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Preface

The present state of science and technology 
is such that a large number of scientists 
and engineers must ba educated at an ad­
vanced level. This cannot be done without 
significantly raising the level of teaching 
physics, with an emphasis on the individual 
and special efforts to detect and nurture 
budding talents. In this respect, physics 
olympiads for students at secondary school 
and vocational training colleges are impor­
tant in bringing to light the brightest stu­
dents and in correctly guiding them in their 
choice of profession.

This book, which is a collection of phys­
ics aptitude test problems, draws on the 
experience of the physics olympiads con­
ducted during the last fifteen years among 
the schoolchildren of Moscow. A Moscow 
physics olympiad includes three preliminary 
theoretical rounds at the regional, city, 
and qualifying levels, followed by a final 
practical round. After the final round, a 
team of Moscow schoolchildren is selected for 
participation in the all-Union olympiad. 
The complexity of the problems set for 
each round increases gradually, starting 
from the simplest problems at regional lev­
el, problems which can be solved simply 
by having a thorough knowledge of the bas­
ic laws and concepts of physics. The prob­
lems at the qualifying stage are much more 
complicated. Some of the problems at this 
level involve a certain amount of research
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(as a rule, the problems make participation 
in the olympiads even more challenging).

This collection contains problems from 
the theoretical rounds only. The structure of 
the book reflects the emphasis given to it 
in different sections of the physics course at 
such competitions. The number of problems 
set at an olympiad and the fraction allotted 
to a particular topic in the book are deter­
mined by the number of years the topic is 
taught at school. A detailed classification 
of different topics is not given since some 
are represented by only one or two proble s, 
while other topics have dozens of problems.

Most of the problems are original, and a 
considerable proportion of them was.com­
posed by the authors. The most difficult 
problems are marked by asterisks. Being 
the product of a close group of authors, the 
book reflects certain traditions and exper­
ience drawn from Moscow olympiads only. 
A feature of the book is that it presents ll:e 
scientific views and working style of a 
group of like-minded scientists.

In view of all this, the book should attract 
a large circle of readers. The best way to 
use it is as a supplementary material to the 
existing collections of problems in elemen­
tary physics. It will be especially useful 
to those who have gone through the general 
physics course, and want to improve their 
knowledge, or try their strength at nonstand­
ard problems, or to develop an intuitive 
approach to physics. Although it is recom­
mended primarily for high-school students,



we believe that college students in junior 
classes will also find something interesting 
in it. The book will also be useful for orga­
nizers of physics study circles, lecturers 
taking evening and correspondence courses, 
and for teachers conducting extracurricular 
activities.

This book would have never been put to­
gether without the inspiration of Acade­
mician I.K. Kikoin, who encouraged the 
compilation of such a collection of problems. 
For many years, Academician Kikoin 
headed the central organizing committee 
for the all-Union olympiads for schoolchil­
dren and chaired the editorial board of the 
journal Kvant (Quant) and the series “Lit­
tle Quant Library” The book is a mark of 
our respect and a tribute to the memory of 
this renowned Soviet scientist.

The authors would like to place on record 
their gratitude to their senior colleagues in 
the olympiad movement. Thanks are due to 
V.K. Peterson, G.E. Pustovalov, G.Ya. Mya- 
kishev, A.V. Tkachuk, V.I. Grigor’ev, 
and B.B. Bukhovtsev, who helped us in 
the formation of our concepts about the 
physical problem. We are also indebted to 
the members of the jury of recent Moscow 
olympiads, who suggested a number of the 
problems included, in this book. Finally, it 
gives us great pleasure to express our gra­
titude to G.Y. Meledin, who read through 
the manuscript and made a number of help­
ful remarks and suggestions for improving 
both the content and style of the book.



Problems

1. Mechanics

For the problems of this chapter, the free-fall acce* 
leration g (wherever required) should be taken 
equal to 10 m/s2.

1.1. A body with zero initial velocity moves 
down an inclined plane from a height h 
and then ascends along the same plane 
with an initial velocity such that it stops 
at the same height h. In which case is the 
time of motion longer?
1.2. At a distance L =  400 m from the 
traffic light, brakes are applied to a loco­
motive moving at a velocity v — 54 km/h.

Determine the position of the locomotive 
relative to the traffic light 1 min after the 
application of brakes if its acceleration 
a =  —0.3 m/s2.
1.3. A helicopter takes off along the verti­
cal with an acceleration a — 3 m/s2 and 
zero initial velocity. In a certain time tx, 
the pilot switches off the engine. At the 
point of take-off, the sound dies away in a 
time fa =  30 s.

Determine the velocity v of the helicop­
ter at the moment when its engine is
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switched off, assuming that the velocity c 
of sound is 320 m/s.
1.4. A point mass starts moving in a 
straight line with a constant acceleration a. 
At a time fx after the beginning of motion, 
the acceleration changes sign, remaining 
the same in magnitude.

Determine the time t from the beginning 
of motion in which the point mass returns 
to the initial position.
1.5. Two bodies move in a straight line to­
wards each other at initial velocities 
and v2 and with constant accelerations 
a, and a2 directed against the corresponding 
ve'iocnAies n't Yne miVia'i rn îan'i.

What must be the maximum initial sep­
aration /max between the bodies for which 
they meet during the motion?
1.6. Two steel balls fall freely on an elastic 
slab. The first ball is dropped from a height 
/i, =  44 cm and the second from a height 
h2 =  11 cm t  s after the first ball. After 
the passage of time t, the velocities of the 
balls coincide in magnitude and direction.

Determine the time x and the time inter­
val during which the velocities of the two 
balls will be equal, assuming that the balls 
do not collide.
1.7*. Small balls with zero initial velocity 
fall from a height H =  R/8 near the verti­
cal axis of symmetry on a concave spheri­
cal surface of radius R.

Assuming that the impacts of the balls 
against the surface are perfectly elastic, 
prove that after the first impact each ball
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gets into the lowest point of the spherical 
surface (the balls do not collide).
1.8. A small ball thrown at an initial veloc­
ity v0 at an angle a to the horizontal strikes 
a vertical wall moving towards it at 
a horizontal velocity v and is bounced to 
the point from which it was thrown.

Determine the time t from the beginning 
of motion to the moment of impact, neg­
lecting friction losses.
1.9*. A small ball moves at a constant ve­
locity v along a horizontal surface and at 
point A falls into a vertical well of depth H 
and radius r. The velocity gof the ball forms 
an angle a with the diameter of the well 
drawn through point A (Fig. 1, top view).

Determine the relation between v, H, r, 
and a for which the ball can “get out” of 
the well after elastic impacts with the walls. 
Friction losses should be neglected.
1.10. A cannon fires from under a shelter 
inclined at an angle a to the horizontal 
(Fig. 2). The cannon is at point A at a dis­
tance I from the base of the shelter (point 
B). The initial velocity of the shell is v0, 
and its trajectory lies in the plane of the 
figure.

Determine the maximum range Lmax 
of the shell.
1.11. The slopes of the windscreen of two 
motorcars are Pi =  30° and p2 =  15° re­
spectively.
1 At what ratio vx!v% of the velocities of the 

cars will their drivers see the hailstones 
bounced by the windscreen of their cars in
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the vertical direction? Assume that hail­
stones fall vertically.
1.12. A sheet of plywood moves over a 
smooth horizontal surface. The velocities of 
points A and B are equal to v and lie in the 
plane of the sheet (Fig. 3).

Determine the velocity of point C.
1.13. A car must be parked in a small gap 
between the cars parked in a row along the 
pavement.

Should the car be driven out forwards or 
backwards for the manoeuvre if only its 
front wheels can be turned?
1.14*. An aeroplane flying along the hori­
zontal at a velocity v0 starts to ascend, de­
scribing a circle in the vertical plane. The 
velocity of the plane changes with height h 
above the initial level of motion according 
to the law v2 — pj — 2a 0h. The velocity of 
the plane at the upper point of the trajecto­
ry is vx =  v0/2.

Determine the acceleration a of the plane 
at the moment when its velocity is directed 
vertically upwards.
1.15. An open merry-go-round rotates at an 
angular velocity co. A person stands in it at 
a distance r from the rotational axis. It 
’S raining, and the raindrops fall vertically 
at a velocity v0.

How should the person hold an umbrella 
to protect himself from the rain in the best 
way?
1.16*. A bobbin rolls without slipping over 
a horizontal surface so that the velocity v 
of the end of the thread (point A) is directed
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along the horizontal. A board hinged at 
point B leans against the bobbin (Fig. 4). 
The inner and outer radii of the bobbin are 
r and R respectively.

Determine the angular velocity co of the 
board as a function of an angle a.
1.17. A magnetic tape is wound on an emp­
ty spool rotating at a constant angular veloc­
ity. The final radius rf of the winding was 
found to be three times as large as the ini­
tial radius r, (Fig. 5). The winding time of 
the tape is tv

What is the time t2 required for winding a 
tape whose thickness is half that of the ini­
tial tape?
1.18. It was found that the winding radius 
of- a tape on a cassette was reduced by half 
in a time =  20 min of operation.

In what time fa will the winding radius 
be reduced by half again?
1.19. Two rings O and O' are put on two 
vertical stationary rods AB and A'B’ 
respectively. An inextensible thread is fixed 
at point A' and on ring 0 and is passed 
through ring O' (Fig. 6).

Assuming that ring O' moves downwards 
at a constant velocity vlt determine the ve­
locity v2 of ring O if Z-AOO' =  a.
1.20. A weightless inextensible rope rests 
on a stationary wedge forming an angle a 
with the horizontal (Fig. 7). One end of the 
rope is fixed to the wall at point A . A small 
load is attached to the rope at point B. 
The wedge starts moving to the right with 
a constant acceleration a.
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Determine the acceleration ai of the load 
when it is still on the wedge.
1.21. An ant runs from an ant-hill in a 
straight line so that its velocity is inversely 
proportional to the distance from the centre 
of the ant-hill. When the ant is at point A 
at a distance Zx =  1 m from the centre of 
the ant-hill, its velocity =  2 cm/s.

What time will it take the ant to run 
from point A to point B which is at a dis­
tance Z2 =  2 m from the centre of the ant­
hill?
1.22. During the motion of a locomotive 
in a circular path of radius R, wind is blow­
ing in the horizontal direction. The trace 
left by the smoke is shown in Fig. 8 (top 
view).

Using the figure, determine the velocity 
ywind °f ^ e  wind if it is known to be con­
stant, and if the velocity nloc of the loco­
motive is 36 km/h.
1.23*. Three schoolboys, Sam, John, and 
Nick, are on merry-go-round. Sam and John 
occupy diametrically opposite points on a 
merry-go-round of radius r. Nick is on an­
other merry-go-round of radius R. The po­
sitions of the boys at the initial instant are 
shown in Fig. 9.

Considering that the merry-go-round 
touch each other and rotate in the same di­
rection at the same angular velocity co, 
determine the nature of motion of Nick 
from John’s point of view and of Sam from 
N ick’s point of view.
1.24. A hoop of radius R rests on a horizon-
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tal surface. A similar hoop moves past it 
at a velocity v.

Determine the velocity vA of the upper 
point of “intersection” of the hoops as a func­
tion of the distance d between their centres, 
assuming that the hoops are thin, and the 
second hoop is in contact with the first hoop 
as it moves past the latter.
1.25. A hinged construction consists of 
three rhombs with the ratio of sides 3:2:1

(Fig. 10). Vertex A3 moves in the horizon­
tal direction at a velocity v.

Determine the velocities of vertices Alt 
A 2, and B2 at the instant when the angles 
of the construction are 90°
1.26. The free end of a thread wound on a 
bobbin of inner radius r and outer radius R 
is passed round a nail A hammered into 
the wall (Fig. 11). The thread is pulled at a 
constant velocity v.

Find the velocity v0 of the centre of the 
bobbin at the instant when the thread forms 
an angle a with the vertical, assuming that 
the bobbin rolls over the horizontal surface 
without slipping.
2-0771
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1.27. A rigid ingot is pressed between two 
parallel guides moving in horizontal di­
rections at opposite velocities and v2. 
At a certain instant of time, the points of 
contact between the ingot and the guides 
lie on a straight line perpendicular to the 
directions of velocities ana v2 (Fig. 12).

What points of the ingot have velocities 
equal in magnitude to and v2 at this 
instant?
1.28. A block lying on a longThorizontal 
conveyer belt moving at a constant veloci­
ty receives a velocity v0 =  5 'm/s relative 
to the ground in the direction opposite to 
the direction of motion of the conveyer. Af­
ter t =  4 s, the velocity of the block be­
comes equal to the velocity of the belt. The 
coefficient of friction between the block and 
the belt is p =  0.2.

Determine the velocity v of the conveyer 
belt.
1.29. A body with zero initial velocity 
slips from the top of an inclined plane 
forming an angle a with the horizontal. The 
coefficient of friction p between the body
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and the plane increases with the distance I 
from the top according to the law p =  bl. 
The body stops before it reaches the end of 
the plane.

Determine the time t from the beginning 
of motion of the body to the moment when 
it comes to rest.
1.30. A loaded sledge moving over ice gets 
into a region covered with sand and comes 
to rest before it passes half its length with­
out turning. Then it acquires an initial 
velocity by a jerk.

Determine the ratio of the braking lengths 
and braking times before the first stop and 
after the jerk.
1.31. A rope is passed round a stationary 
horizontal log fixed at a certain height above 
the ground. In order to keep a load of 
mass m =  6 kg suspended on one end of the 
rope, the maximum force Tx =  40 N 
should be applied to the other end of the 
rope.

Determine the minimum force T2 which 
must be applied to the rope to lift the load.
1.32. Why is it more difficult to turn the 
steering wheel of a stationary motorcar 
than of a moving car?
1.33. A certain constant force starts acting 
on a body moving at a constant velocity 
v. After a time interval A t, the velocity of 
the body is reduced bV half, and after the 
same time interval, the velocity is again 
reduced by half.

Determine the velocity Vf of the body af­
ter a time interval 3At from the moment
2*
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when the constant force starts acting.
1.34. A person carrying a spring balance 
and a stopwatch is in a closed carriage stand­
ing on a horizontal segment of the railway. 
When the carriage starts moving, the per­
son sitting with his face in the direction of 
motion (along the rails) and fixing a load of 
mass m to the spring balance watches the 
direction of the deflection of the load and 
the readings of the balance, marking the 
instants of time when the readings change 
with the help of the stopwatch.

When the carriage starts moving and the 
load is deflected during the first time inter­
val tx =  4 s ‘towards the observer, the bal­
ance indicates a weight 1.25mg. During 
the next time interval t2 =  3 s, the load 
hangs in the vertical position, and 
the balance indicates a weight mg. Then the 
load is deflected to the left (across the car­
riage), and during an interval t3 =  25.12 s, 
the balance again indicates a weight 
1.25mg. Finally, during the last time inter­
val f4 =  4 s, the load is deflected from the 
observer, the reading of the balance 
remaining the same.

Determine the position of the carriage rel­
ative to its initial position and its veloci­
ty by this instant of time, assuming that 
the observer suppresses by his hand the os­
cillations resulting from a change in the 
direction of deflection and in the readings 
of the balance.
1.35. Two identical weightless rods are 
hinged to each other and to a horizontal
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beam (Fig. 13). The rigidity of each rod is 
k0, and the angle between them is ,2a.

Determine the rigidity k of the system of 
rods relative to the vertical displacement

Fig. 13
of a hinge A under the action of a certain 
force F, assuming that displacements are 
small in comparison with the length of the 
rods.
1.36. Two heavy balls are simultaneously 
shot from two spring toy-guns arranged on a 
horizontal plane at a distance s =  10 m 
from each other. The first ball has the ini­
tial vertical velocity vx =  10 m/s, while 
the second is shot at an angle a to the hori­
zontal at a velocity v2 =  20 m/s. Each 
ball experiences the action of the force of 
gravity ̂ and the air drag F =  py, p, =
0.1 g/s.~

Determine the angle a at which the balls 
collide in air.
1.37. A light spring of length I and rigidi­
ty k is placed vertically on a table. A small 
ball of mass m falls on it.

Determine the height h from the surface 
of the table at which the ball will have the 
maximum velocity.
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1.38*. A heavy ball of mass m is tied to a 
weightless thread of length I. The friction 
of the ball against air is proportional to its 
velocity relative to the air: F fr =  A 
strong horizontal wind is blowing at a con­
stant velocity v.

Determine the period T of small oscil­
lations, assuming that the oscillations of 
the ball attenuate in a time much longer 
than the period of oscillations.
1.39. A rubber string of mass m and rigidi­
ty k is suspended at one end.

Determine the elongation Al of the string.
1.40. For the system at rest shown in 
Fig. 14, determine the accelerations of all the 
loads immediately after the lower thread 
keeping the system in equilibrium has been 
cut. Assume that the threads are weightless 
and inextensible, the springs are weight­
less, the mass of the pulley is negligibly 
small, and there is no friction at the point 
of suspension.
1.41. A person hoists one of two loads of 
equal mass at a constant velocity y (Fig. 15). 
At the moment when the two loads are 
at the same height ft, the upper pulley is 
released (is able to rotate without friction 
like the lower pulley).

Indicate the load which touches the floor 
first after a certain time t, assuming that the 
person continues to slack the rope at the 
same constant velocity v. The masses of 
the pulleys and the ropes and the elonga­
tion of the ropes should be neglected.
1.42. A block can slide along an inclined
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plane in various directions (Fig. 16). If 
it receives a certain initial velocity v 
directed downwards along the inclined

r \ \

f n<LJ
□

4

i
_cb.

\v

Fig. 14 Fig. 15

plane, its motion will be uniformly deceler­
ated, and it comes to rest after traversing a 
distance lt. If the velocity of the same

magnitude is imparted to it in the upward 
direction, it comes to rest after traversing 
a distance At the. bottom of the inclined
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pldne, a perfectly smooth horizontal guide 
is fixed.

Determine the distance I traversed by the 
block over the inclined plane along the guide 
if the initial velocity of the same magni­
tude is imparted to it in the horizontal di­
rection?
1.43. A block is pushed upwards along the 
roof forming an angle a with the horizontal. 
The time of the ascent of the block to the 
upper point was found to be half the time 
of its descent to the initial point.

Determine the coefficient of friction p 
between the block and the roof.
1.44. Two balls are placed as shown in 
Fig. 17 on a “weightless” support formed by 
two smooth inclined planes each of which 
forms an angle a with the horizontal. The 
support can slide without friction along a 
horizontal plane. The upper ball of mass 
ml is released.

Determine the condition under which the 
lower ball of mass m2 starts “climbing” up 
the support.
1.45. A cylinder of mass m and radius r 
rests on two supports of the same height 
(Fig. 18). One support is stationary, while 
the other slides from under the cylinder at 
a velocity v.

Determine the force of normal pressure 
A^exerted by the cylinder on the stationary 
support at the moment when the distance 
between points A and B of the supports is 
AB — r Y 2, assuming that the supports 
were very dose to each other at the initial
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instant. The friction between the cylinder 
and the supports should be neglected.
1.46. A cylinder and a wedge with a verti­
cal face, touching each other, move along 
two smooth inclined planes forming the 
same angle a with the horizontal (Fig. 19). 
The masses of the cylinder and the wedge 
are mx and ma respectively.

Determine the force of normal pressure 
N exerted by the wedge on the cylinder,
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neglecting the friction between them.
1.47. A weightless rod of length I with a 
small load of mass m at the end is hinged at 
point A (Fig. 20) and occupies a strictly ver­
tical position, touching a body of mass M. 
A light jerk sets the system in motion.

For what mass ratio Mint will the rod 
form an angle a =  n/6 with the horizontal 
at the moment of the separation from the 
body? What will be the Velocity u of the 
body at this moment? Friction should be 
neglected.
1.48. A homogeneous rod AB of mass m 
and length I leans with its lower end against 
the wall and is kept in the inclined position 
by a string DC (Fig. 21). The string is tied 
at point C to the wall and at point D to the 
rod so that AD == ABI3. The angles formed 
by the string and the rod with the wall are 
a and p respectively.
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Find all possible values of the coefficient 
of friction p between the rod and the wall. 
1.49*. A massive disc rotates about a verti- 
.cal axis at an angular velocity Q. A smaller 
disc of mass m and radius r, whose axis is 
strictly vertical, is lowered on the first 
disc (Fig. 22). The distance between the axes 
of the discs is d (d >  r), and the coeffi­
cient of friction between them is p.

Determine the steady-state angular veloc­
ity to of the smaller disc. What moment of 
force must be applied to the axis of the 
larger disc to maintain its velocity of rota­
tion constant? The radius of the larger disc 
is R ;> d +  r. The friction at the axes of 
the discs should be neglected.

1.50. Two rigidly connected homogeneous 
rods of the same length and mass m1 and 
m2 respectively form an angle j i/2 and rest 
on a rough horizontal surface- (Fig. 23). 
The system is uniformly pulled with the 
help of a string fixed to the vertex of the 
angle and parallel to the surface.

Fig. 22 Fig. 23
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Determine the angle a  formed by the 
string and the rod of mass mx.
1.51. A ball moving at a velocity v — 
10 m/s hits the foot of a football player.

Determine the velocity u with which the 
foot should move for the ball impinging on 
it to come to a halt, assuming that the 
mass of the hall is much smaller than the 
mass of the foot and that the impact is per­
fectly elastic.
1.52. A body of mass m freely falls to the 
ground. A heavy bullet of mass M shot 
along the horizontal hits the falling body 
and sticks in it.

How will the time of fall of the body to 
the ground change? Determine the time 
t of fall if the bullet is known to hit the 
body at the moment it traverses half the 
distance, and the time of free fall from th is 
height is t0. Assume that the mass of the 
bullet is much larger than the mass of the 
body (M m ) .  The air drag should be ne­
glected.

1.53. Two bodies of mass mx =  1 kg and 
m2 =  2 kg move towards each other in 
mutually perpendicular directions at veloc-
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ities =  3 m/s and ua =  2 m/s (Fig. 24). 
As a result of collision, the bodies stick to­
gether.

Determine the amount of heat Q liber­
ated as a result of collision.
1.54. The inclined surfaces of two movable 
wedges of the same mass M are smoothly 
conjugated with the horizontal plane 
(Fig. 25). A washer of mass m slides down the 
left wedge from a height h.

To what maximum height will the washer 
rise along the right wedge? Friction should 
be neglected.
1.55. A symmetric block of mass my with 
a notch of hemispherical shape of radius r

rests on a smooth horizontal surface near the 
wall (Fig. 26). A small washer of mass m2 
slides without friction from the initial po­
sition.

Find the maximum velocity of the block.
1.56. A round box of inner diameter D con­
taining a washer of radius r lies on a table 
(Fig. 27). The box isT . jved as a whole at a 
constant velocity v directed along the lines
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of centres of the box and the washer. At an 
instant t0, the washer hits the box.

Determine the time dependences of the 
displacement xwash of the washer and of 
its velocity t>wash relative to the table, 
starting from the instant t0 and assuming

i D

Fig. 27

that all the impacts of the washer against 
the box are perfectly elastic. Plot the graphs 
xwaSh (t) and ywash (0- The friction be­
tween the box and the washer should be 
neglected.
1.57. A thin hoop of mass M and radius r 
is placed on a horizontal plane. At the ini­
tial instant, the hoop is at rest. A small 
washer of mass m with zero initial velocity 
slides from the upper point of the hoop along 
a smooth groove in the inner surface of the 
hoop.

Determine the velocity u of the centre of 
the hoop at the moment when the washer 
is at a certain point A of the hoop, whose 
radius vector forms an angle cp with the ver­
tical (Fig. 28). The friction between the 
hOop and the plane should be neglected.

o X
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1.58. A horizontal weightless rod of length 
3/ is suspended on two vertical strings. Two 
loads of mass m1 and m2 are in equilibrium 
at equal distances from each other and from 
the ends of the strings (Fig. 29).

Determine the tension T of the left string 
at the instant when the right string snaps.
1.59. A ring of mass m connecting freely 
two identical thin hoops of mass M each 
starts sliding down. The hoops move apart 
over a rough horizontal surface.

Determine the acceleration a of the ring 
at the initial instant if =  a

/ / / / / / / / / / //////■ ' V' 'V //////-

Fig. 28 Fig. 29

Fig. 30

(Fig. 30), neglecting the friction between 
the ring and the hoops.
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1.60. A flexible pipe of length I connects 
two points A and B in space with an alti­
tude difference h (Fig. 31). A rope passed 
through the pipe is fixed at point A.

Fig. 31

Determine the initial acceleration a of 
the rope at the instant when it is released, 
neglecting the friction between the rope 
and the pipe walls.
1.61. A smooth washer impinges at a veloc­
ity v on a group of three smooth identical 
blocks resting on a smooth horizontal sur-

Fig. 32

face as shown in Fig. 32. The mass of each 
block is equal to the mass of the washer. 
The diameter of the washer and its height 
are equal to the edge of the block.

Determine the velocities of all the bodies 
after the impact.
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1.62. Several identical balls are at rest in 
a smooth stationary horizontal circular 
pipe. One of the balls explodes, disintegrat­
ing into two fragments of different masses.

Determine the final velocity of the body 
formed as a result of all collisions, as­
suming that the collisions are perfectly 
inelastic.
1.63. Three small bodies with the mass 
ratio 3:4:5 (the mass of the lightest body 
is m) are kept at three different points on 
the inner surface of a smooth hemispherical 
cup of radius r. The cup is fixed at its 
lowest point on a horizontal surface. At a 
certain instant, the bodies are released.

Determine the maximum amount of heat 
Q that can be liberated in such a system. 
At what initial arrangement of the bodies 
will the amount of liberated heat be maxi­
mum? Assume that collisions are perfectly 
inelastic.
1.64. Prove that the maximum velocity 
imparted by an a-particle to a proton 
during their collision is 1.6 of the initial ve­
locity of the a-particle.
1.65. Why is it recommended that the air 
pressure.in motorcar tyres be reduced for 
a motion of the motorcar over sand?
1.66. A long smooth cylindrical pipe of ra­
dius r is tilted at an angle a to the horizon­
tal (Fig. 33). A small body at point A is 
pushed upwards along the inner surface of 
the pipe so that the direction of its initial 
velocity forms an angle tp with generatrix 
AB.
5-0771
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Determine the minimum initial velocity 
v0 at which the body starts moving upwards 
without being separated from the surface 
of the pipe.

1.67*. An inextensible rope tied to the axle 
of a wheel of mass m and radius r is pulled 
in the horizontal direction in the plane 
of the wheel. The wheel rolls without jump­
ing over a grid consisting of parallel hori­
zontal rods arranged at a distance I from 
one another (l<^r).

Determine the average tension T of the 
rope at which the wheel moves at a constant 
velocity v, assuming the mass of the wheel 
to be concentrated at its axle.
1.68. Two coupled wheels (i.e. light wheels 
of radius r fixed to a thin heavy axle) 
roll without slipping at a velocity v per­
pendicular to the boundary over a rough 
horizontal plane changing into an inclined 
plane of slope a (Fig. 34).

Determine the value of v at which the 
coupled wheels roll from the horizontal to 
the inclined plane without being separated 
from the surface.



1. Mechanics 35

1.69. A thin rim of mass m and radius r 
rolls down an inclined plane of slope a, 
winding thereby a thin ribbon of linear den­

sity p (Fig. 35). At the initial moment, the 
rim is at a height h above the horizontal 
surface.'

Determine the distance s from the foot 
of the inclined plane at which the rim stops, 
assuming that the inclined plane smoothly 
changes into the horizontal plane.
1.70. Two small balls of the same size and 
of mass m1 and m2 (m1 >  m2) are tied by a 
thin weightless thread and dropped from a 
balloon.

Determine the tension T of the thread dur­
ing the flight after the motion of the balls 
has become steady-state.
1.7 *. A ball is tied by a weightless inexten- 
sible thread to a fixed cylinder of radius r. 
At the initial moment, the thread is wound 
so that the ball touches the cylinder. Then 
the ball acquires a velocity v in the radial 
direction, and the thread starts unwinding 
(Fig. 36). .
3*
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Determine'the length I of the unwound 
segment of the thread by the instant of 
time t, neglecting the force of gravity.

1.72. Three small balls of the same mass, 
white (w), green (g), and blue (b), are fixed 
by weightless rods at the vertices of the 
equilateral triangle with side I. The system 
of balls is placed on a smooth horizontal sur­
face and set in rotation about the centre of 
mass with period T. At a certain instant, 
the blue hall tears away from the frame.

Determine the distance L between the 
blue and the green ball after the time T.
1.73. A block is connected to an identical 
block through a weightless pulley by a 
weightless inextensible thread of length 2Z 
(Fig. 37). The left block rests on a table at 
a distance I from its edge, while the right 
block is kept at the same level so that the 
thread is unstretched and does not sag, and' 
then released.

What will happen first: will the left 
block reach the edge of the table (and touch 
the pulley) or the right block hit the table?
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1.74. Two loads of the same mass are tied 
to the ends of a weightless inextensible

thread passed through a weightless pulley 
(Fig. 38). Initially, the system is at rest, 
and the loads are at the same level. Then 
the right load abruptly acquires a horizon­
tal velocity v in the plane of the figure.

Which load will be lower in a time?
1.75. Two balls of mass mx =  56 g and 
m2 =  28 g are suspended on two threads 
of length Zx =  7 cm and l2 =  11 cm at the 
end of a freely hanging rod (Fig. 39).

Determine the angular velocity <n at which 
the rod should be rotated about the vertical 
axle so that it remains in the vertical posi­
tion.
1.76. A weightless horizontal rigid rod along 
which two balls of the same mass m can move 
without friction rotates at a constant an­
gular velocity <o about a vertical axle. The 
balls are connected by a weightless spring 
of rigidity k, whose length in the undeformed 
state is Z0. The ball which is closer to 
the vertical axle is connected to it by the 
same spring.

'■///////////,

Fig. 37 Fig. 38
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Determine the lengths of the springs. 
Under what conditions will the balls move 
in circles?

Fig. 39

1.77. Figure 40 shows the dependence of 
the kinetic energy Wk of a body on the dis­
placement s during the motion of the body 
in a straight line. The force FA =  2 N

Fig. 40
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is known to act on the body at point A.
Determine the forces acting on the body 

at points B and C.

Fig. 41

1.78. A conveyer belt having a length I 
and carrying a block of mass m moves at a 
velocity v (Fig. 41).

Determine the velocity y0 with which the 
block should be pushed against the direc­
tion of motion of the conveyer so that the 
amount of heat liberated as a result of de­
celeration of the block by the conveyer belt 
is maximum. What is the maximum amount 
of heat Q if the coefficient of friction is p. 
and the condition v <C V2\ilg is satisfied?
1.79. A heavy pipe rolls from the same 
height down two hills with different profiles 
(Figs. 42 and 43). In the former case, the

Fig. 42 Fig. 43
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pipe rolls down without slipping, while in 
the latter case, it slips on a certain region.

In what case will the velocity of the'pipe 
at the end of the path be lower?
1.80. A heavy load is suspended on a light 
spring. The spring is slowly pulled down at 
the midpoint (a certain work A is done 
thereby) and then released.

Determine the maximum kinetic energy 
VFu of the load in the subsequent motion.
1.81. The masses of two stars are and 
m2, and their separation is I.

Determine the period T of their revolu­
tion in circular orbits about a common cen­
tre.
1.82. A meteorite approaching a planet 
of mass M (in the straight line passing 
through the centre of the planet) collides 
with an automatic space station orbiting 
the planet in the circular trajectory of radi­
us R. The mass of the station is ten times 
as large as the mass of the meteorite. As a 
result of collision, the meteorite sticks in 
the station which goes over to a new orbit 
with the minimum distance R12 from the 
planet.

Determine the velocity u of the meteorite 
before the collision.
1.83. The cosmonauts who landed at the 
pole of a planet found that the force of 
gravity there is 0.01 of that on the Earth, 
while the duration of the day on’the planet 
is the same as that onvthe Earth. It turned 
out besides that the force of gravity on the 
equator is zero.
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Determine the radius R of the planet.
1.84. The radius of Neptune’s orbit is 30 
times the radius of the Earth’s orbit.

Determine the period TN of revolution of 
Neptune around the Sun.
1.85. Three loads of mass m1, m2, and M 
are suspended on a string passed through

Fig. 44

two pulleys as shown in Fig. 44. The pulleys 
are at the same distance from the points of 
suspension.

Find the ratio of masses of the loads at 
which the system is in equilibrium. Can 
these conditions always be realized? The 
friction should be neglected.
1.86. Determine the minimum coefficient 
of friction |xmln between a thin homogeneous 
rod and a floor at which a person can slowly 
lift the rod from the floor without slippage 
to the vertical position, applying to its 
end a force perpendicular to it.
1.87. Three weightless rods of length I 
each are hinged at points A and B lying on 
the same horizontal and joint through hinges 
at points C and D (Fig. 45). The length
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AB =  21. A load of mass m is suspended at 
the hinge C.

Determine the minimum force Fmjn ap­
plied to the hinge D for which the middle 
rod remains horizontal.

Fig. 45

1.88. A hexagonal pencil placed on an in­
clined plane with a slope a at right angles 
to the generatrix (i.e. the line of intersec­
tion of the plane and the horizontal surface) 
remains at rest. The same pencil placed 
parallel to the generatrix rolls down the 
plane.

Determine the angle cp between the axis 
of the pencil and the generatrix of the in­
clined plane (Fig. 46) at which the pencil 
is still in equilibrium.
1.89. A homogeneous rod of length 21 
leans against a vertical wall at one end and 
against a smooth stationary surface at an­
other end.

What function y (x) must lie used to de­
scribe the cross section of this surface for 
the rod to remain in equilibrium in any 
position even in the absence of friction? 
Assume that the rod remains all the time

GzD
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in the same vertical plane perpendicular 
to the plane of the wall.
1.90. A thin perfectly rigid weightless rod 
with a point-like ball fixed at one end is 
deflected through a small angle a from its

equilibrium position and then released. 
At the moment when the rod forms an 
angle P <  a with the vertical, the ball un­
dergoes a perfectly elastic collision with 
an inclined wall (Fig. 47).

Determine the ratio TJT of the period of 
oscillations of this pendulum to the period 
of oscillations of a simple pendulum having 
the same length.
1.91*. A ball of mass m falls from a certain 
height on the pan of mass M (M m) of a
spring balance. The rigidity of the s prin 
is k.

Determine the displacement Ax of the 
point about which the pointer of the bal­
ance will oscillate, assuming that the colli­
sions of the ball with the pan are perfectly 
elastic.
1.92. A bead of mass m can move without 
friction along a long wire bent in a verti-

Fig. 46 Fig. 47
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cal plane in the shape of a graph of a cer­
tain function. Let lA be the length of the seg­
ment of the wire from the origin to a cer­
tain point A. It is known that if the bead 
is released at point A such that lA <  lAt, 
its motion will be strictly harmonic:
I (£) =  lA cos (ot.

Prove that there exists a point B (lAl> ̂  
l B) at which the condition of harmonicity 
of oscillations will be violated.
1.93. Two blocks having mass m and 2m 
and connected by a spring of rigidity k 
lie on a horizontal plane.

Determine the period T of small longitu­
dinal oscillations of the system, neglecting 
friction.
1.94. A heavy round log is suspended at 
the ends on two ropes so that the distance 
between the points of suspension of the 
ropes is equal to the diameter of the log. The 
length of each vertical segment of the ropes 
is /.

Determine the period T of small oscilla­
tions of the system in a vertical plane per­
pendicular to the log.
1.95. A load of mass M is on horizontal 
rails. A pendulum made of a ball of mass m 
tied to a weightless inextensible thread is 
suspended to the load. The load can move 
only along the rails.

Determine the ratio of the periods T J7\ 
of small oscillations of the pendulum in ver­
tical planes parallel and perpendicular to 
the rails.
1.96. Four weightless rods of length I each
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are connected by hinged joints and form a 
,rhomb (Fig. 48). A hinge A is fixed, and a 
load is suspended to a hinge C. Hinges D 
and B are connected by a weightless spring 
of length 1.5Z in the undeformed state. In 
equilibrium, the rods form angles a 0 =  30° 
with the vertical.

Determine the period T of small oscilla­
tions of the load.

4.97. A thin hoop is hinged at point A 
so that at the initial moment its centre of 
mass is almost above point A (Fig. 49). 
Then the hoop is smoothly released, and in 
a time t  =  0.5 s, its centre of mass oc­
cupies the lowest position.

Determine the time t in which a pendu­
lum formed by a heavy ball B fixed on a 
weightless rigid rod whose length is equal 
to the radius of the hoop will return to the 
lowest equilibrium position if initially the 
ball was near the extreme upper position 
(Fig. 50) and was released without pushing.
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1.98. A weightless rigid rod with a load at 
the end is hinged at point A to the wall so 
that it can rotate in all directions (Fig. 51).

•e
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The rod is kept in the horizontal position 
by a vertical inextensible thread of length 
I, fixed at its midpoint. The load receives a 
momentum in the direction perpendicular 
to the plane of the figure.

Determine the period T of small oscilla­
tions of the system.
1.99. One rope of a swing is fixed above the 
other rope by b. The distance between the 
poles of the swing is a. The lengths 
and Z2 of the ropes are such that l\ -f- l\ =  
a2 +  52 (Fig. 52).

Determine the period T of small oscilla­
tions of the swing, neglecting the height of 
the swinging person in comparison with 
the above lengths.
1.100. Being a punctual man, the lift oper­
ator of a skyscraper hung an exact pendu­
lum clock on the lift wall to know the end 
of the working day. The lift moves with an 
upward and downward accelerations during 
the same time (according to a stationary
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clock), the magnitudes of the accelerations 
remaining unchanged.

W ill the operator finish his working day 
in time, or will he work more (less) than 
required?
1.101. The atmospheric pressure is known to 
decrease with altitude. Therefore, at the up­

per storeys of the Moscow State University 
building the atmospheric pressure must be 
lower than at the lower storeys. In order to 
verify this, a student connected one arm of 
a U-shaped manometer to the upper audito­
rium and the other arm to the lower audito­
rium.

What will the manometer indicate?
1.102. Two thin-walled tubes closed at one 
end are inserted one into the other and com­
pletely filled with mercury. The cross-sec­
tional areas of the tubes are S and 2S.
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The atmospheric pressure is p0 =  pmeTgh, 
where pmer is the density of mercury, g 
is the free-fall acceleration, and h is the 
height. The length of each tube is l > h .

What work A must be done by external 
forces to slowly pull out the inner tube? 
The pressure of mercury vapour and the 
forces of adhesion between the material of the 
tubes and mercury should be neglected.
1.103. Two cylinders with a horizontal 
and a vertical axis respectively rest on a 
horizontal surface. The cylinders are con­
nected at the lower parts through a thin 
tube. The “horizontal” cylinder of radius r 
is open at one end and has a piston in it

Fig. 53

(Fig. 53). The “vertical” cylinder is open at 
the top. The cylinders contain water which 
completely fills the part of the horizontal 
cylinder behind the piston and is at a cer­
tain level in the vertical cylinder.

Determine the level h of water in the ver­
tical cylinder at which the piston is in equi­
librium, neglecting friction.
1.104. An aluminium wire is wound on a 
piece of cork of mass mC 0 T The densities 
Pcork* Pai* and pw of cork, aluminium^ and
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water are 0.5 X 10®  kg/m3, 2.7 X 103 kg/m3, 
and 1 X 103 kg/m3 respectively.

Determine the minimum mass mai of 
the wire that should be wound on the cork 
so that the cork with the wire is completely 
submerge ! in water.
1;105. One end of an iron chain is fixed to 
a* sphere of mass M — 10 kg and of dia­
meter D =  0.3 m (the volume of such a 
sphere is V =  0.0141 m3), while the other 
end is free. The length I of the chain is 3 m 
and its mass m is 9 kg. The sphere with the 
chain is in a reservoir whose depth H =  
3 m.

Determine the depth at which the sphere 
will float, assuming that iron is 7.85 
times heavier than water.
1.106. Two bodies of the same volume but 
of different masses are in equilibrium on a 
lever.

W ill the equilibrium be violated if the 
lever is immersed in water so that the 
bodies are completely submerged?
1.107. A flat wide and a high narrow box 
float in two identical vessels filled with wa­
ter. The boxes do not sink when two iden­
tical heavy bodies of mass m each are 
placed into them.

In which vessel will the level of water be 
higher?
1.108. A steel ball floats in a vessel with 
mercury.

How will the volume of the part of the 
ball submerged in mercury change if a
4-0771
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layer of water completely covering the ball 
is poured above the mercury?
1.109. A piece of ice floats in a vessel with 
water above which a layer of a lighter oil 
is poured.

How will the level of the interface change 
after the whole of ice melts? What will be 
the change in the total level of liquid in the 
vessel?
1.110. A homogeneous aluminium ball of 
-radius r =  0.5 cm is suspended on a weight­
less thread from an end of a homogeneous 
rod of mass M =  4.4 g. The rod is placed 
on the edge of a tumbler with water so that 
half of the ball is submerged in water when

Fig. 54

the system is in equilibrium (Fig. 54). The 
densities pal and pw of aluminium and water 
are 2.7 X 10s kg/m8 and 1 X 103 kg/m8 
respectively.

Determine the ratio y/x of the parts of 
the rod to the brim, neglecting the sur­
face tension on the boundaries between the 
ball and water.
1.111. To what division will mercury fill 
the tube of a freely falling barometer of

X
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len gth  105 cm at an atmospheric pressure 
o f 760 mmHg?
1.112. A simple accelerometer (an instru­
ment for measuring acceleration) can be made 
in  the form of a tube filled with a liquid

and bent as shown in Fig. 55. During mo­
tion, the level of the liquid in the left arm 
will be at a height ht, and in the right arm 
at a height h2.

Determine the acceleration a of a carriage 
in which the accelerometer is installed, 
assuming that the diameter of the tube is 
much smaller than h± and h2.
1.113. A jet plane having a cabin of length 
1=  50 m flies along the horizontal with an 
acceleration a =  1 m/s2. The air density 
in the cabin is p =  1.2 X 10~3 g/cm3.

What is the difference between the atmo­
spheric pressure and the air pressure exert­
ed on the ears of the passengers sitting in 
the front, middle, and rear parts of the 
cabin?
1.114. A tube filled with water and closed 
at both ends uniformly rotates in a horizon­
tal plane about the 00'-axis. The manome­
ters fixed in the tube wall at distances i\
4*
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and r2 from the rotational axis indicate 
pressures Pi and p2 respectively (Fig. 56).
O !

Determine the angular velocity to of ro­
tation of the tube, assuming that the densi­
ty pw of water is known.
1.115. Let us suppose that the drag F to the 
motion of a body in some medium depends 
on the velocity v of the body as F =  \iva, 
where a >  0.

At what values of the exponent a will 
the body pass an infinitely large distance 
after an initial momentum has been im­
parted to it?
1.116. The atmospheric pressure on Mars is 
known to be equal to 1/200 of the atmospher­
ic pressure on the Earth. The diameter of 
Mars is approximately equal to half the 
Earth’s diameter, and the densities Pe and 
pM of the planets are 5.5 X 103 kg/m3 
and 4 X 103 kg/m3.

Determine the ratio of the masses of the 
Martian and the Earth’s atmospheres.
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For the problems of this chapter, the universal 
gas constant R (wherever required) should be 
taken equal to 8.3 J/(mol-K).

2.1. Two vertical communicating cylinders 
of different diameters contain a gas at a 
constant temperature under pistons of mass

=  1 kg and m2 =  2 kg. The cylinders 
are in vacuum, and the pistons are at the 
SAine height h0 =0.2 m.

What will be the difference h in their 
heights if the mass of the first piston is 
made as large as the mass of the second 
piston?
2.2. The temperature of the walls of a ves­
sel containing a gas at a temperature T is 
Twall-

In which case is the pressure exerted by 
the gas on the vessel walls higher: when the 
vessel walls are colder than the gas 
(^waii <  T) or when they are warmer than 
the gas (Twall >  T)1
2.8. A cyclic process (cycle) 1-2-3-4-1 
consisting of two isobars 2-3 and 4-1, iso- 
chor 1-2, and a certain process 3-4 represent­
ed by a straight line on the p-V diagram 
(Pig. 57) involves n moles of an ideal gas. 
'Hie gas temperatures in states 7, 2, and



54 Aptitude Test Problems in Physics

3 are Tt, T2, and T3 respectively, and points 
2 and 4 lie on the same isotherm.

Determine the work A done by the gas 
during the cycle.

2.4. Three moles of - an ideal monatomic 
gas perform a cycle shown in Fig. 58. The 
gas temperatures in different states are

Ti =  400 K, T2 =  800 K, T3 =  2400 K, 
and T4 =  1200 K.

Determine the work A done by the gas 
<luring the cycle.
2.5. Determine the work A done by an ideal 
gas during a closed cycle 1 -*-4 -*-3 -*■
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2 -*~1 shown in Fig. 59 if pt =  106 Pa, 
p0 =  3 X 10®  Pa, p, =  4 X 10®  Pa, V2 — 
Vi =  10 1, and segments 4-3 and 2-1 of the 
cycle are parallel to the F-axis.
H

Fig. 59

2.6. A gas takes part in two thermal proc­
esses in which it is heated from the same ini­
tial state to the same final temperature.

F’ig. 60
v

The processes are shown on the p-V dia­
gram by straight lines 1-3 and 1-2 
(Fig. 60).

Indicate the process in which the amount 
of heat supplied to the gas is larger.
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A vessel of volume V =  30 1 is sepa­
rated into three equal parts bystationary 
semipermeable thin particles iFig. 61). The

H.2 02

Fig. 61

left' middle, and right parts are filled with 
mH, =  30 g of hydrogen, mo, =  160 g of 
oxygen, and =70 g of nitrogen respec­
tively. The left partition lets through only 
hydrogen, while the right partition lets 
through hydrogen and nitrogen.

What will be the pressure in each part of 
the vessel after the equilibrium has been 
set in if the vessel is kept at a constant 
temperature T =  300 K?
2.8*. The descent module of a spacecraft 
approaches the surface of a planet along the 
vertical at a constant velocity, transmit­
ting the data on outer pressure to the 
spacecraft. The time dependence of pressure 
(in arbitrary units) is shown in Fig. 62. 
The data transmitted by the module after 
landing are: the temperature T =  700 K 
and the free-fall acceleration g =  10 m/s2.

Determine (a) the velocity v of landing of 
the module if the atmosphere of the planet 
is known to consist of carbon dioxide C02, 
and (b) the temperature Th at an altitude 
h =  15 km above the surface of the planet.
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2.9. A vertical thermally insulated cylin­
der of volume V contains n moles of an ideal 
monatomic gas under a weightless piston.

A load of mass M is placed on the piston, 
as a result of which the piston is displaced 
by a distance h.

Determine the final temperature Tt of 
the gas established after the piston has 
been displaced if the area of the piston is S 
and the atmospheric pressure is p0.
2.10. A vertical cylinder of cross-sectional 
area S contains one mole'of an ideal mon­
atomic gas under a piston of mass M. At a 
certain instant, a heater which transmits to 
a gas an amount of heat q per unit time is 
switched on under the piston.

Determine the established velocity v 
of the piston under the condition that the 
gas pressure under the piston is constant 
and equal to p0, and the gas under the 
piston is thermally insulated.
2*11*. The product of pressure and volume 
(ipF) of a gas does not change with volume
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at a constant temperature only provided that 
the gas is ideal.

W ill the product pV be higher or lower 
under a very strong compression of a gas if 
no assumption is made concerning the ideal 
nature of the gas?
2.12*. A horizontal cylindrical vessel of 
length 21 is separated by a thin heat-insu- 
latipg piston into two equal parts each of 
which contains n moles of an ideal monatom­
ic gas at a temperature T. The piston is 
connected to the end faces of the vessel by un-

21
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Fig. 63
deformed springs of rigidity k each (Fig. 63). 
When an amount of heat Q is supplied 
to the gas in the right part, the piston is 
displaced to the left by a distance x — 112.

Determine the amount of heat Q' given 
away at the temperature T to a thermostat 
with which the gas in the left part is in 
thermal contact all the time.
2.13. A thermally insulated vessel is divid­
ed into two parts by a heat-insulating pis­
ton which can move in the vessel without 
friction. The left part of the vessel contains 
one mole of an ideal monatomic gas, and
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the right part is empty. The piston is con­
nected to the right wall of the vessel 
through a spring whose length in free state is 
equal to the length of the vessel (Fig. 64).

Fig. 64

Determine the heat capacity (f of the sys­
tem, neglecting the heat capacities of the 
vessel, piston, and spring.
2.14. Prove that the efficiency of a heat en­
gine based on a cycle consisting of two iso­
therms and two isochors is lower than the 
efficiency of Carnot’s heat engine operating 
with the same heater and cooler.
2.15*. Let us suppose that a planet of mass 
M  and radius r is surrounded by an atmo­
sphere of constant density, consisting of 
a gas of molar mass p,.

Determine the temperature T of the at­
mosphere on the surface of the planet if the 
’neij|iit di 'ine dtmos^nere 'is 'n '{n fy.
2.16. It is known that the temperature in 
the room is -f 20 °C when the outdoor tem­
perature is —20 °C, and -f 10 °C when the 
outdoor temperature is —40 °C.

Determine the temperature T of the ra­
diator beating the room.
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2.17. A space object! has the shape of a 
sphere of radius R . Heat sources ensuring 
the heat evolution at a constant rate are 
distributed uniformly over its volume. The 
amount of heat liberated by a unit surface 
area is proportional to the fourth power of 
thermodynamic temperature.

In what proportion would the tempera­
ture of the object change if its radius de­
creased by half?
2.18*. A heat exchanger of length I con­
sists of a tube of cross-sectional area 2S 
with another tube of cross-sectional area

ht rfl
i t
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Fig. 65

S passing through it (Fig. 65). The walls of 
the tubes are thin. The entire system is ther­
mally insulated from the ambient. A liq­
uid of density p and specific heat c is pumped 
at a velocity v through the tubes. The 
initial temperatures of the liquid in the 
heat exchanger are T{1 and T l2 respec­
tively.

Determine the final temperatures Ttl 
and Tti the liquid in the heat exchanger
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if the liquid passes through the tubes in 
the counterflow, assuming that the heat 
transferred per unit time through a unit 
area element is proportional to the temper­
ature difference, the proportionality factor 
being k. The thermal conductivity of the 
liquid in the direction of its flow should be 
neglected.
2.19*. A closed cylindrical vessel of base 
area S contains a substance in the gaseous 
state outside the gravitational field of the 
Earth. The mass of the gas is M and its 
pressure is p such that p < ^ p sati where 
p8at is the saturated vapour pressure at a 
given temperature. The vessel starts mov­
ing with an acceleration a directed along 
the axis of the cylinder. The temperature is 
maintained constant.

Determine the mass m ilq of the liquid 
condensed as a result of motion in the ves­
sel.
2.20. The saturated water vapour pressure 
on a planet is p0 — 760 mmHg.

Determine the vapour density p.
2.21. In cold weather, water vapour can be 
seen in the exhaled air. If the door of a warm 
hut is opened on a chilly day, fog rushes in­
to the hut.

Explain these phenomena.
2.22*. A vessel of volume V =  2 1 contains 
Wh, =  2 g of hydrogen and some amount 
of water. The pressure in the vessel is 
Pi =  17 X 106 Pa. The vessel is heated so 
that the pressure in it increases to pt — 
26 X 108 Pa, and water partially evapo-
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rates. The molar mass of water vapour is 
p =  18 X 10"3 kg/mol.

Determine the initial T, and final Tt 
temperature of water and its mass Am.

Hint. Make use of the following tempera­
ture dependence of the saturated water va­
pour pressure:
T, °C 100 120 133 152 180
Psati XlO5 Pa 1 2 3 5 10

2.23. The lower end of a capillary of radius 
r =  0.2 mm and length I =  8 cm is immersed 
in water whose temperature is constant 
and equal to T iow =  0 °C. The temperature 
of the upper end of the capillary is Tup =  
100 °C.

Determine the height h to which the wa­
ter in the capillary rises, assuming that 
the thermal conductivity of the capillary 
is much higher than the thermal conductiv­
ity of water in it. The heat exchange with 
the ambient should be neglected.

Hint. Use the following temperature de­
pendence of the surface tension of water:
T, °C 0 20 50 90
a, mN/m 76 73 67 60

2.24. A cylinder with a movable piston 
contains air under a pressure px and a soap 
bubble of radius r. The surface tension is 
ct, and the temperature T is maintained con­
stant.

Determine the pressure p% to which the 
air should be compressed by slowly pull-
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ittg^the |piston into the cylinder for the soap 
j>ubblerto reduce its size by half.
2.25. Why is* clay used instead of cement 
(which has a higher strength) in laying 
bricks for a fireplace? {Hint. Red-clay bricks 
are used for building fireplaces.)
2.26. A thermally insulated vessel contains 
two liquids with initial temperatures Tx 
and T2 and specific heats c* and c2, separat­
ed by a nonconducting partition. The par­
tition is removed, and the difference be­
tween the initial temperature of one of the 
liquids and the temperature T established 
in the vessel turns out to be equal to half 
the difference between the initial tempera- 
thres of the liquids.

Determine the ratio m1/m2 of the masses 
of the liquids.
2.27. Water at 20 °C is poured into a test 
tube whose bottom is immersed in a large 
amount of water at 80 °G. As a result, the 
water in the test tube is heated to 80 °G 
during a time tx. Then water at 80 °C is 
poured into the test tube whose bottom is 
immersed in a large amount of water at 
20 °C. The water in the test tube is cooled to 
20 °C during a time t2.

What time is longer: tx or J2?
2.28. The same mass of water is poured into 
two identical light metal vessels. A heavy 
ball (whose mass is equal to the mass of wa­
ter and whose density is much higher than 
that of water) is immersed on a thin non­
conducting thread in one of the vessels so 
that it is at the centre of the volume of the
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water in the vessel. The vessels are heated 
to the boiling point of water and left to 
cool. The time of cooling for the vessel 
with the ball to the temperature of the 
ambient is known to be k times as long as 
the time of cooling for the vessel without a 
ball.

Determine the ratio cjcyf of the specific 
heats of the ball material and water.
2.29. Two identical thermally insulated 
cylindrical calorimeters of height h =  
75 cm are filled to one-third. The first calo­
rimeter is filled with ice formed as a result 
of freezing water poured into it, and the 
second is filled with water at Tw —10 °G. 
Water from the second calorimeter is poured 
into the first one, and as a result it be­
comes to be filled to two-thirds. After the 
temperature has been stabilized in the first 
calorimeter, its level of water increases by 
Ah =  0.5 cm. The density of ice is pjce =  
0.9pw, the latent heat of fusion of ice is 
X =  340 kJ/kg, the specific heat of ice is 
c lce =  2.1 kJ/(kg«K), and the specific 
heat of water is cw =  4.2 kJ/(kg*K).

Determine the initial temperature T lce 
of ice in the first calorimeter.
2.30*. A mixture of equal masses of water 
and ice (m =  mw =  m lce =  1 kg) is con­
tained in a thermally insulated cylindrical 
vessel under a light piston. The pressure on 
the piston is slowly increased from the ini­
tial value p0 =  105 Pa to px =  2.5 X 
10®  Pa. The specific heats of water and 
ice are cw =  4.2 kJ/(kg*K) and c lce =
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2.1 kJ/(kg*K), the latent heat of fusion of 
ice is X =  340 kJ/kg, and the density of ice 
is Pice =  0.9pw (where pw is the density 
of water).

Determine the mass Am of ice which melts 
in the process and the work A done by an 
external force if it is known that the pres­
sure required to decrease the fusion tempera­
ture of ice by 1 °C is p =* 14 X 10®  Pa, 
while the pressure required to reduce the 
volume of a certain mass of water by 1% 
is p' — 20 X 10®  Pa.

(1) Solve the problem, assuming that wa­
ter and ice are incompressible.

(2) Estimate the correction for the com­
pressibility, assuming that the compres­
sibility of ice is equal to half that value 
for water.
2.31. It is well known that if an ordinary 
water is salted, its boiling point rises.

Determine the change in the density of 
saturated water vapour at the boiling 
point.
2.32. For many substances, there exists a 
temperature Ttr and a pressure p tl at which 
all the three phases of a substance (gaseous, 
liquid, and solid) are in equilibrium. These 
temperature and pressure are known as the 
triple point. For example, Ttr — 0.0075 °G 
and ptr =  4.58 mmHg for water. The la­
tent heat of vaporization of water at the 
triple point is q =  2.48 X 103 kJ/kg, and 
the latent heat of fusion of ice is X =  0.34 X  
108 kJ/kg.

Find the latent heat v of sublimation
$—0771
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(i.e. a direct transition from the solid to 
the gaseous state) of water at the triple 
point.
2.33. The saturated vapour pressure above 
an aqueous solution of sugar is known to be 
lower than that aboye pure water, where 
it is equal to />8at, by Ap =  0.05psatc,

where c is the molar concentration of the 
solution. A cylindrical vessel filled to 
height hx =  10 cm with a sugar solution of 
concentration cx — 2 X 10~3 is placed un­
der a wide bell. The same solution of con­
centration c2 — 10~3 is poured under the 
bell to a level h% <C hx (Fig. 66).

Determine the level h of the solution in 
the cylinder after the equilibrium has been 
set in. The temperature is maintained con­
stant and equal to 20 °G. The vapour above 
the surface of the solution contains only 
water molecules, and the molar mass of 
water vapour is p, =  18 X 10~3 kg/mol.
2.34. A long vertical brick duct is filled 
with cast iron. The lower end of the duct 
is maintained at a temperature Tx >•
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Tmeit (T’meit is the melting point of cast 
iron), and the upper end at a temperature 
Tj <  r me)t. The thermal conductivity of 
molten (liquid) cast iron is k times higher 
than that of solid cast iron.

Determine the fraction of the duct filled 
with molten metal.
2.35*. The shell of a space station is a 
blackened sphere in which a temperature 
7 =  500 K is maintained due to the opera­
tion of appliances of the station. The amount 
of heat given away from a unit surface 
area is proportional to the fourth power of 
thermodynamic temperature.

Determine the temperature Tx of the 
shell if the station is enveloped by a thin 
spherical black screen of nearly the same 
.radius as the radius of the shell.
2.36. A bucket contains a mixture of water 
and ice of mass m — 10 kg. The bucket is

brought into a room, after which the tem­
perature of the mixture is immediately 
measured. The obtained T (t) dependence 
is plotted in Fig. 67. The specific heat of
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water is cw =  4.2 J/(kg*K), and the latent 
heat of fusion of ice is k — 340 kJ/kg.

Determine the mass mlce of ice in the 
bucket at the moment it is brought in the 
room, neglecting the heat capacity of the 
bucket.
2.37*. The properties of a nonlinear resis­
tor were investigated in a series of ex­
periments. At first, the temperature depen­
dence of the resistor was studied. As the 
temperature was raised to Tx =  100 °C, 
the resistance changed jumpwise from 
Ri =  50 Q to i?2 =  100 Q. The reverse ab­
rupt change upon cooling took place at 
T2 =  99 °C. Then a d.c. voltage Ul — 
60 V was applied to the resistor. Its temper­
ature was found to be T2 =  80 °C. Final­
ly, when a d.c. voltage U2 =  80 V was 
applied to the resistor, spontaneous current 
oscillations were observed in the circuit.

The air temperature T0 in the laboratory 
was constant and equal to 20 °G. The heat 
transfer from the resistor was proportional 
to the temperature difference between the 
resistor and the ambient, the heat capacity 
of the resistor being C =  3 J/K.

Determine the period T of current oscil­
lations and the maximum and minimum 
values of the current.
2.38. When raindrops fall on a red-brick 
wall after dry and hot weather, hissing 
sounds are produced.

Explain the phenomenon.
2.39. A thin U-tube sealed at one end con­
sists of three bends of length I — 250 mm
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each, forming right angles. The vertical 
parts of the tube are filled with mercury 
to half the height (Fig. 68). All of mercury

5 L_
T1

§

Fig. 68

can be displaced from the tube by heating 
slowly the gas in the sealed end of the tube, 
which is separated from the atmospheric 
air by mercury.

Determine the work A done by the gas 
thereby if the atmospheric pressure is p0== 
106 Pa, the density of mercury is pmer =  
13.6 X 103 kg/m3, and the cross-sectional 
area of the tube is .S' =  1 cm2.
2.40. The residual deformation of an elas­
tic rod can be roughly described by using 
the following model. If the elongation of 
the rod AI <  x0 (where x0 is the quantity 
present for the given rod), the force required 
to cause the elongation AI is determihed 
by H ooke’s law: F =  k A I, where k is the 
rigidity of the rod. If AI >  x0, the force does 
not depend on elongation any longer (the 
material of the rod starts “flow ing”). If the
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load is then removed, the elongation of the 
rod will decrease along CD which for the 
sake.nf^imi»Jicity^wiil_h£j.aJffiaj5tcei<4>A^j?d- 
parallel to the segment AB (Fig. 69). There­

fore, after the load has been removed com­
pletely, the rod remains deformed (point 
D in the figure). Let us suppose that the rod 
is initially stretched by A/ =» i  >  i 0 and 
then the load is removed.

Determine the maximum change A T in 
the rod temperature if its heat capacity is 
Ct and the rod is thermally insulated.
2.41. A thin-walled cylinder of mass m, 
height h, and cross-sectional area S is filled 
with a gas and floats on the surface of water 
(Fig. 70). As a result of leakage from the 
lower part of the cylinder, the depth of its 
submergence has increased by Ah.

Determine the initial pressure px of the 
gas in the cylinder if the atmospheric pres­
sure is p9, and the temperature remains 
unchanged.
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2.42. A shock wave is the region of an el­
evated pressure propagating in the positive 
direction of the x-axis at a high velocity v.

Fig. 70

Pi 

*  —  

Fig. 71

Fig. 72

At the moment of arrival of the wave, the 
pressure abruptly increases. This depen­
dence is plotted in Fig. 71.
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Determine the velocity u acquired by a 
wedge immediately after the shock front 
passes through it. The mass of the wedge is 
m, and its size is shown in Fig. 72. Friction 
should be neglected, and the velocity ac­
quired by the wedge should be assumed to be 
much lower than the velocity of the wave 
(u <  v).
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For the problems of this chapter, assume (wherever 
required) that the electric constant e0 is specified.

3.1. A thin insulator rod is placed between 
two unlike point charges -\-qx and —q2 
(Fig. 73).

®  I I e
f, I2

Fig. 73

How will the forces acting on the charges 
change?
3.2. An electric field line emerges from a
positive point charge at an angle a  to the

9t h
Fig. 74

straight line connecting it to a negative 
point charge —q2 (Fig. 74).

At what angle p will the field line enter 
the charge — g,?
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3.3. Determine the strength E of the electric 
held at the centre of a hemisphere produced 
by charges uniformly distributed with a 
density a over the surface of this hemisphere.
3.4. The strength of the electric field pro­
duced by charges uniformly distributed over 
the surface of a hemisphere at its centre 0 
is E0. A part of the surface is isolated from

this hemisphere by two planes passing 
through the same diameter and forming 
an angle a with each other (Fig. 75).

Determine the electric field strength E 
produced at the same point O by the charges 
located on -the isolated surface (on the 
“m ericarp”).
3.5*. Two parallel-plate capacitors are ar­
ranged perpendicular to the common axis. 
The separation d between the capacitors is 
much larger than the separation I between 
their plates and than their size. The capac­
itors are charged to qx and q2 respectively 
(Fig. 76).

Find the force F of interaction between 
the capacitors.
3.6. Determine the force F of interaction 
between two hemispheres of radius R touch-
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ing .each other along the equator if one 
hemisphere is uniformly charged with a 
surface density al and the other with a sur­
face density <j2.

S-'
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Fig. 76

3.7. The minimum strength of a uniform 
electric field which can tear a conducting 
uncharged thin-walled sphere into two parts 
is known to be 2?0.
* Determine the minimum electric field 

strength Ex required to tear the sphere of 
twice as large radius if the thickness of its 
walls is the same as in the former case.
3.8. Three small identical neutral metal 
balls are at the vertices of an equilateral 
triangle. The balls are in turn connected 
to an isolated large conducting sphere whose 
centre is on the perpendicular erected 
from the plane of the triangle and passing 
through its centre. As a result, the first and 
second balls have acquired charges qt and 
q2 respectively.

Determine the charge q3 of the third ball.
3.9. A metal sphere having a radius rj 
charged to a potential <px is enveloped by a 
thin-walled conducting spherical shell of 
radius r2 (Fig. 77).
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Determine the potential (p2 acquired by 
the sphere after it has been connected for a 
short time to the shell by a conductor.

Fig. 77

3.10. A very small earthed conducting sphere 
is at a distance a from a point charge qx 
and at a distance b from a point charge 
q2 (a <  b). At a certain instant, the sphere 
starts expanding so that its radius grows 
according to the law R — vt.

Determine the time dependence I (t) of 
the current in the earthing conductor, assum­
ing that the point charges and the centre 
of the sphere are at rest, and in due time 
the initial point charges get into the expand­
ing! sphere without touching it (through 
small holes).
3.11. Three; uncharged capacitors of capac­
itance Clt C2, and Cz are connected as 
shown in Fig. 78 to one another and to 
points A, B , and D at potentials (pA, cpB, and 
<Pd-

Determine the potential <p0 at point 0.
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3.12*. The thickness of a flat sheet of a met­
al foil] is d, and its area is S. A charge q 
is located at a distance I from the centre of 
the sheet such that d <  Vs 

Determine the force F with which the 
sheet is attracted to the charge q, assuming 
that the straight line connecting the charge 
to the centre of the sheet Is perpendicular 
to the surface of the sheet.
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Fig. 78 Fig. 79

3.13. Where must a current source be con­
nected to the circuit shown in Fig. 79 in 
order to charge all the six capacitors having 
oqual capacitances?
3.14. A parallel-plate capacitor is filled by 
a dielectric whose permittivity varies with 
the applied voltage according to the law 
a =  a 17, where a  =  1 V '1. The same (but 
containing no dielectric) capacitor charged 
to a voltage U0 — 156 V is connected in 
parallel to the first “nonlinear” uncharged 
Capacitor.

Determine the final voltage U across the 
capacitors.
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3.15. Two small balls of mass m, bearing a 
charge q each, are connected by a noncon­
ducting thread of length 21. At a certain in­
stant, the middle of the thread starts mov­
ing at a constant velocity v perpendicular 
to the direction of the thread at the initial 
instant.

Determine the minimum distance d be­
tween the balls.
3.16. Two balls of charge qx and q2 initially 
have a velocity of the same magnitude and 
direction. After a uniform electric field 
has been applied during a certain time, the 
direction of the velocity of the first ball 
changes by 60°, and the velocity magnitude 
is reduced by half. The direction of the 
velocity of the second ball changes thereby 
by 90°.

In what proportion will the velocity of 
the second ball change? Determine the mag­
nitude of the charge-to-mass ratio for the 
second ball if it is equal to for the first 
ball. The electrostatic interaction between 
the balls should be neglected.
3.17. Small identical balls with equal 
charges are fixed at the vertices of a right 
1977-gon with side a. At a certain instant, 
one of the balls is released, and a sufficient­
ly long time interval later, the ball adjacent 
to the first released ball is freed. The kinet­
ic energies of the released balls are found to 
differ by A at a sufficiently long distance from 
the polygon.

Determine the charge q of each ball.
3.18. Why do electrons and not ions cause
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collision ionization of atoms although both 
charges acquire the same kinetic energy 
my2/2 =  e A<p (e is the charge of the parti­
cles, and A<p is the potential difference) in 
an accelerating field? Assume that an atom 
to be ionized and a particle impinging on 
it have approximately the same velocity af­
ter the collision.
3,. 19. Two small identical balls lying on a 
horizontal plane are connected by a weight­
less spring. One ball is fixed at point 0 
and the other is free. The balls are charged 
identically, as a result of which the spring 
length increases twofold.

Determine the change in the frequency 
of harmonic vibrations of the system.
3.20. Two small balls having the same mass 
ahd charge and located on the same verti­
cal at heights hx and h2 are thrown in the 
same direction along the horizontal at the 
same velocity v. The first ball touches the 
ground at a distance I from the initial ver­
tical.
: At what height Ht will the second ball be 
at this instant? The air drag and the effect 
«of the charges induced on the ground should 
be neglected.
3.21. A hank of uninsulated wire consisting 
of seven and a half turns is stretched between 
two nails hammered into a hoard to which 
|he ends of the wire are fixed. The resistance 
pf the circuit between the nails is deter­
mined with the help of electrical measuring 
Instruments.
I Determine the proportion in which the



80 Aptitude Test Problems in Physics

resistance will change if the wire is un­
wound so that the ends remain to be fixed 
to the nails.
3.22. Five identical resistors (coils for hot 
plates) are connected as shown in the dia­
gram in Fig. 80.

Fig. 80

What will be the change in the voltage 
across the right upper spiral upon closing 
the key K?
3.23. What will be the change in the resist­
ance of a circuit consisting of five identi-

Fig. 81

cal conductors if two similar conductors are 
added as shown by the dashed line in 
Fig. 81?
3.24. A wire frame in the form of a tetra­
hedron ADCB is connected to a d.c. source
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(Fig. 82). The resistances of all the edges of 
the tetrahedron are equal.

Indicate the edge of the frame that 
should be eliminated to obtain the maximum

D

change in the current AImiX in the circuit, 
neglecting the resistance of the leads.
3.25. The resistance of each resistor in the

Circuit diagram shown in Fig. 83 is the same 
and equal to R. The voltage across the ter­
minals is U.



82 Aptitude Test Problems in Physics

Determine the current / in the leads if 
their resistance can be neglected.
3.26*. Determine the resistance RAB be­
tween points A and B of the frame formed by 
nine identical wires of resistance R each 
(Fig. 84).

R r 6

A R f>
Fig. 84

3.27. Determine the resistance R a b  be­
tween points A and B of the frame made of 
thin homogeneous wire (Fig. 85), assuming

Fig. 85
that the number of successively embedded 
equilateral triangles (with sides decreasing 
by half) tends to infinity. Side AB is equal 
to o, and the resistance of unit length of the 
wire is p.
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3.28. The circuit diagram shown in Fig. 86 
consists of a very large (infinite) number 
of elements. The resistances of the resistors 
in each subsequent element differ by a fac-

Fig. 86

tor of k from the resistances of the resistors 
in the previous elements.

Determine the resistance Rab between 
points A and B if the resistances of the first 
element are Rx and i?a.
3.29. The voltage across a load is controlled 
by using the circuit diagram shown in Fig. 87. 
The resistance of the load and of the

Fig. 87

potentiometer is R. The load is connected 
to the middle of the potentiometer. The in­
put voltage is constant and equal to U.

Determine the change in the voltage 
across the load if its resistance is doubled.
6*
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3.30. Given two different ammeters in 
which the deflections of the pointers are 
proportional to current, and the scales are 
uniform. The first ammeter is connected to 
a resistor of resistance Rx and the second to 
a resistor of unknown resistance Rx. At 
first the ammeters are connected in series 
between points A and B (as shown in

Fig. 88

Fig. 88). In this case, the readings of the 
ammeters are w, and n2. Then the ammeters 
are connected in parallel between A and B

Fig. 89

(as shown in Fig. 89) and indicate /?' and
n.

Determine the unknown resistance Rx 
of the second resistor.
3.31. Two wires of the same length but of 
different square cross sections are made 
from the same material. The sides of the 
cross sections of the first and second wires 
are dx =  1 mm and d2 =  4 mm. The cur­
rent required to fuse the first wire is I x =
10 A.
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Determine th.̂  current 7a required to 
fuse the second) wire, assuming that the 
amount of heat dissipated to the ambient 
per second obeys the law Q — kS (T— Tam), 
where S is the cross-sectional area 
of the wire, T is its temperature, Tam is 
the temperature of the ambient away from 
the wire, and k is the proportionality factor 
which is the same for the two wires.
3.32. The key K in circuit diagram shown 
in Fig. 90 can be either in position 1 or 2.

i

The circuit includes two d.c. sources, two 
resistors, and an ammeter. The emf of one 
source is %x and of the other is unknown. 
The internal resistance of the sources 
should be taken as zero. The resistance of the 
resistors is also unknown. One of the re­
sistors has a varying resistance chosen in 
such a way that the current through the am* 
xheter is the same for both positions of the 
lhy. The current is measured and is found 
to be equal to I.

Determine the resistance denoted by Rx 
in the diagram.
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3.33. Can a current passing through a re­
sistor be increased by short-circuiting one 
of the current sources, say, the one of emf

Fig. 91

as shown in Fig. 91? The parameters of 
the elements of the circuit should be as­
sumed to be specified.
3.34*. Aconcealedcircuit (black box) consist­
ing of resistors has four terminals (Fig. 92). 
If a voltage is applied between clamps

Fig. 92

1 and 2 when clamps 3 and 4 are discon­
nected, the power liberated is =  40 W, 
and when the clamps 3 and 4 are connected, 
the power liberated is N2 =  80 W. If the 
same source is connected to the clamps 
3 and 4, the power liberated in the circuit 
when the clamps 1 and 2 are disconnected 
is Nz =  20 W.
i- Determine the power JV* consumed in 
the circuit when the clamps 1 and 2 are



3. Electricity and Magnetism 87

connected and the same voltage is applied 
between the clamps 3 and 4.
3.35. Determine the current through the 
battery in the circuit shown in Fig. 93

8 K

Fig. 93

(1) immediately after the key K is closed and
(2) in a long time interval, assuming that 
the parameters of the circuit are known.
3.36. The key K (Fig. 94) is connected in 
turn to each of the contacts over short iden-

Fig. 94

tical time intervals so that the change in 
the charge on the capacitor over each con­
nection is small.

What will be the final charge qt on the 
capacitor?
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3.37. A circuit consists of a current source 
of emf $ and internal resistance r, capaci­
tors of capacitance and C2, and resistors 
of resistance i?j and R2 (Fig. 95).

c,
4

*rd >
Rz

O

Fig. 95

C2

Determine the voltages Ux and U2 
across each capacitor.
3.38*. A perfect voltmeter and a perfect 
ammeter are connected in turn between

A

points E and F of a circuit whose diagram is 
shown in Fig. 96. The readings of the instru­
ments are U0 and /„ .

Determine the current /^through the re­
sistor of resistance R connected between 
points E and F.
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3.39. A plate A of a parallel-plate capacitor 
is fixed, while a plate B is attached to the 
wall by a spring and can move, remaining 
parallel to the plate A (Fig. 97). After the 
key K is closed, the plate B starts moving 
and comes to rest in a new equilibrium po­
sition. The initial equilibrium separation d 
between the plates decreases in this case 
by 10%.

What will be the decrease in the equilib­
rium separation between the plates if the 
key K is closed for such a short time that 
the plate B cannot be shifted noticeably?

3.40. The circuit shown in Fig. 98 is made 
of a homogeneous wire of constant cross 
section.

Find the ratio QiJQu °* the amounts of 
heat liberated per unit time in conductors 
1-2 and 3-4.
3.41. The voltage between the anode and 
the cathode of a vacuum-tube diode is (7, 
and the anode current is I,
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Determine the mean pressure pm of elec­
trons on the anode surface of area S.
3.42. A varying voltage is applied to the 
clamps ABJ(Fig. 99) such that the voltage

A o oC

do--------- *------- on
Fig. 99

across the capacitor plates varies, as shown 
in Fig. 100.

Plot the time dependence of voltage across 
the clamps CD.

3.43. Two batteries of emf and jf2, a 
capacitor of capacitance C, and a resistor

Fig. 101

of resistance R are connected in a circuit as 
shown in Fig. 101.
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Determine the amount of heat Q liberat­
ed in the resistor after switching the key 
K.
3.44. An electric circuit consists of a cur­
rent source of emf % and internal resistance 
r , and two resistors connected in paral-

Fig. 102

lei to the source (Fig. 102). The resistance 
R\ of one resistor remains unchanged, while 
the resistance R2 of the other resistor can 
be chosen so that the power liberated in .this 
resistor is maximum.

Determine the value of R2 corresponding 
to the maximum power.
3.45. A capacitor of capacitance Cx is dis­
charged through a resistor of resistance R.

Fig. 103

When the discharge current attains the 
value /01 the key K is opened (Fig. 103).
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Determine the amount of heat Q liberat­
ed in the resistor starting from this mo­
ment.
3.46. A battery of emf £, two capacitors of 
capacitance Cx and C2, and a resistor of re-

Fig. 104

sistance R are connected as shown in 
Fig. 104.

Find the amount of heat Q liberated in 
the resistor after the key K is switched.
3.47. In the circuit diagram shown in 
Fig. 105, the capaoitor of capacitance C

O -

Fig. 105

is uncharged when the key K is open. The 
key is closed over some time during which 
the capacitor becomes charged to a voltage
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Determine the amount of heat Q2 liberat- 
; ed during this time in the resistor of resist- 
J ance R2 if the emf of the source is and 
; its internal resistance can he neglected.
; 3.48. A jumper of mass m can slide without 
i friction along parallel horizontal rails sep- 
; arated by a distance d. The rails are con­
nected to a resistor of resistance R and

placed in a vertically uniform magnetic field 
*6f induction B. The jumper is pushed at a 
velocity v0 (Fig. 106).

Determine the distance s covered by the 
jumper before it comes to rest. How does 
the direction of induction B affect the an­
swer?
3.49. What will be the time dependence of 
the reading of a galvanometer connected to 
the circuit of a horizontal circular loop 
when a charged ball falls along the axis of 
the loop?
3.50. A small charged ball suspended on an 
inextensible thread of length I moves in a 
uniform time-independent upward magnet­
ic field of induction B. The mass of the ball 
(8 m, the charge is q, and.the period of revo­
lution is T.
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Determine the radius r of the circle in 
which the ball moves if the thread is always 
stretched.
3.51/A  metal ball of radius r moves at a 
constant velocity v in a uniform magnetic 
field of induction B.

Indicate the points on the ball the poten­
tial difference between which has the maxi­
mum value A<pmax. Find this value, as­
suming that the direction of velocity forms 
an angle a  with the direction of the mag­
netic induction.
3.52. A direct current flowing through the 
winding of a long cylindrical solenoid of 
radius R produces in it a uniform magnetic 
field of induction B. An electron flies into 
the solenoid along the radius between its 
turns (at right angles to the solenoid axis)-

at a velocity v (Fig. 107). After a certain 
time, the electron deflected by the magnetic 
field leaves the solenoid.

Determine the time t during whi^h the 
electron moves in the solenoid.
3.53. A metal jumper of mass rh can slide 
without friction along two parallel metal



3. Electricity and Magnetism 95

guides directed at an angle a to the horizon­
tal and separated by a distance b. The guides 
are connected at the bottom through an 
uncharged capacitor of capacitance C, and 
the entire system is placed in an upward

Fig. i08

magnetic held of induction B. At the ini­
tial moment, the jumper is held at a distance 
I from the foot of the “hump” (Fig. 108).

Determine the time t in which the re­
leased jumper reaches the foot of the hump. 
What will be its velocity vt at the foot? 
The resistance of .the guides and the jumper 
should be neglected.
3.54*. A quadratic undeformable supercon­
ducting loop of mass m and side a lies in a 
horizontal plane in a nonuniform magnetic 
held whose induction varies in space ac­
cording to the law Bx =  —ax, By =  0, 
Bx =  az +  B0 (Fig. 109). The inductance 
of the loop is L. At the initial moment, the 
centre of the loop coincides with the ori­
gin O, and its sides are parallel to the x- 
and y-axes. The current in the loop is zero, 
and it is released.
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How will it move and where will it be 
in time t after] the beginning of motion?

3.55. A long cylindrical coil of inductance 
L t is wound on a bobbin of diameter Dx. 
The magnetic induction in the coil connect­
ed to a current source is Bx. After rewind­
ing the coil on a bobbin of diameter D2, 
its inductance becomes L2.

Determine the magnetic induction Z?2 
of the field in the new coil connected to the 
same current source, assuming that the 
length of the wire is much larger than that 
of the coil.
3.56*. Two long cylindrical coils with uni­
form windings of the same length and nearly 
the same radius have inductances and 
Z/2. The coils are coaxially inserted into 
each other and connected to a current sou_ce 
as shown in Fig. 110. The directions of 
the current in the circuit and in the turns 
are shown by arrows.

Determine the inductance L of such a 
composite coil.
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3.57. A winch is driven by an electric mo­
tor with a separate excitation and fed from 
a battery of emf % =  300 V. The rope and 
the hook of the winch rise at a velocity 
vx =  4 m/s without a load and at a velocity 
v2 =  1 m/s with a load of mass m =  10 kg.

Determine the velocity v' of the load and 
its mass m! for which the winch has the 
maximum power, neglecting the mass of the 
rope and the hook.
3.58. A perfect diode is connected to an a.c. 
circuit (Fig. 111).

Determine the limits within which the 
voltage between the anode and the cathode 
varies.
3.59. A capacitor of unknown capacitance, 
a coil of inductance L, and a resistor of re-

Fig. 112
sistance R are connected to a source of a.c. 
voltage % — So cos a>t (Fig. 112). The cur­
rent in the circuit is / =  (g0//?) cos oat.
7 -0771

Fig. 110 Fig. I l l
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Determine the amplitude U0 of the volt­
age across the capacitor plates.
3.60. Under the action of a constant volt­
age U, a capacitor of capacitance C =  10 ~u F

Fig. 113 Fig. 114

included in the circuit shown in Fig. 113 
is charged to qx =  10 "• C. The inductance 
of the coil; is L =  10“B H, and the resist­
ance of the resistor is R =  100 Q.

Determine the amplitude q0 of steady- 
state oscillations of the charge on the 
capacitor at resonance if the amplitude of 
the external sinusoidal voltage is U0 — U.
3.61. A bank of two series-connected capaci­
tors of capacitance C each is charged to a 
voltage U and is connected to a coil of in­
ductance L so that an oscillatory circuit 
(Fig. 114) is formed at the initial moment. 
After a time t, a breakdown occurs in one of 
the capacitors, and the resistance between 
its plates becomes zero.

Determine the amplitude q0 of charge os­
cillations on the undamaged capacitor.
3.62. How can the damage due to overheat­
ing the coil of a superconducting solenoid 
he avoided?



4. Optics

4.1. A point light source S is on the axis of 
a hollow cone with a mirror inner surface 
(Fig. 115). A converging lens produces on a

Fig. 115
screen the image of the source formed by the 
rays undergoing a single reflection at the 
inner surface (direct rays from the source 
do not fall on the lens).

What will happen to the image if the lens 
is covered by diaphragms like those shown 
in Figs. 116 and 117?

Screen

Fig. 116 Fig. 117

7*
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4.2. Remote objects are viewed through a 
converging lens with a focal length F =  
9 cm placed at a distance a =  36 cm in 
front of the eye.

Estimate the minimum size of the screen 
that should be placed behind the lens so 
that the entire field of view is covered. 
Where should the screen be placed? Assume 
that the radius r of the pupil is approxi­
mately 1.5 mm.
4.3*. A cylindrical transparent vessel of 
height h (h <C i? ves)» where i ?ve8 is the ra­
dius of the Vessel, is filled with an ideal gas 
of molar mass p at a temperature T and a 
pressure p0. The dependence of the refrac­
tive index n of the gas on its density p 
obeys the law n =  1 -f ap. The vessel is 
rotated at an angular velocity to about its 
axis. A narrow parallel beam of light of ra­
dius rbeam is incident along the axis of the 
vessel.

Determine the radius R of the spot on the 
screen placed at right angles to the vessel 
axis at a distance L behind the vessel, as­
suming that the change in the gas pressure 
at each point of the vessel due to rotation 
is small as compared with p0. The effect of 
the end faces of the vessel on the path of 
the rays should be neglected.
4.4. A telescope with an angular magnifi­
cation k =  20 consists of two converging 
thin lenses, viz. an objective with a focal 
length F =  0.5 m and an eyepiece which 
can be adjusted to the eye within the limits 
between D_ — —7 D and D+ — -f-10 D
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(during the adjustment, the eyepiece is 
displaced relative to the objective).

What is the smallest possible distance a 
from the objective starting from which 
remote objects can be viewed by an un­
strained normal eye through this telescope?
4.5. Can a diverging lens be used to in­
crease the illuminance of some regions on 
the surface of a screen?
4.6. A point light source is exactly above 
a pencil erected vertically over the water 
surface. The umbra of the pencil can be 
seen at the bottom of the vessel with water. 
If the pencil is immersed in water, the size 
of the dark spot at the bottom increases. 
When the pencil is drawn out of water, a 
bright spot appears instead of the dark one.

Explain the described phenomena.
4.7. If an illuminated surface is viewed 
through the wide hole in the body of a ball­
point pen, several concentric dark and 
bright rings are seen around the narrow hole 
in the body.

Explain why these rings are observed.
4.8. A point light source S is at a distance 
I =  1 m from a screen. A hole of diameter 
d — 1 cm, which lets the light through, is 
made in the screen in front of the light 
source. A transparent cylinder is arranged 
between the source and the screen (Fig. 118). 
The refractive index of the cylinder materi­
al is n =  1.5, the cylinder length is I — 1 m, 
aud the diameter is the same as that of the
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What will be the change in the luminous 
flux through the hole? Neglect the absorp­
tion of light in the substance.
4.9. The objective and the eyepiece of a 
telescope are double-convex symmetrical 
lenses made of glass with a refractive index

Screen

Fig. 118

ngl =  1.5. The telescope is adjusted to 
infinity when the separation between the 
objective and the eyepiece is L0 =  16 cm.

Determine the distance L separating the 
objective and the eyepiece of the telescope 
adjusted to infinity with water poured in 
the space between the objective and the eye- 
piece (rcw =  1.3).
4.10. A spider and a fly are on the surface 
of a glass sphere. Where must the fly be 
for"the spider to be able to see it? Assume 
that (,he radius of the sphere is much larg­
er than the sizes of the spider and the fly. 
The refractive index of glass is ngl =  1.43.
4.11. A point light source S is outside a cyl­
inder on its axis near the end face (base).
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Determine the minimum refractive index 
n of the cylinder material for which none of 
the rays entering the base will emerge from 
the lateral surface.
4.12. Two converging lenses are mounted 
at the ends of a tube with a blackened inner 
lateral surface. The diameters of the lenses 
are equal to the diameter of the tube. The 
focal length of one lens is twice that of the 
other lens. The lenses are at such a distance 
from each other that parallel light rays 
incident along the axis of the tube on one 
lens emerge from the other lens in a parallel 
beam. When a wide light beam is incident 
on the lens with the larger focal length, a 
bright spot of illuminance E1 is formed on 
the screen. When the tube is turned through 
180°, the bright spot formed on the screen 
has an illuminance E2.

Determine the ratio of illuminances on 
the screen.
4.13. An amateur photographer (who is an 
expert in geometrical optics) photographs 
the facade of a building from a distance of 
100 m with a certain exposure. Then he 
decides to make a photograph from a dis­
tance of 50 m (to obtain a picture on a larg­
er scale). Knowing that the area of the 
image will increase by a factor of four, he 
decides to increase accordingly the exposure 
in the same proportion. After developing 
the film, he finds out that the first picture 
is good, while the exposure for the second 
photograph has been ''chosen incorrectly.

Determine the factor by which the expo-
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sure had to be changed for obtaining a good 
picture and explain why.
4.14*. A^fisherman lives on the shore of a 
bay forming a wedge with angle a in a house 
located at point A (Fig. 119). The distance

Fig.119

from point A to the nearest point C of the 
bay is h, and the distance from point D 
to point A is I. A friend of the fisherman 
lives across the bay in a house located at 
point B. Point B is symmetric (relative to the 
bay) to point A. The fisherman has a boat.

Determine the minimum time t required 
for the fisherman to get to his friend from 
the house provided that he can move along 
the shore at a velocity v and row the boat 
at half that velocity (n =  2).
4.15. The image of a point source S' lying 
at a distance b from a transparent sphere is 
formed by a small diaphragm only by rays 
close to the optical axis (Fig. 120).

Where will the image be after the sphere 
is cut into two parts perpendicular to the 
horizontal axis, and the plane surface of 
the left half is silvered?
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4.16. A glass porthole is made at the bottom 
of a ship for observing sealife. The hole 
diameter D =  40 cm is much larger than 
the thickness of the glass.

Determine the area S of the field of vi­
sion at the sea bottom for the porthole if 
the refractive index of water is nw =  1.4, 
and the sea depth is h — 5 m.
4.17*. Let us suppose that a person seating 
opposite to you at the table wears glasses.

Can you determine whether he is short­
sighted or long-sighted? Naturally, being 
a polite person, you would not ask him to 
let you try his glasses and in general would 
make no mention of them.
4.18. A person walks at a velocity v in a 
straight line forming an angle a with the 
plane of a mirror.

Determine the velocity yrcl at which he 
approaches his image, assuming that the 
object and its image are symmetric rela­
tive to the plane of the mirror.
4.19. Two rays are incident on a spherical 
mirror of radius i? =  5 cm parallel to its 
optical axis at distances hx =  0.5 cm and

— 3 cm.
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Determine the distance Aar between the 
points at which these rays intersect the op­
tical axis after being reflected at the mir­
ror.
4.20. The inner surface of a cone coated by a 
reflecting layer forms a conical mirror. A 
thin incandescent filament is stretched in 
the cone along its axis.

Determine the minimum angle a of the 
cone for which the rays emitted by the fila­
ment will be reflected from the conical sur­
face not more than once.



Solutions

1. Mechanics

1.1. Let us first assume that there is no friction. 
Then according to the energy conservation law, the 
velocity v of the body sliding down the inclined 
plane from the height h at the foot is equal to the 
velocity which must be imparted to the body for its 
ascent to the same height h. Since for a body mov­
ing up and down an inclined plane the magnitude 
of acceleration is the same, the time of ascent will 
be equal to the time of descent.

If, however, friction is taken into consideration, 
the velocity v2 of the body at the end of the descent 
is smaller than the velocity v (due to the work done 
against friction), while the velocity v2 that has to 
be imparted to the body for raising it along the 
inclined plane is larger than v for the same reason. 
Since the descent and ascent occur with constant 
(although different) accelerations, and the traversed 
path is the same, the time tx of descent and the 
time t2 of ascent can be found from the formulas

»ih 
2 ’

__Vt*2
S"  2

where s is the distance covered along the inclinedfilane. Since the inequality vx <  v2 is satisfied, it 
ollows that t, >  t2. Thus, in the presence of slid­
ing friction, tne time of descent from the height h 
is longer than the time of ascent to the same height.

While solving the problem, we neglected an 
air drag. Nevertheless, it can easily be shown that 
if an air drag is present in addition to the force of 
gravity and the normal reaction of the inclined 
plane, the time of descent is always longer than the
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time of ascent irrespective of the type of this 
force. Indeed, if in the process of ascent the body 
attains an intermediate height ft', its velocity v* 
at this point, required to reach the height ft in 
the presence of drag, must be higher than the ve­
locity in the absence of drag since a fraction of the 
kinetic energy will be transformed into heat during 
the subsequent ascent. The body sliding down 
from the height ft and reaching the height ft' will 
have (due to the work done by the drag force) a 
velocity v” which is lower than the velocity of the 
body moving down without a drag. Thus, while 
passing by the same point on the inclined plane, 
the ascending body has a higher velocity than the 
descending body. For this reason, the ascending 
body will cover a small distance in the vicinity of 
point ft' in a shorter time than the descending body. 
Dividing the entire path into small regions, we 
see that each region will be traversed by the ascend­
ing body in a shorter time than by the descend­
ing body. Consequently, the total time of ascent 
will be shorter than the time of descent.
1.2. Since the locomotive moves with a constant 
deceleration after the application of brakes, it will 
come to rest in t =  via =  50 s, during which it will 
cover a distance s =  v2/(2a) =  375 m. Thus, in 
1 min after the application of brakes, the loco­
motive will be at a distance I =  L — s =  25 m 
from the traffic light.
1.3. At the moment the pilot switches off the en­
gine, the helicopter is at an altitude ft =  at\!2. 
Since the sound can no longer be heard on the 
ground after a time t2, we obtain the equation

where on the right-hand side we have the time of 
ascent, of the helicopter to the altitude ft and the 
time taken for the sound to reach the ground from 
the altitude ft. Solving the obtained quadratic 
equation, we find that
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We discard the second root of the equation since 
it has no physical meaning.

The velocity u of the helicopter at the instant 
when the engine is switched off can be found from 
the relation

[ Y  (t),+2t̂ —f]
=  Y c2-\-2act2 — c =  80 m/s.

1.4. During a time flf the point mass moving with 
an acceleration a will cover a distance s =  at\!2 
and will have a velocity v =  atv Let us choose the 
s-axis as shown in Fig. 121. Here point O marks

s=atfz/z  
r  »-g*;
0 A x

Fig. 121

the beginning of motion, and A is the point at 
which the body is at the moment tv Taking into 
account the sign reversal of the acceleration and 
applying the formula for the path length in uni- 
formly varying motion, we determine the time t2 
in which the body will return from point A to 
point 0:

dt\ , ^  at\0= '-~2~Jrat1t2----— ,

whence t2 =  tx (1 +  j/2).
The time elapsed from the beginning of motion 

to the moment of return to the initial position can 
be determined from the formula
t =  h + t 2= h  (2+ / 2).
1.5., We shall consider the relative motion of the 
bodies from the viewpoint of the first body. Then 
at the initial moment, the first body is at rest (it 
can be at rest at the subsequent instants as well),
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while the second body moves towards it at a ve­
locity +  v2. Its acceleration is constant, equal 
in magnitude to at +  a2, and is directed against 
the initial velocity. The condition that the bodies 
meet indicates that the distance over which the 
velocity of the second body vanishes must be long­
er than the separation between the bodies at the 
beginning of motion; hence we obtain

‘max — 2 (ax-f- as) *

1.6. Since the balls move along the vertical, we 
direct the coordinate axis vertically upwards. We 
plot the time dependence of the projections of the 
velocities of the balls on this axis. Figures 122

vo
T

Fig. 123

t

and 123 show the dependences vt (t) and i>2 (f) 
respectively (the moments of the beginning of mo­
tion are not matched so far). These graphs present 
infinite sets of straight line segments with equal 
slopes (since the acceleration is the same). These
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segments are equidistant on the time axis, their 
separations being tx =  2 ]/2h jg  lor the first ball 
and t2 =  2 Y 2ha/g for the second ball. Since 
ht =  4/»2 by hypothesis, tt =  2t,, i.e. the fre­
quency of^motion of the second ball is twice as 
high as that of the first ball. It follows from the 
ratio of the initial heights that the maximum ve­
locities attained by the balls will also differ by a 
factor of two (see Figs. 122 and 123):

*,imax =  2i>amax =  V  2 h iS=  »<>•
There are two possibilities for the coincidence 

of the velocities of the balls in magnitude and di­
rection. The velocities of the balls may coincide 
for the first time x =  ntx s after the beginning of 
motion (where n =  0, 1, 2, . . .) during the time 
interval t j 4, then they coincide 3fx/4 s after the 
beginning of motion during the time interval f,/2. 
Subsequently, the velocities will coincide with a 
period tx during the time interval tx!2. The other 
possibility consists in that the second ball starts 
moving x =* tJ2 -f- ntx s (where n =  0, 1, 2, . . .) 
after the first ball. After t jk  s, the velocities of 
the balls coincide for the first time and remain iden­
tical during the time interval t j 2. Subsequently, 
the situation is repeated with a period

For other starting instants for the second ball, 
the velocity graphs will have no common points 
m>on superposition because of the multiplicity of 
the periods of motion of the balls, and the problem 
will have no solution.
1.7*. Let us consider the motion of a ball falling 
freely from a height H near the symmetry axis start­
ing from the moment it strikes the surface. At the 
moment of impact, the ball has the initial velocity 
v0 =  Y (since the impact is perfectly elastic), 
rand the direction of the velocity v0 forms an angle 
2a with the vertical (Fig. 124).

Let the displacement of the ball along the hori­
zontal in time t after the impact be s. Then 
|j|j sin 2a -t =  s. Hence we obtain t — s/( ]/ 2gH X 
pin 2a), where v0 sin 2a is the horizontal com-
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ponent of the initial velocity of the ball (the ball 
does not strike the surface any more during the 
time t). The height at which the ball will be in 
time t is

st9AA=h0-J-P0cos2a*t— ,

where v0 cos 2a is the vertical component of the 
initial velocity of the ball.
. Since the ball starts falling from the height H 

near the symmetry axis (the angle a is small), we 
can assume that hQ ~  0, sin 2a ~  2a, cos 2a ~  1,

and s « Ra. Taking into account these and other 
relations obtained above, we find the condition for 
the ball to get at the lowest point on the spherical
surface:
/ = 

Ah
Y  2gH sin 2a

gt*« vat-Ar- --

R
2Y*gH ’
R_
2

R* 
16 H = 0,

Hence H =  R/8.
1.8. Since the wall is smooth, the impact against 
the wall does not alter the vertical component of 
the hall velocity. Therefore, the total time tt of



Solutions 113

motion of the ball is the total time of the ascent 
and descent of the body thrown upwards at a veloc­
ity v0 sin a in the gravitational field. Consequent­
ly, t, =  2v0 sin a/g. The motion of the ball along 
the horizontal is the sum of two motions. Before 
the collision with the wall, it moves at a velocity 
v0 cos a. After the collision, it traverses the same 
distance backwards, but at a different velocity. 
In order to calculate the velocity of the backward 
motion of the ball, it should be noted that the ve­
locity at which the ball approaches the wall (along 
the horizontal) is vQ cos a +  v. Since the impact 
is perfectly elastic, the ball moves away from the 
wall after the collision at a velocity v0 cos a -J- v. 
Therefore^ the ball has the following horizontal 
velocity relative to the ground:
(v0 cos a -J- v) -J- v =  v0 cos a •+■ 2v.
If the tiihfe of motion before the impact is t, by 
equating the distances covered by the ball before 
and after the collision, we obtain the following 
equation:
vt cos a-t =  (tx — t) (vq c o s  a +  2v).

Since the total time of motion of the ball is tx =  
2vt sin a/g, we find that

v0 sin «(v0 c o s  a +  2v)
~  g(o0cosa+i>)

1.9*. Figure 125 shows the top view of the trajecto­
ry of the ball. Since the collisions of the ball with 
the wall and the bottom of the well are elastic, the 
magnitude of the horizontal component of the 
ball velocity remains unchanged and equal to v. 
The horizontal distances between points of two 
successive collisions are AAt =  AXA2 =  A2Aa =  
. . . 2r cos a. The time between two successive 
collisions of the ball with the wall of the well is 

I t. — 2r cos ah.
' The vertical component of the ball velocity 

' does not change upon a collision with the wall and 
|feverses its sign upon a collision with the bottom.
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The magnitude of the vertical velocity component 
for the first impact against the bottom is Y2gH, 
and the time of motion from the top to the bottom 
of the well is t2 =  Y2Hfg.

Figure 126 shows the vertical plane develop­
ment of the polyhedron AlA2A3. . . . On this 
development, the segments of tne trajectory of the 
ball inside the well are parabolas (complete para-

r*--
Fig. 126

bolas are the segments of the trajectory between 
successive impacts against the bottom). The ball 
can “get out” of the well if the moment of the 
maximum ascent along the parabola coincides with 
the moment of an impact against the wall (i.e. at 
the moment of maximum ascent, the ball is at 
point An of the well edge). The time tx is connected 
to the time t2 through the following relation:

2^2,
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where n and k are integral and mutually prime 
numbers. Substituting the values of fx ana t2, we 
obtain the relation between v, H, r, and a for 
which the ball can “get out” of the well:

1.10. From all possible trajectories of the shell, 
we choose the one that touches the shelter. Let us 
analyze the motion of the shell in the coordinate 
system with the axes directed as shown in Fig. 127.

Fig. 127

The “horizontal” component (along the axis Ax) of 
the initial velocity of the shell in this system is 
vQx =  v0 cos (q> — a), and the “vertical” compo­
nent (along the axis Ay) is voy =  i>0lsin (<p — a), 
where <p is the angle formed by the direction ;of the 
initial velocity of the shell.and the horizon tal.

Point C at which the trajectory of the shell 
-touches the shelter determines the maximum alti­
tude h' of the shell above the horizontal. Fig­
ure 127 shows that h’ =  1 sin a. The projection of 
the total velocity v of the shell on the axis A y is 
zero at this point, and

nr cos a
v

i
k  , ----- A
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where g' =  g~cos a  is the^“free-fall” acceleration 
in the coordinate system xAy. Thus,

sin2 (9 — a) =  2gl cos a sin a.
Hence it follows, in particular, that if
i>§ <  2gl cos a sin a — gl sin 2a
by hypothesis, none of the shell trajectories will 
touch the shelter, and the maximum range Lmax 
will correspond to the shell fired at an angle <p =  
ji/4 to the horizontal. Here Lmax =  vpg.

If
>  gl sin 2a

by hypothesis, the angle at which the shell should 
be fired to touch the shelter will be

. Vgl sin 2a9 =  9 = a+ a rcsm  -------X 0̂
If, moreover, the inequality

*o
»l+2gl <  sin 2a

is satisfied by hypothesis, which means that the 
condition 9 t >  n/4 holds (prove thisl), the angle 
9  at which the shell having the maximum range 
should be fired will be equal to n/4, and Z.max =  

If, however, the inverse inequality
>  sin 2a*8+ 2gl

is known to be valid, which in turn means that 
9 t <  n/4, we have

9 =  9 t =  a + arcsin 

£max = “ Sin 29

Y  gl sip 2a
*0

/
- sin 2 ^a+arcsin Ygl sin 2a

*0
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1.11. Let us suppose that hail falls along the 
vertical at a velocity v. In the reference frame 
fixed to the motorcar, the angle of incidence of 
hailstones on the windscreen is equal to the angle 
of reflection. The velocity of a hailstone before it 
strikes the windscreen is v — vx (Fig. 128). Since

hailstones are bounced vertically upwards (from 
the viewpoint of the driver) after tne reflection, 
the angle of reflection, and hence the angle of 
incidence, is equal to px (px is the slope of the 
windscreen of the motorcar). Consequently, a  +  
2px =  n/2, and tan a =  v/vv Hence tan a =  
tan (n/2 — 2px) =  cot 2px, and vhx — cot 2px. 
Therefore, we obtain the following ratio of the 
velocities of the two motorcars:
Vi _  cot 2Pa , 
va cot 2Px
1.12. Let us go over to a reference frame moving 
with points A and B. In this system, the veloci­
ties of points A and B are zero. Since the distances 
AC and BC are constant, point C, on the one 
hand, can move in a circle of radius AC with the 
centre at point A, and on the other hand, in a 

• circle of radius BC with the centre at point B . 
Therefore, the direction of velocity of point C 
must be perpendicular both to the straight line 
AC and the straight line BC. Since points A, B, 
and C do not lie on the same, straight line, the 
direction of velocity at point C would be perpen-
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dicular to two intersecting straight lines AC and 
BC, which is impossible. Consequently, in the 
moving reference frame, the velocity of point C 
is zero, while in the initial system (fixed to the 
ground), the velocity of point C is equal to the 
velocity of points A and B .

If point C lay on the straight line AB (in the 
reference frame fixed to the sheet of plywood) and 
its velocity differed from zero, after a certain small 
time interval either the distance AC or the dis­
tance BC would increase, which is impossible.

Therefore, in the motion of the sheet of ply­
wood under consideration, the velocities of all 
the points are identical.
1.13. Let a car get in a small gap between two 
other cars. It is parked relative to the pavement 
as shown in Fig. 129. Is it easier for the car to be

driven out of the gap by forward or backward mo­
tion? Since only the front wheels can be turned, 
the centre O of the circle along which the car is 
driven out for any manoeuvre (forward or back­
ward) always lies on the straight line passing 
through the centres of the rear wheels of the car. 
Consequently, the car being driven out is more 
likely to touch the hind car'during backward mo­
tion than the front car during forward motion (the 
centre of the corresponding circle is shifted back-
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wards relative to the middle of the car). Obviously, 
a driving out is a driving in inversed in time. 
Therefore, the car should be driven in a small gap 
by backward motion.
1.14*. Let us consider the motion of the plane 
starting from the moment it goes over to the cir­
cular path (Fig. 130). By hypothesis, at the upper 
point B of the path, the velocity of the plane is 
vx =  v0/2, and hence the radius r of the circle 
described by the plane can be found from the rela­
tion

which is obtained from the law of motion of the 
plane for h =  2r. At point C of the path where the 
velocity of the plane is directed upwards, the total 
acceleration will be the sum of the centripetal 
acceleration ac =  v$/r (î , =  — 2a0r, where vc
is the velocity of the plane at point C) and the 
tangential acceleration at (this acceleration is 
responsible for the change in the magnitude of the 
velocity).

In order to find the tangential acceleration, let us 
consider a small displacement of the plane from 
point C to point C" Then vfc, =  — 2a0 (r +  Ah).
Therefore, v%, — vfc =  —2a0 Ah, where Ah is the 
change in the altitude of the plane as it goes over 
to point C Let us divide both sides of the obtained 
relation by the time interval At during which this

Then, making point C" tend to C and At to zero, 
wp obtain

ip ia u i ;  av vuu muiuvuv wuuu vuu vw uw ij f  uag mu

chinge takes place:
2a0 Ah 
~~\t~
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upward direction is then

1.15. Let tne velocity of the drops above the per­
son relative to the merry-go-round be at an angle a 
to the vertical. This angle can be determined from 
'Che avelocity triangle snown in Fig. 131.

Since in accordance with] the velocity composi- 
on rule y0 =  vrel +  vm.g .n where vm.g.,. is the 
velocity of the merry-go-round in the region of lo-

Fig. 131 Fig. 132
cation of the person, vrej =  v0 — vm.g.r. The ve­
locity of the merry-go-round is i>m.g.r =  or. Con­
sequently cot a =  i70/(<or).

Therefore, the axis of the umbrella should be 
tilted at the angle a =  arccot [i;0/(ot>r)] to the ver­
tical in the direction of motion of the merry-go- 
round and perpendicular to the radius of the latter. 
1.16*. Let the board touch the bobbin at poin; C 
at a certain instant of time. The velocity of point 
C is the sum of the velocity v0 of the axis O of 
the bobbin and the velocity of point C (relative to 
point 0), which is tangent to tne circle at point C 
and equal in magnitude to v0 (since there is no 
slipping). If the angular velocity of the board at 
this instant is a>, the linear velocity of the point 
of the board touching the bobbin will be 
©/? tan”1 (a/2) (Fig. 132). Since the board remains
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in contact with the bobbin all the time, the 
velocity of point C relative to the board is di­
rected along the board, whence coi? tan”1 (a/2) =  
v0 sin a. Since there is no slipping of the bobbin 
over the horizontal surface, we can write
i>o _  v 
R R +  r *
Therefore, we obtain the following expression for 
the angular velocity co:

0) —  sin a*tan it +  r
a
2

2v sin2 (a/2)
(R +  r) cos (a/2) *

1.17. The area of the spool occupied by the wound 
thick tape is Sx =  n (rj-rj) =  8nr?. Then the 
length of the wound tape is I =  Sx/d =  8n (r?/d)> 
where d is the thickness of the thick tape.

The area of the spool occupied by the wound 
thin tape is S2 =  n (r't2 — r|), where r't is the final 
radius of the wound part in the latter case. Since 
the lengths of the tapes are equal, and the tape 
thickness in the latter case is half that in the 
former case, we can write

2n(r-r.- ^ )
3--------, r f — r i =  4ri.

Consequently, the final radius rj of the wound part 
in the latter case is
r't=  /5rj.

The numbers of turns Nt and Nt of the spool 
for the former and latter winding can be written as

" i -  d . d/2 •
whence tt =  ( Y 5"— 1) tv
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1.18. Let the initial winding radius be 4r. Then 
the decrease in the winding area as a result of the 
reduction of the radius by half (to 2r) will be
S =  n (16r2 — 4r2) =  12m-2,
which is equal to the product of the length lx of 
the wound tape and its thickness d. The velocity v 
of the tape is constant during the operation of the 
tape-recorder; hence lx = vtv and we can write
12nr2 =  vtxd. (1)

When the winding radius of the tape on the 
cassette is reduced by half again (from 2r to r), 
the winding area is reduced by ji (4r2 — r2) =  
3nr2, i.e.
3jir2 =  vt2d, (2)
where t2 is the time during which the winding ra­
dius will be reduced in the latter case. Dividing 
Eqs. (1) and (2) termwise, we obtain

t2 =  —  =  5 min.

1.19. Let us go over to the reference frame fixed to 
ring O' In this system, the velocity of ring O is 
vx/cos a and is directed upwards since the thread is 
inextensible, and is pulled at a constant velocity 
vx relative to ring O' Therefore, the velocity of 
ring 0 relative to the straight line A A' (which is 
stationary with respect to the ground) is
„ Ul 2 sin2 («/2)
2 cos a 1 1  cos a

and is directed upwards.
1.20. By the moment of time t from the begin­
ning of motion, the wedge covers a distance s =  
at* 12 and acquires a velocity i;wed =  at. During 
this time, the load will move along the wedge over 
the same distance s, and its velocity relative to the 
wedge is i>rej =  at and directed upwards along the
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wedge. The velocity of the load relative to the 
ground is vi =  vrel +  vwed. i.e. (Fig. 133)

v\ =  2t>wed sin —  =  ( 2a sin -y j t,

and the angle formed by the velocity vj with the 
horizontal is

Thus, the load moves in the straight line forming 
the angle P =  (ji — <x)/2 with the horizontal. The

Fig. 133

acceleration of the load on the wedge relative to 
the ground is

•n . a«j =  2a sin - y .

1.21. The velocity of the ant varies with time 
according to a nonlinear law. Therefore, the mean 
velocity on different segments of the path will not 
be the same, and the well-known formulas for mean 
velocity cannot be used here.

Let us divide the path of the ant from point A 
to point B into small segments traversed in equal 
time intervals At. Then At =  M/vm (At), where 
&n (At) is the mean velocity over a given segment 
Ju. This formula suggests the idea of the solution 
of the problem: we plot the dependence of i/vm (AI
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on I for the path between points A and B. The 
graph is a segment of a straight line (Fig. 134). 
The hatched area S under this segment is numer­

ically equal to the sought time. Let us calculate 
this area:

s  (*.-« ={-±-+4^ i )  ((.-«
_ i%-i\

since l/f2 =  (1 hj) la/lv Thus, the ant reaches 
point B in the time

4 m»—lm*
2X2 m/sxl0-ax l  m

1.22. Obviously, all the segments of the smoke trace 
move in the horizontal direction with the veloc­
ity of wind. Let us consider the path of the loco­
motive in the reference frame moving with the 
wind (Fig, 135). Points A' and B' of the smoke 
trace correspond to the smoke ejected by the loco­
motive at points A and B of its circular path rela­
tive to the ground. Obviously, AA' || BB'. It can 
easily be seen that the path of the locomotive 
relative to the reference frame moving with the 
wind is the path of the point of a wheel of radius R 
rotating at a velocity i>j0C and moving against the 
wind (to the left) at a velocity wwjnd* This trajec­
tory is known as a cycloid. Depending on the ratio
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of velocities Ofo* and vwindi the shape of the lower 
part of the path will be different. It is a loop 
(when vioc >  i>w ind» Fig. 136)\,?r * parabola (when 
vioc <  "wind. Fig. 137), or a “beak” (when oloC =  
Vwind. Fig- 138)- The latter case corresponds to the

ytof> vwind

Fig. 136

V loc<utvind

C,
Fig. 137

ulx-'11 wind

Fig. 138

! condition of our problem. Thus, the velocity of the 
t Wind is fwind =  "ioc =  f 0 m/s, and in order to find 
jfjUs direction, we draw the tangent CC' from the 
| point of the “beak” to the path of the locomotive 
l (viz. the circle) relative to the ground. 
i.23*. Let the merry-go-round turn through a cer- 
tain angle <p (Fig. 139). We construct a point 0
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(OA — R) such that points 0, S, A, and / lie on 
the same straight line. Then it is clear that ON =  
i? +  r at any instant of time. Besides, point 0 is at 
rest relative to John (Sam is always opposite to 
John). Therefore, from John’s point of view, Nick 
translates in a circle of radius R +  r with the cen­
tre at point O which moves relative to the ground 
in a circle of radius R with the centre at point A .
From Nick’s point of view, Sam translates in a 
circle of radius R 4- r with the centre at point 0 
which is at rest relative to Nick. However, point 0 
moves relative to the ground in a circle of radius r 
with the centre at point B.
1.24. Since the hoop with the centre at point 0% 
is at rest, the velocity vA of the upper point A of 

‘ "mi'erseSudn0 oi’ine noops' ixuisi 'ne aireciea along 
the tanpgnt to the circle with centre O, ̂ at any, in­

stant of time (Fig. 140). At any instant of time, 
the segment AB divides the distance d =  00x be­
tween the centres.of the hoops into two equal parts, 
and hence the horizontal projection of the velocity 
vA is always equal to v/2. Consequently, the ve­
locity vA forms an angle <p =  n/2 — a with the 
horizontal and is given by

v _  v 
Va ~  2 cos <p — 2 sin a *
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Since sin a =  j/ l — cos®  a =  Y i — (d/2R)2, the 
velocity of the upper point of “intersection” of the 
hoops is

v
VA~  2 (d/2R)3 '
1.25. By hypothesis, the following proportion is 
preserved between the lengths Z2, and l3 of 
segments A0Al9 A0A2, and A0A3 during the mo­
tion:

==
Therefore, the velocities of points Au A2, and A 3 
are 'to one another as
v A t : v A t : V A ,  =  3 : 5 : Q ’

and hence (Fig. 141)
vAt

v
T 9

Let us now consider the velocity of the middle 
link (AXB2A2C2) at the instant when the angles

of the construction are equal to 90\In the reference 
frame moving at a velocity vA , the velocity v'B 
of point Ba is directed at this instant along B2A%. 
The velocity of point} A2 is directed along the 
horizontal and is given by
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From'the condition of inextensibility of the rod 
BjA2,""it follows that

We can find the velocity of point B- relative to a 
stationary reference frame by using the cosine law:

1.26. If the thread is pulled as shown inFig. 142, 
the bobbin rolls to the right, rotating clockwise 
about its axis.

Fig. 142

[JFor^point B, the'sumof the projections of veloc­
ity ,v0 of translatory motion and the linear veloc­
ity of rotary motion (with an angular velocity <■>) 
on the direction of the thread is equal to v:
v =  v0 sin a — or.
Since the bobbin is known to move over the hori­
zontal surface without slipping, the sum of the 
projections of the corresponding velocities for 
point C is equal to zero:
v0 — (oB =  0.

/
v Y2 

6



Solutions 129

Solvingthe obtained equations, we find that the 
velocity* v0 is

vR
V° R sin a —r *
It can be seen that for R sin a =  r (which corre­
sponds to -he case when points A, B, and C lie on 
the same straight line), the expression for t>0 be­
comes meaningless. It should also be noted that the 
obtained expression describes the motion of the 
bobbin to tne right (when point B is above the 
straight line A C and R sin a >  r) as well as to 
the left (when point B is below the straight line 
AC and R sin a <  r).
1.27. The velocities of the points of the ingot ly­
ing on a segment AB at a given instant uniformly 
vary from at point A to v2 at point B. Conse-

Fig. 143

quently, the^velocity of fpoint 0 (Fig. 143) at a 
given instant is zero. Hence point O is an instan­
taneous centre of rotation. (Since the ingot is three- 
dimensional, point O lies on the instantaneous rota­
tional axis which is perpendicular to the plane of 
the figure.) Clearly, at a given instant, the velocity 
Pi corresponds to the points of the ingot lying on 
the circle of radius OA, while the velocity v2 to
Joints lying on the circle of radius OB. (In a three- 
imensional ingot, the points having such veloci­

ties lie on cylindrical surfaces with radii OA and 
OB respectively.)
9-0771
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1.28. In order to describe the motion of the block, 
we choose a reference frame fixed to the conveyer 
belt. Then the velocity of the block at the initial 
moment is i>bl =  uo +  v* and the block moves 
with a constant acceleration a =  —jig. For the in­
stant of time t when the velocity of the block 
vanishes, we obtain the equation 0 =  v0 +  u — 
jxgi. Hence the velocity of the conveyer belt is 
v =  \kgt — u0 =  3 m/s.
1.29. Let. us write the equation of motion for the 
body over the inclined plane. Let the instanta­
neous coordinate (the displacement of the top of 
the inclined plane) be x\ then
ma =  mg sin a — mg cos a* bxy
where m is the mass of the body, and a is its accel­
eration. The form of the obtained equation of mo­
tion resembles that of the equation of vibratory 
motion for a body suspended on a spring of rigid­
ity k =  mg cos a* b in the field of the “force of 
gravity” mg sin a. This analogy with the vibratory 
motion helps solve the problem.

Let us determine the position x0 of the body 
for which the sum of the forces acting on it is 
zero. It will be the “equilibrium position” for the 
vibratory motion of the body. Obviously, 
mg sin a — mg cos a * bx0 =  0. Hence we obtain 
x0 =  (1 lb) tan a. At this moment, the body will 
have the velocity v0 which can be obtained from 
the law of conservation of the mechanical energy of 
the body:
mv 2—2^ =  mg sin a*x0 kxl

2
=  mg sin a *x0 mgb cos a r2ro*

a=  2gx0 sin a —gbx\ cos a =  —- sin2 a 
cos a •

In its further motion, the body will be dis­
placed again by i 0 (the “amplitude” value of vibra­
tions, which can easily be obtained from the law
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of conservation of mechanical energy). The fre­
quency of the corresponding vibratory motion can 
be found from the relation k/m =  gb cos a =  a)§.

Therefore, having covered the distance x0 =  
(1 lb) tan a after passing the “equilibrium posi­
tion”, the body comes to rest. At this moment, the 
restoring force “vanishes” since it is just the force 
of sliding friction. As soon as the body stops, slid­
ing friction changes the direction and becomes 
static friction equal to mg sin a. The coefficient of 
friction between the body and the inclined plane 
at the point where the body stops is \i6t =  b-2x0 =  
2 tan a, i.e. is more than enough for the body to 
remain at rest.

Using the vibrational approach to the descrip­
tion of this motion, we find that the total time of 
motion of the body is equal to half the “period of 
vibrations”. - Therefore,
t— ^ _  2ji _  n

2 2co0 Ygb cos a
1.30. The friction FfT (x) of the loaded sledge is 
directly proportional to the length x of the part of 
the sledge stuck in the sand. We write the equation 
of motion for the sledge decelerated in the sand 
in the first case:

rrta= —mg ji,

where m is the mass, a the acceleration, I the 
length, and p, the coefficient of friction of the 
sledge against the sand. As in the solution of 
Problem 1.29, we obtained an “equation of vibra­
tions”. Therefore, the deceleration of the sledge 
stuck in the sand corresponds to the motion of a 
load on a spring (of rigidity k=(mg/l) \i)t having 
acquired the velocity v0 in the equilibrium ̂ position. 
Then the time dependence x (t) of the part of the 
sledge stuck in the sand and its velocity v (*) can 
be written as
x (t) =  xQ sin co0f, v (t) =  v0 cos a)0f,
9*
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where

® 0 =  V  f  ^
It can easily be seen that the time before the sledge 
comes to rest is equal to quarter the “period of vi­
brations”. Therefore,

_  Jt __ n/2
1 YWs) *

In the second case (after the jerk), the motion 
can be regarded as if the sledge stuck in the sand 
had a velocity vx >  v0 and having traversed the 
distance x0 were decelerated to the velocity v0 
(starting from this moment, the second case is 
observed). The motion of the sledge after the jerk 
can be represented as a part of the total vibratory 
motion according to the law
x (t) = Xj sin ©0t, v (t) = vy cos <o0t
starting from the instant f2 when the velocity of 
the sledge becomes equal to va. As before, xx =  
Uj/cOq. Besides,
m g
21

mv%
2 ’

whence =  x0(d0]/2.
The distance covered by the sledge after the 

jerk is
*i—x0 ©o

Is.
©o 7 ~  (pi — vo) — * o ( / 2 — l)*

Consequently, the ratio of the braking lengths is

Xl~*° = /2-1.
In order to determine the time of motion of the 

sledge after the jerk, we must find the time of mo­
tion of the sledge from point x0 to point xx by
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using the formula x (t) — xx sin (o0t. For this 
purpose, we determine t2 from the formula
x0 =  xx sin <o0t2.
Since xx =  Y2x0, (o0t2 =  ji/4. Consequently, t2 — 
Ji/(4«)01 =  tj2. Since t3 =  tx — t2, where ts is the 
time of motion of the sledge after the jerk, we ob­
tain the required ratio of the braking times
A  = _Ltx 2 *
1.31. The force of gravity mg =  60 N acting on the 
load is considerably stronger than the force with 
which the rope should be pulled to keep the load. 
This is due to considerable friction of the rope 
against the log.

At first, the friction prevents the load from 
slipping under the action of the force of gravity. The 
complete analysis of the distribution of friction 
acting on the rope is rather complex since the 
tension of the rope at points of its contact with the 
log varies from Fx to mg. In turn, the force of pres­
sure exerted by the rope on the log also varies, 
being proportional at each point to the corre­
sponding local tension of the rope. Accordingly, the 
friction acting on the rope is determined just by 
the force of pressure mentioned above. In order to 
solve the problem, it should be noted, however, 
that the total friction Ffr (whose components are 
proportional to the reaction of the log at each 
point) will be proportional (with the corresponding 
proportionality factors) to the tensions of the rope 
at the ends. In particular, for a certain coefficient 
k, it is equal to the maximum tension: Fjt =  kmg. 
This means that the ratio of the maximum tension 
to the minimum tension is constant for a given 
arrangement of the rope and the log: mglTx =  
1/(1 — k) since Tx — mg — kmg.

When we want to lift the load, the ends of the 
rope as if change places. The friction is now direct­
ed against the force T2 and plays a harmful role. 
The ratio of the maximum tension (which is now
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equal to r 2) to the minimum tension (mg) is ob­
viously the same as in the former case: T2/(mg) =  
1/(1 — Jc) =  m g/T v  Hence we obtain

72= i ^ i  =  90 N. ̂1
1.32. Let us see what happens when the driver turns 
the front wheels of a stationary car (we shall con­
sider only one tyre). At the initial moment, the 
wheel is undeformed (from the point of view of 
torsion), and the area of the tyre region in contact 
with tne ground is 5. By turning the steering 
wheel, the driver deforms the stationary tyre until 
the moment of force oJlls  applied to the wheel and 
tending to turn it becomes larger than the max­
imum possible moment of static friction acting on 
the tyre of contact area 5. In this case, the forces 
of friction are perpendicular to the contact plane 
between the tyre and the ground.

Let now the motorcar move. Static frictional 
forces are applied to the same region of the tyre of 
area S. They almost attain the maximum values 
and lie in the plane of the tyre. A small moment of
force o/Pts  applied to the wheel is sufficient to turn 
the wheel since it is now counteracted by the total 
moment of “oblique” forces of static friction which 
is considerably smaller than for the stationary 
car. In fact, in the case of the moving car, the 
component of the static friction responsible for the 
torque preventing the wheel from being turned is 
similar to liquid friction since stagnation is not 
observed for turning wheels of a'moving car. Thus, 
a small torque can easily turn a moving wheel, and 
the higher the velocity (the closer the static friction 
to the limiting value), the more easily can the 
wheel be turned.
1.33. Let us choose the reference frame as shown
in Fig. 144. Suppose that vector OA is the vector
of the initial velocity v. Then vector A B  is the 
change in velocity during the time interval At. 
Since the force acting on the body is constant,
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vector B C  equal to vector AB  is the change in ve­
locity during the next time interval At. Therefore, 
in the time interval 3 At after the beginning of

action of the force, the direction of velocity will
be represented by vector O D , and AB =  B C  === CD .
Let the projections of vector A B  on the x- an(l 
y-axes be &vx and Avy. Then we obtain two equa­
tions:

(p+AifeP-f Ap* = - j~ ,

(»+2Arx)»+(2Api,)a =  - ^ .

Since the final velocity satisfies the relation
•*“ ( * +  3AWjc)2 +  <3Ap„ )»,

using the previous equations, we obtain

1.34, Since the motion occurs in the horizontal 
plane, the vertical component of the force acting 
on the load is mg, and the horizontal component is 
given by P -  (mg)2 — mgY«a — 1» where a === 
1.25 (Fig. 145). The horizontal acceleration of the



136 Aptitude Test Problems in Physics

load (and the carriage) is determined by this 
horizontal force: m a=m g/a2 — 1. Consequently, 
a =  g / a 2 -  1 =  (3/4) g =  7.5 m/s2.

On the first segment of the path, the carriage is 
accelerated to the velocity v =  atx =  (3/4) gtx =  
30 m/s and covers the distance $x in the forward 
direction in the straight line:

Further, it moves at a constant velocity v during 
the time interval r2 =  3 s and traverses the path 
of length
s2 =  vt2 =  90 m.
Thus, seven seconds after the beginning of motion, 
the carriage is at a distance sx +  s2 =  150 m in 
front of the initial position.

On the third segment, the carriage moves round 
a bend to the right. Since the velocity of the car­
riage moving on the rails is always directed along 
the carriage, the constant (during the time interval 
t3 =  25.12 s) transverse acceleration a =  (3/4) g 
is a centripetal acceleration, i.e. the carriage moves 
in a circle at a constant velocity v: a =  v2/.R, the 
radius of the circle being R =» v2/a =  120 m. The 
path traversed by the carriage in the circle is
*3 =  /?<p =  vtZf

Fig. 145 Fig. 146
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whence the angle of rotation of the carriage about 
the centre of the circle is <p =  vtjR  =  6.28 =  
2n rad, i.e. the carriage describes a complete 
circumference.

On the last segment, the carriage brakes and 
comes to a halt since the acceleration along the 
carriage is equal to the initial acceleration and 
acts during the same time interval. Therefore, 
*4 =  «! =  60 m. The carriage stops at a distance 
g — 2s1 +  s2 =  210 m in front of the initial po­
sition (Fig. 146).
1.35. Let the hinge be displaced downwards by a 
small distance Ax as a result of application of 
the force F, and let the rods be elongated by AZ

Fig. 147

(Fig. 147). Then the rigidity k of the system of 
rods can be determined from the equation It Ai =  
2kn AI cos a', where 2a' is the angle between the 
rods after the displacement. Since the displace­
ment is small
a' « a, Al « Ax cos a, 
and hence k « 2k0 cos2 a.
1.36. Let us first suppose that the air drag is ab­
sent. Then the balls will meet if the vertical com­
ponent of the initial velocity of the second ball is 
equal to that of the first ball;
Vi — ua sin a,
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whence sin a =  v jv% =  10/20 =  1/2, a =  30°. 
Then the time of motion of the balls before colli­
sion is f =  sl(v2 cos a) ~  0.6 s.

Since the balls are heavy, the role of the air 
drag can easily be estimated. The nature of motion 
of tne first ball will not change significantly since 
the acceleration due to the air drag is amax =  
1 m/s2 even if the mass of each ball is 10 g, and 
the maximum velocity of the. first ball is vx — 
10 m/s. This acceleration does not change the total 
time of motion of the first ball by more than 1 %. 
Since the air drag is directed against the velocity 
of the ball, we can make the balls collide by impart­
ing the same vertical velocity component to the 
second ball as that of the first ball provided that in 
subsequent instants the vertical projections of the 
accelerations of the balls are identical at any in­
stant of time. For this purpose, the angle a formed 
by the velocity vector of the second ball with 
the horizontal at the moment it is shot off must 
be equal to 30°.
1.37. Let us write the equation of motion for the 
ball at the moment when the spring is com­
pressed by Ax:
ma =  mg — k Ax.
As long as the acceleration of the ball is positive, 
its velocity increases. At the moment when the 
acceleration vanishes, the velocity of the ball at­
tains the maximum value. The spring is com­
pressed thereby by AZ such that
mg — k AZ =  0,
whence

Thus, when the velocity of the ball attains the 
maximum value, the ball is at a height

from the surface of the table.
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1,38*, It can easily be seen that the ball attains 
the equilibrium position at an angle a of deflection 
of the thread from the vertical, which is determined 
from the condition

During the oscillatory motion of the ball, it will 
experience the action of a constant large force 
F =  Y  (mg)2 -f (pt;)2 and a small drag force 
(Fig. 148). Consequently, the motion of the ball

Fig. 148

will be equivalent to a weakly attenuating motion 
of a simple pendulum with a free-fall acceleration 
g' given by

F

cos a mg
l __ /(m g)2 +  (H 2
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The period of small (but still damped) oscillations 
of the ball can be determined from the relation
T _ _______2n______

_______________2n_____________
V(g/l) Y l +  P3/(4m«)

1.39. We write the equilibrium condition for a 
small segment of the string which had the length
m w

H

Fig. 149

Ax before suspension and was at a distance x 
from the point of suspension (Fig. 149):
m Axg-f- T (x+ Ax) =  T (x),

where L is the length of the rubber string in the 
unstretched state. Thus, it is clear that after the 
suspension the tension will uniformly decrease 
along the string from mg to zero.

Therefore, the elongations per unit length for 
small equal segments of the string in the unstressed 
state after the suspension will also linearly decrease 
from the maximum value to zero. For this reason, 
the half-sum&f the elongations of two segments of 
the string symmetric about its middle will be 
equal to the elongation of the central segment which 
experiences the tension mg!2. Consequently, the
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rI elongation AZ of the string will be such as if it 
I were actedjipon by the force mg/2 at the point of 
I suspension and at the lower end. ,and the string 
I were weightless; hence
I M = mg

2k
1#40. We assume that the condition mx +  m2 >  
m3 -j- w4 is satisfied, otherwise the equilibrium is 
impossible. The left spring was stretched with the 
force Tx balancing the force of gravity m2g of the 
load: Tx =  m2g. The equilibrium condition for the 
load m3 was

; m3g +  Tz — Fien =  0,
: where T« is the tension of the right spring, and 

^ten Is the tension of the rope passed through the 
pulley (see Fig. 14). This rope holds the loads of 

r mass m1 and m2i whence
[ *ten =  (m i  +  m *) 8-
; We can express the tension T2 in the following way: 

T2 =  (mx +  m2 — m3) g.
After cutting the lower thread, the equations of 
motion for all the loads can be written as follows:

- mxax =  mxg +  Tx — Fteni m2a2 =  m2g — Tx,
m3a3 =  T2 +  m3g — Ftenf —m4a4 =  mAg — T2.

Using the expressions for the forces Tx% T2y and 
Ften obtained above, we find that
a _ n (m3 +  m4 — — m2) g
a l — a2 — a3 — U, a \ — --------- 71 •/7t>4
1,41. Immediately after releasing the upper pulley, 
the left load has a velocity v directed upwards, 
while the right pulley remains at rest. The accel­
erations of the loads will be as if the free end of 
the rope were fixed instead of moving at a con-
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stant velocity. They can be found from the fol­
lowing equations:
may ~  Ty — mg, ma2 =  T2 — mg, 

— T 2l dy — 2a2,
where m is the mass of each load, and Ty and T2 
are the tensions of the ropes acting on the left and 
right loads. Solving the system of equations, we 
obtain ay =  —(2/5)g and a2 =  (l/5)g. Thus, the 
acceleration of the left load is directed down­
wards, while that of the right load upwards. The 
time of fall of the left load can be found from the 
equation

k — vt 
whence

0.4*1*
2 0,

A _ 2.5i> , „ /  6.25t>2 , 5h
g g* ~ g ‘

During this time, the right load will move up­
wards. Consequently, the left load will be the 
first to touch the floor.
1*42. Each time the block will move along the 
inclined plane with a constant acceleration; the 
magnitudes of the accelerations for the downward 
ana upward motion and the motion along the 
horizontal guide will be respectively
ai =  P8 cos a — g sin a, 
a2 =  pg cos a +  g sin a, 
a =  \xg cos a

(Fig. 150). Here a is the slope of the inclined plane 
and the horizontal, and p is the coefficient of

we um aiu

a = 2 •
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The distances traversed by the block in uni­
formly varying motion at the initial velocity v 
before it stops can be written in the form

h= v8 _  va i>a
~2^~’ h ~~2a^' 1 2cT *

Taking into account the relations for the accelera­
tions ox, a2, and a, we can find the distance I tra­

versed by the block along the horizontal guide:
ihh 

h+h  *
1.43. We shall write the equations of motion for 
the block in terms of projections on the axis direct­

ed downwards along the inclined plane. For the 
upward motion of the block, we take into account 
all the forces acting on it: the force of gravity mg, 
the normal reaction N, and friction Ftr (Fig. 151),
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and obtain the following equation: 
mg sin a +  \img cos a  — mav
The corresponding equation for the downward mo­
tion is
mg sin a — \img cos a =  ma2.

Let the distance traversed by the block in the 
upward and downward motion be s. Then the time 
of ascent and descent t2 can be determined from 
the equations
s aiti __

2 ’ 2 *

By hypothesis, 2fj =  ta, 
sequently,

whence 4aa av Con-

g sin a +  (ig cos a =  4 (g sin a — pg cos a), 
and finally
p, =  0.6 tan a.
L44„ . If-theJowec-hall js.very„  liejitv^t ̂ tartsj'limhs 
ing the support. We shall find its minimum mass

Fig. 152

ma for which it has not yet started climbing, but 
has stopped pressing against the right inclined 
plane. Since the support is weightless, the hori­
zontal components of the forces of pressure (equal 
in magnitude to the normal reactions) exerted by 
the balls on the support must be equal (Fig. 152);
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Otherwise, the “support” would acquire an infinitely 
llarge acceleration:
0 t sin a =  N2 sin a, Nx =  N2.
^Moreover, since the lower ball does not ascend, 
t̂he normal components of the accelerations of the 

Iballs relative to the right inclined plane must be 
equal (there is no relative displacement in this 
direction). Figure 152 shows that the angle between 
the direction of the normal reaction N2 of the sup-Eort and the right inclined plane is n/2 — 2a, and 
ence the latter condition can be written in the 

form
m u co sa—Nx _ m g cos a-~N2 cos 2a
" m1 m2 ’
whence m2 =  m1 cos 2a. Thus, the lower ball will 
“climb” up if the following condition is satisfied:
ma <  mx cos 2a.
1.45. As long as the cylinder is in contact with 
the supports, the axis of the cylinder will be exact­
ly at tne. midpoint between the supports. Conse­
quently, the horizontal component of the cylinder 
velocity is v/2. Since all points of the cylinder axis 
move in a circle with the centre at point A, the 
total velocity u of each point on the axis is perpen­
dicular to the radius 0A=r at any instant of time. 
Consequently, all points of the axis move with 
a centripetal acceleration ac =  u2/r.

We shall write the equation of motion for point 
0 in terms of projections on the “centripetal” axis:

mu2mg cos a —N~ mac = —-— , (1)

where N is the normal reaction of the stationary 
support. The condition that the separation between 
the supports is rV 2 implies that the normal reac­
tion of the movable support gives no contribution 
to the projections on the “centripetal” axis. Accord­
ing to Newton’s third law, the cylinder exerts
10-0771
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the force of the same magnitude on the stationary 
support. From Eq. (1), we obtain
,r mu2.N ~  mg cos a ------
At the moment when the distance between points 
A and B of the supports (see Fig. 18) is AB =  
r\; 2, we have
cos a — r Y  2 1

~ y  2'
The horizontal component of the velocity of point 0
is u cos a =  v/21 whence u — vY 2. Thus, for A B =
^Y%  the force of normal pressure exerted by the 
cylinder is
,V==JH*L_ mv*
* Y 2 ‘ 2r •

For the cylinder to remain in contact with the sup­
ports until AB becomes equal to rj/2, the condi- 
tion g/Y% >  uV(2r) must be satisfied, i.e. v <
V g r Y1*46. The cylinder is acted upon by the force of 
gravity the normal reaction Nx of the left

inclined plane, and the normal reaction N3 of the 
wedge (force Ns has the horizontal direction). We 
shall write the equation of motion of the cylinder 
in terms of projections on the a^-axis directed 
along the left inclined plane (Fig. 153):
m ^  =  m±g sin a — Ns cos a, (1)
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where ax is the projection of the acceleration of the 
cylinder on the a^-axis.

The wedge is acted upon by the force of gravity 
m2g> the normal reaction N2 of the right inclined 
plane, and the normal reaction of the cylinder, 
which, according to Newton’s third law, is equal 
to — N9. We shall write the equation of motion of 
the wedge in terms of projections on the a,2-axis 
directed along the right inclined plane:
m2a2 =  —m2g sin a +  N9 cos a. (2)

During its motion, the wedge is in contact 
with the cylinder. Therefore, if the displacement 
of the wedge’along the z 2-Sixis is Ax, the centre of 
the cylinder (together with the vertical face of the 
wedge) will be displaced along the horizontal by 
Ax cos a. The centre of the cylinder will be thereby 
displaced along the left inclined plane (â -afcis) by 
Ax. This means that in the process of motion of 
the wedge and the cylinder, the relation
ax =  a2 (3)
is satisfied.

Solving Eqs. (l)-(3) simultaneously, we deter­
mine the force of normal pressure N =N 3 exerted by 
the wedge on the cylinder:

*3 2 mxm2 
m1+m2tan a.

1.47. As long as the load touches the body, the ve­
locity of the latter is equal to the horizontal com­
ponent of the velocity of the load, and the accelera­
tion of the body is equal to the horizontal compo­
nent of the acceleration of the load.

Let a be the total acceleration of the load. 
Then we can write a — at +  ac, where ac is the 
centripetal acceleration of the load moving in the 
circle of radius I, i.e. ac =  u2/l, where v is the 
velocity of the load (Fig. 154). The horizontal 
component of the acceleration is

v*ah =  a t sin a ---— c°s a -I
10*
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The body also has the same acceleration. We can 
write the equation of motion for the body:

where N is the force of normal pressure exerted

Fig. 154

by the load on the body. At the moment of separa­
tion of the load, N =  0 and

The acceleration component at at the moment of 
separation of the load is only due to the force of 
gravity:
at — g cos a.
Thus, the velocity of the load at the moment of 
separation is
i; =  y gi sin a,
and the velocity of the body at the same moment is 
u =  v sin a' =  sin a Ygl sin a.
According to the energy conservation law, we have
mgl =  mgl sin a +  — |- Mv2 sin2 —  .

Substituting the obtained expression for u at the 
moment of separation and the value of sin a =

v*N —Ma^ =  Mat sin a —M —  cos a,

\ /  U \0( M
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sin n/6 =  1/2 into this equation, we obtain the 
ratio:
M 2—3 sin a ,-- --- rr--- = 4.m sin3 a
The velocity of the body at the moment of sep­
aration is

l ,/£Tu — v sm a =  - y  y  Y*

1.48. The rod is under the action of three forces: 
the tension T of the string, the force of gravity mg, 
and the reaction of the wall R =  N +  Ffr (N is 
the normal reaction of the wall, and Ffr is friction, 
Ffr <  pA). When the rod is in equilibrium, the 
sum of the moments of these forces about any point 
is zero. For this condition to be satisfied, the line 
of action of the force JR must pass through the 
point of intersection of the lines of action of T 
and mg (the moments of the forces T and mg 
about this point are zero).
< Depending on the relation between the angles a 
and p, the point of intersection of the lines of ac­
tion of T and mg may lie (1) above the perpen­
dicular AMq to the wall (point Mx in Fig. 155); 
|(2) below this perpendicular (point M2); (3) on the 
perpendicular (point Af0). Accordingly, the friction 
ps either directed upwards along A C (Ftrl), or down­
wards along AC (Ffr2), or is equal to zero. Let us 
insider each case separately.

(1) The equilibrium conditions for the rod are

cos a +  Ffrl — mg =  0, N — T sin a =  0 (1)

^he sums of the projections of all the forces on the 
and y-axes respectively must be zero), and the 
oments of forces about point A must also be zero:

^=77*3, or sin p= sin (a+P), (2)
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where dt and d2 are the arms of the forces mg and 
T Respectively. From Eqs. (1) and (2), we obtain

> h n ==±  sin(« +  P) 1
"" N 3 sin a sin p tan a
= JL/_i_____M3 \ tan p tan a } *

This case is realized when 2 tan a >  tan p. 2 3

(2) After writing the equilibrium conditions, 
we obtain

J_ /__1______ 2 \
^  3 \ tan a tan P / *

This case corresponds to the condition 2 tan a <  
tan p.

(3) In this case, the rod is in equilibrium for 
any value of p3: 2 tan a =  tan p.
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Thus, for an arbitrary relation between the 
angles a and P, the rod is in equilibrium if

_1_______2 
tan a tan p ’

1.49*, Let us analyze the motion of the smaller 
disc immediately after it comes in contact with the 
larger disc.

Ws choose two equal small regions of the small­
er dhc lying on the same diameter symmetrically 
about the centre O' of this disc. In Fig. 156,

Fig. .56

poins Av and A2 are the centres of mass of these re­
gion. At the moment of contact (when the smaller 
discis still at rest), the velocities vx and u2 of the 
poiits of the larger disc which are in contact with 
poiits Ax and A2 of the smaller disc are directed as 
shorn in Fig. 156 fa  =  Q-OAx and u2 =  Q-OA2). 
Tin forces of friction and Ffr2 exerted by the 
lar;er disc on the centres of mass Ax and A2 of 
th< selected regions of the smaller disc will obvi- 
ouly be directed at the moment of contact along 
tb velocities vt and v2 (FfT1 == FfT2). Since the arm 
Lot the force Ffrl about the axis of the smaller 
aso is smaller than the arm l2 of the force Ffr2 
(ee Fig. 156), the total torque of the couple Ftn
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and FfT2 will rotate the smaller disc in the direc­
tion of rotation of the larger disc.

Having considered similar pairs of regions of 
the smaller disc, we arrive at the conclusion that 
immediately after coming in contact, the smaller 
disc will be rotated in the direction of rotation of 
the larger disc.

Let the angular velocity of the smaller disc at 
a certain moment of time become co. The reloci-

ties of the regions with the centres of mas at 
points Ax and A2 will be v[ =  v2 =  cor, tfiere 
r =  OrA1 =  0*A 2 (Fig. 157). The forces of fridion 
*7rl and ^ r 2 acting on these regions will bi di­
rected along vectors va—vj (the relative veloity 
of the point of the larger disc touching point 4 j) 
and v2 — Vj (the relative velocity of tne poin of 
the larger disc touching point A 2). Obviously, the 
torque of the couple and *fr2 will acceleate 
the smaller disc (i.e. the angular velocity of he 
disc will vary) if v\ =  v2 <  BXBJ2 =  Qr (ee 
Fig. 157; for the sake of convenience, the vectes 
“pertaining” to point A2 are translated to point A).

Thus, as long as co <  Q, there exists a nonzeo 
frictional torque which sets the smaller disc int)
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rotation. When oa =  Q, the relative velocities of 
the regions with the centres of mass at points Ax 
and 4 2,are perpendicular to the segment 00' (di­
rected along the segment AXC in Fig. 157), and the 
frictional torque about the axis of the smaller disc 
is zero. Consequently, the smaller disc will rotate 
at the steady-state angular velocity fi.

For (o =  Q, all the forces of friction acting on 
similar pairs of regions of the smaller disc will be 
equal in magnitude and have the same direction, 
viz. perpendicular to the segment 00'. According 
to Newton’s third law, the resultant of all the 
forces of friction acting on the larger disc will be 
applied at the point of the larger disc touching the 
centre O' of the smaller disc and will be equal to 
\img. In order to balance the decelerating torque of 
this force, the moment of force
gM — \ungd
must be applied to the axis of the larger disc.
1.50. After the translatory motion of the system 
h as. been. eafcahJjjihiyL, tha ratio of. tba forces, of. fric­
tion Ffn and F[T2 acting on the first and second 
rods will be equal to the ratio of the forces of pres­
sure of the corresponding regions: FfTl/FfT2 =  
Nx/N2. Since each force of pressure is proportional 
to the mass (Nx =  mxg and N2 =  m2g), the ratio 
of the forces of friction can be written in the form
Ffri __ mx
Ffri ~ * K)
On the other band, from the equality of the mo­
ments of these forces about the vertex of the right 
angle (Fig. 158, top view), we obtain
IFfn cos <p =  lFfT2 sin <p, (2)
where I is the distance from the vertex to the cen­
tres of mass of the rods. From Eqs. (1) and (2), we 
obtain tan <p =  m jm2, where <p =  a — ji/2. Con­
sequently, a =  Jt/2 +  arctan (imjm2).
1.51. If the foot of the football player moves at a 
velocity u at the moment of kick, the velocity of
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the ball is v +  u (the axis of motion is directed 
along the motion of the ball) in the reference frame 
fixed to the foot of the player. After the perfect­
ly elastic impact, the velocity of the ball in the

Fig. 158

same reference frame will be —(v +  u), and its ve­
locity relative to the ground will be — (v +  u) — 
w. If the ball comes to a halt after the impact, 
v +  2u =  0, where u ~  —v/2 =  —5 m/s. The mi­
nus sign indicates that the foot of the sportsman 
must move in the same direction as that of the 
ball before the impact.
1.52. Since in accordance with the momentum 
conservation law, the vertical component of the 
velocity of the body-bullet system decreases after 
the bullet has hit the body, the time of fall of the 
body to the ground will increase.

In order to determine this time, we shall find 
the time tx of fall of the body before the bullet 
hits it and the time t2 of the motion of the body 
with the bullet. Let t0 be the time of free fall of 
the body from the height h. Then the time in which 
the body falls without a bullet is tx =  \h fg  =  
*0/ 1̂ 2. At the moment the bullet of mass M hits 
the body of mass m, the momentum of the body is 
directed vertically downwards and is

mgt0
n  *
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The horizontally flying bullet hitting the body 
will not change the vertical component of the mo­
mentum of the formed system, and hence the ver­
tical component of the velocity of the body-bullet 
system will be

m __ m t0
m-\-M V~ m +  M ^ j/2 *

The time t2 required for the body-bullet sys­
tem to traverse the remaining half the distance 
can be determined from the equation

2 #
This gives

tQ ]/ m2 4- (m +  M)2 — m
*17! m Tm

Thus, the total time of fall of the body to the 
ground (M 3> m) will be

1^2 m+M to /2.

1.53. In order to solve the problem, we shall use 
the momentum conservation law for the system. 
We choose the coordinate system as shown in 
Fig. 159: the £-axis is directed along the velocity 
Vi of the body of mass and the y-axis is directed 
along the velocity v2 of the body of mass m2. 
After the collision, tne bodies will stick together 
and fly at a velocity u. Therefore,
m1v1 — (m1 +  m2) ux, m2v2 =  (m1 +  m2) uy.
The kinetic energy of the system before the collision 
was
IT// _  m l Vi , m 2vl~z---1— 2 ’
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\The kinetic energy of the system after the collision 
(sticking together) of the bodies will become

W 2 2(/n1 + m2) *
Thus, the amount of heat liberated as a result of 
collision will be

Q=w *-w i mxm2
2(m1-f-m2) (v? +  i>§) ~4 .3  J.

Hi*

mt»i x

Fig. 159
1.54. Since there is no friction, external forces do 
not act on the system under consideration in the

Fig. 160
horizontal direction (Fig. 160). In order to deter­
mine the velocity v of the left wedge and the veloc­
ity u of the washer immediately after the descent,
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we can use the energy and momentum conservation 
laws:
M v2 mu2 Mv~mu.

Since at the moment of maximum ascent ^max 
of the washer along the right wedge, the velocities 
of the washer and the wedge will be equal, the 
momentum conservation law can be written in the 
form
mu =  (M +  m) F,
where V is the total velocity of the washer and the 
right wedge. Let us also use the energy conserva­
tion law:
mu2 M4-m Tro ,—2~ = --2---F + m̂ max‘

The joint solution of the last two equations leads 
to the expression for the maximum height htQax 
of the ascent of the washer along the right wedge:

M2
^max = h ~(M~+m)2 9
1.55. The block will touch the wall until the wash­
er comes to the lowest position. By this instant of

time, the washer has acquired the velocity v which 
can be determined from the energy conservation 
law: v2 =  2gr. During the subsequent motion of 
the system, the washer will “climb” the right-hand 
side of the block, accelerating it all the time in 
the rightward direction (Fig. 161) until the veloc-
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ities of the washer and the block become equal. 
Then the washer will slide down the block, the 
block being accelerated until the washer passes 
through the lowest position. Thus, the block will 
have the maximum velocity at the instants at 
which the washer passes through the lowest posi­
tion during its backward motion relative to the 
block.

In order to calculate the maximum velocity of 
the block, we shall write the momentum conserva­
tion law for the instant at which the block is sepa­
rated from the wall:
m2 / 2gr =  m1u1 +  m2v2,
and the energy conservation law for the instants at 
which the washer passes through the lowest posi­
tion:

m2vl
m* T-  2 1 2 •
This system of equations has two solutions:
(1)^ = 0, i>2= /2gr,

2/712 772'2 —  771 j(2) iv wh+'/nj / 2gr, mx + m,2 Y2gr.

Solution (1) corresponds to the instants at which 
the washer moves and the block is at rest. We are 
interested in solution (2) corresponding to the in­
stants when the block has the maximum velocity:

_  2tti2 Y 2gr 
yimax — ~ 7~zz •7711 77l2

1.56. Let us go over to a reference frame fixed to 
the box. Since the impacts of the washer against 
the box are perfectly elastic, the velocity of the 
washer relative to the box will periodically reverse 
its direction, its magnitude remaining equal to v. 
It can easily be seen that the motion of the washer 
will be repeated with period 2At, where A* =  
(D — 2r)/v is the time of flight of the washer be-
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ytween two successive collisions with the box (every 
time the centre of the washer covers a distance 
D — 2r at a velocity u).

Returning to the reference frame fixed to the 
ground, we can plot the time dependence i>wash (0 
of the velocity of the centre of the washer. Know­
ing the velocity graph vwash(t), we can easily 
plot the time dependence of the displacement 
xwash (0 t^Le centre of the washer (Fig. 162).

K̂/ash ̂ ̂
2u

(.V~2r
V J

n-Zr,
1 V

ŵash

Fig..l62

1.57. The^forces acting on thejhoop-washer system 
are the force of gravity and the normal reaction of 
the plane. These forces are directed along the ver­
tical, Consequently, the centre of mass of the 
system does not move in the horizontal direction.

Since there ismo friction between the hoop and 
the plane, the motion of the^hoop is translatory. 
According to the momentum conservation law, at 
any instant of time we have
Mu +  mux =  0, (1)

where u and vx are the horizontal components of 
the velocities of the centre of the hoop ana the wash­
er. Since ux periodically changes its sign, u also 
changes sign “synchronously”. The general nature
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of motion of the hoop is as follows: the centre of 
the hoop moves to the right when the washer is on 
segments BC and BE, and to the left when the 
washer is on segments CD and DE (Fig. 163).

The velocities v of the washer and u of the hoop 
are connected through the energy conservation law:

mgr (1 -f cos <p) = mv2
T

Mu2
2 (2)

The motion of the washer relative to a station­
ary observer can be represented at any instant as 
the superposition of two motions: the motion rela­
tive to the centre of the hoop at a velocity vt di­
rected along the tangent to the hoop, and the mo­
tion together with the hoop at its velocity u having 
the horizontal direction (Fig. 164). The figure shows 
that

■ =  tan q>. (3)
Solving Eqs. (l)-(3) together, we determine the 

velocity of the centre of the hoop at the instant 
when the radius vector of the point of location of 
the washer forms an angle <p with the vertical

u=m  cos <p , 2gr (l +  cos<p)
(M +  m) (JW+rosinq)) '
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1.58. At the moment of snapping of the right 
string, the rod is acted upon by th®  tension T of

Fig. 164

the left string and the forces Nx an^ of normal 
pressure of the loads of mass nij ant* m? C*1 ,v'
Since the rod is weightless (its mass is zero), the

Fig. 165

equations of its translatory and rotary motions will 
have the form

- T  +  Nx -  N2 =  0, N J =  2N*1'
1V-»771
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The second equation (the condition of equality to 
zero of the sum of all moments of force about point 
0) implies that
Ni = ™ 2. (1)
Combining these conditions, we get (see Fig. 165) 
T =  NX- N 2 =  N2. (2)

At the moment of snapping of the right string, 
the accelerations of the loads of mass m1 and m2 
will be vertical (point 0 is stationary, and the rod 
is inextensible) and connected through the relation
a2 =  2ax. (3)
Let us write the equations of motion for the loads 
at this instant:
mxg — N\ =  m2g +  N2 =  maa2,
where N[ and N2 are the normal reactions of the 
rod on the loads of mass m1 and ma. Since N[ =  Nx 
and N2 =  iV2, we have
mxg — 2 N2 =  m1a1, m2g +  N2 =  2 m2ax.
Hence we can find N2, and consequently (see 
Eq. (2)) the tension of the string
T =N % = m xm2 

m i ~ r  4 m 2
g.

1.59. Let the ring move down from point A by a 
distance Ax during a small time interval Af elapsed

Fig. 166
after the beginning of motion of the system 
and acquire a velocity v (Fig* 166). The velocity of 
translatory motion of the noops at this moment
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must be equal to u =  v tan a (At is so small that 
the angle a practically remains unchanged). Con­

sequent!^ tde lmearVeidcit/ ol'air pdint^ 6\ me 
hoops must have the same magnitude. According 
to tne energy conservation law, we have
r o gA i= 2 M u a+ ^ -  =  2iW^tan2a +  - ^ -  ,

where Mu2 is the kinetic energy of each hoop at a 
given instant. From this equality, we obtain
v2 __ m _  1

2Ax ~~ AM tan2 a-\-m i-\~A(M/m) tan2a
As A a: 0, we can assume that v2 =  2 a Ax, where
a is the acceleration of the ring at the initial in­
stant of time. Consequently,
_________ 1________

a 1+4 (M/m) tan2 a
1.60. Let the rope move over a distance AI during 
a small time interval At after the beginning of mo­
tion and acquire a velocity v. Since At is small, 
we can assume that
i;2 =  2a A/, (1 )
where a is the acceleration of all points of the rope 
at the initial instant.

From the energy conservation law (friction is 
absent), it follows that
Mv2
2 AW+, (2)

where M is the mass of the rope, and AVFp is the 
change in the potential energy of the rope during 
the time interval At. Obviously, A Wp corresponds 
to the redistribution of the mass of the rope, as a 
result of which a piece of the rope of length A/ 
“passes” from point A to point B (see Fig. 31). 
Therefore,
6WP=  (- j-} gh M.

11*
(3)



164 Aptitude Test Problems in Physics

From Eqs. (l)-(3), we find the condition of motion 
for the rope at the initial instant of time:

1.61. It is clear that at the moment of impact, only 
the extreme blocks come in contact with the wash­
er. The force acting on each such block is perpen­
dicular to the contact surface between the washer 
and a block and passes through its centre (the 
diameter of the washer is equal to the edge of the 
block!). Therefore, the middle block remains at 
rest as a result of the impact. For the extreme 
blocks and the washer, we can write the conserva­
tion law for the momentum in the direction of the 
velocity v of the washer:

mv 2mu Y  2 
2 mu'.

Here m is the mass of each block and the washer, 
v' is the velocity of the washer after the impact, 
and u is the velocity of each extreme block. The 
energy conservation law implies that
v2 =  2u2 +  i/2.
As a result, we find that u =  v r f 2  and v f =  0. 
Consequently, the velocities of the extreme blocks 
after the impact form the angles of 45° with the 
velocity v , the washer stops, and the middlejblock 
remains at rest.
1.62. In this case, the momentum conservation law 
can be applied in a peculiar form. As a result of 
explosion, the momentum component of the ball 
along the pipe remains equal to zero since there is 
no friction, and the reaction forces are directed at 
right angles to the velocities of the fragments. 
Inelastic collisions do not change the longitudinal 
momentum component either. Consequently, the 
final velocity of the body formed after all collisions 
is zero.
1.63. For the liberated amount of heat to be maxi­
mum, the following conditions must be satisfied:
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(1) the potential energy of the bodies must be 
maximum at the initial moment;

(2) the bodies must collide simultaneously at the 
lowest point of the cup;

(3) the velocity of the bodies must be zero 
immediately after the collision.

If these conditions are satisfied, the whole of the 
initial potential energy of the bodies will be 
transformed into heat. Consequently, at the ini­
tial instant the bodies must be arranged on the 
brim of the cup at a height r above the lowest 
point. The arrangement of the bodies must be such 
that their total momentum before the collision is 
zero (in this case, the body formed as a result of 
collision from the bodies stuck together will re­
main at rest at the bottom of the cup). Since the 
values of the momenta of the bodies at any instant 
are to one another as 3:4:5, the arrangement of the

m

bodies at the initial instaqt must be as in Fig. 167 
(top view). After the bodies are left to themselves, 
the amount of heat Q liberated in the system is 
maximum and equal to 4mgr.
1.64. Let the proton be initially at rest relative to 
a stationary reference frame, and let the a-particle 
have a velocity v0. The process of their elastic 
collision is described by the momentum conserva­
tion law
4 mvQ =  mvi +  4 mv$
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and by the energy conservation law 
4mi>l __ mv\ , imv\

~ 2 2 1 2 1
where i;x and v2 are the velocities of the proton and 
the a-particle in the stationary reference frame 
after the collision, and m and 4m are the masses 
of the proton and the a-particle respectively.

Let us consider the collision of these particles 
in the centre-of-mass system, i.e. in an inertial 
reference frame moving relative to the stationary 
reference frame at a velocity
, 4 mv* 4

v ~  i7 i+4m  T  v*
(the numerator of the first fraction contains the 
total momentum of the system, and the denomina­
tor contains its total mass). Figure 168 shows the

velocity v0 and the velocities of the a-particle
(vector OB) and the proton (vector OA) in the cen- 
tre-of-mass system before the collision: OB =  
(l/5)i>0 and OA =  (4/5)i;0. According to the mo­
mentum conservation law, after the collision, the
velocity vectors OB and OA of the a-particle and 
the proton must lie on the same straight line, and 
the relation OBf:OA' =  1:4 (see Fig. 168) must 
be satisfied. According to the energy conservation 
law, OB' =  OB and OA' =? OA (prove this!).
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In the stationary reference frame, the veloci­
ties of the a-particle and the proton are represent­
ed in the figure by vectors OC2 =  OB' +  v' and
OCt =  OA' +  v\

In order to solve the problem, we must deter­
mine the maximum possible length of vector OC1% 
i.e. in the isosceles triangle OA 'Cly we must deter­
mine the maximum possible length of the base 
for constant values of the lateral sides. Obviously,
the maximum magnitude of OC* is equal to 
2 X (4/5) i>0 =  1.6p0. This situation corresponds 
to a central collision.
1.65. The tyres of a motorcar leave a trace in the 
sand. The higher the pressure on the sand, the 
deeper the trace, and the higher the probability 
that the car gets stuck. If the tyres are deflated 
considerably, the area of contact between the tyres 
and the sand increases. In this case, the pressure 
on the sand decreases, and the track becomes more 
shallow.
1.66. At any instant of time, the complex motion 
of the body in the pipe can be represented as the 
superposition of two independent motions: the 
motion along the axis of the pipe and the motion 
in the circle in a plane perpendicular to the pipe 
axis (Fig. 169). The separation of the body from 
the pipe surface will affect only the latter motion 
(the body will not move in a circle). Therefore, 
we shall consider only this motion.

The body moving in a circle experiences the 
action of the normal reaction N of the pipe walls 
(vector N lies in the plane perpendicular to the 
pipe axis) and the “force of gravity” mg' =  
mg cos a. We shall write the condition of motion 
for the body in a circle:

mg' cos P +  iV =  my- , (1)

where P is the angle formed by the radius vector 
of the point of location of the body at a given in­
stant and the “vertical” y'KFig. 170). For the body
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to remain in contact with the surface of the pipe 
the condition N =  mi>2/r — mg' cos p ^  0 must 
be fulfilled, whence
v2 ^  g'r cos p. (2)

The relation between the velocity v at which 
the body moves in a circle at a given instant and

the initial velocity % can be obtained from the 
energy conservation law: for any value of the 
angle P, the following relation must hold:
mv2 . a m (vn sin <p)2 . ,—2— |-™*'rc08P =  — V °2 ---f-mg'r,

whence
i? =v% sin2 <p +  2g'r — 2g'r cos p. (3)
Substituting Eq. (3) into Eq. (2), we obtain the 
values of v0 for which the body remains in contact 
with the pipe:
i>2> 3g'r cos P 2g’r
0 sin2 tp sin2 q> *

Since this condition must be satisfied for any value 
of p £ [0, 2ji], we finally obtain
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1.67*. Let us suppose that at a certain instant, the 
wheel is in one of the positions such that its cen­
tre of mass is above a rod, and its velocity is v. 
At the moment of the impact against the next rod 
(Fig. 171), the centre of mass of the wheel has a

certain velocity v' perpendicular to the line con­
necting it to the previous rod. This velocity can be 
obtained from the energy conservation law:

mgh~f mv2 
~

mv'2 
"~2 *

Here h =  r — j/V2—I2!4 « Z2/(8r). Therefore.

By hypothesis (the motion is without jumps), the 
impact of the wheel against the rod is perfectly 
inelastic. This means that during the impact, 
the projection of the momentum of the wheel on 
the straight line connecting the centre of the 
wheel to tile rod vanishes. Thus, during each colli­
sion, the energy

m (v' sin <x)a
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where sin a « l/r, is lost (converted into heat). 
For the velocity v to remain constant, the work 
done by the tension T of the rope over the path I 
must compensate for this energy loss. Therefore,

A tlm.'vhftpJK, mrwv, 'vithruiL sJiippnrg,fhft,
axle of the coupled wheels rotates about point 0 
while passing through the boundary between the

Fig. 172

planes (Fig. 172). At the moment of separation, 
the force of pressure of the coupled wheels on the 
plane and the force of friction are equal to zero, 
and hence the angle 0 at which the separation 
takes place can be found from the condition

From the energy conservation law, we obtain

whence
T _  mvH l gl2 \ mvH

~ 2r2 \ 1+ 4rv2 J ~ 2r*

._«2̂

m u 2 mVi /i Q\—5---- mgr (1 — cos p)
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No separation occurs if the angle p determined 
from these equations is not smaller than a, and 
hence
cos P <  cos a.
Therefore, we find that the condition 
v 5̂  Ygr (3 cos a —2)
is a condition of crossing the boundary between 
the planes by the wheels without separation. If 
3 cos a — 2 <  0, i.e. a >  arccos (2/3), the sepa­
ration will take place at any velocity z;.
1.69. At the initial moment, the potential energy 
of the system is the sum of the potential energy 
mg (r +  h) of the rim and the potential energy 
pgh2/(2 sin a) of the part of the ribbon lying on the 
inclined plane. The total energy of the system in 
the final state will also be a purely potential 
energy equal to the initial energy in view of the 
absence of friction. The final energy is the sum of 
the energy mgr of the rim and the energy of the 
ribbon wound on it. The centre of mass of the latter 
will be assumed to coincide with the centre of mass 
of the rim. This assumption is justified if the 
length of the wound ribbon is much larger than the 
length of the circumference of the rim. Then the 
potential energy of the wound ribbon is

the length of the ribbon being hi sin a +  s, wher e s 
is the required distance traversed by the rim from 
the foot of the inclined plane to the point at which 
it comes to rest.

From the energy conservation law, we obtain
mj(r+fc) +  W T ^  =  m ^ + (Vr ( 1 ^ T  +  ,) ,

whence 
_  mg + P (hisin a) (r—h/2)

Pr
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1.70. The steady-state motion of the system in air 
will be the falling of the balls along the vertical at 
a constant velocity. The air drag F acting on the 
lower (heavier) and the upper ball is the same 
since the balls have the same velocity and size. 
Therefore, the equations of motion for the balls 
can be written in the form

mxg — T — F =  0, m2g +  T — F =  0.

Solving this system of equations, we obtain the 
tension of the thread:
T __ (™i — m2)g

~~ 2

1.71*. At each instant of time, the instantaneous 
axis of rotation of the ball passes through the point 
of contact between the thread and the cylinder. 
This means that the tension of the thread is per­
pendicular to the velocity of the ball, and hence 
it does no work. Therefore, the kinetic energy of 
the ball does not change, and the magnitude of its 
velocity remains equal to v.

In order to determine the dependence I (t), we 
mentally divide the segment of the thread un­
wound by the instant t into a very large number N 
of small equal pieces of length AI =  l/N each. 
Let the time during which^the nth piece is un­
wound be Atn. During this time, the end of the 
thread has been displaced by a distance v Atn, and 
the thread has turned through an angle A(pn =  
v A tj(n  A I) (Fig. 173). The radius drawn to the 
point of contact between the thread and the 
cylinder has turned through the same angle, i.e.
a a &A<Pn = A<p = —  ,

whence
n (AZ)a
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Then
t =  AZi “|- A 2̂ “f"... “f- AtN = 1 (AZ)»

vr
2 (AZ)2 AT(AZ)2 (AZ)2 A T (A T+ i)

' v r  vr
Since AT is large, we have

(az)2 m  z2

yr

Z = 2vr ~ 2vr ’
O^n

1= Y  2vrt.

1.72. During the time T, the distance covered by 
the blue ball is © (Z/j/3) T =  2nl/Y3 (Fig- 174), 
where © == 2n/T is the rotational frequency. Dur­
ing the same time, the centre of mass of the green

b b

and the white ball will be displaced by a distance 
© {ll2Y%) T=nl/ Y  3. The rod connecting the green
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and the white ball will simultaneously turn 
through an angle 2n since the period of revolution 
of the balls around their centre of mass coincides 
with the period T. Therefore, the required dis­
tance is

or for another arrangement of the balls (the white 
and the green ball change places in the figure),

1.73. The centre of mass of the system consisting 
of the blocks and the thread is acted upon in the 
horizontal direction only by the force exerted by 
the pulley. Obviously, the horizontal component 
of this force, equal to T (1 — cos <p), where T 
is the^tension of the thread, is always directed to

Fig. 175

the right (Fig. 175). Since at the initial moment the 
centre of mass is at rest above the pulley, during 
motion it will be displaced along the horizontal to 
the right. Hence it follows that the left block 
reaches the pulley before the right block strikes the 
table since otherwise the centre of mass would be 
to the left of the pulley at the moment of impact.
1.74. According to the initial conditions (the left 
load is at rest, and the rirfit load acquires the ve­
locity i;), the left load will move in a straight line, 
while the right load will oscillate in addition to the
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motion in a straight line. At a certain instant, the 
left load is acted upon along the vertical by a force 
mg _  T, and the right load by a force mg — 
T cos cp (Fig. 176, the vertical axis is directed 
downwards). Here T is the tension of the thread.

Hence it follows that the difference in the vertical 
components of the accelerations of the right (at) 
and left (aa) loads, given by

cos <p)-(« -^-)
T— —  (1— cos'fp),Tft

is always nonnegative. Since at the initial moment 
the relative distance and the relative vertical veloc­
ity of the loads are equal to zero, the difference 
in the ordinates of the right and left loads will 
increase with time, i.e. at any instant the right 
load is lower than the left one.
1.75. Let the right and loft threads be 'deflected 
respectively through angles p and a from the ver­
tical (Fig. 177). For the rod to remain in the ver­
tical npsition., the_ following, condition must be 
satisfied:
Tx sin a =  T2 sin P, (1)
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where Tx and T2 are the tensions of the relevant 
threads.

Let us write the equations of motion for the 
two bodies in the vertical and horizontal directions:
rr

\ into

f the 
I and 
move 
writ-

le fol-

0
. The

x <  
ion of

r j’shif cc — Bill or, -L\ c o s  a  =
T2 sin p =  m2oo2Z2 sin P, T2 cos P =  m2g.
Solving this system of equations and taking 
account Eq. (1), we obtain

m\ —  m\ \ 1/4 ~  14 rad/s.

1.76. We denote by lx and Z2 the lengths o 
springs connecting the axle to the first ball 
the first and the second ball. Since the balls 
in a circle, their equations of motion can be 
ten in the form
TTio)2/̂  — k (Zj Zq) k (Z2 Zq), 
moo2 (Zx +  Z2) =  k (Z2 — Z0),
whence
l __________ *o
1 1 — 3mto2/k~\-(m(d2/k)2 ’

(1 — m(o2/k)l0
2 1 —  3m co2/A : +  ( m o ) 2/A:)2 *

The solution has a physical meaning when tl 
lowing inequalities are satisfied:

3/nco2
~~k~~ 1 moo2

" IT >0.
Let us suppose that nun2 Ik =  x. Since m<o2/k 
the second condition implies that 0 <  x <  1 
first condition yields
x2 — 3x +  1 ;> 0,
whence either x >  (3 +  |/5)/2 ~  2.6, or 
(3 -  1/ 5 /2  ~  0.4. Consequently, the regi
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admissible values of x lies between 0 and 
(3 — ]/5)/2, whence

/ 3 — Y l  k
— t —  nr-

1.77. The change in the kinetic energy of the 
body as a result of a small displacement As can 
be written in the form
A WK =  F As,
where F is the force acting on the body. Therefore, 
the force at a certain point of the trajectory is de-

i---:i
A

£
\ l a n a f  1

J__ C
r

__ 1___1l___i
\

UJ \ a' T__ i__ i___i___ la n  x  r ~ 0*5__ i___JLj___J---i__ 1___1___L_l___I___I____̂_ I___1—3.
8  C  A s

Fig. 178

fined as the slope of the tangent at the relevant 
point of the curve describing the kinetic energy as 
a function of displacement in a rectilinear motion. 
Using the curve given in the condition of the prob­
lem, we find that (Fig. 178) Fc ~  —1 N and 

~  —S N.
1.78. The amount of liberated heat will be maxi­
mum if the block traverses the maximum distance 
relative to the conveyer belt. For this purpose, it 
is required that the velocity of the block relative 
to the ground in the vicinity of the roller A must
2-0771
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be zero (see Fig. 41). The initial velocity of the 
block relative to the ground is determined from 
the conditions

qI2
— y0-j-a*=0, I ^ V qI ---
where_a„ = is.the acceleratioDL imnprted to_ the_
block by friction. Hence
u0= |/2wi.

The time of motion of the block along the 
conveyer belt to the roller A is

The distance covered by the block before it 
stops is

Then the block starts moving with a constant 
acceleration to the right. The time interval in 
which the slippage ceases is t =  via =  v/\ig. The 
distance by which the block is displaced relative 
to the ground during this time is

ax2 v2

Since v <  Y 2figl by hypothesis, the block does 
not slip from the conveyer belt during this time, 
i.e. s c  I

The distance covered by the block relative to 
the conveyer belt during this time is

l>2 I v*

s 2 2ng *

*2_ 2a VT I 2|xg *
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The total distance traversed by the block rela­
tive to the conveyer belt is

«_«_LC _,j.„  -./~2T, v* _ (v+V ^ i7 iY
2 ^  i fig 2pg 2fig

The amount of heat liberated at the expense of 
the work done by friction is

m(v+ Y2\igl)*Q =  [imgs = —  ~ 2 -
1.79. In the former case (the motion of the pipe 
without slipping), the initial amount of potential 
energy stored in the gravitational field Will be 
transformed into the kinetic energy of the pipe, 
which will be equally distributed between the 
energies o f rotary and translatory motion. In the 
latter case (the motion with slipping), not all the 
potential energy will be converted into the kinet­
ic energy at the end of the path because of the 
work done against friction. Since in this case the 
energy will also be equally distributed between the 
energies of translatory and rotary motions, the 
velocity of the pipe at the end of the path will be 
smaller in the latter case.
1.80. After the spring has been released, it is uni­
formly stretched. In the process, very fast vibra­
tions of the spring emerge, which also attenuate 
very soon. During this time, the load cannot be 
noticeably displaced, i.e. if the middle of the 
spring has been displaced by a distance x in doing 
the work A, the entire spring is now stretched by 
x. Therefore, the potential energy of the spring, 
which is equal to the maximum kinetic energy in the 
subsequent vibratory motion, is W^ =  kxV2y where 
k is the rigidity of the entire spring. When the 
spring is pulled downwards at the midpoint, only 
its upper half (whose rigidity is 2k) is stretched, 
and the work equal to the potential energy of ex­
tension of the upper part of the spring is A =  
2k (x2/2) =  kx2. Hence we may conclude that the 
maximum kinetic energy of the load in the subse­
quent motion is W* =  A12.
12*
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1.81. Since the system is closed, the stars will 
rotate about their common centre of mass in con­
centric circles. The equations of motion for the 
stars have the form
wijOjZi =  rn2(oll2 =  F. (1)
Here and co2 are the angular velocities of rota­
tion of the stars, lx and l2 are the radii of their 
orbits, F is the force of interaction between the 
stars, equal to Gm1m2/Z2, where I is the separation 
between the stars, and G is the gravitational con­
stant. By the definition of the centre of mass,
mxlx = m2l2, lx 2̂ =  (2)
Solving Eqs. (1) and (2) together, we obtain
„  „  -./ (̂TOx + wi) 7~, i /  G ^ i + m,)Ox= o2 ~ y  ---- p---- = i y  — j—  ,
and the required period of revolution of these 
stars is

T=2nl l / "  ---r .V G (mx -f- m2)

1.82. Let vx be the velocity of the station before 
the collision, v2 the velocity of the station and the 
meteorite immediately after the collision, m the 
mass of the meteorite, and 10m the mass of the 
station.

Before the collision, the station moved around 
a planet in a circular orbit of radius /?. Therefore, 
the velocity ux of the station can be found from 
the equation
10mv\ _  10mM

~ R  ° R* •

Hence vx =  Y G M lR , In accordance with the mo­
mentum conservation law, the velocities u, vx, 
and v2 are connected through the following rela­
tion:
mu +  10 mvx =  11 mvt.
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We shall write the momentum conservation law 
in projections on the x~ and y~axes (Fig. 179>:
iOmv1 =  11 mv2Xj (1)

mu =  11 mu2y. (2)
After the collision, the station goes over to an 

elliptical orbit. The energy of the station with the

tu
X

Fig. 179

meteorite stuck in it remains constant during the 
motion in the elliptical orbit. Consequently,

iimM . 11 m
R 1 
llmAf 
R/2

(v* 4-v* ) ' 2« r ay'
11m (3)

where V is the velocity of the station at the moment 
of the closest proximity to the planet. Here we 
have used the iormula for the potential energy of 
gravitational interaction of two bodies (of mass 
mx and m2): fFp *= —Gmxm jr. According to 
Kepler’s second law, the velocity V is connected to
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the velocity v. of the station immediately after 
the collision through the relation

—  =  <w?. (4)
Solving Eqs. (l)-(4) together and considering that 
Vf =  YGMIR, we determine the velocity of the 
meteorite before the collision:

58GM 
U ' ~ V  r  •

1.83. For a body of mass m resting on the equator 
of a planet of radius J?, which rotates at an angu­
lar velocity (o, the equation of motion has the 
form
mo>2/? =  mg' — N,
where N is the normal reaction of the planet sur­
face, and gf — 0.01 g is the free-fall acceleration on 
the planet. By hypothesis, the bodies on the equa­
tor are weightless, i.c. N =  0. Considering that 
o) =  2ji/I\ where T is the period of rotation of 
the planet about its axis (equal to the solar day), 
we obtain

Substituting the values T =  8.6 X 104 s and 
g' ~  0.1 m/s2, we get
R ~  1.8 X 107 m =  18 000 km.
1.84. We shall write the equation of motion for 
Neptune and the Earth around the Sun (for the 
sake of simplicity, we assume that the orbits are 
circular):

GMmw
~ W ~

mjs<i>|J?£ GMmft
*4 ‘
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Here mN, /tie, g>n> <°E» and /?e are the
masses, angular velocities, and orbital radii of Nep­
tune and the Earth respectively, and M is the 
mass of the Sun. We now take into account the 
relation between the angular velocity and the 
period of revolution around the Sun:

2n 2 n

Here 2Fn and Tg are the periods of revolution of 
Neptune and the Earth. As a result, we find that 
the period of revolution of Neptune around the 
Sun is

Fig. 180

1.85. Let us consider two methods of solving this 
problem.

1. The equilibrium conditions for the loads 
have the form (Fig. 180)
Ti =  T2 =  mag,
Mg =  Tx sin ctj +  sin aa,
Tx cos aa =  Tz cos aa.

A similar result is obtained for elliptical orbits 
from Kepler’s third Jaw.

VS///. ■'////////// ' / /  ' / / /
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From these relations, we can determine the angles 
corresponding to the equilibrium position of the 
system:
sin a x A/2 — mf-f- m\ 

2 Mml sin a2 = A/2 — m\ +  m| 
2Mm2

Obviously, equilibrium can be attained only 
under the conditions that 0 <  ax <  n/2 and 0 <  
aa <  n/2, i.e.

M *- mj+m? 
2Mml <1, ^  2Mmz <  1.

These inequalities imply that the entire system 
will be in equilibrium only provided that
Af <  m* +  m2, M2 >  \ m\ — m\\.

2. Let us consider the equilibrium of point A. 
At this point, three forces are applied:
T i =  T* =  ™2g, r 3 =  A/g.
Point A is in equilibrium when r lf and T3 form 
a triangle. Since the sum of two sides of a triangle 
is larger than the third side, we obtain the relation 
between the masses mlt ro2, and M required foi 
the equilibrium of point A :
mx +  m2 >  My M +  m1>  m2, M +  m2 >  mv

1.86. Let us consider the equilibrium conditions 
for the rod at the instant when it forms an angle a 
with the horizontal. The forces acting on the rod 
are shown in Fig. 181. While solving this problem, 
it is convenient to make use of the equality to zero 
of the sum of the torques about the point of inter­
section of the force of gravity mg and the force F 
applied by the person perpendicular to the rod 
(point O) since the moments of these forces aboui 
this point are zero.

If the length of the rod is 2Z, the arm of the 
normal reaction N ia I coa cc, while the arm of the
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friction is f/sin a +  I sin a, and the equilibrium 
condition will be written in the form

Nl cos a =F frl ( — --- (-sin a \ =  Fftl aIr \ sin a “ / rr sin a ’
whence
„ „  cos a sin « _  cos a sin a
fr— l-j-sin2a ~  2sin2a + cos2a

2 tan a+ co t a *
On the other hand, the friction cannot exceed 

the sliding friction |i7V, and hence
1

^ 2 tan a +  cot a *
This inequality must be fulfilled at all values of 
the angle a. Consequently, in order to find the

Fig. 181

minimum coefficient of friction nmin, we must find 
the maximum of the function (2x2 -f- I/**)-1, where 
x2 =  tan a. _The identity 2x* +  1/z2 == (}f2x — 
I/*)2 + 2 Y 2 implies that the maximum value of
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1/(2 tan a +  cot a) is 1/(21̂ 2) =  Y .Ilk and is at­
tained at xz — tan a =  ŷ 2/2. Thus, the required 
minimum coefficient of friction is

_  v i^min 4

1.87. Since the hinge C is in equilibrium, the sum 
of the forces applied to it is zero. Writing the pro-

, . /J
&

Fig. 182

jections of the forces (Fig. 182) acting on the hinge 
C on the axis perpendicular to A C, we obtain

(m -j- mhln) g sin a =  T cos a, (1)
where mbin is the mass of the hinge. Similarly, 
from the equilibrium condition for the hinge D 
and from the condition that the middle rod is nori- 
zontal, we obtain

T cos a  =  F cos 0 +  mbing sin a. (2)

Solving Eqs. (1) and (2) together, we find that

r .
T cos a — sin a

COS {?*
mg sin « 
cosp >  mg sin a ,
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Thus, the minimum force for which the middle 
rod retains its horizontal position is

P  min =  m 8  s in « =  •— £ -

and directed at right angles to the rod BD.
1.88. By hypothesis, the coefficient of sliding fric­
tion between the pencil and the inclined plane 
satisfies the condition p ^  tan a. Indeed, the pen­
cil put at right angles to the generatrix is in equi­
librium, which means that mg sin a =  Ffr, where 
mg is the force of gravity, and Ffr is the force of 
friction. But Ffr \img cos a. Consequently, 
mg sin a \img cos a, whence p tan a.

Thus, the pencil will not slide down the inclined 
plane for any value of the angle <p.

The pencil may start rolling down at an angle 
<p0 such that the vector of the force of gravity

Fig. 183

“leaves” the region of contact between the pencil and 
the inclined plane (hatched region in Fig. 183). 
In order tojind this angle, we project the centre of 
mass of the pencil (point A) on the inclined plane 
and mark the point of intersection of the vertical 
passing through the centre of mass and the in­
clined plane (point B). Obviously, points A and B 
will be at rest for different orientations of the pen­
cil if its centre of mass remains stationary. In this
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case, AB =  21 cos 30° tan a, where 21 is the side 
of a hexagonal cross section of the pencil, and 
21 cos 30° is the radius of the circle inscribed in 
the hexagonal cross section.

As long as point B lies in the hatched region, 
the pencil will not roll down the plane.

Let us write the condition for the beginning of 
rolling down

AD 
cos <p0 AB, or I l/3 tan a cos cp0

whence
<p0 =  arccos ____

' \/ 3 tan a )•
Thus, if the angle <p satisfies the condition

arccos ( ____ !____ )
v 1/3 tan a ' < < p < n 

2 *

the pencil remains in equilibrium. The expression 
for the angle <p0 is meaningful provided that 
tan a >  1/1/3. The fact that the pencil put paral­
lel to the generatrix rolls down indicates that
tan a >  l/>/3 (prove this!).

Pig. 184

1.89. Let the cross section of the surface be de­
scribed by the function y (x) shown in Fig. 184. 
Since the rod must be in equilibrium in any position,
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the equilibrium can be only neutral, i.e. the cen­
tre of mass of the rod must be on the same level 
for any position of the rod. If the end of the rod 
leaning against the surface has an abscissa (z) the 
ordinate (y0) of its other end touching the vertical 
wall can be found from the condition
i 2= [ y  (*)— y<>]2+*2i y0= y ( x )±  V i * — x*.

Since the rod is homogeneous, its centre of mass is 
at the midpoint. Assuming for definiteness that the 
ordinate of the centre of mass is zero, we obtain
y * + y  (*) __n 

2
whence

y(x) =  ± ^---- .

Only the solution with the minus sign has the 
physical meaning. Therefore, in general, the cross 
section of the surface is described by the function

y(x) =  a Y  I* — **
2

where a is an arbitrary constant.
1.90. In the absence of the wall, the angle of de­
flection of the simple pendulum varies harmoni­
cally with a period T and an angular amplitude a. 
The projection of the point rotating in a circle of 
radius a at an angular velocity co =  2n/T per­
forms the same motion. The perfectly elastic colli­
sion of the rigid rod with the wall at an angle of 
deflection P corresponds to an instantaneous jump 
from point B to point C (Fig. 185). The period is 
reduced by At =  2y/co, where y =  arccos (p/a). 
Consequently,
m 2n 2y
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and the sought solution is
1 P—  arccos .ji a

t

Fig. 185

1.91*. Let the ball of mass m falling from a height 
h elastically collide with a stationary horizontal 
surface. Assuming that the time of collision of the 
ball with the surface is small in comparison with 
the time interval At between two consecutive colli­
sions, we obtain

As a result of each collision, the momentum of the 
ball changes by Ap =  2mv =  2mY2gh. Therefore, 
the same momentum Ap =  2mY 2gh is transferred 
to the horizontal surface in one collision.

In order to determine the mean force exerted by 
the ball on the horizontal surface we consider the 
time interval x >  At. The momentum transferred to 
the horizontal surface during the time x is

Consequently, the force exerted by the jumping 
ball on the horizontal surface and averaged during
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the time interval t can be obtained from the re­
lation

=  —  =  mg.

By hypothesis, the mass M of the pan of the 
balance is much larger than the mass m of the 
ball. Therefore, slow vibratory motion of the bal­
ance pan will be superimposed by nearly periodic 
impacts of the ball. The mean force exerted by the 
ball on the pan is Fm — mg. Consequently, the 
required displacement Ax of the equilibrium po­
sition of the balance is

1.92. The force acting on the bead at a certain 
point A in the direction tangential to the wire is 
F =  mg cos a, where a is the angle between the 
tangent at point A and the ordinate axis (Fig. 186).

Fig. 186

For the length of the region of the wire from the 
origin to the bead to vary harmonically, the force 
F acting at point A must be proportional to the 
length lA. But F <  mg, and lA increases indefinite­
ly. Consequently, there must be a point B at 
which the proportionality condition is violated. 
This means that oscillations with the amplitude 
lB cannot be harmonic.
1.93. It follows from the equations of motion for 
the blocks
max =  Fel, 2 ma% =  —Feh
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where Fe\ is the elastic force of the spring, that 
their accelerations at each instant of time are 
connected through the relation a2 =  —ax/2. Hence 
the blocks vibrate in antiphase in the inertial ref­
erence frame fixed to the centre of mass of the 
blocks, and the relative displacements o£ the 
blocks with respect to their equilibrium positions 
are connected through the same relation as their 
accelerations:

Consequently, the period of small longitudinal os­
cillations of the system is

1.94. Let us mark the horizontal diameter AB =  
2r of the log at the moment it passes through the 
equilibrium position.

Let us now consider the log at the instant when 
the ropes on which it is suspended are deflected 
from the vertical by a small angle a (Fig. 187). 
In the absence of slippage of the ropes, we can 
easily find from geometrical considerations that 
the diameter AB always remains horizontal in the 
process of oscillations. Indeed, if EF ± DK, FK =  
2r tan a « 2ra. Rut BD m FK/2 « ra . Conse­
quently, Z-BOD a as was indicated above.

Since the diameter AB remains horizontal all 
the time, the log performs translatory motion, i.e. 
the velocities of all its points are the same at each 
instant. Therefore, the motion of the log is syn­
chronous to the oscillation of a simple pendulum 
of length I. Therefore, the period of small oscilla­
tions of the log is

Then
Fe\ =  —  ̂ j k &xx =  3A: Ax2.
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1.95. The period of oscillations of the pendulum 
in the direction perpendicular to the rails is

r* - x / i r
(I is the length of the weightless inextensible thread) 
since the load M is at rest in this case (Fig. 188),

Fig. 188

The period of oscillations in the plane parallel 
to the rails (“parallel” oscillations) can be found 
from the condition that the centre of mass of the 
system remains stationary. The position of the 
centre‘of mass of the system is determined from the 
equation mlx =  M {I — lx). Thus, the ball per­
forms oscillations with point 0 remaining at rest 
and is at a distance lx =  Ml/(M +  m) from point 
0. Hence the period of “parallel” oscillations of 
the pendulum is

Ti 2 ,l|/ {m +  M )g9 
Consequently,
A - i / Z Z Z
Tx V m +  M*
1,96. The force exerted by the rods on the load is 
Fx — 2Ften cos a, while the force exerted on the
13-0771
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spring is F% =  2^ten s*n a (see Fig- 48). Accord­
ing to Hooke’s law, F2 =  (1.5Z — 21 sin a) ky 
where k is the rigidity of the spring. As a result’
F1 =  1.5lk cot a — 2Ik cos a.

In order to determine the period of small oscil­
lations, we must determine the force AF acting 
on the load for a small change Ah in the height of 
the load relative to the equilibrium position h0 =  
21 cos a0. We obtain
AF 1.51k A (cot a) — 2Ik A (cos a),
where
» , . v / d!cot a \ . AaA (cot a) =  ( ——---  Aa — ----—---,\ da / a=a« sin2a0
A (cos a) =  — sin a0 Aa.
Consequently, since Ah =  —2Z sin a0 Aa, we find 
that
A —1.5* ^ — \~2kl sin a0 Aasin4 a0

=  — 5kl Aa =  — 5k Ah
because sin a0 =  1/2.

The period of small oscillations of the load can 
be found from the formula T —■ 2n V m/(5/c), where 
m is the mass of the load determined from the 
equilibrium condition:
1.5kl cot a0 — 2kl cos a0 = mg,

1.97. At each instant of time, the kinetic energy of 
the hoop is the sum of the kinetic energy of the 
centre of mass of the hoop and the kinetic energy
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of rotation of the hoop about its centre of mass. 
Since the velocity of point A of the hoop is always 
equal to zero, the two kinetic energy components 
are equal (the velocity of the centre of mass is 
equal to the linear velocity of rotation about the 
centre of mass). Therefore, the total kinetic energy 
of the hoop is mv2 (m is its mass, and v is the ve­
locity of the centre of mass). According to the 
energy conservation law, mv2 =  m g (r *— hA), 
where hA is the height of the centre of mass of the 
hoop above point A at each instant of time. Con­
sequently, the velocity of the centre of mass of the 
hoop is v =  Y g(r — hA). On the other hand, the 
velocity of the pendulum B at the moment when 
it is at a height hA above the rotational axis A is 
v =  Y 2̂r (r — hA)y i.e. is |/2 times larger. Thus, 
the pendulum attains equilibrium yr2 times sooner 
than the hoop, i.e. in

1.98. It should be noted that small oscillations of 
the load occur relative to the stationary axis AB

Fig. 189

Fig. 189). Let DC _L AB. Then small oscillations 
of the load are equivalent to the oscillations of a 
simple pendulum of the same mass, but with the

t =  — =̂r- ~  0.35 s
Y  2
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length of the thread
V =  L sin a =  L — ----* - ---

V *+(W )*
and the free-fall acceleration

g' — geos a =  g LI 2 
^P-HL/2)*

where L =  4̂2).
Thus, the required period of small oscillations 

of the system is

r = 2" j /  t -= 2» ) /  f - .
1.99, In order to solve the problem, it is sufficient 
to note that the motion of the swing is a rotation

about an axis passing through the points where 
the ropes are fixed, i.e. the system is a “tilted sim­
ple pendulum” (Fig. 190). The component of the 
force of gravity mg along the rotational axis does 
not influence .tha.oscillationsL ,while the normal 
rcmu\pnerLt- sJnJarX restoring force*
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Therefore, using the formula for the period of a 
simple pendulum, we can write

r - 2n y
where

/ "
g sin a

___ hh
VlT+% ~~ ]/ ?  +  6* ’

asin a r .

Consequently, the period of small oscillations of 
the swing is

1.100. The period oi a simple pendulum is in­
versely proportionate the square root of the free- 
fall acceleration:

1T o :—— .
V s

Let the magnitude of the acceleration of the lift 
be a. Then the period of the pendulum for the 
lift moving upwards with an acceleration a will be

Tuv<x ~ v l+ z

and for the lift moving downwards with the same 
acceleration

T d o w n  ^  — r ------
Y * ~ a

Obviously, the time measured by the pendulum 
clock moving upwards with the acceleration a is 
proportional to the ratio of the time fup of the
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upward uniformly accelerated motion to the period
: up-

'"P = 7 ^  “ ‘“P V > + i -
The time measured by the pendulum clock moving 
downwards with the acceleration a is

Sown «*dow» Y t = i -

By hypothesis, the times of the uniformly accel­
erated downward and upward motions are equal: 
*down =  *up =  *i/2, where tx is the total time of 
accelerated motion of the lift. Therefore, the 
time measured by the pendulum clock during a 
working day is

‘• - r ( V / 3 y I + V / i f i )+'.-
Here is the time of the uniform motion of the 
lift. The stationary pendulum clock would indi­
cate
t ~  11 +  £q.
It can easily be seen that the inequality Y  g +  a +  
Y  g — a < 2 Y g  is fulfilled. Indeed,
( y g + Z + Y g l~ a  _
I 2 V~g I ~  %  <
Hence it follows that on the average the pendulum 
clock in the lift lags behind: t' <  t, and hence the 
operator works too much.
l.iOi. Pascal’s law implies that the pressure of a 
gas in communicating vessels is the same at the 
same altitude. Since the tubes of the manometer 
communicate with the atmosphere, the pressure 
in them varies with altitude according to the same 
law as the atmospheric air pressure. This means 
that the pressure exerted by the air on the liquid 
in different arms of the manometer is the same and
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equal to the atmospheric pressure at the altitude 
of the manometer. Thus, the reading of the ma­
nometer corresponds to the zero level since there is 
no pressure difference.
1,102. We choose the zero level of potential energy 
at the bottom of the outer tube. Then the potential 
energy of mercury at the initial instant of time is
W\ =  2£Zpmerg  ̂— J =  pmer£*^2-

The potential energy of mercury at the final instant

Fig. 191

(the moment of separation of the inner tube, 
Fig. 191) is (by hypothesis, I >  h)
W,f =  2Sxpmerg j 4~^Pmer£ ) ’

where x is the level of mercury in the outer tube at 
the moment of separation. This level can be found 
from the condition of the constancy of the mercury 
volume:
2Sx-{- Sh--2Sl, x =  Z--|.

The difference in the potential energies is equal 
to the sum of the rcquiixd work A done by external 
forces and the work done by the force of atmospher-
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ic pressure acting on the surface of mercury in 
the outer tube and on the upper (sealed) end of the 
inner tube. The displacement of mercury in the 
outer tube is Z — x, the corresponding work of the 
force of atmospheric pressure being p0S (I — x) =
PmerS^h (1 £)•

The displacement of the sealed end of the in­
ner tube is I — (I +  x), the corresponding work 
being — p0Sx =  —pmerg5Ax.

Therefore, the required work of external 
forces is
A ^W t-W i- f a e r g S h d - Z z )

=  Pmer£*Ŝ   ̂J ---j •

1.103, The pressure at the bottom of the “vertical” 
cylinder is p =  p0 +  pwg^, where p0 is the atmo­
spheric pressure, pw is the density of water, and g 
is the free-fall acceleration. According to Pascal’s

law, the same pressure is exerted on the lower part 
of the piston in the “horizontal” cylinder. The 
total pressure of water on the part of the piston 
separated from the lower part by a distance x 
along the vertical is p — pgx (Fig. 192).

Let us consider the parts of the piston in the 
form of narrow (of width Ax) horizontal strips 
separated by equal distances a from its centre, The
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force of pressure exerted by water on the upper 
strip is
lp — Pwg (r +  a)] AS,
while the force of pressure on the lower strip is 
lp — Pw £ (r — a)l AS,
where AS is the area of a strip. The sum of these 
forces is proportional to the area of the strip, the 
proportionality factor 2 (p — pgr) being indepen­
dent of a. Hence it follows that the total force of 
pressure of water on the piston is
( p  — P svgr) irr2 =  [p0 +  p wg  (h — r)] Jir2.
The piston is in equilibrium when this force is equal 
to the force of atmospheric pressure acting on the 
piston from the left and equal to p 0n r 2. Hence
h  =  r,
i.e. the piston is in equilibrium when the level of 
water in the vertical cylinder is equal to the ra­
dius of the horizontal cylinder. An analysis of the 
solution shows that this, equilibrium is stable.
1.104. The condition of complete submergence of 
a body is
M >  pwV,
where M is the mass of the body, and V is its vol­
ume. In the case under consideration, we have

M — tf*cork~l“ m3Lh y _ ^cork i mdi\
, Pcork Pal

Hence it follows that the minimum mass of the 
wire is
_  Pal (Pw — Pcork) mai = —:--------r-----(Pal — Pw) Pcork m cork  —  1.6fnCork-

1.105. Obviously, in equilibrium, the sphere is at 
a certain height h above the bottom of the reset-
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voir, and some part of the chain lies at the bottom, 
while the other part hangs vertically between the 
bottom and the sphere (Fig. 193). By hypothesis, 
we can state that the sphere is completely sub­
merged in water (otherwise, nearly the whole chain 
would hang, which is impossible in view of the

Fig. 193.

large density of iron). Then the height h can be 
obtained from the eayalitv, of the total force of 
gravity of the sphere and the hanging part of the 
chain and the buoyant force acting on them:

^M+m h g =  + m h- 
Piron I0 /2 )

Hence
— pwF~ M----1 = 1.6m (1 — Pw/Piron) m.

The depth at which the sphere floats is H — h =  
1.4 m.
1.106. The equilibrium condition for the lever is 
the equality of the moments of forces (Fig. 194). 
In air, these forces are the forces of gravity mxg 
and m2g of the bodies. Since they are different, 
their arms lx and /2 are also different since
mxgl x — m2gZa.
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When the lever is immersed in water, the force 
of gravity is supplemented by the buoyan of 
water, which is ̂ proportional to the volume of the

Fig. 194

body. By hypothesis, F x =  F2, and therefore 
(mtg  ~  F x) lx =£ (m2g — F 2) Lj.

Thus, the equilibrium of the lever will be violated.
1.107. The volume of the submerged part of each 
box changes by the same amount AF =  wi/pw, 
where m is the mass of the body, and pw is the den­
sity of water. Since the change in the level of water 
in each vessel is determined only by AF and the 
vessels are identical, the levels of water in them 
will change by the same amount.
1.108. Let the volume of the steel ball be F, and 
let the volume of its part immersed in mercury be 
F0 before water is poured and Vx after water covers 
the ball completely. The value of F0 can be found 
from the condition

PstV =  Pmer ô»

where pst and pmer are the densities of steel and 
mercury. Since the pressure of water is transmitted 
through mercury to the lower part of the ball, the 
buoyant force exerted on it by water is 
Pw (F Fj) g, where pw is the density of water, 
while the buoyancy of mercury is praei Fxg. The

h

mi§
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condition of floating for the ball now becomes
PstV =  Pm er^ +  Pw (V -  Vx),
whence
y  = 3  Pst Pw y  

1 Pmer — Pw
Thus, the ratio of the volumes of the parts of the 
ball submerged in mercury in the former and latter 
cases is

V *  __ Pst Pmer~~Pw __ 1— Pw/Pmer 
V i  Pmer Pst — Pw 1 — Pw/Pst
Since Pm er> Pst, V0 >  Vx, i.e. the volume of the 
part of the ball immersed in mercury will become 
smaller when water is poured.
1.109. The level of water in the vessel in which the 
piece of ice floats is known to remain unchanged

Fig. 195.

after melting of ice. In the case under considera­
tion, we shall assume that the level of water at the 
initial moment (measured from the bottom of the 
vessel) is ft0, and that the level of the surface of 
oil is ft (Fig. 195). If the vessel contained only wat­
er, its level h x for the same position of the piece 
of ice relative to the bottom of the vessel would 
obey the condition
ft0 <  h  <  ft,



Solutions 205

Water formed as a result of melting ice has a 
volume corresponding to the hatched region in the 
figure. Since a part of this volume is above the 
surface of water (hi >  h0), the level of water rises 
after melting of ice. On the other hand, since 
ht c  fc, oil nils the formed “hole”, i.e. the total 
level of liquid in the vessel falls.
1.110. Let x be the length of the part of the rod in
the tumbler, and y be the length of its outer part. 
Then the length of the rod is x +  y, and the centre 
of mass of ̂ the rod is at a distance (x-{-y)/2 from
its ends and at a distance (y — x)/2 from the outer
end. The condition of equilibrium is the equality 
to zero of the sum of the moments of force about 
the brim of the tumbler.
/r_  Mg(y — x)
v 1) * a ) x — 2 ?

where =  rn^g =  pa\gV is the force of gravity 
of the ball, and FA =  pwgV/2 is the buoyant force, 
where V =  (4/3)jir3 is the volume of the ball.

The required ratio is
y _  1 +  2 (Fb F\)
x ~ Mg ~

1.111. When the barometer falls freely, the force of 
atmospheric pressure is no longer compensated by 
■tut wfuqJiL oL fhfb mar/vjuv̂  'vahurnn 'Kwjpv'vfim* otfx 
its height. As a result, mercury fills the barometer 
tube completely, i.e. to the division 1050 mm.
1.112. In a vessel with a liquid moving horizontal­
ly with an acceleration a, the surface of the liquid 
becomes an inclined plane. Its slope (p is deter­
mined from the condition that the sum of the force of 
pressure F and the force of gravity mg acting on 
an area element of the surface is equal to ma, and 
the force of pressure is normal to the surface. Hence

tan <p =* —  . g
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According to the law of communicating vessels, the 
surfaces of the liquid in the arms of the manometer 
belong to the above-mentioned inclined plane

Fig. 196

(Fig. 196). It follows from geometrical considera­
tions that

whence

fc2 +  &i ‘
1.113. The air layer of thickness Az at a distance x 
from the front of the cabin experiences the force of 
pressure
[pl(x +  As) — p (*)] 5,
where S is the cross-sectional area of the cabin. 
Since air is at rest relative to the cabin, the equa­
tion of motion for the mass of air under considera­
tion has the form
pS Axa =  [p (x +  Ax) — p (x)] S.
Making A# tend to zero, we obtain

a

a g (k2—hx)

whence 
P (*) =  Pi +
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Since the mean pressure in the cabin remains un­
changed and equal to the atmospheric pressure p0, 
the constant px can be found from the condition

, PalPo^ P i +  -L2~ ,

where I is the length of the cabin. Thus, in the 
middle of the cabin, the pressure is equal to the 
atmospheric pressure, while in the front and rear 
parts of the cabin, the pressure is lower and higher 
than the atmospheric pressure by

~0.03 Pa 

respectively.
1.114. Let us consider the conditions of equilibri­
um for the mass of water contained between cross 
sections separated by x and x +  Ax from the rota­
tional axis relative to the tube. This part of the 
liquid, whose mass is pWS Ax, uniformly rotates at 
an angular velocity (o under the action of the forces 
of pressure on its lateral surfaces. Denoting the 
pressure in the section x by p (#), we obtain
[p(x+Ax) —p(x)] S =  pS Ax©2 (x-j—^ - )  .

Making Ax tend to zero, we obtain the following 
equation:
dp .
1 7 =pw(0*’
whence

p(x) =  pw<02 (-j- J + P o■
Using the conditions of the problem 

Pi =  P(ri) =  Pw«>2 (4p )+P o .

P2=--P(r*) =  Pwf>2 ( ^ r )  +Po.
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we obtain the angular velocity of the tube:

1,115. Let the exponent a be such that the body 
having an initial velocity v traverses a finite dis­
tance s (i>) in the medium. Since the velocity of 
the body monotonically decreases during its motion 
in the medium, s (v) >  $ (î ) for v >  vx. It is also 
clear that s (v) tends to zero as v 0. The con­
dition under which the body comes to a halt is 
that the work A of the drag is equal to the initial 
kinetic energy of the body:

Since the drag monotonically decreases with the 
velocity of the body during its motion, we can 
write

Substituting Eq. (2) into Eq. (1), we obtain

whence it follows that for a ^  2, the condition 
lim s (v) =  0 is violated. Therefore, for a ^  2,v-*0
the body cannot be decelerated on the final region 
of the path.
1.116. According to the law of universal gravi­
tation, the force of attraction of the body of mass m

Mf^rnto Mars on its surface is G— — > where Mm is theRm
mass of Mars, and 7?m is its radius. This means 
that the free-fall acceleration on the surface of
Mars is gM= GM^/Rm.. If the mass of the Mar­
tian atmosphere is &im> it is attracted to the surface 
of the planet with the force which is equal

aA ^  f«> s (v). (2)
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to the force of pressure of the atmosphere, i.e. the 
pressure on the surface of Mars is pm =  m ĝM./ 
(471/?̂ ). Similarly, for the corresponding param­
eters on the Earth, we obtain pe =
The ratio of the masses of the Martian and the 
Earth’s atmospheres is
mM __ PM-^nRltgE

^ Odnsiaentfg 'inht (a ‘similar
expression can be obtained for the Earth) and sub­
stituting the given quantities, we get
m u  _  P m  R m  P e  ^  3  4  x  1 0 _ 3> 

m R p e  P m

It should be noted that we assumed in fact that 
the atmosphere is near the surface of a planet. 
This is really so since the height of the atmosphere 
is much smaller than the radius of a planet (e.g. 
at an altitude of 10 km above the surface of the 
Earth it is impossible to breathe, and the radius 
of the Earth is Re cm 6400 km!).



2. Heat and Molecular Physics

2.1. Since the vertical cylinders are communicating 
vessels, the equilibrium sets in after the increase 
in the mass of the first piston only when it “sinks” 
to the bottom of its cylinder, i.e. the whole of the 
gas flows to the second cylinder. Since the tem­
perature and pressure of the gas remain unchanged, 
the total volume occupied by the gas must remain 
unchanged. Hence we conclude that Sxh0 +  S2k0 =  
SJt, where Sx and S« are the cross-sectional areas 
o f the first and second cylinders, and h is the height 
at which the second piston will be located, i.e. 
just the required difference in heights (sin«e the 
first piston lies at the bottom). The initial pressures 
produced by the pistons are equal. Therefore,

mi8 ^  m2g
Sx S2

51 __ m1
52 m2
and hence

(— -+ l)  =  0.3 m.\ 2 *

2.2. If the temperature ^wan of the vessel walls 
coincides with the gas temperature Ty a molecule 
striking the wall changes the normal component 
px of its momentum by —px. Consequently, the 
total change in the momentum is 2px. When 
rwaii >  T, the gas is heated. This means that gas 
molecules bounce off the wall at a higher velocity 
than that at which they impinge on the wall,
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and hence have a higher momentum. As a result, 
the change in the momentum will be larger than 
2p x (Fig. 197).

If, however, <  Z\ the gas is cooled, i.e.
gas molecules bounce of! the wall with a smaller 
momentum than that with which they impinge on 
the wall. In this case, the change in the momentum 
will bo obviously smaller than 2p x (Fig. 198).

'wall Twali^ T
Fig. 197 Fig. 198

Since according to Newton’s second law, the change 
in momentum is proportional to the mean force, 
the pressure exerted by the gas on the walls is 
higher when the walls are warmer than the gas. 
2.3. The work A done by the gas during the cycle 
is determined by the area of the p-V  diagram 
bounded by the cycle, i.e. by the area ol‘ the trap­
ezoid (see Fig. 57):

All these quantities can easily be expressed in terms 
of pressure and volume p x and Vx at point 1. Indeed, 
according to Charles’s law, Vz =  V2T J T 2 — 
Vl T 3!T 2 and V4 =  V1T j T l -  while the

* Gay-Lussac law implies that p 2 — P iT 2/T lt Sub­
stituting these values into the expression for work, 
we obtain

A^PiVx I T 2 T y 
\ Tx )( h  i 

Tx n Ta
2 )•

14*
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The equation of state for n moles of an ideal gas 
is PiPj =  nRTlt and we can finally write

2.4. Figure 58 shows that on segments 1-2 and 
3-4, pressure is directly proportional to tempera­
ture. It follows from the equation of state for ah 
ideal gas that the gas volume remains unchanged 
in this case, and the gas does no work. Therefore, 
we must find the work done only in isobaric pro­
cesses 2-3 and 4-1. The work A23 =  p2 (Fs — V2) 
is done on segment 2-3 and A41 =  px (Fx — F4) 
on segment 4-1. The total work A done by the gas 
during a cycle is
A = p 2 (V3 -  V2) +  Pl (Vx -  F4).

The equation of state for three moles of the 
ideal gas can be written as pV =  3RT, and hence
P\Vi =  3 RTX, P\V 4 =  3RT4, p2 V2 =  3RT2,
p2V3 =  p3V3 =  3 RT3.
Substituting these values into the expression for 
work, we finally obtain

=  3R (Tx +  T3 -  T2 -  T4)
= 2 X 104 J =  20 kJ.

The cycle 1 4-+ 3~+ 2 1 is in fact equiv-
v. to two simple cycles 1 -> 0 -►  2 -+ 1 and 
i s 0 (see Fig. 59). The work done by 
as is determined by the area of the corre- 
ng cycle on the p-V diagram. In the first 
he work is positive, while in the second 

is negative (the work is done on the gas), 
k done in the first cycle can easily be cal-

4 (Po—Pi)(vi —Pl)*1 -  2 •
As regards the cycle 0 -*■ 4 -*■ 3 -*• 0, the triangle 
on the p-V diagram corresponding to it is similar
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to the triangle corresponding to the first cycle. 
Therefore, the work A2 done in the second cycle 
will be
A2----Ax (P2- P 0)2 

(Po~Pi)2 ’
(The areas of similar triangles are to each other as 
the squares of the lengths of the corresponding ele­
ments, in our case, altitudes.) The total work A 
done during the cycle 1 -+4-+3-+2-*! will 
therefore be
A =  AXr i-(P2-Po)n

L (po-pi)2 J
-  750 J.

2.6. According to the first law of tnermodynamics, 
the amount of heat AQ1 received by a gas going

over from state 1 (p0, F0) to state 2 (ply Vx) 
(Fig. 199) is
&Qi — +  Aly
where A Ux is the change in its internal energy, 
and Ax is the work done by the gas,
, (Po+Pi)(Vi~V0)A l------------------------------
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As the gas goes over from state 1 to state 3 (p 
(points 2 and 3 lie on the same isotherm), 
following relations are fulfilled:

2’ ^2)the

AQ2 — &U2'\~A2,
A (Po+PaH^-^o)

Since the final temperature of the gas in states 2 
and 3 is the same, Af/j =  AU2. In order to find 
out in which process the gas receives a larger 
amount of heat, we must compare the works A1 
and A2:
* * _  (Po+Pi) (Vt- V 0) (P«+P2) (V2-V 0)

a x- a 2----------- 2--------------------- 2---------

^ (PqVi- PoVj) +  (P2V0 -  Pi^o) ^  0 
2

sincep0V1 <  p0V2 and p2V0 < PiV0. Consequently, 
A2 >  Ax and AQ2 >  A<?x, i.e. the amount of heat 
received by the gas in the process 1 3 is larger.
9J7. hrAva&J'&Jhaj'pztU
tions, it uniformly spreads over the entire vessel, 
and in all the three parts of the vessel, the pressure 
of hydrogen is
_ _ mH2 RT

(if a gas penetrates through a partition, its pres­
sure „ oa_ both sides of the _ nprtition must be the 
same in equilibrium).

Nitrogen can diffuse only through the right 
partition, and hence will fill the middle and right 
parts of the vessel (see Fig. 61) having the volume 
(2/3) V. The pressure of nitrogen is

mN2 3RT 
PNS-  pNj 2V *
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Oxygen does not diffuse through the partitions, 
and its pressure in the middle part of the vessel is

_  mo2 3RT

According to Dalton’s law, the pressure in a part 
of a vessel is equal to the sum of the partial pres­
sures of the gases it contains:

P i~P iu — 1.3X 109 Pa =  1.3 GPa,
p2=  Ph2 Tq2~\~ P-̂ 2 ~  X Pa== ̂ *5 GPa,
^3 =  Pna +  PN2 ^  2.0 X l O 9 Pa =2.0 GPa.

2.8*. Let us first determine the velocity of the 
descent module. We note that the change in pres­
sure Ap is connected with the change in altitude 
Ah through the following relation:
Ap =  —pg Ah, (1)
where p is the gas density. The equation of state 
for an ideal gas implies that p =  (p/p) RT (here 
T is the gas temperature at the point where the 
change in pressure is considered). Taking into 
account that Ah =  —v At, where u is the velocity 
of the descent, and At is the time of the descent, 
we can write expression (1) in the form

A p ___pi; At
~p~~g RT (2)

Knowing the ratio Ap/At, i.e. the slope of the 
tangent at the final point A of the graph, we can 
determine the velocity v from Eq. (2). (It should 
be noted that since the left-hand side of (2) con­
tains the ratio A pip, the scale on the ordinate 
axis is immaterial.) Having determined (Ap/At) p~x 
from the graph and substituting p =  44 g/mol



216 Aptitude Test Problems in Physics

for C02, we find that the velocity of the descent 
module of the spacecraft is

RT A p 
g\i p M

8.3 J/(K-mol)X 7x102 K ,
10 m/s2X44X 10“3 kg/mol X 1150 s ~  11,5 m/s

Let us now solve the second part of the prob­
lem. Considering that the module has a velocity 
of 11.5 m/s, it was at an altitude h =  15 km above 
the surface of the planet 1300 s before landing, 
i.e. this moment corresponds to t =  2350 s. Using 
the relation (A/?/A/) we can find the required 
temperature T^ at this point of the graph from 
Eq. (2):

2.9. Since the piston has been displaced by h under 
the action of the load, the volume of the gas has 
decreased by hS and has become V — hS. The gas 
pressure under the piston is equal to the atmospheric
fpressure p0 plus the pressure Mg/S produced by the 
oad, i.e. p0 +  Mg/S. Therefore, we can write 
the equation of state for the gas before and after 
loading:
PoV =  nRT i,
Po+Mg/S

V—hS nRT f.
(1 )

(2)

Here T{ and Tt are the initial and final tempera­
tures of the gas.

Since the gas is thermally insulated by hypoth­
esis, it follows from the first law of thermody­
namics that the entire work A done on the gas is 
spent to change its internal energy, i.e. A =  
(3/2)nR (Tf — T\) (the internal energy of a mole 
of an ideal gas is U =  (3/2)/?T). It can easily
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be seen that the work is A =  Mgh, and hence 
M g h  =  ^ -  11H  (T f — T \ ) . (3)

Subtracting Eq. (1) from Eq. (2) termwise and 
using expression (3) for Tt — Th we obtain the 
following equation in h:
MeV 2----Mgh — p0hS = — Mgh. (4)

Hence we find that 
MgV 

S(PoS +  Mg!3) *
Substituting h into Eq. (2), we determine the final 
temperature of the gas:
T =  (PpS +  Mg) (3pQS-~2Mg)V 
f (3 PoS +  Mg)SnR

2.10. According to the first law of thermodynamics, 
the amount of heat Q supplied to the gas is spent 
on the change AC/ in its internal energy and on 
the work A done by the gas:
Q =  AC/ +  A.
The internal energy U of a mole of an ideal gas can 
be written in the form U =  cv T =  (3/2)RT, i.e. 
AC/ =  (3/2)/? AT. The work done by the gas at 
constant pressure p is A =  p AV =  pS Ax, where 
Ax is the displacement of the piston. The gas pres­
sure is

, Mg P =  PoJr - ^ - y
i.e. is the sum of the atmospheric pressure and the 
pressure produced by the piston. Finally, the equa­
tion of state pV =  RT leads to the relation be­
tween the change A V in volume and the change AT 
in temperature at a constant pressure:
p AV =  R AT.
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Substituting the expressions for A U and A 
into the first law of thermodynamics and taking 
into account the relation between AV and AT, 
we obtain
Q =  P W + l p b V  =  j p S b x .  (1)

Since the amount of heat liberated by the heater 
per unit time is q, Q =  q At, where A* is the cor­
responding time interval. The velocity of the 
piston is v =  Ax!At. Using Eq. (1), we obtain

=  - 2  g V 5' P0S +  Mg ’
2.11*, For a very strong compression of the gas, 
the repulsion among gas molecules becomes sig­
nificant, and finiteness of their size should be taken 
into account. This means that other conditions 
being equal, the pressure of a real gas exceeds 
the pressure of an ideal gas the stronger, the larger 
the extent to which the gas is compressed. There­
fore, while at a constant temperature the product 
pV is constant for an ideal gas, it increases with 
decreasing volume for a real gas.
2.12*. Let us consider an intermediate position 
of the piston which has been displaced by a dis­
tance y from its initial position. Suppose that the 
gas pressure is pa in the right part of the vessel 
and px in the left part. Since the piston is in equi­
librium, the sum of the forces acting on it is zero:
(j>2 — Pi) S — 2ky =  0, (1)
where S is the area of the piston.

The total work done by the gas over the next 
small displacement Ay of the piston is A A =  
A Ax +  A A 2, where A A2 is the work done by the 
gas contained in the right part, and AAX is the 
work done by the gas in the left part, and
AAx +  AA2 =  pa AyS — px AyS

=  (p3 — Pi) AyS =  2ky Ay, (2)
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Thus, by the moment of displacement of the 
piston by x =  Z/2, the total work done by the gas 
will be equal to the sum of the potential energies 
stored in the springs:

'-4(4-)* <3>
If an amount of heat Q is supplied to the gas 

in the right part of the vessel, and the gas in the 
left part transfers an amount of heat Q' to the 
thermostat, the total amount of heat supplied 
to the system is Q — Q\ and we can write (the 
first law of thermodynamics)

(4)

where AU is the change in the internal energy of 
the gas. Since the piston does not conduct heat, 
the temperature of the gas in the left part does not 
change, and the change AZ7 in the internal energy 
of the gas is due to the heating of the gas in the 
right part by AT. For n moles of the ideal gas, we 
have AU =  n (3/2)/? AT. The temperature incre­
ment AT can be found from the condition of equi­
librium at the end of the process.

In accordance with the equation of state, the 
pressure of the gas in the right part of the vessel is 
p — nR (T +  AT)/[S (I +  Z/2)]. On the other hand, 
it must be equal to the sum of the gas pressure 
p' =  nRT/[S (I — 1/2)] in the left part and the 
pressure p” =  2kU(2S) created by the springs, i.e.
2nR(T+ AT) 2nRT . kl

3 SI ~  SI +  S
Hence we can find that AT =  2T +  3kl2/(2nR). 
Using Eq. (4), we finally obtain
Q' ~Q — ZnRT — |• M*.

rL,ei 1 i’ne tne lriiiidi 'temperature cfi^tue ~gas 
under the piston, and T2 the gas temperature after 
the amount of heat AQ has been supplied to the
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system. Since there is no friction and the vessel 
is thermally insulated, the entire amount of heat 
AQ is spent on the change A W  in the internal en­
ergy of the system:
A Q =  AW .

The change in the internal energy of the system 
is the sum of the changes in the internal energy 
of the gas and in the potential energy of the com­
pressed spring (since we neglect the heat capacity 
of the vessel, piston, and spring).

The internal energy of a mole of an ideal mon­
atomic gas increases as a result of heating from 
T 1 to T 2 by

(1)

The potential energy of the compressed spring 
changes by

AW, =  y(*8-*?), (2)
where k is the rigidity of the spring, and and x 2 
are the values of the absolute displacement (de­
formation) of the left end of the spring at temper­
atures T x and T 2 respectively. Let us find the 
relation between the parameters of the gas under 
the piston and the deformation of the spring.

The equilibrium condition for the piston implies 
that
P S

kx
T  ’ (3)

where p  is the gas pressure, and S  is the area of the 
piston. According to the equation of state for an 
ideal gas, for one mole we have p V  =  R T . For 
the deformation x of the spring, the volume of the 
gas under the piston is V =  x S  and the pressure 
p =  RT/(xS). Substituting this expression for p  
into Eq. (3), we obtain

(4)
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Thus, the change in the potential energy of the 
compressed spring as a result of heating of the 
system is

= * L {T 2- T l ).

The total change in the internal energy of the 
system as a result of heating from T x to T 2 is
AW  =  AW x +  AW 2 =  2R (T2 _  T x), 

and the heat capacity of the system is
r  *Q W  op

2.14. Let us analyze the operation of the heat 
engine based on the cycle formed by two isotherms 
and two isochors (Fig. 200). Suppose that the tern-

Fig. 200

perature of the cooler (corresponding to the lower 
isotherm) is T x, and the temperature of the heater 
(corresponding to the upper isotherm) is T 2. On 
the isochoric segment 1-2, the gas volume does not 
change, i.e. no work is done, but the temperature 
increases from T x to T 2. It means that a certain 
amount of heat Q x is supplied to the gas. On the 
isothermal segment 2-3, the internal energy of
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the gas remains constant, and the entire amount 
of heat <?2 supplied to the gas is spent on doing 
work: Q2 =  A 2.

On the isochoric segment 3-4, the gas temper­
ature returns to its initial value 2\, i.e. the amount 
of heat Q x is removed from the gas. On the iso­
thermal segment 4-1, the work done by the gas 
is negative, which means that some amount of 
heat is taken away from the gas. Thus, the total 
amount of heat supplied to the gas per cycle is 
Q x +  A 2- Figure 200 shows that the work done by 
the gas per cycle is the sum of the positive work 
A 2 on the segment 2-3 and the negative work A a 
on the segment 4-1.

Let us compare the pressures at the points 
corresponding to equal volumes on the segments 
4-1 and 2-3. The Gay-Lussac law indicates that 
the ratio of these pressures is T j T 2, and hence the 
work done by the gas is A 4 — —( T j T 2) A2. The 
total work per cycle is given by

A =  A 2-\-Aa =   ̂1 — j A2i

and the efficiency is

n Q i +  A*
i-Tx!Tt , Ti
1 +  GiM. J'» *

Therefore, the efficiency of the heat engine based 
on the cycle consisting of two isotherms and two 
isochors is lower than the efficiency 1 — T J T Z 
of Carnot’s heat engine.
2.15*. Let us first determine the free-fall accel­
eration gpi on the surface of the planet. On the one 
hand, we know that the force of attraction of a 
body of mass m to the planet is mgpi. On the other 
hand, it follows from the law of universal gravi­
tation that this force is G m M lr1 2, where G is the 
gravitational constant. Hence we obtain gpj =  
G M lr2. The pressure p  exerted by the atmospheric 
column of height h on the surface of the planet is
P =  PSpl^i (1)
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whexa J*, J-hflLjl ensily^n t  The. 
determining the pressure of the atmospheric col­
umn, we assume that the free-fall acceleration is 
independent of altitude. This assumption is justi­
fied since by hypothesis the height of the atmosphere 
is much smaller than the radius r of the planet 
(k <C r).

Using the equation of state for an ideal gas of 
mass M  occupying a volume V in the form p V  — 
(M/p) R T  and considering that p =  M /V  we 
find that

"RT ‘
Substituting this expression for p into Eq. (1) 
and cancelling out p, we determine the tempera­
ture T of the atmosphere on the surface of the 
planet:
T=z M v\h ^  \iGMh 

R ~ i?r2 #
2.16. We must take into account here that the heat 
transferred per unit time is proportional to the 
temperature difference. Let us introduce the follow­
ing notation: ToUtl, Tout2 and T rx, T V2 are the 
temperatures outdoors and in the room in the first 
and second cases respectively. The thermal power 
dissipated by the radiator in the room is k x (T— T r), 
where kx is a certain coefficient. The thermal 
power dissipated from the room is k 2 (Tt — Tout), 
where k 2 is another coefficient. In tnermal equi­
librium, the power dissipated by the radiator is 
equal.to the power dissipated from the room. There­
fore, we can write

(T ^n) =  ^2 (^n ^outi)*
Similarly, in the second case,

(T T r2) =  k 2 (Tr2 ôut2)*
Dividing the first equation by the second, we obtain
T _  ?Yi— fouti
T — T T2 T T2 — 7\)ut2
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Hence we can determine T:

T  =  W o u t i — T r l r out2
'^T2Jr  Toutl — Tout2— T t i

60 °C.

2.17. The total amount of heat q liberated by the 
space object per unit time is proportional to its 
volume: q =  a R 3, where a is a coefficient. Since 
the amount of heat given away per unit surface 
area is proportional to T4, and in equilibrium, the 
entire amount of the liberated heat is dissipated 
into space, we can write q =  $R 2T* (the area of 
the surface is proportional to R 2, and P is a coef­
ficient). Equating these two expressions for q, 
we obtain

P R#
Consequently, the fourth power of the temperature 
of the object is proportional to its radius, and 
hence a decrease in radius by half leads to ajle- 
crease in temperature only by a factor of ¥ 2  ~  
1.19.
2.18*. For definiteness, we shall assume that the li­
quid flowing in the inner tube 2 is cooled, i.e. T i2 >  
T f2, and hence T ix <  Tf\. Since the cross-sec­
tional area 2S — S =  S of the liquid flow in 
the outer tube 1 is equal to the cross-sectional 
area S  of the liquid flow in the inner tube 2, and 
their velocities coincide, the decrease in tempera­
ture of the liquid flowing in tube 2 from the entrance 
to the exit is equal to the decrease in temperature 
of the liquid flowing in tube 1 . In other words, 
the temperature difference in the liquids remains 
constant along the heat exchanger, and hence
t \2 ~~ Tn =  Tn ~  Ta- (*)

In view of the constancy of the temperature 
difference, the rate of heat transfer is constant 
along the heat exchanger. The amount of heat Q 
transferred from the liquid flowing in tube 2 to 
the liquid flowing in tube 1 during a time t is
Q =  S \o\kt (Tj2 r fl). (2)
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Here is the lateral surface of the inner tube, 
S lat =  2 n r l> where r is the radius of the inner
tube, i.e. n r2 — S, and r =  ^ S I jx. The amount 
of heat Q is spent for heating the liquid flowing in 
tube 1. During the time t, the mass of the liquid 
flowing in the outer tube 1 is m =  pvtS, and its 
temperature increases from T ix to T t l . Conse­
quently,
Q = PvtSc ( T t l  -  r u). (3)
Equating expressions (2) and (3), we obtain

2n —  l k ( T l2- T n ) =  p v S c ( T t l - T n ).

Hence we can find Pf l , and using Eq.* (1), T f2 as 
well. Therefore, we can write

r„ -=ri,+(r1. - r K) ( 1 + 2 ^ it- ) "‘

2.19*. As a result of redistribution, the gas pressure 
obviously has the maximum value at the rear 
(relative to the direction of motion) wall of the 
vessel since the acceleration a is imparted to the 
gas just by the force of pressure exerted by this 
wall. We denote this pressure by pmax. On the other 
hand, praax <  /?sat. Considering that />sat >  p  
and hence neglecting the force of pressure exerted 
by the front wall, on the basis of Newton’s second 
law, we can write

tn gasa 
Pm  ax =  ^  ^  Ps at»

where mgas is the mass of the substance in the 
gaseous state contained in the vessel. Consequently, 
fora ^  P sa tS lM , no condensation will take place, 
while for"a >  p ^ S / M ,  the mass of the gas will

1 5 - 0 7 7 1
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become m  =  p s^ S / a ,  and the vessel will contain 
a liquid having the mass

rn jtq — M — m = M — PsatS 
a

2.20. Boiling of water is the process of intense 
formation of steam bubbles. The bubbles contain 
saturated water vapour and can be formed when 
the pressure of saturated water vapour becomes 
equal to the atmospheric pressure (760 mmHg, or 
105 Pa). It is known that this condition is fulfilled 
at a temperature equal to the boiling point of 
water: r boll =  100 °C (or 373 K). By hypothesis, 
the pressure of saturated water vapour on the 
planet is p 0 =  760 mmHg, and hence the temper­
ature on the planet is T  =  Tbon ~  373 K. Using 
the equation of state for an ideal gas

PoH>

where p is the molar mass of water, and p 0 is the 
atmospheric pressure, and substituting the nu­
merical values, we obtain p =  0.58 kg/m3.
2.21. When we exhale air in cold weather, it is 
abruptly cooled. It is well known that the saturated 
vapour pressure drops upon cooling. Water vapour 
contained in the exhaled air becomes saturated 
as a result of cooling and condenses into tiny water 
drops (“fog”).

If we open the door of a warm hut on a chilly 
day, cold air penetrating into the hut cools water 
vapour contained in the air of the hut. It also 
becomes saturated, and we see “fog”, viz. the drops 
of condensed water.
2.22*. It is easier to solve the problem graphically. 
The total pressure p  in the vessel is the sum of the 
saturated water vapour pressure psa* and the 
pressure of hydrogen pH . According to the equa-
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tion of state for an ideal gas, the pressure of hy­
drogen is
n mH, RT 2xl0~3 kgxS.o JV(moMv)
Pu*~~ VuV ' 2xiO I1kg/inolx2xlO-3in̂

=  4.15xl03r,
where pH is measured in pascals. The p ll2 (T) 
dependence is linear. Therefore, having calculated 
Ph 2 (^) f°r two values of temperature, say, for
T i =  313 K, pHj =  15.5xl05 Pa,
r 2 =  453K, pHj=18.8xl05 Pa,

we plot the graph of /?H (J).
Using the hint in the conditions of the problem, 

we plot the graph of the function psat (T ). “Com­

posing” the graphs of p H i (T) and psat (3T), we 
obtain the graph of the temperature dependence 
of the total pressure in the vessel, p  (T ) (Fig. 20T). 
Using the p (T) curve, from the initial and final 
values of pressure specified in the conditions of the
15*
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problem, we obtain the initial and final tempera­
tures in the vessel:

Pi =  17 X 105 Pa, Tx =  Tx ~  380 K, 
pt =  26 X 105 Pa, T2 =  Tt ~  440 K.

Let us now determine thi> mass of evaporated 
water. Assuming that water vapour is an ideal gas, 
we calculate the initial pyl and final py2 pressures 
of water vapour in the vessel. For this purpose, 
we make use of the obtained graphs. For 7\ =■ 
380 K, the pressure of hydrogen is p^ ~  15.5 X 
105 Pa, and
Pvi =  Pi —Ph, -  1-5X105 Pa.
For T2 =  440 K, pjj ~  18 X 105 Pa, and

—Ph, — 8X 105 Pa.
Let us write the equations of state for water 

vapour at pvl, Tx and pv2, T2\
PviV =  ̂  RTU pV27=  ̂ 3 .  r t2,

P v  P v

where myl and mY2 are the initial and final masses 
of vapour in the vessel. Hence we can determine 
the mass of evaporated water:

~ _ _  P v ^  /  P v 2 P v i  \

_18 X 10-3 kg/mol X 2 X 10~3m3
~  8.3 J/(K-mol)

x ( w - w - ) x '0* = # x l0 ^ 1“' = e *-
2.23. If'"h is the height of water column in the 
capillary, the temperature of the capillary, and 
hence of water at this height, is
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Water is kept in the capillary by surface tension. 
If Oh is the surface tension at the temperature Th, 
we can write

Pwgr
where pw is the density of water. Hence we obtain

Using the hint in the conditions of the problem, 
we plot the graph of the function a (T). The tem­
perature Th on the level of the maximum ascent

of water is determined by the point of intersection 
of the curves describing the (pgrl/2) T /T u]1 and 
a (T) dependences. Figure 202 shows that T jx 
80 °C. Consequently,

h =  ~  6.4 cm.

The problem can also be solved analytically 
if we note that the a (T) dependence is practically 
linear.
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2.24, The condition of equilibrium for the soap 
bubble film consists in that the air pressure Pbubi 
is the sum of the external pressure px and the excess 
pressure 4air due to surface tension. It should be 
noted that there are two air-soap film interfaces 
in the soap bubble, each of which produces a pres­
sure 2cr/r. For this reason, the excess pressure is 
2 X 2o/r =  4a/r. Therefore, we can first write the 
equilibrium condition in the form

, 4aPbubi— p H — • r
After the radius of the bubble has been reduced 

by half, the pressure produced by surface tension 
becomes 8o/r. By hypothesis, the temperature is 
maintained constant, and hence (according to 
Boyle’s law) a decrease in the volume of the bubble 
by a factor of eight (its radius has decreased by 
half) leads to an eight-fold increase in the air pres­
sure in the bubble (it becomes 8pbubi)> so that we 
can write

8pbubi =  P2^r ~  •

Substituting Pbubi into this formula from the first 
equation, we can finally write
P2 =  8p1 24o 

r *
2.25. In the fireplace, large temperature gradients 
may take place. If the bricks and the mortar are 
made of different materials, i.^ materials with 
different temperature expansion coefficients, the 
fireplace can crack.
2.26. Let us suppose that the temperature of the 
mixture of the liquids having the initial temper­
atures Tt and T2 has become T. Since the vessel 
containing the mixture is thermally insulated 
(A# =  0), we can write
cimi (T ““ Zi) +  cim2 (T — T2) — 0,



Solutions 231

whence

By hypothesis, 2 (7\ — T) =  Tt — 7\2, and 
hence T — T2 =  Tx — T, and the ratio (T — T 2)l 
(Tx — T) — 1. Therefore,

__ c2 
m2 ' c2 ’
i.e. the ratio of the masses of these liquids is in­
verse to the ratio of their specific heats.
2.27. In the former case, the water in the test tube 
is mainly heated due to convection since warm 
water is lighter than cold water. In the latter case, 
water is cooled only as a result of heat exchange 
between water layers in the test tube. Since the 
conditions of heat exchange between the test tube 
and outer water remain the same, tx <  t2.

It should be noted that if we change the param­
eters of the problem (20 °G -> 0 °G and 80 °G -►  
4 °C), we shall obtain a reverse answer. The reason 
lies in the anomaly of water. In the temperature 
interval from 0 to 4 °C, cold water is lighter than 
warm water.
2.28. For the system under consideration (vessel- 
water, vassel-water-ball), the heat flux per unit 
time q =  A(>/AJ through the surface of contact 
with the ambient depends on the temperature 
difference:

where t is the time, 7*ves is the temperature of the 
vessel, T is the temperature of the ambient, and 
F is a certain function of temperature. The coef­
ficient a is determined by the conditions at the 
contact of the system under consideration with 
the ambient. In our case, the conditions at the 
contact are identical for the two vessels, and hence 
the coefficient a is the same in both cases. The
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amount of heat AQ lost by the vessel leads to a 
decrease in the temperature of the vessel by A Tves. 

♦ For the •vessel with water, we obtain
A(?i “ (Mwcw wvescves) ^^Ves’
where Mw and cw are the mass and specific heat of 
water, mves and cves are the relevant quantities 
for fhe vessel.

For the vessel with water and the ball, we obtain
AQ2 —  ( ^ w ^ w  mvfcvf m b c b) A T v e s ,

where mb and are the mass and specific heat of 
the ball. By hypothesis, mves <C Mw and mb =  
Mw. Besides, cves <  cw, and hence we can write
AQi — MyfCyj ATygg, A^2 ^  (cw ^b) ^^ves*
It can easily be seen that the change ATves of tem­
perature in the two vessels occurs during different 
time intervals Afx and At2 so that

ATyes a a.
F(Tyes-T) Afwcw °ri’

AT yes ________ «____
F (Tves — T) Mw (cw +  ch) 2’
Hence we obtain
A/j Cyr
A 2̂ cw ~f* Pb
Therefore, the following relation will be fulfilled 
for the total times tx and t2 of cooling of the vessels:
*2
h

£w~f~cb
cw

whence cb/cw =  k — 1.
2.29. If the level of water in a calorimeter has 
become higher, it means that a part of water has 
been frozen (the volume of water increases during 
freezing). On the other hand, we can state that some 
amount of water has not been frozen since otherwise 
its volume would have increased by a factor of
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Pw/pice — 1.1, and the level of water in the calo­
rimeter would have increased by (h/3) (1.1 — 1) ~  
2.5 cm, while by hypothesis Ah =  0.5 cm. Thus, 
the temperature established in the calorimeter 
is 0°C.

Using this condition, we can write
cwmw (Tw 0 C)

== ^ Am H- Cjcemjce (0 C ^ice)’ (̂ )
where Am is the mass of frozen water, and Tlce 
is the initial temperature of ice. As was men­
tioned above, the volume of water increases as 
a result of freezing by a factor of pw/pice, and hence

AA5=(-B2~ l) —  , (2)V Pice / Pw ' ’
where S is the cross-sectional area of the calorim­
eter. Substituting Am from Eq. (2) into Eq. (1) 
and using the relations m^ =• (k/3) pwiS and m jce =  
(h/3) p\ceSy we obtain

c*S -g- Pw^w

= Aft PlCePw - -  cicePlce^rice — .Pw — Pice 3
Hence
rp _ _ h 3A k ____ Pw

cice ^ Pw Pice
---£w— Pw_ j’w ^  — 54 °C.

cice Pice
2.30*. (1) Assuming that water and ice are incom­
pressible, we can find the decrease in the tempera­
ture of the mixture as a result of the increase in the 
external pressure:
A X  1K~0.18K.

Such a small change in temperature indicates that 
only a small mass of ice will melt, i.e. Am << mice.
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We write the energy conservation law:
4 =  A, Am — (rlce +  cw) m AT.

Let us estimate the work A done by the external 
force. The change in the volume of the mixture 
as a result of melting ice of mass Am is
A Tr Am AmAV —----------Pice Pw

=  Am P'ce ^  0>1 „  10-4 ms.
PwPlce Pice

We have taken into account the fact that the den­
sity of water decreases as a result of freezing by 
about 10%, i.e. (pw p|ce)/pw ^  0.1. Therefore, 
we obtain an estimate
A <  Pl AV =  0.25 kJ.

The amount of heat AQ required for heating the 
mass m of ice and the same mass of water by AT is

AQ =  (cice +  cw) m AT ~  1.1 kJ.
Since A <  AQy we can assume that X Am =  AQ, 
whence
Am= y -  =  3,2g.

The change in volume as a result of melting ice 
of this mass is
AF, =  Am ~  3.5 x  10-» m*.PwPlce
Considering that for a slow increase in pressure the 
change in the volume A\\ is proportional to that 
in the pressure A/?, we can find the work done by 
the external force:

A =  -pJ~ 1. ~0.44J.
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(2) We now take into account the compressi­
bility of water and ice. The change in the volume 
of water and ice will be

10-*Fow +  -gp- 10~aFolce ~  2 X 10-« m3,

where Fow =  10“3 m3 and Fotce =  1.1 X 10"3 m3 
are the initial volumes of water and ice.

The work A' done by the external force to com­
press the mixture is

A’- l± gL c * 2 .S l.

The total work of the external force is 
^tot =  A +  A9 -  3 J.
Obviously, since we again have i4t0t <  A<>, the 
mass of the ice that has melted will be the same 
as in case (1).
2.31, Considering that the gas density is p =  M/V, 
we can write the equation of state for water vapour 
in the form p =  (p/p) RT, where p and p are the 
density and molar mass of water vapour. Boiling 
takes place when the saturated vapour pressure 
becomes equal to the atmospheric pressure. If 
the boiling point of the salted water has been raised 
at a constant atmospheric pressure, it means that 
the density of saturated water vapour must have 
decreased.
2.32. Let us consider a cycle embracing the triple 
point: A B C -> A (Fig. 203). The following 
phase transitions occur in turn: melting vapor­
ization condensation of gas directly into the 
solid. Provided that the cycle infinitely converges 
to the triple point, we obtain from the first law 
of thermodynamics for the mass m of a substance
mX +  mq — mv — 0
since the work of the system during a cycle is zero, 
there is no inflow of heat from outside, and hence 
the total change in the internal energy is also 
equal to zero (the right-hand side of the equation).
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Hence we can find the latent heat of sublimation 
of water at the triple point:
v =  % +  q =  2.82 X 106 J/kg.

Fig. 203

2.33. The concentration of the solution of sugar 
poured above a horizontal surface practically re­
mains unchanged.

After the equilibrium sets in, the concentration 
of the solution in the vessel will be

„ cihi

The concentration changes as a result of evaporation 
of water molecules from the surface (concentration 
increases) or as a result of condensation of vapour 
molecules into the vessel (concentration decreases). 
The saturated vapour pressure above the solution in 
the cylindrical vessel is lower than that above the 
solution at the bottom by Ap =  0.05psat (c — c«). 
This difference in pressure is balanced by tne 
pressure of the vapour column of height h:
pYgh =  0.05psat (c — c2).
Hence we obtain

0.05psat (c — c2)
Pv£
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The density pv of vapour at a temperature T =  
293 K can be found from the equation of state for 
an ideal gas:

Psatl-1
RT

Thus, the height h of vapour column satisfies the 
quadratic equation

0.05c2i?r 2 hx 
l ~  iig h- 1
Substituting the numerical values and solving the 
quadratic equation, we obtain
h ~  16.4 cm.

It is interesting to note that, as follows from 
the problem considered above, if two identical 
vessels containing solutions of different concen­
trations are placed under the bell, the liquid will 
evaporate from the solution of a lower concentra­
tion. Conversely, water vapour will condense to 
the solution of a higher concentration. Thus, the 
concentrations tend to level out. This phenomenon 
explains the wetting of sugar and salt in an atmo­
sphere with a high moisture content.
2.34. Since the lower end of the duct is maintained 
at a temperature Tx which is higher than the melting 
point of cast iron, the cast iron at the bottom will 
be molten. The temperature at the interface be­
tween the molten and solid cast iron is naturally 
equal to the melting point

Since the temperatures of the upper and lower 
ends of the duct are maintained constant, the 
amount of heat transferred per unit time through 
the duct cross section must be the same in any 
region. In other words, the heat flux through the 
molten and solid cast iron must be the same (the 
brick duct is a poor heat conductor so that heat 
transfer through its walls can be neglected).

The heat flux is proportional to the thermal 
conductivity, the cross-sectional area, and the 
temperature difference per unit length. Let lx
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befthe length;of the lower part of the duct where 
the cast iron is molten, and l2 be the length of 
the upper part where the cast iron is in the sol­
id phase. Then we can write the condition of 
the constancy of heat flux in the form (the cross- 
sectional area of the duct is constant)
Mllq ( ^ 1  — ?melt) __ x sol (^melt — ̂ 2) 

l\ I2
where x^q and xsoi are the thermal conductivities 
of the liquid and solid cast iron. Considering that 
Xjiq =  /cxSoi, we obtain
7 _ — ̂ melt)
1 r men - r a *
The total length of the duct is lx +  Za. Therefore, 
the part of the duct occupied by the molten metal 
is determined from the relation

^1   k  (T1 — Tmelt)________
k ( T  1 — ̂ melt)"^ (^melt — ̂ 2)

2.35*. The total amount of heat Q emitted in 
space per unit time remains unchanged since it is 
determined by the energy liberated during the 
operation of the appliances of the station. Since 
only the outer surface of the screen emits into space 
(this radiation depends only on its temperature), 
the temperature of the screen must be equal to 
the initial temperature T =  500 K of the station. 
However, the screen emits the same amount of heat 
Q inwards. This radiation reaches the envelope 
of the station and is absorbed by it. Therefore, 
the total amount of heat supplied to the station 
per unit time is the sum of the heat Q liberated 
during the operation of the appliances and the 
amount of heat Q absorbed by the inner surface 
of the screen, i.e. is equal to 2Q. According to 
the heat balance condition, the same amount of 
heat must be emitted, and hence
Q T*
2Q ~  T%
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where Tx is the required temperature of the enve­
lope of the station. Finally, we obtain
r*= ^2 r~600K .
2.36. It follows from the graph (see Fig. 67) that 
during the first 50 minutes^ the temperature of the 
mixture does not change ~and is equal to 0 °C. 
The amount of heat received by the mixture from 
the room during this time is spent to melt ice. In 
50 minutes, the whole ice melts and the tempera­
ture of water begins to rise. In 10 minutes (from 
t x =  50 min to t 2 =  60 min), the temperature 
increases by AT =  2 °C. The heat supplied to the 
water from the room during this time is q =  

AT =  84 kJ. Therefore, the amount of neat 
received by the mixture from the room during the 
first 50 minutes is Q =  5g =  420 kJ. This amount 
of heat was spent for melting ice of mass mlce: Q =  
A,m1Ce- Thus, the mass of the ice contained in the 
bucket brought in the room is

mice =  -j^ — 1*2 kg.

2.37*. We denote by a the proportionality factor 
between the power dissipated in the resistor and 
the temperature difference between the resistor 
and the ambient. Since the resistance of the resistor 
is Rx at Ta =  80 °C, and the voltage across it is 
U1: the dissipated power is U \ / R and we can 
write
- gL = a ( r s- r a). (i)

The temperature of the resistor rises with the 
applied voltage since the heat liberated by the 
current increases. As the temperature becomes equal 
to Tx =  100 °C, the resistance of the resistor abrupt­
ly increases twofold. The heat liberated in it will 
decrease, and if the voltage is not very high, the 
heat removal turns out to be more rapid than the 
liberation of heat. This leads to a temperature 
drop to T2 =  99 °C, which will cause an abrupt
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change in the resistance to its previous value, and 
♦W, will* ha* Therefcvrtv, 'wreai-
oscillations caused by the jumpwise dependence 
of the resistance on temperature will emerge in the 
circuit.

During these oscillations, the temperature of 
the resistor is nearly constant (it varies between 
T2 =  99 °G and Tx =  100 °C) so that we can 
assume that the heat removal is constant, and the 
removed power is a (Tx — T0). Then, by introduc­
ing the time tx of heating (from 99 °C to 100 °G), 
the time t2 of cooling, and the oscillation period 
T =  *i +  *2> we can write the heat balance equa­
tions:
Tj2f
S p 1 =  a (r, -  T0) tl+ C  (7*! -  r 2),

1 (2)TlH ' '- ^ .  =  a(T1- T 0) t . - C ^ - T , ) .
•”2

Using the value of a obtained from Eq. (1), we 
find that
, _____________C(T1- T i)__________
11 t/i/iJi-£/?(r1-7 ’0)/[i?1(r3-7 ’0)i ’
, _________________________________
2 c/?(r1- r 0)/[/?1(7’3- r 0)i-f/i/i?2 *
Substituting, the. numerical. values, of. the. apanti- 
ties, we obtain — t2 — 3/32 s ~  0.1 s and 
T ~  0.2 s.

The maximum and minimum values of the 
current can easily be determined since the resi­
stance abruptly cnanges from Rt =  50 Q to R2 — 
100 Q in the process of oscillations. Consequently,

'm a x  =  ^ 7  =  1 -6 A » 'm in  =  ^ " =  °’8 A ‘

It should be noted that the situation described 
in the problem corresponds to a first-order phase 
transition in the material of the resistor. As a 
result of heating, the material goes over to a new
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phase at Tx =  100 °C (this transition can be 
associated, for example, with the rearrangement 
of the crystal lattice of the resistor material). The 
reverse transition occurs at a lower temperature 
T2 =  99 °G. This phenomenon is known as hyster­
esis and is typical of first-order phase transitions.
2.38. Raindrops falling on the brick at first form 
a film on its surface (Fig. 204). The brick has a

porous structure, and the pores behave like capil­
laries. Due to surface tension, water is sucked into 
pores-capillaries. The capillaries are interconnected 
and have various sizes, the number of narrow cap­
illaries being larger. The force of surface tension 
sucking 'water in wide capillaries is weaker than 
the force acting in narrow capillaries. For this 
reason, the water film in wide capillaries will bulge 
and break. This phenomenon is responsible for the 
hissing sounds.
2.39. The work A done by the gas is the sum of two 
components, viz. the work Ax done against the 
force of atmospheric pressure and the work A2 
done against the force of gravity. The mercury-gas 
interface is shifted upon the complete displacement 
of mercury by 21 +  1/2 =  (5/2)Z, and hence

A1=-^-p0Sl.

The work A2 done against the force of gravity 
is equal to the change in the potential energy of 
mercury as a result of its displacement. The whole 
of mercury rises as a result of displacement by I 
relative to the horizontal part of the tube. This
16-0771
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quantity should be regarded as the final height of 
the centre of mass of mercury. The initial position 
of the centre of mass of mercury is obviously h0 =  
1/8. Hence we can conclude that

where M =  2JSpmer is the mass of mercury. 
Finally, we obtain

2.40. The work A done by the external force as 
a result of the application and subsequent removal 
of the load is determined by the area A BCD of the 
figure (see Fig. 69). According to the first law of 
thermodynamics, the change in the internal energy 
of the rod is equal to this work (the rod is thermally 
insulated), i.e.
AH' =  A =  kx0 (x — *0).
On the other hand, AW =  C AT, where AT is the 
change in the temperature of the rod, from which 
we obtain

2.41. Let the cylinder be filled with water to a 
level x from the base. The change in buoyancy is 
equal to the increase in the force of gravity acting 
on the cylinder with water. Hence we may con­
clude that Ah =  x. From the equilibrium con­
dition for the cylinder, we can write
p2S =  p0S -f mg,
where p2 is the gas pressure in the cylinder after 
its filling with water, i.e. p2 =  p0 +  mg/S. Using 
Boyle’s law, we can write p2 (h — Aft) =  pxh.

A =  A1 +  A2= —  PoSl +  —  pmetgSl* ~  7.7 J.

AH7 kx0 (x—x0)
C ~  C
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where px is the initial pressure of the gas. Finally, 
we obtain

Po+™i/S 
P l~  1 — tsh/h •
2.42. Let us choose the origin as shown in Fig. 205. 
Then the force acting on the wedge depends only

on'the ^-coordinate of the shock front. The hori 
zontal component of this force is

where * =  vt is the wavefront coordinate by’ the 
moment of time t from the beginning of propagation 
of the wave through the wedge. The acceleration 
imparted to the wedge at this moment of time is

Fx p 0cavt 
* “ m ~  bm *

At the moment of time t0 when the wavefront 
reaches the rear face of the wedge, i.e. when the 
wavefront coordinate is b — vt0, the acceleration 
of the wedge becomes

m *
16*
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Since the acceleration of the wedge linearly depends 
on time, for calculating the velocity u of the wedge 
by the moment of time f0 we can use the mean 
value of acceleration am =  p0ca/(2m):

u — am ô p0abc 
2 mu

When the entire wedge is in the region of an ele­
vated pressure, the resultant force acting on the 
wedge is zero. The answer to the problem implies 
that the condition u <  v means that p0 <  
2 mvP/(abc).



3. Electricity and Magnetism

3.1. Due to polarization of the insulator rod ABy 
the point charge -j-gj will be acted upon, in addi­
tion to the point charge —g2> by the polarization 
charges formed at the ends of the rod (Fig. 206).

A
®

Fig. 206

B'V+ ©

The attractive force exerted by the negative charge 
induced at the end A will be stronger than the re­
pulsive force exerted by the positive charge in­
duced at the end B. Thus, the total force acting 
on the charge -ftfi will increase.
3.2. In the immediate proximity of each of point 
charges, the contribution from the other charge 
to the total field strength is negligibly small, and 
hence the electric field lines emerge from (enter) 
the charge in a spatially homogeneous bundle, 
their total number being proportional to the mag­
nitude of the charge. Only a fraction of these lines 
gets into a cone with an angle 2a at the vertex 
near the charge + g1# The ratio of the number of 
these lines to the total number of the lines emerging 
from the charge is equal to the ratio of the 
areas of the corresponding spherical segments:
2nRR (1 — cos a) 

4 nit* y-(l— cos a).

Since the electric field lines connect the two charges 
of equal magnitude, the number of lines emerging
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from the charge within the angle 2a is equal 
to the number of lines entering the charge — q2 
at an angle 2p. Consequently,
r ?i I (1 — cos a) =  | q2 | (1 — cos P), 

whence

If Y I Qi I / I £2 I s n̂ (a/2) > 1 ,  an electric field 
line will not enter the charge —q2.
3.3. Before solving this problem, let us formulate 
the theorem which will be useful for solving this 
and more complicated problems. Below we shall 
give the proof of this theorem applicable to the 
specific case considered in Problem 3.3.

If a charge is distributed with a constant den­
sity o over a part of the spherical surface of radius 
Ry the projection of the electric field strength due 
to this charge at the centre of the spherical surface 
on an arbitrary direction a is

where S±a is the area of the projection of the part 
of the surface on the plane perpendicular to the 
direction a.

Let us consider a certain region of the spherical 
surface (“lobule”) and orient it as shown in Fig. 207, 
i.e. make the symmetry plane of the lobule coincide 
with the z- and x-axes. From the symmetry of 
charge distribution it follows that the total field 
strength at the origin of the coordinate system 
(point O) will be directed against the z-axis (if 
a >  0), and the field strength components along 
the x- and y-axes will be zero.

Let us consider a small region of the surface 
AS of the lobule. The vertical component of the
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electric field strength at point O produced by the 
surface element AS is given by

where (p is the angle between the normal to the 
area element and tne vertical. But AS cos <p is the

Fig. 207

area of the projection of the element AS on the 
horizontal plane. Hence the total field strength 
at point 0 can be determined from the formula

1 aS 
4ne0 R3 ’

where S is the area of the hatched figure in Fig. 207, 
which is the projection of the lobule on the hori­
zontal plane xOy. Since the area of any narrow 
strip of this region (black region in Fig. 207) is 
smaller than the area of the corresponding strip 
of the large circle by a factor of sin (a/2), the entire
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area of the hatched region is smaller than the area 
of the large circle by a factor of sin (a/2). Hence

oS
4jie07?2 4jie0ii2 2

In the case of a hemisphere, a 
a
4en #

. a a sin (a/2) jiR2 sin -rr == 4a0 
n and

3.4. It can easily be seen from symmetry con­
siderations that the vector of the electric field 
strength produced by the “lobule” with an angle a 
lies in the planes of longitudinal and transverse 
symmetry of the lobule. Let the magnitude of 
this vector be E. Let us use the superposition prin­
ciple and complement the lobule to a hemisphere 
charged with the same charge density. For thisfmrpose, we append to the initial lobule another 
obule with an angle ji — a. Let the magnitude 
of the electric field strength vector produced by 
this additional lobule at the centre of the sphere
are mutually perpendicular, and their vector sum 
is equal to the electric field vector of the hemi­
sphere at its centre. By hypothesis, this sum is 
equal to E0. Since the angle between vectors E 
and E0 is ji/2 — a/2, we obtain
E =  E © sin — .

3.5*. Let us consider the case when the capacitors 
are'oriented so that the plates with like charges

h— ~— *1
Fig. 208

face each other (Fig. 208). The field produced by 
the first capacitor on the axis at a distance x



Solutions 249

from the positive plate is

E (x)==4ne^ [ * * ~  (x + l)« ] ~
The force.acting on the second capacitor situated 
at a distance d from the first is

_  3qi<hi2 
~ 2ne0d4

Therefore, the capacitors will repel each other in 
this case.

A similar analysis can be carried out for the 
case when the capacitors are oriented so that the 
plates with unlike charges face each other. Then 
the capacitors will attract each other with the 
same force
F =  3 q\q*l2

2 :xe0d4
3.6, We choose two small arbitrary elements be­
longing to the surfaces of the first and second hemi- 
~spheres and having the areas and AS2- Let the 
separation between the two elements be r12. The 
force of interaction between the two elements can 
be determined from Coulomb’s law:

M u
_1___ 1_
4ne0 r\2 ax A^! a2 AS, A Si A S2

4jie0r22 Oia2.

In order to determine the total force of interac­
tion between the hemispheres, we must, proceeding 
from the superposition principle, sum up the forces 
AF12 for all the interacting pairs of elements so 
that the resultant force of interaction between the 
hemispheres is
F  =  kOyPti

where the coefficient k is determined only by the 
geometry of the charge distribution and by the
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choice of the system of units. If the hemispheres 
were charged with the same surface density a, 
the corresponding force of interaction between the 
hemispheres would be
F =  fca2,
where the coefficient k is the same as in the previous 
formula.

Let us determine the force F. For this purpose, 
we consider the “upper” hemisphere. Its small 
surface element of area AS carries a charge Aq — 
o AS and experiences the action of the electric 
field whose strength E' is equal to half the electric 
field strength produced by the sphere having a 
radius R and uniformly charged with the surface 
density a. (We must exclude the part produced by 
the charge Aq itself from the electric field strength.) 
The force acting on the charge Aq is
AF-=AqE' =  oAS-j^— 4?18q

4ni?a 
° R*- 2

qa
2c0 AS

end is directed along the normal to the surface 
element. In order to find the force acting on the 
upper hemisphere, it should be noted that according 
to the expression for the force AF the hemisphere 
as if experiences the action of an effective pressure 
p =  o2/(2e0). Hence the resultant force acting on 
the upper hemisphere is

F= pnR* =  -£— ii R*
(although not only the “lower” hemisphere, but 
all the elements of the “upper” hemisphere make 
a contribution to the expression AF for the force 
acting on the surface element AS, the forces of 
interaction between the elements of the upper hemi­
sphere will be cancelled out in the general expres­
sion for the force of interaction between the hemi­
spheres obtained above).

/x/
Since F =  fco*, we obtain the following expres­

sion for the force of interaction between the hemi-
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spheres for the case when they have different sur­
face charge densities:

F = ko io2= - ^ -  o xo2.

3.7. The density of charges induced on the sphere 
is proportional to the electric field strength:
0 ex E. The force acting on the hemispheres is 
proportional to the field strength:
F oc aSE cc R2E2,
where S is the area of the hemisphere, and R is its 
radius. As the radius of the sphere changes by a 
factor of n, and the field strength by a factor of ky 
the force will change by a factor of k2n2. Since the 
thickness of the sphere walls remains unchanged, 
the force tearing the sphere per unit length must 
remain unchanged, i.e. k2n2ln — 1 and k =
1 !Yn =  i/Y 2. Consequently, the minimum elec­
tric field strength capable of tearing the conducting 
shell of twice as large radius is

3.8. Let I be the distance from the large conducting 
sphere to each of the small balls, d the separation 
between the balls, and r the radius of each ball. 
If we connect the large sphere to the first ball, 
their potentials become equal:

Here Q is the charge of the large sphere, and <p is its 
potential. If the large sphere is connected to the 
second ball, we obtain a similar equation corre­
sponding to the equality of the potentials of the 
large sphere and the second ball:

(2)
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(We assume that the charge and the potential of 
the large sphere change insignificantly in each 
charging of the balls.) When the large sphere is 
connected to the third ball, the first and second 
balls being charged, the equation describing the 
equality of potentials has the form

1
4jie0 (3)

The charge q3 can be found by solving the system 
of equations (1)“(3):

3.9. The charge qx of the sphere can be determined 
from the formula
qx =
After the connection of the sphere to the envelope, 
the entire charge qx will flow from the sphere to the 
envelope and will be distributed uniformly over 
its surface. Its potential (p2 (coinciding with the 
new value of the potential of the sphere) will be

qi rx
* “T S iv r*  77*
3.10. We shall write the condition of the equality 
to zero of the potential of the sphere, and hence 
of any point inside it (in particular, its centre), by 
the moment of time OW e shall single out three 
time intervals:

(!)<< —  , (2)— < * <  —  , (3 ) t > — .7 v ' V V ' V
Denoting the charge of the sphere by q (f), we obtain 
the following expression for an instant t from the 
first time interval:

a i lb
g(*)
vt =  0,
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whence

For an instant t from the second time interval, we 
find that the fields inside and outside the sphere 
are independent, and hence
Q (*)+ Q\ 

vt b ’
Finally, as soon as the sphere absorbs the two 
point charges qx and the current will stop flowing 
through the “earthing” conductor, and we can write
h  « =  0.
Thus,

3.11. Taking into account the relation between 
the capacitance, voltage, and charge of a capacitor, 
we can write the following equations for the three 
capacitors:

<Pa - < P o= 7 t- .  <P B -<P o= -J r-  , <Pd - < P o= 4 t-  ,C/X ^2 ^3
where Clt C2, and C8 are the capacitances of the 
corresponding capacitors, and <jt, g2» and q8 are 
the charges on their plates. According to the charge 
conservation law, qx +  q2 +  q3 =  0, and hence 
the potential of the common point 0 is

_  < P a ^ i+  VdC*
9o~  Cx+ c t+ c 8
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3.12*. Since the sheet is metallic, the charges 
must be redistributed over its surface so that the 
held in the bulk of the sheet is zero. In the hrst 
approximation, we can assume that this distri­
bution is uniform and has density —a and o over 
the upper and the lower surface respectively of the 
sheet. According to the superposition principle, 
we obtain the condition for the absence of the held 
in the bulk of the sheet:

4jie0Z* e0
Let us now take into consideration the'nonuni- 

formity of the held produced by the point charge 
since it is the single cause of the force F of inter­
action. The upper surface of the sheet must be attract­
ed with aforceOiSg/^ncoZ2), while the lower surface 
must be repelled with a force oSg/[4ne0(Z-l-d)a]. 
Consequently, the force of attraction of the 
sheet to the charge is
p — a ^ <l  [" i _____1____ 1 ~  q2S d

4ne0Za L (1-M/Z)4J 8n%Z5 *
3.13. It can easily be seen'that the circuit diagram 
proposed in the problem is a “regular” tetrahedron

Fig. 209
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whose edges contain six identical capacitors. 
Therefore, we conclude from the symmetry con­
siderations that irrespective of the pair of points 
between which the current source is connected, 
there always exists an uncharged capacitor in the 
circuit (the capacitor in the edge crossed with 
the edge containing the source). For example, if 
the current source is connected between points A 
and B in Fig. 209, the capacitor between points C 
and D will be uncharged since the potentials of 
points C and D are equal.
3.14. The capacitance of the nonlinear capacitor is
C =  eC0 =  a UC0f
where C0 is the capacitance of the capacitor without 
a dielectric. The charge on the nonlinear capacitor 
is qQ =  CU =  aC0Ua, while the charge on the
normal capacitor is =  C0U. It follows from the 
charge conservation law
?n +  4o =  C aU t
that the required voltage is

U =  / 4oĉ o + 1~ 1 =12 v  
2a

3.15. Let us go over to the inertial reference frame 
fixed to the moving centre of the thread. Then
the balls have the same velocity v at the initial 
instant. The energy stored initially in the system is

_  q2 . 2mi>2
x~  4ne0>2Z "> T ~ '

At the moment of the closest approach, the energy 
of the system is
W%=
Using the energy conservation law, we find that 
^ ______ 2*9*____

qt-\-8m0mvH ’
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3.16. Let vx and u2 be the velocities of the first and 
second balls after the removal of the uniform elec­
tric field. By hypothesis, the angle between the 
velocity ẑ  and the initial velocity v is 60°. There­
fore, the change in the momentum of the first ball is
Api =  qxE At =  mxv sin 60°.
Here we use the condition that vx =  i>/2, which 
implies that the change in the momentum Apx 
of the first ball occurs in a direction perpendicular 
to^the direction of its velocity vx.

([Since E || Apt and the direction of variation 
of^the second ball momentum is parallel to the 
direction of Aply we obtain for the velocity of the 
second ball (it can easily be seen that the charges 
on the balls have the same sign)
u2= v  tan 30° =  —v—

/3  #
The corresponding change in the momentum 

of the second ball is

3.17. The kinetic energy of the first ball released 
at infinity (after a long time) can be determined 
from the energy conservation law:

’ <*2V-1 / *

where a v  a 2, . . a N - i  are distances from 
the first ball (before it was released) to the re­
maining balls in the circle, ax and aN^x being the 
distances to the nearest neighbours, i.e. at =  
aN-i =  a (N =  1977).

Hence we obtain
qx __ mx sin 60° q2 __ 4 qx __ 4
q2 m2jcos 30° ’ m2 3 m1 "" 3 1

1
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Analyzing the motion of the second ball, we 
neglect the influence of the first released ball. 
Then

q* ( 1 . 1 .  ,___f _ \
2 4 ne0 \ ' 9 ' aN„2 I *

i.e. one of the nearest neighbours is missing in the 
parentheses. Therefore,

mv\ mv\ _  g2
~  2 2 4ne0a ’

or
g =  Y
3,18. According to the momentum conservation law, 
mu =  (m +  M) u,
where m is the mass of the accelerated particle, 
M is the mass of the atom, and u is their velocity 
immediately after the collision.

We denote by W\ou the ionization energy and 
write the energy conservation law in the form,

(m+M) a* 
2

Eliminating the velocity u from these equations, 
we obtain
my2

If m is the electron mass, then mlM 1, and the
kinetic energy required for the ionization is
mv2
~2~

When an atom collides with an ion of mass 
m & M, mv2/2 « 2 Wjon, i.e. the energy of the 
ion required for the ionization must be twice as 
high as the energy of the electron.
17-0771
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3.19. From the equality of the electric and elastic 
forces acting on the free ball,

«* - l d  4ne0-4i*
we obtain the following expression for the length I 
of the unstretched spring:

where k is the rigidity of the spring, and q are the 
charges of the balls.

Let us suppose that the free ball is deflected 
from the equilibrium position by a distance x 
which is small in comparison with I. The potential 
energy of the system depends on x as follows:

w  (x)-4 1 . «-*)»+ j, « 4  «■+**'•

Here we have taken into account the relation be* 
tween qu k, and I obtained above and retain the 
terms of the order of [x/(2l)]2 in the expression

1 1
2L—x 21 (1l— x!'2l\

= 4 r [ l + ( i r ) + ( w ) 2+ -  ]•
Thus, it is as if the stretched spring has double the 
rigidity, and the ratio of the frequencies of har­
monic vibrations of the system is

Vl
3.20. Let us consider the two charged balls to be 
a single mechanical system. The Coulomb inter­
action between the balls is internal, and hence it 
does not affect the motion of the centre of mass. 
The only external force acting on the system is 
the force of gravity. It is only this force that will
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determine the motion of the centre of mass of the 
system. Since the masses of the balls are equal, 
the initial position of the centre of mass is at a 
height (hx +  ĥ )l2, and its initial velocity v is 
horizontal. Then the centre of mass will move 
along a parabola characterized by the following 
equation:

where x is the horizontal coordinate of the centre 
of mass, and h is its vertical coordinate. At the 
moment the first hall touches the ground at a 
distance x =  /, the height H of the centre of mass, 
according to expression (1), is

Since the masses of the balls are equal, the second 
ball must be at a height H2 =  2H at this instant. 
Therefore,

3.21. Let the resistance of half the turn be /?. 
Then in the former case, we have fifteen resistors 
of resistance R connected in parallel, the total 
resistance being R/i5.

In the latter case, we have the same fifteen re­
sistors connected in series, the total resistance 
being 15R. Therefore, as a result of unwinding, 
the resistance of'the wire will increase by a factor 
of 225.
3.22. It can easily be noted from symmetry con­
siderations that the potentials of points A and C 
(Fig. 210) at any instant of time will be the same. 
Therefore, the closure of the key K will not lead 
to any change in the operation of the circuit, and 
the coil AC will not be heated.

(1)

17*
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3.23, After adding two conductors, the circuit will 
acquire the form shown in Fig. 211. From symmetry 
considerations, we conclude that the central con-

A

Fig. 210

ductor will not participate in electric charge 
transfer. Therefore, if the initial resistance if* 
of the circuit was 5r, where r is the resistance of

Fig. 211

a conductor, the new resistance of the circuit will 
become
i?a =  2 r+ — - =  3r.

Therefore, 
i?a _  3 
Ri. 5 '
3.24. The total resistance Rab °f the frame can 
easily be calculated by noting from symmetry 
considerations that there is no current in the edge
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CD: Rab  =  R/2, where R is the resistance of 
an edge. Therefore,

where U is the applied voltage.
The total current can be changed in two ways:

(1) if we remove one of the edges AD, AC, BC or 
BDy the change in the current will be the same;
(2) if we remove the edge AB, the change will be 
different. In the first case, the change in the current 
will be A/ =  —(2/5) U/R =  —I!5, and in the 
second case, the total resistance will be /?, and 
hence A/ =  —U/R — —1/2 =  A/max.
3.25. It follows from symmetry considerations 
that the potentials of points C and D are equal. 
Therefore, this circuit can be replaced by an equiv­
alent one (we combine the junctions C and D,

Fig. 212

Fig. 212). The resistance between points A and B 
of the circuit can be determined from the formulas 
for parallel and series connection of conductors:

m

•8

R c (d )b
R/2 (R/2+R) 9 « 9
R/2-j-Rl2-[- R i  o
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Thus, the current I  in the leads can be determined 
from th(!\. formula

3.26*. In order to simplify the solution, we present 
the circuit in a more symmetric form (Fig. 213). 
The obtained circuit cannot be simplified by con­
necting or disconnecting junctions (or by removing 
some conductors) so as to obtain parallel- or series- 
connected subcircuits. However, any problem 
involving a direct current has a single solution, 
which we shall try to “guess” by using the sym­
metry of the circuit and the similarity of the cur­
rents in the circuit.

Let us apply a voltage U to the circuit and mark 
currents through each element of the circuit. We

Fig. 213

shall require not nine values of current (as in the 
case of arbitrary resistances of circuit elements) 
but only five values /x, /2, /., /., and /5 
(Fig. 214). For such currents, Kirchhoff’sfirst rule 
for the junction C

U _  15 U 
(7/15) R 7 R

/! =  /» +  /»
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and for the junction D 
/« +  /. =  /* +  /.
will automatically be observed for the junctions £ 
and F (this is due to the equality of the resistances

of all resistors of the circuit). Let us now write 
Kirchhoff’s second rule in order to obtain a system 
of five independent equations:

(/, +  7S +  I J  R *  U,
(/, +  /4) R =  hR,
(/i +  /,)£ =  hR,

where R is the resistance of each resistor. Solving 
this system of five equations, we shall express all 
the currents in terms of I x:

17=5 (/l+ T 7l+ T 71) r -

Consequently, U/Il = R .
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Considering that the resistance Rab °* 
circuit satisfies the equation =  U/0\ +  /*)• 
we obtain
R a b = - u  u  _ 5 J L
AB J, +  J2 11+(6/5)1! 11 /, *

Taking into account the relation obtained above, 
we get the following expression for the required 
resistance:

Ra b ^ - ^ - R .

3.27. It follows from symmetry considerations 
that the initial circuit can be replaced by an equi­
valent one (Fig. 215). We replace the “inner”

triangle consisting of an infinite number of ele­
ments by a resistor of resistance RA B/2, where the 
resistance RA B is such that RA B =  Rx and RA B — 
ap. After simplification, the circuit becomes a sys­
tem of series- and parallel-connected conductors. 
In order to find Rx, we write the equation

RX= R RRXI2
R "I" Rx/2) (r + r + RRXI2 \-t 

R-\-Rx/2j *
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Solving this equation, we obtain 
» _ „  _  * ( / 7 - l )  a p ( /7 - l)KAB-«*--------jj------ g .

3.28. It follows from symmetry consideraions 
that if we remove the first element from the circuit* 
the resistance of the remaining circuit between 
points C and D will be RCn =  kRAB. Therefore, 
the equivalent circuit of the infinite chain will

f i 2 \

3 D

Fig. 216

have the form shown in Fig. 216. Applying to this 
circuit the formulas for the resistance of series- 
and parallel-connected resistors, we obtain

Rab = RvVRJcRab
Rz+^R ab

Solving the quadratic equation for Rab> we obtain 
(in particular, for k =  1/2)

Rab = Ri — R t+ V R  +
2

3.29. The potentiometer with the load is equivalent 
to a resistor of resistance

R i
R
2

RRI2 5*
R +  R/2 6

Hence the total current in the circuit will be 
r U 6 U

(5/6) R 5 R *
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The voltage across the load will be

u * = u - r> f = T u -
If the resistance of the loqd becomes equal to 2R, 
the total current will be
j  _ U 10 17
8 R . (R/2) (2R) 9 R ‘

2 +  R/2+2R
The voltage across the load will become

ua = v - i t 4 = 1 - ^

Thus, the voltage across the load will change by 
a factor of ft =  Ufilin'.

Ua
Un

3.30. In the former case, the condition 7X =  /8 
is fulfilled, where I 2 =  ajRj and 72 =  aan2. Con­
sequently, atni =  a8n8. In the latter case, I\R\ =  
I 2RX, where Rx is the resistance of the second 
resistor. Besides, J\ =  and I 2 =  a2n’t, and 
hence
.ffia irei =  Rxa2n2.
Finally, we obtain
Rini _Rxn2
«i n2

Therefore,
R î n't

3.31. The condition required for heating and melt­
ing the wire is that the amount of Joule heat 
liberated in the process must be larger than the 
amount of heat dissipated to the ambient:
I*R > k S  (T -  Tm ).
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By hypothesis, the current required for melting 
the first wire must exceed 10 A. Therefore,

(Tmtn -  Tam) =

where I is the length of the wires, rmeit is the pelt­
ing point of the wire material, and /x and R1 are 
the current and resistance of the first wire.

The resistance of the second wire is Ra — 
f?1/16. Therefore, the current 7a required for melting 
the second wire must satisfy the relation

/|f?2 >  k-id2l (Tmelt T am).
Finally, we obtain 
I a ^  SI| =  SO A.
3.32. Let the emf of the second source be £a.Then, 
by hypothesis,
, »I +  »2 «2
“ R + R x ~  R ’

where R is the resistance of the varying resistor 
for a constant current. Hence we obtain the answer:

3.33. The current through the circuit before the 
source of emf $a is short-circuited satisfies the 
condition
7 -
1 f f + ri-!"*a *

where and ra arc the internal resistances of the 
current sources. After the short-circuiting of the 
second source of emf $2> the current through the 
resistor of resistance R can be determined from the 
formula
• %x 

R +  rt
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Obviously, if
^ %8+S 1

^-hrX ^ + rl +  r2
he answer will be affirmative.

Thus, if the inequality (R +  rt +  r2) >  
(#i+ #2) (R +  rx) is satisfied, and hence
g jra >  £2 (/? +  rj), the current in the circuit 
increase?. If, on the contrary, 2 <  8a (ft +  r^, 
the short-circuiting of the current source leads to 
a decrease in the current in the circuit.
3.34*. Let us make use of the fact that any “black 
box” circuit consisting of resistors can be reduced

Fig. 217

to a form (Fig. 217), where the quantities Rlt 
R2, . ., ft5 are expressed in terms of the resist­
ances of the initial resistors of the “black box” 
circuit (this can be verified by using in the initial 
circuit the transformations of the star-delta type 
and reverse transformations). By hypothesis, 
equal currents pass each time through resistors 
of resistance fta and R4 and also through R3 and 
ft5 (or there is no current through them when the 
clamps are disconnected). Using this circumstance, 
we can simplify the circuit as shown in Fig. 218. 
Then, by hypothesis,

U* „  U2
N l=  R[ +  Ri ’ Nt== R l+R tR sK R t+R’*)

u% %r [J2
R'a+R± ’ ft j+  ft;ft;/(ft; +  ft;)
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It can easily be verified that 
NiNt**N,Na.
Consequently,
AT4 =  - ^ 2 .  =  40W.

3.35. At the first moment after the connection of 
the key Ky the capacitors are not charged, and

1o- d >
R'i

o3

2 o i
L

J—04 
J

Fig. 218

hence the voltage between points A and B is zero 
(see Fig. 93). The current in the circuit at this 
instant can be determined from the condition

Under steady-state conditions, the current be­
tween points A and B will pass through the re­
sistors Ri and i?3. Therefore, the current passing 
through these conductors after a long time is

~  * l +  *3 ’

3.36. Let us consider the steady-state conditions 
when the voltage across the capacitor practically 
does not change and is equal on the average to U$i>



270 Aptitude Test Problems in Physics

When the key is switched to position 1, the 
charge on the capacitor will change during a short 
time interval At by
A*flfi-crst)

Ri
When the key is switched to position 2, the charge 
will change by
A *(»»-ffat)

R2
During cycle, the total change in charge must be 
zero:

— — s r “=0-
Hence the voltage UB% and the capacitor charge qat 
in the steady state can be found from the formulas

[Uat = VtRi+ViRi
^1 +  ̂ 2 t

Qst — CU st — c  (»**!+#!*,)
* l+ R  2 #

3*37. A direct current cannot pass through the 
capacitors of capacitance Cx and C*. Therefore, 
in the steady state, the current through the current 
source is

%
+  R2

Since the capacitors are connected in series, their 
charges q will be equal, and

Consequently,

q~  (r +  R J ^ + C J  *
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The voltages {/, and Ua across the capacitors can 
be calculated from the formulas

respectively.
3.38*. We shall mentally connect in series two per­
fect (having zero internal resistance) current sources 
of emf’s equal to —U0 and U0 between points A 
and F. Obviously, this will not introduce any 
change in the circuit. The dependence of the current 
through the resistor of resistance R on the emf’s of 
the sources will have the form

where % is the cmf of the source contained in the 
circuit, and the coefficients a and p depend on the 
resistance of the circuit.

If we connect only one perfect source of emf 
equal to — U0 between A and F, the potential 
difference between A and B will become zero. 
Therefore, the first two terms in-the—equation 
for I  will be compensated: I  =  pt/0. The coefficient 
P is obviously equal to 1 /(R +  where R^t
is the resistance between A and B when the re­
sistor R is disconnected. This formula is also valid 
for the case R — 0, which corresponds to the con­
nection of the ammeter. In this case,

Consequently, the required current is

3.39. When the key K is closed, the voltage 
across the capacitor is maintained constant and 
equal to the emf % of the battery. Let the 
displacement of the plate B upon the attainment

T&RaCa
(r+Ra) (Ct+ C ^  ’

VRjCt
{r+RUCx+CJ

I =  <x% — pt/0 +  p U„ ,

RIo+Uo



272 Aptitude Test Problems in Physics

of the new equilibrium position be — xv In this 
case, the charge on the capacitor is qr — C^S =  
e0S&/(d — xj), where S is the area of the capac­
itor plates. The field strength in the capacitor is 
Ex =  %t(d — x,), but it is produced by two plates. 
Therefore, the field strength produced by one plate 
is Et/2, and for the force acting on the plate B 
wc can write
E i9i 

2
e0S%2 

2 (<*-*»)» telf (1)

where k is the rigidity of the spring.
Let us now consider the case when the key K 

is closed for a short time. The capacitor acquires 
a charge q2, =  e#S£/d (the plates have no time 
to shift), which remains unchanged. Let the dis­
placement of the plate B in the new equilibrium 
position be x2. Then the field strengthn the capa­
citor becomes Et — qJ[C2 (d — x2)J and C2 =  
e0S/(d — x2). In this case, the equilibrium con­
dition for the plate B can be written in the . form
E2q2 q\ _  e0W
2 _  2e0S 2d* 1 (2)

Dividing Eqs. (1) and (2) termwise, we obtain 
x2 =  x, [(d — Xii/dJ*. Considering that Xj =  O.ld 
by hypothesis, we get
x2=0.08d.
3.40. Let us represent the central junction of wires 
in the form of two junctions connected by the wire

Fig. 219

2
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5-6 as shown in Fig. 219. Then it follows from sym­
metry considerations that there is no current 
through this wire. Therefore, the central junction 
can be removed from the initial circuit, and we 
arrive at the circuit shown in Fig. 220. By hy­
pothesis,
R12 =  i?i3 =  R 3A =  i?24 =  r,
^15  =  ^25  =  ^36  —  ^46  =   7= ~

Y  2
Let U be the voltage between points 1 and 2. 

Then the amount of heat liberated in the conductor 
1-2 per unit time is

g[f From Ohm’s law, we obtain the current through

the conductor 3-4:

r(/2+3) •
The amount of heat liberated in the conductor 3-4 
per unit time is

Qsi =  I$tr

18-0771

r(/2+3)2.
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The voltage across each of the resistors Rx and 
7?2 can be determined from the formula
i] _<f j.__  URxRa
U R - e - l r -  r i? i+ / ?2 ( r+ i? i)

The power liberated in the resistor i?2 can be cal­
culated from the formula
AT _  U r * r  8 * 1 * 2  l 2  1  

if2 - I r R i+ R A R i +  r) J Ra
WR\

~  (r7?1)Vi?2+2ri?1(r+i?1)+(r+ i?1)a*a *
The maximum power will correspond to the mini­
mum value of tne denominator. Using the classical 
inequality a2 +  62 >  2ab, we find that for /?, =  
rRx/(r +  Rt) the denominator of the fraction nas 
the minimum value, and the power liberated in 
the resistor i?2 attains the maximum value. 
3.45. At the moment when the current through 
the resistor attains the value 70, the charge on the 
capacitor of capacitance Cx is
9i == CxI qR.
The energy stored in the capacitor by this moment is
Wx J L2 Ct

After disconnecting the key, at the end of re­
charging, the total charge on the capacitors is gv 
and the voltages across the plates of tne two capac­
itors are equal. Let us write these conditions in 
the form of the following two equations:

+  ?•=«!. - jr ga
Ci ’

where q\ and qa are the charges on the capacitors 
after recharging. This gives

= QiCicx+ct ’ 7l̂ -2
Cx+ C t
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The total energy of the system after recharging is

Wa q'i1 , q'* =z q\
2C± ‘ 2C2 2 (Cx+ C 2)

The amount of heat liberated in the resistor during 
this time is
q =  W1-W 2 ( W g f

2 (Cx +  C2)
3.46. Before switching the key Ky no current flows 
through the resistor of resistance R, and the charge 
on the capacitor of capacitance C2 can be deter­
mined from the formula
<7 — %C2,
The energy stored in this capacitor is found from 
the formula
W, %*C2

2
After switching the key K, the charge q is re­

distributed between two capacitors so that the 
charge qx on the capacitor of capacitance Cx and 
the charge q2 on the capacitor of capacitance C2 
can be calculated from the formulas
n I n _ n _  ?2^1T?2 ?» Q Q •
The total energy of the two capacitors will be

Wn = %*Cl
C‘+C‘ 2(C!+C2) ~2 (C1+C,)

Therefore, the amount of heat Q liberated in the 
resistor can be obtained from the relation
_ 82Ca %*Ca C2 %KxCa
V 2 2 C!+Ca 2 ( C i+ Q  ‘
3.47. By the moment when the voltage across the 
capacitor has become U, the charge q has passed
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•hmwgu '*»Erenk.aGMif0~. Ohyi owsiy, ,^ fL=  C. 
From the energy conservation law, we obtain

%q g+g»
2 C ’

where Q is the amount of heat liberated in both 
resistors. Since they are connected in parallel, 
Q jQt — R jR i, whence

Q ^ C ^ U -  —  
CURi

\ - * k  
) R i +

2{Ri+Rt) (2«-

+ R 2 
U).

3.48. During the motion of the jumper, the mag­
netic flux through the circuit formed by the jump­
er, rails, and the resistor changes. An emf is 
induced in the circuit, and a current is generated. 
As a result of the action of the magnetic field on 
the current in the jumper, the latter will be de­
celerated.

Let us -determine the decelerating force F. 
Let the velocity of the jumper at a certain instant 
be v. During a short time interval At, the jumper 
is shifted along the rails by a small distance Ax =  
v At. The change in the area embraced by the 
circuit is vd At, and the magnetic flux varies by 
A<I> =  Bvd At during this time. The emf induced 
in the circuit is

AO
At —Bvd.

According to Ohm's law, the current through the 
jumper is / =  %/R. The force exerted by the mag­
netic field on the jumper is
F= /B d= B*d*v 

R *
According to Lenz's law, the force F is directed 
against the velocity v of the jumper.
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Let us now write the equation of motion for 
the jumper (over a small distance Ax):

ma — F= B*d*v 
R '

Considering that a =  At;/At and v — Ax/At, we 
obtain
m Av— BH* Ax 

R
It can be seen that the change in the velocity of 
the jumper is proportional to the change in its 
x-coordinate (at the initial instant, x0 =  0). There­
fore, the total change in velocity Vf =  v0 =  0 — 
v0 =  —v0 is connected with the change in the 
coordinate (with the total displacement s) through 
the relation

™ ( — »<>)= — BW s
R

Hence we can determine the length of the path 
covered by the jumper before it comes to rest:

mRv„
S~~WdT

When the direction of the magnetic induction 
B forms an angle a  with the normal to the plane 
of the rails, we obtain

mRv0 
B*d* cos* a  *

Indeed, the induced emf, and hence the current 
through the jumper, is determined by the magnetic 
flux through the circuit, and in this case, the flux 
is determined by the projection of the magnetic 
induction B on the normal to the plane of the 
circuit.
3.49. The lines of the magnetic flux produced by 
the falling charged ball lie in the horizontal plane. 
Therefore, the magnetic flux <I>B through the sur-
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face area bounded by the loop is zero at any instant 
of time. Therefore, the galvanometer will indicate 
zero.
3.50. Let us choose the coordinate system xOy 
with the origin coinciding with the instantaneous

♦ '"S |

Fig. 222
(»

position of the ball (Fig. 222). The x-afcis is “cen­
tripetal”, while the y-axis is vertical just as the 
magnetic induction B.

The System of equations describing the motion 
of the ball (we assume that the ball moves in a 
circle counterclockwise) will be written in the 
form

N cos a =  mg.
Besides,
2nr---- =  T, r— I sin a.v

Solving this system of equations, we obtain
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The plus sign corresponds to the counterclockwise 
rotation of the ball, and the minus sign to the 
clockwise rotation (if we view from the top).
3.51. When the metal ball moves in the magnetic 
field, the free electrons are distributed over the 
surface of the ball due to the action of the Lorentz 
force so that the resultant electric field in the bulk 
of the ball is uniform and compensates the action 
of the magnetic field. After the equilibrium has 
been attained, the motion of electrons in the bulk 
of the metal ceases. Therefore, the electric field 
strength is
EresQ +  q lv X B] =  0, 
whence
^res =  I®  ^  vl*
We arrive at the conclusion that the uniform elec­
tric field emerging in the bulk of the ball has the 
magnitude
I ^res I =  I B | | v | sin a.

The maximum potential difference A<pmax 
emerging between the points on the ball diameter 
parallel to the vector Eres is
A<Pmax =  I Eves I • 2r =  | B | | v | sin a-2r.

3.52. The magnetic induction of the solenoid is 
directed along its axis. Therefore, the Lorentz 
force acting on the electron at any instant of time 
will lie in the plane perpendicular to the solenoid 
axis. Since the electron velocity at the initial 
moment is directed at right angles to the solenoid 
axis, the electron trajectory will lie in the plane 
perpendicular to the solenoid axis. The Lorentz 
force can be found from the formula F =  evB.

The trajectory of the electron in the solenoid 
is an arc of the circle whose radius can be deter­
mined from the relation evB =  mv2/r, whence

mv 
r~ lB ~  •
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The trajectory of the electron is shown in Fig. 223 
(top view), where 0, is the centre of the arc AC 
described by the electron, v' is the velocity at 
which the electron leaves the solenoid. The seg­
ments OA and OC are tangents to the electron

Fig. 223

trajectory at points A and C. The angle between 
v and wf is obviously <p =  L-AOxC since Z.OdO,= 
/LOCOx.

In order to find <p, let us consider the right 
triangle Odd,: side OA — R and side dO, =  r. 
Therefore, tan (<p/2) =  R/r =  eBRl(mv). There­
fore,

Obviously, the magnitude of the velocity re­
mains unchanged over the entire trajectory since 
the Lorentz force is perpendicular to the velocity 
at any instant. Therefore, the transit time of elec­
tron in the solenoid can be determined from the 
relation

<p=2arctan )•
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3.53. During the motion of the jumper, the mag­
netic flux across the contour “closed” by the jumper 
varies. As a result, an emf is induced in the con­
tour.

During a short time interval over which the 
velocity v of the jumper can be treated as constant, 
the instantaneous value of the induced emf is

AO
At — vbB cos a.

The current through the jumper at this instant is

where Aq is the charge stored in the capacitor during 
the time At, i.e.
Aq =  C A# =  CbB Aw cos a
(since the resistance of the guides and the jumper 
is zero, the instantaneous value of the voltage 
across the capacitor is %). Therefore,
/ =  CbB  ̂ j cos a =  CbBa cos a,

where a is the acceleration of the jumper.
The jumper is acted upon by the force of gravity 

and Ampere’s force. Let us write the equation of 
motion for the jumper:
ma =  mg sin a — IbB cos a — mg sin a 

—Cb2B2a cos2 a.
Hence we obtain

— s*n a a ~~ m-f- Cb2B2 cos2 a *
The time during which the jumper reaches the 

foot of the “hump” can be determined from the con­
dition I =  at2/2:

t =  l/ "  ’X f---^ ---- (m-{~Cb2B* cos2 a).r a  V mg sin a
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The velocity of the jumper at the foot will be
Uf =  at 1/ 2ling sin g

V m Cb2B% cos2 a *
^ ; * The ma?ne,tic flux across the surface bounded 
Arfi/A# ^P ^^du ct in g  loop is constant. Indeed,
» “ 0 (since R =  0)' 
i I?16 magnetic flux through the surface bounded 
fluTflndthP flS thr s,um of the external magnetic 
thp r8|!ir<»!Jterflux °f the magnetic field produced by 
th! Passing through'the loop. Therefore,the magnetic flux across the loop'at any instant is
<D ■= a?B0 -f a2az _|_ LI

Since C> — B0a2 at the initial moment (z =  0 and
riotai-mJr, a Parent I  at any other instant will be determined by the relation
L I — —a z a I ~  .

J  ^sultant force exerted by the magnetic
artino^m ti.current loop is the sum of the forces
tntifL °n Sldes of the loop which are parallel to the y-axis, i.e. F
F =  2a | ax \ I  =  aza j

andT w i f ectedualon« the z-axis.
has the form 6 equation of motion for the loop

• •
m z =  — mg-f-a2a/ == _  mg—c««2z

L
f? uatl°n is similar to the equation of vibra-

it r i g f d U y ^  ;& $“• ™ =“»P“d''1 “ » SPri"8 
■ •

mz =  m g  —  kz.

™ 8.“‘lt!|y fhows that the loop will perform har­
monic oscillations along the *-axis near the equi-
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librium position determined by the condition 
a4a2 mgL

- Z - * o = - ” v ,  zo = - ^ r .

The frequency of these oscillations will be
a 2a

The coordinate of the loop in a certain time t 
after the beginning of motion will be

■-3S-[-*+«■(-Se t ')]•
3,55. The cross-sectional areas of the coils are 
Sx =  nD\/i and S2 =  We shall use the
well-known formula for the magnetic flux O =  
LI =  BSN, which gives B =  LI/(SN). Therefore,
B% _ L2 12

^b T~‘TT~ s ^ u  7 T ‘
But I x =  12 since the wire and^the current source 
remain unchanged. The ratio of the numbers of 
turns can be found from the formula N jN 2 =  
D2/Dx. This gives
B2 _ L2SxD2 __ L2Dx
Bx LxS2Dx LxD2

Therefore, the magnetic induction in the new coil is
BxL2D
LXD

3.56*. Let Nx be the number of turns of the coil of 
inductance Llt and N2 be the number of turns of 
the coil of inductance L2. It should be noted that 
the required composite coil of inductance L can be 
treated as a coil with N =  Nx +  N2 turns. If the 
relation between the inductance and the number of 
turns is known, L can be expressed in terms of Lx 
and L2. For a given geometrical configuration of 
the coil, such a relation must actually exist because
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inductance is determined only by geometrical con­
figuration and the number of turns of the coil (we 
speak of long cylindrical coils with uniform wind­
ing). Let us derive this relation.

From the superposition principle for a magnetic 
field, it follows that the magnetic field produced 
by a current / in a coil of a given size is proportional 
to the number of turns in it. Indeed, the doubling 
of the number of turns in the coil can be treated as 
a replacement of each turn by two new closely 
located turns. These two turns will produce twice 
as strong a field as that produced by a single turn 
since the fields produced by two turns are added. 
Therefore, the field in a coil with twice as many 
turns is twice as strong. Thus, B  &■ N  (B is the 
magnetic induction, and the current is fixed). 
It should be noted that the magnetic flux embraced 
by the turns of the coil is
O =  B N S  oc B N  cc N \

It remains for us to consider that

L=-j-cc A’2.

Thus, we obtain L  =  k N 2 for a given geometry. 
Further, we take into account that N x =  Y  L J k ,  

=  Y L J k ,  and hence L  =  k ( N x +  N t )2. Con­
sequently,

£ =  £1 -)- £] -(- 2 Y LiL2-

3.57. For a motor with a separate excitation, we 
obtain the circuit shown in Fig. 224. In the first 
case, i.e. when the winch is not loaded, 0 =  I x =  
(S — $j)/r, where r is the internal resistance of 
the motor, and is the induced emf, %x =  a v x. 
Thus, —  %, whence a =  % lvx. In the second 
case, the power consumed by the motor is

% r (8-»a)5£9 _2 I i --------------- mgvr
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The induced emf is now $2 =  «t>2- Thus, for the 
internal resistance of the motor, we obtain

(%—avda 
r ~  mg
For the maximum liberated power, we can write

^max r m'gv'.

where it can easily be shown that the maximum 
power %' — at/ is’ liberated under the condition

Fig. 224

=  fc/2 (the maximum value of the denomi- 
nator). Hence

” - T ( ^ - ,0T - 6-7k*-

3.58. Let us plot the time dependences U ex (t)  
of the external voltage, 7C (t) of the current in the 
circuit (which passes only in one direction when 
the diode is open), the voltage across the capacitor 
U c {t), and the voltage across the diode U a (t ) 
(Fig. 225).

Therefore, the voltage between the anode and 
the cathode varies between 0 and —2U 0.
3.59. Since the current and the voltage vary in 
phase, and the amplitude of current is / =
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' S j R  (i.e. the contributions from C and L  are 
compensated), we have

From the relations U c =  q /C and dg/df =  /, we 
obtain

sin ci t
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Therefore, the amplitude of the voltage across the 
capacitor plates is

3.60. During steady-state oscillations, the work 
done by the external source of current must be 
equal to the amount of^heat liberated in the re­
sistor. For this the amplitudes of the external 
voltage and the voltage across the resistor must be 
equal: R T0 =  U 0. Since the current in the circuit 
and the charge on the capacitor are connected 
through the equation / =  Aq!Aty the amplitudes 
/0 and qQ of current and charge can be obtained 
from the formula
/o = ca0g0i
where the resonance frequency is (o0 =  1/ Y  LC. 

By hypothesis,

3.61. For 0 <  t <  t, charge oscillations will 
occur in the circuit, and

At the instant t, the charge on the capacitor at its 
breakdown is (C U l2) cos o)0t, and the energy of 
the capacitor is (C  U2/S) cos2 <o0t. After the break­
down, this energy is converted into heat and lost 
by the system. The remaining energy is

whence

9 - 0 7 7 1 0 5
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The amplitude of charge oscillations after the 
breakdown can be determined from the condition 
W  =  q$/{2C), whence

QJJ __________
q0 =  - j — Y 2—cos2 <D0T.

3,62. It is sufficient to shunt the superconducting 
coil through a resistor with a low resistance which 
can withstand a high temperature. Then the current 
in the working state will pass through the coil 
irrespective of the small value of the resistance 
of the resistor. If, however, a part of the winding 
loses its superconducting properties, i.e. if it has 
a high resistance, the current will pass through 
the shunt resistance. In this case, heat will be 
liberated in the resistor.



4. Optics

4.1. Rays which are singly reflected from the 
mirror surface of the cone propagate as if they were 
emitted by an aggregate of virtual point sources 
arranged on a circle. Each such source is sym­
metrical to the source S  about the corresponding 
generator of the cone. The image of these sources 
on a screen is a ring. It is essential that the beam 
of rays incident on the lens from a virtual source 
is plane: it does not pass through the entire surface 
of the lens but intersects it along its diameter. 
Therefore, the extent to which such a beam is ab­
sorbed by a diaphragm depends on the shape and 
orientation of the latter.

A symmetrical annular diaphragm (see Fig. 116) 
absorbs the beams from all virtual sources to the 
same extent. In this case, the illuminance of the 
ring on the screen will decrease uniformly. 
The diaphragm shown in Fig. 117 will completely 
transmit the beams whose planes form angles 
a <  a0 with the vertical. Consequently, the illu­
minance of the upper and lower parts of the ring 
on the screen will remain unchanged. Other beams 
will be cut by the diaphragm the more, the closer 
the plane of a beam to the horizontal plane. For 
this reason, the illuminance of the lateral regions 
of the ring will decrease as the angle a  varies be­
tween a0 and jx/2.

j'a/'iis t assum­
ing that it is point-like. Obviously, only those of 
the beams passing through the lens will get into 
the eye which have passed through point B  before 
they fall on the lens (Fig. 226). This point is con­
jugate to the point at which the pupil is located.
19*
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to the geometrical path difference 6 due to the 
deflection of the rays from the initial direction of 
propagation. In this case, the interference of the

rays will result in their augmentation (Huygens’ 
principle). It follows from Fig. 228 that

fi0pr =  [rc (r +  Ar) — n (r)] I, 8 =  Ar sin cp. 

Hence
6 [n (r-j-Ar) — n (r)Jsm <P~ -7— =■= ——-—1—r1----I™ 2klr,A r Ar

This leads to the following conclusion. If we con­
sider a narrow beam of light such that the deflection 
angle cp is small, then <p oc r, i.e. the rotating vessel 
will act as a diverging lens with a focal length 
F  =  (2M)-1.

Therefore, for the maximum deflection angle, 
we obtain
sin cpmax — 2A:Zrj)fam.
Consequently, the required radius of the spot on 
the screen is
R =  ^beam “f" ^  tan  Tmax*
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In the diverging lens approximation, we obtain 
^  ^  rbeam ^Vmax & rbeam^2Wri)earnZ/

=  n>eara [ l + a p 0iL (-§ J-)2] .

4.4. The telescope considered in the problem is of 
the Kepler type. The angular magnification k =  
F / f, and hence the focal length of the eyepiece is 
/ =  F/k — 2.5 cm. As the object being observed 
approaches the observer from infinity to the small­
est possible distance a, the image of the object 
formed by the objective will be displaced from 
the focal plane towards the eyepiece by a distance x 
which can be determined from the formula for a 
thin lens:
1 . 1  1 1 a — F
a +  F  +  x  ~  F  ’ F + x  ^  aF  ’

aF  v F*x = ----   — F & --
a — b a

since a >  b\ Thus, we must find x . The eyepiece of 
the telescope is a magnifying glass. When an object

Fig. 229
is viewed through a magnifier by the unstrained 
eye (accommodated to infinity), the object must 
be placed in the focal piano of the magnifier. The 
required distance x is equal to the displacement of 
the focal plane of the eyepiece during its adjust­
ment. In this case, the eyepiece must obviously be 
moved away from the objective.

Figure 229 shows that when an infinitely remote 
object is viewed from the shifted eyepiece, the
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Fig. 233

cylinder is n/2, after refraction will form an angle 
a  with the cylinder axis such that sin a =  i In 
(according to Snell’s law). The angle of incidence 9  
of such a ray on the lateral surface of the cylinder

Screen

satisfies the condition a  -f- <p — n/2 (Fig. 234). 
Since

nsin a =  —  =  —— <rL1.5
V  2

a <  n/4 and 9  >  n/4, i.e. the angle of incidence 
on the lateral surface of the cylinder will be larger 
than the critical angle of total internal reflection.



Therefore, this ray cannot emerge from the cylinder 
at any point other than that lying on the right 
base. Any other ray emerging from the source 
towards the screen with a hole and undergoing re­
fraction at the left base of the cylinder will prop­
agate at a smaller angle to the axis, and hence 
will be incident on the lateral surface at an angle 
exceeding the critical angle. Thus, the transparent 
cylinder will “converge” to the hole the rays within 
a solid angle of 2n sr.

In the absence of the cylinder, the luminous 
flux confined in a solid angle of nd*/(4l)* gets into 
the hole in the screen. Therefore, in the presence 
of the transparent cylinder, the luminous flux 
through the hole will increase by a factor of

4.9. The thickness of the objective lens can be found 
from geometrical considerations (Pig. 235). Indeed,

where Rx is the radius of curvature of the objective.

Fig. 235
Let us write the condition of equality of optical 

paths ABF and CDF for the case when the telescope

r? =  (2fl1-A)fc« 2fl1h, h =  - 4

9ft*
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is filled with water:
(/i — h) nw +  2hng\ =  -f- h.
Here /x is the local length of the objective lens in 
the presence of water. Substituting the values of h
and =  //? +  r? « /i +  r\/(2/x), we obtain 
r2 r2
2^  " w =  2^  f(ng l— l) +  (ngl — »w)].

When the telescope does not contain water, the 
focal length of the objective lens is

Therefore,
/, =  m  2 (”g l ~  *) nw

1 (ng l — f) +  (reg l — nw)
A similar calculation for the focal lengths /2 

(with water) and /(2#) (without water) of tne eye­
piece lens gives the following result:

11 (»gl— l) +  (»gl— »w)

f  — /<o> *v'*gi—~*;ww
8 8 (ng l— f) +  (ng l— nw)

2 (reg l— 1) ”w

Therefore,

£ = /i+/a=(/r + A°0-r-̂2 ( n g i~ l) n w
(«gl — f) +  (ng i— nw)

Since /($  -f f$  — L0, the required distance be­
tween the objective and the eyepiece is
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4.10. Let the spider be at poii^t A (Fig, 236) 
located above the upper point D of the sphere. 
The spherical surface corresponding to the arc BDB' 
of the circle is visible to the sp\der. Points B

Fig. 236
and Bf are the points of intersection of tangents 
drawn from point A to the surface of the sphere. 
The ray AB propagates within the sphere along BC. 
The angle a can be found from the condition

1sin a = ----,
*gl

where ng\ is the refractive index of glass. This ray 
will emerge from the sphere along CA' Therefore, 
the fraction of the spherical surface corresponding 
to the arc CD'C* will also be visible (by way of
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an example, the optical path of the ray AKLM 
is shown).

The surface of the spherical zone corresponding 
to the arcs BC and B'C‘ will be invisible to the 
spider.

The angle y is determined from the condition

where B is the radius of the sphere, and h is the 
altitude of the spider above the spherical surface. 
Since R h by hypothesis, y ~  0. We note now 
that {$ =  ji — 2a and sin a =  1/ngj. Therefore,

Thus, the opposite half of the spherical surface is 
visible to the spider, and the fly must be there.
4.11. None of the rays will emerge from the lateral 
surface of the,.cylinder if for a ray with an angle of

Fig. 237

incidence y « n/2 (Fig. 237), the angle of incidence 
a on the inner surface will satisfy the relation 
sin a >  1 In. In this case, the ray will undergo 
total internal reflection on the lateral surface.

It follows from geometrical considerations that
________ 1

s in a=  Y 1~ sin*P, sin p =  — .
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Thus,

4.12. By hypothesis, the foci of the two lenses are 
made to coincide, i.e. the separation between the 
lenses is 3/, where / is the focal length of a lens with 
a lower focal power.

In the former case, all the rays entering the tube 
will emerge from it and form a circular spot of 
radius r/2, where r is the radius of the tube 
(Fig. 238). In^the latter case, only the rays which

Fig. 238

enter the tube at a distance smaller than r/2 from 
the tube axis will emerge from the tube. Such 
rays will form a circular spot of radius r on the 
screen (Fig. 239). Thus, if / is the luminous in-

Fig. 239

tensity of the light entering the tube, the ratio 
of the illuminances of the spots before and after

/
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Therefore, if 
required time is

2 h / 1

r \  ^.n2 (a/2)

n Y I2—h2 sin («/2) n2 sin2 (a/2)
h Y 1 — n% sin2 (a/2)— n2 sin2 (a/2)

I2 — h.2 ^  n2 sin2 (a/2) 
1 >  ^  1 — n2 sin2 (a/2)

.1 , 2/, then t ——v
4.15. It follows from symmetry considerations 
that the image of the point source S will also be

Fig. 241

at a distance b from the sphere, but on the opposite 
side (Fig. 241).
4.16. An observer on the ship can see only the rays 
for which sin a <  l/n«\ (if sin a >  l/n»], such 
a ray undergoes total internal reflection bna cannot 
be seen by the observer, Fig. 242). For the angle p, 
we have the relation
nw sin P =  ng]sina, sin p =-^SL sin a,nw
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where ngj is the refractive index of glass. Since 
| sin a | <  1/ngi, | sin p | <  l/nw. Therefore, the 
observer can see only the objects emitting light

to the porthole at an angle of incidence p <  
a resin (l/nw). Figure 242 shows that the radius 
of a circle at the sea bottom which is accessible to 
observation is R « h tan p, and the sought area 
(h tan P » D/2) is

j i /,3S =  nR* « , ■ -7- ~  82 m2.
nw 1

4.17*, Short-sighted persons use concave (diverg­
ing) glasses which reduce the local power of their 
eyes, while long-sighted persons use convex (con­
verging) glasses. It is clear that behind a diverging 
lens, the eye will look smaller, and behind a con­
verging lens larger. If, however, you have never 
seen your companion without glasses, it is very 
difficult to say whether his eyes are magnified or 
reduced, especially if the glasses are not very strong. 
The easiest way is to determine the displacement 
o l’ine ViSibie cohiour pot'ine iace nVnmcfine 'glasses 
relative to other parts of the face: if it is displaced 
inwards, the lenses are diverging, and your com­
panion is short-sighted, if it is displaced outwards, 
the lenses are converging, and the person is long­
sighted.
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the reversal of the tube is
E J E==H i

n (r/2)2 ’ 2 Jir2 ’
£2 _ 1 

16
4.13. The light entering the camera is reflected 
from the surface of the facade. It can be assumed 
that the reflection of light from the plaster is 
practically independent of the angle of reflection. 
In this case, the luminous energy incident on the 
objective of the camera is proportional to the solid 
angle at which the facade is seen from the objective. 
As the distance from the object is reduced by half, 
the solid angle increases by a factor of four, and 
a luminous energy four times stronger than in the 
former case is incident on the objective of the same 
area.

For such large distances from the object, the 
distance between the objective and the film in the 
camera does not practically change during the 
focussing of the object and is equal to the focal 
length of the objective. The solid angle within 
which the energy from the objective is incident 
on the surface of the image depends linearly on 
the solid angle at which tne facade is seen, i.e. 
on the distance from the object. In this case, the 
illuminance of the surface of the image (which, 
by hypothesis, is uniformly distributed over the 
area of this surface), which determines the ex­
posure, is directly proportional to the correspond­
ing energy incident on the objective from the facade 
and inversely proportional to the area of the image. 
Since this ratio is practically independent of the 
distance from the object under given conditions 
there is no need to change the exposure.
4.14*. The problem is analogous to the optical 
problem in which the refraction of a plane wave 
in a prism is analyzed. According to the laws of 
geometrical optics, the light ray propagating from 
point A to point B (Fig. 240) takes the shortest 
time in comparison with all other paths.

The fisherman must move along the path of a 
“light ray”, i.e. must approach point E of the bay 
at an angle yf cross the bay in a boat at right angles
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to the bisector of the angle a, and then move along 
the shore in the direction of point B.

The angle y can be determined from Snell’s law
(n =  2):

asin y =  nsin
The distance a is

n sin (a/2)a =  h tan y~h- . .
Y i — n2 sin2 (a/2)

The distance b can be determined from the equa­
tion a +  b =  Y  I2
6 =  Y  l2 -h2 — h

h2. Hence 
n sin (a/2)

n2 sin2 (a/2)
2 sin2 (a/2)

If 6 > 0 ,  i.e. I2 h ?>h *  sina (a/2) ’
the fisherman must use the boat. Separate segments 
in this case will be
EK= p ■= b sin

=  ( Y li ~h*—h n sin («/2)
y 1 — na sin2 (a/2) 

h

\ • a 
) sm *2" ’

c o s v / y  1 — n» sin* (a/2)
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4.18. We decompose the velocity vector v of the 
person into two components, one parallel to the 
mirror, v„ ,*and the other perpendicular to the

Fig. 243

mirror, v±, i.e. v =  v^ +  v± (Fig. 243). The 
velocity of the image will obviously be v' =  
v|| — v±. Therefore, the velocity at which the 
person approaches his irfiage is defined as his 
velocity relative to the image from the formula
i7rei =  2v± =  2v sin a.
4,19. Let O be the centre of the spherical surface 
of the mirror, A B C  the ray incident at a distance 
B E  from the mirror axis, and OB  =  R  (Fig. 244). 
From the right triangle O B E y we find that sin a  — 
h /R . The triangle O B C  is isosceles since Z .A B O  =  
Z -O B C  according to the law of reflection, and 
Z B O C  =  Z .A B O  as alternate-interior angles. 
Hence OD  =  D B  =  R /2. From the triangle O D C , 
we obtain

R  /?2— i-1 j  ----  — — * * ~ - - - . —
2 cos a 2 Y R 2—hs

(C is the point of intersection of the ray reflected 
by the mirror and the optical axis).

For a ray propagating at a distance hx, the dis­
tance xx « R/2, with an error of about 0.5% since
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i?2. For a ray propagating at a distance ht, 
the distance x2 =  3.125 cm. Finally, we obtain
Ax =  x2 — Xi ~  0.6 cm 0 (!)

Fig. 244
4.20. Let us consider a certain luminous point A 
of the filament and an arbitrary ray AB emerging

from it. We draw a plane through the ray and the 
filament. It follows from geometrical considerations



310 Aptitude Test Problems in Physics

that with all possible reflections, the given ray 
will remain in the constructed plane (Fig. 245). 
After the first reflection at the conical surface, 
the ray A B will propagate as if it emerged from 
point A', viz. the virtual image of point A. The 
necessary condition so that none of the rays emerg­
ing from A ever gets on the mirror is that point A' 
must not be higher than the straight line OC, viz. 
the second generator of the cone, lying in the plane 
of the ray (point O is the vertex of the conical sur­
face). This will be observed if
Z-A’OD -j- Z.AOD -f- Z-AOC =  3 - y  >  180°.

Consequently, 
amln 120°.
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