.
We find that the magnitude of the kinetic energy is half
as great as that of the potential one, while the total
energy Is equal to

E=—5-"T%

In the presence of friction, the total energy falls, i.e.
(since it is negative) its magnitude grows; the distance R
starts decreasing: the satellite descends. What happens
to the energy summands in this connection? The poten-
tial energy decreases (grows in its magnitude), the ki-
netic energy increases.

Nevertheless, the net change is negative, since the
potential energy decreases twice as fast as the kinetic
energy increases. Friction leads to a growth in the speed
of a satellite and not to a reduction.

It is now clear why a large launch vehicle outflies a small
satellite. The friction acting on a large rocket is greater.

Interplanetary Travel

We have already witnessed many trips to the Moon.
Automatic space probes and manned craft have landed
on its surface and then returned. Space probes travelled
to Mars and Venus. And soon the other planets will also
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be visited and automatic stations and people will return
from their surface.

We now know the main laws governing interplanetary
travel, namely the principle of rocket motion and the
method of calculating the different speeds that a body
requires to orbit a celestial body and to escape its gravi-
tational pull.

Let us take the trip to the Moon as an example. For
this we must aim the rocket at a point on the Moon's
orbit. The Moon must arrive at this point at the same
time as the rocket. The rocket may follow various trajec-
tories, even a straight one. But it is essential that it
attain the Earth’s escape velocity. We must also bear
in mind that different trajectories require different
amounts of fuel since fuel consumption depends on accel-
eration. Another factor is that flight time greatly depends
on initial velocity. If this is minimum, the trip will take
about five days, but if the velocity is increased by 0.5 km/s,
flight time decreases to 24 hours.

It may seem that to get to the Moon the rocket must
only reach the region of the Moon's attraction with zero
velocity. After that it will simply fall onto the Moon.
But such reasoning is erroneous, since when the rocket
has a zero velocity with respect to the Earth, its velocity
with respect to the Moon is the velocity of the Moon on its
orbit around the Earth but oppositely directed.

Figure 6.9 shows the trajectory of a rocket launched at
point A and the path of the Moon. We can imagine that
the region of the Moon's attraction moves along the same
path (in this region the only force that acts on the rocket
is the Moon’s gravitational pull). When the rocket enters
this region at point B, the Moon is at point C and has
a velocity vy equal to 1.02 km/s. If at B the velocity
of the rocket with respect to the Earth were zero, with
respect to the Moon it would be —uvy. The rocket most
certainly will miss the Moon.
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Figure 6.9

If we are observing the rocket from the Moon, we can
be certain that it will meet the Moon at a right angle
if its velocity is v. What, then, should its optimal trajec-
tory and velocity be? The rocket must obviously hit
point B not with a zero velocity but with the velocity V
shown in Figure 6.9. For this we must simply use the
velocity parallelogram shown in the same figure.

We still have some leeway. Velocity vector v does
not have to be pointed at the very centre of the Moon.
Besides, the gravitational pull of the Moon broadens
the error range.

Calculations show, however, that there is very little
elbowroom. The precision in initial velocity must be of
the order of several metres per second, and the angle at
which the rocket is launched must be set with an accuracy
of one-tenth of a degree and the timing of the launching
with an accuracy of several seconds.

So the rocket approaches the Moon with a non-zero
velocity. Calculations show that this velocity, V, must
be 0.8 km/s. The Moon’s gravitational pull makes the
velocity greater and the rocket will collide with the Moon
at a velocity of 2.5 km/s. This is no good of course, since
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the rocket would disintegrate at impact. The only solu-
tion is to lower the speed of descent by using braking
rockets. The process of cushioning touchdown requires
a large supply of fuel. The formula on p. 104 shows that
the rocket will “lose weight” by a factor of 2.7.

If we want the rocket to return to the Earth, it must
have some fuel left. The Moon is a relatively small celes-
tial body, only 3476 km across and with a mass of
7.34 x 102 kg. We can easily see that its orbital veloc-
ity (i.e. the velocity required to maintain a satellite
in an orbit around it) is 1680 m/s and its escape velocity
is 2376 m/s, which means that to leave the Moon, the
rocket must have a speed of about 2.5 km/s. With this
minimum initial speed the rocket will return to the
Earth after five days and will have the familiar speed
of 14 km/s.

The path of reentry into the Earth’s atmosphere must
slope gently, since if there are astronauts inside the rocket
the forces of acceleration must be kept to a minimum.
But even if we are dealing with an automatic space probe,
the probe must make several revolutions around the
Earth so that the radius of its elliptical path decreases.
Then the reentry vehicle does not get overheated and can
safely return to the Earth.

Moon missions cost huge sums of money. If we assume
that the return pay-load of a manned flight to the Moon
is not less than 5 tons, then the total loaded weight at
lift-off must be about 4.5 thousand tons. Experts believe
that in the coming 20 years no more astronaut will visit
the Moon or, for that matter, any other planet. New
propulsion systems with greater exhaust velocities will
have to be constructed. However, one cannot be sure
of such predictions.
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If There Were No Moon

We shall not discuss the sad consequences of the absence
of the Moon for poets and lovers. The title of this
section should be understood much more prosaically: how
the Moon’s presence affects terrestrial mechanics.

In our previous discussion of what forces act on a book
lying on a table, we confidently stated: the Eearth’s
gravity and the reaction force. But, strictly speaking,
a book lying on a table is also attracted by the Moon,
the Sun and even the stars.

The Moon is our nearest neighbour. Let us forget about
the Sun and the stars and consider how much the weight
of a body on the Earth will change under the influence of
the Moon.

The Earth and the Moon are in relative motion. With
respect to the Moon the Earth as a whole (i.e. all points
of the Earth) is moving with an acceleration Gm/r?,
where m is the mass of the Moon, and r is the distance
from the centre of the Moon to that of the Earth.

Consider a body lying on the Earth’s surface. We are
interested in how much its weight will change owing
to the Moon's action. Terrestrial weight is determined
by acceleration with respect to the Earth. In other words,
we are therefore interested in how much the acceleration
with respect to the Earth of a body lying on the Earth’s
surface will be changed by the Moon’s action.

The acceleration of the Earth with respect to the Moon
is Gm/r? the acceleration with respect to the Moon of
a body lying on the Earth's surface is Gm/r}, where r,
is the distance from the body to the centre of the Moon
(Figure 6.10).

But we should find the additional acceleration of the
body with respect to the Earth: it will be equal to the
geometrical difference between the appropriate accelera-
tions.
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Figure 6.10 Figure 6.11

The value of Gm/r? is a constant number for the Earth,
while the value of Gm/r} is different at various points on
the Earth’s surface. Hence, the geometrical difference
of interest to us will differ at various places on the Earth.

What will the terrestrial weight be at the place nearest
to the Moon, farthest from it and half-way along the
Earth’s surface?

To find the acceleration with respect to the centre of
the Earth induced by the Moon on a body, i.e. the cor-
rection to the terrestrial g, it is necessary to subtract the
constant value of Gm/r? from the value of Gm/r} at the
indicated places on the Earth (light arrows in Figure 6.11).
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Moreover, it should be remembered that the acceleration
Gm/r?—the acceleration of the Earth with respect to the
Moon—is directed parallel to the line joining their
centres. The subtraction of a vector is equivalent to the
addition of the inverse vector. The vectors —Gm/r? are
shown by means of bold-face arrows in the figure.

Adding the vectors depicted in the figure, we find what
we are interested in: the change in the acceleration of
free fall on the Earth’s surface arising as a result of the
influence of the Moon.

At the place nearest to the Moon, the resulting addi-
tional acceleration will be equal to

m m

C=mr O
and directed towards the Moon. Earth’s gravity dimin-
ishes; a body at point A becomes lighter than in the
absence of the Moon.

Bearing in mind that R is much smaller than r, we
are able to simplify the formula written above. Reducing
to a common denominator, we obtain:

GmR (2r—R)
TR (r—RE
Discarding from the parentheses the relatively small

magnitude R subtracted from the much larger magnitudes
r or 2r, we obtain

2GmR

r3

Let us now transfer to the antipode. At point B the
acceleration of a body due to the Moon isn’t greater,
but less than the total acceleration of the Earth. But we
are now at the farthest side of the Earth from the Moon.
A decrease in the Moon’'s attraction at this side of the
Earth leads to the same result as an increase in the attrac-



Figure 6.12

tion at point A —to a decrease in the acceleration of free
fall. An unexpected result, isn’t it? Here too a body
becomes lighter under the action of the Moon. The dif-
ference
m , mo 2GmR
CTrmr T fE N T

turns out to be the same in absolute value as at point 4.

Things are different at the median line. Here the accel-
erations are directed at an angle to each other, and so
the subtraction of the total acceleration Gm/r? of the
Earth by the Moon and the acceleration Gm/r} of a body
lying on the Earth by the Moon must be carried out
geometrically (Figure 6.12). We shall depart insignifi-
cantly from the median line if we place the body on the
Earth in such a way that r, and r are equal in magnitude.
The vector difference between the accelerations is the
base of an isosceles triangle. From the similarity of the
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triangles depicted in Figure 6.42, it is obvious that the
required acceleration is as many times less than Gm/r2
as R is less than r. Consequently, the required addition
to g at the median line on the Earth’s surface equals

GmR
r

in magnitude this is one-half of the weakening of the
Earth’s force of attraction at the extreme points. As for
the direction of this additional acceleration, it again
practically coincides, as can be seen from the figure,
with the vertical at the given point on the Earth’s surface.
It is directed downwards, i.e. leads to an increase in
weight.

Thus, the influence of the Moon on terrestrial mechan-
ics consists in a change in weight of bodies located on
the Earth’s surface. Moreover, weight diminishes at the
nearest and farthest points from the Moon, but grows
on the median line, this change in weight in the latter
case being half as great as in the former.

Of course, the reasoning carried out is valid for any
planet, for the Sun or for a star.

It is not difficult to calculate that neither planets nor
stars give even an insignificant fraction of the lunar
acceleration.

It is very easy to compare the action of any celestial
body with that of the Moon: we must divide the addition-
al acceleration due to this body by the lunar accelera-
tion:

™

GmR A GmyR _ m
By my 3

3

This product will fail to be much less than unity only
for the Sun. The Sun is much farther from us than the
Moon, but the mass of the Moon is tens of millions of
times less than that of the Sun.
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Substituting numerical values, we find that under the
influence of the Moon terrestrial weight is changed 2.17
times as much as under that of the Sun.

Let us now estimate by how much the weight of terres-
trial bodies would be changed if the Moon were to leave
its orbit around the Earth. Substituting numerical
values in the expression 2GmR/r®, we find that the lunar
acceleration is of the order of magnitude of 0.0001 cm/s?,
i.e. of one-ten-millionth of g.

Almost nothing, it would seem. Was it worthwhile
to follow with strained attention the solution to a rather
complicated mechanical problem for the sake of such
an insignificant effect? Don’t hurry with such a conclu-
sion. This “insignificant” effect is the cause of powerful
tidal waves. It creates 105 J of kinetic energy daily,
moving enormous masses of water. This energy equals
that borne by all the Earth’s rivers.

In fact, the percentagewise change in the quantity we
computed is very small. A body which becomes lighter
by such an “insignificant” amount will move a bit farther
away from the centre of the Earth. But the radius of the
Earth is 6 000 000 m, and an insignificant deviation will
be measured in tens of centimetres.

Imagine that the Moon stopped its motion relative
to the Earth and is shining somewhere over an ocean.
Calculations show that the water level at this place
would rise by 54 cm. Such a jump in the water level
would also occur at the antipode. On the median line
between these extreme points, the water level in the
ocean would drop by 27 cm.

Thanks to the Earth’'s rotation about its axis, the
“places” of rises and falls in the ocean are moving all the
time. These are tides. During about six hours, a rise
in the water level takes place and the water moves up
the shore—this is high tide. Then low tide sets in; it
also lasts six hours. Two high tides and two low tides
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occur every lunar day. The picture of tidal phenomena
is greatly complicated by the friction of water particles,
the form of the sea bottom and the contour of the shores.

For example, tides are impossible in the Caspian Sea
simply because the entire surface of the sea is subject
to the same conditions.

Tides are also absent from internal seas connected to
an ocean by long and narrow straits, for example, the
Black and Baltic seas.

Especially big tides occur in narrow bays, wilere a tidal
wave coming in from the ocean rises steeply. For example,
in the Gizhiginskaya Inlet on the Sea of Okhotsk, the
height of waves attains several metres.

If the ocean shore is sufficiently flat (for example, in
France), the rise of water during high tide can change the
location of the boundary between land and sea by many
kilometres.

Tidal phenomena hinder the Earth’s rotation, for the
motion of tidal waves is related to friction. Work must
be expended to overcome this friction—it is called tidal.
Therefore, the rotational energy, and with it the Earth’s
rotational speed about its axis, falls.

This phenomenon leads to the lengthening of the day,
which was discussed on p. 13.

Tidal friction enables us to understand why one and
the same side of the Moon always faces the Earth.

At one time, the Moon was probably in a liquid state.
The rotation of this liquid sphere about the Earth was
accompanied by strong tidal friction, which gradually
slowed down the motion of the Moon. Finally, the Moon
stopped rotating with respect to the Earth, the tides
ceased and the Moon hid half of its surface from our
sight.
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Hydraulic Press

A hydraulic press is an ancient machine, but it has
retained its significance to the present day.

Take a look at Figure 7.1 depicting a hydraulic press.
Two pistons—small and large—can move in a vessel
with water. If we press one piston with our hand, the
pressure is transmitted to the other piston—it will rise.
Just as much water will rise above the initial position
of the second piston as the first piston presses down into
the vessel.

If the areas of the pistons are S; and S,, and their dis-
placements are I, and [,, the equality of the volumes
yields

I S
S1l1=S2l2, or l—:z‘s—:'
We must discover the equilibrium condition for the

pistons.

We shall find such a condition without difficulty,
starting out from the fact that the work performed by
the balancing forces should be equal to zero. Then during
the displacement of the pistons the works done by the
forces exerted on them should be equal (with opposite
signs). Therefore,

F

Fl,=F,l,, or Ti,:%
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Figure 7.1

Comparing this with the preceding equality, we see that

F2 — S2

B TS

This equation implies the possibility of an enormous
multiplication of force. The piston transmitting pressure
can have an area which is hundreds or thousands of
times smaller. The force acting on the large piston will
be just as many times greater compared to the muscular
force.

With the aid of a hydraulic press, one can forge and
punch metals, press the juice out of grapes and raise
weights.

Of course, the gain in force will be accompanied by
a loss in path. In order to compress a body by 1 cm with
a press, one’s hand would have to cover a path as many
times greater as the forces F, and F,; differ.

Physicists call the ratio of the force to the area, F/S,
the pressure (it is denoted by the letter p). Instead of
saying, “One kilogram-force acts on an area of 1 cm?”
we shall say more concisely, “The pressure p = 1 kgf/cm?.”
This pressure is called the technical atmosphere
(1 kgf/em® = 1 at).

Instead of the relation F,/F, = S,/S,, one can now
write:

£ By i.e =

S2 - Sl ’ $C. Pi= D2
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Thus, the pressures on both the pistons are the same.

Our reasoning does not depend on where the pistons
are located or whether their surfaces are horizontal,
vertical or inclined. And in general, it is not a matter
of pistons. One may conceptually choose any two portions
of a surface enclosing a liquid, and assert that the pres-
sures on them are identical.

It turns out, therefore, that the pressure within a liquid
is the same at all its points and in all the directions.
In other words, an identical force is exerted on area ele-
ments of a definite size, irrespective of their orientation.
This fact is called Pascal’s law.

Hydrostatic Pressure

Pascal’s law is valid for liquids and gases. However,
it fails to take into account an important circumstance—
the existence of weight.

Under terrestrial conditions, this should not be for-
gotten. Even water has weight. It is therefore obvious
that two area elements situated at different depths under
water will experience different pressures. But what will
this difference be equal to? Let us conceptually single
out within a liquid a right cylinder with horizontal
bases. The water inside it presses on the surrounding
water. The resultant force of this pressure is equal to
the weight mg of the liquid in the cylinder (Figure 7.2).
This resultant force is made up of the forces acting on the
bases of the cylinder and on its lateral surface. But the
forces acting on opposite sides of the lateral surface are
equal in magnitude and opposite in direction. Therefore,
the sum of all the forces acting on the lateral surface
is equal to zero. Hence, the weight mg will be equal
to the difference in force, F, — F,. If the height of the
cylinder is &, the area of its base is S, and the density
of the liquid is p, we may write pghS instead of mg.

1/2 15-0876
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Figure 7.2

The difference in force is equal to this quantity. In order
to obtain the difference in pressure, we must divide the
weight by the area S. The difference in pressure turns
out equal to pgh.

In accordance with Pascal’s law, the pressure on dif-
ferently oriented area elements located at the same depth
will be identical. Hence, at two points of a liquid situated
one above the other at height # the difference in pressure
will equal the weight of a column of the liquid whose
cross-sectional area is equal to unity and whose height
is h:

p2 — py = pgh

A pressure exerted by water caused by its weight is
called hydrostatic.

Under terrestrial conditions, air most often presses
down on the free surface of a liquid. The pressure exerted
by air is called atmospheric. The pressure at a depth
is composed of atmospheric and hydrostatic pressures.

In order to compute the force due to water pressure,
it is only necessary to know the size of the area element
on which it is exerted and the height of the column of
liquid above it. By virtue of Pascal’s law, nothing else
plays any role.

This may seem surprising. Is it possible for the forces
acting on the identical bottoms of the two vessels depicted
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Figure 7.3

in Figure 7.3 to be the same? Indeed, there is much more
water in the vessel on the left. In spite of this, the forces
acting on the bottoms are equal to pghS in both cases.
This is greater than the weight of the water in the vessel
on the right and less than the weight of the water in the
vessel on the left. The sloping walls of the vessel on the
left support the weight of the “extra” water, but on the
right, on the contrary, they add reaction forces to the
weight of the water. This interesting phenomenon is
sometimes called the hydrostatic paradox.

If two vessels of different form, but with water at the
same level, are connected by means of a tube, water
will not flow from one vessel to another. Such a flow
could take place in case the pressures in the vessels were
different. But this is not the case, and so the liquid in
communicating vessels will always stand at one and the
same level regardless of their form.

On the contrary, if the water levels in communicating
vessels are different, water will begin moving and the
levels will equalize.

Water pressure is much greater than air pressure. At
a depth of 10 m, water pressure is twice atmospheric
pressure, at a depth of 1 km, it is equal to 100 atm.

15#
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Oceans have depths greater than 10 km at certain
places. The forces due to water pressure at such depths
are exceptionally great. Pieces of wood which are lowered
to a depth of 5 km are so compressed by this enormous
pressure that, after such a “baptism”, they sink like
bricks in a barrel of water.

This enormous pressure makes great difficulties for
investigators of marine life. Deep-sea descents are carried
out in steel globes—the so-called bathyspheres or bathy-
scaphes—which have to withstand pressures greater
than 1000 atm.

But submarines can dive to a depth of only 100-200 m.

Atmospheric Pressure

We live on the bottom of an ocean of air—the atmo-
sphere. Each body, every grain of sand, any object situated
on the Earth is subject to air pressure.

Atmospheric pressure isn’t so small. A force of about
1 kegf acts on each square centimetre of a body’s surface.

The cause of atmospheric pressure is obvious. Just
as water, air possesses weight and, therefore, exerts
a pressure equal (just as for water) to the weight of the
column of air above the body. The higher we climb up
a mountain, the less air there will be above us and,
therefore, the lower will atmospheric pressure become.

One must know how to measure pressure for scientific
and everyday purposes. There exist special instruments—
barometers—for this.

It isn’t difficult to make a barometer. Mercury is poured
into a tube with one end sealed off. Closing the open end
with a finger, one turns the tube upside-down and sub-
merges its open end in a cup of mercury. When this is
done, the mercury in the tube will fall, but will not all
pour out. The space above the mercury in the tube is
undoubtedly airless. The mercury is supported in the
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Figure 7.4

tube by the pressure of the external air (Figure 7.4).
Whatever the dimensions of the cup with mercury,

and whatever the diameter of the tube, the mercury will

stand at about one and the same height—76 cm.

If we take a tube shorter than 76 cm, it will be complete-
ly filled by mercury and we will not see any vacuum.
A 76-cm column of mercury presses down on the support
with the same force as the atmosphere. This mercury
column with a cross-sectional area of 1 cm? presses down
with a force of 1.033 kgf. This number is the volume
of the mercury 1 X 76 cm® multiplied by its density
and the acceleration of free fall.

As you see, the average atmospheric pressure (usually
called standard atmospheric pressure) that is exerted
on everything on the Earth is close to the pressure that
1-kg weight exerts on an area of 1 cm?.

Various units are used in measuring pressures. One
often simply indicates the height of a mercury column
in millimetres. For example, we say that the pressure
is above normal today, it is equal to 768 mm Hg (i.e. of
mercury).

A pressure of 760 mm Hg is sometimes called a standard
atmosphere. A pressure of 1 kgf/cm? is called a technical
atmosphere. Since the difference between a physical
atmosphere and a technical atmosphere is very small,
from now on we will not distinguish between them.
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Physicists also make frequent use of another unit of
pressure, the bar; 1 bar = 10% dyn/cm?. Since 1 gf =
= 981 dyn, one bar is approximately equal to one atmo-
sphere. More precisely, standard (normal) atmospheric
pressure roughly equals 1013 millibars.

The unit of pressure in the SI system is the pascal (Pa),
which is the pressure produced by a.force of 1 N acting
on an area of 1 m? This is very little pressure, as can:
be seen from the fact that 1 Pa = 1 N/m? = 10 dyn/cm? =
= 10-® bar.

Computing the area of the Earth’s surface with the aid
of the formula 4 R?, we find that the weight of the entire
atmosphere is expressed by the enormous figure of 5 X
X 108 kgf.

Barometer tubes can have the most varied forms; only
one thing is important: one of the ends of the tube must
be sealed off in such a way that there be no air above
the surface of the mercury. Atmospheric pressure acts
on the other level of the mercury.

Atmospheric pressure can be measured by a mercury
barometer with a very great accuracy. Of course, it isn’t
necessary to use only mercury; any other liquid is suitable.
But mercury is the heaviest liquid, and so the height
of a mercury column under standard pressure will be
minimum. The mercury barometer is not a particularly
convenient instrument. It is not good to leave a surface
of mercury open (mercury vapour is poisonous); further-
more, this instrument is not portable.

These drawbacks are not shared by aneroid barome-
ters—aneroids (i.e. airless). Everyone has seen such
a barometer. It is a small round metal box with a scale
and a pointer. Values of pressure are marked on the
scale, usually in centimetres of a mercury column.

The air has been pumped out of the metal box. The
cover of the box is kept in place by a strong spring, since
it would otherwise be crushed by atmospheric pressure.
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Figure 7.5

With a change in atmospher ¢ pressure, the cover either
bends or straightens. The pointer is connected to the cover
in such a manner that the pointer moves to the right
when the cover is bent.

Such a barometer is graduated by comparing its read-
ings with those of a mercury barometer. If you want to
know the pressure, don’t forget to knock on the barom-
eter with your finger. The pointer of the dial experiences
considerable friction and usually gets stuck at “yester-
day’s weather”

A simple mechanism—the siphon—is based on atmo-
spheric pressure.

A driver wants to help his friend, who is out of gas.
But how can gasoline be poured from the tank of his
car? It can’t be inclined like a tea-kettle.

A rubber tube comes to his aid. He lowers one of its
ends into his gas tank and orally sucks the air out
of the other end. Then a rapid motion—the open end
is stopped up with a finger and placed at a height below
the gas tank. Now the finger can be removed —the gaso-
line will pour out of the hose (Figure 7.5).

A bent rubber tube is just what a siphon is. The liquid
moves in this case for the same reason as through a
straight inclined tube. In the final analysis, the liquid
flows downwards in both cases.
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Atmospheric pressure is necessary for the action of
a siphon: it “props up” the liquid and doesn’t let the
column of liquid in the tube break. If there were no
atmospheric pressure, the column would break at the
transfer point and the liquid would slip into both vessels.

The siphon starts functioning when the liquid in the
right-hand (i.e. the “pouring”) part of the tube drops
below the level of the liquid being siphoned off, into
which the left end of the tube has been lowered. The
liquid would otherwise flow back.

How Atmospheric Pressure
Was Discovered

Suction pumps were already known to ancient civili-
zations. Water could be raised to a considerable height
with their aid. Water very obediently followed the
piston of such a pump.

Ancient philosophers thought about the causes for
this and arrived at the following profound conclusion:
water follows the piston because nature fears a vacuum
and so does not leave any free space between the piston
and the water.

It is told that an artisan constructed for the Duke of
Tuscany in Florence a suction pump whose piston was
supposed to draw water to a height of more than 10 m.
But no matter how they tried to begin sucking up water
with this pump, nothing came of it. The water rose 10 m
with the piston, but after that the piston left the water
behind, and so the very same vacuum which nature
fears was formed.

When Galileo was asked to explain the cause of this
failure, he answered that nature really dislikes a vacuum,
but only up to a certain point. A disciple of Galileo,
Evangelista Torricelli (1608-1647), evidently used this
case as an excuse to perform his famous experiment in
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1643 with a tube filled with mercury. We have just de-
scribed this experiment—the constructing of a mercury
barometer is precisely Torricelli’s experiment.

Taking a tube of height more than 76 c¢m, Torricelli
created a vacuum over the mercury (it is often called
a Torricellian vacuum in his honour) and thus proved
the existence of atmospheric pressure.

By means of this experiment, Torricelli cleared up the
misunderstanding of the Duke of Tuscany’s artisan.
In fact, it is easy to see how many metres water will
humbly follow the piston of a suction pump. This motion
will continue until the column of water with an area of
1 cm? acquires a weight of 1 kgf. Such a column of water
will have a height of 10 m. This is why nature fears
a vacuum ..., but only up to 10 m.

In 1654, 11 years after Torricelli’s discovery, the
action of atmospheric pressure was graphically demon-
strated by the Burgomaster of Magdeburg, Otto von Gue-
ricke (1602-1686). 1t wasn’t so much the physical essence
of the experiment as the theatricality of its performance
that brought the author renown.

Two copper hemispheres were connected by an annular
washer. The air was pumped out of the sphere so obtained
through a pipe attached to one of the hemispheres, after
which it was impossible to separate the hemispheres.
A detailed description of Guericke’s experiment has been
preserved. The atmospheric pressure on the hemispheres
can now be calculated: for a diameter of 37 cm, the force
was approximately equal to 1000 kgf. In order to separate
the hemispheres, Guericke ordered that two teams of
eight horses each be harnessed. Ropes passing through
the rings attached to the hemispheres were tied to the
harnesses. The horses proved unable to separate the
Magdeburg hemispheres.

The forces supplied by eight horses (exactly eight and
not sixteen, since the second team harnessed for greater

160376
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effect.could have been replaced by a hook nailed to the wall,
with no change in the force acting on the hemispheres)
were not enough to break the Magdeburg hemispheres.

[lf there is a cavity between two bodies in contact,
these bodies will not come apart because of atmospheric
pressure.

Atmospheric Pressure and Weather

/Pressure fluctuations caused by the weather are very
irregular. At one time people thought that pressure
alone determines the weather. Therefore, the following
inscriptions have been placed on barometers up to the
present day: clear, dry, rain, storm. You can even find
the inscription “earthquake”.

Changes in pressure really do play a big role in chang-
ing the weather. But this role is not decisive. Average or
standard pressure at sea level is equal to 1013 millibars.
Pressure fluctuations are comparatively small. The pres-
sure rarely falls below 935-940 millibars or rises to
1055-1060.

The lowest pressure—885 millibars—was registered
on August 18, 1927, in the South China Sea. The high-
est—about 1080 millibars—was registered on January 23,
1900, at the Barnaul station in Siberia (all figures are
taken with respect to sea level).

A map used by meteorologists analyzing changes in
the weather is depicted in Figure 7.6. The lines drawn
on the map are called isobars. The pressure is the same
along each such line (its value is indicated). Note the
regions of the lowest and highest pressures—the pressure
“peaks” and “pockets”.

The directions and strengths of winds are related to the
distribution of atmospheric pressure.

Pressures are not identical at different places on the
Earth’s surface, and a higher pressure “squeezes” air into
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places with a lower pressure. It would seem that a wind
should blow in a direction perpendicular to the isobars,
i.e. where the pressure is falling most rapidly. However,
wind maps show otherwise. The Coriolis force interferes
with air pressure and contributes corrections which are
very significant.

As we know, a Coriolis force directed to the right of the
motion acts on any body moving in the Northern Hemi-
sphere. This also pertains to air particles. “Squeezed out”
of places of higher pressure and into places where the
pressure is lower, the particle should move across the
isobar, but the Coriolis force deflects it to the right, and
so the direction of the wind forms an angle of about 45°
with the direction of the isobar.

A strikingly large effect for such a small force! This is
explained by the fact that the obstacles to the action of
the Coriolis force—the friction between layers of air—are
also very insignificant.

The influence of the Coriolis force on the direction of
winds at pressure “peaks” and “pockets” is even more
interesting. Owing to the action of the Coriolis force,
the air leaving a pressure “peak” does not flow in all
directions along radii, but moves along curved lines—
spirals. These spiral air streams twist in one and the
same direction and create a circular whirlwind displacing
air masses clockwise in a high-pressure area. Figure 2.16
(see p. 94) clearly shows how a radial motion is converted
into a spiral motion under the action of a constant de-
flecting force.

The same thing also happens in a low-pressure area.
In the absence of the Coriolis force, the air would flow
towards this area uniformly along all radii. However,
along the way air masses are deflected to the right.
In this case, as is clear from the figure, a circular whirl-
wind is formed moving the air counterclockwise.
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Winds in low-pressure areas are called cyclones; winds
in high-pressure areas are called anticyclones.

You shouldn't think that every cyclone implies a hur-
ricane or a storm. The passing of cyclones or anticyclones
through the city where we live is an ordinary phenomenon
related, it is true, more often than not to a change in
weather. In many cases, the approach of a cyclone means
the coming of bad weather, while the approach of an
anticyclone the coming of good weather.

Incidentally, we shall not embark on the path of
a weather forecaster.

Change of Pressure with Alfitude

Pressure falls with an increase in altitude. This was
first clarified by the Frenchman Florin Périer in 1648
on the instructions of Blaise Pascal. Mt. Puy de Déme,
near where Périer lived, was 975 m high. Measurements
showed that the mercury in a Torricellian tube falls
by 8 mm when this mountain is climbed.

A fall in air pressure with an increase in altitude is
quite natural, for a smaller column of air then presses
down on the instrument.

If you have ever flown in an airplane, you should know
that there is an instrument on the front wall of the cabin
indicating the altitude of the airplane with an accuracy
.to within tens of metres. This instrument is called an
altimeter. This is an ordinary barometer, but it has been
calibrated to show heights above sea level.

Pressure falls with an increase in altitude; let us find
a formula of this dependence. We single out a small
layer of air with an area of 1 cm? located between alti-
tudes k; and k,. The change of density with altitude is
hardly noticeable within a layer which is not too large.
Therefore, the weight of the volume of air we have singled
out (it is a small cylinder of height %, — k; and base
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area of 1 cm?) will be
mg = p (hy —hy) g

This weight is just what yields the fall in pressure caused
by rising from altitude %, to altitude k,, that is

B =g (hy—hy)

But according to Boyle’s law, which should be known
to the reader (and if not, he will find it in the second
book, p. 41), the density of a gas is proportional to its
pressure. Consequently,

ﬂ%&aM—h

On the left is the fraction by which the pressure grew
when the altitude was lowered from k, to k,. Hence,
a growth in pressure by one and the same per cent will
correspond to identical drops of h, — k.

Measurements and calculations in complete agreement
with each other show that the pressure will fall by 0.1
of its value for each kilometre rise above sea level. The
same also holds for descents into deep shafts under sea
level —the pressure will increase by 0.1 of its value when
we descend by one kilometre.

We are talking about a change of 0.1 from the value
at the previous altitude. This means that during an ascent
of 1 km, the pressure decreases to 0.9 of the pressure at
sea level; during an ascent through the next kilometre,
it will become equal to 0.9 of 0.9 of the pressure at sea
level; at an altitude of 3 km, the pressure will be equal
to 0.9 of 0.9 of 0.9, i.e. 0.93, of the pressure at sealevel.
It is not difficult to continue this reasoning further.

Denoting the pressure at sea level by po, we can write
out the pressure at altitude » (expressed in kilometres):

p = py (0.87)* = p, x 10-0-06*
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A more precise number is written in parentheses: 0.9 is
the rounded-off value. The formula presupposes the
identical temperature at all altitudes. But as a matter
of fact, the temperature of the atmosphere changes with
altitude and does so, moreover, in accordance with
a rather complicated law. Nevertheless, the formula
yields fairly good results and may be used for altitudes
up to hundreds of kilometres.

It is not hard to determine with the aid of this formula
that on the top of the Elbrus—about 5.6 km—the pres-
sure will fall by a factor of approximately two, while
at an altitude of 22 km (the record height of a stratospher-
ic balloon’s ascent with people), the pressure will fall
to 50 mm Hg.

When we say that a pressure of 760 mm Hg is standard,
we must not forget to add, “at sea level” At an altitude
of 5.6 km, the standard pressure will not be 760, but
380 mm Hg.

Along with pressure, air density also falls with an
increase in altitude according to the same law. At an
altitude of 160 km, not much air will remain.

In fact,

(0.87)160 =1(~10

The air density at the Earth’s surface is equal to about
1000 g/m3, which means that according to our formula
there should be 10-7 g of air in 1 m® at an altitude of
160 km. But in reality, as measurements performed with
the aid of rockets show, the air density at this height
is ten times as great.

Our formula gives us an even greater underestimation
for heights of several hundreds of kilometres. The change
of temperature with altitude and also a particular phenom-
enon—the decay of air molecules under the action of
solar radiation—are responsible for the fact that the
formula becomes useless at great heights. Here we shall
not go into this,
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Archimedes’ Principle

Let us hang a weight on a spring balance. The spring

will stretch and show how much the weight weighs. With-
out taking the weight off the spring balance, let us sub-
merge it in water. Will the reading of the spring balance
change? Yes, the weight of the body seems to decrease.
If the experiment is done with an iron kilogram weight,
the “loss” in weight will constitute approximately
140 grams.
*¥But what is the matter? For it is clear that neither
mass of the weight nor its attraction by the Earth could
have changed. There can be only one cause of the loss
in weight: an upward force of 140 gf acts on the weight
submerged in water. But where does this buoyant force
discovered by the great scientist of antiquity, Archimedes,
come from? Before considering a solid body in water, let
us consider “water in water” We conceptually single out
an arbitrary volume of water. This volume possesses
weight, but does not fall to the bottom. Why? The
answer is obvious—the hydrostatic pressure of the sur-
rounding water prevents this. This implies that the
resultant of this pressure in the volume under considera-
tion is equal to the weight of the water and directed
vertically upwards.

If this volume is now occupied by a solid body, it
is clear that the hydrostatic pressure will remain the
same.

Thus, as a result of hydrostatic pressure, a force acts
on a body immersed in a fluid. The force is directed
vertically upwards and is equal in magmtude to the
weight of the fluid displaced by the body. This 1s Archi-
medes’ principle.

It is said that Archimedes lay in a bath-tub and thought
about how to determine whether or not there is any silver
in a gold crown. A person taking a bath distinctly feels
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Figure 7.7

a buoyant force. Suddenly the principle came to light,
presented itself to Archimedes in its remarkable simplic-
ity. With a cry of “Eurekal!” (which means “I found it!”),
Archimedes jumped out of the bath-tub and ran into
the room containing the precious crown in order to
immediately determine its loss of weight in water.

The loss of weight of a body in water will be equal
to the weight of the water displaced by the body. Know-
ing the weight of the water, we shall immediately deter-
mine its volume, which is equal to the volume of the
crown. Knowing the weight of the crown, we can imme-
diately find the density of the material out of which it
was made and, knowing the density of gold and silver,
find the fraction of silver in the crown.

Archimedes’ principle is valid, of course, for any fluid.
If a body of volume V is immersed in a fluid of density p,
then the weight of the displaced fluid—and this is just
the buoyant force—will be equal to pgV

The working of 51mple instruments controlling proper-
ties of fluid products is based on Archimedes’ principle.
If aleohol or milk is diluted in water, its density will
change; but it is possible to judge its composition on the
basis of its density. Such a measurement is simply and
easily performed with the aid of an areometer (Figure 7.7).
An areometer lowered into a liquid will be immersed
to a greater or smaller depth depending on its density.
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An areometer will be in a state of equilibrium when the
buoyant force becomes equal to the weight of the areome-
ter.

Divisions are marked off on an areometer, and the den-
sity of a liquid is read from the marking which appears
at its surface. Areometers applied for the control of
alcohol are called alcoholometers, and those for the
control of milk lactometers.

The average density of a person’s body is somewhat
greater than unity. Anyone unable to swim will drown
in fresh water. Salt water has a density greater than
unity. The salinity of the water in most seas is insig-
nificant, and its density, although greater than unity,
is less than the average density of the human body. The
density of the water in the Bay of Kara-Bogaz-Gol
in the Caspian Sea is 1.18. This is greater than the aver-
age density of the human body. It is impossible to drown
in this bay. One can lie on the water and read a book.

Ice floats on water. The preposition “on”, incidentally,
is somewhat out of place here. The density of ice is
about 10% less than that of water, so it follows from
Archimedes” principle that approximately nine-tenth of
a piece of ice is submerged in water. It is precisely this
circumstance that makes it so dangerous for ocean lmers
to come across 1cebergs

If a balance scale is in equilibrium in air, this does
not imply that it will be in equilibrium in a vacuum.
Archimedes’ principle refers to air to the same degree
as to water. A buoyant force equal to the Welght of the
dlsplaced air acts on a” body in air. A body “weighs”
less in air than in a vacuum. The greater the volume of
a body, the greater will be its loss of weight. A ton of
wood loses more weight than a ton of lead. To the humor-
ous question of which is lighter, there is the same kind
of answer: a ton of lead is heavier than a ton of wood if
they are weighed in air.
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The loss of weight in air is slight as long as we are
considering small bodies. However, in weighing a piece
the size of a room, we would “lose” several tens of kilo-
grams. For exact weighing, the correction due to the loss
of weight of large bodies in air should be taken into
account.

The buoyant force in air permits us to construct bal-
loons, aerostats and dirigibles of various types. For this
one must have a gas lighter than air.

If a balloon of volume 1 m3 is filled with hydrogen,
1 m® of which has a weight equal to 0.09 kgf, then the
lift —the difference between the buoyant force and the
weight of the gas—will equal

1.29 kgf — 0.09 kegf = 1.20 kgf

1.29 kg/m?® is the density of air.

Hence, a load of about a kilogram can be attached to
such a balloon, and this will not prevent it from flying
above the clouds.

[Tt is clear that with relatively small volumes—of sev-
eral hundred cubic metres—hydrogen balloons are capable
of raising considerable loads into the air.

A serious defect of hydrogen aerostats is the inflamma-
bility of hydrogen. Together with air, hydrogen forms
an explosive mixture. Tragic accidents have marked
the history of the creation of aerostats.

Therefore, when helium was discovered, people started
filling balloons with it. Helium is twice as heavy as
hydrogen and the lift of a balloon filled with it is smaller.
But will this difference be significant? The lift of a 1-m?
balloon filled with helium is found as the difference
1.29 kgf — 0.18 kgf = 1.11 kgf. The lift has decreased
by only 8% At the same time, the advantages of helium
are obvious.

The aerostat was the first apparatus with whose aid
people rose in the air. Aerostats with a hermetically
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Figure 7.8

sealed car have been used up to the present day for
investigating the upper layers of the atmosphere. They
are called stratospheric balloons. They rise to a height
of more than 20 km.

Balloons equipped with various measuring devices
and transmitting the results of their measurements by
radio (Figure 7.8) are widely used at the present time.
Such radiosondes contain miniature radio transmitters
with batteries which report on the humidity, temperature
and atmospheric pressure at various heights by means
of prearranged signals.

One can send an unguided aerostat on a long journey
and determine rather accurately where it will land. For
this it is necessary that the aerostat climb to a great
height, of the order of 20-30 km. Air currents are extreme-
ly stable at such heights, and the path of the aerostat
can be calculated quite well beforehand. When necessary,
one can automatically change the lift of the aerostat by
letting out gas or throwing off ballast.

lAerostats on which a motor with a propeller was instal-
led were previously used for flights. Such airships were
streamlined. Airships lost the competition with airplanes;
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even in comparison with planes of 30 years ago, they
are clumsy, difficult to control, move slowly and have
a “low ceiling”. It is believed that airships would be
advantageous for carrying cargo.

Extremely Low Pressures. Yacuum

A vessel which is technically empty still contains an
enormous number of molecules.

Molecules of gas constitute a considerable hindrance in
many physical instruments. Radio tubes, X-ray tubes,
accelerators of elementary particles—all these instru-
ments require a vacuum (derived from the Latin vacuus
meaning “empty”), i.e. space free of gas molecules.
There should also be a vacuum in an ordinary electric
lamp. If air enters a lamp, it will oxidize and immediately
burn out. :

In the best vacuum instruments, vacuum of the order
of 10-® mm Hg is produced. A completely negligible
pressure, it would seem: the level of mercury in a manom-
eter would move by a hundred-millionth of a milli-
metre if the pressure changed by such an amount.

However, there are still several hundred million mole-
cules in 1 cm?® at this meagre pressure.

It is interesting to compare the void of interstellar
space with such a vacuum—there one finds an average
of one elementary particle of matter in several cubic
centimetres.

Special pumps are employed in order to obtain vac-
uum. An ordinary pump removing gas by means of the
motion of a piston can create a vacuum of at best 0.01 mm
Hg. A good or, as one says, high vacuum can be obtained
with the aid of a so-called diffusion (mercury or oil)
pump in which gas molecules are caught up in a stream
of mercury or oil vapour.
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Mercury pumps, bearing the nawe of their inventor,
Langmuir, start working only after a preliminary exhaus-
tion to a pressure of about 0.1 mm Hg; such a prelimi-
nary rarefaction is called a forevacuum.

This is the way it works. A small glass container is
connected to a vessel with mercury, an evacuated space
and a forepump. The mercury is heated and the forepump
carries away its vapour. The mercury vapour captures
molecules of the gas along the way and brings them to the
forepump. The mercury vapour condenses (cooling by
means of running water is provided for), and the liquid
trickles down into the vessel from which the mercury
began its journey.

A vacuum obtained under laboratory conditions, as
we have just said, is still far from empty in the absolute
sense of the word. A vacuum is greatly rarefied gas.
The properties of such a gas may differ essentially from
those of an ordinary gas.

The motion of the molecules “forming a vacuum”
changes its character when the mean free path of a mole-
cule becomes greater than the dimensions of the vessel
containing the gas. The molecules then rarely collide
with each other and travel in straight zigzags striking
against first one and then another wall of the vessel.
We shall speak in detail about the motion of molecules
in the second book. It is known to the reader that meaty
free path of a molecule in air at atmospheric pressure is
equal to 5 X 1078 cm. If we increase it by a factor of
107, it will be 50 cm, i.e. will be noticeably greater than
an average sized vessel. Since the mean free path is
inversely proportional to the density, and hence also
to the pressure, the pressure must be 10-7 of atmospheric
pressure, or approximately 10-* mm Hg.

Even interplanetary space is not entirely empty. But
the density of the matter in it is about 5 X 10-2¢ g/cm3.
The main component of interplanetary matter is atomic
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hydrogen. At the present time, it is considered that
cosmic space contains several hydrogen atoms per 1 cm3.
If a hydrogen molecule were enlarged to the size of
a pea and placed in Moscow, its nearest “cosmic neigh-
bour” would prove to be in Tula.

Pressures of Millions of Atmospheres

We daily come across high pressures exerted on small
surfaces. Let us estimate, for example, what the pressure
will be at the point of a needle. Assume that the tip
of a needle or nail has a linear dimension of 0.1 mm.
This implies that the area of the point will be about
0.0001 cm?2. If a rather modest force of 10 kgf acts on
such a nail, then the tip of the nail will exert a pressure
of 100 000 atm. It’s no wonder that the pointed objects
so easily penetrate deeply into dense bodies.

It follows from this example that to create high pres-
sures on small surfaces is quite a common thing. The
situation is completely different if the question is to
create high pressures on large surfaces.

The creation of high pressures under laboratory condi-
tions is accomplished with the aid of powerful presses,
for example, hydraulic ones (Figure 7.9). The force of

wphe press is transmitted to a piston of small area, and
the piston forces its way into the vessel within which
we wish to create a high pressure.

Pressures of several thousand atmospheres can be creat-
ed in this manner without any particular difficulty.
But in order to obtain ultrahigh pressures, we must
complicate the experiment, since the material composing
the vessel cannot withstand such pressures.

Here nature has met us half-way. It turns out that
metals become considerably stronger under pressures
of the order of 20 000 atm. Therefore, an apparatus for
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obtaining ultrahigh pressures is submerged in a liquid
which is under a pressure of the order of 30 000 atm.
In this case, one is able to create pressures of several
hundred thousands of atmospheres (but again with
a piston). The highest pressure—400 000 atm—was
obtained by the American physicist Percy Williams
Bridgman.

Our interest in obtaining ultrahigh pressures is far
from idle. Phenomena which are impossible to induce
by other methods can occur at such pressures. Artificial
diamonds were obtained in 1955. A pressure of 100 000 atm
and, in addition, a temperature of 2000 K were required
for this. Ultrahigh pressures of the order of 300 000 atm
on large surfaces are formed during explosions of solid or
liquid explosive materials—nitroglycerine, trotyl, etc.
Incomparably higher pressures attaining 10 atm arise:
within an atomic bomb during its explosion. Pressures
during an explosion exist for a very short time.
There are constant high pressures deep inside celestial
bodies including the Earth, of course. The pressure
at the centre of the Earth is equal to approximately
3 million atmospheres.






	Front Cover
	Back Cover
	Contents
	1. Basic Concepts
	2. Laws of Motion
	3. Conservation Laws
	4. Oscillations
	5. Motion of Solid Bodies
	6. Gravitation
	7. Pressure



