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Why and for Whom This Book
Is Written

An argument once flared up between scientists
in a Moscow magazine as to whether or not
popular science is necessary and useful. The
very statement of the question surprised me a lot.
Why then would it never occur to anybody to
question the usefulness of travelogues on TV,
which acquaint the audience with the life and
ways of countries and peoples? But after all the
life of the enormous and fascinating world of
science is again the life of the world that surrounds
us, and the deeper our insight into this world the
better. To be sure, a story about a science, espe­
cially some esoteric field, is superficially less
effective than a story about Bushman tribesmen
or the palais and chateaux of France, but the
highest achievement of humanity, the interplay
of ideas, is no less beautiful. If you are to get
a better understanding of the customs and ways
of a people, you will first of all be hampered by
the language barrier, and so you will have to
study the language of the country. Likewise,
a "foreign" field of science is Greek to you before
you have mastered its language. And if you take
the trouble of struggling through the tangle of the
language, you will be graced by a pure well­
spring of ideas that will now become within your
grasp.
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A school teacher of mine used to say, "There are
no bad words, there are bad mouths." To para­
phrase, I would say: "There are no unclear ideas in
science, there is lack of desire to make them
clear." It is, of course, by no means easy to intro­
duce the nonspecialist reader to the frontiers of
modern molecular biology or astrophysics, say.
But the chromosome theory of heredity, for
example, also at first seemed to be unintelligible
and even heretic, but now it is a household word.

I am a mathematician and I have had a happy
career having been exposed to radio engineering
and physiology, cybernetics and psychiatry, infor­
mation theory and oil refining, control theory
and geophysics. Each of these disciplines, just
like a nation, speaks a language of its own, and
it takes some time to perceive that, say, radio­
frequency pulse and neurone spike, seismogram
and control system response are nearly the same
notions. Having mastered the fundamentals of
different fields of learning, you will eventually
perceive that they have much in common, far
more than it might appear at first sight.

Major breakthroughs now come from scientific
interfaces. Disparate branches of science can
mutually enrich one another. That is why
I wrote this book, which attempts to give a popu­
lar account of an area of science that has experi­
enced two decades of a violent growth. In brief,
it can be referred to as the statistical theory of
control and experiment.

A popular-science writer contemplating a new
book is first of all faced with the problem of
selecting material. And so I began by taking
down from my shelf a dozen books, thick and
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thin, with similar, sometimes even identical,
titles and-Io and hehold!-I appeared to be
confronted with a hodge-podge of topics-so wide
is the scope of the science in question. So if
I set out to cover all the interesting ideas and
techniques, I would have had, to give it up as
a bad job. I decided, therefore, in selecting and
writing to do without references and mostly rely
on my own attitudes. I tried to get across to the
reader the concepts, having stripped as far as
possible my exposition from the fog of terminol­
ogy and the fat of details. My fight with the
terminological excesses, I am afraid, was not
always a success, but then every cloud has a silver
lining: if this little book generates further
interest in the subject and you take it in a more
serious way by reading texts and monographs,
then such a preliminary introduction to the
concepts and terminology will make things easier
for you'.

Why then was it so difficult to select the mate­
rial? I hope you have some idea of what control
is and of its role in the present-day world. A huge
body of literature is devoted to the issues of
control without any assumptions about random
effects on, or random inputs in, the object under
control, be it an aeroplane or a mill, a factor or
a state, a living organism or just some abstract
object. But how could you possibly describe the
control system of an aircraft ignoring atmospheric
density inhomogeneities, wind force changes,
minor structural inhomogeneities, freight distri­
bution, in-flight passenger motions in cabin, and
what not? And how could you possibly describe
the conirol of the vital activity of infusoria
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or an elephant ignoring the environmental effects,
which vary with time but by no means in a regu­
lar way, and all those ups and downs to which
our infusoria and elephant have to respond
somehow every day, every hour, and every
second?

On the other hand, does the above reasoning
suggest that generally no control system can be
described if we ignore chance? No, it does not,
'and that is why.

We are all accustomed to the variation of day
and night length: from 22 June to 22 December
the day becomes shorter, and then the variation
reverses. And this all is on a strictly regular basis,
accurately predictable for years to come. Just
imagine our life with random day length and
wanton changes of day into night, that is, if the
rotational velocity of the Earth spinning on its
axis were not constant, but changed arbitrarily
like the mood of a nymph. Now the sun quickly
rose and you hurry to work, but the day drags on
and on-the Earth's rotation slackened suddenly.
Now the rotation hastened unexpectedly, and
you broke your date made for just before the
sunset. The evening flew by, but you did not
have enough sleep-the night was only three
hours long. Next came a short day, and no sooner
you had your lunch than the night fell, this
time a long one... All the reflexes of sleeping
and waking hours are in turmoil. A wretched life!

As a matter of fact, the Earth spins about its
axis in a slightly irregular manner: now a mete­
orite hits it, now a comet flies by-but these
impacts are negligible and so their influence upon
the day length and alternation of day and night
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is negligible too. To all intents and purposes, in
our everyday life we can think of the Earth's
rotation as absolutely regular.

Air temperature is subject to far more notice­
able variations. But we have learned to cope with
them, by continually controlling the behaviour
of ourselves, our children and subordinates. So
we put on warm things, use an umbrella, open
or close a window, turn on the central heating or
mend the roof. Our life would be much easier if
the air temperature on Earth varied in a regular
way, e.g. according to a sine law, falling off from
+25°C at summer solstice to -25°C at winter
solstice and back. No unexpected cold spells,
no problems with attire-when to buy a fur coat
or a bathing suit, and so forth. Accordingly, the
question of whether or not we are to take into
account random inputs in any problem, including
control problems, should be approached with
caution: in some cases we can very well ignore
random inputs, in others not. But it so happens
that situations coming under the last heading are
legion, and so we chose them as a subject of
this little book.

It is only natural to describe random inputs
and perturbations drawing on the results of
a science concerned with random events, quanti­
ties and processes, that is, probability and mathe­
matical statistics.

The book would be of especial value for stu­
dents with some knowledge of probability. Nowa­
days probability is included not only in a college
mathematics course but also in the curriculum
of high schools in many countries. And so, I hope,
this book will appeal to a wide range of readers.
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But still we should make allowances for the
fact that, taking some material without any
practical aim in the offing to which this material
might be applied usefully, students generally
tip-toe their precious knowledge only as far as
the examiner's desk, and, having got the tiptop
mark and heaved a sigh of relief, they almost
instantly relieve their memory of unnecessary
burden. With this in mind, the book provides
a quick introduction to the elements of proba­
bility.

Frankly speaking, there was another incentive
for writing this book. In 1974 my book Did You
Say Mathematics? was issued by Mir Publishers.
This was a book of essays about mathematics in
general, its methods and ideas, and the relations
of mathematics with other sciences. Judging
from the responses of the readers, it appeared
of help for biologists, engineers, economists,
chemists.

The present book is somewhat different in charac­
ter. I t is devoted to a definite mathematical
discipline. Since probability and statistics occu­
py a fairly large place in our life, I would be
happy if this book would be useful to many lay
and specialist readers,

The Author



Uncertainty and Randomness

Most of the current books for the nonspecialist
reader using some notions of probability and
mathematical statistics normally begin by intro­
ducing the elements of the theory of probability
such as probability, conditional probability,
probability distribution, random variable, math­
ematical expt ctation, variance, and so on. I do
not want to move in this rut because, as my
teaching experience shows, it is the exposition
of the ABC of probability in several pages that
usually produces in the reader the illusion that
he (or she) has already mastered the essentials,
whereas precisely the initial premises and funda­
mentals of probability and mathematical statis­
tics, the issues of applicability of the theory and
paradoxes, meet with significant psychological
difficulties, especially in people long past their
student age. At the same time, the formalism,
i.e. mathematical machinery, of the theory of
probability is essentially similar to calculus and
linear algebra, and presents no difficulties.
Concise introductory guides, as a rule, only
contain a short section devoted to the initial
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concepts underlying the theory of probability.
Thi-s book, by contrast, takes care to expose them
in considerable detail .

... You go out and run into a blonde. No, not
the blonde who made you open your eyes the
other day, but just a blonde, that is, not a red­
head, or a brunette. In the parlance of probability
your meeting the blonde is an event, which may
or may not occur, and that is it. But in terms of
everyday life, your meeting the blonde may be
quite an occasion, or may even be unpleasant, or
else may be of no significance-we will be looking
at the importance of events in a section on
risk.

If each time you leave your home you record
whether or not you first meet the blonde, you will
be able to calculate the frequency of the event
the first person you meet is the blonde (the
frequency is the ratio of the number of times
you meet the blonde to the total number of obser­
vations). Above all, notice that you are able to
make your observations repeatedly under identi­
cal conditions. Summer or winter, sunny day or
rainy evening, the chance of the event is general­
ly the same.

I t is here assumed that you are able to make
your observation indefinitely. Quite likely, as
the total number of observations increases, the
frequency of the event will vary but little and
nonsystematically, and if the monthly number of
observations is the same, the frequency again will
fluctuate only slightly. Let the number of obser­
vations be large and you preselect some subset of
observations, e.g. each third or first one hundred
fifteen in each t.housand , such that the number of
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observations in it is sufficiently large and grows
infinitely with total observations. Then the
frequencies derived both from the subset and
the total number of observations will be similar.
If an event displays such properties, it is called
random. It is under these conditions that the
concept of probability of the occurrence of the
event is introduced as an axiom, just as the
limit of the frequency of its occurrence.

It is impossible to predict the outcome of
gymnastics events at Olympic Games, as much
is dependent on a chance. So we once witnessed
uneven bars collapsing during the performance
of a favourite. Injuries and illnesses are possible,
some performers may be not at the peak of their
form ... And still, in terms of the theory of pro­
bability, the Olympic scoring is not a random
event: you cannot repeat an Olympiad indefinite­
ly under identical conditions. Next games will
have other participants, they will be conducted
at another site, and so forth. Such events are
termed uncertain, rather than random. Mathe­
matically, they are taken care of by game theory.
But this book will concentrate on random events,
probability and mathematical statistics, which
are concerned with them.

To sum up, not every event whose result is
unknown and does not lend itself to unambiguous
prediction may be called random in the language
of this book. An event becomes random under
certain conditions and constraints just described.
I will refer to this property as statistical stability.
So the book discusses the theory of random, sta­
tistically stable events.
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Control
You are likely to have read that enormously
popular novel by Jules Verne entitled Les en/ants
du capitaine Grant, but I want here to recapitulate
the story.

In the summer of 1864 the beautiful yacht
Duncan, at the end of its test voyage, was sailing
past the island of Arran.

The proprietor of the yacht Lord Edward Gle­
narvan, one of the sixteen Scottish peers who seat
at the House of Lords, was completing his trav­
els together with his young and charming wife
Helena, cousin major l\1acNabbs and captain
John Mangles.

A watchman noticed astern a huge balance
fish. The fish was caught, gutted and a strong
bottle was found in it. The bottle was broken
and there some pieces of paper were found, which
were badly damaged by sea water.

After having examined the scraps Glenarvan
said: "Here are three documents, obviously copies
of the sanle text. One is written in English,
another in French, and yet another in German".
Now the whole team set out to recover the text,
comparing the three versions, and in a time they
produced the following enigmatic text:

austr
two sailors

rea
cruel Indipr

gon
shore

Capitain Gr
conti

On 7 June 1862 the three-mast ship Britannia
Glasgow
was wrecked
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thrown this document
and 37°11' latitude

perish

17

longitude
Render them assistance

I t was then necessary to decipher the note,
thinking of the absent parts of the text. Those who
are fond of cross-words know the problem.

"After a moment's silence Glenarvan went on
to say:

-My friends, these all suppositions seem to be
quite reasonable. I think the disaster took place
off the Patagonian shores.'"

They found from the newspapers:
"On 30 May 1862. Peru, Callao. Destination

Glasgow, Britannia, captain Grant."
"<Grant!' exclaimed Glenarvan, 'If it isn't that

galant Scotchman who day-dreamed of founding
a new Scotland on one of the islands in the
Pacific?'

'Quite so,' said John Mangles, 'the very Grant.
In 1861 he got underway from Glasgow on Britan­
nia, and since then there has been no sign of
him.'

'No doubt,' cried out Glenarvan, 'it's himl
Britannia left Callao on 30 May, and on 7 June,
in a week's time, she was wrecked off the Patago­
nian shores. We now know the whole story of the
disaster. My friends, you see we have found a clue
almost to all the puzzle, and the only unknown
here is the longitude of the place of the wreck.'

'We need no longitude,' said captain John
Mangles. 'Knowing the country and latitude,
I undertake to find the place.'

2-01621
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'And so we know everything?' asked Lady
Glenarvan.

'Everything, dear Helena, and I can fill ill lhe
gaps produced by sea water with such an ease as
if the document were dictated by captain Grant
himself. '

And here Glenarvan took the pen and without
hesitation wrote the following:

'On 7 June 1862 the three-mast ship Britannia
of Glasgow, sunk off the shores 0/ Patagonia in
the Southern hemisphere. Two sailors and captain
Grant will try and reach the shore where they
become prisoners 0/ cruel Indians. They threw this
document at longitude and arIl' latitude.
Render them assistanee, or they will perish.'

'Well, well, dear Edward!' cried out Lady Hele­
na, l If those wretches are to see their native
shores again, they'll owe you their salva­
tion' ".

Thus Glenarvan put forward a hypothesis as to
the place where the Britannia was wrecked, and
after he had met the children of captain Grant
he organized a voyage to Patagonia. The purpose
of the voyage was the search for the lost expedi­
tion, Of, if we are to use the dry language of
science, the test of the hypothesis. and should it
come true, the rescue of the ship's crew. Let us
now skip about 200 pages of breath..taking ad­
venture and review the situation. Grant's team
was not found in Patagonia, and so Glenarvan's
hypothesis turned out to be wrong. It is here
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that 8 chance member of the crew, the famous
geographer Paganel , suggested another interpreta­
tion of some of the word scraps in captain Grant's
note:

"Passing his finger over the scrappy lines of the
document and underscoring some of the words
confidently, Paganel read the following:

'On 7 June 1862 the three-mast ship Britnnuia 01
Glasgow was wrecked after... (Here, if you wish,
you may insert two days, three days, or long ago­
ny-all the same')H' off Australian shores. Heading
for the shore, two sailors and captain Grant tried
to land... t or landed on the continent, where they
became prisoners of cruel natives. They threw this
document... ' and so on and so forth."

Another hypotheses was put forward, and the
leader of the expedition takes another decision­
the Duncan makes her way to Australia. Again
we will skip 400 pages of exciting and riveting
adventure. But in Australia captain Grant had
not been found as well, and so Paganels hy­
pothesis proved wrong.

The former boatswain of Britannia Ayrton sup­
plied some new piece of information: shortly
before the wreck captain Grant planned to visit
New Zealand. But even before Ayrton's report
came Paganel understood that his interpretation
had been erroneous and suggested a fresh ver­
sion:

"tOn 7 June 1862 the three-mastship Britannia 01
Glasgow. alter a lon, agony was wrecked in South-
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ern Seas, off New Zealand. Tico sailors and captain
Grant managed to reach the shore. Here suffering
cruel deprivations they threw this document at ...
longitude and 37°11' latitude. Render them as­
sistance, or they will perish.'

There was a silence. Such an interpretation of
the document was again possible. But for exactly
the same reason that it was so convincing as the
earlier interpretations, it could be also erro­
neous."

There is hardly denying that any hypothesis,
even quite a reasonable one, might turn out to be
false under test. In fact, the last rendering of the
text, as suggested by Paganel, appeared to be
false due to the falseness of the very first hypothe­
sis of Glenarvan. Remember that he supposed
that the texts written in the three languages were
absolutely identical, which was not so, since
the island where Grant landed was the island of
Maria-Theresa on English and German charts,
the Tabor on French charts.

Let us summarize the behaviour of Lord Glenar­
van. He comes in possession of a piece of evidence,
analyzes it, suggests a hypothesis and makes
a decision concerning actions to test it. As
a result, he obtains new information used as
a foundation for accepting or rejecting the
hypothesis, since it may appear true or false.
Next, depending on the results of the test and
fresh information, Glenarvan reconsiders the
situation, puts forward fresh hypotheses and
makes a decision, and so forth. The procedure is
followed till the aim is achieved or it is found
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that it is impossible to do so, and thus a decision
is taken to discontinue the search.

This is precisely what is meant in science by
control. Control of a ship, factory, oil refinery,
school, and any other object occurs in a like
manner. At first hypotheses are suggested (a ship
either is steady on course or goes off it), next the
hypotheses are tested based on the information
available (observations are made, parameters are
measured), and lastly decisions are taken as to
measures required.

The coronation of a British queen, a church
sermon, or an execution of the opera Eugene
Onegin are all examples of events without any
uncertainty: all the actions and words are prede­
termined, and there is, in essence, no control.
Admittedly, when in the last act of the opera
the mourning Tatyana sinks into an arm-chair to
enahle Eugene to knee before her, you might
think of a possibility for a pussy-cat to have
curled cosily in the arm-chair with all the disas­
trous implications. But still, despite the uproar
in the house, Tatyana would not smile and, after
the cat had gone, would continue to suffer and
Onegin would still sing his final aria.

Such situations go to prove that control presup­
poses some uncertainty and a possibility of
choice.

Therefore, speaking about control, we will
tacitly imply the presence of uncertainty in which
sequentially hypotheses are made and tested,
decisions are made and tested. In what follows
we will take a closer look at certain aspects of
this fairly complex process.
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Henry Adams Takes a Decision
Let us recall the beautiful Mark Twain '8 story
The 1,000,000 Bank-Note.

A mlning-broker's clerk in San Francisco sail­
ing on alittle boat on the bay, ventured too Iar,
was carried out to sea, and was picked up by
a small brig bound for London. Adams had to
work his passage as a common sailor. When he
stepped ashore in London his clothes were ragged
and shabby, and he had only a dollar in his
pocket. Next day, hungry 8S 8 wolf, he was
fiddling about near a manor-bouse, where the
following events had been taking place:

"Now, something had been happening there
a little before, which I did not know anything
about until R good many days afterward, but
I will tell you about it now. Those two old broth­
ers had been having a pretty hot argument
a couple of days before, and had ended by agree­
ing to decide it by a bet, which is the English
way of settling everything.

"You will remember that the Bank of England
once issued two notes of 8 million pounds each,
to be used for a special purpose connected with
some public transaction with a foreign country.
For some reason or other only one of these had
been used and cancelled; the other still lay in the
vaults of the Bank. Well, the brothers, chatting
along, happened to get to wondering what might
be the fate of 8 perfectly honest and intelligent
stranger who should be turned adrift in London
without a friend, and with no money but that
rnillion ..pound bank-note, and no way to account
for his being in possession of it, Brother A said
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he would starve to death; Brother B said he
wouldn't.. Brother A said he couldn't offer it at
a bank or anywhere else, because he would be
arrested on the spot. So they went on disputing till
Brother B said he would bet twenty thousand
pounds that. the man would live thirty days,
anYW01/, on that million, and keep out of jail,
too. Brother A took him up. Brother B went
down to the bank and bought that note. Then he
dictated a letter, which one of his clerks wrote
out in a beautiful round hand, and then the. two
brothers sat. at the window a whole day watching
for the right man to give it. to."

And so Henry Adams happened to he that
stranger, He was interviewed, given an envelope
and said he would find the explanation inside,
he should take it. to his Iodgings, look it over
carefully, and not be hasty or rash. The hero goes
011 to tell:

"As soon as I was out of sight of that house
I opened my envelope, and saw that it contained
money! My opinion of those people changed,
I can tell you! I lost. not a moment, but shoved
note and money into my vest pocket, and broke
for the nearest cheap eating-house, Well, how
I did eat! When at last I couldn't hold any more,
I took out. my money and unfolded it, took one
glimpse and nearly fainted. Five millions of
dollars! Why, it made my head swim."

So two absolutely opposite versions of his
fate loomed in his dimmed mind. And he could
make, as the two gentlemen had made, two
hypotheses about his life during the period he was
in possession of the bank-note: a failure, w·hen he
would be. required to provide explanation about
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where he, a tramp, got the note; a success, if he
manages to make use of this money.

Hypotheses are denoted by the letter H. The
initial hypothesis, or null hypothesis, "Henry
Adams will fail" will be denoted by H 0' and the
competing, or alternative, hypothesis, opposite
to the initial one, "Henry Adams will be a success"
will be denoted by Hi,

Henry's situation was desperate: he always
had to make a decision, which might bring him
either to a failure or a success.

And so Henry wanders about streets. He sees
a tailor-shoe and feels a sharp longing to shed his
rags and clothe himself decently once more.
Now he has to make a decision. If he says "yes",
i.e. expects being exposed in visiting the shop,
and accepts hypothesis H 0' then he does not enter
the shop and keeps on his rags. If the says "no",
i.e. accepts hypothesis H t , he enters the shop
and asks to sell him a ready-made suit.

Whatever his decision, Henry may make
a blunder. What errors are possible? One at which
the null hypothesis is true (Henry Adams is bound
to succeed), and accepted is alternative hypoth­
esis H 1, is called the first-type error, or the
error of the first kind. He believes in his lucky
star, and so he enters the shop. But if, when the
tramp hands the £ 1,000,000 bank-note to
a shop-assistant, the 1atter will take him for
a thief, Henry will make an error of the first kind.
But if alternative hypothesis H; is true, but
Henry accepts H 0' he will make an error of the
second kind.

In this situation/If Henry shrinked front enter­
ing the shop for' fear of being mistaken for
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a thief (but if he did approach the tailors and
produced his large note, and they, stunned by the
appearance of a millionaire, would rush to
provide him with garments on credit), then
Henry's misgivings would turn out to be false.
This would exactly be the second-type error, or
false alarm.

The keen reader may say that we could think
of Henry Adams's success as the null hypothesis,
and hence his failure as the alternative one.
Quite so. The error of the first kind is often taken
to be the one that is more important to avoid,
although this is not always the case. If the
errors are of about the same significance, which
is rarely so, then it is immaterial which is taken
to be which. Let us summarize the versions
possible in the table.

Table 1

Reality
Henry's
decision IFailure Success

Failure True Second -type error-
false alarm

Success Fi rat-type eITOl'- True
omission

Although for Henry Adams errors of the
first and second kind are by no means equivalent,
he, being a hazardous person, selects hypothesis
"success". He comes through with flying colours,
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because the personages of the story are stunned
by the looks of the million-pounder and their
respect for it is unbounded.

This exciting story may serve as an illustration
of a situation often encountered in everyday life:
on the basis of some consideration or evidence
several hypotheses are made, and so an observer
or a manager, a/research worker or a gambler
has to decid on one of those hypotheses and
shape his pl ns accordingly.

Recall t e statistically stable event-to meet
8 blonde first when leaving your place. Such
hypothes s may be made: the probability of
the blon e turning up first is less than 0. t, since
black-ha red girls occur more frequently; the
probability of encountering three blondes one
after another is more than O.. O!.. Such hypotheses
are called statistical, since they involve statisti­
cally stable events, and lend themselves to
a test by statistical means.

At the same time the hypotheses that Henry
Adams will not starve to death having a million­
pounder in his vest-pocket or will not end up in
a jail, but will survive and be a success, are not
statistical hypotheses, and so they cannot be
tested statistically, because the event "Henry
Adams is a millionaire" or "Henry Adams will
fail" is an uncertain event, and not a random
one. And in making his decisions Henry relies on
intuition, not statistical data. In later sections
we will be looking at situations where hypoth­
esis testing and decision making rely on obser-­
vational and experimental evidence, not intuition
and where mathematical statistics comes in.



A Glimpse of Crlterla 27

A Glimpse of Criteria
When in the summer of 1973 Hammer's private
collection of pictures was brought to Odessa in
the Ukraine, I was so fascinated by the exhibi­
tion that visited it several times. In addition to
the pleasures derived from viewing the famous
masterpieces I was graced by 8 variety of biting,
acid and witty comments of the Odessa public,
who in the Soviet Union have a reputation for
wit and temperament. Opinions differed widely,
and if one was delighted with Van Gogh '8 Sowers,
another criticized severely the violet colouring
of the picture and stated that he would have
never hung it in his home, not for the world.

Opinions thus appeared to be highly subjective,
and it was absolutely impossible to work out
nny criteria: some mentioned the sluggishness of
drawing, others the masterly saturation of
colours, still others the oversaturation-so many
men, so many minds.

Suppose i3-year old pupils of two classes A
and B start all argument as to which class is
taller. It is hard to decide.

The A pupils cry that their John is taller than
any of the B pupils. But the latter counter that
this proves absolutely nothing. Just one giraffe
in R CIAH~, what of it ... But all the other B pupils
are taller. Such an argument customarily results'
in a brawl, mainly because the subject of the
difference is completely obscure.

I n fact, wha t is to be understood under the
height of a class? What meaning do the children
attach to this quantity? How is it to be defined?
Since normally nobody comes up with consistent
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answers to these questions, I would suggest SOllie
options. These are as follows:

A pupils, or A's, are considered taller than B's,
if:

(a) Any of the A's is taller than B's (Fig. fa).
The situation is self-explanatory, but unlikely.

(b) The tallest of the A's is taller than the tal­
lest of the B's (Fig. 1b). It may so happen here
that one of the A's is the tallest, but all the
remaining ones are short, e.g. all the other A's
are shorter than any of the B's, This option of
the answer should, I think, be rejected, although
in a basketball match between classes it is the
tallest who may dominate.

(c) For any of the A's there is a shorter B pupil
(Fig. 1c). In that case, among the B's there-may
be one squab, and al though the other B' s are
taller, even taller than all the A's, except for
the big one, the A's are still ahead. Intuitively
this option also does not appeal to our under­
standing of the height of groups of people.

(d) The sum total of heights of the A's is larger
than the sum total of heights of the B's. In Fig. 1d
the A pupils appeared to be taller. Such a situa­
tion may come about for a great variety of reasons,
e.g. since each of the A's is taller, but primarily
the situation may be caused by the fact that
there are more boys in A than in B. Perhaps in
this situation such a criterion may not appear
to be relevant, but in the case of tug of war, say,
if we were to compare the strengths of the clas­
ses, this criterion-the sum total of strengths­
would be quite satisfactory.

(e) The mean height 0/ A is larger than the
mean height 0/ B. We will thus have to work out
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the arithmetic mean of heights of each of the
classes and then compare the resul ts (Fig. Ie).
Now everything boils down to t.he spread of
heights in a class, and the A pupils lose. The
giraffe does not settle the matter, because the
other A's are shorter by far, whereas the B's
are a hit higher than most of the A's ..

(f) The dispute, you see, is really difficult to
work out: arguments are also required for select..
ing one of the criteria. Tho situation becomes
especially involved in the case of the situation
in Fig. if: the mean height of both classes is
the same, but the B's are of about similar height,
whereas the A's include both tall and short
pupils, who compensate for one another.

If we again review all the options, the mean
height option will still appear to have more
intuitive appeal, and so it would be better to
assume this option as a criterion.

The height of pupils here should, of course, be
treated as a random variable, and therefore the
mean height is a sample mean, or empirical av­
erage, which represents the mathematical expecta..
lion (or just expectation) of the random variable
itself, i.e, of the height of the pupils. We agreed
from the very beginning that the concept of
expectation is considered known, and so the
above is just some generalization.

Among the pupils there are fair, red, brown, and
black-haired persons, and so we can consider the
probability distribution of another random variable,
the height of red ...haired pupils. Now this will
be a conditional dutrtbuuon: the probability
distribution of the height, given that the pupils
ate red...haired. Generally speaking, the condi..
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tional distribution and the initial, unconditional
distribution will be different. Each of t hem
will have its own expectation, since the mean
heights of the i3-year old pupils and red-haired
13 year-olds may be unequal.

The mean height of red-haired pupils here is
the conditional expectation-another criterion,
say, for comparison of the height of red-haired
13..year olds from different schools. The condition­
al expectation is an important concept and we
will make much use of it throughout.

When a teacher in a class gives marks for
8 dictation, he has to sum up the total number of
mistakes and give A if there are no mistakes,
and D if there are many mistakes-s-on the face of
it everything is okay here: the criterion is clearly
defined. But the-teacher, consciously or subcon­
sciously, ~inguishes between blunders and
slips, nti~spellings and omissions, and at times
the p~ress or setback of a pupil, so "violating"
the ~~es. I am not going to blame the teacher
for such a practice. My more than thirty five years
of teaching experience show that the essentially
informal instructive activities are poorly subject
to any formalization, and all sorts of red-tape
instructions here are hindrance, rather than help,
for a skilled instructor, and young teachers do
not need instructions of the traffic-rules type,
they rather need friendly guidance to improve
their teaching qualification and practices.

Qualification of knowledge of students using
the four-level marking system is thus a test of the
hypothesis that 8 given dictation or a given
student can be referred to one of those grades.
No matter how inadequate the mark criterion is,
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it is still there and can be expressed by a num­
ber.

Sometimes, however, two marks are given­
one for spelling, the other for punctuation-or
even three, e.g. for an essay, when the story is
also evaluated. What criterion would you suggest
to compare essays and select the best one? How,
for example, would you go about selecting the
best one among the three essays with the follow­
ing (1) number of spelling mistakes, (2) num­
ber of punctuation mistakes, and (3) story mark
(where 5 means excellent, 4 good, 3 fair and
2 bad): 2/1/4, 0/1/3, and 4/0/5. Quite a problem,
isn't it?

Precisely because the possible solutions are so
ambiguous, the criterion must be expressed by
one number.

Let us try and think of some criterion that
would enable us to solve the problem of selecting
the best essay.

Note that the larger the first two numbers
(spelling and punctuation mistakes) the poorer
the essay, and the higher the story mark the
better. We can here take as a criterion the ratio

Style
R = Sp+P+1 '

where the unit in the denominator is added so
that R would not become infinite when there are
no mistakes at all.

In our three cases we will thus have

433
R 1 = 2+1+1 = 1, R 2 = 0+1+1 2'

5
R 3 = 4+0+1 1.
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Consequently, according to criterion R the
second work is the best, the first and third
bei ng equal.

But I somehow appear to favour the last work:
the top mark for the story-an appreciable im­
provement over the fair mark, even if there are
a bit more mistakes. And so another criterion
suggests itself, which favours the story mark:
instead of one in the denominator we will have
five. This gives

Style
K = Sp+P+5

and
4 1 3 1

K t == 2 + 1+ 5 2' K2 = O+ 1+ 5 == 2 '
5 5

K3 == 4+U+5 "9'
i.e. according to criterion K the last work takes
the cake, the first and second being equal.

Now, I think, you can easily suggest criteria
according to which the first place will go to the
first work, or else all will be equivalent. So you
can get anything that suits you.

To summarize, in a problem on selecting the
best object or best solution it is always possible
to suggest a wide variety of criteria. You have
thus seen how critically the fate of an object at
hand, a dispute, or a competition of works of art,
even a human or a group of people is influenced
by the criterion selected, and how ephemeral
are at times the speculations about fair and un­
fair solutions, when both the situation is evaluat­
ed and criterion is selected in a fairly arbitrary
manner.

3-01621
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Radar

Yes, No or Maybe

When in pitch darkness you stump through the
construction site and the battery of your flash­
light has run down, you turn on the light inter­
mittently, for a short time-just to be able to
see if the path is free or not, in order not to bump
into something or break your leg. If there is
something ahead, the ray from the flash-light will
make a light spot and so you will see an obstacle,
although you will not be able to say with certain­
ty whether it is a tree, a concrete slab or a car.
If there is no obstacle, the ray will disappear
into the darkness and you can safely make a few
steps ahead. But you may make a mistake: stop
short in fear when in fact it will be a reflection
from a distant window or an inclined piece of
roofing iron, the reflected light spot will strike
sideways and you will, cursing, hurt yourself at
something.

So we have two hypotheses: Ho-no obstacle,
and HI-there is an obstacle. We can make
mistakes of the first and second kind: stop in
fear of an obstacle, when there is actually none,
and overlook an obstacle, when there is actually
one.

Let us now look at a more serious problem,
that of taking a decision in radar. The primary
task of radar is to detect aircraft when they
appear within an acquisition range. To be sure,
radar also performs other functions: it determines
the coordinates and velocity of a target, it can
do other things depending on the purpose of the
radar station. But we will concentrate for the
moment on the problem of detection alone. By
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the way, ship-borne radars must also detect
other ships, icebergs and outline shorelines.

Radar consists essentially in sending .out pulses
of high-frequency radio waves, and receiving
some of the radiation reflected by the target.
The receiving aerial is the radio counterpart of the
eye. The received signal is very weak and so it
needs high amplification. But the problem is
complicated by internal, or receiver, noise, atmo­
spheric noise, and other outside interferences.
These all may lead to errors.

Before we turn to these errors, let us consider
the detection problem in air defence, which is
more crucial than in air traffic control. From all
over the area air defence system the alert defence
centre continually receives information about the
presence of all the target (aircraft and missiles)
within the area.

Even the most advanced and expensive systems
are not error-free: target signals may be mis­
taken for noise, which is always there and is the
background against which the signal must be
detected. This is the error of the second kind­
the omission of vi tal information, especially
vital in the days of supersonic velocities.

.. A false alarm, an erroneous decision that a hos­
tile object has been detected when there is none
in actual fact, is not as innocent as it might
appear: this may cause the air defence force
take retaliation measures, which is no good
at all.

A radar system can be organized differently
not only in the context of hardware, but also in
the context of data processing techniques, and
thus the characteristics of different systems will

3*
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be different as well. Ilow are we to judge about
the quality of the funct.ioning of a radar system?

In each cycle a transmitted pulse may reflect
from an object and be either received or omitted;
if there is no target, the pulse will go away and
the receiver may either indicate no-signal or
mistake noise for a signal. I t is worth reminding
here that noise is a random process, and the radar
operates under the conditions of sta tistical sta­
bility. Therefore, hypothesis H o (only noise) and
hypothesis HI (noise and signal) are statistical
hypotheses and it here makes sense to speak
about the probabilities of errors of the first and
second kind. In this case the error of the first
kind occurs when there is no object, or rather
there is only noise, and HI is accepted, i.e. false
alarm. In mathematical statistics the probability
of first-type error, or the probability of false
alarm, is called the significance level. This term
is more apt, since the significance of making
a false decision about the presence of an object,
where there is none, is quite clear, and here it is
only improved by being quantified.

We can now represent the situation in the form
of Table 2, similar to Table 1.

Notice, however, a substantial difference be­
tween the two tables: although Henry Adams can
estimate his loss for both errors, there are no
probabilities of these errors, since the event
"Henry is put to jail" is an uncertain event, not
random, and Henry's behaviour, although he
performs in an arbitrary manner, have no pro­
bability distribution.

The radar problem thus boils down to favour­
ing one of the two hypotheses, and making
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Table 2

Reality

Decision ,
Noise Signal-j-noise

I

Noise True. True decision Second-type er-
probability i-a ror-signal

omission. Pro-
bability ~

Signal + First-type error - True. True deci-
noise false alarm sion probability

Error probability-
1-~

significance level a

one of the two possible decisions, to say yes
or no.

A wide variety of ways to make a decision in this
situation are possible. We can, for example,
favour a method that provides the lowest sig­
nificance level, i.e. the lower first-type error.

Before discussing the possible values of the
signiftcance level, we will sketch other problems
associated wi th statistical tests of hypotheses ..

You will have heard about the Morse code, in
which letters and numerals are represented by
dots and dashes. We could replace them by any
other two different signals. In modern telegraphy
they use either mark pulses and pauses or d.c,
mark pulses of different polarity or a.c, pulses
of the same length but different frequency
and phase. The main thing about all methods of
coding is the use of two distinguishable signals.
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Using computer language, we can represent them
as 0 and 1. Each letter or numeral will then be
a combination of characters, O's and 1'so

If characters are transmitted over a communi­
cation channel, then in any of the above-men­
tioned techniques, owing to the presence of inter­
ferences, a 0 may be deciphered as a 1, or vice
versa. Formally, the situation is as in the radar
problem: H 0 i.s the transmission of a 0 and H t is
the transmission of a 1, and the first-type error
is to mistake a 0 for a 1, and the second-type error
is to mistake a 1 for a O. The significance level
here is the probability of receiving a 1, when
a 0 was transmitted.

A similar situation occurs in quality control.
The figures of merit here vary widely. So for
shoes, tyres, incandescent lamps the main crite­
rion is the service life.

The paradox of the situation is that, for one
thing, you do not want to buy shoes that will only
live for a week or a month, for another, you
cannot test the shoes for durability without
wearing them out-the proof of the pudding is in
the eating.

The life of products is generally determined by
analogy. From a large batch of products we take
a sample, i.e. select some tyres following some
rule, and test them for durability. Tyres, for
example, are installed on control cars to test
what distance covered will make them bald. If
almost all the tyres of the sample made, say,
one hundred thousand kilometres, it is quite
probable that all the other tyres in the batch wil]
perform in the same way. In other words, we
assume that the products of the batch all have
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the same properties (as far as their quality is
concerned) as the products of the sample.

In quality control there are two hypotheses:
the batch is good (Ho), or the batch is bad (HI).
Control consists in testing the hypotheses and,
of course, taking one of the two possible deci­
sions: go or no-go, yes or no. A complete analogy
with the radar problem.

To summarize, any quality control method is
testing statistical hypotheses to make decisions
under uncertainty conditions, which at that are
characterized by statistical stability. This way
of looking at things leads to a far-reaching inter­
pretation of mathematical statistics. In the
literature of last decades you may even come
across such a definition: the subject of mathemat­
ical statistics is finding rules of decision making
under uncertainty characterized by statistical
stability. This alone would, of course, be suffi­
cient to class mathematical statistics among the
key disciplines. \

To return to quality control, the figures of merit
are predetermined by the purpose of products.
So in matches or nails the acceptable reject level
may be 5 per cent, but. in aircraft engines or
medicines the quality standards are higher by
far. Hence the difference in requirements to
quality control methods.

As it was said above, any of alternative hypoth­
eses can be taken to be the null hypothesis, the
decision being made by the analyser himself.

We will now approach the situation from the
side of the supplier for whom a rejection of
a good batch is the most unfavourable event,
and so the rejection of a good batch will here be
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assumed to be the first-type error. Let the pro­
bability of first-type error be a, then in a given
set of tests the percentage of rejected trne hypoth­
eses will be 100a. So, at a === 0.02, 100 X 0.02==

2, and true hypothesis rejection will average
2 per cent. A measure of confidence that H 0 is
true (the batch is good) is here the probability
1 - a, called the confidence level.

Likelihood Ratio
You wi] l have heard of accelerat.ion in humans
(from the Latin word acceleratio) , which means
a quickened development of the human body in,
as anthropologists put it, certain ethnical and
professional groups of population and earlier
puberty.

Long-term observations indicate that the dis­
tribution of the height of people does not vary
from generation to generation. This distribution
is normal. It is natnral, therefore, to see if the
parameters of the distribution change or not.
Let us only consider the mean, i.e , fino out if
the mean height changes from generation to gen­
eration assuming the normal height distribution.

On the fairly reliahIe statistical evidence con­
cerning the age groups born in the years 1908­
1913~ we can find the mean height. of adult men
in the age from 20 to 30, it is 162 centimetres.
For the years 194~-1~).4R we obtain 170 cent ime­
tres, We are now to test the hypothesis that. the
mean height does not change from generation to
generation, and the fluct uat ions observed are the
"devilish plot", i.e. just a natural spread, since
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the mean height is a random variable. Our null
hypothesis will be that the mean height in the
1943-1948 age group is the same as in the 1908­
1913 age group, the alternative hypothesis being
that the mean height has increased over these
35 years.

What follows is an illustration of the reasoning
used in such situations. To make our life easier

Fig. 2.

162 16~ 170 175 Height, an

we will simplify the formulation of the alterna­
tive hypothesis: the mean height of the 1943-1948
age group is 170 centimetres, and hence over the
35 years it has increased by 8 centimetres.
Figure 2 gives the probability densities for each
hypothesis, the left curve describing the null
hypothesis.

Let we have a sample of the later generation
males. A first appears to be 164 centimetres tall.
Such a height may be found in any group. Consid­
er the dilemma: if the fellow is from the "left"
group, his height is 164 centimetres with the
probability density represented by the ordinate
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value for 164 centimetres on the left curve (a sol­
id line in the figure). If then he belongs to the
group with the supposed new probability distri­
bution given by the right plot, then he will be
164 centimetres tall with the probability density
equal to the ordinate value fer 164, but now on
the right curve (a dash line). We have to make
a decision-to assign the observed value to one
of the two distributions. The suggested principle
for decision making consists in giving preference
to the distribution in which the observation is
more probable. In our case, H 0 is more probable,
and should this be the only observation, we
should accept hypothesis H 0 (that height distri­
bu lion did not change).

You will have noticed, of course, that the
concept of probability has here been replaced
by the probability density: it is easier to compare
probability using their ratio and comparing it
with unity. The ratio of probability densities is
aptly called the likelihood ratio. I t is compared
with unity and according as it is more or less
than unity, the "left" or "right" hypothesis is
chosen, i.e. a more likely decision is made.

But it is not as simple as that. If a second fellow
of the observed group is 175 centimetres tall,
then reasoning along the same line we should as­
sume the hypothesis that he belongs to the right
distribution-i-here the right curve is higher,
and hence more likely.

A comparison of the outcomes of the two obser­
vations is a problem: which is to be favoured.
A good idea is to use two, or more, observations
jointly. The "point" likelihood ratios are then
multiplied together to obtain an expression,
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which is a likelihood ratio too, but now for
the whole set of observations. Next a number,
called a threshold, is set, and the rule of accepting
or rejecting hypothesis H 0 consists in comparing
the likelihood ratio obtained with the threshold:
if it is larger than the threshold, hypothesis H 0

(left curve) is accepted, otherwise hypothesis HI
(right curve) is accepted. In the acceleration pro­
blern , in particular, the evidence is convincing:
the 1943-1948 age group is on average 8 centi­
metres taller than the 1908-1913 age group.

As a matter of fact, the height problem does not
necessitate the use of the criterion of likelihood
ratio, since with the significant body of statisti­
cal data available we could do with simpler tech­
niques. But there are problems in which this
criterion is of much help and yields good results,
for example, in the radar problem.

Noise, as is well known to experimentalists,
obeys the normal distribution law with zero mean,
and the signal plus noise also obey this distribu­
tion but with another mean-exactly the ampli­
tude of the signal pulse. I t is here that the likeli­
hood ratio criterion is used to make the important
decision as to whether there is signal and noise,
or just noise without signal. And in general they
make extensive use of this criterion in communi­
cation and control to test null hypotheses.

Maybe
To return to statistical tests of hypotheses, we can
safely say that the figure of merit of test met.hods
is the significance level: the lower the significance
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level the better the test. But our reasoning so far
has completely ignored the second-type error,
which in rejection problems means the accep­
tance of a bad lot, and in the radar problem means

Mark
bit

«(I)

(b)

t

(c)

- Threshold

Fig. 3

the omission of a signal. Let its probability be ~,

then the measure of confidence for the statement
"HI is true" is the probability 1 - ~.

'The fact is that in the test method selected the
probabilities of the first- and second-type errors
appear to be dependent on each other, so that
they cannot be specified in an arbitrary way.
We will take all example from telegraphy, where
the characters are mark pulses and pauses. Differ­
ent situations are illustrated in Fig. 3. Noise
distorts the signal, and the real signal arriving
at the receiver is so obliterated that it is not at
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all clear whether it is a mark pulse or a pa use.
The simplest way of processing such a signal in
the receiver is to establish a threshold: if the
signal as received is above the threshold then the
decision is that a pulse has been received; if it is
below the threshold, the decision is that there
is a pause. In noisy channels the probabilities of
errors of both kinds will depend on the value of
the threshold: the lower the threshold the higher
the probability that a mark pulse will be received
correctly, i.e, the lower the significance level;
the probability of second-type error will increase,
though. In the test method described the selection
of threshold is thus the selection of probabilities
of errors of both kinds.

In radar and quality control the situations are
similar. But how are the probabilities of the
errors related? Suppose we want to provide a very
small probability of false alarm in air defence,
say, no more than one false alarm in ten million
pulses, i.e. to select the significance level ex
== 10-7• You cannot, however, get the things
like that for nothing-there is always a price to
pay. If we were to bring the reasoning to the ex­
treme, i.e. to make the significance level zero,
we would have to treat all the signals as noise.
Now the operator will never make false alarm,
just as any alarm at all for that matter, even if
a fleet of hostile aircraft will be overhead. This
test procedure, normally called the plan, can
hardly be considered satisfactory, to say the least.

This argument illustrates how necessary it is
carefully to analyze the implications of first- and
second-type errors and to arrive at some com­
promise.
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It would appear that mathematical statistics
should have worked out some ways of establish­
ing or calculating the permissible probabilities
of errors in hypothesis testing. But, alas, the
permissible value of the significance level is
a measure of risk taken by the decision-maker,
viewing the situation from his point of view.

Later in the book we will look at the risk in
more detail, but at the point it is worth noting
that the permissible risk level is an extremely
subjective thing. You will have played cards or
some gamble and will know that the gambler's
behaviour is dramatically dependent on the
amount of possible win or loss and on the charac­
ter of the game, its heat. And in problems con­
cerned with engineering and nature the estimates
of the permissible risk appear to be also depen­
dent on a variety of other factors, suchas prestige
or qualification.

But the situation is not as hopeless as it might
appear. So far we have only dealt with the sim­
plest way of processing of incoming signals.
When, speaking over telephone, you are poorly
heard, you repeat the phrase several times.
Also, in radar you can send out not one, but
several pulses repeatedly, or a pulse packet, as it
is normally called. Using a packet, we can now
test the hypotheses by different information
processing techniques.

We will mark 0 when we accept H 0 (noise)
and 1 when we accept HI (signal and noise).
Let the packet have 100 pulses, and for each of
them we make a decision whether it is 0 or 1,
i.e. the processed packet is 100 digits, each of
which is 0 or 1. We can, for example, accept the
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rule: if among 100 characters there are more than
five 1's (and hence less than 95 O's), we will make
the decision that a signal is present, otherwise
we decide that there is noise alone. If instead of
five we take any other number, we will have
another test rule. In short, it is clear that the
probabilities of errors of both kinds will vary
with the number of pulses in a packet, the per­
missible number of 1's to make a decision that
there is no signal, and, of course, with probabi­
lity of correct detection of each pulse. We have,
thus, many possibilities, but we should be ex­
tremely careful in selecting the procedure to be
used.

When a friend invites you to take part in an
outing, you may say YES, or NO. But you can
also say MAYBE.

There is an infinite variety of motives for your
selecting one or another of these answers, as is of
implications. But notice the third of the possible
answers, which differs markedly from the first two
by its uncertainty. By saying MAYBE you put
off the final decision. And you do this with good
reason: you may be not acquainted with the other
members of the party or have no idea of the
route, you are uncertain about the expenses or
not sure that you will get time off. And so you
say MAYBE because you have not all the infor­
mation required to make the final decision.

With statistical tests of hypotheses the situa­
tion is about the same: when the evidence availa­
ble is not sufficient for decisive YES or NO,
i.e, to accept or reject a hypothesis, we then can
put off the decision by saying MAYBE and
seek the required information.
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The form of the radar problem just discussed
in which pulse packets are used is not without
its weaknesses. If the decision is made that there
is a signal when a packet has more than five 1's
and the first ten pulses contain seven 1's, then
the decision will be made that a signal is present
independently of the remaining 90 pulses. The
processing of the 90 pulses will thus be a waste of
time and power. On the other hand, if the first
70 pulses contain not a single 1, then we could
with good reason believe that there is no signal
and not to test the remaining 30 pulses.

This suggests that we might as well make the
decision, i.e. accept or reject the null hypothesis,
without waiting for the whole of the packet to
be processed. So if O's in the packet are few, it
would pay to accept the hypothesis that there is
a signal, and if O's are many, it would be as
reasonable to accept the null hypothesis. But
when the number of O's in the packet is neither
very small nor very large, the information is not
sufficient to reach a decision, and so instead of
YES or NO we say lVIAYBE and make further
observations.

The simplest plan of such a type consists of two
successi ve packets.

Consider an example. In testing the no-signal
hypothesis we can take a packet of 40 pulses, say.
If we find not a single 1 or just one 1 among them,
the rest being O's, we accept the hypothesis that
there is no signal; if six or more 1's, the hypothe­
sis that there is a signal; and if from two to five
1's, another packet, say of 30 pulses, is beamed.
Now we will have to set another permissible
number of 1's, but for the total number of pulses,
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i.e, for 70. We can here take it to be seven. And
so if in the combined packet we will find less than
seven 1's among the 70 pulses, we accept the
hypothesis that there is no signal, and if seven
or more, the alternative hypothesis. The quality
control problem has the same structure.

Calculations indicate that such double sampling
plans are more efficient than single sampling
plans. A sample on average contains less pulses
(or products) with the same or even better results.

Now you may well ask, why confine ourselves
to two samples, and not make three, four, etc.
samples?

This is exactly the case in reality. But it is
one thing to have a vague insight, and quite ano­
ther to work out a far-reaching theory.

Even with sampling control problems it is
clear that a multitude of forms of plans are possi­
ble. And for the whole spectrum of problems of
hypothesis testing a wide variety of rules can be
developed, thus offering the decision-maker a wide
scope.

Compromise

But which plan or rule is the best? As we know
already, we should, above all, establish the
criterion of quality for the test.

Let us begin by specifying the significance level
(recall that it is the probability that the null
hypothesis is rejected, although it is true), such
that would satisfy us in this situation. Since the
plans are many, the respective second-type errors
will be many as well. Clearly, we wish to mini-
4-01621
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mize the probabili ties of errors of both kinds.
Therefore, for a given significance level we can
use as the .quality criterion the probability of
the second-type error.

The problem at hand is called the optimization
problem: given the significance level, select the
rule for reaching a decision, such that the proba­
bility of the second-type error would be the
lowest.

This principle of 'selecting the optimal rule
lies at the root of one of the methods of testing
hypotheses put forward by the outstanding
American statisticians Neyman and Pearson in
mid-1930s. The rule is based on the likelihood
ratio.

The Neyman-Pearson criterion is widely used
in statistics and, unlike the "essay" problem
discussed earlier in the book, is couched in formal
terms.

It is worth mentioning here that there are many
other sound criteria. At the same time, in some
cases the Neyman-Pearson criterion is rather
vulnerable. We would like to discuss them
now.

It would be instructive to look at the measure
of confidence from another angle. We have al­
ready established that with the above test rule
the price paid for the lower significance level is
the higher probability of the second-type error,
e.g, in sampling quality control we have losses
due to rejection of good products.

And here, as it was said above, we have con­
flicting interests of the supplier and user. To
arrive at a compromise they have to take into
account all the possible consequences of the
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first- and second-type errors. The parties to a deal
consciously or subconsciously seek to minimize
their losses.

In everyday life we have to adapt, to take into
account the attitudes of top brass, subordinates,
colleagues, the members of the family and neigh­
bours, in other words, to live in society. Adapta­
tion at best is consensus, but it may be that the
interests of the sides are not only different, but
even conflicting.

When on a Friday evening a couple are dressing
for a visit and She has already dressed up, a diffe­
rence emerges. He would like to go in his every­
day suit and worn-in shoes: in this outfit it is
more convenient to watch a soccer match on TV
and have a cup of tea. But She insists on the
black suit, starched shirt and patent-leather
shoes-the hostess should be taught a lesson how
to look after a husband properly. But the new
shoes are not worn in and pinch a little, and the
very idea of a stiff collar with a tie gives Him
a pain in the neck. After much argument He puts
on the new suit, a Ilanel shirt without a tie and
old comfortable shoes. Another of the family
crises has been worked out peacefully.

When the reconciled couple arrive at their
friends' the shrewd hostess immediately take
notice of the gorgeous looks of Hers and makes
conjecture as to Her interest in one of the male
guests.

The interests of the ladies here, although not
coincident, are apparently not conflicting either.
One is just curious and just wants to have a trump,
the other, if the hypothesis is true, does not
want a show-down..
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Thus, the null hypothesis of the lady of the
house is "the interest is there" The first-type
error is to reject this hypothesis when there is
an affair-it can make no harm to the hostess,
if only a slight disappointment. But the second­
type error-to accept the hypothesis when in
actuality there is no affair-can start a dangerous
gossip.

At the same time, if the hypothesis is true, She
can foresee the consequences and take measures
if the lady of the house smells the rat.

The compromise here is for Her to select so
her behaviour that She could, for one thing,
make use of the chance (or prepared) coincidence
and, on the other, not to show Her cards.

The implications are moral, rather than mate­
rial, and no participant at the party can establish
a permissible quantitative measure for errors,
or the cost of errors.

But the case of the supplier and user is clearly
subject to quantitative analysis.

In real life, however, it is by no means easy
to introduce a quantitative measure. The fact
is that the permissible (in a given situation)
probability of error must be specified in some
reasonable way. But "in which way-there is
no answer so far. The situation appears to be
rather complex.

Returning to the radar problem, recall that
the detection system is very sophisticated and
expensive, but it.s failure may be immeasurably
more expensive. So a failure of a ship-borne radar
may lead to a collision with another ship, iceberg
or a cliff.

Now what probabil ities of first- and second-type
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errors would satisfy you? Suppose you chose to
have 0.001 for each error. This would imply that
if signals would be arriving, say, each 0.01 second
(i.e. hundred signals a second), then the first-type
error of 0.001 means that there will be on average
one omission in each thousand signals, i.e. one
in ten seconds and six in a minute. But these
are average figures. But in actual practice there
may simultaneously be several omissions as well.
So such a detection system is good for nothing.
If we set 0.000 001 for the same one hundred
signals a second, then erroneous solutions will
on average be reached once in ten thousand sec­
onds, i.e. in about three hours. But we would
like to have an absolutely error-free system,
although it is well known that there are no such
systems. What is to be done then?

And so the detection hardware is made ever
more sophisticated and expensive, with large
crews of skilled technicians providing adequate
reliability of these systems.

Consider an example from everyday life. While
crossing a street we run some risks even if we
observe the rules conscientiously, because the
rules may be violated by a motorist or a running
boy who may accidentally push you under a car.

A daily average of injuries and deaths in traffic
accidents in a Soviet town was two persons. If
we take the frequency for the estimated prob­
ability-here unfortunately we have enough
evidence-given that the town's population is
1 million, the probability of being involved in
a traffic accident on any day for any inhabitant
of the town will Le 0.000 002, a figure not to be
completely overlooked when it concerns your life.
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Any mother will indignantly reject the very
formulation of the question about the permissible
(for her) probability of the first-type error, Le.
of an accident in which her beloved child may be
killed. For mother the only permissible proba­
bility here is null. No use trying to explain to
her that the only way of achieving this probability
is to stay at home for ever.

It is thus unclear what principles we are to be
guided with in selecting the permissible proba­
bility of the first-type error for accidents. And
what principles should be used by local authori­
ties in setting speed limits. Pedestrians may think
that if, say, the limit is increased from 50 to
60 kilometres per hour, this will make accidents
more likely. I n practice, this is not necessarily
so, since higher speed limits are as a rule accom­
panied by improvements in traffic control, po­
pulation education, higher penalties, and so on.

But in reality, nobody sets this probability,
and both motorists and pedestrians complain
about the traffic police being unable to ensure
adequate safety in the streets.

The main purpose of the traffic rules is to
reduce the error probability. Here it is the first­
type error with the generally accepted null hypo­
thesis: in crossing a street no accident will occur
with me. At the same time the false alarm, or
second-type error, is here quite admissible, since
it only implies that you may wait a bit being
overcautious.

In our everyday life we cross streets, although
we know that an accident is possible, because
we are guided by the practical confidence principle:
if the probability of an event is small, it should
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be thought that in a single trial the event will
not occur.

As early as 1845 P. Chebyshev wrote in his
master thesis entitled An Elementary Analysis
of Probabilitq Theory: "Approximately, we con­
sider it undoubtable that events will or will
not occur if their probabilities are but slightly
different from 1 or 0".

It is this principle that makes it possible for
us to live without being constantly gripped by
fear of accidents, which occur with such a small
probability.

But what is to be understood by small proba­
bility? The same question: one hundredth or one
millionth, or less?

For a normally functioning valve in your TV
set, the probabili ty tha t some electron flies from
the cathode to the anode in a second is about
1/1,000,000,000. It would seem then that there
should be no current in the valve. But the elec­
trons are legion, and during a second about
1016 electrons come to the anode, and so
the probability here does not appear to be so
small.

The situation with accidents in a town is
about the same. Although the probability for
you personally to get involved in an accident
is small, the population being large, the prob­
ability of at least one or even several accidents
will be not at all small, and sometimes even close
to unity, and .30 we often witness ambulance cars
tearing along the streets.

Here too the notion of smallness in evaluating
the probability is subjective. For teenagers, who
generally overestimate their capabilities, the
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threshold is overestimated as well. Besides, the
estimation of probabilities may be different from
situation to situation.

Consider an example of such a situation.
According to evidence available, in the USA

the incidence of cancer of the stomach is lower
than in Europe. This fact was attributed to the
way of having drinks: Americans take hard
liquors diluted (whisky and soda, gin and tonic,
et.c.), whereas Europeans have them straight.

Just imagine two groups of researchers, one
preferring straight drinks and out to prove their
wholesomeness, or at least that they are not as
offensive as diluted, the other preferring diluted
drinks and going overboard to prove exactly the
opposite. What is more, the "diluted" group may
champion the interests of the manufacturers of
soda water and tonic.

The problem here is to test the null hypothesis:
among the stomach carcinoma cases the share of
"straight" drinkers is equal to that of "diluted"
drinkers. The alternative hypothesis: among the
cases the share of "straight" drinkers is larger
than that of "diluted" drinkers.

It would seem that such a formulation of the
problem should lead to a clear answer: the null
hypothesis is either true or false. But this is
not always so. The "straight" group seeks to
prove that the null hypothesis is true, and there­
fore they would profit from such a test rule that
would reject the null hypothesis only rarely, Le.
they would like to select the significance level .as
low as possible. They do not care for the second­
type error, which here implies that a hypothesis
is accepted that "both drinking habits are equally
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offensive", when in reality straight drinks are
more harmful.

At the same time, the "diluted" group are in­
terested in the opposite interpretation of the
same observations, and so they strive to have
a smaller probability of the second-type error,
i.e. to have the alternative hypothesis rejected
as rarely as possible. Also, this group would like
to have a large probability of rejecting the null
hypothesis, if it is false.

Having so conflicting approaches and under­
standing of the importance of first- and second­
type errors the groups may work out absolutely
different rules of decision making, and hence
obtain different answers.

The alternative hypotheses won out on sta­
tistical evidence and so the "diluted" groups, and
hence the American drinking habit triumphed.
But this did not put off the "straight", and they
were successful in proving statistically that with
the large intestine the situation is opposite.
It might appear that this should have reconciled
the sides, but today the surgery and therapy yield
better results with the large intestine, and so the
"diluted" gained an advantage.

But back to the Neyman-Pearson criterion.
Some of the examples just considered would
seem to suggest that this approach is not water­
tight at all. Neyman and Pearson criticized the
arbitrary selection of one of the two alternative
hypotheses, as was the case before them. Their
theory, however, just transfers the arbitrariness
to the selection of the permissi ble significance
level. To be sure, after the level has been chosen
the hypotheses are further tested with all the
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adequate rigour. So the arbitrariness is still
there, but it is only hidden deeper, so that now
it is more difficult to perceive the implications
of it.

This is not to suggest that we should discard
the Neyman-Pearson criterion. There are pro­
blerns where we can quite reasonably establish
the significance level. What is more, in some cases
we can even derive the analytical dependence
between the probabilities of the first- and second­
type errors and clearly see the price to be paid
for reducing the level.

Although the Neyman-Pearson theory was
a major breakthrough, it did not give all the
answers. Even now, after decades of intensive
studies, the theory of statistical testing of hypo­
theses is still far from its conclusion.

Dynamics Instead of Statics
Let us once more return to the radar problem.
It is easy to criticize and it is not surprising that
the test rule was readily dethroned above, in
which a pulse packet of a fixed volume is used.
A two-packet plan is better, but as you may have
noticed the procedure can be pursued further,
i.e. we can use three- and four-packet plans, but
they have one essential drawback, the staticity.

Such an approach contradicts our everyday
experience. So before taking a decision when
buying a new suit, changing position, etc., you
weigh all the pros and contras, and as a rule
a priori do not fix the time or the number of
observations sufficient to make the decision.
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Why then in the case of quality control, radar,
or other problems of those discussed above should
we follow the other procedure, fixing beforehand
the sample volume? If in testing we prelimi­
narily fix the sample volume, then the sequence
of operations will be absolutely independent of
the gradually accumulating data.

I t is thus seen tha t the single sample plan is
not reasonable. In double sample control the
procedure is but slightly dependent on the results
of the first sample (a repeated sample is not
always necessary).

Therefore, the idea of sequential analysis sug­
gested itself. I ts main difference from fixed
sampling lies precisely in the fact that the very
number of observations is not fixed beforehand­
it is only dependent at each stage of observation
on the previous results and is, thus, a random
variable.

It would seem that the simple idea not to fix
the time or number of observations but to make
decisions after the required information is avail­
able is apparent, and it is unclear why it has been
overlooked for so long. Although, if we take
a closer look at it, it will not be that apparent.

To begin with, it is only after the meticulous
calculation that the advantages of the sequential
plan show up in comparison with the single sample
or more effective double sample plans. But the
main thing here is that the dynamic analysis
is a revolutionary approach.

The double sample plan was developed late
in the 1920s. But it was only in the 19408 that
the multistage samples began to be studied along
with some of sequential procedures. But the
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main breakthrough here carne from the American
mathematician Abraham Wald (1947).

Almost all major discoveries are simple, but
they require a nontrivial, revolutionary way
of looking at known facts, and so take a stroke
of genius and even tenacity, since a fresh idea
is always hampered by old concepts and pre­
judices.

To illustrate the Wald sequential test, we will
consider a ballerina maintaining her weight.
For simplicity we will consider the situation
when there are two hypotheses: Ho-the balle­
rina's weight is 50 kilogrammes, and Hi-the
weight is 48 kilogrammes.

Suppose that the dancing company goes on
a tour, where the routine will be disturbed, but
the dancer must still maintain her normal 48 ki­
Iograrnmes. And so the weight fluctuations must
be closely watched so that the diet and rehearsal
habits might be changed in case of need. But the
human weight is by no means stable, it varies
within hundreds of grammes even during the
day, and also it is measured with uncertainty.
Therefore, the dancer here should weigh herself
several times a day and watch the average value.
But how often? Two or three times may be not
enough, but a hundred is impossible. I t is here
that the sequential test comes in.

Remember the idea of likelihood ratio? A slight­
ly modified form of it will now be used here. To
begin with, we set the probabilities of errors of
the first and second kind (which here can be
assumed to be equal), it would be reasonable to
set two thresholds and follow the rule: if the
I ike}ihood ratio is higher than the larger of the
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thresholds, we accept the null hypothesis-the
weight is 50 kilogrammes; if less, the alternative
hypothesis; and lastly if tbe ratio value lies
between the thresholds, there is no reason for
accepting any of the hypotheses and observations
must be carried OIl.

Instead of speaking about testing the null
hypothesis or the al ternative hypothesis and
accepting one of them we can speak about reject­
ing the null hypothesis. Using this language we
can say YES, if we accept the null hypothesis,
and NO, if we reject it. But if we cannot say YES
or NO (information available is not enough), we
can say MAYBE and go on with our observa­
tions.

The situation can be presented graphically.
The sequential values of the measured weight
of the dancer will be denoted by X h X 2 , •• , Xn'

the likelihood ratio being a function of these
variables.

We can then assume that the human weight
is distributed following the normal law. But if
the null hypothesis is true, then the expectation
for the weight will be 50 kilogrammes, and 48 ki­
logrammes for the alternative hypothesis. Under
these conditions, if we want to find whether the
likelihood ratio lies within or beyond the thresh­
olds, we will have to test the following simple
inequalities:

n

a + 49n ~ LJ xt~49n -t- b,
i=l

where n is the number of observations. The num­
ber 49 here is a half-sum of 50 and 48, and a and b
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are governed by the predetermined probabilities
of first- and second-type errors.

If now we denote the half-sum by u, then

n

a+nJ.t~2j xi~nfl+b.
i=1

Figure 4 is a plot of these inequalities: the right­
and left-hand sides are straight lines in the coor-
dinates (n, x), and ~ Xi is a broken line. When
the broken line intersects the upper straight line,
it will get into the region where the null hypothe­
sis is valid, and the decision is YES, when it
crosses the lower straight line, it will get into
the region where the null hypothesis is rejected,
and the decision is NO. And until, with increasing
number of observations, the broken line varies
within the confines, the decision at each step
is MAYBE, and the next observation is made.

Turning again to quality control in mass pro­
duction, when an automatic machine is operating
and the parameter to be controlled is the product
size, which must be strictly within the tolerance,
the situation absolutely coincides with the one
just discussed. What is only required here is to
substitute the word "product" for "dancer", size
for weight, and the null hypothesis now will be
the exceeding of tolerances. But the exceeding
of tolerance is "no go" here.

When the probabilities of errors of the first
and second kind are similar, then, as was shown
by Wald, the sequential procedure enables the
number of tests to be reduced by half as com­
pared with the earlier rule, where the number of
tests is predetermined. In quality control, halv-
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ing the number of products to be tested is a sub­
stantial gain, especially so if the tests are expen­
sive and tedious. Therefore, the sequential anal­
ysis is widely used in quality control.

1 2 ] 4 567
Number of measurements

Fig. 4

There is also another set of problems where
the sequential analysis is justified and advan­
tageous.

In the radar problem higher reliability is
achieved by repeatedly beaming signals and sum­
ming the received signals together. In the process,
irregular noise signals, which irregularly assume
either positive or negative val ues, partially
cancel out, thus improving the signal-to-noise
ratio.

Recall that in radar the two kinds of errors
have costs that are far from similar. And if we
assume that they differ drastically, then the
sequential procedure in signal processing will
provide 8, substantial gain in the number of
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observations and also in the time and power
required, as compared with the earlier procedure
with a fixed number of observations. In urgent
situations a reduction in observation time is a
great advantage, and reduced power required
amounts to increasing the range of detection.
It is worth noting here that observations are
fewer on average only, the spread being fairly
large. Therefore, sequential analysis should only
be applied after careful calculations, which lie
beyond the scope of the book.

Risk

Two young friends want to go to the seaside for
vacation. One of them owns a car, the other
a motor-cycle. Besides, they can travel by train
or air. Motoring has the advantage of freedom,
but the car needs some repair but the time is
pressing. As to the motorcycle, it is not the most
comfortable vehicle to cover the 1000 kilometres
to the seaside. On the other hand, with the car
or motor-cycle the holidays start immediately,
at the threshold. But there are troubles: first
of all, an accident is more probable on a motor­
cycle than in a car, train, or airplane. Also, to
meet with an accident in a car is for the most
part to have the car body damaged, whereas
in a train you at best get away with fractures
and bruises, and with the air travel ... it is clear.
And so the friends start a lengthy discussion of
pros and cons of each option. Let us now appro­
ach the situation in scientific terms.
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To have a good vacation is an understandable
desire, and realization of this desire is a success,
which we will term win or gain.

In the situation at hand the travel troubles
and accidents are statistically stable events, and
we can assume with good reasons that there are
definite probabilities of meeting with an accident
for any of the vehicles discussed. But the boys
are interested not only in the probabilities of
accidents, hut also in the respective losses.

In an air crash the losses almost certainly are
the death, i.e. extremely high. Another loss
in air travel is the high cost of tickets. The gain­
or negative loss-is two extra days spent on
the seaside.

In a train accident the losses are death or
injury, long stay at a hospital, travel expenses
plus two days less spent on the beach.

Motoring takes much time, effort and funds
in repairing the car; an accident may land you
in a hospital or kill you, and leads to direct
losses of time, money and effort. Travel expenses
here are also high: petrol, lodgings, and so on.

Motorcycling is, in addition, extremely uncom­
fortable for long-distance travel.

Some of the losses can be expressed in terms
of numbers (hours, money, etc.), the others can­
not-you can hardly work out a price of a fracture
of the hand, pelvis, or concussion of the brain,
and less so of the loss of your life. There are some
gains too: you show your mettle by fighting
through the difficulties, the comfort of having
a vehicle on the vacation, and other moral bene­
fits. Now to arrive at the best decision we will
have to work out the total loss.
5-01621
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The answer is by no means easy. Above all,
we must be able to compare all the losses. For
this purpose, the best idea would be to express
them in the same terms, say, to estimate the
money worth of the time wasted, the moral loss
and possible injuries. Some hints might be given
here, but it would lead us too much astray.
A further example will illustrate the line of
reasoning.

When deciding whether or not to insure your
car against stealing you may draw on mathe­
matical statistics. During the period of insurance
the following two outcomes are possible: (00­

the car has not been stolen, and WI-the car has
been stolen. The two events can be considered
random (at any rate from the point of view of
the owner), and probabilities of any of the two
outcomes can be estimated from the police sta­
tistics: P (00) == p is the probability that your
car will not be stolen during the year, and
P (WI) = q == 1 - P is the probability that your
car will be stolen during the same period.

You may make two decisions: do-you pay the
insurance premium (insure your car), and d t ­

you do not.
Your possible losses here will in some way or

other involve the insurance premium (ro) and
the car price (r t ) ·. Suppose, for simplicity, that
the insurance indemnity equals the car price.

Now we would like to work out losses in various
situations. The losses in the case of the decision dJ
and the outcome Wi are conventionally desig­
nated by L (Wi, d j ) . So L (wo, do) are the losses
for the case where t he cal' has not been stolen
during the year and you paid the premium. Here
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L (000' do) ~ r o, i.e. the value of the premium.
Similarly, L (00 0 , d1) ~ 0, since the car has not
been stolen and you paid nothing; L (WI' do)
is the situation where you insured your car, it
was stolen and hence yon will be returned the
car's price, your loss here being the premium
alone: L (WI' do) -== roe

Lastly, L (1)1' d t ) is the situation where the
uninsured cal' was stolen, so that your ·loss is the
car's price: L (WI' d t ) == r i .

The risk can be estimated by averaging losses
in all the situations possible. The most natural
measure of the average loss is, of course, its
mathematical expectation for the decision d, i.e.

p (d) == ML (00, d),

where M is the sign of mathematical expectation.
The quantity M is called the risk of deciding d.

We will now proceed to calculate it for both cases
possible.

If you make the decision do, i.e, insure the car,
then

p (do) L (00 0 , do) p + L (WI' do) q
~ rop + roq = r o (p + q) = roe

Thus, if you insured your car, whatever the out­
come, your risk is just the value of the premium.

If you chose dt , then

r (dl) L (00 0, dt ) P + L (WI' dt ) q ~ riq.

This il lustra tes the meaning of the concepts
"large risk" and "small risk": if at do the risk
is much less than at d, (i.e. in our case, if r o <t::
« r1q), then yon should not take dt-the chances
of heavy losses are too high. Should the relation-

5*
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ship between the risks be the opposite, it would
make sense to take risks-to do without the
insurance and rely on chance.

Let us now make a rude calculation. Suppose,
as is often the case, your .premium is a preset
percentage of the property to be insured. Let "»
be 1.5 per cent of rio l"'hen instead of p (do) ~
~ EJ (d.), or in our case '0« r». we have To,
using the relationship "» == 1.5·10-2r.,

1.5·10-2r1 ~ r1q

or

1.5.10-2 ~ q.

So if the above relationship holds, then the
probability of stealing is larger than 0.015, and
you should better insure your car. If, however,
0.015 > q, then you should not insure your car,
since on the average you would suffer a loss.

The procedure just described does not include,
of course, the moral aspect. Having your car
stolen is bound to give you a stress, whose im­
plications are now dependent on your individual
capability to cope with stress situations: you
may just grieve a white or get a myocardial
infarction. For such additional factors to be
taken into account we will need additional, more
stringent requirements for the acceptable pro­
bability of stealing.

We have only considered the insurance against
stealing. But insurance policy normally provides
compensation at damages. This complicates the
problem, al though the reasoning here follows
the same lines: we will have to take into account
a wide variety of possible outcomes of accidents
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with different degree of damage considering
not only the repair costs but. also possible injuries,
even the lethal outcome.

An experienced or shrewd motorist knows the
frequency (or probability) of these accidents.
These probabilities are known as a priori pro­
babilities: they are known, or rather assumed,
before the observation. A knowledge of a priori
probabilities makes it possible to work out the
expectation, or the average risk, i.e. to average
the risk over the a priori probabilities.

The average risk for the motorist to meet with
a disaster, i.e. to have his car stolen or crashed,
will thus be

p gP. + (1 + g) P2'

where PI and P2 are the risk of stealing and acci­
dent, respectively, If and 1 - g are a priori
probabilities of stealing and accident given that
one or the other, unfortunately, occurred (hence
the sum is unity).

The risk averaged over a priori probabilities,
and hence the decision made that provides the
minimum risk, is termed Bayes's risk.

The Bayes approach is convenient, since it
assigns to each decision a number, so simplifying
the search for the optimum decision. The approach
is therefore widely used in decision theory. But
it is not without its weaknesses: it is based on
a knowledge of a priori probabilities. There are
situations where a priori probabilities can be
thought of as known, as in quality control of
mass-produced articles or in some of the problems
of diagnosis in medicine. But unfortunately there
are many situations where a priori probabilities
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are not only unknown, but even senseless. So
in the radar problem it would make no sense
to speak about an a priori probability for a hostile
aircraft to be detected in the region. Accordingly,
in cases the a priori probabilities are unknown
or their specification is extremely difficult the
Bayes approach must be rejected and other
methods, such as likelihood ratio of Neyman­
Pearson, used.

The Picky Bride Strategy
Any girl is looking for the Prince among her
admirers, and thinks twice before going to the
City Hall with the chosen one for the wedding
license. The task is not all that easy, otherwise
we would not witness the divorce binge these days
on the initiative of young women.

Nay, I do not want to discuss the various
aspects of the complicated and excit.ingproblern,
but I will only try to consider one of its mathe­
matical models.

Let our beauty have n grooms, encountered
in an arbitrary order. To be sure, it is next to
impossible to quantify the virtues of a groom,
especially for a girl, for whom often the main
characteristics are such human values as love,
elegance, virility, etc., that are not amenable to
formalization. However picky and choosy, the
girl may eventually make her decision.

We will consider the following groom selection
procedure: the bride meets her grooms in succes­
sion and after this (the period of acquaintance
is immaterial) she C<lD either turn him down Qr
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call him hCI' chosen one. Three important con­
ditions are assumed to be met: first, the grooms
turn up in succession (no two appear simultane­
ously); second, she does not come back to the
groom she has turned down; third, the number
of grooms is preset.

These conditions may well appear unreal to
you: in everyday life a girl can sometimes return
to the rejected suitor or date simultaneously
with several boys. Before we set out to work the
problem in mathematical terms, consider another
possible problem.

In a machine-building factory the head of the
first shop was offered the privilege of selecting
five workers among 30 young fitters fresh from
the vocational school. But as he rejects a boy
he never gets him again because the personnel
department immediately sends him to other
shops. The manager is critically interested in
having the best hands. What strategy is to be
followed? The young fitters come to the shop
one by one, and after an interview, acquaintance
with the records and a test job the manager has
either to accept or to turn down the candidate.
OUf mathematical model also assumes that the
manager not only knows the total number of
the applicants (in our case 30) but he can choose
the better one among any two.

Put another way, the main feature of the pro­
blem at hand is the ability to order objects
according to their quality, or to use the language
of decision theory, according to preference among
the objects already considered.

The problem of choosing several workers (m)
among the available group (n) is a generalization
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of the previous one, where only one, the best,
is selected, i.e. where m == 1.

Let us now formalize the problem statement
for m == 1, and n objects ordered by quality.
The quality characteristic can be represented by
a number or point (a) on a real axis: the higher
the quality, the larger the number or the more
to the right lies the point.

Objects are considered in a perfectly random
order, so that the coordinate at of the object that
appears first may with equal probability be any
of the n points available. Similarly, a second
object with coordinate at may with equal pro­
bability be any of the remaining n - 1 points.
Sequential observations will thus yield a set
of coordinates ail' ai .. , a. , each of their.. In
possible n! permutations being equiprobable.

Points (or objects) occur sequentially, but our
task here is to stop once a point with the largest
possible coordinate turns up, thus selecting the
object with this coordinate and making no more
observa tions.

But in reality we do not know with complete
certainty that the object at hand has the largest
coordinate, since we can only compare it with
those observed earlier, not all of them, and so
the only way to be dead sure that we are right
is to meet the best object at the last step. The
situation can, of course, be tackled by the theory
of probability. It will therefore be a good idea
to state the problem in this way: find a path
leading to the right decision with the highest
pro ba bi1it Y.

What strategies are available here? We can
stop at the very first step, i.e. select a point with



The Picky Bride Strategy 73

coordinate at. For the picky bride this implies
selecting the first groom who turns up. Using
this strategy, she can at once put on the wedding
ring, but the probability of her having the best
candidate will only be tin. If the claimants are
legion, i.e. n is large, in that case the probability
of getting the best is qui te low.

It would seem that with any strategy the pro­
bability of choosing the best groom or, in the
more formal statement, of a, being the largest
coordinate, will falloff indefinitely with increas­
ing n. This, however, is not the case.

Let n be even. We will follow the strategy:
skip the first n/2 points and then choose the first
point with coordinate larger than that of any
earlier point. Calculations show that the pro­
bability of hitting upon the largest coordinate
in this strategy will be more than 0.25 whatever
the value of n.

We have thus a strategy leading to success
with an appreciable probability. Since n is
fixed, there exists an optimal strategy providing
success with the highest probability possible,
which consists in the following: a certain number s
of objects are skipped, the first object better
than any of the previous is chosen. We can find s
from the double inequality

i 1 . 1 1 1
s+1+s+2+ Tn-1~1<-;-+s+1

1
+ +n-1·
The probability of having the best object will
thus be

s ( 1 1 1 )
Pn=- ~+ +1+···+ -1 ·n s s n.
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For example, our beauty has to choose among
10 grooms. From the last expression we can
readily have for n == 10: s === 3 and hence the
optimum strategy for the picky bride will be
to ignore the first three grooms and then select
the first who will be better than any of the previ­
ous claimants. The probability of the best selec­
tion here will be PIO ~ 0.4.

If n is very large (n ~ 00), this strategy gives

1
P«~ - ~ 0.37,

e

where e is the base of natural logarithms.

Quality Management
Many think of James Watt (1736-1819) as the
founder of automatic control. He developed the
centrifugal governor for the steam engine. The
prototype steam engine took Watt much efforts.
An American, William Pies, writes: "The first
machine in the modern sense of the word was an
appliance for boring cylinders invented by John
Wilkinson in 1774. Wilkinson is not known so
widely as Watt, although it is his invention that
enabled Watt to construct a functioning steam
engine. For a decade Watt was making futile
attempts to manufacture a cylinder to an accu­
racy required. After one of his attempts he said
in despair that in his 18-in. cylinder 'in the worst
place the deviation from cylindricity is about
3/8 in.' However, as early as 1776 Watt's assis­
tant Mathew Bolton wrote; 'Mr Wilkinson bored
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for us several cylinders almost without error: for
a 50-in. cylinder we then installed in Tipton
deviations were never larger than the thickness
of an old shilling. '"

Now I cannot estimate exactly the percentage
error-I do not know the thickness of a shilling
that had already been old late in the 18th century,
but indications are that the accuracy had im­
proved several times. I n consequence, Wil­
kinson's cylinder boring machine made Watt's
steam engine commercially viable, and so the
machine was direct ancestor of modern precision
metal-cutting machine tools.

In my opinion a major advance in the develop­
ment of industry was the advent of interchange­
able components. It would hardly seem reason­
able nowadays to produce each detail as a unique
piece and then adjust them to one another. But
when in 1789 Ally Witney organized production
of muskets on order of the American government
based on his idea of assembling muskets from
interchangeable details most of the experts of
the time were suspicious and dismissed the idea
as being of no practical value.

Our today's industry turns out millions of high-
.accuracy interchangeable components, so not
only doing away with the need for expensive
manual labour but also achieving the standards
of accuracy far beyond human powers. And still
we are not always satisfied with the quality of
production. Here we will deal not with acceptance
control but with the issues of quality manage­
ment during the manufacture stage. This manage­
ment is based on the routine in-process check.
To be more specific, we will discuss an automatic
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machine producing, say, bolts, where the para­
meter to be controlled is the bolt length.

The control consists in measuring the length
of sampled bolts and comparing the measurement­
results with a preset value. Sure, the measure­
ment results do not always agree with the refer­
ence, exhibiting slight deviations from the average
due to misalignments in the machine, power
supply fluctuations, inhomogeneities of the mate­
rial, and so on. These deviations are a typical
example of a random variable with a continuous
probability distribution Po (x).

But in case of some malfunction in the machine
there occurs either a noticeable deviation of the
average value of the controlled parameter from
the reference, or a noticeable increase in spread,
or both. In other words, the probability distri­
bution of bolt length changes. Denote the pro­
bability density of the new distribution by PI (x).

We thus have two hypotheses: Ho-the machine
is functioning normally, and Hl-a malfunction,
the null hypothesis having the probability den­
sity Po (x) and the alternative hypothesis PI (x).

A malfunction results in rejection, and so the
task of quality management here is to determine
the moment, as quickly as possible, when the
malfunction has started, then to stop the machine
and to remove the problem.

As _[n the case of a picky bride, we should
optim8e stopping the machine. We can also
note some difference in the problem statement,
however.

Reject-bad bolts-is loss, an entity readily
expressible in monetary terms. Adjustments of
the machine mean downtime, i.e. again loss
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expressed in monetary terms, which enables us
to formulate an optimization problem: to stop
the machine so that the loss due to downtime
would be minimal. In that case the errors of
the first and second kind are respectively the
production of some reject due to miscalculated
stop, and false alarm, i.e. shutdown when the
machine works normally. Losses due to each
error and average losses can be readily expressed
in monetary terms.

At the same time, as we have already discussed
in the previous section, search for the best
groom, or a new worker is not that easily amen­
able to quantification of the losses due to mis­
calculated stop (i.e. erroneous selection of the
stop point). Therefore, in the previous section
we did not pose the problem of optimization
of the last observation point providing the mini­
mum risk. Instead, we confined ourselves to the
strategy ensuring selection of the best object
with the highest probability.

The last observation point both in the quality
management and bride problems can be easily
found from the Bayes relation.

The Mathematical Model
A children's drawing showing a house with
a chimney and smoke, the round sun with rays,
fur-trees and ox-eye daisies is a model of the
surrounding world, illustrating the main ele­
ments of the perception of children.

An artist, realist or impressionist, will paint
the same scene differently. Depending on his
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philosophy the painter looks for certain aspects
in the scene around him that he can render.

But even all orthodox naturalist is not able
completely, with absolute accuracy, to reproduce
nature, even if he were in a position to reproduce
everything he sees, because he would not be able
to render motion, smells, sounds, all the variety
of life.

A model is normally simpler than the object
it models. By the way, a girl sitting for a stature
is also called a model. In that case, a statue of
the girl will hardly be more complex, speaking
in human terms, than the girl herself, but this
terminology seems to reflect the relationship of
the sculptor's plot, generally rather deep, with
the appearance of the model who is here only
a material helping to incarnate his plot.

A drawing of a machine or a schematic dia­
gram of a radio receiver are models too, and it is
not surprising that in radio design they pass
successively from block diagram through sche­
matic diagram to wiring diagram. All these
model the future set not only in varying detail,
but they also reflect its different aspects. So
the block diagram describes operations performed
by the component blocks of this piece of radio
equipment, the wiring diagram indicates the
connections of the components-resistors, capac­
itors, transistors, etc.-to perform their specific
operations. But after the radio set has been manu­
factured, it is debugged: they reduce capacitance
here or increase resistance there. The wiring
diagram is a model, not the set in itself.

In recent years the notion of model has been
used widely in a variety of scientific disciplines,
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in engineering, arts and even in fiction. It seems
to be impossible to describe, and even more so
to define this concept, which would formally
correspond to all its applications and at the same
time would be understandable to the members
of so different professions. But for us in what
follows it is not as necessary.

We will here make use of a narrower concept
of mathematical model-description of an object
studied using a formal language, i.e. numbers,
equations (finite, differential, integral, integro­
differential, operator equations), inequalities, or
logical relations.

Population growth in a town is proportional
to the number of inhabitants. A mathematical
model here is a linear equation and it is only
valid in a fairly rough approximation. If we
take into account the old people, children, un­
married women, the model will become much
more complex. And if we include such factors as
education, employment of women, income levels,
etc., the model will become so complex that its
construction and investigation will present enor­
mous difficulties. But even all those factors in­
cluded, the model may turn out to be still a far
cry from reality, since it ignores a sea of random
factors, such as population migration, marriage
and divorce statistics, and so on and so forth.

Let us now consider the process of petrol manu­
facture from crude oil. In primary fractionation,
petrol is obtained by vaporization: oil is heated
to a certain temperature and lighter petrol frac­
tions are vaporized to be removed at the top of
the fractionating column. If the temperature
at the bottom of the column and that of the crude



Yes, No or Maybe

oil at the input are taken to be constant, then
the simple mathematical model relating the
amount of petrol derived to the amount of crude
oil fed will be a linear equation: if \ve increase
the input of crude oil 1.2 times, the petrol output
will increase 1.2 times as well. Such is the simpIe
and very crude model. I f then we include the
relationship between the crude oil input and the
temperature and pressure in the column, the
model becomes yet more complex. If we note
that the column cannot accept just any more
inputs and the temperature cannot be increased
indefinitely (technological limitations) the math­
ematical description becomes more involved,
but this is not the whole story: a real fractionation
unit has about 200 measured, automatically con­
trolled parameters, some of them with cornpli­
cated feedbacks. Even if we write all such con­
straints and dependences, the resultant model
will be of no value for control even with more
advanced computer technology than we have
now. In addition, there are some poorly control­
lable factors: random variations of qualitative
characteristics of the crude oil at the input, ran­
dom fluctuations of temperature, pressure, elec­
tric power supply, and so forth. Perhaps the
modeller should give up the problem as a bad
job?

The picture will be more impressive if we con­
sider an attempt to produce a mathematical
model of a living thing. Is it possible to model,
say, the functioning of the brain of the dog or
man, such that would reflect not only the activi­
ties of several billions of nerve cells, but also
the interplay between them? IIardly so. On the



The Mathematical I\lodcl 81

other hand, if we do not cover the variety of
processes in the brain and construct a model
involving only a small fraction of variables and
relations, such a model will hardly satisfy us,
since it will not give an adequate description of
the situation.

Thus the term "mathematical model" is here
viewed in a wide context. In his book The Pro­
babilistic Model of Language V. V. Nalimov
writes:

"Now we frequently read something different
into the term 'mathematical modelling', taking
it to mean some simplifications and approximate
mathematical descriptions of a complex system.
The word 'model' is here set off against a law
of nature that is assumed to describe some phe­
nornenon in some 'absolute' way. One and the
same complex system may be described by differ­
ent models, each of which reflecting only some
aspect of the system at hand. This is, if you wish,
a glance at a complex system in some definite,
and definitely narrow aspect. In that case, under­
standably, there is no discrimination problem­
a variety of models can exist concurrently.
Viewed in this light, a model behaves in a sense
just like the system it describes, and in another
sense otherwise, because it is not identical with
the system. Using linguistic terminology, we may
say that the mathematical model is sirnply a
metaphor."

What has metaphoric language to do with
complex systems, such as an oil refinery or the
brain? Why construct models then jf it involves
enormous difficulties of scientific, managerial
and psychological character?

6-01621
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This is by no means a rhetorical question and
we will look at it in more detail. Mathematical
models are not constructed just for fun or to
expand the list of scientific publications. At the
same time modelling is a major (maybe the only)
way of questing for knowledge, only not arbit­
rary modelling but such that provides an'
insight into some interesting and useful facets
of a phenomenon under investigation, maybe
ignoring some aspects of minor importance. If
viewed from another angle these latter may turn
out to be more important, and then another model
will be necessary.

All the prejudices from superstitions of savages
to fortune-telling from tea-leaves are based on
misunderstanding of cause-effect relations and
wrongly constructed models on which the pre­
dictions are founded.

At each step we construct some (nonrnathe­
matical) models: take along an umbrella or put
on a light dress after having glanced at the heav­
ens, step aside when we meet a lone dog, and
so on.

When in trouble we also construct models:
a girl sees her groom conversing with some
blonde, she imagines faithlessness (another model)
and in despair may either think of committing
suicide (a model) or revenge (a model) depending
on her character. I n a spli t second she recognizes
the blonde (the wife of her grooms boss) and her
despair is gone.

So despair and hope are inherent in a model
of a situation, which is necessary for a man to
predict the outcome of events, and hence to
select appropriate behaviour.
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But back to mathematical modelling. Compu­
tations of planetary orbits-the modelling of their
Illation-is necessary to predit their behaviour:
their rise and set, eclipses, and so OD. Mathe­
matical modelling gained acceptance with the
advent of computers, which allowed one to
tackle even complex systems-also called diffuse
or poorly organized. In well-organized systems
processes or phenomena of one nature can be
singled out, which are dependent on a small
number of variables, Le. systems with finlte,
and small, numbers of degrees of freedom. At
the same time, in complex systems it is not
possible to distinguish between the effects of
variables of various nature. For example, in the
primary processing of crude oil we cannot separate
the effects of material flows, temperatures, pres­
sures in the various sections of a huge installation
consisting of several 40-metre fractionating col­
umns containii.g dozens of trays, banks of heat­
exchangers and other sophisticated hardware.

This notwithstanding, we can construct mathe­
matical models of such processes or objects to
predict their behaviour and to control them. It
appears that it is by no means necessary to include
into the model all the variables-sometimes, if
a problem is adequately stated, only a small
IIlIIll ber wi ll be enough.

A matherna tical distri bution as such is a mathe­
mat.ical model too. Take for example one of the
most remarkable-the Bernoulli or binomial
distribution: if the outcome of independent
experiments may be treated either as success
or failure, the probability of success being COIl­

stant and equal to p, then the probability of m
6*
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successes for trials will be

r, (m)==:cr;:p m (1- p )n-m,

where em n(n-1) ... (n-m+1) is the
n nl

number of combinations of m elements taken n
at a time.

The Bernoulli d istribu tion is a good ma the­
matical model of such events as gas density
fluctuations, calls at a telephone exchange during
a period of time, shot effect in a vacuum, current
fluctuations in a valve, intensity fluctuations
in oscillation composition, and unidimensional
random walk, the simplest form of the Brownian
motion. To be sure, the problem of coin tossing,
with which traditional texts on probability
normally begin, is also covered by the model.
What is perhaps more important here is that
this distribution, subject to some constrain ts,
yields the Poisson distribution, and, subject
to the others, yields the normal distribution, i. e.
two models that are very common in applications.
I think you are acquainted with these distribu­
tions, which are to be found in any probability
course. Recall that the normal distribution is a
mathematical model of experimental errors,
height and weight of a n i mn ls of one species and
sex, etc. whereas the Poisson distribution is
a model of radioactive decay, number of fires
in a town , meteorite falls, rai lway disasters,
and many other similar processes, often called
"rare events"

In the literature devoted to applications of
probability the role and versatility of these dis­
tributions seems to be overestimated. Books
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addressed to practical engineers make one believe
that no other distributions are necessary in nature
and technology, since these well-studied distri­
butions and their derivations, such as the log­
normal distribution, seem to take care of all
the situations. This, however, is not so, and in
the ensuring sections I am going to provide
examples illustrating the limitations of the
above distributions as models for real problems.

Birth Statistics

Girls sometimes complain that there are not many
boys at dances and discotheques. This cannot be
generally attributed to the fact that there are
less males than females. Maybe boys prefer foot­
ball, wind-surfing or some other pas-times. Soviet
statistics, for example, indicated that in 1982
up to 24 years of age there were 10.5 males per
10 females, i.e. 105 boys for every 100 females,
This is not always the case. Wars take the largest
toll of male population, and so in post-war years
the sex ratio changes dramatically, thus giving
rise to situations where there may be only 50 males
for every 100 females.

Now we would like to discuss biological laws
governing the sex ratio in the animal world and
the mechanisms involved.

By definition, the sex ratio in a population
is the number of males for every 100 females.
Primary sex ratio obtains at conception, second­
ary sex ratio at birth, and tertiary sex ratio at
sexual m-aturity. Various species of animals show
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appreciable fluctuations of secondary sex ratio
in various periods, which forms a subject of pro­
longed discussion in the Ii terature.

Let us take a closer look at the secondary sex
ratio in man, i.e. the number of new-born boys
for 100 new-born girls. Normally this number
is 105 to 106. The probability for a boy to be
born is thus

105/(100 + 105) = 0.512,

i.e. slightly more than a half.
But fairly long periods of time see noticeable

deviations from this pattern. These deviations
and their causes are treated statistically in a
large body of literature. So it was established
statistically that during and after long wars in
the countries taking part in the war the secondary
sex ratio increases. For example, in Germany
during World War I it reached 108.5, during
World War II in Great Britain and France it
increased 1.5-2 per cent. Figure 5 illustrates the
growth of it for Germany.

Many hypotheses have been put forward to
account for this. I t was found that the secondary
sex ratio -increases for younger fathers, and during
a war newlyweds are generally younger and some
authors believe that this explains the situation.
Others attribute this to the larger number of
mothers having their first babies, for which the
percentage of boys is higher. We will not here
discuss all the hypotheses suggested, but it is
only worth mentioning that neither gives a com­
plete explanation of the results obtained. And
if we want to find some clues, We will have to
work out a model of the mechanism involved,
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such that would be able to account for the way
in which nature controls the reproduction as it
suits it.

Nevertheless, there is no saying a 'priori that
a woman will gi ve birth to a boy, say, and there­
fore the probabilistic model here is the above­
mentioned binomial distribution for the pro­
bability of having a boy other than 0.5. In a first

107

106

Fig. 5

approximation such model agrees with the obser­
vations, but a more rigorous test reveals its
inadequacies.

If the binomial distribution were an adequate
model of birth-rate in families, we could then
predict the frequencies of any number and sex
ratio of children. Thorough examination indi­
cates that families of monosexual (only boys or
only girls) or nearly monosexual (predomination
of boys or girls) children are more frequent than
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could be expected, assuming that the sex ratio
is purely random and governed by binomial
distribution.

Table 3 provides evidence, which appears to
be fairly convincing. Figure 6 compares observed
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and expected frequencies. The comparison shows
that the binomial distribution here is not a good
model. This can also be shown by using, for
example, standard statistical criteria.

An attempt to produce an adequate model was
made in 1965 by the Soviet worker V Geodakyan.
He assumed that there exists some feedback
(negative feedback in the language of wave
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theory and cybernetics), which controls the
secondary sex ratio should there be some devi­
ations in the tertiary sex ratio, i.e, one at sexual

Table 3

Sex-ratio Frequencies in Families with 12 Children
\5 million births)

Observed
Expected

Observed frequency Diff<;rl'fiCI'IBoys/girls total t requency (binomial law) sign
per million per million

12/0 7 0.0007 0.0003 -~
11/1 60 0.0056 0.0039 +10/2 298 0.0279 0.0203 +
9/3 799 0.0747 0.0638 +
8/4 1398 0.1308 0.1353 -
7/5 2033 0.1902 0.2041
6/6 2360 0.2208 0.2244
5/7 1821 0.1703 0.1813
4/8 1198 0.1121 0.1068 I

T
3/9 521 0.0487 0.0448 +
2/10 160 0.0150 0.0127 +
1/11 29 0.0027 0.0022 +
0/12 6 0.0006 0.0002 +

maturity. In a closed system the controlling
agent is some hormonal factors. It will be recalled
that the mechanism is statistical, i.e, only
affecting the probability of having a boy. At first
sight, Geodakyan's model appears to be fairly
reasonable, but it, of course, needs careful expe­
rimental check.
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(1)

Caution: the Problem Reduced
to a Linear One
The problem has reduced to a linear problem.
Mathematically, this implies that all the major
difficulties have been left behind, it only remains
to make use of a thoroughly developed mathe­
matical tool and the problem at hand has been
tackled both from the theoretical and computa­
tional points of view.

There is a "but" here. If the problem is prac­
tical in nature and a linear model describes some
real object, we are still not safeguarded against
some surprises.

To begin with, consider a simple system of two
algebraic equations in two unknowns, contained
in any high-school algebra course:

alix t + a12x2 == bt , }

a2 t X t + a22x2 === b2 •

Its solution is

(2)

The algebraic theory of systems of linear equa­
tion'S assumes that coefficients aij and hi are known
accurately, an assumption as acceptable for
mathematics as unacceptable for applications.
Really, when (1) is a mathematical model of
some physical object, the coefficients have some
specific sense. They are determined by measure­
ment or computation and frequently rather
approximately.
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I-Iow do uncertainties of the coefficients affect
the solution of system (1)? Computer people have
long observed that small deviations of the coef­
ficients of (1) can sometimes have disastrous
effects. A classical example is the system

Xi + 10x2 == 11, }
10x t + 101x2 === 111.

Its solution is x t 1, X 2
of the system

x f -+- 10x2 =-= 11. 1, }

10x t +101x2 === 111

is Xl == 11. 1, x2 :.::: O.
Such systems are referred to as ill-conditioned,

and the first recommendations of mathematicians
were as follows: try to find it in due time and
avoid it in an application. But it turned out
that physical and technical problems frequently
come down to an ill-conditioned system, and
if we overlook the fact we may appear in the
position of that colonel who was the only one
to march in step, while the entire regiment was
out of step. This revived interest in ill-condi­
tioned systems, and they were brought under the
urnbrell a of so-called incorrect problems. *

• The concept of correctness for boundary problem
formulation for differential equa tions was introduced
by the French mathematician Hadamard early in the 1930s
and he furnished an example of a situation where a small
variation of initial data resulted in an arbitrarily large
changes in the solution. Later on the importance of the
concept for physical systems was understood, one of the
major workers in the field being the Soviet mathemati­
cian Petrovsky.
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Now the theory of linear algebraic equations
must begin with a definition of what is to be
understood under the solution to a system of
equations. Next, in the usual fashion, we have
to examine the system for existence and unique­
ness of the solution and find ways of constructing
it, and surely see to it that the fresh solution
does not respond that violently to minute changes
in the initial data, in other words is stable.

Now we would like to discuss systems of linear
algebraic equations (1) where aij and b, are ran­
dom variables.

Before we proceed to examine such systems,
it is worth noting the general and common char­
acter of the model we are going to discuss.
Clearly, most problems of mathematical model­
ling involve examination and solution of finite,
differential, integral and I110re complex equa­
tions. I n real problems the parameters or coeffic­
ients in equations are found experimentally or
preset. To work out the problem as a rule needs
discretization of respective equations. e.g. tran­
sition from differential to difference equations.
The discretization is necessary so that digital
computers might be used. In the simplest, also
commonest, case after the equations have been
discretized and simplified the resul t will be
a system of linear algebraic equations.

Recall that we treat the coefficients as random
variables. Let us now show by several examples
that this is quite reasonable a decision in many
applications.

Consider the series oscillatory circuit consisting
essentially of a resistor R, capacitor C and in­
ductor L (Fig. 7), If the input voltage (real)
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is U, then the components II and /2 of the com­
plex instantaneous current I == I I + jI2 are
known to be found from the system

RIt-(ffiL-w1C)I2=U, }
(3)

( ffiL - w~ ) It + RI2 ~ O.

Now we can, of course, substitute the coef­
ficients of this system in to (2) and thus obtain

C R

u

Fig. 7

the solutions for 11 and 12• But where do R, L
and C come from?

I f this is a sampie of a batch, then the exac t
values of R, Land C are unknown. What is
more, no experiment will give these values abso­
lutely accurately, since, as it was mentioned
above, any measurements are always conducted
with a limited accuracy, a principal premise of
the theory of mensuremen t. Uncertainties of R,
Land C lead to uncertainties in determining I,
and solutions to (3) are thus approximate. As
is assurned in the theory of measurement, inaccur­
acies in measuremen ts are treated as random
variables, and hence solution I will be a random
variable too.
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(4)

A further example is taken from economic
planning. Suppose we need to coordinate the
output of three groups of factories including
their interrelations and relations with their
suppliers and customers. Denote the final prod­
ucts by YI' Y2 and Ya' and total outputs by Xl'

x 2 and x 3 • If alj is the rated consumption of
products of ith group of factories to produce one
tonne of products in jth group of factories, then
the total outputs and final products are related by

(i-at t ) X t - a12x2 - a t 3x3 :=: v.. }
- a12x t +(1 - a22) x 2 - aZ3x3 =-= Yz,
- a l 3x l - aZ3x2 -t (1-a 33)x3 = Y3'

where i, j == 1, 2, 3.
The rated consumptions aij are averaged quan­

tities here and they cannot be specified accu­
rately.

The generalization of the problem to n groups
of factories is qui te obvious: instead of (4) we
will have a similar system of n equations.

We could multiply such examples no end. In
other economic, sociological, and even techno­
logical, problems that boil down to a system of
linear algebraic equations, coeffrcients aij at
times cannot be derived, and then they are spec­
ified by expert estimates. Being apparently
subjective, these est iruates cannot be viewed as
specified exactly.

Thus, if coefficients are obtained by experiment
or calculation, carried out with Iim it.et] accuracy,
they can reasonably he thought of as realizations
of some random variables. System (1) will t.hen
con Laiu six random variables uJt, a1 2 , a21 , a2 2 ,
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b., and b2 • The solution to the system is natur­
ally a random vector. To be more specific: the
solu tion to the system of n linear algebraic
equations with random coefficients is the random
vector x == (Xl' X 2' Xn) such that all the

random variablesl~~1 ailixli- - bio i = 1,

., n are equal-to zero ;lth probability 1.
Since the law of the joint distribution of the

coefficients in a given system is considered
known, then, formally speaking, we can derive
the n-d imenslonal law of the joint distribution
of the components of the solution-vector Xl' X 2 ,

., X n , and hence work out the distribution
for each of Xi. The calculations are extremely
tedious, however. For example, a linear system
of the tenth order contains 110 coefficients, and
to compute the distribution of each of the com­
ponents requires taking a 1iO-tuple integral. Any
volunteers? But the main thing here is that it
would be more difficult to use this form of solu­
tion. In fact, what a physicist would make of the
current in an oscillatory circuit specified by
a join t d istribu t ion of the real and imaginary
parts of the current? Fortunately, in engineering
applications the main role is played not by dis­
tribution itself, but by some numerical charac­
teristics: mean, variance, the most probable
value, spread, and so on. Note that such a situ­
ation is typical of many applications of proba­
bility and statistics.

In what follows we will characterize the ran­
dom solution-vector of an algebraic system with
random coefficients by its mathematical expecta-
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tion, i.e. by a vector obtained from a given ran­
dom vector by replacing all its components by
their respective expectations. I t would appear
that the problem became simpler, but now new
difficulties emerged, since the solution of a sys­
tem with random coefficients may have no expec­
tation at all. The following examples show that
such reservations are not ungrounded. Recall
Ohm's law

I == U (1IR), (5)

where I is the current, U is the voltage, and R
is the resistance. This relationship is a simple
linear algebraic equation, where 11R is a coef­
ficient.

Consider the mass production of radio sets.
In the same place in the circuit "identical" re­
sistors are installed with a rated resistance
1000 ohms. The voltage U is here fixed at 100 V,
say. If the resistor's value is exactly as rated,
then the current through the circuit will be
100/1000 = 0.1 A. As you know, however, resis­
tors, just like any products, are manufactured
wi th errors. Therefore, commercial resistors are
generally labelled, say, 1 kohm + 5 %. Since the
lime of Gauss experimental errors, as well as
manufacture errors, are assumed to be described
by the normal distribution. If R is a random
variable, then the current flowing through the
circui t wil l be a random variable as well.

What average current wil l be in the circuit?
The word "average" here is to be understood as
the average over the ensemble of manufactured
circuits. Since the random variable R is in the
denominator, this average (expectation of cur-
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rent) will not be equal to the value 0.1 A, which
is obtained by substituting the rated value into
the denominator, What is more, in the accepted
model the desired expectation simply does not
exist.

To explain, we will have to write an integral,
but, as it was said earlier, if you believe me and
do not want to bother yourself with computations,
just skip them.

For a normally distributed R we have

00 (R-Ro)2

MI:=:~ r _1 e-2(j2 dR, (6)
o y2n J R

-00

where Ro === MR, which in our example is equal
to 1000 ohms. But this simple integral diverges
due to a singularity of the first order at R == 0,
and there is no MI.

Returning to the system (1) and its solution
(2), we will consider the simple situation where
all === Y is a normal random variable with expec­
tation a and variance 0 2, the remaining aij and b,
being some constants. The expectation Xl will
then be

Since the denominator of the first term of the
integrand vanishes at y === a12a211a22 (a first-order
zero), and the second term never vanishes, the
integral (7), similar to (6), is bound to diverge*.

• Assume that the numerator is nonzero, otherwise
we will have to consider MX2.
7-01621
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And so, in a situation where one of the coeffi­
cients is random and normally distributed, the
solution components have no expectation.

Now, clearly, if not only ali but also all the
coefficients are random and normal, then, gen­
erally speaking, the components have 'neither
expectation nor variance, because there are
always some combinations of coefficients avail­
able at which the denominator vanishes and the
integrals will diverge. In the above example of
the oscillatory circuit reducing to (3), manu­
factured resistors, inductors and capacitors always
show some spread in 11", [.I, and C, respectively.
According to the above-mentioned assumptions
of error theory, these errors must be described
by a normal distribution. The above reasoning
suggests that the solution has no expectation
and variance, i.e. the average current in the cir­
cuit is nonexistent, and its variance, and hence
power, are infiniteo No electrical engineer,
I think, will agree to it.

Random variables having no expectation and
variance, as a rule, are of no interest in real prob­
lems, and therefore in a mathematical model we
should beforehand exclude situations where the
solution components have no expectation and
variance,

I first got exposed to such issues in connection
with some problems in geophysics. Strange as it
was, it turned out that when the coefficients were
described by some most common stochastic mo­
dels, their simplest numerical characteristics,
such as expectation and variance, were generally
nonexistent.

Quantities with which we dealt were, however,
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quite real: velocities of propagation of elastic
waves in the Earth's crust, depth of horizons,
and so on. Therefore, the absence of expectation
is, obviously, at variance with common sense
and practice. The only conclusion is: all the
worse for the model, since it is responsible for
such discrepancies, the model is inadequate, it
should be changed, replaced by another one. It
is, of course, useful, and even necessary, to try
and understand the reasons why the model does
not correspond to the real situation.

It turned out that the disagreement is due to
taking into account the wings of distributions.
In systems of linear equations with random coef­
ficients we abandoned distributions similar to
the normal or exponential ones, with wings
going to infinity, and turned to distributions
concentra ted in finite intervals, or, in the language
of mathematics, finite distributions. Examples of
finite distributions are the uniform distribution
and the so-called truncated normal distribution,
i.e. a normal distribution in which all the values
are discarded that lie beyond some interval,
or as they say, the wings of the distribution are
severed.

The formal consideration of such finite distri­
bution in general has no principal limitations,
if only of physiological character: everybody
believes that the normal distribution is versa­
tile. But any versatility, and here too, has its
boundaries. And if the normal, exponential or
any other distribution does not suit you because
of the wings, do not hesitate to sever the wings
and use a finite distribution as your mo­
del.

7·
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Solution: Formula or Number?
To be sure, you know the answer: it depends ...
A formula, if it is sufficiently simple and graphic,
makes it possible to see the qualitative picture:
the variation of the solution as a function of the
parameters, the behaviour of the solution at
very large or very small values of the variables,
and so OD. This information is at times necessary
not only for the theoretician, but also for. the
practical engineer, experimenter, economist. But
sooner or later the solution must be expressed in
numbers. And then, if the formal solution of the
problem is complicated or unavailable, a problem
emerges of calculability of the solution: to de­
vise a method of calculating approximate solu­
tions or a calculational technique that will enable
ever increasing accuracy to be achieved. This is
the situation that emerges in the problem discus­
sed in the previous section. Computation of the
expectation and variance boils down to multiple
integrals. But to write down expressions and to
obtain numerical val ues are different problems.
Numerical quadratures of multiple integrals at
times give rise to enormous computational dif­
ficulties.

The commonest methods of deriving the nume­
rical characteristics of components of the solution
of a system are either statistical modelling (Mon­
te-Carlo method) or the expansion of the solu­
tion into the Taylor series in the neighbourhood
of the rnathematical expectation of the coeffi­
cients of the system.

In the Monte-Carlo method we should, accord­
ing to Cramer's rule, write the formal solution
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of the system, i.e. equations (2) of the previous
section, and then, in accordance with distribu­
tions of the coefficients, select from the table of
random numbers their values, compute the de­
terminants that enter Cramer's formulas, so that
to obtain realizations of the components of the
solution vector. Next, after having accumulated
enough realizations, i.e. a sample of a sufficient
size, we should take the empirical average, Le.
the average of arithmetic sample.

If the order of the system is not too low, how­
ever, then the Monte-Carlo method involves te­
dious computations and the approximations ob­
tained are relatively inaccurate.

The second method harbours a couple of sunk­
en reefs. Return to the oscillatory circuit of the
previous section, i.e, to system (3) there.

To be more specific, suppose that R, Land U
are constant quantities that take on the values
R 1 ohm, L == 10-3 Hz, U == 5 V, whereas C
is a random variable uniformly distributed over
the interval y == (10-9-0.01 X 10-9 , 10-9 +0.01 X
X 10-9) , i.e. in the range 10-9 F.± 1 %. The
modulus of the complex current I I I will then be
a definite function of C, and so we will be able
to find it readily. To determine the expectation
of the current modulus at the resonance frequency
(J) == 1IVL·MC we will have to take the integral
of the current modulus over the interval l'
(by dividing the integral by the interval length),
and we will obtain MI == 1.5 A.

If, as recommended in practical texts, we ex­
pand I = I (C) into the Taylor series, keeping
the first two terms, and now compute the expec­
tation, we will get 5 A, Thus a 1 per cent error
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in capacitance yields an uncertainty in MI that
is as high as 330 per cent.

Note that the use of the first two terms of the
Taylor expansion to find the expectation of the
solution is equivalent to replacing the coef­
ficients of the system from the previous section
by their expectations, so that the new system of
equations is sol ved using deterministic coef­
ficients. This path in general seems to be attrac­
tive: it appears that by replacing the coefficients
by their mathematical expectations and solving
the resultant system of algebraic equations, we
can obtain a satisfactory estimate of the expec­
tation of the solution.

Consider a further example illustrating the
extreme roughness, and hence unsuitability, of
such an approach without preliminary estimation
of the possible error.

We would like to find the extremum of the
parabola

y == ax2 - 2bx, (.)

where a and b are independent random variables,
distributed uniformly within the intervals (10 -3,

1) and (5, 7), respectively.
The stationary point X o and extremum Yo

are here random variables, too.

b
Xo==a'

If now we take into account the distribution of
these random variables, we obtain for their ex­
pectations

Mxo == 87.3, Myo == -251,1.
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If in (*) and (**) we replace a and b by their ex­
pectations Ma == (1 - 10-3)/2, Mb == 0 and cal-

culate the coordinate ;0 of the stationary point X o
and the extremum Yo, then

;0 ~ 12, Yo= -72.

So the error turns out to be unacceptably large,
and it really may be arbitrarily large with a
"bad" distribution of a. For example, if a is dis­
tributed uniformly within the interval (-0.5, 1),

then Ma :=:: 0.25 and estimates ~o and Yo assume
finite values, whereas in reality there are no ex-

1

pectations Mxo• Myo. because \ da diverges.
... a

-0.5
The above examples and other problems of

practical interest show that these ways of finding
the expectation of a system of linear algebraic
equations with random coefficients may give
very rough estimates and mistakes.

This should be especially taken into account,
when the coefficients are interdependent. Here is
a paradoxical example. Let the matrix of the
coefficients of system (1) of the previous section
be

(

COS asin a)
A=::;

-sina cos c '

where a, is a random variable uniformly distri­
buted over the interval [0, 2nJ. At any realization
of Ct we have det A :=:: 1, and accordingly the
sol ution of (1) where the coefficients are replaced
by the elements of matrix A exists for any vector
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b, and MXl = MX2 == O. At the same time all of
the elements of A have zero expectations, and
so, if we substitute expectations for the coef­
ficients of the system in question, then the re­
sultant equations will have no solution at all,
as well as the expectation.

Note that this example is by no means arti­
ficial, because A is the matrix of the turn of
an orthogonal frame of reference through an
angle a.

It can be expected that the expectation of the
system's solution will be found to higher accu­
racy, if we have more terms in the Taylor ex­
pansion. This is the case in practice. The finding
of the next terms of the expansion is, however,
fraught with enormous computational difficul­
ties, since the number of terms grows very fast
(remember that we here deal with a series for func­
tions in many unknowns), and their form varies
from problem to problem. Besides, simply to
increase the number of terms in the expansion
without taking care of the accuracy of computa­
tions of the expectation may lead to an absur­
dity.

For example, if in seeking the expectation of
the current modulus in an oscillatory circuit we
keep three terms, not two as before, the result
obtained (MI = -83.3) will make no sense,
because the modulus of I, and hence its expecta­
tion, are positive.

At the same time the Taylor representation of
the solution of (1) has one very important fea­
ture. Unlike the solution in the Cramer formula,
which is a fractional rational function of many
variables, Le. coefficients, the truncated Taylor
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series is a polynomial in those variables. There­
fore, if the truncated power series represents the
solution sufficiently well, then the very compu­
tation of the expectation (i.e. taking the inte­
grals of an algebraic polynomial) is smooth sail­
ing. I t would make sense, therefore, to reject
not the representation of the solution by a power
series, but only the use of a Taylor series. We would
now like to require that the new series would,
first, converge sufficiently fast, and second, that
its terms would follow fairly simply, and if pos­
sible uniformly, from the coefficients of a given
system of equations; and third, that the accuracy
of the remaining term would be calculable. All
of these requirements can be met, if we use itera­
tion methods in seeking an approximate so­
lution.

I took the case of solving a system of linear
algebraic equations with random coefficients to
illustrate the critical manner in which the solu­
tion is conditioned by the model selected, in
particular in the above problem, by the distri­
bution ty\pe. If the probabilistic model of random
coefficients is taken to be a normal distribution,
or its equivalent, with wings going to infinity,
there will be no reasonable solution. If we "sever"
the wings and think of the models of the coef­
ficients as finite distributions, we will obtain
reasonable results. Therefore, before setting out
to solve the problem, we must pay attention to
the selection of the mathematical model.
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Identification of
Criminals - Bertillon System
The problem of identification of persons is a
very difficult one. One hundred years ago crimi­
nal police in many countries of Europe used to
compare photographs (full-face and profile) and
some descriptions, but just think of sifting tens
of thousands of pictures to select similar ones.
Therefore, the problem of identification of
criminals was a very burning issue.

In 1879, in the Paris police prefecture, appeared
a new clerk, Alphonse Bertillon. His task was
to fill in cards with descriptions of criminals.
The notes were fairly indefinite: tall, medium
height, or short, scarred face or not, or just "no
special features".

Bertillon was born into a family fond of natu­
ral sciences-his father was a respected physician,
statistician and vice-president of the Paris bureau
of vital statistics. He read Darwin, Pasteur, Dal­
ton, Gay-Lussac, and heard of Adolphe Quetelet ,
a Belgian rna thematician and statistician, who
is not only remembered for his mathematical
studies, but also for his proof that the human body
measurements are governed by certain laws.
Further I selectively quote from Thorwald's
book One Hundred Years of Criminalistics, which
is a fascinating work of science where detective
stories illustrate scientific advance of criminalists,
and therefore the book is a riveting reading.

"And so in June of 1879, when Bertillon, ex­
hausted with the Paris heat, was sitting and
filling in the three or four-thousandth card till
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he was blue in the face, he was suddenly hit by
an idea, which was born, as he later confessed,
by the awareness of absolute senselessness of
his work and at the same time by his childhood
memories. Why, he asked himself, are so time,
money and efforts wasted to identify criminals?
Why stick to old, crude and imperfect methods,
when natural sciences provided possibilities un­
failingly to distinguish one man from another
by the size of the body?

"Bertillon evoked surprise and derision of
other clerks, when at the end of July he set out
to compare photographs of prisoners. He com­
pared the shape of ears and noses. Bertillon's
request to allow him to measure the checked-in
prisoners raised uproaring laughter. But much
to general joy the permission was granted. With
gloomy and bitter zeal he had in several weeks
taken measurements of quite a number of pri­
soners. In measuring their heights, lengths and
volumes of a head, the length of hands, fingers,
and feet, he saw that sizes of individual parts
of the body of various persons may coincide, but
the sizes of four or five parts would never be the
same.

"The stuffy heat of August caused fits of mi­
graine and nasal bleedings, but Bertillon, however
useless and purposeless it would seem, was cap­
tured by the 'power of the idea' In mid-August
he wrote a report explaining how it was possible
to identify criminals without fail. He addressed
the report to the prefect of Paris police, but got
no answer.

"Bertillon continued his work. Each morning
before work he visited the prison La Sante, There
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he was also made fun of, although allowed to take
his measnrements. When on October 1 he was
promoted, he submitted to the prefect a second
report, in which, referring to the Quetelet law,
he noted that the sizes of bones of an adult re­
main unchanged throughout his or her life. lie
maintained that if the probability of a coinci­
dence of the heights of people is 4 1, the height
plus another measurement, for example, the length
of the body to the waist, reduce the probability
down to 16 1. And if 11 measurements are made
and fixed in the card of a criminal, then the esti­
mated probability of chancing upon another
criminal with the same statistics will be
4,191,304 1. And with fourteen measurements
the chance will reduce to 286,435,465 1. The set
of members that can be measured is very large:
in addition to the height of a man, measured can
be the length and width of his head, the length
of fingers, forearm, feet, and so on. He wrote:
'All the available identification techniques are
superficial, unreliable, imperfect and give rise
to mistakes.' But his technique makes one abso­
lutely confident and excludes mistakes. Further­
more, Bertillon worked out a system of registra­
tion of cards with measurement results, which
made it possible in a matter of minutes to estab­
lish whether or not the data on a criminal were
available in the file."

Thus Bertillon suggested to make use of a set
of anthropological data to identify criminals.

To be sure, much time and effort were required
to overcome stagnation and mistrust. But suc­
cess and recognition came to Bertillon, as usual,
due to a fortunate coincidence, when his regis-
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tration system and the enormous work enabled
several major criminals to be identified.

Bertillon's system, or bertillonage, consisted
in measuring the height, the spread of arms,
the width of the chest, the length and width of
the head, the length of the left foot, the length
of the third finger of the left hand, the left ear,
and so 011.

Now let us take a closer look at bertillonage.
This is essentially a mathematical model of a man
in the form of a set of numbers (Xl' x 2 , ., xn),
that is in the form of a point in the n-dimensional
space or n-dimensional vector.

Bertillon relied on the calculated probabilities
of meeting two persons with the same values of
sizes. The statement "there are no two men on
earth such that the sizes of individual parts of
their bodies coincided and the probabrlity of meet­
ing two people with absolutely the same height
is estimated to be 1 : 4" in the book by Thor­
wald isascribed to Quetelet. Thorwald also main­
tains that the father and grandfat.her of Ber­
tillon (the latter was a mathematician and natu­
ral scientist) have tested Quetelet 's statement.

It seems to me that in those computations at
least' two mistakes are made. First, the probabil­
ity for the heights of two randomly selected
people to coincide is not 1 : 4, but three to four
times smaller. Second, in the above calculation
multiplied together are the probabilities of coin­
cidences of the sizes of the chosen parts of the
body, that is, statistical independence is assumed
of, say, the width and length of the head or the
height- and the spread of arms. But here we have
no statistical independence, since these quanti-
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ties are strongly correlated and therefore we are
surprised when we encounter a tall man with
a small head or a short man with long arms.

The mistakes in the calculation make up for
one another to a certain degree, and so the prob­
abilities of having two people with the same
sizes of all the 11 quantities are really exceeding­
ly small, thereby making ber.tillonage so success­
ful.

For a time bertillonage became universally
accepted but its widespread uses were hampered
by a number of circumstances, the major one
being the complexity of realization. To take mea­
surements it is necessary that the person being
measured cooperated in the operation: he must
sit still and offer his head, hand, foot, and so
forth. The person responsible for the measure­
ments must act accurately and carefully. The
cul tural level of policemen and jail people being
rather low, the results of measurements they car­
ried out could not be trusted. And so bertillon­
age, although it had gained a measure of recog­
nition in some countries, failed to become a com­
mon method.

Such a situation obtains fairly often: an im­
peccable theoretical work does not find its way
into practice due to the complexities of its reali­
zation. Bertillon failed to simplify his system so
that taking measurements would not require high
skill of personnel. Therefore, in a time bertil­
lonage was replaced by dactyloscopy, a compa­
rison of finger prints. I ts history is rather in­
structive, but it concerns other topic-image
recognition-which is not to be discussed
here.
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Identification of Objects
Crude oil, as produced, contains a sizable amount
of water. The water extracted from an oil-bear­
ing horizon, called oil-formation water, causes
much trouble: it is strongly mineralized, con­
tains up to thousands of milligrams of salt per
litre.

It is well known that oil is lighter than water,
and so at oil fields the bulk of water is separated
from oil by settling in reservoirs. After the set­
tling the mixture is separated: the upper layer of
oil is pumped to oil pipe lines, and the lower part,
water, is pumped back underground, through
injection wells. This method, however, does not
enable one to get rid of water and salts
completely, and so some of this harmful minerali­
zed water (up to several per cent of oil volume) is
transported together with oil to oil refineries.
This sal t is responsible for fast corrosion of me­
tallic parts, and if sal t is not extracted from oil
before processing, equipment will always fail,
and oil products, especially residual oil, will be
of inferior quality. Therefore, refineries have long
been equipped with electric desalting plants
(EDP), so that oil is desalted before primary pro­
cessing.

The principle behind EDP is simple. I t is
common knowledge that water will not dissolve
in oil, and so small droplets of water, from mic­
rons to fractional millimetres in size, are sus­
pended in oil. I t is these droplets tha t contain the
salt. Under gravity the droplets settle down to the
bottom of pipe-lines or reservoirs, thus forming
bottom layers of water, which can be removed.
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The precipitation rate varies with the square of
the droplet size. Accordingly, if the water drop­
lets are made larger, they will settle down quick­
ly, thus segregating from oil. To this end, oil
is "washed out": a large quantity of weakly miner­
alized water is added to it so that small droplets
of strongly mineralized formation water merged
with droplets of washing water, formed droplets
of larger size, which now will settle faster.

Clearly, a drop formed by merging of a fresh
and saline droplets will have lower salinity than
the initial drop. To intensify the merging and
settling of droplets in EDP the oil-water mixture
is fed through a high electric field. Economic pres­
sure required that electric desalting efficiency be
enhanced as much as possible. And so the opti­
mization problem here became extremely im­
portant.

Being extremely involved, the process could
not be described by a model covering all the spec­
trum of physical and chemical processes, and so
models are generally constructed on the basis
of evidence derived when an object of interest
to us functions normally. The model must be
suitable for the object to be controlled at opti­
mal or near-optimal regime. The model must thus
describe the process adequately, and be its coun­
terpart in the control system.

We are here confronted with the problem of
choosing among the many models possible, and
comparing the model and the object to test if
the model selected can be used as the counterpart,
i.e, the problem of identification of the model
with the object, the original. "Identification"
here should not, of course, be understood literally,
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as in the case of the identification of criminals.
No mathematical model can describe an object
perfectly. Hence the model selection problem.
The object itself is thought of as a "black box",
i.e, only some of its inputs and outputs are taken

~'b;. Object .••••

.1'.(1) Y",(I)

Fig. 8

into consideration, ignoring the information about
the state of the object itself. Put another way, the
model does not include information about pro­
cesses occurring within the plant, as well as other
inputs and outputs, which are taken to be either
fixed, or small.

Figure 8 shows a real EDP and its model in
the form of "black box" with some inputs and
outputs.

The diagram of Fig. 8 can be simplified by
thinking of x (t) and y (t) as some vector-func­
tions with the coordinates Xl (t), X 2 (t), .,

., In (t) and Yl (t), Y2 (r), Ym (t), re-
spectively. The resultant diagram is given in
Fig. 9.

Modelling of dynamic systems in mechanics,
automatics, radio engineering makes especially
extensive use of differential equations.

8-01621
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Earlier the identification problem was solved
as finding the coefficients in a similar equation
from experimental data accumulated in com­
mercial operation.

However, in identifying complex systems we
cannot always consider 'that the outputs and
inputs are rela ted by a linear differential equation.
Selection of model type is one of the basic and

Object
x(r) ·I~ IJ(t) ..

Fig. 9

most difficult problems in modell ing. A real­
life object shown schematicall y in Figs. 8 and 9
effects transformation of the function x (t) into
function y (t), and the model somehow 01' other
reflects this transforrna tion.

But back to the electric desalination of pe­
troleum. The lower the concentration of salts
at the EDP input, the lower it is at the outpllt­
here is the principal idea behind the procedure,
and this is quite reasonable. I t follows that to
reduce the salt concentration at the }1~DP output
several times we will ha ve to red nee the input
concentra tion several times, i.e. it is necessary
even a t the oil lields to ha ve hea vy-d lit y indus­
trial I~DPs. This can be done, but it would rc­
qu ire enormous investment. Perhaps we can (to
with simpler means-e-tc opt.imize )·:Ol>s at re­
fineries, so providing high-quality desalting?

If such a solution of desal ting problem is pos­
sible, it will be worth hnviug because it will he
cost-effecti ve.
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Before we set out to consider the optimization,
we will take a quick look at the principle of
EDP operation. Denote by x the input salt con­
centration and by y the output concentration.

x=Cj n
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Mathematically, EDP transforms x into y at
each moment of time, but the function Jescribing
the transformation is unknown.

Figure 10 gives the variation of x and y with
time at real EDPs (about 15 all in all). The va­
riation is highly irregular, the lower curve's
shape is conditioned by the irregular character
of operation of crude oil dehydration plants at
oil fields, and by the mixing in pipe-line of oils
derived .Irorn various horizons or boreholes, and

8*'
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oil fields, and so forth. It is thus impossible to
ensure constant concentration of salts at the input
or, at least, its smooth variation.

Compare the two curves. Could we maintain
that there is some functional dependence between

y

30 •
••

20 •
•

10 •

0
500 x

Fig. 11

the two curves? No, we could not. We will thus
have to get some reasonable model and process
the data available.

To test the initial hypotheses concerning the
input and output concentrations we will proceed
as follows. Let us fix some input concentration,
say, 500 mg/Iitre and collect all the output data
for this value. If the hypotheses were exact ly
true, then t he output data for 500 mg/Ii t re at the
input would be tho same. Hut in reality this is
not so, and in Fig. 11 we can see the range of
their variation.

This is not surprising and we CHn really ac­
count for this spread: any process is affected by
a large number of interferences, especially ill such
a "noisy" process as the l~I)P one, where a wide
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variety of unaccounted parameters of electric,
hydrodynamic and processing characters are avail­
able. The interferences here may be got rid of
partially by averaging. Since the expectation of y
is taken for a fixed value x == 500 rug/litre, this

.

Y=Cout, rug/litre
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Fig. 12
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expectation is a conditional one. This is not the
whole of the story. because computation of the
expectation requires the probability distribution
of a random variable in question, which is un­
known: we have only a set of observed values, i.e,
a sample. As is usual in such a situation, we here
take the arithmetic mean and thus obtain the
conditional empirical mean, which in Fig. 11
corresponds to a large point. The further proce..
d.ure is clear. To begin with, we plot the corre­
sponding points y for various values of x, and so
we obtain in the plane (x, y) a cloud of values.
Next for each value of x, i.e. on each vertical,
we average the data available and obtain a set
of large points (Fig. 12). These large empirical
points are analogues of the conditional expecta..
tion of-the output for a given input. I t is at this
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point that we should seek a dependence between y
and x, or in our specific problem, the relation­
ship between the salt concentrations at the input
and output.

In our case the data at this point turned out
to be both simple and unclear. It might seem that
the points lie on a straight line. To be sure, it
should be taken as a mathematical model of the
relationship between the output and input for
the plant under consideration. Some spread of
the empirical means derived is quite understand­
able: the data are obtained for a normal op­
eration of the plant. their body is Limited and the
averaging carried out cannot fully protect us
from errors. But notice the gentle slope of the
line, it is nearly parallel to the z-axis, and hence
the plant appears to be but weakly sensitive to
variation of the salt concentration at the input:
changing the input concentration from 1000 mg/
/litre to 100 mg/litre, i.e. tenfold, produces but
barely perceptible changes in the output con­
centration from 24 mg/litre to 16 mg/litre, i.e.
by a factor of 1.5, with 1 mg/litre lying within
the accuracy of the measurement? What are we
to make of such a dependence? We are led to
conclude that the plants are essentially insen­
sitive to the input salt concentration, they func­
tion inadequately, and even at small input con­
centrations (about 100 mg/litre) they do not
ensure a noticeable reduction of the output con­
centration. Thus, the initial assumption that
for the output salt concentration to be lower the
input concentration must be lower is erroneous.

We now must construct the model of EDP
operation to reflect the relationship between input
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and output salt concentrations. According to
the hypothesis of the random structure of the
interferences the conditional expectation of the
output, given the input, gives a linear equation.
Straight lines give an adequate description of
experimental evidence. But if we take a closer
look at the curves obtained we will find some
contradiction: we may not extrapolate the line
to the region from zero to 100 mg/litre, since
the plant does not enable output concentration
oft say, 10 mg/litre to be obtained when the oil
at the input has a salt concentration of 5 mg/litre.
Therefore, in the interval 0 ~ x ~ 100 the model
as constructed, i.e, the straight line does not
work, and another one is necessary. Clearly, the
function must pass through the origin of the coor­
dinate system: if oil at the input of an EDP is
free of salts, then at the output there will be no
salts either. Since for the in terval 0~ x ~ 100
there is no experimental evidence, a new model
must be constructed based on some qualitative
physical considerations. We took it to be an in­
creasing exponent for this interval, as shown by
the dash line in Fig. 12.

J subjected you to the tedium of a detailed ex­
amination of a specific example so that you could
trace the sequence of steps in constructing a
mathematical model to identify a complex object,
and see the reason why such a model may be
needed and what benefits could be derived by
carefully analyzing the results of object identi­
fication.

Further -analysis of the results obtained here
indicated that no optimization can be effected
at the expense of changing the characteristics
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and parameters of an existing EDP Consequent­
ly, it was here necessary to give a careful treat­
ment to the physics and even physical chemistry
of the desalting process. As a result, it turned out
that for coalescence and separation of droplets
to occur more efficiently it was necessary drasti­
cally to increase the time the emulsion spends in
an electric field. To implement this recommenda­
tion, a special-purpose device, the electrocoales­
centor, providing the required residence time was
designed and manufactured. In addition, a deep­
er understanding of physical and chemical laws
governing the process enabled a recommendation
to be worked out to change the amounts of flush­
ing water, amounts and points of feeding de­
mulsifier, to correct some of the processing para­
meters and ultimately to reduce the residual salt
content threefold or fourfold, thus achieving
substantial savings of funds, reagents and fresh
water.

Regression
Returning to the set of input-output data, we
obtain a similar set if the point coordinates will
be length x and diameter y of trees in a grove,
or length x and width y of a criminal's head in
the Bertillon classification. So now we may for
the moment ignore the real content of the quan­
tities x and y and formulate the general problem.

Let there be two random variables ~ and 11,
related by some dependence: it seems that the
larger the value x that ~ takes, the larger the
value y taken by 1'), or y decreases with increasing
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x, or the dependence between x and y is given by
a quadratic or other function. The situation is un­
certain: there is no clear, definite, deterministic
dependence. This dependence is statistical, it only
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Fig. 13

shows up on average: if we draw the set of data
corresponding to realizations of the random varia­
bles, (~, 11), i.e. to the observed pairs of values,
points (Xi' Yi), i === 1, .. , n, then they lie on
some curve. Figure 13 illustrates such a situa­
tion where, unlike Fig. 12, the points concentrate
along a curve displaying a distinct maximum and
minimum.

Theoretically, this curve can be found fairly
simply, if the pair (~, n) is given by a joint pro­
bability distribution: it is then that we should
plot the curve for the conditional expectation of
the random variable II given that the random va­
riable ~ assumes the value x:

Y = M (1) Is = x) = cp (x).
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This function is the desired relationship "on
average" between T) and ~. The equation y ==

<p (x) is called the regression equation, or
rather the regression equation for 11 on ~, because
we can also consider the equation x == M (~ III ==

y) '¢ (y), i.e. the regression equation for ~

on 11, where t.he curves for y == <p (x) and x ==

::=:: '¢ (y), generally speaking, do not coincide.
The word "regression" was introduced into

stat.isl.ics by Sir Francis Galton, one of the ori­
ginators of the science of mathematical statistics.
Correlating the heights of children and their par­
ents, he found that the dependence is but slight,
much less than expected. Galton attributed it to
inheritance from earlier ancestors, not only par­
ents: according to his assumption, i.e. his mathe­
Ina tical model, the height is conditioned half by
the parents, a quarter by the grand-parents, and
one-eight, by great-grand-parents, and so on. There
is no saying here whether Galton is right, but
he paid attention to the backward motion in the
family tree, and called the phenomenon regres­
sion, i.e. motion backwards, unlike progression,
the motion forwards. The word "regression" was
destined to occupy a prominent place in stati­
sties, al though, as is so often in any language,
including the language of science, another sense
is now read into it-it implies a statistical rela­
tion between random variables.

In actual practice we nearly never know the
exact form of the distribution obeyed by the quan­
ti ty, and all the more the form of a joint distribu­
tion of two or more random variables, and so
we do not know the regression equation
y == rp (x) either. At our disposal there is only some
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ensemble of observations, and also a possibility
to build models of the regression equation and
test them basing on these data. As we have seen
above, it was only natural to describe the elec­
trical desalting of oil by a linear function. We
ean write it as

y = ~o + PIX + C,

where ~o and ~t are the coefficients to be deter­
mined from experimental evidence, and e is the
error believed to be random and to have a zero
expectation and independent values at various
points (x i' Yi ) .

If the cloud of data has another form, e.g. as
shown in Fig. 13, where it cannot be described
by a straight line, then we face a problem of se­
lecting a function for the model of an unknown
regression equation.

Building Blocks

Children like constructing castles of blocks,
grown-ups use blocks ·or bricks to erect dwellings
and factories, hospitals and barns. Dwellings
should not be similar, both in their external ap­
pearance and in their "guts": different families
need different flats, twin houses are dreary to
look at.

Bricks are a good building material, but larger
blocks are more economical. But here a problem
arises: how is the set of standard blocks to be se­
lected, so that the house would be comfortable,
inexpensive and easy to construct.
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The main object of calculus is the function,
i.e, a dependence of one variable on another,
or others, if there are many. Conceivable func­
tions are so many that it would be hopeless to
attempt to visualize their diversity. Fortunately,
the engineer, biologist or economist does not
need this, i.e. he does not need to know exactly

x
Fig. 14

the behaviour of a function as independent var­
iables vary. I n fact, a builder will be content
with an accuracy to within a millimetre, a radio
engineer normally obtains characteristics of elec­
tronic devices to wi thi n several per cen t, a phy­
sician deals with temperature curves of his pa­
tients to within one tenth of a degree. Even the
trajectory of a spaceship must be known to a
fini te accuracy.

An accuracy to which a function must be known
at each point is a certain number 6, positive of
course. I t is generally conditioned by the char­
acter of a problem, our possibility and desire.

For the situation to be represented dramatically
we will on either side of the curve in Fig. 14
draw a line separated from the curve so that its
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distance from the line in the direction of the verti­
cal axis will be 20. To obtain it in practice we will
just shift the curve up and down by o. Any curve
that wholly lies within the confines of the band
will be drawn within the same accuracy as the
initial one.

A question now arises: if we do not need to
know the Iunct ion with absolute accuracy, and
if we can ignore fine details, would it not be pos­
sible to replace an arbitrary function by any
one close to it, but a simpler one, which is more
amenable to examination? You will have now
surmised that the answer is positive-why then
the above lengthy speculations.

But that is not all that is to it. It turned out
that functions that serve as ever closer approxi­
rnations of a given (anyone, though) function can
be pieced together from simpler functions, or
blocks. To be more specific, we will consider con­
tinuous functions. Their plots display no dis­
continuities, and so are conveniently visualized as
threads. There is an infinite variety of continuous
functions. For example, there are continuous func­
tions that at no point have a derivative, i.e.
no tangen t to the curve. I t is hard to think of
such functions. But for a practician such func­
tions are of no interest, since they cannot be re­
alized in any physical system.

Among the many continuous functions are our
old acquaintances, polynomials. A polynomial
of degree n in x is generally given by

Pn (x) =-== a o -t-- alx + + anx n .

It has n .-t- 1 coefficients ao, al , ., an which
are arbitrary real numbers. We can easily plot
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the approximate curve of a specific polynomial
with numerical coefficien ts, i. e.

Po (x) == 12 - 4x + 18x5
- O.01x9

•

To do so, we give various numerical values to
the independent variable x in the interval of
interest to us, substitute them into the equation
and compute the resultant algebraic sum.

In general, polynomials hardly appear so com­
plex functions. What is your estimation of their
diversity? Before we go on, think about it.

The simplest among polynomials are the power
functions, x, x 2 , . ., x", . We should also
add 1, a power function of zeroth degree.

Multiplying the power functions by respective
coefficients gives

p (x) == 5 - 3x - 2x2 + 5x3 •

Any polynomial can thus be pieced together from
building blocks, power functions.

Let us now take an arbitrary continuous func­
tion in a selected segment 0 ~ x ~ 1 and draw
a 6-band around it. As we have found earlier, any
continuous function whose plot lies wholly with­
in the 6-band is to within b indistinguishable from
it. I t appears that among the functions whose
curves wholly belong to the 6-band there is a poly­
nom ial too.

I t is worth noting that the fact is both paradox­
ical and fundamental: however complex (with
angles, sharp variations, etc.) is a continuous func­
tion and however small 6, there will always be
a polynomial coincident to within 6 with the
specific continuous function.
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My question about the \vay in which you im­
agine the diversity of polynomials is quite an
insidious one. But you should not be distressed,
if you thought that the set of polyuomials was
simpler than in reality. The above statement is
one of the most fundamental theorems of calcu­
lus. I t is generally known as the Weierstrass theo­
rem about approximation of continuous functions
by polynomials. .

Karl Weierstrass (1815-1897) is one of the
greatest figures in the mathematics of the 19th
century. Among the celebrated pleiad of the
19th century mathematicians who reformed the
science of Ina thematics and pu tit on a more rig­
orous and advanced foundation the name of
Weierstrass shines like a star of the lirst magni­
tude.

But back to Weierstrass's theorem, It can
also be interpreled in such a way. Let there be
a specific, but arbitrary continuous function
f (x) and any sequence of decreasing and van­
ishing numbers, e. g. 61 == 10-1 , 62 == 10-2 ,

., 6n == 10-", According to the theorem,
for each of these 6n we can have a polynomial that
to within 6n will be identical to the function
f (x) to be approximated. If the polynomials are
denoted by PI (x), P2 (x), .. , P n (z), ., re­
spectively, then we will obtain a sequence of poly­
nomials ever closer approaching f (x). Since the
sequence of 6n tends to zero wi th increasing n
number, in the limiting case the sequence of poly­
nomials will give the desired function f (x). Thus,
the sequence of approximating polynomials
describes the behaviour of the initial func­
tion I (.2').
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To sum up, it is the \Veierstrass theorem that
enables the practician to ged rid of the dismay­
ing diversity of continuous functions and, when
necessary, mani pula te wi th polynomials only.

To be sure, the higher the desired accuracy of
the approximation (i ,e. the lower 6), the higher,
in general, will be the degree of the approximat­
ing polynomial. But still, 'polynomials are
more convenient to study than arbitrary con­
tinuous functions.

But polynomials are far from being the only
building blocks from which functions can be
constructed to approximate an arbitrary con­
tinuous function with a predetermined accuracy.

Turning to Geometry
Geometrical concepts in can ventional three-di­
mensional space are very graphic, and dealing
with more general spaces wide use is made of
analogies from three-dimensional space: many
facts of Euclidean geometry hold true for multi­
dimensional spaces, and those requiring clari­
fications generally draw on habi tual geometric
notions. Therefore, the terminology is mostly
the same as well.

We will now consider certain of the notions of
the theory of multidimensional spaces. Some of
them, of course, require exact definitions and
proofs. But to illustrate the geometrical meaning
of some facts useful for what follows we can do
with analogies and speculations, therefore our
reasoning will not be that rigorous and will
mostly rely on the reader's geometrical intuition.
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If you are familiar with the essentials of the
theory of multidimensional spaces, including
finite-dimensional ones, then you might as well
skip the several pages.

You will remember that the vector is a quan­
tity that has magnitude and direction. The angle
between vectors can conveniently be given by
the scalar product. So if x and yare vectors, then
theic scalar product (x, y) is the product of their
magnitudes multiplied by the cosine of the angle
between them. In the theory of multidimensional
vector spaces it is convenient to have as the ini­
tial concept the above scalar product, which
is specified by axioms. We will not here be con­
cerned wi th them. I t is only worth noting here
that the square of the vector length is equal to
the scalar product of the vee tor by itself
(x, x) = II X 11 2 ,

where II x II is the length, or norm, of the vector,
The angle a between x and y is also given by the
scalar product

_ (x, y)
cos ex - II x II II y II ·

If the angle between x and y is right, then their
scalar product is zero. Such vectors are called
orthogonal, and in elementary geometry, per­
pendicular.

The set of vectors that can be composed (using
the parallelogram rule) and multiplied by num­
bers form a linear vector space. I t can be not only
two-dimensional or three-dimensional, like our
common space, but rnay have any number of
dimensions. The number of dimensions, or di­
mensionality, of space is determined by the

9-01621
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largest number of mutually orthogonal vectors
that can be arranged in that space. The ensemble
of such vectors are generally referred to as the
orthogonal basis. I t is natural to have them as­
the coordinate axes, and then each vector can be
decomposed into components. If Xt, x 2 , . are
the projections of x on the un it vectors e1 ,

e2 , ., then we will have the generalized Pytha-
gorean theorem:

"xIl2==~ xt. (*)
Ii

If the space is fInite-dimensional, i.e, the
largest number of mutually orthogonal vectors is
finite, then (*) is sufficiently clear. But in an
infinite-dimensional linear vector space there is
an infinite number of mutually orthogonal vectors,
and then in (*) we can assume that the series con­
verges. Such a space is named a Hilbert space
after the famous German mathematician David
Hilbert (1862-1943), who in 1904-1910 first used
geometrical concepts of infinite-dimensional space
in the theory of integral equations.

In the axiomatic treatment of the linear vector
space, and in particular of the Hilbert space,
nothing is required but that the vectors can be
added together and multiplied by numbers, the
main axiorn being the vector product one.

In that case the vector space may be a wide
variety of element sets. So, the set of functions
specified on a segment also form a linear vector
space, if the scalar product is represented as the
integral of their product

b

(x, y) = ) x (t) Y (t) dt. (**)
(J.
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To be sure, this space does 110t include all the
conceivable functions, but only those for which
there exists an integral of the square of the func­
tion, the square of the vector length

b
(t

(x, x)=lIxIl2 = j x2(t)dt.

a

The space of all such functions is also called a
Hilbert space and denoted by £2 (a, b).

Note now that if two vectors Xl and X 2 in a
vector space are not parallel, then the set of all
their linear combinations a1xl + a2x2, where al
and a2 are arbitrary numbers, ills the plane.
Accordingly, linear combinations of n vectors XL

of the form alxl + a2x2 + . + anxn , where at
are any real numbers, generally fill all the n­
dimensional space. I t is said to be spanned to
vectors Xl' X 2,. ., Xno

If the dimensionality of the initial space is
more than n, then the n-dimensional space ob­
tained is called a subspace of the initial space. In
a Hilbert space, an infinite-dimensional one,
any space spanned to its n vectors will be a
subspace. However, in a Hilbert space there are
infinite-dimensional subspaces as well, e.g. the
one spanned to all the unit vectors, besides
the first three, or spanned to all the position
vectors with odd numbers.

We will now consider one simple problem of
elementary geometry. Let in a conventional three­
dimensional space R there be a plane Q passing
through the origin of coordinates and a vec­
tor y not belonging to that plane. How can
we find in Q a vector lying the closest to y? To be

a*
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sure, you know the answer: if from the end ~of y
we drop the perpendicular to plane Q, the resul-

tant vector y, the projection of y on Q, will be
the closest to y among all the vectors in the plane.
In other words, the best approximation of y

with the help of the vectors in Q will be 11 (Fig. 15).
A similar problem of the best approximation

also occurs in the theory of mult.idimensional"

Fig. 15

spaces: if y is a vector in a space H (of any di­
mensionality) and Q is its subspace that does
not contain y, then the best approximation of y

by vectors from Q will be y-the projection of y
on Q.

We can even obtain the error of the best ap-

proximation: it is obviously the length" y - y II
of the perpendicular dropped from the end of y
to subspace Q.

If subspace Q is spanned to the vectors Xl'

X 2, ., X m , then to drop the perpendicular from
the end of y to Q is to find a vector z that is ortho­
gonal to each of Xl' X2~ ., X m . Such a problem
easily comes down to sol ving a system of linear
algebraic equations.
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In OUf geometrical interpretation everything
appears quite simple. But remember now about
the Hilbert space of functions. Here the vectors
are functions specified on a segment, a sub­
space spanned to n vectors-all the possible com­
binations of these functions, and so the problem
reduces to finding the best. approximation to a
certain function using the above linear combina­
t iorrs, Analytically, the best approximation prob­
lem for a given function by the linear combina­
tions of other functions does not appear to be
that simple, and the geometrical treatment indi­
cates one of the possible ways of solving it, pro­
viding quite a lucid picture of all the operations
necessary.

The above problem of best approximation is
other than in the Weierstrass theorem, the for­
mulation of the problem of approximating a
function by a linear combination of some simpler
functions is simpler in the sense that in various
formulations different treatments of the distance
between the functions are used. In the Weierstrass
theorem the distance between functions is taken
to be the largest distance between their curves
along the vertical axis, or rather its magnitude.
But here the distance between vector-functions
is, the norm of their difference

IIx-yll= l/! (x(t)-y(t)F·dt,
a

i.e. the square root of the surface area between
the horizontal straight line and the curve of the
squared difference of the fu nctions.
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When the problem of representing a function
in the form of a sum of some "standard functions"
could be viewed from some more general aspect,
it became clear that there are many systems of
functions from which, just as from building blocks,
we can construct any continuous function.

The initial functions to be used for approxi­
mating the given function can conveniently be
a sequence of mutually orthogonal functions­
the orthogonal basis of the Hilbert space of func­
tions under consideration.

This implies that any function from the space
can be represented by a linear combination of the
functions of the basis. The basis functions are
thus the building blocks of which all the variety
of the functional space in question is composed.

Sunrise, Sunset.

Day and night alternate, seasons alternate, the
heart contracts, say, seventy times a minute ...

These all are alternating, periodic processes.
Their periods are a day, a year or 1/70 of a mi­
nute. Such periodic processes are to be encountered
everywhere. It has been found, for example, more
than a hundred of physiological systems func­
tioning with diurnal periodicity.

One of the oldest technical devices based on
the simple periodic motion is the pendulum.
Shift it aside and let go of it and the pendulum
will swing to and fro. We will ignore now the
friction that dampens its motion and watch the
time variation of (1" the angle of deflection of the
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pendulum from the equilibrium, a vertical line.
You will know from your school physics course
that ex. is a periodic function of time, and its pe­
riod is the period of pendulum oscillations, i.e.
the time taken by the pendulum to come back
to its extreme left position, say. We can describe
the motion of the pendulum by the formula

ex (t) = A cos (2; t +cp ) ,

where A is the amplitude of oscillations, t is the
time, T is the period of oscillations, cp is the ini­
tial phase. They normally use circular frequency

o

Fig. 16

(J) = 2n/T and then the curve of Fig. 16 will
be given by ex. (t) = A cos (rot + ~).

There is an infinite variety of periodic processes.
Let us take some examples from various fields.

When in a lake there live plant and crustacean­
eating fish and fish-eating fish (e.g. pikes), and
the former are plentiful, the fish-eaters have much
food and multiply prolifically. As a result, the
plant-eaters decline drastically, while the popu­
lation of fish-eaters explodes, and so gradually
the latter will suffer from shortage of food. Now
the population of fish-eating fish drops and that
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of plant-eating fish shots up. Again the fish-eaters
have food in large supply, and so the situation
recurs.

Similar periodical processes also occur in eco­
nomy. In free enterprise economies there are
cyclic variations of prices of agricultural pro­
ducts. So premium prices of pork stimulate farm­
ers to rear JDOre pigs. And so, according to a
German economist, in the 19208 the supply of
pork would increase dramatically in the market

Fig. 17

in about 1.5 years, so that the prices were brought
down. The process reversed: the farmers cut pork
production up to the moment when, now again
due to the shortage of pigs, the prices soared again.
If no other factors intervened, the pork price
underwent fluctuations that were about sinusoidal
in character with a period of about three years.

A number of periodic processes are closely re­
lated to systoles. Many people know of electro­
cardiograms, a record of biocurrents picked up
at a region close to the heart. Figure 17 shows an
electrocardiogram clearly displaying a perio­
dicity of peaks, current pulses.

I t would not pay to use polynomials to ap­
proximate periodic functions since too high pow­
ers would be required, and so here the use is
made of simple harmonic motions at frequencies
that are integral multiples of the fundamental
frequency. So if the period is T and the circular
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frequency is ro == 2rt1T, then the building blocks
will be the sinuosidal functions of multiple fre­
quencies: 1, sin rot, cos wt, sin 2oot, cos 200t,

., sin nest, cos niot. We thus obtain trigo­
nometric polynomials of the form

s (t) = 5 - 2 sin t + 0.3 cos 2t - 0.1 cos 4t.

Notice that the coefficients here are arbi trary,
and the frequency is w == 1.

In the general form, the trigonometric pol yno­
mial will be

s (t) = ao + al cos wt + bI sin wt +
+ an cos niot -f- bn sin nest;

where ao, aI' bl , an, b« are numericalcoet-
ficients.

I t appears that any continuous periodic func­
tion can within any accuracy be approximated by
a trigonometric polynomial.

This theorem, as fundamental as the previous
one, is also due to Karl Weierstrass. Although as
early as the first quarter of the 19th century J 0­

seph Fourier (1768-1830) in his studies of ther­
mal conductivity made effective and efficient use
of representation of functions in the form of sums
of sinusoidal oscillations of multiple frequencies.
Therefore, series representing functions by sums
of simple harmonic motions are referred to as
Fourier series.

If now we apply the geometric approach dis­
cussed in the previous section, we will find that
we here deal wi th the same problem of represent­
ing a function using linear combinations of basis
functions, and the latter in this case are trigo­
nometric functions of multiple frequencies. We
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will only have to make sure that these are ortho­
gonal. To this end, we will take some simple inte­
grals.

Fourier coefficients are scalar products of the
initial function by basis trigonometric functions.
They are expressed by integrals in a simple way.
These standard formulas are to be found in any
calculus manual.

Note, in passing, that the power functions xm

discussed in section "Building Blocks" are not
pairwise orthogonal. But among the polynomials
we can also select some pairwise orthogonal ones.
Orthogonal polynomials were first introduced
in 1785 by the outstanding French mathemati­
cian Adrien-Marie Legendre (1752-1833). I will
only give the first five of the Legendre polyno­
mials:

1
Po (x) = 1, P t (x) == X, P2 (x) = 2 (3x2-1),

1
P 3 (x) = 2 (5x 3 - 3x),

1
PIt (x) = 8 (35x4 - 30x 2 +3).

I t is easily seen that they are orthogonal within
the segment [-1, +1), i.e. at n =1= m we have

+1

) P n (x) »; (X) dx = O.
-1

If we were to give an absolutely precise repre­
sentation of a continuous function by an algebraic
sum of basis functions, then the series would
generally contain an infinite number of terms,
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Such a representation would, of course, rejoice
the heart of a pure mathematician, and indeed it
is beautiful. But the practician will have to
contrive to represent his complicated function
within the accuracy required by a sum of a few
simple functions.

If we have to represent within (a, b) a contin­
uous function to within 6, then the problem can
be solved by taking, for example, in our approx­
imation the first n terms of its Fourier expan­
sion. But such a representation may also contain
a fairly large number of functions, it grows with
decreasing 6. Therefore, an adequate selection of
basis functions to provide in the problem at hand
the satisfactory accuracy of approximation by
a small number of basis functions is a point of
vital importance here.

Now I think you expect some recipes or at least
recommendations as to how to select a basis that
provides an adequate accuracy by using a small
number of simple functions. Unfortunately, as
is often in applied mathematics, no general re­
commendations can be given-the success in se­
lecting the basis functions is conditioned by the
nature of the problem in question, the informa­
tion about the object studied and experimental
evidence available. If, say, the function of inter­
est to us is a response of a linear system with
constant parameters (a passive two-port in the
language of radio engineers), then the basis must,
of course, be sought among simple harmonic mo­
tions and exponents, if we deal with the response
of a system with varying parameters (e.g. the
response of an oscilla tory circuit wi th varying
capacitance), then the basis will be special func-
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tions that essentially depend on the law govern­
ing the variation of the parameters. If you are
not acquainted with them, they will appear ra­
ther difficult to you.

But back to the cloud of data of Fig. 13 in the
section "Regression" We do not know the regres­
sion equation y == cp (z) and we cannot derive it
from the experimental evidence, however ex­
tensive. Recall that at first we should suggest a
hypothesis as to the form of dependence or, put
another way, to think of a mathematical model,
and only then test it drawing on experimental
data.

Now we chose the model gazing at the cloud
of points and resurrecting a swarm of associations.
To be sure, we begin with a simple model, e.g.
a linear model (i.e. a straight line), a sinusoid,
a parabola, and so on.

I have read somewhere the following: "One of
the principal tasks of a theoretical investigation in
any field is finding a point of view such that the
object in question appears in the simplest way".
This is, of course, true, if only the difference be­
tween the simple and the complex is clear. But
simplicity .is a fairly arbitrary entity, being sub­
stantially conditioned by habits, experience,
and knowledge. I was told that a seventy-year
old was treated to a pie with seventy candles at
his birthday party. He offered to his three-year
old grand-daughter to blow the candles out and
the kid asked, "But where is the switch?"

A secondary school student may be dismayed
by sines and cosines, especially if these have been
introduced in a formal way, as ratios of sides
to the hypotenuse, without explaining their. re-
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lation to oscillations. At the same time, the elec­
trician is used to sinusoidal 50 Hz oscillations,
since this is a feature of industrial alternating
current used in your household. The TV repair­
man deals with pulsed periodic processes (see,
for examples the plots in Fig. 18).

Therefore, if in. a .problem even having nothing
to do with television we select for the basis some

(0)

/\/\/\
(e)

Fig. 18.

(b)

(d)

pulses with different repetition frequencies and
different amplitudes, a TV man will not be sur­
prised by this representation, since it is natural
for the class of processes occurring in television.

But a basis of rectangular pulses should not
he used to represent triangular pulses in Fig. 1&,
since such a representation, even with low accu­
racy, would require a model of a large number of
basis functions. As is shown in Fig. 19, the-tri­
angular pulse (Fig. 19a) is approximated by the
sum of ten pulses of the same duration but differ­
ent amplitude (Fig. 19b) and the resultant ladder
is still a poor approximation.

Selection of good basis thus requires both ex­
perience and clear understanding of the physical
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nature of the problem at hand. These would help
throughout the procedure, though.

But the laws of nature or actual dependences
between variables in a reasonable model in phys­
ics, chemistry, biology, economics, sociology are
generally not very complex. If factual evidence

(u)

Fig. 19

(IJ)

leads to a model that is only satisfactorily de­
scribed using a polynomial of the hundredth
order, then common sense dictates that it is
necessary either to revise the formulation of the
problem or select other system of basis functions.
This means that another model is required, which
may be combined from other typical functions
corresponding both to the object and to the prob­
lem.

My belief in the simplicity and clarity of the
laws of nature and actual dependences even in
complicated systems is based on experience.
And if you ever constructed models of real-life
processes or objects, you will agree with me;
and if you are to do this in future, then a measure
of scepticism in relation to ornate, obscure and
unwieldy reasoning would be a good guidance,
and I hope such scepticism will do you much
good.
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In short, before plunging into calculations or
an experiment give some thought to the selection
of a mathematical model-this may exert a cru­
cial influence on the final resul t.

The Nearest
Now you have decided on a model and can turn
to the coefficients.

For example, for the cloud of experimental
points in Fig. 13, which gives some relationship
between x and y, it seems reasonable to try the
model in the form of the third-order polynomial

y = CX o + CllX + Cl 2X
2 + Cl 3X

3
,

where rLi are numbers to be found, or rather esti­
mated from the experimental evidence available.

Of course, we can plot a whole family of curves
for similar polynomials, so that they will ade­
quately correspond to the cloud of Fig. 13. Such
plots are shown in Fig. 20. In other words, there
are many ways of choosing the coefficients so
that the polynomial would give a good approxi­
mation of that unknown dependence, which, we
hope, does exist. The spreads graphically repre­
sented in the figure can naturally be regarded as
a result of chance, they may be due to measure­
ment errors, "errors" of nature or other causes.

But we can hardly be happy with such a variety,
because if there is in fact some functional de­
pendence Y == f (z) between x and y, then among
all the mathematical models of a selected type
(in the example under discussion, among all the
polynomials of the third order) there must be one
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that comes ~l~e closest to f (z). How are we to find
this best model among all the models of the type
chosen? I

The reader who is versed in such things or who
at least has paid some attention to the section
"A Glimpse of Criteria" will recall that it is nec­
essary at first to select a measure of closeness

Fig. 20

of sticking of one function to the other, a crite­
rion of closeness of the two functions. The dis­
cussion of the various measures possible is beyond
the scope of the book, instead we will consider
some fruitful idea of choosing the most suitable
model. .

Notice that the function / (z), which we want
to reproduce, if only approximately, is unknown.
All the information about it is contained in the
cloud of experimental data and those consid­
erations on which the model chosen is based.

If we draw the curve of one of the possible re­
alizations of the model of the type chosen, Le.
at some definite numerical values of the coef­
ficients, then the curve will pass in some way or
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other among the points of the cloud. We will
now connect each experimental point with the
curve by a segment parallel to the coordinate
axis, as in Fig. 21. The collection of these small
segments shows to what extent the curve drawn
corresponds to the experimental points.

But the segments are many and they differ
in length, and so we will have to think of a way

ftx)

x
Fig. 21

of using the ensemble of these segments to turn
it into one number, a criterion.

For the ordinate axis the upward direction is
positive, so that the length of a segment from
the point to the curve will be positive when the
point lies above the curve, and negative when the
point lies under the curve. The algebraic sum of
the segments, therefore, does not characterize
the quantity of interest to us, and so we want some­
thing better.

We may take the sum of lengths of the seg­
ments without the signs, i.e. the sum of their
magnitudes, but a much more convenient meas­
ure is the sum of squares of the lengths. Accord­
ingly we must choose a model, or rather those

10-0t621
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coefficients (to, at, a 2 , as, .. at which the
sum of squares of lengths will be minimal.

You may well ask why we should use the sum
of squares, rather than the sum of fourth powers
or some other function of lengths.

I t was Legendre who suggested in 1805 in his
article "New Methods for the Determination of
Comet Orbits" to use the sum of squares (the least
squares method). He wrote: "After all the condi­
tions of the problem are satisfied, it is necessary
to determine the coefficients so tha t the errors
would be the smallest of the possible. To this end,
we have developed a generally simple method
consisting in finding the minimum of the sum of
squares of the errors."

You see thus that Legendre did not choose to
explain why he had selected the sum of squares.
However, behind this selection there are rather
profound ideas. The method of selecting the coef­
ficients for a model based on minimization of
the sum of squares of deviations is called the
method of least squares.

But soon the great Gauss in a number of works
gave a probabilistic justification of the method
of least squares. In the earliest works the method
was closely linked to the normal distribution of
measurement errors and Gauss justified the meth­
od using the concept of maximum likelihood.
But the most critical properties of estimates of
the coefficients turned out to be independent of
distribution.

We will consider the Gauss's approach with
reference to the same cubic regression equation.
We will denote the estimated values of Clo, aI' at,
and a3 by ao, aI' a2 and as, respectively. Observa-
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tions yielded n pairs of values (Xl' YI)' (x 2, Y2)' .
• . , (Xll , y,J,., the corresponding points in the

plane (x, y) forming the cloud. We will assume
that Xl' X 2, ., X n are determined without er­
ror: in physical, economic or engineering prob­
lems the variable x is often defined by the in­
vestigator, and so it may be time, established
temperature or whatever. Thus, the random de­
viations from the desired precise dependence

y = cto + alx + ct2xZ + ctaT

for each point (Xh Yi) are vertical segments in
Fig. 21, given by

6. = Yi - (ao + (XIXi + a2x~ + ctax~).

We will now treat the finding of ao, at, a2 ,

and a3 as a hazardous game in which you can­
not win but can only lose. We will take the measure
of loss to be ~6~, so that the loss will be the larg­
er the larger the uncertainties 6;, Le. the lengths
of the segments.

Let us now formulate the main requirements.
First, the estimates must not contain system­
atic errors, i.e. the mathematical expectation of
all must be equal to all. This also means that
expectations of each of 6i must be zero. Second,
the expectation of the total squares of losses,
i.e. the variance of the total error, must be the
smallest among all the other estimates.

It turned out that the estimate meeting these
two requirements yields exactly the coefficients
derived by the method of least squares.

Contributors to the method of least squares
are Laplace, Chebyshev, and Markov. The latter
gave a consistent generalization of Gauss's re-

to*
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sults, so that nO\\T the result.s are generally
known as the Gauss-Markov theorem.

Computation using the method of least squares
comes down to solving a system of linear alge­
braic equa tions. There are 110 princi pal difficul ties
here but there are some notable achievements in
computational procedures, which however lie
beyond the scope of the book.

The Art of Hope
A boxing champion running into a stray dog
stops: although the boxer is far stronger than the
dog, he does not want to be attacked by it. Of
course, he is optimistic and neither touches the
dog nor seeks refuge in a doorway, but the boxer
cannot be sure of the dog's actions and waits
gathering information to predict its behaviour. A
tamer, too, is optimistic when he pokes his head
into a lion's mouth, whereas the public still do
not exclude the possibility of a disaster, other­
wise there would be nothing to stun them.

The Russian psychologist V. Levi wrote about
the art of hope in his book Hunt for Thought:
"We are the product of the flexible, mobile, mul­
tidimensional world of living nature swarming
with versions, overflowing with possibilities and
contingencies. There is Tittle in this world on
which you can rely completely, and it is exactly
for this reason that living things had to learn
the art of hope. I t was a hard school. Those who
had hoped poorly died the first.

"To hope well means to hope incessantly. And
not rigidly and dully, but flexibly. Not blindly,
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but vigilantly and correctly. 1"0 hope well means
to choose well what you can rely on. This means
to be able to change you choice in time. This
means to be able to weigh chances, assess prob­
abilities. In short, to be able to foresee and rely
on the foresight.

"The art of hope is the art of achieving a goal.
But goals may differ widely.

"The art of hope is necessary to swallow div­
ing to intercept a midge, and for a goal-keeper
waiting for the ball in the right angle of the goal,
and for a gunman aiming at a flying target."

When a girl tells fortunes by a camomile­
"he loves me, he loves me not"-or listens to the
muttering of a Gipsy, and bases her hopes on
this, she does not master the art of hope.

All superstitions are based on the same prin­
ciple: hope proceeds from random coincidences,
facts not related by some cause-effect ties. Con­
sider a funny example from modern sporting life.

A day before the final match of the 1976
USSR Football Cup a football expert wrote in
the newspaper Sovietsky Sport (Soviet Sports) of
3 September:

"I always like to search for some indications
that could prompt something as to the outcome
of the forthcoming finals. So I put forward the
supposition that the winning team will be the
one that will be the first to score a goal. At any
rate, in recent years the following trend has been
observed: in odd years the winner was the team
that was the first to concede a goal and in the
even years the one that was the first to score."

Next day at the final match the first scorer won
the cup .. The year being even, the author's hy-
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pothesis was verified. But the author, I think,
only put forward his "hypothesis" as a joke, be­
cause the situation here is characterized by the
total lack of any cause-effect relations between
the outcome and the oddness of the year.

And still coins or dice continue to be used to
tell fortunes and the results are claimed to bear
some import. But the occurrence of head or tail
now exerts no influence whatsoever on the chanc­
es of having, say, a head in the next toss for a
model with equiprobable and independent out­
comes. Should the head appear repeatedly several
times, a gambler may become suspicious of the
very model and of the assumptions that the model
is equiprobable and independent, although such
a situation is possible in principle.

I have repeatedly performed this experiment
with my students: if, say, in coin tossing head
(or tail) appeared seven, or ten times in succes­
sion, then nearly all the audience would vote for a
revision of the equiprobability assumption and
often suspected some cheating on my side, and
with good grounds.

In actuality, a sequence of independent trials
provides no information as to the future of equi­
probable outcomes and only meagre information
with unequal probabilities, the information being
the richer the larger the difference between the
probabilities of outcomes. The above reasoning
may be viewed as appeal to use common sense in
playing head or tail, dice, or roulette.

But the book is no guidance as to how to be­
have in a gambling-house. In real life events are
greatly influenced by previous events, and it is
on this dependence that the art of hope relies.
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Newton's laws enabled planetary motions to
be described precisely. Real gravity forces deviate
but slightly from the famous law. The travel of
a shell fired from a gun can also be predicted
with sufficient accuracy, but still much lower
than the motion of the planets. Here a number of
factors are involved that affect the trajectory of
the shell's motion as compared with the calculat­
ed one: fluctuations of weights of the shell and
explosive, distortions of the shape of the shell
and the gun, atmospheric and gravitational inho­
mogeneities, and so Oll. As a result, shells fired
at a long distance hit not very often, they explode
in ··the vicinity of the target. But it should be
stressed that the trajectory can be predicted
fairly accurately and for skilled gunners hitting
8 stationary target is a long solved problem.
With a moving target the situation is different.

You will have tried to shoot a running game or
hit with a ball a scuttling boy in some children's
game and you know that it is necessary to aim
with a lead. But you do not know for sure how
the target is going. to move from now, and so you
just hope that the target will get to where you
aim.

Many misses in our life, in the direct and figu­
rative meanings, show unfortunately that the art
of hitting a moving, changing target-the art
of hope-does not come easy, and even great
experience does not save from failures.

In 1948 Norbert Wiener published his book
Cybernetics: or, Control and Communication in the
Animal and the Machine that revolutionized our
ideas of control. One of the problems that Wiener
laid at the foundation of general concepts of cy-
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bernetics was gunfire control. Wiener's reason­
ing was used as a basis of very many later works
on control in situations where some prediction
of the object under study is necessary. These
ideas were further developed in his later book
Extrapolation, Interpolation and Smoothing of
Stationary Time Series (1949).

The reasoning was as follows: if a plane moves
steadily and along a straight line, then from the
radar indications of its location and velocity, the
point could be predicted where it would be in
time T required by an antiaircraft shell to cover
the distance from the gun to the aircraft, and so
to aim the gun to that point. But the plane does
not move steadily and along a straight line even
during a short time 't and its trajectory is random
and not amenable to unique prediction.

But examination of recorded trajectories makes
it possible to construct a mathematical model
of the trajectory, and for the model Wiener took
the stationary random process. Roughly speak­
ing, stationarity implies that the stochastic be­
haviour of the process is homogeneous in time.

Recall building blocks from which desired
functions can be constructed. In terms of them,
it is convenient to view a sum of simple harmonic
motions of various frequencies (not necessarily
multiples of some fundamental frequency), whose
amplitudes are independent random variables.
Any stationary random process can, to within
any accuracy, be approximated by a similar
trigonometric sum.

Let us now return to the problem. The gunfire
controller must determine the direction of the
point where the shell will intercept the target
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and wait for the command. The difficulty here
is that the trajectory of the target is random,
since each coordinate (e.g. the distance and azi­
muthal angles of the target) is one of the many
realizations of a stationary random process. Con­
sider anyone of the coordinates. Let the signal

Controller
y(/)=s(/) + n(t)

Fig. 22

~------. Command
signal

coming from the radar to the controller be
y (t), it representing a combination of the signal
corresponding to the observed coordinate of the
target trajectory s (t) (called the legitimate sig­
nal) and the noise n (t). Noise is always pres­
ent-it is the receiver noise, atmospherics, and
so on. To a reasonable accuracy, such noise can
also be considered realizations of some stationary
random process, which is, of course, different
from the legitimate signal and statistically inde­
pendent from it. Thus, to the controller (Fig. 22)
comes the combination
y (t) == s (t) + n (t).

The task of the first block-the predicting

filter-is to produce a signal; (t + r) that is as
close as possible to the real value of the signal
s (t + r) at the time t + 't of meeting.

In other words, we must select the signal

; (t + r) providing the best approximation to
the real coordinates of the target in the time 't

the shell takes to reach the target.
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I t is worth stressing the specific features of
the approach just described. If the signal s (t)
(and hence the target trajectory) were known for
sure, the problem would present no difficulties in
principle, as it would reduce to some algebra. If
the noise n (t) were known exactly, then, since
the observed signal y (t) is known and s (t) =
== Y (t) - n (t), then s (t) would also be deter­
mine..l exactly, and the problem would again be
trivial. In the other extreme situation, when a
priori there is no information about s (t) and
n (t), there also is no hope of having a good esti­
mate proceeding from s (t) + n (t) alone. The
latter situation is like die tossing, where the
future is in no way conditioned by the past. Engi­
neers, however, know a thing or two about the
structure of noise and about possible trajectories
of airplanes or other targets, and it is this knowl­
edge that enables them to work out a model in
question.

Now we must, of course, refine the criterion of
quality of prediction or the criterion of closeness
between the actual value of the signal s (t + -r)

and the estimate; (t + r) predicted by the fil­
ter. As we have repeatedly mentioned earlier in
the book, the criteria to be suggested are legion.
But if we are to stay wi thin the logic of least
squares, we should assume as the closeness cri-

terion for s (t + r) and; (t + r) the expectation
of the square of their difference

p ~ M [s (t +r) -,; (t + -r))2.

The selection of the best prediction will then
reduce to the selection of the filter to minimize
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p. I t is worth noting, of course, that it is not
always tha t such filter will give the best predic-

tion, since it only gives the values of ~ (t + r)
that yield the best prediction of average only.
But here we are in the realm of randomness, and
so we could hardly come up with something that
would always provide the optimal prediction.

The problem of the best prediction of the be­
haviour of a stationary random process lends itself
to a graphic geometric interpretation.

The general concept of' the linear vector space
enables us to view the ensemble of random var­
iables (to be denoted by Greek letters) with zero
expectation and limited variance as a Hilbert
space, such that the scalar product of the random
variables-the vectors in our space-is the ex­
pectation of their product

(~, 11) == M~ll,

and the square of the vector length is its vari­
ance. The distance between the two vectors ~ and
11 will then be given by

II ~-tlll = VM (S-fl)2.
Let ~ (t) be a random process. At each time t

for each random variable ~ (t) we can find a vec­
tor in the Hilbert space H of random variables.
The random variable ~ (t) varies with time t,
Le. its vector goes over to another position. As
the time t passes from a to b, the end of the vec­
tor in H describes a curve, and on the set of its
vectors a subspace, say H (a, b), can be span­
ned.

Let now t be the observation time and we are
interested in the value of a random process at
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some future time t + T. Generally speaking, it
is impossible to predict; (t + T) uniquely, and
so we should be happy with an optimal estimate
of these values. Geometric interpretation brings
out the solution at once. Let us construct the
subspace H (a, t) so that it answers to the past
(up to the time t) values of the random process.
If 't > 0, then the vector ~ (t + ~) is the "fu­
ture" of the process ~ (t) at time t + 't and it, gen­
erally speaking, does not enter the "past" subspace
H (a, t). Otherwise, exact prediction would be
possible. The best approximation for the future
value ~ (t + r) in the interval (a, t) will be the
projection of ~ (t + 't) on the past subspace
H (a, t), and the length of the perpendicular from
the end of ~ (t + 't) on H (a, t) will be equal to
the error of prediction.

If ~ (t) is a stationary process that behaves in a
way common for practical applications, then
these geometric arguments enable relevant expres­
sions for the prediction to be written and even
appliances, such as predicting filters, to be con­
structed to realize the best prediction.

The mathematics of determining the behaviour
of the best linear predicting filter, which was
suggested by Wiener, is rather complex, drawing
on available methods of functional analysis, in­
tegral equations, and functions of complex var­
iable, which lie beyond the scope of the book.
I t is only worth noting here that the prediction
methods for the theory of stationary random proc­
esses were developed in 1939-1941 by the prom­
inent Soviet mathematician Kolmogorov, but
it was Wiener who not only put forward his theory
independently, but also applied it to an impor-
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tant technical problem. Now a vast body of liter­
ature on random processes is available. It coy­
ers weather forecasts, autopilot control, blind
landing of aircraft, marketing and logistics, short
and long-term planning in economics, and what
not.

The methods originated by Wiener and Kolmo­
gorov are tools for studying a wide variety of
problems in radiophysics and radio engineering,
atmospheric physics, control theory and so on.
As is often in science, a mathematical tool that
has come from physics, engineering, biology or
other branches of science at a later date finds
uses in other fields.

A Soviet mathematician, A. Khinchin, worked
out the mathematical tool to treat a class of
stationary random processes in 1935. In the
1940s his technique was effectively employed in
radio engineering to sol ve the problem of filtra­
tion, i ,e. separation of the transmitted signal
from noise. The process is essentially like this.
To the input of a receiving device comes a de­
terministic useful signal s (t) and noise n (t),
which is a stationary random process. The receiv­
er must single out the signal while suppressing
the noise as far as possible. The task at first
was to calculate the signal-to- noise ratio at the
input. Later on, the problem became more com­
plicated: it was necessary to select the waveform
and receiver response to maximize the signal-to­
noise ratio at the output. At later stages, the
problem was formulated in a more general way:
to select the receiver response so that to optimize,
according to some criterion, the relation between
signal and noise characteristics at the receiver
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output. In the process, not only noise n (t) but
signal s (t) as well are treated as stationary ran­
dom processes. The situation where .~ (t) is a de­
terministic signal may be viewed as a special
case of a stationary process. Now we can make
use of the Wiener-Kolmogorov theorem, assum­
ing that the predictiqn time is 't = 0 and that
the problem comes down to designing a receiver
(mathematically, in selecting an operator) such
that the output signal will, in terms of the method
of least squares, differ from the useful signal at
the input as little as possible, i.e, when the
expectation of the square of the signal deviation
at the output from the useful signal at the input
will be minimal. The problem is solved using
the same methods as the above-mentioned pre­
diction problem.

Struggling for a Record

The previous section dealt with the prediction of
future positions of a moving object. We will now
discuss other prediction problems.

An ambitious sprinter puts in for top results
in ioo-metre run. His personal record is 10.4 sec­
onds, and he is eager to cut at least two tenths
of a second. But these last tenths of a second come
especially difficult, and hence a severe routine
is necessary. Clearly, the result is a function 'of
time spent on training and the diet, both can be
varied within reasonable limits. So a happy mean
is necessary. For one thing, the runner should
take cafe of his weight, and hence the number of
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calories consumed, on th2 other hand, he should
have enough energy for his training, Le. enough
calories. So the result is a function of the daily
consumption of calories, both overnutrition and
undernutrition being bad for his performance. It
looks like the plot of the variation of 100-rnetre
run time with the number of calories is parabola­
like, i.e. has one minimum.

If the sportsman puts in insufficient time into
his training, he will not be in good shape. On
the other hand, if he puts in 15 hours a day,
again no good results can be expected-fatigue
will result in flabbiness, indifference-no records
for you. Therefore, the result in terms of seconds
will again vary with the duration of daily
training sessions as a parabola.

I t should be stressed that our reasoning sug­
gests that there exists the best training system
and it only remains to find it. To be sure, train­
ing requirements are highly specific and there
does not exist a solution common for all the
sportsmen. Therefore, the search for the best
procedure must only be based on observations
specific for a given runner,

We will now make use of the ideas of regression
analysis. The result 't is postulated to be a func­
tion of t\VO variables or factors, the duration
of daily training sessions, t, and the number of
calories daily consumed by the sprinter, v:

't = f (t, v).

The Iorm of this function is unknown but we
may well aSSUln6 that it is a paraboloid given by
the equation

or == ~o -t ~lt -t- ~2V + ~11t2 + ~12tV + ~22V2. (~)
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This is a regression equation, which only differs
from those considered above in that it is in two
independent variables t and v, not one.

If we knew the coefficients ~o' ~l' ., ~22'
then we could easily design the training system
for best results, i.e. find the pertinent values of t
and v. In other words, we could determine the
coordinates to' Vo of the lowest point 'to of the
paraboloid. The coefficients being unknown, the
sprinter and his coach can only make observations
to be used to work out approximate values for
the coefficients and hence approximate values
for to and Vo.

Each experiment takes a long time, actually
several weeks, for the sprinter's organism to adapt
to the new procedure and for the results to be
obtained for this procedure. Therefore, it is im­
possible to try very many forms of the procedure
but it is desirable to arrive at the optimal one as
quickly as possible. What is more, for a chosen
procedure we should admit some unpredictable
things: the sprinter may get not enough sleep,
he may be under some stress, the weather may be
uncooperative, and so on. In short, there are
many impacts not covered by the model selected
that may predetermine the spread of results for
the same training procedure. We wil l take this
spread to be random, and so will make use of
statistical techniques in estimating the coeffi­
cients. The shrewd reader may now have surmised
what I am driving at: the coefficients are .best
estimated using the method of least squares. In
the previous sections the method of least squares
was used for functions in one variable, but several
variables change essentially nothing both in con-
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cepts and in the formalism: we again must solve
a system of algebraic equations for the unknown
coefficients ~o, ~l' 0' ~22. The only knowns
here are observation results: for each given train­
ing procedure (t i , Vi) the sportsman will make
several tOO-metre runs and show the results
till, t'i2), Tim), which may generally be
different.

Geometrically, the picture is like this: on a
plane points are marked-the procedures test­
ed-and over each of them we locate a point
whose vertical coordinate is the result shown.

Now we will have to construct such a surface
of paraboloid (mathematical model) that would
best correspond to the points (t, v, 't) obtained,
and then on this surface we find the minimum 'to

and its coordinates (to, vo), which will be taken
to be the best training procedure.

Again the shrewd reader will have noticed that
we in fact have here two problems at once: the
identification, i.e. the construction of a model
from observation results, and the optimization,
i.e. the selection of the best procedure. Let us
analyse these problems one after the other and
take note of what we have done to solve each of
them and what conclusions are to be drawn
from the above discussion. At first the identifi­
cation.

We know the sprinter's performance for some
of the observed procedures. The guy and his coach
are, of course, interested in that eternal question,
"What would be if .. .?"-in this case if they would
choose other training schedules and diets, for
example at 4,800 calories and 5 hours of train­
ing a day. If a mathematical model is satisfac-

11-01621
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t.orily represented by the experimental evi­
dence available, when the model is said to be
adequate, then it provides the answers. To this
end, into the expression
't == bo + bIt + b2v + bl I t 2 + bl 2t V + b2 2V 2 (b)

we will have to substitute the values t and v
corresponding to appropriate procedure and, af-
ter SOUle algebra, to arrive at T === T (i, v). IIere t
and v are fixed values: t == 5 hours, v==
== 4,800 calories.

Note that in the two last formulas (P) and (b),
which are similar in form, the coefficients are
denoted by different, but again similar, letters.
This is not without purpose: in the first expres­
sion the coefficients are some numbers, and in (b)
coefficients are found by the method of least
squares, and they are thus estimates of appropri­
ate coefficients in (~). Such a system of notation is
qui te common in regression analysis.

But if instead of exact values of coefficients
we substitute their estimates, then instead of the
value of T we will only have its estimate, i.e. its
approximation. The estimate will be the more
accurate the less is the number of observation
points on which it is based.

Consequently, from experimental data it is
possible to construct the regression equation (b)
and use it to predict the values of the parameter
of interest (in this case, the time T taken by the
sprinter to cover the 100 metres) at the points
(procedures) lying within the region under study,
the accuracy being the higher the larger the num­
ber of observation points used in constructing
the regression equation.
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Does the accuracy of prediction here depend on
the arrangement of the points where observa­
tions have already been made? The answer is
by no means self-evident and calls for some spec­
ulation.

I t is to be noted that in discussing the sports­
man's routine we have only selected two fac­
tors-the duration of training and the number
of calories. But, of course, the condition of the
sprinter and his potentialities are dependent on
other factors as well. Say, if his -training session
lasts 6 hours, these may be put in from 9 a.m. to
3 p.m. without a break, or these can be split
into two sessions three hours each, or else into
three two-hour sessions, obviously, with differ­
ent results.

Besides, trainings themselves may be quite
different: each sportsman should receive compre­
hensive training, so that a runner's training should
include a good deal of other track and fields,
gymnastics and weight-lifting.

As far as the diet is concerned, it is not only
calories that matter, the diet should be varied,
including proteins, fats and hydrocarbons, vita­
mins and trace elements, and the percentages of
these can be different. Lastly, apart from train­
ing and diet, many other factors determine the
condition of a sportsman: sleeping hours, age,
and so on, which, although not expressible in
numbers, are very important. For example, the
morale or the general cultural level.

Thus, the daily routine and the general condi­
tion of a sportsman are described by a fairly large
number of factors, thus complicating the prob­
lem of selecting the optimal training procedure.
11*
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Let us leave our sportsman .Ior a while and
turn to the problem of selecting an optimal work­
ing condition for a functioning plant at a fac­
tory.

The observed factors here will be the rated pa­
rameters of the process, e.g. temperature, pres­
sure, flow rates, concentrations of substances in­
volved in physical and chemical reactions. Under
normal operation, their values are not set arbi­
trarily.

An example considered in some detail above
was the electric desalination process (EDP). But
we have only discussed the input-output relation,
or rather the amounts of salts at the input and
output of an EDP. In actuality, however, the
efficiency of desalination process is dependent on
many factors, say, on the temperature of raw
material, the amounts- of flushing water and de­
mulslfier, the electric field strength, and the time
of residence of the emulsion in the electric field.

With more than two factors involved, the graph­
ic representations become impossible, although,
as is said above, both the associations and ter­
minology remain: we now speak about a multi­
dimensional factor space and a surface in that
space that reflects the dependence of the parame­
ter of interest (e.g. the amount of salts at the
EDP output or the i00-metre run results) on all
the factors involved. This surface in the theory
of experiment is referred to as the response sur­
face. What is meant here is the response of the
object in question to the input in the form of
some set of factors.

In the case of identifica tion the task is thus to
construct the equation of the response surface
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(it is called the response function) and to test the
suitability, or adequacy, of the equation. Should
there be no adequacy, everything must be iterat­
ed: think of some other mathematical model,
test its adequacy, etc., until adequacy is achieved.
It is only then that the equation derived
can be used to predict the values of response at
points within the region studied, which are, of
course, different from those used to estimate the
regression coefficients.

Vices of Passiveness
Observations of cometary motions, technological
processes under normal operation, achievements
of a sportsman with arbitrarily selected training
routines-these all are examples of passive exper­
iments.

A torpid, inert, diffident, lifeless person is
called passive with a tinge of deprecation. But
the researcher is not always to blame for passive­
ness. An astronomer making his cometary obser­
vations can only passively registrate coordinates
of a comet or vividly describe the picture. He
can in no way exert any influence on its motion.

A processing engineer or operator manning a
functioning installation can and must change
the parameters of the process, but these changes
are strictly prescribed by manuals and are quite
insignificant. Many installations are fitted with
an automatic controller, which maintains the pa­
rameters at a nearly constant level. Under these
conditions the operator is a pretty passive figure,
his functions being mostly reduced to logging.
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Based on the findings of a passive experiment,
we can derive the regression equation, and, as we
found in the previous section, predict the response
function from the regression equation within the
region under study. Determination of values of
the function within a region from separate known
values at some points is called interpolation. To

Fig. 23

be sure, you have encountered the term before.
For example, in dealing with tables of logarithms
or trigonometric functions, when it was necessary
to work out the value of a function at a point not
included in the table, we use linear or quadratic
interpolation. But quite often it is necessary to
know the behaviour of a response function beyond
the region under consideration, i.e. to extrapolate
the values. Could the regression equations be used
to solve extrapolation problems?

In 1676 Robert Hooke published his law estab­
lishing a relation between the elongation of spring
in tension and the acting (pulling) force involved.

Hooke's experimental arrangement was quite
simple: to a suspended spring a force (a weight) is
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applied and the elongation is measured (Fig. 23).
Ever larger weights are applied and the results
are put down. If in a plot the abscissa axis is
elongation and the ordinate axis is weight, then
the experimental points will thickly lie along a
straight line (Fig. 24). This strongly suggests that
the behaviour of the response function (elonga-

Load

Fig. 24

tion-Ioad dependence) can be interpolated between
the points using a linear curve, i.e. we assume a
linear dependence between the elongation and
the load within the load range in question.

But can we predict the behaviour of the response
function further, beyond the load range proved
experimentally, by continuing the straight line?
It is highly doubtful that we can. In fact, further
experiments showed that beginning with some
values of load the linearity is disturbed, and so
does the elasticity. You will have got acquaint­
ed with the plot in Fig. 25 in your physics course,
and it only serves here to illustrate the hazards
of carefree extrapolation.

Recall the desalination section. Figure 12 is the
plot of the relationship between salt concentra­
tions at the input and output of the EDP within
the interval from 100 to 1,000 milligrammes per
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litre. Over the entire range the regression equation
gives a straight line. But what is the behaviour
below 100 milligrammes per litre? Can we make
predictions within the range 0-100 milligrammes
per litre by using the same equation, i.e. by

Ultimate
strength

Limit of
proportionality

Elongation

Fig. 25

continuing the line to the left till it cuts across
the ordinate axis?

We have already discussed the question. We
cannot. of course. Otherwise, it will give us
15 milligrammes per litre at the output with no
salt at the input, a result without physical mean­
ing. Clearly the curve must pass through the
origin of coordinates, and so the curve will look
like the dash line in Fig. 12. Consequently, here
too the prediction of the input-output depend­
ence appears erroneous, i.e. we cannot find the re­
sponse function in a region where there are no
experimental points using the regression equation
derived from the results of a passive experiment.

Your refrigerator may be an object of some in­
teresting research, if you care for it. You may
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be interested in the variation of the temperature
inside the refrigerator with the ambient temper­
ature, the number of openings of its door, the
amount of stuff in it, or any other factors subject
to random variations. So you place a thermome­
ter into tne refrigerator and begin to put down
its readings. Much to your surprise you will find
that whatever the range of the variation of the
parameters of interest {ambient temperature,
amount of stuff, etc.) the temperature within the
refrigerator-the response function here-only
varies within a small interval from plus one to
plus two degrees, and these variations are even
difficult to detect with the help of your house­
hold thermometer. Thus, whatever the varia­
tions of the external factors, the variations of the
response function are negligible and comparable
with errors of measurement.

If now instead of your refrigerator you want to
study a complicated process and you find the
same picture, i.e, the output is essentially inde­
pendent of the variation of input parameters,
there is no way of constructing a reasonable
mathematical model of the process based on the
findings of a passive experiment. The situation
generally implies that the process is so adjusted
that it does not respond to permissible variations
of input parameters. The experimental findings
here appear to be concentrated within a small
neighbourhood of one value of the response func­
tion, and we cannot solve any prediction prob­
lem, be it interpolation or extrapolation.

We will now look at some other aspects of the
passive experiment, that set limits to its mean­
ingful use. The factors may appear to be connect-
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ed , or correlated, in some way or other. For
example if we take a closer look at the sprinter's
results, we will find a dependence between the du­
ration of his training session and sleep he man­
ages to grab, the amount of liquids consumed and
the total amount of food, and so forth. This does
not make our life easier. Remember that finding
the coefficients of a regression eqnation by the
method of least squares involves solving a system
of linear algebraic equations. The coefficients of
the latter are given in terms of the values of the
factors, and their mutual dependence, deter­
ministic or statistic, may make the matrix of the
system ill-conditioned. The troubles involved
in this case have already been touched upon in
"Caution: the Problem Reduced to a Linear One"

Mutual dependence of estimates of the regres­
sion coefficients may also give rise to troubles.
Consider this in more detail.

Suppose we have a simple regression equation
with only two factors Xl and x 2 :

y == O.2XI - 10x2 • (*)

Increasing the factor Xl here increases y, and
increasing X 2 decreases y. The sign at the coef­
ficient of the factor thus points to the direction
of variation of the response function with increas­
ing factor." The val ue of the coefficients here is,
of course, a measure of the rate of variation of
the response function as an appropriate factor
changes, and in equation (*) the factor X 2 is 50
times more "influential" than :r t •

In consequence, the absol ute values of the coef­
flcients indicate the relative contribution of the
factor to the respoll:)e function, And if, say, the
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range of varia lion of the factors were the II ni t
square 0 ~ Xl ~ 1, 0 ~ x 2 ~ 1, then equation
(.) could be simplified by discarding the first
term, since its influence on the response function
is negligible. Then

y = -10x2 •

The relative error here is not higher than 0.02.
Let us now write a similar equation in the gen­

eral form

y = b1x1 + b2x 2 ,

where bI , b2 are estimates (not exact values) of
regression coefficients. If bl and b2 are indepen­
dent as random variables the picture will be the
same: the magnitudes I bi I and I b2 I will indi­
cate the rate of variation of the response function
with increasing Xl and x 2 , and their signs will
indicate the direction of this variation. But if bi

and b2 are interrelated somehow, the picture is
violated, i.e, uncertainties of determining one
coefficient may influence the values of the other,
even change its sign. The coefficients are now no
longer a measure of the relative contribution of
the factors and we cannot arbitrarily exclude from
the equation the factors with "small" coefficients.

And the regression equation itself should not
be scrapped. It may be of use in predicting the
values of the response function within a region in
question.

To sum up, passive experiment has many vices.
To be sure, if there is no other way out, e.g.
in cometary studies, a passive experiment may be
a necessity. But in many problems in science and
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technology we can forego the role of passive obser­
ver and pass on from passive experiment to ac­
tive one.

The Active vs the Passive

We have already exposed the vices of passive ex­
periment. But how can we eliminate them? We
can do much to make experiment more ef­
fective.

Let us see what the experimentalist who wants
to be more active has at his disposal, what he
can change, select, discard, and what he should
strive for.

Note that the primary objective of observa­
tions, experiments and trials is obtaining infor­
mation about an object, process, or phenomenon.
Accordingly, the active experimentalist's task is
to acquire the desired information with the low­
est costs and shortest time possible, or, if
funds and time are short, his task is to accumu­
late as much information as possible given the
constraints on funds and time.

But what information is he after? Natural phe·~

nomena are infinitely varied, objects of technolo­
gy are involved, and there is, it seems, no useless,
absolutely useless information. The philosophy
behind the passive experiment is exactly like
this: whatever we find out is good. The active
experimentalist is no idler, he is keen on his
dear problem and information he seeks is not
just any data, but what will enable him to tackle
his problem.
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The active experimentalist is thus engaged in
collection of information that, for one thing, is
required to sol ve the problem at hand, and for the
other, is sufficient for the purpose. If information
is scanty, it should be obtained, and if it is im­
possible to obtain, then approximations will do,
but incompleteness and limitations should be
clearly perceived. Excessive information may he
not only useless, but at times harmful, since
it is not only a waste of time and funds, but
may also be a spurious background against
which useful information can be obliterated, or
even it may give rise to prejudices.

The selection of information should thus be
based on clear logical analysis of a problem. Speak­
ing about information here we should under­
stand it in a wide context. The very formulation
of the problem, say, is also a piece of information
about the problem.

The consistent analysis is by no means easy, not
only the analysis of an experiment, but the very
idea of such an analysis is hard to grasp.

Suppose a housewife wants to make a soup.
What is she to strive at? Clearly, the soup should
contain the appropriate amount of salt, vegeta­
bles should he boiled thoroughly but not cooked
to a pulp, spices should be added in due time.
But the soup may turn out to be a failure.

If you were asked to taste some kind of soup
cooked by different housewives, would you be
able to tell which is the best? Hardly, even if you
would not be hampered by your desire not to
hurt one of the women. And so instead of a clear
answer you would mumble something incoherent.
The difficulties involved have already been dis-
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cussed in "A Glimpse of Criteria", and in the
case of soup there is even more arbitrariness than
in the essay issue.

In the case of a sophisticated piece of equip­
ment, process or chemical product, the snags
are essentially the same, or even more involved.
Which of the characteristics of the process or
product should be taken as outputs? Which of the
measured or controlled variables should be taken
as inputs (in the theory of experiment they are
called factors), the remaining ones being dumped
under the heading of uncontrolled variables?
We have already discussed the problems in­
volved in ore refining, where there are about two
hundred controlled, measured or monitored para­
meters. Unfortunately, the situation is not that
rare.

To be more specific, we will take some practi­
cal problem. In recent years my colleagues and I
have been dealing with it. It is the eternal prob­
lem of lubricants, most of which are derived
from petroleum.

Normally they remove undesirable components
from these oils. But even the most sophisticated
procedures fail to give oils with perfect charac­
teristics required by modern industries. So oils
must be stable to oxidation, noncorrosive for met­
al surfaces, they must reduce wear of friction
surfaces, and must have good washing proper­
ties. These properties are generally achieved
using special-purpose chemical compounds,
called additives.

Small amounts of additives, from fraction to
several per cent, drastically improve the quality
of oils. It would seem that the present state of



The Active vs the Passive i75

the art. in chemical sciences would make it pos­
sible to describe the action of additives, to select
the best additives and their optimal percentages.
But such a theory is nonexistent so far. There­
fore, the set of additives and their concentrations
are selected experimentally.

Let us now concentrate on the optimal ratio
of additive concentrations. Schematically, the

Fig. 26

situation may be represented in the following way.
There is a vessel, or reactor, partly filled with the
oil base, i.e. semifinished oil to be improved
upon and optimized. The vessel has several in­
puts (tubes with cocks) used to feed one of the
additives (Fig. 26). Of course, effective stirring
is provided in the vessel and some of the liquid
is taken away for analysis through the tubes at
the top, the outputs. We will assume that at
each of the outputs some definite parameter is
measured. This scheme may be a model of any
other process: the tubes are inputs, the cocks are
controllers, and other tubes are outputs.
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In this problem we shall achieve optimal ratio
of additive concentrations. But what is to be
understood under the optimal ra tio? Process en­
gineers attach importance to a number of para­
meters. Acid number, say, characterizes stability
of an oil to oxidation by oxygen in the air, and
so it should be made as low as possible. Corro­
siveness, too, should be reduced; it is character­
ized by the percentage of metal corroded away in
a liquid. The corrosive effect of the liquid on
different metals is different. Which metal then
must be taken as a reference?

Oil is known to stiffen with tiIne-its ,.iscosity
increases-thus substantially impairing the func­
tioning of the oil. We should therefore try and
maintain the viscosity at the same level.

Also rubber elements of apparatus swell in con­
tact with oil, and so this swelling must be as
small as possible.

The examples of these parameters could be mul­
tiplied.

An important fact was found experimentally:
if several additives are combined, their effect
can sometimes be higher than the sum of indi­
vidual effects. This effect was called syner­
gism.

Synergism may enable, for example, the resis­
tance of oil to oxidation to be improved or the
consumption of additives to be reduced. In cer­
tain concentrations, however, additives may ap­
pear to be antagonists. The qualitative para­
meters may be interrelated somehow. What is
more, improving one of them may impair another
one. Accordingly, it is impossible to achieve
optimization of all of them. The situation is not
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new, we have discussed it in detail in "A Glimpse
of Criteria"

Commonly, the situation is like this: custom­
ers come up with their requirements, which are
at times contradictory, and it may be either
difficult or impossible to meet them accurately.
And so the designer will have to work out some
compromise.

In this problem we could select some economic
criterion, for example, reduced costs to be mi­
nimized, but now designers follow another pro­
cedure. They take as the criterion a figure of me­
rit of the oil that is the most critical in this si­
tuation, e.g. showing the largest spread in ma­
nufacture or not meeting the specification, or
something of the kind.

For the first time we encountered the problem
of selecting the ratio of additive concentrations,
when the designers were asked to minimize the
acid number. And so it was selected as the figure
of merit, or criterion of quality. On all the other
output characteristics they only imposed some
constraints, i.e, some limits were set within which
the parameter was allowed to vary.

We are now able to formulate the optimization
problem: to work out the additive concentration
ratio such that the acid number be minimal,
given the specified constraints on the remaining
output variables. Later we had to change the
criterion and optimize another output parameter,
but the problem remained essentially the same.

For the problem to be solved, the designer must
acquire. a thorough knowledge of the plant, pro­
cess, and mechanism. Which part of the knowledge
should be used? The question is not easy to

12-01621
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answer: we are in possession of knowledge whose
value and reliability are fairly different. What
literature evidence is to be relied OIl, and what
not? What are we to make of the data obtained
for a similar process but on another installation,
differing in construction, using other raw mate­
rials, functioning under other working condi­
tions? Or maybe we should rely on our own expe­
rience, although it comes from disparate ob­
jects, just because the experience is ours, i.e. it has
repeatedly proved its value.

But suppose we have already chosen the in­
puts and outputs, have onr criterion of quality
and must now set out to perform experiments,
How many experiments are to be carried out? At
what values of input factors, i.e. at what points
within the permissible region of the factor space
should the experiments be done? And in what
succession should the points be covered?

Let us begin with the first question. We wil l
have to take a close look at the region of possible
variation of factors, for which purpose we will
ha ve to vary individ uall y each of the factors,
fairly often in the interval of its variation, the
others being fixed, and thus to exhaust all the
possi hi r it ies. Granted, we will thus find the opti­
mUJl1. Hut just imagine how many ex periment.s
we will have to carry out.

What is important here is the number of dis­
tinguishable values. If factor x varies from 0.1
to 3.3 and is measured to within 0.2, then it
will have

3.3-0.1
U.2 in d ist ingu ishahle values.
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Clearly, we simply do not need more precise mea­
surements. The values of factors to be varied in
the theory of experiment are called levels. The
number of levels for all the factors determines
the number of the values of inputs. If we start
with five additives and each is varied through
five levels, then the total number of states will
be 55 3,125.

Experimental determination of the oil char­
acteristics studied may take two weeks, and to
cover 3,125 points of the factor space will take
more than 12 years, a time during which not only
some of the experimentalists will retire, but also
the oil specifications will change-a natural con­
sequence of the vehement development of technol­
ogy. We are thus not satisfied with an exhaustion
of all the values possible. What is to be done
then? We cannot possibly forego a possibility of
improving upon the oil just because we cannot
go through the entire exhaustion of all the com­
binations.

The situation seems to be an impasse: either to
perform the many experiments taking months and
years, or to perform a small number of experi­
ments and select the best one, ignoring the real
possibility of finding a combination of factors, in
which the figure of merit will be much higher than
the one found randomly. Of course, we can always
justify the situation by saying that we have any­
way found a combination of factors much better
than the one used previously.

With such a trial-and-error method the proba­
bility of chancing upon an optimum is next to
nothing. I t is here that the logical analysis of
experiment comes in. The latter sections will be

12*
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devoted to the analysis of tho possihil it.ies of
the experimentalist and to experiment design,
which is not only much more effective, hut leads
to success.

Who Has the Best View?
In an active experiment we are able to select in
the factor space those points at which we want
the experiment to be done. To he sure, this is a
great advantage over the passive experiment,
where we are at the mercy of chance.

But reasonable, purposeful selection of points
in factor space is not a simple problem, and
most of the publications on experiment design
discuss the selection of points in a factor space.

The points selected and the sequence of expe­
riments at the points selected are referred to as
the plan of experiment, and the selection of
points and strategy to be followed is called the
experimental design.

To he more specific, let us consider a practical
example of automatic correction of concrete mix
composition, a problem of importance for huge
datu projects.

Concrete should be uniform. Cement is more
expensive than aggregate and so the proportion
of cement should be reduced as much as possible.
In hydropower dam projects concrete work ac­
counts for the major share of the effort, which
makes automatic correction of the concrete mix a
must. and justifies the sophistica ted and expen­
sive control equipment used for the purpose.

Before we set out to design the correction sys-
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tern, we should take into consideration the follow­
ing two points. First, the behaviour of a con­
crete and concrete mix is critically dependent
on the humidity of aggregate, for the most part
sand. Second, of no less importance is the granu­
lometric composition of aggregate (sand, gravel,
crushed rock, slag), since in the final analysis
these determine the water requirement of a given
mix, I.e, water content at a given consistency.

Systems have been developed which correct the
water content depending on the humidity of
sand. Such systems may only be effective with
highly uniform properties of the aggregate or
relatively slow rate of their variation and small
fluctuations of the humidity of the coarsest compo­
nent.

But the required uniformity of aggregate prop­
erties can only be provided at small concrete­
mixing plants. On a huge dam project, however,
it is virtually impossible to provide such a ho­
mogeneity.

Some observations show, for example, that the
humidity and granulometric composition of aggre­
gate, especially sand, vary at a high rate. Un­
der these conditions correction systems will be
advisable that follow the fluctuations of humi­
dity and granulometric composition of the aggre­
gate.

The problem thus reduces to the development
of an active system that would automatically
determine optimal wa ter requirement for the
mix.

Clearly, to each combination of aggregate
(granulometric composition) there corresponds
some minimal water requirement, the dom i-
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naling factor here being t.he sand content in
the aggregate.

The dam engineers know from experience the
dependence between the true water requirement
and the sand proportion in the aggregate combi­
nation-it is close to parabolic curve. The extre­
mum of the parabola corresponds to the minimal
water content. If we denote by v the wat.er
requirement and by x the sand proportion,
then they will be related by the empirical rela­
tionship

v = b (z + a)2 + c, (*)

where b > 0, c and a are unknown constants,
which define the shape and position of the para­
bola. As the granulometric composition varies, so
do the position and shape of the parabola, and
point a-the coordinate of the extremum­
shifts.

The problem thus boils down to maintaining
the consistency of the mix within preset limits
and to finding the optimal proportion of sand at
which the water requirement is minimal. The
permissible percentage of sand x varies within
the limits Xmin ~ X ~ XmaX. The unknown pa­
rameter a can be found simply by specifying three
values Xl' x 2 ' and Xa of the variable x within the
interval (Xmin, xmax) and finding experimentally
the appropria te val ues VI' V 2, and va of the func­
tion v. The values of a, b, and c will then be
found from

vt=b(xt + a)2+ c, }
v2 = b (x2 + a)2 -t- c,
v3=b(x3+ a)2+ c.
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Solving these equations is child's play, but then
some complications await us.

In solving the equations it is immaterial what
values Xl' x 2 , and X 3 are chosen within the per­
missible interval (Xmin, xmax). But Vi' v2 , and
v3 are determined experimentally, and hence it
involves some uncertainty or error, which, when
taken into account, may drastically change the
picture.

Let us now simplify the problem a bit, by
putting b == 1, c := 0, so that the equation takes
the form
v == (z + a)2, (***)

and let the independent variable x vary within
the limits from Xmin === -1 to Xma x == +1. This
can be always achieved by simply changing the
variables.

Thus, it is required to find the position of the
extremum of the parabola (***), given that x
varies within the limits --1 ~ x ~ +1. To this
end, we will now simply have to find two values
VI and V 2 at some Xl and x 2 , and it is clear that
these values of x can be chosen arbitrarily with­
in the interval (-1, +1). But what values of XI

are to be chosen, if v is measured with an error?
What is more, now the question arises of the
necessary number of points Xi where measure­
ments are carried out and the number of measure­
ments at each of them. At this point we have
to restate the problem.

We will assume that Vi = (Xi + a)2 are mea­
sured with a random additive error Ei' i.e, mea­
surements give

y, = Vi + Ei.
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The errors in finding Vi lead to errors in finding
a, and it is only natural to take up the problem
of experimental design, where a 'will be found
with the least possible error. Here, just as in the
problem of choosing the optimal strategy of car
insurance discussed earlier in the book, it would
be desirable to exclude the dependence of the
error on a. To this end, its a priori distribution
is introduced, and the error is averaged once more
over this distribution.

Vie will not discuss the formalism involved,
since it is fairly complex. Instead, we will try
to approach the estimating a from a simpler and
more graphic angle.

It would be reasonable to assume that errors
Ei are independent both of Xi and of time .. How
then are we to select the val ues of the independent
variable Xi that provide a high accuracy of find­
ing a? Since Ei are independent of Xi, the rela­
tive error varies with Vi and it is thus clear that
at different Xi the magnitude of the error will be
different. Accordingly, it would be quite reason­
able to state the problem as selection of the val­
ues of x in the permissible interval, such that
the respective errors be minimal.

We do not know where a lies within the inter­
val (-1, +1), and the parabola looks like
that in Fig. 27. Clearly, the function V (z) ==
= (x + a)2 attains its maximum at one of the
ends of the interval (-1, +1), i.e, either at
+1 or at -1, but which one we do not know.
Therefore, we must use both extreme val­
ues.

If we make only two measurements, one at
each of the points x == -1 and x = +1, we
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will have

Yl ::= {-1 + a)2, Y2 == (1 + a)2.

After some algebra we get a == tu, - Y2)/4.
Measurements can be made repeatedly, how­

ever. The same arguments lead us to the conclu­
sion that it would be expedient to perform mea­
surements at the extreme points -1 and +1

o +1 x

Fig. 27

alone, since measurements at internal points of
the interval (-1, +1) may yield relative
errors larger than that for the largest of v (-1)
or v (+1). The reasoning seems to be plausible,
although we have not proved it. In actuality,
it is wrong: the optimal strategy appears to be
quite different. However, the measurement stra­
tegy in which a half of measurements are carried
out at -1, and the other half at +1 (we will
call it suboptimal strategy) appears to be fairly
good. We have already discussed the optimal
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strategy: finding Xi where measurements are to
be performed requires a difficult problem of va­
riational calculus to be solved. Comparison of
the suboptimal strategy with the optimal one
shows that the suboptimal strategy used at 2n
measurements (n measurements at each of the
extreme points of the interval (-1, +1»)
gives smaller root-mean-square errors than for
n measurements in the optimal strategy. This fact
confirms at once two intuitively immediate
points: first, selection of Xi at which measurements
are to be made is important and difficult; second,
in the parabola example the extreme values -1
and +1 are significant.

It is exactly upon this suboptimal strategy that
the mix correction system was predicated.

To sum up: in experimental design or analysis
one should give' careful thought to the values of
an independent variable at which the experi­
ment is to be performed. Admittedly, the above
example does not enable the infinite variety of
situations possible to be predicted, and so we
will return to the question of where experiments
are to be done later in the book.

Step by Step

A team of hikers is going to climb a mountain.
You make yourself comfortable in a chair near
the mountain and watch their progress through
the binoculars. Using some device they mea­
sure the height over sea level. After they have
made 500 paces due east they measure the
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height again and now make their way due north,
due west, and due south. At each of the predeter­
mined points they repeat the procedure, measur­
ing in succession the height at each of the points
of a network with the spacing between the points
500 paces.

Their objective was to reach the summit, i.e.
the highest point in the neighbourhood.

Fortunately real hikers do not follow this pro­
cedure, although experimentalists do. Why such
senseless waste of time?

Admittedly, it is possible to work out the highest
point on a surface by systematically mea­
suring the heights of the points lying on the surf­
ace and selecting the highest. But the reasoning
is far from the only one and it by no means fol­
lows in a natural way from the very formula­
tion of the problem. Just the contrary is true,
it is a bad and unnatural way of looking at things.

Hikers generally make the following: they sur­
vey the neighbourhood, choose the most conve­
nient path to the summit and do not care to ex­
plore all the points within some network.

Experimentalists sometimes rely on exhaustion
of points, either on a network or other array,
because they fail to give a clear formulation of
the problem at hand. One of the achievements of
the theory of experiment is the development of a
clear, consistent analysis of the process of put­
ting forward hypotheses, of formulation of prob­
lems and hypothesis testing.

Let us now return to the oil additive problem.
Remember the important thesis: the success of
statistical analysis is determined by the rigour
of the formulation of the problem.
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In the problem we have to lind the optimal
point, i.e. a ratio of concentra lions of additives
that will yield the best resul t. We will have to
work out a rule to be followed in performing the
experiments, which would enable us to find the
optimal ratio of the additives for a minimal num­
ber of experiments.

The shortest, if not the most convenient, way
to the summit is to leave each point along the
steepest slope. If there is only one summit with­
out smaller, or local, ones the procedure will
lead you to success whatever point on the slope
you start from.

And still there is a difference between the hi­
ker and the additive expert. The latter does not
see his "mountain"-the response surface, which
makes it seem that he is in absolutely different
situation. This is not so, however.

In fact, let us equalize the conditions for the
hiker and the chemist by suggesting the hiker
to climb the mountain on a moonless night. His
strategy will be quite obvious: he will make small
steps to the right and left, forwards and back­
wards, and move in the direction in which the
slope is the steepest. In this way he will reach
the peak. To acknowledge the fact of reaching
the peak is no problem as well: if steps in the
four directions bring him down a bit, it implies
that the hiker is at the summit.

Our chemist should follow the same way in
seeking the optimal concentrations of additives,
and so he should start with experimental de­
sign.

Recall that we have selected acid number as
our optimization parameter, the optimal compo-
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sitioll being one for which the total acid number
is minimal. Accordingly, the independent varia­
bles, or factors, are the very concentrations of
additives, and the output, or response function,
is the total acid number.

In these terms, the problem is to seek not the
maximum (a peak on the surface), but a minimum
(the lowest point). The procedure of looking for
a minimum or maximum is absolutely the same:
an ant travelling from the edge of the brim of a
hat does not care if the hat lies with its brim up
or down (Fig. 28).

If now we make no assumptions as to the struc­
ture of the response surface, our situation will
be hopeless. Suppose we have only two factors,
so that the response surface is a conventional sur­
face. For example, if we do not assume that the
surface is continuous, it may behave in an irre­
gular way, showing no minima or maxima in a
conventional, graphic way If the surface is suf­
ficiently smooth, without any abrupt walls, it
may look like a bunch of grapes (Fig. 29), with
its multitude of minima (mathematicians call
them local), and once you have got in one of
them (say, the one marked in the figure) it is by
no means easy to figure out if there are any other
minima, which are yet lower. It is all the more
difficult. to achieve the lowest point, the g!obal
minimum.

It is hard to believe that nature is so insidi­
ous. I t is only natural, at least at first, to suppose
that the response surface is structured in a simpler
way, without such a multiextremality, although
one cannot a priori exclude a possibility of any
local ex trema.
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Let us mark some point on the surface and look
at its neighbourhood. In the immediate vicinity
a piece of sufficiently smooth surface is virtually
undistinguishable from a patch of plane, and if

Fig. 28

the plane is not parallel to the horizontal plane,
then we can make a step down the steepest
slope. We thus go over to a new point and again
mark off its immediate vicinity, construct a
patch of plane, which is virtually undistin­
guishable from the piece of the surface, and make a
further step down the steepest slope.

We will carryon the procedure until we reach
the boundary of the permissible region or the
plane in the vicinity of the final point will appear
to be parallel to the horizontal surface. This
point, as you remember, is called stationary. If
we place a heavy ball at a stationary point, the
ball will remain at equilibrium there. Besides
equilibrium points there are quasi-equilibria­
saddles or cylindrical surfaces with the generatrix
parallel to the horizontal plane.
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To analyse the behaviour of a surface in the
vicinity of a stationary, but "suspicions", point,
the surface should be approximated by a second­
order surface. After its features have been found,

Global
minimum

Fig. 29

we .can heave a sigh of relief, if we have arrived
at a minimum. But even now we are not on a
safe ground, as we seek the global minimum, and
we should see to it that we are not at a local one.

So you see that the above step-by-step, or se­
quential, strategy is a form of the Wald sequen­
tial analysis, in which the hypothesis (about
the point being stationary, about a minimum or a
global minimum) is tested by experiments. We
will not here dwell on the details of search of ex­
trema.

Where Are Experiments to Be
Staged?
In the previous section we looked at the situation
with one factor and parabolic response function.
And now We wi] l turn to multifactor problems.
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To begin with, consider the simple problem of
weighing any three objects A, B, and C. The
first idea to occur will be to weigh each of the
objects in succession. This is exactly the proce­
dure followed by the traditional natural scientist,
but at first he makes an "empty" weighing to de­
termine the null of the balance. When an object
is placed on the balance an entry +1 is made
into a table, when it is absent on the balance,
-1 is entered. The resul ts will be denoted by

y with an appropriate subscript (see Table 4).

Table 4
Traditional Weighing Procedure for Three Objects

Trial run I A

I
B I c I Results

1 -1 -1 -1 Yo
2 +1 --1 -1 Yl
3 -1 +1 -1 Y2
4 -1 -1 +1 Y3

The experimentalist here studies the behaviour
of each factor separately, i.e. performs uni­
factor experiments. The weight of each of the
objects is only estimated from the results of two
trials, one of them being the "empty" one, the
other the trial in which the object was on the bal­
ance. For example, the weight of object A is

A == Yl - Yo'
Generally, the weighing error is assumed to

be independent of the object being weighed, the
weight being an additive quantity having the
same distribution. The variance of the weight
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of an object will be

D (A) == D (Yl - Yo) == DYt + Dyo == 202
,

193

where (J2 is the variance of any weighing. The
variance for Band C will be the same.

But the experiments can be done using another
plan, a mul tifactor one. I t is ill ustra ted in Table 5.

Table 5

Multifactor Plan of Weighing Three Objects

Trial run I A I B I c I Results

1 +1 -1 -1 Yl
2 -1 +1 -1 Y2
3 -1 -1 +1 Y3
4 +1 +1 +1 Y4

Now we have no "empty" weighing. In the first
three trials objects A, B, and C were weighed
in succession, and in the fourth one all the three
objects together were weighed.

By multiplying the elements of the last column
of the table one after another by the elements
of columns A, B, and C and dividing by two be­
cause, according to the plan, each of the objects
has been weighed twice, we obtain

1
A =2" (Yt-Y2- Y3 +Y4),

1
B=2" (-Yt +Y2- Y3 +Y4)'

1
C=2: (- Yt -Yz+ Y3+ Y4)·

/

13-01621
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Now the weights of the objects are not distorted
by other weights because, say, the expression
for B contains each of A and C twice and with dif­
ferent signs. The variance of the weighing error
will now be

D (A) = D (Yt-Y2-; Y3+Y') := 14 0 2 = 0 2,

i.e, half that of the variance in the unifactor ex­
periment. If we wanted with the unifactor plan
to obtain the same variance as with the multifac­
tor plan, we would have to perform each of the
four unifactor trials twice, i.e. to carry out eight
weighings instead of four.

Consequently, using the multifactor plan each
weight is derived from the resul ts of all the four
trials, which accounts for the halving of the va­
riance.

Exactly the same situation will occur in deal­
ing with a response function that linearly varies
with three factors Xl' X 2, X3.

Remember the desalination process where the
amount of salts at the output of the plant (y)
varies with the amount of salts at the input (Xl),
the amount of demulsifier added (x 2 ) , and the res­
idence time in the electric field (X3). When these
factors vary within some limits, y will vary
linearly with Xl' X 2, and X3.

The regression equation here will be

y = Po + PiXI + P2X 2 + PaX3· (.)

We will vary each of the factors at two levels,
taking the levels to be the largest and smallest
values of the factor with the interval of its varia­
tion and assigning to these levels the symbols
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+1 and -1. I-Iowever, as was pointed out in
the previous section, some Imear substitutions of
variables make it possible for the factor to vary
within the interval (-1, +1).

We can now make use of the design matrix
given in Table 5 to carry out our experiments.
We will only present it in new variables and add
a column of another imaginary variable, x o, re­
quired to estimate the free term ~o.

According to the plan, trials are performed at
the following points of the factor space: in the
first trial Xl is at the upper level, and X 2 and X a
at the lower level, i.e. in the transformed varia­
bles the experiment is done at the point (+1,
-1, -1); in the second trial, x 2' is at the upper
level, and Xl and Xa at the lower level, i.e. at the
point (- 1, + 1, - 1), and similarly, in the
third trial, at the point (- 1, - 1, + 1), and
in the fourth trial, at the point (+ 1, + 1, +1).

After the plan has been realized, four equa­
tions in four unknowns are obtained. The solu­
tions of them will be the estimates of all the four
regression coefficients ~o, ~l' ~2' ~a. In the plan
of Table 6 the number of trials is thus equal to
the number of constants to be determined. Such
plans are called saturated.

Note that we have used not all the points with
"extreme" coordinates, i.e, ± 1, or put another
way, not all the combinations possible. Indeed,
all the possible combinations of three symbols,
each of which takes on the values either + 1
or - 1 will be 23 == 8. We have only used 4 of
them so far. How about the remaining ones?

In order to be able to answer this question,
let us turn to a simpler situation, where we have

1S*
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Table 6

Design Matrix for a Linear Model with Three
Independen t Vartables

Plan

Trial run

I I I
Results

Xg Xl X J Xs

1 +1 +1 -1 -1 Yt
2 +1 -1 +1 -·1 yz
3 +1 -1 -1 +1 Y3
4 +1 +1 +1 +1 Y.

only two factors, and only two levels of them. A
plan given by all the possible combinations of
the two levels (it is called the complete factor
plan) will contain 22 = 4 points, they are repre­
sented in Table 7 by two middle columns.

Table 7

Destgn Ma trix for the Complete Factor Experhnent
of the Type 21.

Plan

X o I Xl I x. I XIX.

+-t -1 -1 +1
+1 +1 --1 -1
+1 -1 +1 -1
+1 +1 +1 +1

If we now carry out experiments according to
such a complete factor experiment, we can esti­
mate all the coefficients in the regression equa-
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tion

y == ~o + ~lXl + P2X2 PI2XtX2·

The last term here is no longer linear. I t con­
tains the product of factors and therefore it is
called the interaction effect, although the inter­
action may be much more complicated. But such
is the currently adopted terminology. The com­
plete factor experiment thus enables us to esti­
mate the coefficients of a more general equation
than the linear equation in two variables.

When there are serious grounds to believe that
~12 == 0, then in the matrix of Table 7 we can
put XtX2 ==- X 3, and obtain the matrix of Table
6, i.e. a plan for a three-dimensional factor space,
although now it is not a complete factor ,plan
for three variables, but its part. Such an experi­
ment is called a fractional factorial experiment,
and its plan a fractional replication, so that Table
6 is a fractioual replication of the complete fac­
torial plan of type 23 , whose matrix is represent­
ed as the second, third and fourth columns of
Table 8.

It is worth noting that the design matrix for
8 linear model in three variables given in Table
6 is part of the matrix of the last plan-it consists
of the four lines of the first four columns and is en­
closed in a dash line box. Therefore, the plan in
Table 6 is called one-half replication of the com­
plete factorial experiment and is denoted 23- 1•

If we change all the signs in this one-half repli­
cation, we will get the lower four lines of the
same matrix, i.e. the other one-half replication.

The beginnings of experimental design date
back to the 1920s, when the English statistician
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Table 8

Design Matrix for the Complete Factorial Plan
of Type 23

1 +1 +1 -1 -1 -1
2 +1 -1 +1 -1 -1
3 +1 -1 -1 +1 +1
4 +1 +1 +1 +1 +1

............................................
5 i+1 -1 +1 +1 -1
6 i +1 +1 -1 +1 -1
7 ! +1 +1 +1 -1 +1
8 j +1 -1 -1 -1 j +1i·..··-..r···~- ..r··---··T--......·-~I

-1 +1 +1
+1 -1 +1
-1 -1 +1
+1 +1 +1

-1 +1 -1
+1 -1 -1
-1 -1 -1
+1 +1 -1

Sir Ronald Fisher published his first works on the
subject. His ideas were developed in the 1950s
by the American mathematician J. Box and his
co-workers, and it was these works, which were
clearly applied in their nature, that contributed
to the wide recognition of the theory. But the ter­
minology of Box does not appear convenient, be­
cause many known concepts for which there are
already established terms in control theory or
statistics were called differentl y.

The complete 23 factorial design (Table 8) ena­
bles us to estimate the coefficients of the regres­
sion equation that contains three pairwise interac­
tions and one triple interaction. The respective
products are given in the upper line of Table 8,
and so you may get some idea of the form of the
regression equation. If the experimentalist is con­
fident that the 'response surface is linear, i,e,
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that there are no nonlinear terms of the regres­
sion equation, then he can introduce the new vari­
ables X~ == XIX 2, Xs == XIX a, X6 = X2Xa, and
X7 == XIX 2X a, and obtain a design matrix to esti­
rna te the eight coefficients (including Po) in the
linear regression equation with seven factors.

If the problem at hand allows a linear approx­
imation, then in the complete factorial experi­
ment there will be many "extraneous" trials. So
with three factors, as we have seen, we can com­
pute the regression coefficients in the linear equ­
ation with only four trials, and in a 23 complete
factorial experiments we have eight and so four
of them are "extraneous". The results of these
trials can be used in two ways: first, to get more
accurate estimates of regression coefficients, sec­
ond, to test the adequacy of the model construct­
ed. But with seven factors the complete facto­
rial experiment at two levels contains 27 == 128
trials, and, as it was just mentioned, it takes
only eight trials to work out eight coefficients of
the linear regression equation. We thus end up
with 120 "extraneous!' trials, and it is by no
means necessary to realize all of them. It only suf­
fices to use some of them to test the adequacy and
refine the estimates.

We can carryon reasoning along these lines,
but it appears that the general procedure is cle­
ar. Really, there are an infinite variety of plans,
different approaches and possibilities of reducing
the number of trials necessary to arrive at more
complete and reliable information. But this book
is not a text in experimental design, and so the
reader is referred to the special literature on the
subject for details.
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I t is only important here that the reader per­
ceive the advantages of the designs just described.
For example, all the coefficients in the regres­
sion equation are estimated independently. This
implies that the coefficients, say, in equation (*)
indicate the relative contribution of appropriate
terms, and hence we can ignore terms negligible
as compared with the others. In other words,
factors with relatively small coefficients can be
discarded as insignificant, without recalculating
the coefficients ..

If the response surface in the vicinity under
consideration is nonlinear, then two-level design
will be insufficient, and so we will have to use
three levels. In addition, we will have to in­
crease the minimal quantity of experiments. By
way of illustration, we can return to the addi­
tives for oils ..

The preliminary analysis indicated that the
criterion of quality-the acid number-varies
linearly with the concentrations of additives,
and so the response surface may be rather corn­
plex here.

At the same time, only two of the five addi­
tives noticeably changed the acid number in
varying the concentrations, whereas the remaining
ones exerted nearly no influence on the criterion
chosen. Therefore, the problem reduced to a two­
factor design, and it can be conveniently used
to give a graphic illustration of the successive
situations in search for optimal concentrations.
We will refer to the two additives as D and E.

As a first step of the design, the concentration
range from 0 to 1.4 per cent was chosen, based
on the experience available. The surface in this
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region was assumed to be nonlinear, and the sim­
plest surface here will be the second-order one.
The regression equation will be

y == ~o + ~lXl + ~2X2 + ~11Xi + ~12XIX2 +
+ ~22X:.

I t will be recalled that second-order surfaces
are classified into ellipsoids, paraboloids, hyper­
boloids, and cylinders depending on the signs of
~11 and ~22' and the sign of the discriminant
4~11~22 - ~~ 2 of the quadratic form, i.e. the form
of the surface is determined by the magnitudes
and signs of the three last coefficients.

The coefficients were looked for, using a three­
level design. The levels were the extreme values
within the intervals of the variables (after a
transformation they, as before, have the values
+ 1), and the middle point, which transforms

into the point with a zero coordinate.
Table 9 gives the conditions and results of tri­

als according to a second-order design with two
variables. After the results have been processed
and insignificant coefficients discarded, the re­
sultant model of the response surface took the
form

y == 0.78 - O.069x~ + O.158x:.

This is the surface of a hyperbolic paraboloid
shown in Fig. 30. Motion along the D axis reduces
y, and so we will have to move in that direc­
tion. Further steps brought us to point q corres­
ponding to the concentrations 0.45 per cent (F)
and 5.5 per cent (D), in the vicinity of this point
the response surface given in Fig. 31 has a distinct
minimum.
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Table 9

Conditions and Results of Lubricant Oxidation
Experiments for D and E Additives

(Xl is the concentration of D; %2 is the concentration of E)

Trial I I IXtx·1 xi IX~ ID, %IE. % yrun Xl X2

1 +1 -1 -1 1 1 1.207 0.207 0.99
2 +1 +1 +1 1 1 1.207 1.207 0.76
3 -1 +1 -1 1 1 0.207 1.207 0.80
4 -1 -1 +1 1 1 0.207 0.207 0.76
5 -1.414 0 0 2 0 0 0.707 0.73 ;
6 0 +1.414 0 0 2 0.707 1.414 1.14
7 +1.414 0 0 2 0 1.414 0.707 0.60
8 0 -1.414 0 0 2 0.707 0 1.10
9 0 0 0 0 0 0.707 0.707 0.83

10 0 0 0 0 0 0.707 0.707 0.78
11 0 0 0 0 0 0.707 0.707 0.72
12 0 0 0 0 0 0.707 0.707 0.85
13 0 0 0 0 0 0.707 0.707 0.74

The equation of the surface will now be

y == 0.148 - O.052x2 + 0.093x~ + O.073x:,

so that the minimum is achieved at a point cor­
responding to 0.54 per cent of E and 5.5 per cent
of D. The acid number y is here 0.14, which is
much less than any of the results obtained in the
first region selected by the experimentalists (the
last column in Table 9), where the minimal
value of the acid number was 0.6.

When another pair of additives, we will call
them F and G, are used, the response surface
takes the form as represented in Fig. 32. This is
also the hyperbolic paraboloid, but in this case
the surface touches the plane y ~ 0, and hence
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the optimal points lie near the level y == 0 on
this surface, e.g. point qt. But you should not
think that you can really obtain a zero acid num­
ber. You should take into account the experimen­
tal errors and remember that all the quantities
are given here to within this error.

We will not consider other examples. It is
hoped that you already understood that there is

y
0.7

Fig. 32

a rich variety of forms of response surfaces in
the vicinity of the optimal point, and their stu­
dy and interpretation in the language of the field
take some grounding in the trade.

T\lUS, to find the optimal combination of ad­
ditives we used the step-by-step strategy of mo­
tion over the response surface along the steepest
descent direction in each subregion. But if we
sought for a maximum, not minimum, we would
ha ve followed the steepest ascent direction.

To sum up: in a step-by-step strategy we at
first explore a\ small part of the response surface,
construct a ny?del for this part of the surface, test
the hypothesis that the optimum has been achieved
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and make one of the decisions: YES, NO
or AlAYBE. If the decision is YES the search is
discontinued, if NO, we make one more step in
the steepest descent (ascent) direction, and go
over the procedure again. If then the decision is
MAYBE, more experiments are required to gel
a better idea of the form of the response surface.
This is an application of the Wald sequential
analysis in experiment, a major breakthrough
in the theory of experimentation.

However, in experimental design the sequenti­
al strategy is not the only achievement. The mul­
tifactorial experiment, i.e, rejection of tradition­
al variation of factors one at a time, the remain­
ing one being fixed, turned out to be a no less
remarkable breakthrough than the sequential
experiment. These strategies markedly reduce
the number of experiments required. So if it is
necessary to carry out .an experiment with four
factors and five levels, the total number of trials
will be 54 == 625. If we apply one of the forms of
optimization of experiment (saturated D-opti­
mal design), the same results can be obtained af­
ter 15 trials.

Coming under this heading is also such an or­
der of experimentation, which does not lead to
some prejudices and kills any systematic uncer­
tainties, which are extremely difficult to get rid
of in a passive experiment. Here the statistician,
paradoxical as it may appear, is helped by chance.
Later in the book we will consider this in
more detail.
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Ways to Success

Yes, No or Maybe

Among the 1,093 patents granted by the US Pa­
tent Bureau to the famous Thomas Alva Edison
was the patent No. 223898 as of 27 January 1880
.on the carbon filament lamp. Three thousand peo­
ple came over in special-purpose trains ordered
by Edison to take a look at hundreds of electric
bulbs hanging over in his laboratory and nearby
roads in Menlo Park, New Jersey. But before this
triumphant demonstration Edison screened six
thousand carbon-containing substances from con­
ventional sowing cotton covered with carbon to
food-stuffs and resins. The best candidate turned
out to be bamboo of which. the case of a Japanese
palm fan was made.

You understand, I think, that to try six thou­
sand filaments took tens of thousands of trials,
this gargantuan effort took about two years. Ob­
viously, if Edison knew the theory of experiment,
the number of his trials could be drastically re­
duced, maybe several-fold. But at the time of
Edison the factor analysis was not yet available,
besides Edison was suspicions of statistics, a
science that did not agree with his education and
temperament.

We could look at the work of Edison from mo­
dern viewpoint, but we will rather take a simpler
example from real life.

Everything in the life of a singer depends on
her success, especially at contests where she needs
not just success, but a triumph. And suppose she
seeks advice from her mathematician friend about
an aria and attire to he selected. Just imagine:
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an egghead and singing! But instead of admiring
her stage dress or her vocal facul ties he suggests
to explore the response of the public to different
attires and pieces of singing. Within -the time
space before the contest she can test herself in the
public purposefully. For this purpose her mathe­
matician friend suggests a method similar to the
one used in the lubricant additive problem.

Unlike the situation with the additives, factors
here are not quantitative but qualitative. The
singer has three dresses and five specially pre­
pared arias. There is not any numerical variable
varying continuously from the black silk dress
to the folk costume. By the way, the continuity
of passing over from one of the dresses to another
is irrelevant here, since we can assign number to
the factors, quantitative or qualitative, and to ver-.
sions, to be called levels here. But when a factor
is quantitative, just like concentration or weight,
the order corresponds to increase or decrease in
the value of the level. If the factor is qualitative,
then the order of numeration is immaterial.
Therefore, qualitative factors call for another ap­
proach.

Some thought should also be given to the results
of observations, i.e, to a way of measuring success,
or comparing successes of different performances.

To characterize success we can rely on the du­
ration of applause or its intensity, or else the num­
ber of encores. Also we can think of some com­
parative characteristics, say, to nominate three
categories: great success, medium success, and
small success, and so on. To be sure, when look­
ing for some subjective criterion we may face
with new problems: who is to be taken as an ex-
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pert, should it be always the same person, could
the singer herself be trusted to make estimates?
We are not going to dwell on this subject here,
we will just suppose that there is some criterion.

Besides, the response is conditioned by the au­
dience: a theatrical crowd, the participants at
some scientific conference, or night-club haun­
ters-the reaction will be predictably different.
The situation thus boils down to the three factors:
arias, dresses, and audiences. We will have five
arias (1, 2, 3, 4, and 5), three dresses (A, B, and
C), and five audiences (a, p, y, 6, and e).

Each of the factors contributes to the parame­
ter we use to measure success, and each factor ass­
umes different levels. I t is precise} y because of
the inhomogeneity that we have to seek the best
combination.

A model of dependence of the parameter mea­
sured (y) on the factors can be written as in the
regression model in the form of the sum of effects
of each factor and interaction effects. By
way of illustration, we will write a model for
two variables-arias and dresses-using conven­
tional denominations

Yij = ~ + T', + B j + BTi j + Eij,

where f.1 is the total effect in all observations or
the true average of an ensemble to which the sam­
ple belongs, Ti corresponds to the effect of the
first factor at the ith level, i.e. to one of the arias,
B J is the effect of the second factor at the jth
level, i.e. from the dress, BTi j is the interaction
effect (the singer may well feel uncomfortable in
a folk costume while singing an academic aria),
YiJ is the value of the parameter measured, and
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lastly, Eij is the random error of the experiment.
But the meaning of the model is different here
from that of the regression equation, since it is
just a formula for calculating the theoretical val­
ues of the parameter being measured at individual
(discrete) points, the points of our design.

It is worth noting that when factors are inde­
pendent, the variance of the parameter to be
measured equals the sum of variances of the terms.
Using this remarkable feature of variance, we
can go on with our analysis and examine the con­
tributions of each factor, to estimate the relative
importance of each of them, to optimize their
combination. This theory is called the analysis
of variance.

We will consider the application of this analy­
sis again referring to our singer.

All in all, we have 5 X 3 X 5 == 75 combina­
tions possible. The combinations are best repre­
sented in tabular form. In a table for each audi­
ence we will have arias arranged in a column and
dresses in lines (Table 10).

Table 10

Complete Factorial Design for an Audience

J
A I B I c

1 • • •
2 • • •
3 • • •
4 • • •
5 • • *

14-01621
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Instead of the asterisks the results obtained
must be entered, i.e. the values of y for an aria
and a dress, corresponding to the line and
column of the place.

But the singer will hardly be able to make
75 performances when there is only a month to
go to the contest, she can at best put in one fifth
of the figure. And here again her mathematician
friend comes up with a suggestion: each aria should
be sung at least once in each of the dresses, and
each dress must be shown off at least once in each
of the audiences. Now only-arias and audiences
remain unbalanced, and so the strategy is
termed the partially balanced design (Table 11).

Table 11

Part ially Balanced Incomplete Block Design

1
2
3
4
5

A B

E

a.

c

Each entry here recommends to perform an ex­
periment to realize the combination of a dress
(column), aria (line) and audience (Greek letter).
The design thus contains 15 experiments.

After an experiment the result is entered into
the block and then the entire table is processed.

The analysis of variance is quite an effective
technique of comparing similar combinations to
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choose the best one. So a similar design has been
used in the lubricant additive problem, but al­
ready not to determine optimal concentrations but
to select the best composition of additives in a
situation with five antioxidation additives, three
antiwear additives, and five anticorrosive addi­
tives. Without statistics we would have to test
all 75 combinations possible.

Statistical methods illustrated in Table 11 not
only allowed the number of experiments to be re­
duced to 15 (without any loss of completeness),
but also allowed to reveal much important evi­
dence concerning the behaviour of the additives
and their interaction, including such factors
which would be impossible to establish without
statistics.

Analysis of variance is widely used in psycholo­
gy, biology, chemistry-virtually everywhere
where qualitative factors are involved.

A Helper - the Chance
Staking money on a horse, crossing a street, and
plunging into a marriage after a two month's ac­
quaintance you mostly rely on a run of luck. Al­
so, there are situations where without the inter­
vention of chance you either will have no event
at all, or it is precisely luck that makes it pos­
sible to tackle the problems at hand.

So chance is the only mechanism responsible
for adequate functioning of ultrashort wave radio
links. Long and medium waves mostly used by
broadcast stations may go round the curvature
of earth, short waves reflect from the ionosphere,

14*
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hut. ultrashort wa ves penetrate the ionosphere
and do not follow the terrestrial curvature. So
ultrashort waves propagate virtuall y along t.he
line of sight, just like rays of light. At the saute
time, the ultrashort wave range has SOUle attrac­
tions for a number of physical and technical
reasons.

But despite the established line-of-sight pro­
pagation of ultrashort waves some anomalies have
been witnessed. For example programmes of the
Belgian television were once received in the
USSR.

The phenomenon can be explained as follows.
The lower atmosphere, called the troposphere, is
continually in the state of turbulent motion, i.e.
disorderly eddies of air occur, Some eddies can be
seen when observing chimney smoke: smoke nor­
mally ascends following meandering fancy tra­
jectories. The turbulence comes from a wide va­
riety of causes, such as winds, air currents, in­
homogeneity of heating of various areas of earth
by sun, and so on.

The turbulent motion is responsible for random
variations in air density, temperature and humid­
ity, which in turn produce fluctuations of the re­
fractive index and dielectric constant of the air.

This turbulence of the troposphere is modelled
by an ensemble of scattering centres. A scattering
centre may be pictured as a ball, and a multitude
of such balls randomly arranged in space, repre­
sent our model of the tropospheric inhomogenei­
ties. When a wave from the transmitter is inci­
dent on a region of turbulent troposphere, a flux
of omnidirectionally scattered energy emerges.
To be sure, the bulk of the energy travels on along
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tho iuilial direct.ion of the wave, hut. some of tho
energy is reflected a ltd comes to the input of tho
receiver. whoso aer ial may be positioned in the
shadow of the transmitter. Fignre 33 illustrates
the si tua tion.

Radio links are now available that make use of
the long-distance tropospheric scattering of ultra­
short wave, and the random mechanism of wave

scattering in the turbulent troposphere is the
only mechanism on which the link reI ies for its
opera! ion. Should the troposphere "quiet down"
and turbulent fluctuations discontinue, then the
ultrashort wave radio link would stop its function­
ing, since no signals would come to the receiv­
ing aerial. So a random mechanism lies a t the
very Ioundat.ion of signal transmission.

l\lodelling of processes relating the response
function with the factors is complicated by un­
known, and at times even known variables, such
8S the states of t.he object that are hard to control.

But difficulty is not irnpossihil ity. But how
can we gel rid of those variables? Of course, by
separating the dependence under study from in-
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terferences, we should make this with permis­
sible accuracy and if such a separation be
impossible to be carried out accurately.

In most of tangled situations it is, however,
impossible to separate "useful" and "interfering"
variables. But even when the states of the object
and inputs are independent, and when they can
be separated and studied one after another, it is
virtually impossible to take into account all the
combinations. For example, in the primary refin­
ing of oil, it is separated into several fractions:
petrols, jet and diesel fuels, gas oil, lubricants,
tar, etc. -more than a dozen fractions all in all.
Even if each of the fractions was defined by two
numbers only, the upper and lower levels, we
would have about 210 combinations. But in actual
practice, each of the components is described by
many numbers, and so the number of combina­
tions grows beyond belief. But the main things
here are the working conditions of the object de­
scribed by temperatures and pressures at various
locations throughout an enormous installation,
raw material flow rates, and so on and so forth.
Even if these quantities had only two levels, we
would end up with about 2100 , or more than
1030, combinations. No computers, whatever
their speed, can handle these astronomic num­
bers.

Consequently, any attempts to get rid of spuri­
ous variables by meticulously cataloguing them
are again "the devil's plot", since this is a way to
the unifactorial experiment with all the values
of all the variables fixed.

This, of course, does not make the life of the
experimentalist easier. But there is a way out
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here: instead of cataloguing all the variations,
we should take advantage of chance, put it to
our service.

Suppose we sit in at a session of a psychologist
who times the solving of arithmetic problems of
some type by schoolchildren. The test group in­
cludes five boys and five girls.

Previous experiments do not warrant a conclu­
sion as to who are better at sums, boys or girls.
In what order must we subject the children to
test?

We may begin by testing girls-ladies first.
But the children have just come from sports, and
girls are more tired than boys. In addition, some
of the children are older than ten years and the
others are younger, their academic marks are
different too, and so 00. In what order then are
they to be tested?

The answer to the situation is to provide ran­
dom character of the test. Randomization helps
to average out the effects due to fatigue, spread
in their ages and IQ's.

Similar problems arise all the time in experi­
mental biology and medicine, when some toxic
preparations, radiations, or cures are tested on a
group of white mice or guinea pigs. Biologists
normally divide the animals into two groups:
tested and controls. Say, we have 40 white mice.
How are they to be divided into two groups, how
many are to be taken into each group, in what or­
der are they to be subjected to the doses? At first
glance, the tiny animals appear similar, and so
it would seem that any way of dividing them
would do. For example, to divide the lot into two
and then take one after another.



216 Yes, No or ltlaybe

But it was repeatedly found that in a situation
when it seems to a man that his choice is arbitra­
ry, his actions a re nevertheless purposeful. I n­
volved here are some vague mechanisms of sub­
conscious activity. A biologist sometimes subcon­
sciously selects for his experiments a group of
weaker animals, when he seeks to prove the effec­
tiveness of a poison, or on the contrary stronger
animals, when he wants to prove the effectiveness
of his antidote. I t should be stressed that the ex­
perimentalist should not be blamed with conscious
manipulations, by no means! Only subconscious
mechanisms are involved here.

My friend once discussed with me an amazing
fact, we tried then to account for it together. He
got computer assistants to work out firing tables
for one of the arms he worked on at the time. The
resultant table contained ten thousand five-digit
numbers. He looked over the pages, took at
random a number, checked the calculations and
found a mistake. He then took another number,
again at random, and again found a mistake. He
was irate and made the assistants to recalculate
the entire table, checking and rechecking. All
the rernaining 9,998 numbers turned out to be
correct!

He was dead sure that his selection was "ran­
dom", and so he considered the selection of any
of these 10,000 numbers equiprobable. The pro­
bability of selecting just these two wrong numbers
is 2/10,000, an exceedingly small number, and
so what happened was unlikely.

Now, when we look back at the amazing hap­
pening, one thing is clear. Being a very experi­
enced specialist, my friend singled out numbers
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that deviated, if only slightly, from what could
be expected. But the process was entirely subcon­
scious, he could not expla.in what prompted him
to take these numbers.

Consequently, his choice was by no means
random, and by no means equiprobable event.
How then can we provide a really random selec­
tio n of children, numbers of guinea pigs, such
that is free of arbitrary judgement of the experi­
menter. For this purpose, tables of random num­
bers are used. These are compiled readily. Get
ten identical balls, mark them with the digits
from zero to nine and place them in a bag. After
careful strirring, take out one, write the number
and return it into the bag. Again stir the balls
and go through the procedure once more-you
thus get a second number. Reiterating the proce­
dure you will obtain a table of random numbers.
So you can get columns of numbers with any num­
ber of gidits.

Of course, in real life nobody uses this proce­
dure, but still many real techniques that rely on
fast computers, in essence, model this procedure.

When a random order is required for an expe­
riment, objects must at first be assigned numbers
(e.g. guinea pigs), and then split into groups using
tables of random numbers. Suppose you assign
numbers to each of your 40 guinea pigs. Then se­
lect into your control group the first 20, whose
two-digit numbers turn up among the first pairs
of the table (numbers larger than 40 are rejected).
In the same way, the experimental group is
gathered.

Likewise, the sequence of experiments in the
lubricant additive problem should be random.
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And the performances of the singer: the entries
in the partially balanced incomplete block de­
sign (Table 11) should be made using a random
numbers table.

To summarize, the random order of selecting
the values of the factors is a reliable way of avoid­
ing. prejudicing the experiment. And today's
statistician preparing an experiment randomizes
his experiment, relying on chance as his ally.

Concluding Remarks
Let us leaf the book. What is it about? About sta­
tistical hypothesis testing and sequential analy­
sis, about the theory of risk and modelling, about
identification and prediction, about the theo­
ry of passive and active experiment. This parade
of technical terms might suggest that the book is
devoted to esoteric issues. But mv intentions were
different. Whatever your field, reader, in your
work and everyday life you appear as experi­
mentalist, observer and decision-maker. Some­
times you tackle your problems, make observations
or experiments in a difficult situation, in a fog of
uncertainty. And it is here that statistical
methods may come in handy.

Experimental design enables the experimen­
talist to save efforts and funds. But this is not
all there is to it. Conscious design necessitates
clear understanding of the entire procedure that
involves the conception of the experiment, analy­
sis of a priori information, modelling, before ran­
domization, sequential strategy, optimal selec­
tion of point in a factor space, reasonable inter-
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pretation of resul ts of statistical processing, re­
presented in a compact, convenient form.

The art of research is the art of modelling.
And if the situation calls for randomization, the
investigator must be able to employ an effective
statistical method. To this end, one must not
only have some grounding in statistics, but must
also feel the problem and snags involved. Both
arts do not come easily, therefore a skilled statis­
tician on a team of experimentalists will be of
help.
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