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Preface

This book contains 340 problems in solid geo­
metry and is a natural continuation of Problems 
in Plane Geometry, Nauka, Moscow, 1982. It is 
therefore possible to confine myself here to those 
points where this book differs from the first.

The problems in this collection are grouped 
into (1) computational problems and (2) prob­
lems on proof.

The simplest problems in Section 1 only have 
answers, others, have brief hints, and the most 
difficult, have detailed hints and worked solu­
tions. There are two reservations. Firstly, in 
most cases only the general outline of the solution 
is given, a number of details being suggested for 
the reader to consider. Secondly, although the 
suggested solutions are valid, they are not pat­
terns (models) to be used in examinations.

Sections 2-4 contain various geometric facts 
and theorems, problems on maximum and min­
imum (some of the problems in this part could 
have been put in Section 1), and problems on 
loci. Some questions pertaining to the geometry 
of tetrahedron, spherical geometry, and so forth 
are also considered here.

As to the techniques for solving all these prob­
lems, I have to state that I prefer analytical com­
putational methods to those associated with 
plane geometry. Some of the difficult problems 
in solid geometry will require a high level of 
concentration from the reader, and an ability 
to carry out some rather complicated work.

The Author



Section 1

Computational Problems

1. Given a cube with edge a. Two vertices of 
a regular tetrahedron lie on its diagonal and the 
two remaining vertices on the diagonal of its 
face. Find the volume of the tetrahedron.

2. The base of a quadrangular pyramid is a 
rectangle, the altitude of the pyramid is h. Find 
the volume of the pyramid if it is known that 
all five of its faces are equivalent.

3. Among pyramids having all equal edges 
(each of length a), find the volume of the one 
which has the greatest number of edges.

4. Circumscribed about a ball is a frustum of 
a regular quadrangular pyramid whose slant 
height is equal to a. Find its lateral surface area.

5. Determine the vertex angle of an axial sec­
tion of a cone if its volume is three times the 
volume of the ball inscribed in it.

6. Three balls touch the plane of a given tri­
angle at the vertices of the triangle and one an­
other. Find the radii of these balls if the sides of 
the triangle are equal to a, h, and c.

7. Find the distance between the skew dia­
gonals of two neighbouring faces of a cube with 
edge a. In what ratio is each of these diagonals 
divided by their common perpendicular?

8. Prove that the area of the projection of a 
polygon situated in the plane a on the plane |3
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is equal to S cos <p, where S denotes the plane 
of the polygon and <p the angle betweenj the 
planes a and |3.

9. Given three straight lines passing through 
one point A. Let 5 X and B2 be two points on 
one line, Cx and C2 two points on the other, and 
Dx and D 2 two points on the third line. Prove 
that
V A B ,C ,D l   I AB-y | • I AC-! I • | APi I
V A B tCt Dt I A B 2 I' I A C i  I - I A D i  I -

10. Let a, P, and y denote the angles formed 
by an arbitrary straight line with three pairwise 
perpendicular lines. Prove that cos2 a +  cos213 +  
cos2 y =  1.

11. Let S and P denote the areas of two faces 
of a tetrahedron, a the length of their common edge, 
and a the dihedral angle between them. Prove 
that the volume V of the tetrahedron can be found 
by the formula
T7  2SP  sin a

,3a *
12. Prove that for the volume V of an arbi­

trary tetrahedron the following formula is valid:
V =~^abd sin <p, where a and b are two opposite
edges of the tetrahedron, d  the distance between 
them, and <p the angle between them.

13. Prove that the plane bisecting the dihedral 
angle at a certain edge of a tetrahedron divides 
the opposite edge into parts proportional to the 
areas of the faces enclosing this angle.

14. Prove that for the volume V of the poly­
hedron circumscribed about a sphere of radius R
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4
the following equality holds: V =  SnR , where
Sn is the total surface area of the polyhedron.

15. Given a convex polyhedron all of whose 
vertices lie in two parallel planes. Prove that 
its volume can be computed by the formula

F =  A (lS1 +  ,S2 +  4 S),

where St is the area of the face situated in one 
plane. S 2 the area of the face situated in the 
other plane, S the area of the section of the poly­
hedron by the plane equidistant from the two 
given planes, and h is the distance between the 
given planes.

16. Prove that the ratio of the volumes of a 
sphere and a frustum of a cone circumscribed 
about it is equal to the ratio of their total sur­
face areas.

17. Prove that the area of the portion of the 
surface of a sphere enclosed between two par­
allel planes cutting the sphere can be found by 
the formula

S =  2 nRh,

where R is the radius of the sphere and h the dis­
tance between the planes.

18. Prove that the volume of the solid generated 
by revolving a circular segment about a nonin­
tersecting diameter can be computed by the for­
mula

F — i j ia?h,
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where a is the length of the chord of this segment 
and h the projection of this chord on the dia­
meter.

19. Prove that the line segments connecting 
the vertices of a tetrahedron with the median points 
of opposite faces intersect at one point (called 
the centre of gravity of the tetrahedron) and are 
divided by this point in the ratio 3 : 1 (reckon­
ing from the vertices).

Prove also that the line segments joining the 
midpoints of opposite edges intersect at the same 
point and are bisected by this point.

20. Prove that the straight lines joining the 
midpoint of the altitude of a regular tetrahedron 
to the vertices of the face onto which this alti­
tude is dropped are pairwise perpendicular.

21. Prove that the sum of the squared lengths 
of the edges of a tetrahedron is four times the sum 
of the squared distances between the midpoints 
of its skew edges.

22. Given a cube ABCDAxBxCxDf with an 
edge a, in which K  is the midpoint of the edge 
DDx. Find the angle and the distance between 
the straight lines CK and AJ).

23. Find the angle and the distance between 
two skew medians of two lateral faces of a regu­
lar tetrahedron with edge a .

24. The base of the pyramid SABCD is a quad­
rilateral ABCD . The edge SD is the altitude of 
the pyramid. Find the volume of the pyramid
if it is known that | AB  | =  | BC | =  Y  5, i AD | =

* ABCD and A 1B1ClD1 are two faces of the cube, 
A A t , BBlt CCh DDx are its edges.
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| DC | =  V  2, \AC  | = 2 ,  | 5 4  | +  | SB \ =
2 +  V  5-

25. The base of a pyramid is a regular tri­
angle with side a, the lateral edges are of length b. 
Find the radius of the ball which touches all 
the edges of the pyramid or their extensions.

26. A sphere passes through the vertices of 
one of the faces of a cube and touches the sides 
of the opposite faces of the cube. Find the ratio 
of the volumes of the ball and the cube.

27. The edge of the cube ABCDA1B1C1D1 is 
equal to a. Find the radius of the sphere passing 
through the midpoints of the edges AA1, BBlf 
and through the vertices A and Cx.

28. The base of a rectangular parallelepiped is 
a square with side a, the altitude of the parallel­
epiped is equal to b. Find the radius of the sphere 
passing through the end points of the side AB  
of the base and touching the faces of the parallel­
epiped parallel to AB .

29. A regular triangular prism with a side of 
the base a is inscribed in a sphere of radius R . 
Find the area of the section of the prism by the 
plane passing through the centre of the sphere 
and the side of the base of the prism.

30. Two balls of one radius and two balls of 
another radius are arranged so that each ball 
touches three other balls and a given plane. Find 
the ratio of the radii of the greater and smaller 
balls.

31. Given a regular tetrahedron ABCD with 
edge a. Find the radius of the sphere passing 
through the vertices C and D and the midpoints 
of the edges AB and AC.
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32. One face of a cube lies in the plane of the 
base of a regular triangular pyramid. Two vertices 
of the cube lie on one of the lateral faces of the 
pyramid and another two on the other two faces 
(one vertex per face). Find the edge of the cube 
if the side of the base of the pyramid is equal to a 
and the altitude of the pyramid is h.

33. The dihedral angle at the base of a regular 
ra-gonal pyramid is equal to a. Find the dihedral 
angle between two neighbouring lateral faces.

34. Two planes are passed in a triangular prism 
ABC A 15 1C,1*: one passes through the vertices A , 
5 , and Cx, the other through the vertices Al9 
5 X, and C. These planes separate the prism into 
four parts. The volume of the smallest part is 
equal to V. Find the volume of the prism.

35. Through the point situated at a distance a 
from the centre of a ball of radius R (R >  a), 
three pairwise perpendicular chords are drawn. 
Find the sum of the squared lengths of the seg­
ments of the chords into which they are divided 
by the given point.

36. The base of a regular triangular prism is a 
triangle ABC with side a. Taken on the lateral 
edges are points Alf Bx, and Cx situated at dis­
tances a! 2, a, and 3a/2, respectively, from the 
plane of the base. Find the angle between the 
planes ABC and AxBxCi.

37. The side of the base of a regular quadran­
gular pyramid is equal to the slant height of a 
lateral face. Through a side of the base a cutting 
plane is passed separating the surface of the pyra-

* Here and henceforward, ABC  and AvB1C1 are the 
bases of the prism and A A ly BBU CCX its lateral edges.
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mid into two equal portions. Find the angle 
between the cutting plane and the plane of the 
base of the pyramid.

38. The Gentre of a ball is found in the plane 
of the base of a regular triangular pyramid. The 
vertices of the base lie on the surface of the ball. 
Find the length I of the line of intersection of the 
surfaces of the ball and pyramid if the radius 
of the ball is equal to R , and the plane angle at 
the vertex of the pyramid is equal to a.

39. In a regular hexagonal pyramid SABCDEF 
(S the vertex), on the diagonal AD , three points 
are taken which divide the diagonal into four 
equal parts. Through these division points sec­
tions are passed parallel to the plane SAB . Find 
the ratios of the areas of the obtained sections.

40. In a regular quadrangular pyramid, the 
plane angle at the vertex is equal to the angle 
between the lateral edges and the plane of the 
base. Determine the dihedral angles between the 
adjacent lateral faces of this pyramid.

41. The base of a triangular pyramid all of 
whose lateral edges are pairwise perpendicular 
is a triangle having an area S . The area of one 
of the lateral faces is Q. Find the area of the 
projection of this face on the base.

42. ABCA1B1C1 is a regular triangular prism 
all of whose edges are equal to one another. K  
is a point on the edge AB different from A and 
B, M  is a point on the straight line 5 XCX, and 
L is a point in the plane of the face ACCxA^ 
The straight line KL  makes equal angles with the 
planes ABC and ABBxil x, the line LM  makes equal 
angles with the planes BCC1B1 and ACCtA u 
the line KM  also makes equal angles with the
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planes BCC1B1 and ACCXAX. It is known that 
| KL | =  | KM  | =  1. Find the edge of the 
prism.

43. In a regular quadrangular pyramid, the 
angle between the lateral edges and the plane 
of the base is equal to the angle between a lateral 
edge and a plane of the lateral face not contain­
ing this edge. Find this angle.

44. Find the dihedral angle between the base 
and a lateral face of a frustum of a regular tri­
angular pyramid if it is known that a ball can 
be inscribed in it, and, besides, there is a ball 
which touches all of its edges.

45. Each of three edges of a triangular pyramid 
is equal to 1, and each of three other edges is 
equal to a. None of the faces is a regular tri­
angle. What is the range of variation of a? What 
is the volume of this pyramid?

46. The lateral faces of a triangular pyramid 
are equivalent and are inclined to the plane of 
the base at angles a, p, and y. Find the ratio of 
the radius of the ball inscribed in this pyramid 
to the radius of the ball touching the base of 
the pyramid and the extensions of the three 
lateral faces.

47. All edges of a regular hexagonal prism are 
equal to a (each). Find the area of the section 
passed through a side of the base at an angle a to 
the plane of the base.

48. In a rectangular parallelepiped ABCDAX 
BiC\Dly |AB| =  a, | AD | =  6, | AAX | =  c. Find 
the angle between the planes ABXDX and AXCXD .

49. The base of the pyramid ABCDM is a square 
with base a, the lateral edges AM  and BM  are 
also equal to a (each). The lateral edges CM
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and DM  are of length ft. On the face CDM as 
on the base a triangular pyramid CDMN is con­
structed outwards, each lateral edge of which has 
a length a. Find the distance between the 
straight lines AD and MN.

50. In a tetrahedron, one edge is equal to a, 
the opposite edge to ft, and the rest of the edges 
to c. Find the radius of the circumscribed ball.

51. The base of a triangular pyramid is a 
triangle with sides a, ft, and c; the opposite lat­
eral edges of the pyramid are respectively equal 
to m, w, and p . Find the distance from the vertex 
of the pyramid to the centre of gravity of the 
base.

52. Given a cube ABCDA^B^xD^ through 
the edge AA1 a plane is passed forming equal 
angles with the straight lines BCX and BXD. Find 
these angles.

53. The lateral edges of a triangular pyramid 
are pairwise perpendicular, one of them being the 
sum of two others is equal to a. Find the radius of 
the ball touching the base of the pyramid and 
the extensions of its lateral faces.

54. The base of a triangular pyramid SABC is 
a regular triangle ABC with side a, the edge SA 
is equal to ft. Find the volume of the pyramid if 
it is known that the lateral faces of the pyramid 
are equivalent.

55. The base of a triangular pyramid SABC 
is an isosceles triangle ABC (A =  90°). The angles

SAB , SCA, SAC , SBA (in the indicated or­
der) form an arithmetic progression whose differ­
ence is not equal to zero. The areas of the faces
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SAB , ABC and SAC form a geometric progres­
sion. Find the angles forming an arithmetic pro­
gression.

56, The base of a triangular pyramid SABC 
is a regular triangle ABC with side a . Find the

volume of this pyramid if it is known that ASC —

ASB  =  a, SAB =  |3.
57, In the cube ABCDA1B1C1D1 K  is the mid­

point of the edge AAX, the point L lies on the 
edge BC. The line segment KL touches the ball 
inscribed in the cube. In what ratio is the line 
segment KL  divided by the point of tangency?

58, Given a tetrahedron A BCD in which ABC—

BAD — 90°. | AB | =  a, | DC | =  b, the angle 
between the edges AD and BC is equal to a. 
Find the radius of the circumscribed ball.

59. An edge of a cube and an edge of a regular 
tetrahedron lie on the same straight line, the 
midpoints of the opposite edges of the cube and 
tetrahedron coincide. Find the volume of the 
common part of the cube and tetrahedron if the 
edge of the cube is equal to a .

60. In what ratio is the volume of a triangu­
lar pyramid divided by the plane parallel to its 
two skew edges and dividing one of the other 
edges in the ratio 2 : 1 ?

61. In a frustum of a regular quadrangular pyr­
amid two sections are drawn: one through the 
diagonals of the bases, the other through the side 
of the lower base and opposite side of the upper 
base. The angle between the cutting planes is
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equal to a. Find the ratio of the areas of the 
sections.

62. One cone is inscribed in, and the other is 
circumscribed about, a regular hexagonal pyra­
mid. Find the difference between the volumes of 
the circumscribed and inscribed cones if the alti 
tude of the pyramid is H and the radius of the 
base of the circumscribed cone is R ,

63. Given a ball and a point inside it. Three 
mutually perpendicular planes intersecting the 
ball along three circles are passed through this 
point in an arbitrary way. Prove that the sum 
of the areas of these three circles is constant, and 
find this sum if the radius of the ball is R and the 
distance from the point of intersection of the 
planes to the centre of the ball is equal to d.

64. In a ball of radius R the diameter AB 
is drawn. Two straight lines touch the ball at 
the points A and B and form an angle a (a <  90°) 
between themselves. Taken on these lines are 
points C and D so that CD touches the ball, and 
the angle between AB and CD equals <p (<p <  90°). 
Find the volume of the tetrahedron ABCD.

65. In a tetrahedron two opposite edges are 
perpendicular, their lengths are,a and ft, the dis­
tance between them is c. Inscribed in the tetra­
hedron is a cube whose four edges are perpendicu­
lar to these two edges of the tetrahedron, exactly 
two vertices of the 'cube lying on each face of 
the tetrahedron. Find the edge of the cube.

66. Two congruent triangles KLM  and KLN

have a common side K L , KLM  =  LKN =  ji/3, 
i KL  | =  a, | LM  | =  | KN  | =  6a. The planes 
KLM  and KLN  are mutually perpendicular. A
2 -0 4 4 9
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ball touches the line segments LM  and KN  at 
their midpoints. Find the radius of the ball.

67. A ball of radius R touches all the lateral 
faces of a triangular pyramid at the midpoints of 
the sides of its base. The line segment joining the 
vertex of the pyramid to the centre of the ball 
is bisected by the point of intersection with the 
base of the pyramid. Find the volume of the pyra­
mid.

68. A tetrahedron has three right dihedral an­
gles. One of the line segments connecting the mid­
points of opposite edges of the tetrahedron is equal 
to a, and the other to ft (ft >  a). Find the length 
of the greatest edge of the tetrahedron.

69. A right circular cone with vertex S is in­
scribed in a triangular pyramid SPQR so that 
the circle of the base of the cone is inscribed in 
the base PQR of the pyramid. It is known that

PSR  =  nf2, SQR =  ji/4, PSQ =  7w/12. Find 
the ratio of the lateral surface area of the cone 
to the area of the base PQR of the pyramid.

70. ‘ The base of the pyramid ABCDE is a par­
allelogram A BCD, None of the lateral faces is 
an obtuse triangle. On the edge DC there is 
a point M  Such that the straight line EM  is per­
pendicular to BC. In addition, the diagonal of the 
base AC and the lateral edges ED and EB are relat-
ed as follows: | AC | | EB | > - |  | ED |. A
section representing an isosceles trapezoid is 
passed through the vertex B and the midpoint of 
one of the lateral edges. Find the ratio of the 
area of the section to the area of the base of the 
pyramid.
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71. A line segment AB of unit length which is 
a chord of a sphere of radius 1 is at an angle ji/3 
to the diameter CD of this sphere. The distance 
from the end point C of the diameter to the nearer
end point A of the chord AB  is equal to ^ 2 .  
Determine the length of the line segment BD .

72. In a triangular pyramid ABCD the faces 
ABC and ABD have areas p and q, respectively, 
and form an angle a between themselves. Find 
the area of the section of the pyramid passing 
through the edge AB and the centre of the ball 
inscribed in the pyramid

73. In a triangular pyramid ABCD a section 
is passed through the edge AD (| AD | =  a) 
and point E (the midpoint of the edge BC). The 
section makes with the faces ACD and ADB 
angles respectively equal to a and |3. Find the 
volume of the pyramid if the area of the section 
ADE is equal to S .

74. ABCD is a regular tetrahedron with edge a. 
Let M  be the centre of the face ADCt and let N  
be the midpoint of the edge BC. Find the radius 
of the ball inscribed in the trihedral angle A 
and touching the straight line MNm

75. The base of a triangular pyramid ABCD 
is a regular triangle ABC . The face BCD makes 
an angle of 60° with the plane of the base. The 
centre of a circle of unit radius which touches 
the edges A B , AC , and the face BCD lies on the 
straight line passing through the point D per­
pendicular to the base. The altitude of the pyra­
mid DH is one-half the side of the base. Find 
the volume of the pyramid.

76. In a triangular pyramid SABC \ AC | =
| AB  | and the edge SA is inclined to the planes
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of the faces ABC and SBC at angles of 45°. It is 
known that the vertex A and the midpoints of all 
the edges of the pyramid, except S A , lie on the 
sphere of radius 1. Prove that the centre of the 
sphere is located on the edge S A , and find the 
area of the face ASC .

77. Given a cube ABCDAXBXC^D\ with edge a. 
Find the radius of the sphere touching the line 
segments ACX and CCly the straight lines AB 
and BC and intersecting the straight lines AC 
and A tCt .

78. A ball touches the plane of the base A BCD 
of a regular quadrangular pyramid SABCD at 
the point A , and, besides, it touches the ball 
inscribed in the pyramid. A cutting plane is 
passed through the centre of the first ball and the 
side BC of the base. Find the angle of inclination 
of this plane to the plane of the base if it is known 
that the diagonals of the section are perpen­
dicular to the edges SA and SD .

79. Situated on a sphere of radius 2 are three 
circles of radius 1 each of which touches the other 
two. Find the radius of the circle which is smal­
ler than the given circles, lies on the given sphere, 
and touches each of the given circles.

80. In a given rectangular parallelepiped 
ABCDAxBxC-J)x the lengths of the edges A B , 
BC, $nd BB1 are respectively equal to 2a, a, 
and a; E is the midpoint of the edge BC . The 
vertices M  and N  of a regular tetrahedron MNPQ 
lie on the straight line Cx£ , the vertices P and 
Q on the straight line passing through the point 5 X 
and intersecting the straight line AD at the 
point F . Find: (a) the length of the line segment
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DF\ (b) the distance between the midpoints of 
the line segments MN  and PQ.

81 - The length of the edge of a cube 
ABCDAiB1C1D1 is a. The points M  and N  lie 
on the line segments BD and CClf respectively. 
The straight line MN  makes an angle jt/4 with 
the plane ABCD and an angle rc/6 with the plane 
BBXC\C. Find: (a) the length of the line seg­
ment MN\ (b) the radius of the sphere with centre 
on the line segment MN  which touches the planes 
ABCD and BB^C^C.

82. The vertex A of a regular prism ABCA\BXC1 
coincides with the vertex of a cone; the vertices 
B and C lie on the lateral surface of this cone, 
and the vertices 5 X and CY on the circle of its 
base. Find the ratio of the volume of the cone and 
the prism if | AAX \ =  2.4 \ AB  |.

83. The length of the edge of a cube 
ABCDAlB1C1D1 is equal to a. The points P, 
K, L are midpoints of the edges A A U AtDl9 
BxCx, respectively; the point Q is the centre of 
the face CC-fl-fl. The line segment MN  with 
end points on the straight lines AD and KL 
intersects the line PQ and is perpendicular to it. 
Find the length of this line segment.

84. In a regular prism ABCAXBXCX the length 
of a lateral edge and the altitude of the base is 
equal to a. Two planes are passed through the 
vertex A: one perpendicular to the straight line 
ABt , the other perpendicular to the line AC^ 
Passed through the vertex Ax are also two planes: 
one perpendicular to the line Â B̂  the other 
perpendicular to the line AXC. Find the volume of 
the polyhedron bounded by these four planes rind 
ĥe plane BB^C^C,
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85. The point 0  is a common vertex of two 
congruent cones situated on one side of the plane a 
so that only one element of each cone (OA for 
one cone and OB for the other) belongs to the 
plane a. It is known that the size of the angle 
between the altitudes of the cones is equal to p, 
and the size of the angle between the altitude 
and generatrix of the cone is equal to <p, and 
2<p <  p. Find the size of the angle between the 
element OA and the plane of the base of the other 
cone to which the point B belongs.

86. Arranged inside a regular tetrahedron 
ABCD are two balls of radii 2R and 3R exter­
nally tangent to each other, one ball being in­
scribed in the trihedral angle of the tetrahedron 
with vertex at the point A , and the other in the 
trihedral angle with vertex at the point B. Find 
the length of the edge of this tetrahedron.

87. In a regular quadrangular pyramid SABCD 
with base ABCD, the side of the base is equal to 
a, and the angle between the lateral edges and 
the plane of the base is equal to a. The plane 
parallel to the diagonal of the base AC and the 
lateral edge BS  cuts the pyramid so that a circle 
can be inscribed in the section obtained. Deter­
mine the radius of this circle.

88. Each edge of a regular tetrahedron is equal 
to a. A plane P passes through the vertex B and 
midpoints of the edges AC and AD. A ball 
touches the straight lines AB, AC , AD and the 
portion of the plane P enclosed inside the tetra­
hedron. Find the radius of the ball.

89. In a regular tetrahedron, M  and N  are 
midpoints of two opposite edges. The projection 
of the tetrahedron op a plane parallel to AfiY
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is a quadrilateral having area S one of the angles 
of which is equal to 60°. Find the surface area 
of the tetrahedron.

90. In a cube ABCDA1B1C1D1 a point M  is 
taken on AC , and on the diagonal BDX of the

cube a point N  is taken so that NMC =  60°,

MNB =  45°. In what ratios are the line seg­
ments AC and BDX divided by the points M  and 
TV?

91. The base of a right prism ABCDA^B1C1D1 
is an isosceles trapezoid ABCD in which AD 
is parallel to BC, | AD |/| BC | =  n, n >  1. 
Passed through the edges AA1 and BC are planes 
parallel to the diagonal BtD; and through the 
edges DDx and BxCi planes parallel to the dia­
gonal AXC . Determine the ratio of the volume 
of the triangular pyramid bounded by these four 
planes to the volume of the prism.

92. The side of the base of a regular triangular 
prism ABCAxBxCx is equal to a. The points M  
and TV are the respective midpoints of the edges 
A-JBx and AAt . The projection of the line seg­
ment BM  on the line CjTV is equal to a/2Y  5. 
Determine the altitude of the prism.

93. Two balls touch each other and the faces 
of a dihedral angle whose size is a. Let A and B 
be points at which the balls touch the faces (A 
and B belong to different balls and different faces). 
In what ratio is the line segment AB  divided 
by the points of intersection with the surfaces of 
the balls?

94. The base of a pyramid ABCD is a regular 
triangle ABC with side of length 12. The edge BD
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is perpendicular to the plane of the base and is
equal to 10 ]/ 3. All the vertices of this pyramid 
lie on the lateral surface of a right circular cylin­
der whose axis intersects the edge BD and the 
plane ABC. Determine the radius of the cylinder.

95. The base of a pyramid is a square ABCD 
with side a; the lateral edge SC is perpendicular 
to the plane of the base and is equal to b. M  is 
a point on the edge AS. The points Af, B, and D 
lie on the lateral surface of a right circular cone 
with vertex at the point A , and the point C in 
the plane of the base of this cone. Determine the 
area of the lateral surface of the cone.

96. Inside a right circular cone a cube is arranged 
so that one of its edges lies on the diameter 
of the base of the cone; the vertices of the cube not 
belonging to this edge lie on the lateral surface 
of the cone; the centre of the cube lies on the alti­
tude of the cone. Find the ratio of the volume of 
the cone to the volume of the cube.

97. In a triangular prism ABCAiBtCl9 two 
sections are passed. One section passes through 
the edge AB  and midpoint of the edge CCu the 
other passing through the edge A1B1 and the mid­
point of the edge CB. Find the ratio of the length 
of the line segment of the intersection line of 
these sections enclosed inside the prism to the 
length of the edge AB.

98. In the tetrahedron ABCD the edge AB

is perpendicular to the edge CD, ACB =  ADBy 
the area of the section passing through the edge 
AB  and the midpoint of the edge DC is^equal to 
5, | DC | =  a. Find the volume of the tetra­
hedron ABCD.
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99. Given a regular triangular pyramid SABC 
(S its vertex). The edge SC of this pyramid coin­
cides with a lateral edge of a regular triangular 
prism AXBXCA2B2S (AXA 2, BXB2 and CS are 
lateral edges, and AXBXC is one of the bases). The 
vertices A x and Bx lie in the plane of the face 
SAB of the pyramid. What part of the volume 
of the entire pyramid is the volume of the portion 
of the pyramid lying inside the prism if the ratio 
of the length of the lateral edge of the pyramid 
to the side of its base is equal to 2l Y  3?

100. In a frustum of a regular quadrangular 
pyramid with the lateral edges AAX, BBX, CCX, 
DDX, the side of the upper base AXBXCXD X is equal 
to 1, and the side of the lower base is equal to 7. 
The plane passing through the edge BXCX perpen­
dicular to the plane ADXC separates the pyramid 
into two parts of equal volume. Find the volume 
of the pyramid.

101. The base of the prism ABCAXBXCX is a reg­
ular triangle ABC with side a. The projection 
of the prism on the plane of the base is a trape­
zoid with lateral side AB  and area which is twice 
the area of the base. The radius of the sphere pas­
sing through the vertices A, B, A x, Cx is equal 
to a. Find the volume of the prism.

102. Given in a plane is a square ABCD with 
side a and a point M  lying at a distance b from 
its centre. Find the sum of the volumes of the 
solids generated by revolving the triangles ABM, 
BCM , CDM , and DAM  about the straight lines 
AB, BC, CD and DA, respectively.

103. D is the midpoint of the edge A XCX of 
£ regular triangular prism ABCA^BxCy A regular
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triangular pyramid SMNP  is situated so that 
the plane of its base MNP  coincides with the 
plane ABC, the vertex M  lies on the extension of
AC and | CM | =  —  | AC |, the edge SN  passes
through the point D, and the edge SP  intersects 
the line segment BBt. In what ratio is the line 
segment BBt divided by the point of intersection?

104. The centres of three spheres of radii 3, 
4, and 6 are situated at the vertices of a regular 
triangle with side 11. How many planes are there 
which simultaneously touch all the three spheres?

105. All the plane angles of a trihedral angle 
NKLM (N the vertex) are right ones. On the 
face LNM  a point P is taken at a distance 2 
from the vertex N  and at a distance 1 from the 
edge M N . From some point S situated inside the 
trihedral angle NKLM  a beam of light is directed 
towards the point P . The beam makes an angle 
n/4 with the plane MNK  and equal angles with 
the edges KN  and MN. The beam is mirror- 
reflected from the faces of the angle NKLM  first 
at the point P , then at the point Q, and then at 
the point R . Find the sum of the lengths of the 
line segments PQ and QR.

106. The base of a triangular pyramid ABCD
A A

is a triangle ABC in which A =  rc/2, C =  rc/6,
| BC | =  2 Y 2 .  The edges AD, BDy and CD 
are of the same length. A sphere of radius 1 touches 
the edges AD , BD , the extension of the edge 
CD beyond the point D y and the plane ABC. 
Find the length of the line segment of the tangent 
drawn from the point A to the sphere.

|Q7? T*}ree balls, among which tljerp qre two
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equal balls, touch a plane P and, besides, pair­
wise touch one another. The vertex of a right 
circular cone belongs to the plane P, and its 
axis is perpendicular to this plane. All the three 
balls are arranged outside of the cone and each of 
them touches its lateral surface. Find the cosine 
of the angle between the generatrix of the cone 
and the plane P if it is known that in the tri­
angle with vertices at the points of tangency of 
the balls with the plane one of the angles is equal 
to 150°.

108. The volume of the tetrahedron A BCD 
is equal to 5. Through the midpoints of the edges 
AD and BC a plane is passed cutting the edge 
CD at the point Af. And the ratio of the lengths 
of the line segments DM  and CM is equal to 
2/3. Compute the area of the section of the tetra­
hedron by the plane if the distance from it to 
the vertex A is equal to 1.

109. A ball of radius 2 is inscribed in a regular 
triangular pyramid SABC with vertex S and base 
ABC; the altitude of the pyramid S'A’ is equal 
to 6. Prove that there is a unique plane cutting 
the edges of the base>1.6 and BC at some points M  
and N , such that | MN  | =  7, which touches the 
ball at the point equidistant from the points M  
and N  and intersects the extension of the altitude 
of the pyramid SK  beyond the point K  at some 
point D. Find the length of the line segment SD .

110. All the edges of a triangular pyramid 
ABCD are tangent to a sphere. Three line seg­
ments joining the midpoints of skew edges have 
the same length. The angle ABC is equal to 100°. 
Find the ratio of the altitudes of the pyrami4 
drtwn from tl*e vertices 4  aq<J B %
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111. In a pyramid SABC the products of the 
lengths of the edges of each of the four faces are 
equal to one and the same number. The length 
of the altitude of the pyramid dropped from S

size of the angle CAB is equal to

| SA |2 +  | SB j2 — 5 | SC |2 =  60.
112. Given in a plane P is an isosceles tri­

angle ABC (| AB  | =  | BC | =  7, \ AC | =  2a). 
A sphere of radius r touches the plane P at point 
B . Two skew lines pass through the points A 
and C and are tangent to the ball. The angle 
between either of these lines and the plane P 
is equal to a . Find the distance between these 
lines.

113. The base of a pyramid ABC EH is a con­
vex quadrilateral A BCE which is separated by 
the diagonal BE into two equivalent triangles. 
The length of the edge A Bis  equal to 1, the lengths 
of the edges BC and CE are equal to each 
other. The sum of the lengths of the edges AH
and EH is equal to Y  2. The volume of the pyra­
mid is 1/6. Find the radius of the sphere having 
the greatest volume among all the balls housed 
in the pyramid.

114. In a pyramid SABC a straight line inter­
secting the edges AC and BS and perpendicular 
to them passes through the midpoint of the edge 
BS . The face ASB  is equivalent to the face BSCy 
pnd the pxw of the face ASC is twice the area of

arccos
pyramid SABC if

Find the volume of the
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the face BSC . Inside the pyramid there is a point 
M, and the sum of the distances from this point 
to the vertices B and S is equal to the sum of the 
distances to all the faces of the pyramid. Find 
the distance from the point M  to the vertex B
if \ AC \  =  y j ,  I BS I =  1.

115. The base of a pyramid is a rectangle with 
acute angle between the diagonals a (a <Z 60°), 
its lateral edges are of the same length, and the 
altitude is h. Situated inside the pyramid is a 
triangular pyramid whose vertex coincides with 
the vertex of the first pyramid, and the vertices 
of the base lie on three sides of the rectangle. 
Find the volume of the quadrangular pyramid if 
all the edges of the triangular pyramid are equal to 
one another, and the lateral faces are equivalent.

116. In a triangular pyramid SABC with base 
ABC and equal lateral edges, the sum of the 
dihedral angles with edges SA and SC is equal 
to 180°. It is known that | AB | =  a, | BC | =  ft. 
Find the length of the lateral edge.

117. Given a regular tetrahedron with edge a. 
A sphere touches three edges of the tetrahedron, 
emanating from one vertex, at their end points. 
Find the area of the portion of the spherical sur­
face enclosed inside the tetrahedron.

118. Three circles of radius Y  2 pairwise touch­
ing one another are situated on the surface 
of a sphere of radius 2. The portion of the sphere’s 
surface situated outside of the circles presents 
two curvilinear triangles. Find the areas of 
these triangles.

119. Three dihedral angles of a tetrahedron, 
not belonging to one vertex, are equal to j i / 2.
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The remaining three dihedral angles are equal 
to one another. Find these angles.

120. Two balls are inscribed in the lateral 
surface of a cone and touch each other. A third 
sphere passes through two circles along which the 
first two spheres touch the surface of the cone. 
Prove that the volume of the portion of the third 
ball situated outside of the cone is equal to the 
volume of the portion of the cone enclosed be­
tween the first two balls inside the cone.

121. A sphere of radius R touches one base of 
a frustum of a cone and its lateral surface along 
the circle coinciding with the circle of the other 
base of the cone. Find the volume of the solid 
representing a combination of a cone and a ball 
if the total surface area of this solid is equal to S.

122. Two triangles* a regular one with side a 
and a right isosceles triangle with legs equal 
to h, are arranged in space so that their centroids 
coincide. Find the sum of the squared distances 
from all the vertices of one of them to all the 
vertices of the other.

123. In a regular triangular pyramid SABC 
(S the vertex), E  is the midpoint of the slant 
height of the face SBC, and the points F, L, 
and M  lie on the edges AB , AC , and SC, respec-

4

tively, and | A L  | =  — | AC |. It is known that
EFLM is an isosceles trapezoid and the length
of its base EF is equal to Y  7. Find the volume 
of the pyramid.

124. Given a cube ABCDA1B1C1D1 with edge a. 
The bases of a cylinder are inscribed in the faces 
ABCD and AXB XCi-Dj. Let M  be a point on the 
edge AB such that | AM  | =  a/3, N  a point on
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the edge BXCX such that | NCX | =  a!4. Through 
the points Cx and M  there passes a plane touch­
ing the bases of the cylinder inscribed in A BCD, 
and through A and N  a plane touching the base 
inscribed in AxB^xD^ Find the volume of the 
portion of the cylinder enclosed between the 
planes.

125. Determine the total surface area of the 
prism circumscribed about a sphere if the area of 
its base is equal to S .

126. The centre of sphere a lies on the surface 
of sphere |3. The ratio of the surface area of sphere |3 
lying inside sphere a to the total surface area of 
sphere a is equal to 1/5. Find the ratio of the radii 
of spheres a and p.

127. Circumscribed about a ball is a frustum 
of a cone. The total surface area of this cone is S . 
Another sphere touches the lateral surface of 
the cone along the circle of the base of the cone. 
Find the volume of the frustum of a cone if it 
is known that the portion of the surface of the 
second ball contained inside the first ball has 
an area Q.

128. Circumscribed about a ball is a frustum 
of a cone whose bases are the great circles of two 
other balls. Determine the total surface area of 
the frustum of a cone if the sum of the surface 
areas of the three balls is equal to S .

129. A section of maximal area is passed 
through the vertex of a right circular cone. It is 
known that the area of this section is twice the 
area of an axial section. Find the vertex angle 
of the axial section of the cone.

130. Inscribed in a cone is a triangular pyra­
mid SABC (S coincides with the vertex of the
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cone, Aj B , and C lie on the circle of the base of 
the cone), the dihedral angles at the edges SA, 
SB, and SC are respectively equal to a, |3, and y. 
Find the angle between the plane SBC and the 
plane touching the surface of the cone along the 
element SC.

131. Three points A , B , and C lying on the 
surface of a sphere of radius R are pairwise con­
nected by arcs of great circles; the arcs are less 
than a semicircle. Through the midpoints of the
arcs AB  and AC one more great circle is drawn
which intersects the continuation of BC at the
point K . Find the length of the arc C K i i \  BC | =
I (/ <  ni?).

132. Find the volume of the solid generated 
by revolving a regular triangle with side a about 
a straight line parallel to its plane and such that 
the projection of this line on the plane of the 
triangle contains one of the altitudes of the 
triangle.

133. Consider the solid consisting of points 
situated at a distance not exceeding d from an 
arbitrary point inside a plane figure having a 
perimeter 2p  and area S or on its boundary. 
Find the volume of this solid.

134. Given a triangular pyramid SABC. A ball 
of radius R touches the plane ABC at the point C 
and the edge SA at the point S. The straight 
line BS intersects the ball for the second time 
at the point opposite to the point C. Find the 
volume of the pyramid SABC if | BC | =  a,
| SA | =  b.

135. Inside a regular triangular pyramid there 
is a vertex of a trihedral angle all of whose plane
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angles are right ones, and the bisectors of the 
plane angles pass through the vertices of the base. 
In what ratio is the volume of the pyramid di­
vided by the surface of this angle if each face 
of the pyramid is separated by it into two equiv­
alent portions?

136. Given a parallelepiped ABCDA1B1C1Dl 
whose volume is V. Find the volume of the com­
mon portion of two tetrahedrons AB1CD1 and 
A^CxD.

137. Two equal triangular pyramids each hav­
ing volume V are arranged in space symmetri­
cally with respect to the point 0.  Find the volume 
of their common portion if the point 0  lies on 
the line segment joining the vertex of the pyra­
mid to the centroid of the base and divides this 
line segment in the ratio: (1) 1 : 1; (2) 3 : 1; 
(3) 2 : 1 ;  (4) 4 : 1, reckoning from the vertex.

138. A regular tetrahedron of volume V is rotat­
ed about the straight line joining the midpoints 
of its skew edges at an angle^a. Find the volume 
of the common portion of the given and turned 
tetrahedrons (0 <; a «< n).

139. The edge of a cube is a. The cube is rotat­
ed about the diagonal through an angle a. 
Find the volume of the common portion of the 
original cube and the cube being rotated.

140. A ray of light falls on a plane mirror at an 
angle a. The mirror is rotated about the projec­
tion of the beam on the mirror through an angle p. 
By what angle will the reflected ray deflect?

141. Given in space are four points; A,  5 , C, 

and D,  where | AB  | — | BC | =  | CD |, ABC =
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BCD == CD A =  a. Find the angle between the 
straight lines AC and BD .

142. Given a regular rc-gonal prism. The area 
of its base is equal to S . Two planes cut all the 
lateral edges of the prism so that the volume 
of the portion of the prism enclosed between the 
planes is equal to F .  Find the sum of the lengths 
of the segments of the lateral edges of the prism 
enclosed between the cutting planes if it is known 
that the planes have no common points inside 
the prism.

143. Three successive sides of a plane convex 
pentagon are equal to 1, 2, and a. Find the two 
remaining sides of this pentagon if it is known 
that the pentagon is an orthogonal projection on 
the plane of regular pentagon. For what values 
of a does the problem have a solution?

144. Given a cube ABCDA1B1C1D1 in which M  
is the centre of the face ABBxA^ N  a point on 
the edge B^C^ L the midpoint of A^B^ K  the 
foot of the perpendicular dropped from N  on 
BCX. In what ratio is the edge BXCX divided

by the point N  if LMK  =  MKN'i
145. In a regular hexagonal pyramid the centre 

of the circumscribed sphere lies on the surface 
of the inscribed sphere. Find the ratio of the 
radii of the circumscribed and inscribed spheres.

146. In a regular quadrangular pyramid, the 
centre of the circumscribed ball lies on the sur­
face of the inscribed ball. Find the size of the 
plane angle at the vertex of the pyramid.

147. The base of a quadrangular pyramid SABCD 
is a square ABCD with side a. Both angles be-
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ween opposite lateral faces are equal to a. Find 
he volume of the pyramid

148. A plane cutting the surface of a triangular 
yramid divides the medians of faces emanating 
com one vertex in the following ratios: 2 : 1 ,
: 2, 4 : 1  (as measured from the vertex). In 

rhat ratio does this plane divide the volume of 
his pyramid?

149. n congruent cones have a common vertex, 
lach one touches its two neighbouring cones along 
n element, and all the cones touch the same plane, 
ind the angle at the vertex of the axial sections 
f the cones.

150. Given a cube A B C D A ^ ^ D ^  The plane 
assing through the point A and touching the 
all inscribed in the cube cuts the edges A1B1 
nd A1D1 at points K  and N . Determine the size 
f the dihedral angle between the planes ACXK  
nd ACXN

151. Given a tetrahedron ABCD, Another 
?trahedron A1B1C1D1 is arranged so that its 
ertices Aly Bx, Cly Dx lie respectively in the 
lanes BCD, CD A, DAB, ABCf and the planes 
f its faces AXBXCX, BXC-J)X, C^D^A  ̂ D1AlB1 
ontain the respective vertices D , A , B , and C 
f the tetrahedron ABCD. It is also known that 
le point Ax coincides with the centre of gravity 
f the triangle BCD, and the straight lines BDX, 
Bx, and DCX bisect the line segments AC, AD, 
nd AB,  respectively. Find the volume of the 
)mmon part of these tetrahedrons if the volume 
E the tetrahedron ABCD is equal to V.
152. In the tetrahedron ABCD: | BC | =  

CD | =  | DA |, | BD | =  I AC |, | BD | >
BC |, the dihedral angle at the edge AB is
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equal to ji/3. Find the sum of the remaining di­
hedral angles,

153. Given a triangular prism ABCAXBXCX* 
It is known that the pyramids ABCCXJ ABBXCXJ 
and AAXBXCX are congruent. Find the dihedral 
angles between the plane of the base and the lateral 
faces of the prism if its base is a nonisosceles right 
triangle.

154. In a regular tetrahedron ABCD with 
edge^a, taken in the planes BCDy CD A, DAB , 
and ABC are the respective points AXl Bu CXl 
and Dx so that the line AXBX is perpendicular to 
the plane BCD, BXCX is perpendicular to the plane 
CD A, C1D1 is perpendicular to the plane DAB , 
and finally, DXAX is perpendicular to the plane 
ABC. Find the volume of the tetrahedron 
AxBxCiDXm

155. n congruent balls of radius R touch inter­
nally the lateral surface and the plane of the 
base of a cone, each ball touching two neigh­
bouring balls; n balls of radius 2R are arranged 
in a similar way touching externally the lateral 
surface of the cone. Find the volume of the cone.

156. Given a cube ABCDAXBXCXDX. The points 
M  and N  are taken on the line segments AAX 
and BCX so that the line MN  intersects the line 
BXD . Find
\ B C 1 \ j A M  |
1**1 I AA\ I

157. Tt is known that all the faces of a tetra­
hedron are similar triangles, but not all of them 
are congruent. Besides, any two faces have at 
least one pair of congruent edges not counting 
a common edge. Find the volume of this tetra-



Sec. 2. Problem s on  Proof 37

hedron if the lengths of two edges lying in one 
face are equal to 3 and 5.

158. Given three mutually perpendicular lines, 
the distance between any two of them being equal 
to a. Find the volume of the parallelepiped whose 
diagonal lies on one line, and the diagonals of 
two adjacent faces on two other lines.

159. The section of a regular quadrangular pyr­
amid by some cutting plane presents a regular 
pentagon with side a.Find the volume of the pyra­
mid.

160. Given a triangle ABC whose area is S, 
and the radius of the circumscribed circle is R . 
Erected to the plane of the triangle at the verti­
ces A, B , and C are three perpendiculars, and 
points A u Bu and Cx are taken on them so that 
the line segments AAlt BBt, CC\ are equal in 
length to the respective altitudes of the tri­
angle dropped from the vertices A t B , and C. 
Find the volume of the pyramid bounded by the 
planes Â B- Ĉ. A rBC .̂ AB^C^ and ABC.

Section 2

Problems on Proof

161. Do the altitudes intersect at one point in 
any tetrahedron?

162. Is there a triangular pyramid such that 
the feet of all the altitudes lie outside the corre­
sponding faces?
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163. Prove that a straight line making equal 
angles with three intersecting lines in a plane 
is perpendicular to this plane.

164. What regular polygons can be obtained 
when a cube is cut by a plane?

165. Prove that the sum of plane angles of a 
trihedral angle is less than 2ji, and the sum of 
dihedral angles is greater than ji.

166. Let the plane angles of a trihedral angle 
be equal to a, P, and v, and the opposite dihedral 
angles to A, 5 , and C, respectively. Prove that 
the following equalities hold true:
/m  s i n a   s i n P  s in  y
'  '  s in  A  s in  B  s in  C

(theorem of sines for a trihedral angle),
(2) cos a =  cos P cos y +  sin P sin y cos A

(first theorem of cosines for a trihedral angle),
(3) cos A =  —cos B cos C +  sin B sin C cos a

(second theorem of cosines for a trihedral angle).
167. Prove that if all the plane angles of a 

trihedral angle are obtuse, then all the dihedral 
angles are also obtuse.

168. Prove that if in a trihedral angle all the 
dihedral angles are acute, then all the plane an­
gles are also acute.

169. Prove that in an arbitrary tetrahedron 
there is a trihedral angle all plane angles of 
which are acute.

170. Prove that in an arbitrary polygon all 
faces of which are triangles there is an edge such 
that all the plane angles adjacent to it are acute.
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171. Prove that a trihedral prismatic surface 
can be cut by a plane in a regular triangle.

172. In a triangular pyramid all the plane 
angles at the vertex A are right angles, the edge 
AB is equal to the sum of two other edges ema­
nating from A. Prove that the sum of the plane 
angles at the vertex B is equal to nf2.

173. Gan any trihedral angle be cut by a plane 
in a regular triangle?

174. Find the plane angles at the vertex of a 
trihedral angle if it is known that any of its 
sections by a plane is an acute triangle.

175. Prove that in any tetrahedron there is a 
vertex such that from the line segments equal 
to the lengths of the edges emanating from this 
vertex a triangle can be constructed,

176. Prove that any tetrahedron can be cut by 
a plane into two parts so that the obtained pieces 
can be brought together in a different way to 
form the same tetrahedron.

177. Find the plane angles at the vertex of a 
trihedral angle if it is known that there exists 
another trihedral angle with the same vertex 
whose edges lie in the planes forming the faces 
of the given angle and are perpendicular to the 
opposite edges of the given angle.

178. A straight line I makes acute angles a, 
P, and y with three mutually perpendicular 
lines. Prove that a +  P +  y <C n.

179. Prove that the sum of the angles made 
by the edges of a trihedral angle with opposite 
faces is less than the sum of its plane angles.

Prove also that if the plane angles of a tri­
hedral angle are acute, then the sum of the angles 
made by its edges with opposite faces is greater
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than one half the sum of the plane angles. Does 
the last statement hold for an arbitrary tri­
hedral angle?

180. Prove that the sum of four dihedral angles 
of a tetrahedron (excluding any two opposite 
angles) is less than 2n, and the sum of all di­
hedral angles of a tetrahedron lies between 2n 
and 3j i .

181. From an arbitrary point of the base of a 
regular pyramid a perpendicular is erected. 
Prove that the sum of the line segments from 
the foot of the perpendicular to the intersection 
with the lateral faces or their extensions is con­
stant.

182. Prove that if xl5 r4 are distances
from an arbitrary point inside a tetrahedron to 
its faces, and hx, h2, hk are the corresponding 
altitudes of the tetrahedron, then

£i
hi

x % I X Z | x 4 __ A
h2 ^ k s ^

183. Prove that the plane passing through the 
midpoints of two skew edges of a tetrahedron cuts 
it into two parts of equal volumes.

184. Prove that if the base of a pyramid ABCD

is a regular triangle ABC , and DAB =  DBC *=

DC A,  then ABCD is a regular pyramid.
185. Let a and ax, b and b1% c and cx be pairs 

of opposite edges of a tetrahedron, and let a, 
P, and v be the respective angles between them 
(a, P, and y do not exceed 90°). Prove that one 
of the three numbers aax cos a, bbx cos p , and 
ccA cos y is the sunr of the other two.
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186. In a tetrahedron ABCD the edges DA,  
DB, and DC are equal to the corresponding alti­
tudes of the triangle ABC {DA is equal to the 
altitude drawn from the vertex A,  and so forth). 
Prove that a sphere passing through three verti­
ces of the tetrahedron intersects the edges ema­
nating from the fourth vertex at three points 
which are the vertices of a regular triangle.

187. Given a quadrangular pyramid MABCD 
whose base is a convex quadrilateral ABCD . 
A plane cuts the edges MA, MB, MC , and MD 
at points K, L, P, and N, respectively. Prove 
that the following relationship is fulfilled:
c  \ MA \  , c  \ MC \
° BCD | MK  | | MP  !
_  o  \ M D \  , c  \ MB  \ .

° ABC | M N  | | ML  |

188. From an arbitrary point in space perpen­
diculars are dropped on the faces of a given cube. 
The six line segments thus obtained are diagonals 
of six cubes. Prove that six spheres each of which 
touches all the edges of the respective cube have 
a common tangent line.

189. Given three parallel lines; A , B, and C 
are fixed points on these lines. Let M, TV, and L 
be the respective points on the same lines situated 
on one side of the plane ABC. Prove that if:
(a) the sum'of the lengths of the line segments 
AM, BN , and CL is constant, or (b) the sum of 
the areas of the trapezoids AMNB . BNLC, and 
CLMA is constant, then the plane MNL passes 
through a fixed point.

190. The sum of the lengths of two skew edges 
of a tetrahedron is equal to the sum of the lengths
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of two other skew edges. Prove that the sum of 
the dihedral angles whose edges are the first pair 
of edges is equal to the sum of the dihedral angles 
whose edges are represented by the second pair 
of the edges of the tetrahedron.

191. Let 0  be the centre of a regular tetrahed­
ron. From an arbitrary point M  taken on one 
of the faces of the tetrahedron perpendiculars 
are dropped on its three remaining faces, K , L, 
and N being the feet of these perpendiculars. Prove 
that the line 0 M passes through the centre of grav­
ity of the triangle KLN .

192. In a tetrahedron ABCD, the edge CD 
is perpendicular to the plane ABC , M  is the mid­
point of DB , and N is the midpoint of AB\ K
is a point on CD such that | CK \ — | CD |.
Prove that the distance between the lines BK  
and CN is equal to that between the lines AM  and 
CN.

193. Taken in the plane of one of the lateral 
faces of a regular quadrangular pyramid is an 
arbitrary triangle. This triangle is projected on 
the base of the pyramid, and the obtained tri­
angle is again projected on a lateral face adjacent 
to the given one. Prove that the last projecting 
yields a triangle which is similar to the origi­
nally taken.

194. In a tetrahedron ABCD , an arbitrary 
point A x is taken in the face BCD. An arbitrary 
plane is passed through the vertex A . The straight 
lines passing through the vertices 5 , C. and D 
parallel to the line AAX pierce this plane at points 
Bu Ct, and Dx. Prove that the volume of the tetra­
hedron A xBiCxDa is equal to the volume of the 
tetrahedron ABCD.
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195. Given a tetrahedron ABCD. In the planes 
determining its faces, points A lt Bly Cu Dx are 
taken so that the lines AAlt BBU CClJ DDX are 
parallel to one another. Find the ratio of the 
volumes of the tetrahedrons ABCD and >115 1C3Z)1.

196. Let D be one of the vertices of a tetrahed­
ron, M  its centre of gravity, 0  the centre of the 
circumscribed ball. It is known that the points 
D , M  and the median points of the faces contain­
ing D lie on the surface of the same sphere. 
Prove that the lines DM  and OM are mutually 
perpendicular.

197. Prove that no solid in space can have even 
number of symmetry axes.

198. Given a circle and a point A in space. 
Let B be the projection of A on the plane of the 
given circle, D an arbitrary point of the circle. 
Prove that the projections of B on AD lie on the 
same circle.

199. The base of a pyramid ABODE is a quad­
rilateral ABCD whose diagonals AC and BD 
are mutually perpendicular and intersect at 
point M . The line segment EM  is the altitude 
of the pyramid. Prove that the projections of the 
point M  on the lateral faces of the pyramid lie 
in one plane.

200. Prove that if the straight line passing 
through the centre of gravity of the tetrahedron 
ABCD and the centre of the sphere circumscribed 
about it intersects the edges AB  and CD, then
\ AC\  =  \ B D l \ A D \  =  \ BC\ .

201. Prove that if the straight line passing 
through the centre of gravity of the tetrahedron 
ABCD and the centre of the sphere inscribed in
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it intersects the edges AB  and CD, then \ AC \ =  
I BD I, \AD  I =  \BC |.

202. Given a cube ABCDA^B^Cfi^ Passed 
through the vertex A is a plane touching the 
sphere inscribed in the cube. Let M  and TV be 
the points of intersection of this plane and the 
lines AXB and A tD . Prove that the line MTV is 
tangent to the ball inscribed in the cube.

203. Prove that for a tetrahedron in which all 
the plane angles at one of its vertex are right 
angles the following statement holds true: the 
sum of the squared areas of rectangular faces is 
equal to the squared area of the fourth face (Py­
thagorean theorem for a rectangular tetrahedron).

204. Prove that the sum of the squared projec­
tions of the edges of a cube on an arbitrary plane 
is constant.

205. Prove that the sum of the squared projec­
tions of the edges of a regular tetrahedron on an 
arbitrary plane is constant.

206. Two bodies in space move in two straight 
lines with constant and unequal velocities. Prove 
that there is a fixed circle in space such that the 
ratio of distances from any point of this circle to 
the bodies is constant and is equal to the ratio 
of their velocities,

207. Given a ball and two points A and B 
outside it. Two intersecting tangents to the ball 
are drawn from the points A and B. Prove that 
the point of their intersection lies in one of 
the two fixed planes.

208. Three balls touch the plane of a given 
triangle at its vertices and are tangent to one 
another. Prove that if the triangle is scalene, 
then there exist two balls touching the three
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given balls and the plane of the triangle, and if 
r and p (p >  r) are the radii of these balls and R 
is the radius of the circle circumscribed about
the triangle, then ------ —=

209. Given a tetrahedron ABCD. One ball 
touches the edges AB  and CD at points A and C, 
the other at points B and D . Prove that the pro­
jections of AC and BD on the straight line passing 
through the centres of these balls are equal.

210. Is there a space pentagon such that a line 
segment joining any two nonadjacent vertices 
intersects the plane of the triangle formed by 
the remaining three vertices at an interior point 
of this triangle?

211. Prove that a pentagon with equal sides 
and angles is plane.

212. Given a parallelepiped ABCDAXBXCXDX 
whose diagonal ACX is equal to d and its volume 
to V. Prove that from the line segments equal 
to the distances from the vertices Ax, B, and D 
to the diagonal ACX it is possible to construct 
a triangle, and that if s is the area of this tri­
angle, then V =  2ds.

213. Given a tetrahedron ABCD in which Ax, 
Bx, Cx, Dx are the median points of the faces BCD, 
CD A, DAB , and ABC. Prove that there is a 
tetrahedron A J i 2C2D 2 in which the edges A 2B2, 
B2C2, C2D 2 and D 2A 2 are equal and parallel to 
the line segments AAX, BBXJ CCX, and DDX, re­
spectively. Find the volume of the tetrahedron 
A 2B2C2D 2 if the volume of the tetrahedron ABCD 
is equal to F.

214. Given a tetrahedron. Prove that there 
is another tetrahedron KLMN  whose edges K L ,
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LM, MN,  and N K  are perpendicular to the cor­
responding faces of the given tetrahedron, and 
their lengths are numerically equal to the areas 
of these faces. Find the volume of the tetrahedron 
KLMN  if the volume of the given tetrahedron is 
equal to V.

215. Given three intersecting spheres. Three 
chords belonging to different spheres are drawn 
through a point, situated on the chord common 
for all the three spheres. Prove that the end points 
of the three chords lie on one and the same sphere.

216. A tetrahedron A BCD is cut by a plane 
perpendicular to the radius of the circumscribed 
sphere drawn towards the vertex D . Prove that 
the vertices A, B, C and the points of intersec­
tion of the plane with the edges D A , DB , DC 
lie on one and the same sphere.

217. Given a sphere, a circle on the sphere, and 
a point P not belonging to the sphere. Prove that 
the other points of intersection of the lines, con­
necting the point P and the points on the given 
circle, form a circle with the surface of the sphere.

218. Prove that the line of intersection of two 
conical surfaces with parallel axes and equal an­
gles of axial sections is a plane curve.

219. Taken on the edges AB, BC, CD, and 
DA of the tetrahedron ABCD are points K , L, 
M,  and N  situated in one and the same plane. 
Let P be an arbitrary point in space. The lines 
P K , PL, PAf, and PN  intersect once again the 
circles circumscribed about the triangles PAB, 
PBC, PCD, and PDA at the points Q, R, S , and 
T, respectively. Prove that the points JP, Q, R, 
S , and T lie on the surface of a sphere.

220. Prove that the edges of a tetrahedral angle
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are elements of a cone whose vertex coincides with 
the vertex of this angle if and only if the sums 
of the opposite dihedral angles of the tetrahedral 
angle are equal to each other.

221. Given a hexagon all faces of which are 
quadrilaterals. It is known that seven of its 
eight vertices lie on the surface of one sphere. 
Prove that the eighth vertex also lies on the sur­
face of the same sphere.

222. Taken on each edge of a tetrahedron is an 
arbitrary point different from the vertex of the 
tetrahedron. Prove that four spheres each of which 
passes through one vertex of the tetrahedron and 
three points taken on the edges emanating from 
this vertex intersect at one point.

Section 3

Problems on Extrema. Geometric 
Inequalities

223. Given a dihedral angle. A straight line I 
lies in the plane of one of its faces. Prove that 
the angle between the line I and the plane of the 
other face is maximal when I is perpendicular to 
the edge of this dihedral angle.

224. In a convex quadrihedral angle, each 
of the plane angles is equal to 60°. Prove that 
the angles between opposite edges ncanot be all 
acute or all obtuse.

225. The altitude of a frustum of a pyramid is 
equal to hy and the area of the midsection is S .
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What is the range of change of the volume of this 
pyramid?

226. Find the greatest value of the volume of 
the tetrahedron inscribed in a cylinder the radius 
of whose base is R and the altitude is h.

227. The base of a rectangular parallelepiped 
ABCDA1B1C1D1 is a square ABCD. Find the 
greatest possible size of the angle between the 
line BDX and the plane BDCX.

228. In a regular quadrangular prism 
ABCDAXBXCXDX the altitude is one half the side 
of the base. Find the greatest size of the angle 
A XMCX, where M  is a point on the edge AB .

229. The length of the edge of the cube 
ABCDAXBXCXDX is equal to 1. On the extension 
of the edge AD , a point M  is chosen for the point D
so that | AM  | =  2 Y 2/5. Point E is the mid­
point of the edge A XBX, and point F is the mid­
point of the edge DDX. What is the greatest value 
that can be attained by the ratio | MP  |/| PQ |, 
where the point P lies on the line segment AE , 
and the point Q on the line segment CF1

230. The length of the edge of the cube 
ABCDAXBXCXDX is equal to a. Points E and F 
are the midpoints of the edges BBX and CCX, 
respectively. The triangles are considered whose 
vertices are the points of intersection of the plane 
parallel to the plane ABCD with the lines ACX, 
CE, and DF. Find the smallest value of the areas 
of the triangles under consideration.

231. Inscribed in a regular quadrangular pyra­
mid with side of the base and altitude equal to 1 
(each) is a rectangular parallelepiped whose base 
is in the plane of the base of the pyramid, and
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the vertices of the opposite face lie on the lateral 
surface of the pyramid. The area of the base of the 
parallelepiped is equal to s. What is the range 
of variation of the length of the diagonal of the 
parallelepiped?

232. The bases of a frustum of a pyramid are 
regular triangles ABC and A XBXCX 3 cm and 
2 cm on a side, respectively. The line segment 
joining the vertex Cx to the centre 0  of the base 
ABC is perpendicular to the bases; | Cx0  | =  3. 
A plane is passed through the vertex B and mid­
points of the edges A XBX and BXCX. Consider the 
cylinders situated inside the polyhedron 
ABCAXMNCX with bases in the face A XMNCX. 
Find: (a) the greatest value of the volumes of 
such cylinders with a given altitude h; (b) the 
maximal value of the volume among all cylin­
ders under consideration.

233. All edges of a regular triangular prism 
ABCAXBXCX have an equal length a. Consider 
the line segments with end points on the dia­
gonals BCX and CAX of the lateral faces parallel 
to the plane ABBXA X. Find the minimal length 
of such line segments.

234. Given a trihedral angle and a point inside 
it through which a plane is passed. Prove that the 
volume of the tetrahedron formed by the given 
angle and the plane will be minimal if the given 
point is the centre of gravity of the triangle which 
is the section of the trihedral angle by the plane.

235. The surface area of a spherical segment is 
equal to S (the spherical part of the segment is 
considered here). Find the greatest volume of 
this segment.

236. A cube with edge a is placed on a plane.



50 Problem s in  Solid G eom etry

A light source is situated at a distance b (b >  a) 
from the plane. Find the smallest area of the 
shadow thrown by the cube onto the plane.

237. Given a convex central-symmetric poly­
hedron. Consider the sections of this polyhedron 
parallel to the given plane. Check whether the 
following statements are true:

(1) the greatest area is possessed by the section 
passing through the centre;

(2) for each section consider the circle of smal­
lest radius containing this section. Is it true that 
to the greatest radius of such a circle there cor­
responds the section passing through the centre 
of the polyhedron?

238. What is the smallest value which can 
be attained by the ratio of the volumes of the 
cone and cylinder circumscribed about the same 
ball?

239. *Two cones have a common base and are 
arranged on different sides of it. The radius of 
the base is r, the altitude of one cone is h , of the 
other H (h ^  H). Find the maximal distance 
between two elements of these cones.

240. Given a cube ABCDA1B1CtD1 with edge a. 
Find the radius of the smallest ball which 
touches the straight lines ABi9 CD, and DA.

241. The diagonal of a cube whose edge is equal 
to 1 lies on the edge of a dihedral angle of size 
a (a <  180°). What is the range of variation 
of the volume of the portion of the cube enclosed 
inside this angle?

242. The lengths of the edges of a rectangular 
parallelepiped are equal to a, b, and c. What is 
the greatest value of the area of an orthogonal 
projection of this parallelepiped on a plane?
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243. The length of each of five edges of a tetra­
hedron is less than unity. Prove that the volume 
of the tetrahedron is less than 1/8.

244. The vertex E of the pyramid ABCE is 
found inside the pyramid ABCD. Check whether 
the following statements are true:

(1) the sum of the lengths of the edges AE, 
BE, and CE is less than that of the edges AD,  
BD, and CD',

(2) at least one of the edges AE, BE, CE is 
shorter than the corresponding edge AD, BD, 
or CD?

245. Let r and R be the respective radii of 
the balls inscribed in, and circumscribed about, 
a regular quadrangular pyramid. Prove that

->V2 + i

246. Let R and r be the respective radii of 
the balls inscribed in, and circumscribed about, 
a tetrahedron. Prove that R ^  3r.

247. Two opposite edges of a tetrahedron have 
lengths b and c, the length of the remaining edges 
being equal to a. What is the smallest value of 
the sum of distances from an arbitrary point in 
space to the vertices of this tetrahedron?

248. Given a frustum of a cone in which the 
angle between the generatrix and greater base 
is equal to 60°. Prove that the shortest path over 
the surface of the cone between a point on the 
boundary of one base and the diametrically op­
posite point of the other base has a length of 
2R, where R is the radius of the greater base.
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249. Let a, b, and c be three arbitrary vectors. 
Prove that
| a |  +  | b | + | c | + | a  +  b +  c |

^  ja +  bj  +  jb +  c |  +  j c +  a |.

250. Given a cube ABCDAtBiCiDi with edge a. 
Taken on the line AAt is a point Af, and on the 
line BC a point N  so that the line MN  intersects 
the edge CiDv  Find the smallest value of the 
quantity | MN  |.

251. The base of a quadrangular pyramid is 
a rectangle one side of which is equal to a, the 
length of each lateral edge of the pyramid is 
equal to b. Find the greatest value of the volume 
of such pyramids.

252. Given a cube ABCDAtBxCxDx with edge a. 
Find the length of the shortest possible segment 
whose end points are situated on the lines ABt 
and BCx making an angle of 60° with the plane 
of the face ABCD.

253. Three equal cylindrical surfaces of ra­
dius R  with mutually perpendicular axes touch 
one another pairwise.

(a) What is the radius of the smallest ball 
touching these cylindrical surfaces?

(b) What is the radius of the greatest cylinder 
touching the three given cylindrical surfaces, 
whose axis passes inside the triangle with vertices 
at the points of tangency of the three given 
cylinders?

254. Two vertices of a tetrahedron are situated
on the surface of the sphere of radius Y 10, and 
two other vertices on the surface of the sphere 
of radius 2 which is concentric with the first



Sec. 3. P roblem s on E x trem a 53

one. What is the greatest volume of such tetra­
hedrons?

255. Two trihedral angles are arranged so that 
the vertex of one of them is equidistant from 
the faces of the other and vice versa; the distance 
between the vertices is equal to a. What is the 
minimal volume of the hexahedron bounded by 
the faces of these angles if all the plane angles 
of one of them are equal to 60° (each), and those 
of the other to 90° (each)?

256. What is the greatest volume of the tetra­
hedron ABCD all vertices of which lie on the 
surface of a sphere of radius 1, and the edges 
AB , 5C, CD, and DA are seen from the centre 
of the sphere at an angle of 60°?

257. Given a regular tetrahedron with edge a. 
Find the radius of such a ball with centre at the 
centre of the tetrahedron for which the sum of 
the volumes of the part of the tetrahedron found 
outside of the ball and the part of the sphere 
outside of the tetrahedron reaches its smallest 
value.

258. Prove that among triangular pyramids 
with a given base and equal altitudes the smal­
lest lateral surface is possessed by the one whose 
vertex is projected into the centre of the circle 
inscribed in the base.

259. Given a cube with edge a. Let N be 
a point on the diagonal of a lateral face, M  
a point on the circle found in the plane of the 
base having its centre at the centre of the base 
and radius (5/12)wa. Find the least value of the 
quantity | MN  |.

260. (a) The base of the pyramid SABC is
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a triangle ABC in which BAC =  A , CBA =  Bg 
the radius of the circle circumscribed about it is 
equal to R . The edge SC is perpendicular to the 
plane ABC. Find | SC | if it is known that 
1/sin a +  1/sin P — 1/sin 7  =  1, where a , p, 
and y are angles made by the edges SA , SB , 
and SC with the planes of the faces SBC, SAC, 
and SAB , respectively.

(b) Let a, p, and y be angles made by the 
edges of a trihedral angle with the planes of 
opposite faces. Prove that 1/sin a +  1/sin P — 
1/sin y >  1.

261. Can a regular tetrahedron with edge 1 
pass through a circular hole of radius: (a) 0.45; 
(b) 0.44? The thickness of the hole may be neg­
lected.

Section 4

Loci of Points
262. Prove that in an arbitrary trihedral 

angle the bisectors of two plane angles and the 
angle adjacent to the third plane angle lie in 
one plane.

263. Prove that if the lateral surface of a cy­
linder is cut by an inclined plane, and then it 
is cut along an element and developed on a plane, 
the line of intersection will represent a sinu­
soid. *

264. Given on the surface of a cone is a line 
different from an element and such that any



Sec. 4. Loci o! Poin ts 55

two points of this line can be connected with 
an arc belonging to this line and representing 
a line segment on the development. How many 
points of self-intersection has this line if the 
angle of the axial section of the cone is equal 
to a?

265. Three mutually perpendicular lines pass 
through the point 0. A , B , and C are points 
on these lines such that
| OA | =  | OB | =  | OC |.
Let Z be an arbitrary line passing through 0 ; 
A 1<t Bv  and Cx points symmetric to the points 
A , B , and C with respect to Z. Through A x, Bx, 
and Cx three planes are drawn perpendicular 
to the lines OA, OB, and OC, respectively. 
Find the locus of points of intersection of these 
planes.

266. Find the locus of the midpoints of line 
segments parallel to a given plane whose end 
points lie on two skew lines.

267. Given three pairwise skew lines. Find:
(a) the locus of centres of gravity of triangle^ 

ABC with vertices on these lines;
(b) the locus of centres of gravity of triangles 

ABC with vertices on these lines whose planes 
are parallel to a given plane.

268. Three pairwise skew lines Z3, l 2} Z3 are 
perpendicular to one and the same straight line 
and intersect it. Let N  and M  be two points 
on the lines Z3 and Z2 such that the line NM  
intersects the line Z3. Find the locus of midpoints 
of line segments NM.

269. Given in space are several arbitrary lines 
and a point A.  Through A a straight line is
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drawn so that the sum of the cosines of the acute 
angles made by this line with the given ones 
is equal to a given number. Find the locus of 
such lines.

270. Given a triangle ABC and a straight 
line L Ax, Bx, and Cx are three arbitrary points 
on the line L Find the locus of centres of gravity 
of triangles with vertices at the midpoints of 
the line segments AAX, BBXy CCX.

271. Given a straight line I and a point A . 
Through A an arbitrary line is drawn which is 
skew with I. Let MN be a common perpendicular 
to this line and to I (M  lies on the line passing 
through A), Find the locus of points M.

272. Two spheres a and |3 touch a third sphere 
0) at points A and B. A point M  is taken 
on the sphere a, the line MA pierces the sphere 
0) at point N , and the line NB pierces the 
sphere |3 at point K. Find the locus of such 
points M  for which the line MK  touches the 
sphere |3.

273. Given a plane and two points on one 
side of it. Find the locus of centres of spheres 
passing through these points and touching the 
plane.

274. Find the locus of midpoints of common 
tangents to two given spheres.

275. Two lines lx and l z touch a sphere. Let M  
and N  be points on lx and Z2 such that the line 
MN  also touches the same sphere. Find the 
locus of points of tangency of the IineT,A/7V 
with this sphere.

276. Given in space are a point 0  and two 
straight lines. Find the locus of points M  such 
that the sum of projections of the line segment
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OM on the given lines is a constant quantity.
277. Given in space are two straight lines and 

a point A on one of them; passed through the 
given lines are two planes making a right dihed­
ral angle. Find the locus of projections of the 
point A on the edge of this angle.

278. Given three intersecting planes having 
no common line. Find the locus of points such 
that the sum of distances from these points to 
the given planes is constant.

279. Given a triangle ABC. On the straight 
line perpendicular to the plane ABC and passing 
through A an arbitrary point D is taken. Find 
the locus of points of intersection of the altitudes 
of triangles DBC.

280. Given three intersecting planes and 
a straight line 1. Drawn through a point M  
in space is a line parallel to I and piercing the 
given planes at points A, 5 , and C. Find the 
locus of points M  such that the sum | AM  | +
| BM  | +  | CM | is constant.

281. Given a triangle ABC. Find the locus of 
points M  such that the straight line joining the 
centre of gravity of the pyramid ABCM to the 
centre of the sphere circumscribed about it 
intersects the edges AC and BM.

282. A trihedral angle is cut by two planes 
parallel to a given plane. Let the first plane cut 
the edges of the trihedral angle at points A, B , 
and C, and the second at points Ax, Bx, and Cx 
(identical letters denote points belonging to one 
and the same edge). Find the locus of points 
of intersection of the planes ABCX, ABXC, and 
AXBC.

283. Given a plane quadrilateral ABCD. Find
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the locus of points M  such that the lateral surface 
of the pyramid ABCDM can be cut by a plane 
so that the section thus obtained is: (a) a rectan­
gle, (b) a rhombus, (c) a square; (d) in the pre­
ceding case find the locus of centres of squares.

284. Given a plane triangle ABC. Find the 
locus of points M  in space such that the straight 
line connecting the centre of the sphere circum­
scribed about ABCM with G as the centre of 
gravity of the tetrahedron ABCM is perpendic­
ular to the plane AMG.

285. A circle of constant radius displaces 
touching the faces of a  trihedral angle all the 
plane angles of which are equal to 90° (each). 
Find the locus of centres of these circles.

286. A spider sits in one of the vertices of 
a cube whose edge is 1 cm long. It crawls over 
the surface of the cube with a speed of 1 cm/s. 
Find the locus of points on the surface of the 
cube such that can be reached by the spider in 
two seconds.

287. Given a trihedral angle each of whose 
plane angles is equal to 90°, 0  is the vertex of 
this angle. Consider all possible polygonal lines 
of length a beginning at the point 0  and such 
that any plane parallel to one of the faces of 
the angle cuts this polygonal line not more than 
at one point. Find the locus of end points of 
this polygonal line.

288. Given a ball with centre 0 . Let ABCD 
be the pyramid circumscribed about it for which 
the following inequalities are fulfilled: | OA | ^  
| OB | ^  | OC | ^  | OD |. Find the locus of 
points J4, 5 , C, and D.

289. Given a triangle ABC. Find the locus of
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points M  in space such that from the line seg­
ments M A , Af5, and MC a right triangle can 
be formed.

290. On the surface of the Earth there are 
points the geographical latitude of which is 
equal to their longitude. Find the locus of the 
projections of all these points on the plane of 
the equator.

291. Given a right circular cone and a point A 
outside it found at a distance numerically equal 
to the altitude of the cone from the plane of its 
base. Let M  be a point on the cone such that 
a beam of light emanating from A towards M, 
being mirror-reflected by the surface of the cone, 
will be parallel to the plane of the base. Find 
the locus of projections of points M  on the plane 
of the base of the cone.

292. Drawn arbitrarily through a fixed point P 
inside a ball are three mutually perpendicular 
rays piercing the surface of the ball at points 
A,  5 , and C. Prove that the median point of 
the triangle ABC and the projection of the 
point P on the plane ABC describe one and the 
same spherical surface.

293. Given a trihedral angle with vertex 0  
and a point TV. An arbitrary sphere passes 
through 0  and TV and intersects the  ̂edges of 
the trihedral angle at points A, 5 , and C. Find 
the locus of centres of gravity of triangles ABC.

An Arbitrary Tetrahedron
294. Given an arbitrary tetrahedron and 

a point TV. Prove that six planes each of which 
passes through one edge of the tetrahedron and
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is parallel to the straight line joining N  to 
the midpoint of the opposite edge intersect at 
one point.

295. Prove that six planes each of which 
passes through the midpoint of one edge of the 
tetrahedron and is perpendicular to the opposite 
edge intersect at one point (Mongers point).

296. Prove that if Monge’s point lies in the 
plane of some face of a tetrahedron, then the 
foot of the altitude dropped on this face is found 
on the circle described about it (see the preced­
ing problem).

297. Prove that the sum of squared distances 
from an arbitrary point in space to the vertices 
of a tetrahedron is equal to the sum of squared 
distances between the midpoints of opposite 
edges and quadruple square of the distance 
from the point to the centre of gravity of the 
tetrahedron.

298. Prove that there are at least five and 
at most eight spheres in an arbitrary tetrahedron 
each of which touches the planes of all its faces.

299. ABCD is a three-dimensional quadrilat­
eral (A , 5 , C, and D do not lie in one plane). 
Prove that there are at least eight balls touching 
the lines AB , BC, CD, and DAT  Prove also 
that if the sum of some two sides of the given 
quadrilateral is equal to the sum of two other 
sides, then there is an infinitude of such balls.

300. Prove that the product of the lengths 
of two opposite edges of a tetrahedron divided 
by the product of the sines of the dihedral angles 
of the tetrahedron corresponding to these edges 
is constant for a given tetrahedron (theorem of 
sines).
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301. Let R t, lt (i =  1, 2, 3, 4) denote 
respectively the areas of faces, the radii of the 
circles circumscribed about these faces, and the 
distances from the centres of these circles to the 
opposite vertices of a tetrahedron. Prove that 
for the vertices of the tetrahedron the following 
formula is valid:

302. Given an arbitrary tetrahedron. Prove 
that there exists a triangle whose sides are numer­
ically equal to the products of the lengths of 
the opposite sides of the tetrahedron. Let S 
denote the area of this triangle, V the volume 
of the tetrahedron, R the radius of the sphere 
circumscribed about it. Then the following equal­
ity takes place: S =  6VR (Crelle's formula).

303. Let a and b denote the lengths of two 
skew edges of a tetrahedron, a and |3 the sizes 
of the corresponding dihedral angles. Prove that 
the expression
a2 +  b% +  2ab cot a cot [3
is independent of the choice of the edges (Bret- 
schneider's theorem).

An Equifaced Tetrahedron
304. A tetrahedron is said to be equifaced if all 

of its faces are congruent triangles or, which is 
the same, if opposite edges of the tetrahedron 
are pairwise equal. Prove that for a tetrahedron

r — 4
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to be equifaced, it is necessary and sufficient 
that any of the following conditions he fulfilled:

(a) the sums of plane angles at any of the three 
vertices of a tetrahedron are equal to 180°;

(b) the sums of plane angles at some two verti­
ces of a tetrahedron are equal to 180°, and, be­
sides, some two opposite edges are equal;

(c) the sum of plane angles at some vertex 
of a tetrahedron is equal to 180°, and, besides, 
the tetrahedron has two pairs of equal opposite 
edges;

(d) the following equality is fulfilled ABC =

ADC =  BAD =  BCD,
tetrahedron;

where A BCD is a given

(e) all the faces are equivalent;
(f) the centres of the inscribed and circum­

scribed spheres coincide;
(g) the line segments joining the midpoints 

of opposite edges are perpendicular;
(h) the centre of gravity coincides with the 

centre of the circumscribed sphere;
(i) the centre of gravity coincides with the 

centre of the inscribed sphere.
305. Prove that the sum of cosines of the 

dihedral angles of a tetrahedron is positive and 
does not exceed 2, the equality of this sum to 2 is 
characteristic only of equifaced tetrahedrons.

306. The sum of the plane angles of a trihedral 
angle is equal to 180°. Find the sum of the co­
sines of the dihedral angles of this trihedral angle.

307. Prove that for an equifaced tetrahedron
(a) the radius of the inscribed ball is half the

radius of the ball which touches one face of the
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tetrahedron and the extensions of three other 
faces (such ball is called externally inscribed)*

(b) the centres of four externally inscribed 
balls are the vertices of a tetrahedron congruent 
to the given one.

308. Let h denote the altitude of an equifaced 
tetrahedron, hx and h2 the line segments into 
which one of the altitudes of a face is divided 
(by the point of intersection of the altitudes of 
this face). Prove that h? =  Ahjtz- Prove also 
that the foot of the altitude of the tetrahedron 
and the point of intersection of the altitudes of 
the face on which this altitude is dropped are 
symmetric with respect to the centre of the 
circle circumscribed about this face.

309. Prove that in an equifaced tetrahedron 
the feet of the altitudes, the midpoints of the 
altitudes, and the points of intersection of the 
altitudes of faces lie on the surface of one and 
the same sphere (12-point sphere).

310. A circle and a point M  are given in 
a plane. The point lies within the circle less 
than 1/3 of the radius from its centre. Let ABC 
denote an arbitrary triangle inscribed in a given 
circle with centre of gravity at the point M . 
Prove that there are two fixed points in space 
(D and D ') symmetric with respect to the given 
plane such that the tetrahedrons ABCD and 
A BCD' are equifaced.

311. A square ABCD is given in a plane. 
Two points P and Q are taken on the sides BC 
and CD so that | CP | +  | CQ \ =  \ AB |. Let M  
denote a point in space such that in the tetra­
hedron APQM  all the faces are congruent trian-
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gles. Determine the locus of projections of points 
M  on the plane perpendicular to the plane of 
the square and passing through the diagonal AC.

An Orthocentric Tetrahedron
312. In order for the altitudes of a'tetrahedron 

to intersect at one point (such a tetrahedron is 
called orthocentric), it is necessary and suffi­
cient that:

(a) opposite edges of the tetrahedron be mu­
tually perpendicular;

(b) one altitude of the tetrahedron pass through 
the point of intersection of the altitudes of the 
base;

(c) the sums of the squares of skew edges be 
equal;

(d) the line segments connecting the midpoints 
of skew edges be of equal length;

(e) the products of the cosines of opposite 
dihedral angles be equal;

(f) the angles between opposite edges be equal.
313. Prove that in an orthocentric tetrahedron 

the centre of gravity lies at the midpoint of the 
line segment joining the centre of the circum­
scribed sphere to the point of intersection of the 
altitudes.

314. Prove that in an orthocentric tetrahedron 
the following relationship is fulfilled:
| OH |2 =  4-ft2 -  3Z2,

where O denotes the centre of the circumscribed 
sphere, H  the point of intersection of the alti­
tudes, R  the radius of the circumscribed sphere,
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I the distance between the midpoints of the 
skew edges of the tetrahedron.

315. Prove that in an orthocentric tetrahedron 
the plane angles adjacent to one vertex are all 
acute or all obtuse.

316. Prove that in an orthocentric tetrahedron 
the circles of nine points of each face belong 
to one sphere (24-point sphere).

317. Prove that in an orthocentric tetrahedron 
the centres of gravity and the points of inter­
section of the altitudes of faces, as well as the 
points dividing the line segments of each alti­
tude of the tetrahedron from the vertex to the 
point of intersection of the altitudes in the ratio 
2 : 1 ,  lie on one and the same sphere (12-point 
sphere).

318. Let H  denote the point of intersection of 
altitudes of an orthocentric tetrahedron, M  
the centre of gravity of some face, and N one 
of the points of intersection of the line HM  
with the sphere circumscribed about the tetra­
hedron (M lies between H  and N). Prove that 
| MN | =  2 | HM  |.

319. Let G denote the centre of gravity of an 
orthocentric tetrahedron, F the foot of a certain 
altitude, K  one of the points of intersection of 
the straight line FG with the sphere circumscribed 
about the tetrahedron (G lies between K  
and F). Prove that | KG | =  3 | FG |.
An Arbitrary Polyhedron. The Sphere

320. Prove that on a sphere it is impossible 
to arrange three arcs of great circles 300° each 
so that no two have common points.

321. Prove that the shortest line connecting
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two points on the surface of a sphere is the 
smaller arc of the great circle passing through 
these points. (Considered here are lines passing 
over the surface of the sphere.)

322. Given a polyhedron with equal edges 
which touch a sphere. Check to see whether 
there always exists a sphere circumscribed about 
this polyhedron.

323. Find the area of the triangle formed by 
the surface of a sphere of radius R intersecting 
a trihedral angle whose dihedral angles are 
equal to a, p, and y, and whose vertex coincides 
with the centre of the sphere.

324. Let M  denote the number of faces, K  the 
number of edges, N  the number of vertices of 
a convex polyhedron. Prove that
M  -  K  +  N =  2.
(Euler was the first to obtain this relationship; 
it is true not only for convex polyhedra, but 
also for a broader class of so-called simply-con­
nected polyhedra.)

325. Given on the surface of a sphere is a cir­
cle. Prove that of all spherical n-gons containing 
the given circle inside themselves, a regular 
spherical n-gon has the smallest area.

326. Prove that in any convex polyhedron 
there is a face having less than six sides.

327. Prove that in any convex polyhedron 
there is either a triangular face or a vertex at 
which three edges meet.

328. Prove that a convex polyhedron cannot 
have seven edges. Prove also that for any n ^  Qx 
n ^ l  there is a polyhedron having n edges.

329. Prove that in any convex polyhedron
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there are two faces with equal number of sides.
330. Found inside a sphere of radius 1 is 

a convex polyhedron all dihedral angles of which 
are less than 2n/3. Prove that the sum of the 
lengths of the edges of this polyhedron is less 
than 24.

331. The centre of a sphere of radius R is 
situated outside a dihedral angle of size a at 
a distance a (a <Z R) from its edge and lies in 
the plane of one of its faces. Find the area of 
the part of a sphere enclosed inside the angle.

332. A ball of radius R touches the edges of 
a tetrahedral angle each of whose plane angles 
is equal to 60°. The surface of the ball inside 
the angle consists of two curvilinear quadrilat­
erals. Find the areas of these quadrilaterals.

333. Given a cube with edge a. Determine the 
areas of the parts of the sphere circumscribed 
about this cube into which it is separated by 
the planes of the faces of the cube.

334. Given a convex polyhedron. Some of its 
faces are painted black, no two painted faces 
having a common edge, and their number being 
more than half the number of all the faces of 
the polyhedron. Prove that it is impossible to 
inscribe a ball in this polyhedron.

335. What is the greatest number of balls 
with a radius of 7 that can simultaneously touch 
a ball with a radius of 3 without intersecting 
one another.

An Outlet into Space

336. Taken on the sides BC and CD of the 
square ABCD are points M  and N  so that
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| CM | +  | CN | *= | AB |. The lines AM  and 
AN  divide the diagonal BD into three segments. 
Prove that a triangle can always bo formed from 
these segments, one angle of this triangle being 
equal to 60°.

337. Given in a plane are a triangle ABC and 
a point P. A straight line I intersects the lines 
AB , BC, and CA at points CX1 A x, and 2?x, 
respectively. The lines JPCX, PAlf and PBt 
intersect the circles circumscribed respectively 
about the triangles PAB, PBC, and PAC at 
the respective points C2, A 2, and B2, different 
from the point P . Prove that the points P, A 2, 
B 2l C% lie on one and the same circle.

338. Prove that the diagonals, connecting 
opposite vertices of the hexagon circumscribed 
about a circle, intersect at one point {Brianchon's 
theorem).

339. Two triangles A1B1C1 and A%B2C% are 
arranged in a plane so that the lines A xA 2l BtB2, 
and CXC% intersect at one point. Prove that the 
three points of intersection of the following 
three pairs of lines: ArBx and A 2B2y B1C1 and 
B 2C21 C\AX and C2Az are collinear (that is, in 
one straight line) (Desargues' theorem).

340. Three planes in space intersect along one 
straight line. Three trihedral angles are arranged 
so that their vertices lie on this line, and the 
edges in the given planes (it is supposed that the 
corresponding edges, that is, the edges lying 
in one plane, do not intersect at one point). 
Prove that the three points of intersection of 
the corresponding faces of these angles are col­
linear.
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Section 1

l.

5. J t- 2b *
ca

4a2.

(0 * 2  
’\T> '

8. The statem ent of the problem is obvious for a tri­
angle whose one side lies on the line of intersection of the 
planes a  and p. Then it  is  possible to prove its  va lid ity  
for an arbitrary triangle, and then also for an arbitrary 
polygon.

9. Take the triangles ABXC\ and AB2C2 for the bases 
of the pyram ids AB1C1D1 and AB2C2D 2.

10. The angles under consideration are equal to the 
angles formed by the diagonal of some rectangular parallel­
epiped w ith three edges emanating from its end point.

12. Consider the parallelepiped formed by the planes 
passing through the edges of the tetrahedron parallel to 
opposite edges. (This method of com pleting a tetrahedron 
to get a parallelepiped w ill be frequently used in further 
constructions.) The volume of the tetrahedron is equal 
to one third the volume of the parallelepiped (the planes 
of the faces of the tetrahedron cut off the parallelepiped  
four triangular pyram ids, the volume of each of them  
being equal to one sixth  the volume of the parallelepiped), 
and the volume of the parallelepiped is readily expressed 
in terms of the given quantities, since the diagonals of its 
faces are equal and parallel (or, sim ply, coincide) to the 
corresponding edges of the tetrahedron, and the altitude 
of the parallelepiped is equal to the distance between the 
corresponding edges of the tetrahedron.

13. It is easy to see that each of these relationships 
(between the areas of the faces and the line segments of
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the edge) is equal to the ratio of the volumes of two tetra­
hedrons into which the given tetrahedron is separated by 
the bisecting plane.

14. Joining the centres of the sphere to the vertices 
of the polyhedron, divide it into pyramids whose bases are 
the faces of the polyhedron, and whose altitudes are equal 
to the radius of the sphere.

15. It is easy to verify the validity of the given for­
mula for a tetrahedron. Here, two cases must be consid­
ered: (1) three vertices of the tetrahedron lie in one plane 
and one vertex in the other; (2) two vertices of the tetra­
hedron lie in one plane and two in the other. In the second 
case, use the formula for the volume of a tetrahedron from 
Problem 12. ^

Then note that an arbitrary convex polyhedron can be 
broken into tetrahedrons whose vertices coincide with 
those of the polyhedron. This statement is sufficiently 
obvious, although its proof is rather awkward. Moreover, 
the suggested formula is also true for nonconvex polyhedra 
of the.indicated type, as well as for solids enclosed between 
two parallel planes for which the area of the section 
by a plane parallel to these planes is a quadratic function 
of the distance to one of them. This formula is named 
Simpson's formula.

16. Since the described frustum of a cone may be consid­
ered as the limit of frustums of pyramids circumscribed 
about the same sphere, for the volume of a frustum of a 
cone the formula from Problem 14 holds true.

17. First prove the following auxiliary statement. 
Let the line segment AB  rotate about the line I (I does not 
intersect AB).  The perpendicular erected to AB  at the 
midpoint of AB  (point C) intersects the line I at point 0\  
MN  is the projection of AB  on the line I. Then the area of 
the surface generated by revolving AB  about I is equal to 
2ji | CO | • | M N  | .

The surface generated by revolving AB  represents the 
lateral surface of the frustum of a cone with radii of the 
bases BN  andi4M , altitude | M N  |, and generatrix AB,  
Through A draw a straight line parallel to Z, and denote 
by L the point of its intersection with the perpendicular 
BN  dropped from B on Z, | MN \ =  \ AL  j. Denote the 
projection of C on Z by K. Note that the triangles ABL  
and COK are similar to each other. This taken into 
consideration, the lateral surface of the frustum of a cone
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ia equal to

2ji | BN  | + 1 AM |  ̂( ^  | = 2 j l | CK | • | AB |

=  2ji | CO | - |  AL | = 2 j i | CO | *| M N  |.

Now, with the aid of the limit passage, it is easy to get the 
statement of our problem. (If the spherical zone under
consideration is obtained by revolving a certain arc AB  
of a circle about its diameter, then the surface area of 
this zone is equal to the lim it of the area of the surface 
generated by rotating about the same diameter the polygo­
nal line A L iL2, . .LnB all vertices of which lie on AB  pro­
vided that the length of the longest link tends to zero.)

18. Let AB  be the chord of the given segment, and O 
the centre of the circle. Denote by x the distance from O 
to A B , and by R the radius of the circle. Then the volume 
of the solid generated by rotating the sector AOB about 
the diameter will be equal to the product of the area of
the surface obtained by revolving the arc AB  (see Problem 
17) by R/3, that is, this volume is equal to

— 2jtR2h =  ji +  k =  -^-na2 h-\- — nx2 h.

But the second term is equal to the volume of the solid 
generated by revolving the triangle A OC about the dia­
meter (see the solution of Problem 17). Hence, the first term 
is just the volume of the solid obtained by revolving 
the given segment.

19. Place equal loads at the vertices of the pyramid; 
to find the centre of gravity of the system, you may proceed 
as follows: first find the centre of gravity of three loads 
and then, placing a triple load at the found point, find 
the centre of gravity of the entire system. You may also 
proceed in a different way: first find the centre of grav­
ity of two loads, then of two others and, finally, the 
centre of gravity of the whole system. You may not resort 
to a mechanical interpretation, but, simply, consider the 
triangle formed by two vertices of the tetrahedron and 
the midpoint of the opposite edge.

21. Through each edge of the tetrahedron pass a plane 
parallel to the opposite edge (see the solution of Prob-
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lem 12). These planes form a parallelepiped whose edges 
are equal to the distances between the midpoints of the 
skew edges of the tetrahedron, and the edges of the tetra- 
hedron themselves are the diagonals of its faces. Then 
take advantage of the fact that in an arbitrary parallelo­
gram the sum of the squared lengths of the diagonals is 
equal to the sum of the squared lengths of its sides.

22. If M  is the midpoint of BBly then A XM  is parallel 
to CK.  Consequently, the desired angle is equal to the 
angle M AXD. On the other hand, the plane A ±D M  is paral­
lel to CK , hence, the distance between CK  ancL^D  is 
equal to the distance from the point K  to the plane A XDM.  
Denote the desired distance by x, and the dihedral angle 
by q). Then we have

1 1
V A i M D K  =  S A iM D pc =  Y  S A i K D a

d9 

12

Hence x a8
4SA iM D

. Find the sides of A  A±MD:

a V *5
\ A 1 D \ = a Y  2, 1 ^ 1 = - — ^ , | 0 A / | = | a .

By the theorem of cosines, we find cos q> — — thus
Y  io

’AiMD
3 2 a

~  4 a ’ X~ 3 *

Answer: arccos — .y io 3
23. This problem can be solved by the method applied 

in Problem 22. Here, we suggest another method for deter­
mining the distance between skew medians. Let ABCD be 
the given tetrahedron, K  the midpoint of A B , M  the 
midpoint of AC. Project the tetrahedron on the plane 
passing through AB  perpendicular to CK. The tetrahedron 
is projected into a triangle ABDX, where D̂  is the projec­
tion of D* If Mi is the projection of M (Mx is the midpoint 
of AK)j  then the distance between the lines CK and DM  
is equal to the distance from the point K  to the line D 1 M l. 
The distance is readily found, since D 1 K M 1 is a right
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triangle in which the legs DXK  and K M X are respectively
equal to a l/"2/3 (altitude of the tetrahedron) and a/4.

The problem has two solutions. To get the second solu­
tion, consider the medians CK and B N , where N  is the mid­
point of DC.

Answer: arccos * o
24. It follows from the hypothesis that the quadrilat­

eral ABCD is not convex.

Answer: .

i  /" 2 . 2 V 10
’ a Y  3 5  and arccos-g-, a —

25.

28.

30.

(2b ± a ) a  41ji Y 41
2 / ^  384

27. a
7_
8 ‘

/
• n 2 O/T

2a 6---- j - .  29. —  a2.

2 + / 3 .  31.

32.
3ah

3a +  h (3 + 2  / 3 )
33. 2 arccos |s in  a  sin

34. 12F. 35. 6i?2—2a2. 36. . 37. arctan (2 — l / 3 ) .

1
38. If 0 <  a  <  arccos -j- ,

Z= J? 27 +  3 tan2 —  f  arctan ^3 cot — ) — a ]  ;

if a  ^  arccos t , Z =  0.4

39. 2 5 :2 0 :9 . 40. arcct's (2— / 5 ) .  41.

42. Denote the side of the base and the altitude of the 
prism by a, | KB  | ~  x. It follows from the hypothesis 
that the projection of K M  on the plane of the base is paral­
lel to the bisector of the angle C of the triangle ABC , that 
is, | B XM  | =  2jt, | MCX | =  a — 2x. Let be the pro-
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jection of L on AC* It is also possible to obtain from the

hypothesis that LLX =  | A L X\ I LXC | =  a — 2x.

Consequently, the quantity | ALX | can take on the follow­
ing values: (1) | A L X \ =  a — | MCX \ =  a — (a —
2x) =  2x\ (2) | ALi  | =  a +  (a —  2x) =  2 (a — x). In 
the first case | KL  Is =  I KL 1  |2 +  \LLX | 2 =  a2 +  
10x2 —4ax; in the second | KL  |2 =  6 (a — x)2.

In both cases | K M  |2 =  3X2 +  a2.
Solving two systems of equations, we get two respec­

tive values for a:

ai 7 / 6 +  V 14
/ 9 7  ’ “2 ' 8

Answer: —==r / 6 +  Y 14

43. arctan

/  97

j / f .

8

44. Extend the lateral faces until they intersect. 
In doing so, we obtain two similar pyramids whose bases 
are the oases of the given frustum of a pyramid. Let a be 
the side of the greater base of the frustum, and a  the dihed­
ral angle at this base. We can find: the altitude of the

greater pyramid h =  a Y3.  tan a , the radius of the inscribed6
ball r =

mid

1^1 tan the altitude of the smaller pyra- 2 2’
=  h — 2 r =  ( tan a  — 2 tan — \ , the side

6 I 2 /

=  a

h  =

of the smaller base a, =  ~ a =  a —h

lateral edge of the greater pyramid I

tan a  — 2 tan 2
--------------------- ? , the

tan a

=  fOO* Y tan2® + 4 ,  0
the lateral edge of the smaller pyramid =  I then

i t
take advantage of the condition of existence of a ball 
touching all the edges of a frustum of a pyramid. This
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condition is equivalent to the existence of a circle inscribed 
in a lateral face, that is, the following equality must 
be fulfilled:
2  (i — y  =  a +  «i*
Expressing Z, ax, in terms of a and a , we get the equa­
tion

— ■— Y tan2 a + 4 -ta n  tan a  — tan —f-.o 2 2

Hence we find ta n -^ -= ]^ 3 — 1^2.

Answer: 2 arctan ( |^ 3 — Y 2).
- 1  +  / 5  ^ . 1  +  / 5

45. -------g------ < a < ------2------’

v =  Y(a* +  1) (3a2 — 1 — a4) .

« ¥* i;

4 6  3—c o s a —cos P—cosy 
3 +  cos a + c o s  p + co s  y *

47. If 0 <  a  <  -5- , then 5  =  ^  ^  ; if -5- <  a  <  6 * 2 cos a  6

6 cos a

2 ]^3 cot2 a); if arctan - yL ^  a  <  , then 5 =

( l8 c o ta  —3 l/*3—arctan
/  3

-  * then

a‘
Y  § sin a

(]/"3+cot a ) .

/ a262 +  62c2 — c2a2/Q / a262 +  62c2 — c2a2 \
48. arccos^ a26 2 +  62c2 + c 2a 2 ) •
49. The polyhedron ABMDCN  is a triangular prism 

with base ABM  and lateral edges A D , Z?C, A/7V.
Answer: Y 4a2 — b2.

50. R Y  —
2 /  4c2—a2—62 '
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51. - t  /  3m*+3n®+3p®— a2—62— c2.

52. On the extension of the edge CC1 take a point K  
so that ByK is parallel to BCls ana through the edge BBX 
pass a plane parallel to the given (Fig. 1). This plane

Fig. 1

must pass either through the internal or external bisector 
of the angle DBXK . Since the ratio in which the plane 
passing through BBX divides D K X is equal to the ratio in 
which it divides DC, two cases are possible: (1) the plane 
passes through a point N  on the edge DC such that
| D N  |/J NC | =  / 3 / / 2 ,  or (2) it passes through a point 
M _on its extension, and once again | D M  |/ | MC \ =  
Y % / Y  2. Find the distance from the point K  to the first 
plane. It is equal to the distance from the point C to the 
line BN.  If this distance is then

x =  BN C  ___________ a Y 2___________

1 BN  1 ( / 3 + / 2 ) l / 1 1 - 4 / 0

_ a( / 6 —1 ) / 2
— 5
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and

sin<p= x
i ¥ i

/ 6 - 1  
5 ’

where (p is the angle between the plane BBXN  and lines 
BXD and BXK . The other angle is found exactly in the 
same manner.

Answer: arcsin /  6±1  
5

53. Let ABCD be the given pyramid whose lateral 
edges are: | DA\ =  a, | DB \ =  xf \ DC  | =  y; by the 
hypothesis, these edges are mutually perpendicular, and 
x +  y =  a. It is easy to find that

S a b c = - ^  V a 2 (x2 + y 2) +  x2 y2, VABCD=  -^axy.

On the other hand, if R  is the radius of the required ball, 
then

BCD =  ̂ g- (SdAB+SDbc +  Sdca~ SABc)

= - y  [ax-\- ay xy— a2 (x2+ y 2) + x 2y2]

= - y  (a ^+ xy— V a * - 2 x y a 2+ x 2y2) =  ^ - x y .

Equating the two expressions for Va b c d * we find =  y  %
$*^54. It follows from the hypothesis that the vertex S 
is projected either into the centre of the circle inscribed 
in the triangle ABC  or into the centre of the circle exter­
nally inscribed in it. (An j£ externally inscribed circle 
touches one side of the triangle and the extensions of two 
other sides of the triangle.) 2

Answer: if ——  •< 6 ^  a, then F = -pr]/^ 362—a2; if 
V 3 12

a <  b ^  a |^ 3 , two answers are possible:
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if b >  a ] / 3 ,  three answers are possible:

vt = - ? - ^ l Y b i = w .

55. Let the angles SAB, SCAf SAC , SBA be equal to 
a  — 2q>, a  — <p, a , a  +  ©, respectively. By the theorem 
of sines, from the triangle SAB  we find

I SA | =  | AB | sin ( a + y )  
sin (2a— (p) »

and from the triangle SAC  we find:

I S A \ = \ C A \ sin (a — q?) 
sin (2a— <p) *

But, by the hypothesis, | AB \ =  \ AC  |. Hence, sin (a +  
<p) =  sin (a — <p), whence a  =  ji/2. The condition 
relating the areas of the triangles SAB , ABC , and SAC  
leads to the equation cot2 <p cos 2<p =  1, whence <p =
-̂arccos (}^2—l).

Answer: -5.—arccos (V"2—l), 
6 y —ja r cco sfy ^ — l) .

T ’ - f - + | ' arccos(l/r2—l).
56. Let | SA | =  /, I is readily expressed in terms of a, 

a , and p. If / <  a, then A  ASC =  A  A S B . (Construct 
the triangle A .SC: take an angle of size a  with vertex S, 
lay off on one side | SA \ =  /, construct a circle of ra­
dius a centred at A;  since a >  /, this circle w ill intersect 
the second side of the angle at one point.) And if I >  a, 
two cases are then possible: A  A SC =  A  ASB  and

ACS =  a  +  p. The line segment I w ill be less than, 
equal to, or greater than a according as 2a +  P is greater 
than, equal to, or less than n.
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Besides, in both cases the plane angles adjacent to the 
vertex A must satisfy the conditions under which a tri­
hedral angle is possible.

Answer. If p >  —  , 2 a + p > J i f then

a3 sin (a+ P )  
12 sin a Y 1 — 2 cos 2p;

if P < - y  , a < - y  , « + P > * y  * then 

v  -  fl3 i f J roT  * /3 s in a p _ [ 2 c o s ( 2 a + p )  +  cos Pi2;

if ® » - y < a + P < — then both
answers are possible.

4
57. , as measured from the point K .

5
58. Take C1  so that ABCCX is a rectangle (Fig. 2). is 

the midpoint of ACX; 0 lf 0 2  are the centres of the circles

n

circumscribed about the triangles ACXD and ABC , 
respectively; 0  is the centre of the sphere circumscribed 
about ABCD . Obviously, 0 a is the midpoint of AC, AB 
and CXC are respectively perpendicular to AD  and AC1% 
consequently, the planes ADCX and ABCCi are mutually 
perpendicular, and 0 XDX0 %0  is a rectangle. Thus | DCX | =
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Y I DC  |2 — J CXC |2 =  y  62 — a2, the radius of the cii* 
cle circumscribed about the triangle DCXA is

\ d c 1 \
/ \

2 sin DAC1

2 sin a

The radius of the sphere R =  \ OA \ can be found from 
the triangle AOxO (this triangle is not shown in the figure):

R -S lA O ,  | .+  | 0 , 0 | . = i | /
1

2 sin a Y &2— fl2 COS2
59. Let K  be the midpoint of the edge AB  of the cube 

ABCDAXBXCXDX% M  the midpoint of the edge DXC1 9  K  and 
M  are simultaneously the midpoints of the edges PQ and 
RS  of a regular tetrahedron PQRS . DXCX lies on R S . If 
the edge of the tetrahedron is equal to bf then | M K  | =
b Y  2/2 =  a Y  2. Hence, b =  2a.

Project the tetrahedron on the plane ABCD (Fig. 3): PXf 
Qlf Rlf Sx are the respective projections of P f Q, R , S

Since PQ makes an angle of 45° with this plane, the
length of PiQi will be a y  2. ,

Let L  be the point of intersection of the lines AB  and 
P XR X. From the similarity of the triangles PXLK  and 
P 1 RXM 1  we find

\LK \ = I R iM x | - 1 P XK  | a r  a 
I P i M x \ i  +  Y  2  2 -
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Hence, the edge PR  of the tetrahedron (and, consequently, 
other edges: PS, QR , and QS) pierces the cube.

To compute the volume of the obtained solid, it is con­
venient to consider the solid as a tetrahedron with cor­
ners cut away.

Answer: a (l6  ]^ 2— 17).

60. Denote the lengths of these skew edges by a and 6, 
the distance between them by d, and the angle by <p. 
Using the formula from Problem 15, find the volumes of 
the obtained parts:

10
81 abd sin <p, abd sin <p.

Answer: 20 
7 '

61. The area of the projection of the second section on 
the first plane is half the area of the first section. On the 
other hand (see Problem 8), the ratio of the area of the 
projection of the second section to the area of the section 
itself is equal to cos a .

Answer: 2 cos a .

62. —  n & H .
12

63. If a;> y, and z are the respective distances from the 
centre of the ball to the passed planes, then x2  +  y2 +  
z2 =  d2, and the sum of the areas of the three circles w ill 
be equal to
n l(R2  -  x2) +  (R2  -  y2) +  (R2  -  z2)] =  n (3R 2  -  d2).

64. Let | AC \ =  *, | BD \ =  y (AC and BD touch 
the ball). D x is the projection of D on the plane passing 
through AC  parallel to B D . We have

| CD \ = x + y  = 2 R 
cosq> *

| CD1  | — 2R tan <p.

In the triangle CADX the angle CADX is equal either 
to a  or 180° —a . According to this, x and y must satisfy
6 - 0 4 4 9
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one of the two systems of equations: 
2 Rx + y = cosq>

x2+ y 2—2xy cos a  =  4R? tan2 q),

or

i
2 R

x + y = cos cp
x2+ y 2 -\-2xy cos a  =  4R 2  tan2 q>.

(1 )

(2)

For system (1) we get: x+y 2 R 
cos (p xy — R2

* a
C0ST

2R R 2for system (2): x + y  = --------- , x y = ------------ . Taking intocos <p . „ a
sm T

account the inequality (x-\-y ) 2  >  key, we get that system 
(1) has a solution for <p >  —•, and system (2) for <p >

-5— . Since the volume of the tetrahedron ABCD is
1 ctequal to y x y t f s in a ,  we get the answer: if —  < < p <

-5— , the volume of the tetrahedron is equal to

i?3 tan — ; if - y —- y  <  <P <  *y- * two values of the
2 ot 2 otvolume are possible: — R13 tan —  and y  R3 cot — .

65. Let the common perpendicular to the given edges 
be divided by the cube into the line segments y, x, and 
z, y +  x +  z =  c (x is the edge of the cube, y is adjacent 
to the edge a). The faces of the cube parallel to the given 
edges cut the tetrahedron in two rectangles, the sides of

X -1“ % jjh
the first one are equal to --------a , of the second toc c
Z X  |- jj
-  a, the smaller sides of these rectangles being
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If
equal to the edge of the cube, that is, — b =  x, — a =  x,c c
whence

y=
cx
T  ’

cx
X — -----a and abc 

ab-\-bc-\-ca '

66. Let Ox and 0 2  be projections of the centre of the 
ball 0  on the planes KLM  and K L N , P the midpoint 
of ML.

The projections Ox and 0 2  on KL  must coincide. It is 
possible to prove that these projections get into the mid-

M

point of KL , point Q (Fig. 4). Since the dihedral angle 
between the planes KLM  and KLN  is equal to 90°, the 
radius of the desired sphere will be

/ \P O l l2+  I OxQ |2.

If OxP  is extended to intersect the line KL  at point R , 
then from the right triangle PLR , we find | RL \ =  6a,
| RP  | =  3 a / 3. We then find 

\RQ\ =  ̂ ,  ,

| p o x | =  —3a / 3 =  —
3



84 Problems in Solid Geometry

Consequently, the radius of the sphere is equal to

/  4a2 , 121a2 a , /  137
V  3 ~r  12 “  2 V 3 •

67. Using the equality of tangent lines emanating 
from one point, prove that the base is a right triangle, 
and the medians of the lateral faces drawn to the sides of 
the base are equal. This will imply that the pyramid is 
regular.

Answer: R* |/6  
4

68. The three given angles cannot be adjacent to one 
face; further, they cannot adjoin to one vertex, since in 
this case all the line segments joining the midpoints of 
opposite edges will be equal. It remains only the case 
when three edges corresponding to right angles form an 
open polygonalline. Let AB,BC, and CD be the mentioned 
edges. Denote: | AB \ =  xf \ BC \ =  y, \ CD\ =  z .
Then the distance between the midpoints of AB  and CD

/
2 2

-£ '+ ya+j'*  and between AC  and BD (or AD

and BC): ^ r Y &  +~za. The edge AD  w ill be the greatest: £*
\ A D  I =  YX*  +  y2  +  22 =  V b 2  +  3a2.

e»-
70. First prove that ABCD is a rectangle and the plane 

DEC is perpendicular to the plane ABCD . To this end, 
through E  pass a section perpendicular to BC . This sec­
tion must intersect the base along a straight line passing 
through M  and intersecting the line segments BC  and AD 
(possibly, at their end points). Further, drawing a section 
which is an isosceles trapezoid through B is only possible 
if the section contains the edge A B , and | DE \ =  | EC |, 
\ A E \  =  \ E B \ .  Consequently,
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i.e. | AC  |2>  | CE |2 +  | AE  |2 and &AEC  is not an 

acute-angled triangle. But AEC  cannot be obtuse, since

in that case DEC would also be obtuse. 

Thus, | A C \ = ^ \  AE | = - | EC

Answer: i i / «
8 V 14 *

71. Through C draw a straight line parallel to AB  and 
take on it a point E such that | CE | =  | AB  |, ABEC  is  
a parallelogram. If 0  is the centre of the sphere, then

the triangle OCE is regular, since OCE =  n/3 and 
| CE | =  1 (it follows from the hypothesis). Hence, the 
point 0  is equidistant from all the vertices of the parallel­
ogram ABEC . Hence, it follows that ABEC  is a rectan­
gle, the projection of 0  on the plane ABEC  is represented 
by the point K  which is the centre of ABEC , and | BD  | =

2 \ O K \  =  2 j / \  OC |2 — 1 |  BC  |2 =  1.

72. If x is the area of the sought-for section, | AB  | =  
a, then, taking advantage of the formula of Problem 11 for 
the volume of the pyramid ABCD and its parts, we get

. ce px sin —

a
2

. aqx sin —

a
2 pq sin a

a

whence

2p«7COSy
x =  j

p + q
852 sin a  sin |3 
3a sin (a+P) *

74. When cutting the ball by the plane AM N,  we get 
a circle inscribed in the triangle AM N.  In this triangle

A N  | =  < X 1 , \ A M \  =  a O  , I AZAT I = - £  (found from 
2 3 2
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the triangle CMN). Consequently, if L is the point of 
contact of the desired ball and AM,  then

AL | =
AN | +  I AM | — | M N  |

2

4 / i ‘The ball inscribed in ABCD has the radius r

and touches the plane ACD at point M .
Thus, if x is the radius of the desired ball, then

x | AL | 5 - / 3
r ~  \ AM | 4

Hence, ,  =
48

75. 9 / 3
8

76. / 3 .
77. a / 2 .
78. arctan

2 / 3  ■
79. Notation: 0  is the centre of the sphere; 0 lf 0 2, 0 3 

the centres of the given circles, 0 4 the centre of the sought- 
for circle. Obviuosly, the triangle 0 j0 20 3 is regular. 
Find its sides (M is the point of contact of the circles 
with centres Ox and 0 2). \ OxM \ — \ 0 2M \ =  1, | OM | =

2. Hence, MOOx =  M 0 0 2  =  30°, | | =  \ 0 0 2  \ =  V 3,
I ^ 1 ^ 2  I =  1̂ *3. 0 0 4  is perpendicular to the plane O^O^Oz 
and passes through the centre of the triangle 0 i0 20 3, 
the distances from 0 2, and 0 3 to 0 0  4  are equal to 1. 
Let K  be the point of contact of the circles Ox and O4 , 
L the foot of the perpendicular dropped from 0 1 on OO4 . 
K N  is perpendicular to LOx, \ OxL \ =  \ Ox K \ =  1,
| 0 0 x | =  Y 3. From the similarity of the right triangles

/  o
OxK N  and OOxL find | OxN  | =  —. Thus, the required

radius | OaK  | =  | LN \
- n
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80. (a) Since the opposite edges in a regular tetrahed­
ron are perpendicular, the lines CXE and B XF must also 
be perpendicular (Fig. 5).

If K  is the midpoint of CXC% then, since the lines BXK  
an d  B 1 A 1  are perpendicular to the line CXE , the line

Fig. 5

B XF must lie in the plane passing through B XK  and BxA lf 
hence it follows that A XF is parallel to B XK,  and, therefore 
| DF | =  a (this is the answer to this item).

(b) The distance between the midpoints of M N  and PQ 
is equal to the distance between the lines B XF and CXE. 
It can be found by equating different expressions for the 
volume of the tetrahedron FB-̂ C-yEX

y 5 BlClE2a=-g-1 FBi I * I c xE | -x.

Hence, x = -----—  .
3 / 5

81. (a) a; (b) ^

82. Let | AB \ =  a, then | A B X \ =  | AC1 \ =  2.6a. 
On the lines AB  and AC , take points K  and L such that 
| A K  | =  | AL  | =  | AB i | =  | ACi \ =  2.6a. An iso­
sceles trapezoid KLC1B 1 is inscribed in the circle of the 
base of the cone. All the sides of this trapezoid are readily 
computed and, hence, the radius of the circle circums­
cribed about it is also easily found, it equals — ̂\ f l a .

It is now possible to find the volume of the cone and 
prism.
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, 15,379jiAnswer: -------------
4800

83. Note that the line segment M N  is bisected by its 
point of intersection with the line PQ. Project this line 
segment on the plane ABCD. If N x is the projection of N , 
K x the midpoint of A D , Qx the midpoint of DC (Kx and Qx 
are the respective projections of K  and Q), then N XM  is 
perpendicular to AQX and is bisected by the point of in­

tersection. Thus, NXAD  =  2QXAD.  Hence we find
I NXK X | and then | NXM  |.

Answer'. —-1^14.
84. Through the edge AAX pass a plane perpendicular 

to the plane BCC1 B 1  (Fig. 6). M  and N  are the points of

intersection of this plane with Ĉ B-t and CB. Take on MN  
a point K  such that | N K  \ =  | MN  |. By the hypothesis, 
A A tM N  is a square, hence, A K  is perpendicular to AM ,  
and it follows that A K  is perpendicular to the plane 
ACjB^ that is, is a straight line along which the 
planes passing through the vertex A intersect. Analogous­
ly, determine the point L for the vertex Ax. The straight
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lines A K  and A XL  intersect at the point S.  Thus, our 
polyhedron represents a quadrangular pyramid SKPLQ  
with vertex S  whose base is found in the plane BByCyC. 
Further, ByN  is the projection of ABy.  Hence it follows 
that the plane passing through A perpendicular to ABy 
intersects the plane BByCyC along a straight line perpen­
dicular to ByN.  It follows from the hypothesis that the 
triangle ByNCy is regular. Hence, the quadrilateral 
PLQK , which is the base of the pyramid SPLQ K , is a rhom­
bus formed from two regular triangles with side | K L \  — 
3 a,

Answer. 9a3 / 3

85. The sought-for angle makes the angle between the 
element OA and the axis of the second cone equal to jt/2. 
Denote by P and Q the centres of the bases of the given 
cones, by S  the point at which the planes of the bases of 
the cones intersect the perpendicular erected to the plane 
OAB at the point 0  (Fig. 7). In the pyramid SO AB:
I OA | =  | OB |, SO is perpendicular to the plane O A B , 
OP and OQ are respectively perpendicular to SB  and S A ,

POB =  QOA =  q>, POQ -  p. Find POA. Let | OA \ 
| OB | =  I, | AB | =  a. Then

OP | =  | OQ | =  I cos q), | SA \ =  \ SB \ =

SP  | =  |S Q  |

PQ | =  | AB

sin <p
I ^  n  , X ,  COS2 <pOP COt C P =  I ----;-----—sin q>
SP =  a cos2 <p.SB

On the other hand,

1 ^ 1 = 2 1  OP | sin =  21 cos (p sin -&■.

. P
Hence
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Now, find | PA |:

PA | 2=  | PB  |2 +  | AB I2 — 2 \ P B \ - \ A B \  cosPBA

=  1 2sin2 <p+a2 — 2 1  sin <p-a a sin <p
21

=  1 2 sin2 (p+a2 cos2 (p.

But if y =  POA , then from the triangle POA we have: 
| PA |2 =  l% cos2 <p +  I2  — 2l2  cos q) cos y.

Equating the two expressions for | PA |2 and taking 
into consideration (1), find

2 sin, 1
cos y ~  cos <p cos (p

n 2sin2y
Answer: —— arccos \ cos (p----------------2 \  Y cos <p
86. (5 / 6 +  / 2 2 )  R.
87. If the plane cuts the edges AD and CD, then the 

section represents a triangle andtheradius of theinscribed
a

circle will change from 0 to -y=-------------- r i— ■ - =
V 2(2cosa+V  4cos2a + l )  

Let now the plane cut the edges AB and BC  at points 
P and N , SA and SC at points Q and R, SD*at point K , 
and the extensions of AD and CD at points L and M 
(Fig. 8). Since the lines PQ and NR  are parallel and touch 
the circle inscribed in our section, PN  is the diameter 
of this circle. Setting | P N  \ =  2r, we have

ML

KL

=  2a / 2 —2r.
a V 2 — r

Smkl =

2 cos a

( a / 2 - r ) 2 
2 cos a

y  4 cos2 a  + 1 ,
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Thus,

a ]/*2 — rr = ---------------------- _  ,
2 cos a +  y  4 cos2 a + 1

whence

__________a Y  2__________
l  +  2 c o s a + ] ^ 4 c o s 2a + l  

.Answer:

0 <  r <  ------------ a ,
|^ 2  (2 cos a +  y^4 cos2 a + 1 )

a 1^2r = --------------------------- . — = - .
1 +  2 cos a  +  y  4 cos2 a  + 1

88. Let us pass a section by the plane passing through 
the edge AB  and the midpoint of CD, point L; K  is the

5*

Fig. 8

point of intersection of the plane P and A L . The altitude 
dropped from A onto BL  intersects B K  at N  and BL  at Q 
(Fig. 9). It is easy to prove that the centre of the sphere 
lies on the line AQ . Here, the centre of the sphere can lie
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both on the line segment AN  (point O) and on the exten­
sion of AQ (point 0j).

The radius of the first sphere is equal to the radius of 
the circle touching AB  and B K  and having the centre on

Fig. 9

AN.  We denote it by x ; x can be found from the relation- 
ship

S b a n  =  ~ 2  (I AB I +  | BN  | ) x ,

| B N \ = ^  \ B K \  =  j  V 2  \ AB  | a+ 2  | BL  | 2— | AL  |»

YTi

2
$ BAN =  ~rr SBAL

V J
10

a‘

Y  2 ahence, x -
5 + V  11 

is found in the same way.
Y2a

—  . The radius of the second sphere

Answer:
5 ±  / l l
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89. Let x denote an edge of the tetrahedron, | MN  | =
x

If the edge, whose midpoint is M , makes an angle a  

with the given plane, then the opposite edge makes an an-
jtgleof-g- — a.  The projection of the tetrahedron on this

plane represents an isosceles trapezoid with bases x cos a
x

and x sin a  and the distance between the bases equal to ~ y ^

x-
Thus, S =  2 ^ F | (cos a  +  s*n a )* Besides, by the hypothe­
sis, the angle at the greater base is 60°, whence | cos a  — 

sin a  | =

A nswer: 3 5 / 2 .
90. Let the edge of the cube be equal to 1. Denote by O

the centre of the face ABCD . From the fact that NMC =

60° and NOC =  90° it follows that O lies between M  and 
C. Setting | OM \ =  x , I NB \ =  y, we have | M N  \ =  2x,

I NO | =  xY^y  I MB | =  +  x2. Applying thetheo-

rem of cosines to the triangles MNB  and ONBt we get

~~{-x 2 ~ 4a;2 +  y2— 2 xy ]/*2,

3** =  T +if* /  3
— y

Hence we find: 2
/ 3 ‘

Answer. \ A M  |: | MC\ = 2  — / 3 ,  | BN  | : | NDt | =
2.

91. The plane passing through A A X parallel to BXD is 
parallel to the plane DD-fi-fi. Exactly in the same way, 
the plane passing through DD 1 parallel to A XC will be 
parallel to the plane A A XCXC~
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On the other hand, the planes passing through the 
edges BC s n d B 1C1 will be parallel to the respective planes 
AByCyD and AyBCDy. This taken into account, construct 
the section of our polyhedra by the plane parallel to the 
bases and passing through the midpoints of the lateral 
edges and the plane passing through the midpoints of the

Fig. 10

H

K

parallell sides of the bases of the prism (see Fig. 10). In 
the accompanying figures, L  and K  are the midpoints 
of opposite edges EF and HG of the triangular pyramid 
EFGffy the edges EF  and HG are mutually perpendicular. 
Setting | BC \ — x, J AD  | =  nx, and denoting the 
altitude of the trapezoid ABCD by y and the altitude of 
the prism by z, we find

I GH | =
5n-|-3
71+1

i « i—f-.

I«M =52±_3

z.
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The volume of the prism is equal to {n-\-i)xyz The

volume of the triangular pyramid equals 1 EF \ ■ | GH | x
. „ r , (5n + 3 ) 3

1 KL  1 ~  2 A ( n - \ - i f Xyz‘
(5n+ 3 )3

AnSWer* I2 ( n + W  •
92. Let the altitude of the prism be equal to x . On the 

extension of the edge B XB take a point K such that
| BK  | =  -|a:, | BtK  | =  J-a:. Since K N  is parallel to BM
and | K N  J =  2 | BM  |, the projection of K N  on CN is 
twice the length of the projection of BM  on CN , that is, 

a
it is equal to - 7 =. In the triangle CNK , we have | CN | =  

V 5 _________
25^2T* *

Depending on whether the angle CXN K  is acute or ob­
tuse, we shall have two equations

a2+ ^ z 2= ( a 2 +  ̂ - )  +  (a2+4*2)

]A 2 +  | NK  | =  Ycfi  +  4z2, | CK \ =  ] /  a2 +

or

a2 +  z2 =  (a2 +  - | -  ) +  (fl2+ 4a:2)

Answer: a
2 / 5

— or a.

93. Denote two other points of tangency by A x and Bx 
and the radii of the balls by R and r. In the trapezoid
A A XBBX find the bases: | A A X \ =  2 R cos —, | BBX \ =
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2r cos — and the lateral sides | A B X | =  | — Rr ,
and then determine the diagonals | AB \ =  \ A x Bx \ —

2 | / ^  +  cos2 - j j .  If the ball passing through A

and A x cuts AB  at K % then | ^jZ? ]2 =  | BK  | * \BA |, 
whence

| B K  | ----------2 / B ?  _  \ AB\
j /  l+ c o s * —- l +  coa*-|-

| AB | cos2 —
| AK  | = ----------------- — .

4 . s a 1 +  cos2y

Other parts into which the line segment AB  is divided are 
found in a similar way.

Answer: The line segment AB  is divided in the ratio

cos2 : cos2
a
2"#

94. It is possible to prove that the axis of the cylinder 
must pass through the midpoint of the edge BD and belong 
to the plane BDL,  where L is the midpoint of AC.  Let the 
axis o f the cylinder make an acute angle a  with B D . Pro­
jecting the pyramid on a plane perpendicular to the axis 
of the cylinder, we get a quadrilateral A^B^OiDi in which 
| A | =  \ AC  | =  12. The diagonals A xCi andB XDX are 
mutually perpendicular, A 1 C1  is bisected by the point F 
of intersection of the diagonals, and D 1 B 1  is divided by F 
into the line segments 6 ]^ 3 c o s a  and 1 0 ]^3 since — 
6]^3cosce. From the condition | ,4 jF | *| FCX \ =  \BXF | X 
| FDX | we get for ce the equation

sin2 ce — 5 sin ce cos ce +  4 cos2 a  =  0,

whence we find tan a x =  1, tan ce2 =  4. But | BXD 1  | =  
10]^3 since and is equal to the diameter of the base of
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the cylinder. Two values are obtained for the radius of 

the base of the cylinder: and
2 / I ?

95. On the edge A S take a point K  such that | A K \ — 
a. Then the points B , D, and K  belong to the section of 
the cone by a plane parallel to the base of the cone 
(| AB  | =  | AD  | =  | A K  |). From the fact that C lies in 
the plane of the base it follows that the plane BDK  bisects 
the altitude of the cone. Thus, the surface area of our 
cone is four times the surface area of the cone the radius 
of the base of which is equal to the radius of the circle 
circumscribed about the triangle B D K  with generatrix 
equal to a.

Answer: -  -4jI - A « 2 W * * 2* - * ) —  
y/b 2  +  2 a 2 - V 3 Y b 2 + 2 a2 —4a

96. Let the radius of the base of the cone be equal to 
altitude to h, the edge of the cube to a. The section of the 
cone by the plane parallel to the base and passing through

the centre of the cube is a circle of radius R ——
2  h

in which a rectangle (the section of the cube) with sides a 
and a Y 2  is inscribed, that is,

3a2 =  /?2 (2 h — a Y 2)2
h2 ( 1 )

The section of the cone parallel to the base of the cone 
and passing through the edge of the cube opposite to the

edge lying in the base is a circle of radius R  ̂ ~  »h
On the other hand, the diameter of this circle is equal to a, 
that is,

a =  2R h — a Y  2
h (2)

From Relationships (1), (2) we get

. 1 ^ 2 ( 5 +  V I ) ,
2
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Answer: ji ( 5 3 - 7 / 3 ) / 2  
48

98. From the equality ACB =  AD B  and perpendicular­
ity of A B  and DC we can obtain that the points C and D 
are symmetric with respect to the plane passing through 
A B  perpendicular to CD.

. a SAnswer: —̂  .
99. Let K  be the midpoint of A B , P the foot of the 

perpendicular dropped from K  on CS. On AB  take points 
M  and N  such that P M N  is a regular triangle (Fig. 11).

S

The pyramid S PM N  can be completed to obtain a regu­
lar prism P M N S M xNi  so that P M N  and SMxNi  will be 
its bases and P S , MN U NN X its lateral edges. The prism 
A 1 B 1 CA2 B2S will be homothetic to the prism P M N S M 1 N 1  

with centre in S and ratio of similitude | CS |/| PS  |. It 
is easily seen that the sought-for part of the volume 
of the pyramid SABC  contained inside the prism 
A XBXCA %B%S is equal to the ratio | MN\  /  |AB  |. Setting
AB  =  a Y 3, ] CS | =  2a, we find:
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| P K \ = ^ - a ,

0  q \ f
\ M N  \ =  \ P K  | — tt a, \ M N \ / \ A B \ = ± r  1/ 3 & &

Answer: —g— *

100. Let the plane passing through B 1 C1 intersect 
AB  and DC at points K  and L (Fig. 12). By the hypothe­
sis, the polyhedra AK LDA 1 B 1 C1D 1 ana KBCLBlC1  have 
equal volumes. Apply to them Simpson’s formula (Prob­
lem 15), setting | A K  \ — \ DL  | =  a. Since the alti­
tudes of these polyhedra are equal, we get the following 
equation for a:

7 a + l  +  4 ( f l + 1 )

2
(7 +  1) 

2 (7-«)7 +  4 0 (7 +  1)
2 *

u 16whence a ~ - = ~ .5
Denote the altitude of the pyramid by h. Introduce 

a coordinate system taking its origin at the centre of A BCD 
and with the x- and y-axes respectively parallel to AB  
and BC . The points A , C, and Z>i will then have the coor-

( 7 7 \ ( 1 7 \ / l l \
- J ’ ~

respectively. It is not difficult to find the equation of 
the plane ACD^ hx — hy +  z — 0. The plane K L C ^ i  
will have the equation 10hx — Sz +  3/i =  0. The normal 
vector to the former plane is n (/i, — ht 1 ), to the latter 
m (10/i, 0, —8 ). The condition^ of their perpendicularity

yields 10h2— 8  =  0, \h ~  ^- - . The volume of the
5

• 3 8 / 5  pyramid is — f-—
5

101. Two cases are possible:
1 . The lateral sides of the trapezoid are the projections 

of the edges AB  and B-iCi- It is possible to prove that in



100 Problems in Solid Geometry

this case the centre of the sphere is found at the point C. 
The volume of the pyramid will be equal to 3a3/8.

2. The lateral sides of the trapezoid are represented 
by the projections of the edges AB  and A XCV In this case 
the centre of the sphere is projected into the centre of 
the circle circumscribed about the trapezoid ABC[A'X% the
altitude of the trapezoid is equal to a 1^5/3, the volume
of the prism is equal to asY  5/4.

. 3a3 a3Answer: —5— or —o
102. -|-a(a«+2&2).
103. Project the given polyhedra on the plane ABC  

(Fig. 13). The projections of the points A lf Blt and Cx are 
not shown in the figure since they have coincided with the

Fig. 13

points A y B 9 and C; and D x are the respective projec­
tions of the points S and D. If on the line segment P S X 
a point K  is taken such that | PK \ =  | ND x|, then the 
point K  is the projection of the point KX at which the 
edge PS  intersects the plane A 1 B 1 CV Thus, the desired
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ratio is equal to
| KB | | N D 1 | — | PB
) BP | “  | PB  |

(I S XN  \ — | DiS 1 |) — (| P S X | — | BSi  | ) 
| P S 1 | — 1 BS X |

I -̂ *̂ 1 | — | B±Si |
=  | S XM  | — | BS 1 | ‘

Consequently, our problem has reduced to finding the 
line segments | SXM  |, | B S ± |, | D 1 S 1 |, where Si  is a 
point from which the sides of the triangle BDiM  are seen 
at equal angles. BDiM  is a right triangle with legs
| D i M  | =  2a, | B D i  | =  a / 3.

Notation: | Sx M  | =  x, \ Sx B \ =  y t | SiDi  | =  z. 
Rotate the triangle DiSxM  through an angle of 60° about 

the point D x (Fig. 13, 6), is a regular triangle

withsidez; thepoints^, Slt S2t are collinear, BDXM i =
150°. From the triangle BD±Mi  find x y z =  a Y  13. 
The altitude of the triangle BDxMi  dropped on the side 

t f  3” i 2 a z
B M X is equal to a y  —, whence z =  Y i i *  ̂ 2 =

3 aa_Now it is easy to find that y =
5 a

/ 1 3  *
6 a

=  / I f - Substituting the found values into (1), we

get that the required ratio is equal to 3 (measured from 
the vertex B).

104. Any tangent plane separates space into two parts; 
here two cases are possible: either all the three spheres 
are located in one half-plane or two in one half-plane and 
one in the other. It is obvious that if a certain plane 
touches the spheres, then the plane symmetric to it with 
respect to the plane passing through the centres of the 
spheres is also tangent to these spheres. Let us show 
that there is no plane touching the given spheres so that 
the spheres with radii of 3 and 4 are found on one side of 
it , while the sphere of radius 6  on the other.

Let the centres of the spheres with radii of 3, 4, and 6  
be at the points A , B , and C. The plane touching the given
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spheres in the above indicated manner divides the sides 
A C  and B C  in the ratios 1 : 2 and 2 : 3, respectively, 
sthat is, it will pass through points K  and L  on A  C  and B C  
such that \ C K \  =  22/3, | C L  \ =  33/5. The distance
from C  to K L  is easily found, it is equal to 33 3/91 <  6 .
Hence it follows that through K L  it is impossible to pass 
a plane touching the sphere with radius of 6  and centre 
at C .  We can show that all other tangent planes exist, 
they will be six all in all.

105. The solution of this problem is based on the fact 
that the extension of an incident beam is symmetric to the 
reflected beam with respect to the face from which the 
beam is reflected. Introduce a coordinate system in a nat­
ural way, taking its origin at the point N , and the edges 
N K , N L , and N M  as the x - ,  y - t and z-axes; denote by Q '  
and R' the successive points of intersection of the straight 
line S P  with the coordinate planes different from L N M . 
We have I P Q  I -  I P Q '  I, I Q R  I =  I Q ' R ’ \.

The point P has the coordinates (0, 1 ,|^ 3). Denote 
by a ,  P , a  the angles made by the ray SP with the coor­
dinate axes. It follows from the hypothesis that p =  ji/4, 
then cos a  is found from the equality 2  cos2 a  -)- cos2 P =  
1 , cos a  =  1/2 ( a  is an acute angle). Consequently, the
vector a (1/2, l/*2/2, 1/2) is parallel to the line S P . If 
A  (x , y ,  z) is an arbitrary point on this line, then

QA =  OP +  ta, 

or in coordinate form,

* =  y = i  +  ^ t , Z= / 3  +  | .

The coordinates y and z vanish for tx~  — j/^2 (this 
will fce point Qf) and for £2 ~ —2 |^ 3  (point R l). Thus,

<r ( - * £ , * .  n - Q ) .  *

I PQ ' | =  ] /2 ,  I QfR f | = 2  |^ 3 — y  2.

Answer: 2 |^ 3 .
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106. Denote by K  the point of tangency of the sphere 
with the extension of CD, and by M  and L the points of 
tangency with the edges AD and BD , N  is the midpoint of 
BC (Fig. 14). Since | CD | =  | DB \ =  \ DA |, D N  is per­
pendicular to the plane ABC, \ D K  | =  | DM  \ =  \DL |, 
KL  is parallel to DN, ML  is parallel to AB,  hence, the

plane KLM  is perpendicular to the plane ABC, KLM =  
90°. If O is the centre of the sphere, then the line DO is

K

Fig. 15

perpendicular to the plane KLM,  that is, DO is parallel 
to the plane ABC,  consequently, | DN  | =  1 (to the radi­
us of the sphere). In addition, DO passes through the 
centre of the circle circumscribed about the triangle KLM,  
that is, through the midpoint of KM.  Hence it follows

that ODM =  y  RDM.  Further, \ D A \  =  \ D C \  =  

Y I CN I2 +  I DAT p =  j /y ,  I CA | =  I CB I cos 30° =

1^6, i.e. A CD A is right-angled, CD A =  90°, ODM =  
45°, | D M  | = |  OM | =  1. The required segment of the
tangent is equal to \ A M  \ =  \ AD \ — | D M  \ =  Y 3
— 1.
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107. Let 0 lt Oif Oz be the points where the balls are 
tangent to the plane P : Ox for the ball of radius r, and 0 2  

and 0 3 for the balls of radius R. O is the vertex of the 
cone (see Fig. 15) and q) the angle between the genera­
trix of the cone and the plane P . It is possible to show that

| OxO | = r c o t  , | 0 0 2  | =  | OOz | =  R  cot - - ,

I ^1^2 I =  I \= %VRrt I ^2^3 I =2/?.

Since | 0 X0 2  \ — \ OxOz | , only the angle 0 2 0 t0 z can be
equal to 150°, hence, R / r  =  4 sin2 75° =  2 +  V^3. 

Further, if L is the midpoint of 0 2 0 z, then

| O L \ = V \  0 0 3  I2— | OsL |* =  fl j / ’c o t« - |— 1,

\ 0 1L \  =  Y | 0 ^ 3  | 2— | O s L  | 2 =  / 4i?r— R * .

The point O is found on the line and it can lie 
either on the line segment 0 ±L itself, or on its extension 
beyond the points L or Ox (O' and O* in the figure). Respec­
tively, we get the following three relationships:

10 XL  | =  | 0 0 ,  | +  | O L  | , |  0 1L  | =  | OxO* | - |  O ' L U  

I OiL | =  | 0*L | — | OnOx |.

Making the substitutions R — ( 2 +  ]^3) r, cot-“ - =  o;

in each of these relationships, we shall come to a contradic­
tion in the first two (x = 1  ora: =  — 2>^3/3), in the third 
case we find x =  2Y 3/3.

Answer: cos <p =  ~ .
108. Denote by K  and L the midpoints of the edges .<4 D 

and BC , N  and Pare the points of intersection of the passed 
plane and the lines AB  and A C, respectively (Fig. 16).
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Find the ratios | PA |/ | PC | and | P K  |/| PM  |. Draw 
KQ and AR  parallel to DC, Q is the midpoint of A C .

| AR | =  | DM | PA
I PC

I P K \  _  | KQ\  | DC |
| PM | “  | MC | 2 | AfCT |

Afl |
MC |

5
6 *

Then find
I A A | _  2 | PN  | 4
| A P | “  3 ’ | PL | 5 *
Vp a k n  . I PA | • | AA' | ■ | AN | __ 2
Vabc d  | AC | . | AD | . | AB | 5 ’

DM
MC

2
3 ’

that is, Vp a k n  =  2- Since the altitude dropped from A 
on PA Z is equal to 1 , SPiVK =  6 ,

S p m l _  \ P K \ - \ P N \  3
SpNK \ PM | • | PL | 2 * SpML =  $-

Thus, the area of the section will be SpML — SPNK =  3. 
109. Knowing the radius of the ball inscribed in the 

regular triangular pyramid and the altitude of the pyra-

D n

Fig. 16

mid, it is not difficult to find the side of the base. It is 
equal to 12, | MK  \ =  \ KN  \ (by the hypothesis, the 
tangents to the ball from the points M  and N  are equal 
In length).
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Let | BM  | =  x, | BN  | =  y . Finding | MN\  by the 
theorem of cosines from the triangle B M N , and | MK \ 
and | N K  | from the respective triangles B M K  and BNK,  
we get the system of equations

( x2 -\~y2—xy =  49, _  ( x2 + y 2—xy =  49,
I x2 — 1 2 a: = y 2 — 1 2 y \  (a;—y) (a;+y— 1 2 ) =  0 .

This system has a solution: xx =  y\ =  7. In this_case the
distance from K  to MN  is equal to 4>̂ *3 _1 ! ^  =

2 2
<  2, that is, the plane passing through MN  and 
touching the ball actually intersects the extension of SK  
beyond the point K y

KD 12
13

SD 1 = 6 12
13

Another solution of this system satisfies the condition 
x +  y =  12. From the first equation we get (a; +  y ) 2  — 
3xy =  49, xy =  95/3. Hence it follows that

S m k n =  I S b m k + S b n k —S B m n  I

/ 3 + J J  Y 3- x y V  3
4

49 Y  3 
12 •

Consequently, the altitude dropped from K  on MN  is equal

to — | ^ 3  >  2 , that] is, in this case the plane passing 
6

through MN  and touching the ball does not satisfy the con­
ditions of the problem.

Answer: 6 4 ir .13
110. From the fact that the edges of the pyramid ABCD 

touch the ball it follows that the sums of opposite edges 
of the pyramid are equal. Let us complete the pyramid 
ABCD to get a parallelepiped bv drawing through each 
edge of the pyramid a plane parallel to the opposite edge.
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The edges of the pyramid will be diagonals of the faces of 
the parallelepiped (Fig. 17), and the edges of the paral­
lelepiped are equal to the distances between the midpoints 
of the opposite edges of the pyramid. Let | AD \ =  a, 
I BC | =  by then any two opposite edges of the pyramid 
will be equal to a and b. Let us prove this. Let | AB  | =  
Xy | DC | =  y. Then x +  y =  a +  b, x2  +  y2 =  a2 +  &2

(the last equality follows from the fact that all the faces 
of the parallelepiped are rhombi with equal sides).

Hence it follows that x =  a, y =  b or x =  &, y =  a. 
Hence, in the triangle ABC  at least two sides are equal

in length. But ABC =  100°, consequently, | AB \ =  x =  
| BC | =  by | AC  | =  a, \ D B \  =  by \ DC \ — a.

From the triangle ABC  we find a =  2b sin 50°,

1 1y  SADChB =  -^

Y ^ dbc â =  y

a* V  31
3 * 4
1 &2 sin 1 0 0 °
3

B

hAi

h a1V  3 / 3  tan 50°.whence -r— — . iA/vhn 26asinlOO<
111. The equality of the products of the lengths of the

edges of each face means that the opposite edges of the
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pyramid are equal in length. Complete the pyramid SABC 
in a usual way to get a parallelepiped by passing through 
each edge a plane parallel to the opposite edge. Since the 
opposite edges of the pyramid SABC  are equal in length,

the obtained parallelepiped w ill be rectangular. Denote 
the edges of this parallelepiped by a, 6 , and c, as is shown 
in Fig. 18.

In the triangle BCD draw the altitude DL.  From the 
triangle BCD find

y  &a+  c2
S a b c  =  -  / a V + i V + A « ,

The volume of the pyramid SABC  is one third the volume 
of the parallelepiped, the altitude on the face ABC  is 
given; thus we get the equation

Y  a*b2+ b2c2+ c 2a2- /  l b * ’ <*>

By the theorem of cosines, for the triangle ABC  we get

^  • ( 2 )
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And, finally, the last condition of the problem yields
c2 — 2a2 — 262 =  30.
Solving System 
c2 =  102.

Answer: 3 4 / 6

(l)-(3),
(3)

we find a2 =  34, &2 =  2,

112. Denote by M  and N  the points at which the 
tangents drawn from A and B touch the ball, Mi  and Â  
are projections of the points M  and N  on the plane ABC 
(Fig. 19, a; the figure represents one of the two equivalent

cases of arrangement of the tangents when these tangents 
are skew lines; in two other cases these tangents lie in one 
and the same plane). The following is readily found: 
| A M  | =  | CN | =  /, | MMi  | =  | NNi \ =  I sin a,
| AMi  | =  | CNi  | =  I cos a .  Find | B M 1  \ and | B N X \ 
(Fig. 19, &; 0  the centre of the ball, OL || B M X)

| BNi  | =  | BMi  | =  | OL | =  / r2— (/ sin a — r)2

=  Y 2 r/ sin a —  1 2 sin2 a -

When rotated about the point B through an angle (p =  

ABCy the point A goes in C, Mx in N ly consequently, the
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triangles B M 1N 1 and B A C  aro similar,

| M N  | =  \ M 1N 1 | =  | B M  j  |

=  Y 2 r / sin a  — 1 2 sin2 a.£
Triangle is obtained from the triangle A B C  by

rotating it about B  through an angle y =  A B M X followed 
by a homothetic transformation. Consequently, the angle 
between M i N 1 and A C  is equal to y, and since M y N *  is 
parallel to M N ,  the angle between M N  and A C  is also 
equal to y.

From the triangle B M XA  we find
2 rl sin a — 1 2 sin2a + 12— 1 2 cos2 acos v = -------------  —  , -------

2 1  Y 2 r/ sin a  — / 2 sin2 a
r s in a

Y 2 rl sin a — 1 2 sin2 a

Then

Y ^ r l s i n a — U2 +  r2)sin 2asin y = ------- - .. —  :------ .
y  2 rl sin a — 12 sin2 a

Using the obtained values for | M N  | ,  | M M ^  |, and 
sin y, find the volume of the pyramid A C M N :

V a c m n = - g-  \ A C  | • | M N  | ■ \ M M 1 | sin y

_  2a s in a  y ^  since— ( / 2 +  r2) sin2 a . (1 )

We now take a point P  such that M j N ^ C P  is a paral­
lelogram, hence, M N C P  is also a parallelogram. Let |3 be

an angle between A M  and C N t then p =  A M P .  But the 
triangle A B M j  is obtained from the triangle C B N y  by 
rotating the latter about B  clockwise through an angle
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and CN1  is equal to q), and, hence, A M ±P is also equal 
to (p, that is, the triangles A M XP and ABC  are similar 
to each other. From this similarity we find | AP  \ =

2a cos a. The angle |3 is congruent to the angle A M P , A MP  
is an isosceles triangle in which | A M  | =  | MP  | =  I, 
| AP  | =  2a cos a . Consequently,

a cos a
I

sin |3 =  2 sin - |- cos — — 2 a cos a  Y  I2 — a2  cos2 a
ja

Express the volume of the pyramid ACMN  in a diffe­
rent way:

VAc m n ^ \ - \ A M  \- \CN | x sin p

^ ______________
=  —  ax cos a  ] /'I2  — a2 cos2 a ,

where x is the desired distance. Comparing this formula 
with the equality (1 ), we get

— tan a  Y%rl  sincx — (/2+  r2) sin2a  
Y  I2 —a2 cos2 a

113. Let | EA | — x, the area of the triangle EM A will
Y  2be the greatest if | EH  | — | HA | =  , and will equal

— 1 /  — _  - — The distance from B to the plane EAH 
2  V 2  4
is not greater than | AB \ =  1. Since S ^ e b  =  $ e b c » 

~̂2 ~ \ V a b c e h  =  V a b e h  <  -j 2  Y ^ ~ x%
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Thus, x =  1, and the edge AB  is perpendicular to the 
plane EAN; ABCE is a square 1 cm on a side.

Consider two triangular prismatic surfaces: the first is 
formed by the planes ABCE, A HE,  and BCH,  the second 
by the planes ABCE, ECH, and A B H . Obviously, the 
radius of the greatest ball contained in the pyramid 
ABCEH  is equal to the radius of the smallest of the balls 
inscribed in these prisms. And the radius of the ball in­
scribed in each of these prisms is equal to the radius of 
the circle inscribed in the perpendicular section. The per­
pendicular section of the first prism represents a right 
triangle with legs 1 and 1 / 2 , the radius of the circle inscribed

3 _t/'e
in this triangle is equal to ----- -i-—  The perpendicu*

4
lar section of the second prism is a triangle A HE,  the 

radius of the circle inscribed in it is equal to * >

3 - / 5  
4 *

Answer:
114. From the fact that the straight-line perpendicular 

to the edges A C and BS  passes through the midpoint of BS  
it follows that the faces ACB and ACS  are equivalent.

i Let Sa s b  ~  S bsc =  Q> then Sa c b  =  $ a cS =  2Q. 
Denote by A lt Bx, Cu Sx the projections of M  on the res­
pective faces BCS, ACS,  ABS,  ABC ; ha , hB, hc , hs 
are the altitudes dropped on these faces, V the volume of 
the pyramid. Then we shall have

w
| MAX | + 2  | MB X | +  | MCX | + 2  | MS X \

But, by the hypothesis, | MB \ +  | MS  \ =  | MA* | +  
| MBi  | +  | MC± | +  | M S ± |. From these two equalities 
we have:

I MB  | +  | M B , \ +  | MS  | +  |MS,  \

But

7 = - y  hs - 2 Q =  - - h B-2 Q =  ^ - ( h B+ h s).
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Consequently, \ MB \ +  \ MBX | +  | MS  | +  | M S X \ =
hB +  hs- On the other hand, | MB  | +  | MBX | >
hB, | MS  | +  | M S X | >  hs . Hence, \ MB \ +  \ MBX \ =
hB, | MS  | +  | MS ± | =  hs, and the altitudes dropped 
from B and S  intersect at the point M , and the edges AC  
and BS  are mutually perpendicular.

From the conditions of the problem it also follows that 
the common perpendicular to AC  and BS  also bisects A C . 
Let F be the midpoint of AC,  and E the midpoint of BS.  
Setting | FE \ =  x, we get

<?=Sasb= 4- |5 B |  • M£ |  =  y / l2+ 4 -

2Q =  SAcb- }̂ - \ / x2+- ^ .

We shall get the equation =
3

whence x =  Considering the isosceles triangle BFS
in which \BS\  = 1 ,  |B F | =  |F 5 |,  the altitude \FE \ =  
3 , M  the point of intersection of altitudes, we find

\BM\ =  \SM\
115. Since the lateral edges of the quadrangular pyra­

mid are equal to one another, its vertex is projected into 
the point O which is the centre of the rectangle ABCD.  On 
the other hand, from the equality of the edges of the 
triangular pyramid it follows that all the vertices of its 
base l ie  on a circle centred at O.

Let the circle on which the vertices of the base of the 
triangular pyramid lie intersect the sides of the rectangle 
ABCD at points designated in Fig. 20, a. From the facl 
that the lateral faces of the triangular pyramid are equiv­
alent isosceles triangles it follows that the angles al 
the vertices of these triangles are either equal or theii 
sum is equal to 180°. Hence, the base is an isoscelei 
triangle. (Prove that it cannot be regular.) Further, twc 
vertices of this triangle cannot lie on smaller sides o
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the rectangle ABCD . If the base will be represented by

the triangle LNS,  then | SL | =  | LN |,  SLN =  90°, 
and, hence, it w ill follow that ABCD is a square. But 
if the triangle LNR  w ill turn out to be the base, then

from the condition a  <  60° it w ill follow that | BN  | >  
J NR  |. Hence, the sides RL  and LN w ill be equal which 
is possible when the points K  and L coincide with the 
midpoint of AB»

Reasoning in a similar way, we shall come to another 
possibility: the vertices of the base of the triangular pyra­
mid are situated at the points R, N,  and P , P being the 
midpoint of CD*

Consider the first case (Fig. 20, b). Let | LO \ =
I ON | =  | OR | =  r. Then | NR \ =  | CD | =  2r tan—.

But, since LEN +  NER =  180°, the triangles LNE  and 
NER,  being ̂ brought together (as in Fig. 20, c), form 
a right triangle L N R . Hence,

I LN  | =  Y l t \ L E \ * — \ N R  |*

=  | /  4/»2 +4r*— 4 r*tan2- | - ,

On the other hand,

[ L N  | * = ( r + r  j / "  1—tan2 y  j 2 +r* tan2 -2-.
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Thus,

r2 = 2  h2

2  tan2 —(- | / r 1 —tan” - | ~  1

Considering the triangle NRP  in a similar way, we get: 
r2 < 0 .

8 fc3tan —-
Answer:    ■ — --

3 ( 2 t a n * - y  +  ) / '  1 - t a n ” l )  ’

116. Extend the edge SA beyond the point S,  and on 
the extension take a point Ax such that | SAX \ =  \ SA |. 
In SAXBC thejlihedral angles at the edges SA 1  and SC 
will be equal, and, since | SA± \ =  \ SC |, | A XB \ =
| CB | =  b. The triangle ABA, is a right triangle with 
legs a and 6 . Consequently, the hypotenuse | A A, | =
2 \ A S \  =  V  a2  +  b2.

Answer; - - V * 3  +  b2.
117. Consider the tetrahedron with edge 2a. The sur­

face of the sphere touching all its edges is broken by the 
surface of the tetrahedron into four equal segments and 
four congruent curvilinear triangles each of which is 
congruent to the sought-for triangle. The radius of the

sphere is equal to the altitude of each segment is

, consequently, the area 

of the sought-for curvilinear triangle is equal to

e q u a l t o « ( ^ ? - . | j / | )

f [ " ( J r ) , - ‘ - - 1r ( 1r - 4 - / T ) ]

=  ( 2 / 3 - 3 ) .

118. Consider the cube with edge equal to 2]^2. The 
sphere with centre at the centre of the cube touching its



116 Problems in Solid Geometry

edges has the radius 2. The surface of the sphere is broken 
by the surface of the cube into six spherical segments and 
eight curvilinear triangles equal to the smallest of the 
sought-for triangles.

Answer: n (3 ]^ 2 —4) and jt(9]/"2— 4).
y  5—i

119. arccos - — ^—  .
120. Pass a section through the axis of the cone. Con­

sider the trapezoid ABCD thus obtained, where A and B 
are the points of tangency with the surface of one ball, 
C and D of the other. It is possible to prove that if F is  
the point of contact of the balls, then F is the centre of 
the circle inscribed in ABCD .

In further problems, when determining the volumes 
of solids generated by revolving appropriate segments, 
take advantage of the formula obtained in Problem 18.

121. ~  SR.  o
122. Take advantage of the Leibniz formula (see (1), 

Problem 153) *

3 | MG | 2 =  | MA  |* +  | MB  | 2+  | MC  |*

— | -  ( | AB |2 + |2 ? C |* + |£ M |* ) ,

where G is the centre of gravity of the triangle ABC.
If now ABC  is the given right triangle, A iB 1 C1  the 

given regular triangle, G their common centre of gravity, 
then

| AXA | 2+  | AtB |* +  | AXC | 2 =  3 | AXG | 2+  - -  6*

= «2+ 4 ^ .

Writing analogous equalities for Bx and Cx and adding 
them together, we obtain that the desired sum of squares 
is equal to 3a2 +  46*.

* Here and henceforward (1) means; I.F. Sharygin, 
Problems in Plane Geometry (Nauka, Moscow* 1982).
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123. Let the side of the base of the pyramid be equal 
to a, and the lateral edge to 6 . Through FE pass a plane 
parallel to A SC and denote by K  and N  the points of in­
tersection of this plane with BC and SB . Since E is the 
midpoint of the slant height of the face SCB , we have 
| AF  | =  | CK | =  a/4, | SN \ =  6/4, \ K E \  =  2 \ EN \.

Through L draw a straight line parallel to A S  and 
denote its point of intersection with SC by P . We shall 
have | SP \ =  0.16. The triangles LPC and FNK  are 
similar, their corresponding sides are parallel, besides, 
LM  and FE are also parallel, that is, | P M  |/ | MC \ =  
| NE  |/ | EK  | =  1/2, consequently, | SM  \ =  0.46.

Now, find
A q AVL A

' i f '2- W a2- 1 ME |S=W  “2 + Ioo fc2'
From the condition | LF | =  | ME  | we get a =  6 . FNK

3 7is a regular triangle with sid e-j a, \ FE \2 =  ^  o* =  7.
Consequently, a =  b =  4.

Answer:

124. Prove that the plane cutting the lateral surface
of the cylinder divides its volume in the same ratio in
which it divides the axis of the cylinder.

. Jta3Answer: .

125. Each face of the prism represents a parallelo­
gram. If we connect the point of contact of this face and 
the inscribed ball with all the vertices of this parallelo­
gram, then our face w ill be broken into four triangles, 
the sum of the areas of two of them adjacent to the sides 
of the bases being equal to the sum of the areas of the 
other two. The areas of triangles of the first type for all 
the lateral faces w ill amount to 2S.  Hence, the lateral area 
is equal to 4S, and the total surface area of the prism 
to 6 S.

126. If the spheres a  and P intersected, then the 
surface area of the part of the sphere P enclosed inside 
the sphere a  would be equal to one fourth the total sur­
face of the sphere a. (This part would represent
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^2
a spherical segment with altitude where r is the
radius of a , R the radius of p. Consequently, its surface
area will be 2jiR ^  =  jir2.) Hence, the sphere a  contains z/i
inside itself the sphere p, and the ratio of the radii is
equal to 1^5.

127. When solving this problem, the following facts 
are used:

(1 ) the centre of the ball inscribed in the cone lies 
on the surface of the second ball (consider the correspond­
ing statement from plane geometry);

(2 ) from the fact that the centre of the inscribed ball 
lies on the surface of the second ball w ill follow that the 
surface area of the inscribed ball w ill be equal to 4Qy
and its radius will be >̂ Q/it;

(3) the volume of the frustum of a cone in which the 
ball is inscribed is also expressed in terms of the total 
surface area of the frustum and the radius of the ball (the 
same as the volume of the circumscribed polyhedron),

that is, V =  i -
3 r  j i

128. Prove that if R and r are the radii of the circles 
of the bases of the frustum of a cone, then the radius
of the inscribed ball w ill be Rr.g

Answer: -rr.
r  - l

129. Any of the sections under consideration repre­
sents an isosceles triangle whose lateral sides are equal to 
the generatrix of the cone. Consequently, the greatest area 
is possessed by the section in which the greatest value is 
attained by the sine of the vertex angle. If the angle 
at the vertex of the axial section of the cone is acute, 
then the axial section has the greatest area. If this angle 
is obtuse, then the greatest area is possessed by a right 
triangle.

5Answer: - g  j i .

130. Draw SO which is the altitude of the cone to form 
three pyramids: SABO , SBCO, and SC AO.  In each of these 
pyramids the " dihedral angles at the lateral edges SA
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and SB, SB and SC , SC and SA are congruent. Denoting 
these angles by x , y, and z, we get the system

*+y=P>
y +  z =  v, 
Z -\-X  =  GC,

whence we find a — P+ 7 and the desired angle

w ill be equal to J l —  G C + P 

2
131. The chord BC is parallel to any plane passing 

through the midpoints of the chords AB  and AC.  Conse­
quently, the chord BC is parallel to the plane passing 
through the centre of the spnere and the midpoints of the
arcs AB  and AC.  Hence it follows that the great circle 
passing through B and C and the great circle passing
through the midpoints of the arcs AB  and AC  intersect 
at two points K  and K x so that the diameter K K X is paral­
lel to the chord BC.

Answer: Jl R 
2 ±  2 ‘

132. It is easy to see that the section of the given 
solid by a plane perpendicular to the axis of rotation re­

resents an annulus whose area is independent of the 
istance between the axis of rotation and the plane of

the triangle.
. Jta3Answer: — ^

133. If the given plane figure represents a convex pol­
ygon, then the solid under consideration consists of 
a prism of volume0 2dSy half-cylinders with total vol­
ume Jtpd2, and a set of spherical sectors whose sum is a ball
of volume -5 -Jtd 3. Consequently, in this case the volume of o

4
the solid w ill be equal to 2dS +  Jipd2 +  —jtd3. Obvious*o
ly, this formula also holds for an arbitrary convex figure
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134. Let O be the centre of the ball, CD its diametert 
and M  the midpoint of BC. Prove that | AB \ =  \ AC  | . 
Here, it is sufficient to prove that A M  is perpendicular 
to BC.  By the hypothesis, SA is perpendicular to OS, 
besides, S M  is perpendicular to OS (the triangles CSD, 
CSB, BCD are right triangles, O and M  are the respective 
midpoints of CD and CB). Consequently, the plane A M S  
is perpendicular to OS, A M  is perpendicular to OS. But 
A M  is perpendicular to CD, hence, A M  is perpendicular 
to the plane BCD,  thus, AM  is perpendicular to BC.

. Ra* V 46®—a®
AnSWtr: ~ 6 (4 fl*+a*) •

135. In Fig. 21, a: SABC is the given pyramid, SO 
is its altitude, and G is the vertex of the trihedral angle.

S

It follows from the hypothesis, that Glies on SO. Besides, 
intersecting the plane of the base ABC,  the faces of the 
trihedral angle form a regular triangle whose sides are 
parallel to the sides of the triangle ABC  and pass through 
its vertices. Consequently, if one of the edges of the trihe­
dral angle intersects the plane ABC  at point E and the 
edge CSB at point F, then F lies on the slant height SD 
of the lateral face CSB,  and | ED | =  | DA |. By the 
hypothesis, | SF \ =  \ FD |. Through S  draw a straight 
line parallel to EO and denote by K  the point of inter­
section of this line with the line EF  (Fig. 21, b). We have

I SG | _  | SK  | _  | ED | _  3| SK  | =  | ED |. Hence, | GO | | EO | | EO | 4*
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Thus, the volume of the pyramid GABC is 4/7 the 
volume of the pyramid SABC.

On the other nand, the constructed trihedral angle di­
vides the portion of the pyramid above the pyramid 
GABC into two equal parts.

A nswer: The volume of the portion of the pyramid 
outside the trihedral angle is to the volume of the por­
tion inside it as 3 : 11.

V136.
137. Figure 22, a to d, shows the common parts of 

these two pyramids for all the four cases.
(1) The common part represents a parallelepiped 

(Fig. 22, a). To determine the volume, it is necessary 
from the volume of the original pyramid to subtract the 
volumes of three pyramids similar to it with the ratio of 
similitude 2/3 and to add the volumes of three pyramids 
also similar to the original pyramid with the ratio of 
similitude 1/3. Thus, the volume is equal to:

(2) The common part is an octahedron (Fig. 22, b) 
whose volume is

(3) The common part is represented in Fig. 22, c. To 
determine its volume it is necessary from the volume of 
the original pyramid to subtract the volume of the pyra­
mid similar to it with the ratio of similitude equal to 1/3 
(in the figure this pyramid is at the top), then to subtract 
the volumes of three pyramids also similar to the origi­
nal pyramid with the ratio of similitude equal to 5/9 
and to add the volumes of three pyramids with the ratio 
of similitude equal to 1/9. Thus, the volume of the com­
mon part is equal to

V [H i Y - ° ( i Y + ° m
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(4) The common part is represented in Fig. 22, d. Its 
volume is

138. Let the edge of the regular tetrahedron ABCD 
be equal to a} and K  and L be tne midpoints of the edges
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CD and AB  (Fig. 23). On the edge CB take a point M  
and through this point draw a section perpendicular to K L . 
Setting | CM \ =  x> determine the^quantity x for which 
the rectangle obtained in our section will have the angle

A

Fig. 23

between the diagonals equal to a.  Since the sides of the 
obtained rectangle are equal to x and a — x, x can be 
evaluated from the following equation:

x
a — x x =

a tan —

. . , a * 
1 +  tan —

If we take on the edge BC  one more point N  such that 
| b N  | =  | CM | =  x , and through this point draw a sec­
tion perpendicular to K L , then we shall obtain another 
rectangle with the angle between the diagonals equal to a. 
Hence it follows that, on being rotated anticlockwise 
about KL  through an angle a, the plane BCD w ill pass 
through the points K t P , and N . Thus, on being rotated, 
the plane BCD will cut og the tetrahedron A BCD a pyra-
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mid KPNC  whose volume is equal to

\ K C \  | CP | \ C N \  _  x (a— a)
| CD | * | CA | | CB | ABCI) 2aa

* a tan —

2 ( i + tan «.)*

Similar reasoning w ill do for any face of the tetrahedron. 
Consequently, the volume of the common part w ill be

1 +  tan*^.
equal to ----------------  V.

( l+ ta n y )®
139. Let the cube ABCDA-fiiC-fl* be rotated through 

an angle a  about the diagonal ACi  (Fig. 24). On the edges

A^B  ̂ and A^D  ̂ take points K  and L such that | A XK  \ =  
| A i H  =  x , from K  and L drop perpendiculars on the 
diagonal ACX\ since the cube is symmetric with respect 
to the plane ACC^A^, these perpendiculars w ill pass 
through one point M  on the diagonal ACX, Let x be chosen

so that KML =  a.  Then, after rotating about the diago­
nal AC* anticlockwise (when viewed in the direction from 
A to Ci) through an angle a, the point K  w ill move into L. 
On the edges BXA X ana B XB take points P and Q at.the
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same distance x from the vertex B v  After the same rota­
tion the point Q w ill move into P. Consequently, after 
the rotation the face ABBXA\  w ill pass through the points 
A, L, and P and will cut off our cube a pyramid A A XPL
whose volume is equal to -g- ax (a — x). The same reason­
ing is true for all the faces. Thus, the volume of the 
common part is equal to a3 — ax (a — x). It now remains

to find x from the condition K M L =  a.  To this end, 
join M  to the midpoint of the line segment L K , point R * 
We have

\ MR \ = x £ *  cot y ,  | CXR | =  a V 2 — x

and from the similarity of the triangles CXRM
and CXA XA find x =  -------- —--------- •

1 +  / S c o t  |
Thus, the volume of the common part is equal to 

3a* ( l  +  cot2 y  j

( l  +  / 3 c o t  — ) 2 '

140. Let A be some point on the ray, B the point of in­
cidence of the ray on the mirror, K  and L the projections 
of A on the given mirror and rotated mirror, A ± and A % 
the points symmetric to A with respect to these mirrors, 
respectively. The sought-for angle is equal to the

angle A^BAt * If | AB \ =  a, then | A XB \ =  \ A %B \ =  a,

I A K  | =  a sin a . Since KAL =  p, we have | KL  \ =  
| A K  | sin P =  a sin a  sin P, | 4̂x̂ 4* | =  2 | KL \ =  
2a sin a  sin p. Thus, if q) is the desired angle, then
sin -  =  sin a  sin p.

Answer. 2 arcsin (sin a  sin p).
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141. Fix the triangle ABC , then known in the triangle

ADC  are two sides \ AC \ and | DC | and the angle ADC =  
a. In the plane of the triangle ADC  construct a circle 
of radius | AC  | centred^at C (Fig. 25, a). If a >  60°,

Fig. 25

then there exists only one triangle having the given 
sides and angle (the second point At  w ill turn out to lie 
on the other side of the point this is a triangle con­
gruent to the triangle ABC.  In this case AC  and BD are 
mutually perpendicular.

And if a  <C 60°, then there is another possibility (in 
Fig. 25, a, this is the triangle A XDC). In this triangle

CAJ) =  90° +  - ,  JLCD =  90° — — . But in this case 2 2
the vertex C (Fig. 25, b) is common for the angles BCAX =

90° — 'BCD =  a, AiCD =  90° — and since 90°— 
2 2

? =  ^90°— +  a, the points A lt B , C, and D  lie in

the same plane, and the angle between A XC and BD w ill 
be equal to a .

Answer, if a >  60°, then the angle between AC and BD 
is equal to 90°, if a  <  60°, then the angle between A C and 
BD can be equal to either 90° or a.
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142. Let the base of the prism be the polygon . . 
. . . A n , 0  the centre of the circle circumscribed about it. 
Let then a certain plane cut the edges of the prism at 
points B l t  B n i  and M  be a point in^the plane
such that the line M O  is perpendicular to the plane of 
the base of the prism. Then the following equalities hold;

n
2  \ A hBh \ = n \ M O \ t (1)

V  =  S  I M O  I, (2)
where V is the volume of the part of the prism enclosed 
between the^base and the passed plane.

Prove. Equality (1). For an even n it is obvious. 
Let n be odd. Consider the triangle A h A h+1A i , where A i  
is the vertex most distant from A h and A h+1. Let Ĉ  and 
C'h be the midpoints of A hA k+1 and B hB ^ n  respectively.

Then I =  cos 5  =  X. Now, it is easy to prove
| OAi | n

that

I M O  I =  I C k C k  I + 1  A i B j \ X  
1 1 i  +  X

~ 2 ~ (I A k B k  | +  | A k + 1B k+1 |) +  | A 1 B 1  \ X  

~  i  +  X •
Adding these equalities for all fc’s (for k =  n instead of 
n +  1 take 1), we get Statement (1).

To prove Equality (2), consider the polyhedron 
A hA h+1O B k B h+i M .  If now P& is the volume of this poly­
hedron, then, by Simpson’s formula, we have (see Prob­
lem 15)

Tr _  bn / I A h B h  I +  I A k + i B k + i  I „
Vk~ ‘T  { ----------------2 n

- | - 4  I A h B k  I +  I A h + i B k + i  | +  2 | M O  |  ̂ an j

=  anbn ( | A h B k  | + 1A k+1B h+1 | +  | M O  \ )

=  ( \ A k B k \ + \ A k+1B h+1\ + W O \ ) ,
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w here bn are  th e  side an d  th e  s la n t h e ig h t o f the  
polygon A ±A t . . .A n . A dd ing  these eq u a litie s  fo r a l l  K ' s  
a n a  ta k in g  (1) in to  co n sid era tio n , we g e t E q u a li­
ty  (2).

Now, i t  is  n o t d ifficu lt to  conclude th a t  the  answ er to  
o u r problem  w ill be th e  q u a n tity

143. L et th e  p en tagon  A B C D E  be th e  p ro jec tion  of the  
reg u la r pen tagon , w here | A B  \ =  1, | B C  | «  2, | C D  |==

a , A B C D  is  a  trap ezo id  in  w hich  -| | =  X =  J —
| B C  | 2

F  th e  p o in t of in te rsec tio n  of i ts  d iagonals, A F D E  is

£

a  p ara lle lo g ram . D raw  C K  p a ra lle l to  A B  (Fig. 26). In  
th e  tr ian g le  C K D  we have : | C K  | =  1, | K D  | =  2( X —

1), | C D  | =  a . S et C D K  =  <p. W rite  th e  theo rem  of 
cosines fo r th e  trian g les  C K D  an d  A C D :

1 =  a* +  4 (X — 1)* — 4 (X — 1) a  cos <p,

I A C  |* =  a* +  4X* — 4aX cos <p.

F rom  these  tw o re la tio n sh ip s  we find

i B D \  =  \ A r \ — ^ r r y r 4X*— 3X— a%
X— 1
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Similarly, we find 

\ A E \  =  \ F D \ = 1 ~ \ / r .
" I ,

f Answer: Two other sides are equal to

V̂ s ~ 1 V 1 4 + 1 0 y 5 —2 (Vs+l) «2

and ■ t-

( 6 + 2 / 5 )  + 6  ( / 5 + 1 ) .

The problem has a solution for l/* 5 — 2 <  a < ] /  5.
144. Let the edge of the cube be equal to a, | NCX J =  

x . Find

| £ M |  =  | - r

| LiV |* =  4 ^  |* +  | 12 =  ̂ - + ( a - z ) 2

=  - |-  a2 — 2az +  a:2,

,| i i ^ | 2= - |L B 1 |2+ |  fl*JT|»
=  I IJB 1 |a+  | B±N  |a+  | NK  | 2

+  2 | BXN  | • | N K  

■ = - j - + ( a ^ x)2 +  ^ Y + ( a—x) x

| M N  | 2=  | MB 1  | 2+  | BXN  | 2 =  -^ ------2a x + x 2,

| AfX |2=  | MB  | 2+  | BK  | 2— | MB | • | BK \
3a2 3 , x 2

2 2 “* +  2 *
9—0449
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I! LM K =  M K N  =  (p, then by the theorem of cosines, 
for the triangles LM K  and M K N  we get:

| LK  |* =  | LM  |2 +  | M K  |2 — 2 \LM | . \MK  | cos <p,
| M N  |2 =  |M K  |2 +  | K N  |2 — 2 |M K  | *| KN\ cos <p.

Eliminating cos <p from these equations, we get 
I LK  |2 • \KN\ — | M N  |2-| LM  |
=  (| LM  | — | K N  |) (| LM  | • \KN  | — | M K  |2).

Expressing the line segments entering this equality 
with the aid of the found formulas, we get

145. Two cases are possible: (1) the centre of the circum* 
scribed sphere coincides with the centre of the base and (2) 
the centre of the circumscribed sphere is found at the 
point of the surface of the inscribed sphere diametrically 
opposite to the centre of the base.

In the second case, denoting by R  and r the radii of 
the respective inscribed and circumscribed spheres, find 
the altitude of the pyramid 2r +  R  and the side of the
base y R *  — 4r*. The section passing through the altitude 
and midpoint of the side of the base is an isosceles triangle
with altitude R  +  2r, base 3 (Rz — 4r2) and radius of 
the inscribed circle equal to r. Proceeding from this, it 
is possible to get the relationship 3R 2  — SRr — 4r® =  0 
for R and r.

( a x \  f ax 3 a2  , 3 ax x% \
2 * 2 2 ~) *

From this equation we find x =  a

Answer, j j =  V ~ 2 + l .Answer:

A nswer
3
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146. Two cases are possible: (1) the centre of the 
circumscribed ball coincides with the centre of the base, 
(2) the centre of the circumscribed sphere is found at the 
point of the surface of the inscribed ball diametrically 
opposite to the centre of the base. In the first case, the 
plane angle at the vertex is equal to n/2.

Consider the second case. Denote by a, &, and I the 
side of the base, lateral edge, and the slant height of the 
lateral face, respectively. Then

=  ?  +  (1)

the radius r of the inscribed ball is equal to the radius 
of the circle inscribed in the isosceles triangle with base a 
and lateral side I:

a y*2Z — a
2 Y z i + a  ’ (2)

the .radius R of the circumscribed ball is equal to the 
radius of the circle circumscribed about the isosceles
triangle with base a V 2  and lateral side b:

n v  y i
2 V  2 b2 —a*

(3)

Here, the centre of the circle must lie inside the triangle, 
which means that b >  a. Since the distance from the 
centre of the circumscribed ball to the base is 2r, we have 2
R 2  — ~  =  4r2. Substituting the values of R and r ex-

pressed by Formulas (2) and (3) into this equality, we 
get after simplification:

(&2_a2)2 a2 (2Z —a)
2 (2&a — a2) 2 1  + a *

Expressing b in terms of a and I by Formula (1), 
we get

( z2~ ‘X ' ) 2- a2 (2Z~ a)2-

9*
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Taking into account that b >  a or I >  a 

that a and I satisfy the equation

/ 3 -
2 ’ we obtain

a (21 —fl),

whence —  = 1  a
/ 3  ̂forjthe second root j

Answer:
n
2 or £L 

6 *
147, Let K  be the projection of the vertex S  on the 

plane ABCD , and let L, 71/, TV, and P be the projection 
of S  on the respective sides A B , BC t CD, and ZM,

It follows from the hypothesis that LSN  and M SP  are 
right triangles with right angles at the vertex S. Conse­
quently, | LK  M K N  | =  | M K  | -| KP  | =  | K S  |2. And

Since \ I K  \ +  | K N  | =  | M K  | +  | KP  | — a, two 
cases are possible: either | LK  | =  j K M  |, | K P  | =  
I fK N  |, or | LK  | =  | KP  |, | M K  | =  | K N  |, that is, 
the point K  lies either on the diagonal AC  or B D . Con­
sider both cases.

(1) K  lies on the diagonal BD (Fig. 27, a). The figure 
represents the projection of the pyramid on the plane
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ABCD . The point S  is found “above” K. Setting \L K \= • 
| KM  \ =  x, we now find:

| K S  | =  / 1 LK  | ■ | K N  | =  / a: (a—x),

| S L \  =  V  | LK  | * 2+  | KS  |* = V o x ,
„ a V o x
*  A B S  =  2 •

Analogously, S A D 8  =  Further, K abos=

—- a 2 |^a:(a—a:). On the other hand, by the formula 
of Problem 11, we have

ij  2  ^ a b s ^ b d s  s i n  a
Va b d s =  3 1 ^ 1

______a3 x (a—x) sin a
6 / ( a  — x)t -\-xt -\-x (a—a;)
Equating two expressions for V A B D S » we get 

x* — ax +  a2 cos2 a  =  0, 
whence x (a — x) =  a2  cos2 a,

Va b c d s
a3 f cos a  |

3
I

The problem has a solution if |cos a  \ ^  Besides, the
angle at the edge A S  is obtuse, since the plane A S M  
is perpendicular to the face A S D t and this plane’ passes 
inside the dihedral angle between the planes A SB and 
ASD.  Consequently, in the first case the problem has
a solution if — <

(2) The point K  lies on the diagonal AC  (Fig. 27, &). 
Reasoning as in Case (1), we get (as before, | LK  | =  x):

V a b d s =
a2  y x  (a— x) 

6
az x sin a

6  Y  x (x + # ) ’
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whence we easily find x — a |c o s a |,  

y  a3  Y  I cos a  | (1 — | cos a  |)

The same as in the first case, 

answer.
A ^  2jlAnswer: if <  a  <  — ,

a  >  5 . Thus, we get the 
2

two answers are possible:

Tjr a3 cos a  T,  a3 Y —cos a  (1 + cos a)
*1 — 6 f ^2— 6 ;

.* 2ji Tjr a? Y  — cos a  (1 +  cos a)
lf a > T T  ’ V---------------------6 •

148. Let us first solve the following problem. In the 
triangle ABC  points L and K  are taken on the sides AB
and AC  so that  ̂  ̂ =  m, L ^ ^ -J=  n. What is the

I LB | | KC  |
ratio in which the median A M  is divided by the line KL?

Denote by N  the point of intersection of KL  and AM \  
Q is the point of intersection of KL  and BC , P  is the 
point of intersection of KL  and the straight line parallel 
to BC  and passing through A.  Let | BC \ =  2a, I QC I =  
&, I A P  | =  c, n >  m. Then, from the similarity of the
corresponding triangles we shall have: -  =  n, — -—  =

b b +  2 a
m, whence L42J =  =  i*!L.

| N M  | b +  a m +  n 
Let now m , n, and p be the ratios in which the edges 

A B , AC, and AD  are divided by the plane. To determine 
them, we shall have the following system:

2 mn 2 np 1 2 pm
---- ;—  —2,m-\-n n + P  ~ 2 * p-\-m
whence

4 4 4m = _ T ,
B=  9 • P -  7 .

The fact that — 1 <  m  <  0 means that the point L lies 
on the extension of AB beyond the point A, that is, our



Answers, Hints, Solutions 135

plane intersects the edges AC, A D , BC, and B D . Further, 
determining the ratios in which the edges BC and BD are
divided^we shall get-_-and-~j, we findjthe answer:

149. Consider the pyramid SABC  (Fig. 28) in which
2ji

| CA | =  | AB  |, BAC =  — , SA is perpendicular to the71
plane ABC,  and such that the vertex A is projected on

Fig. 28

the plane SBC  into the point 0  which is the centre of the 
circle inscribed in SBC .

Let us inscribe a cone in this pyramid so that its 
vertex coincides with A, and the circle of its base is rep­
resented by the circle inscribed in SBC . It is obvious 
that if we take tz such pyramids whose bases lie in the 
plane ABC  so that their bases congruent to the triangle 
ABC  form a regular /z-gon with centre at A , then the 
eones inscribed in these pyramids form the desired system 
of cones.

Further, let D [be the midpoint of BC, \ O D \ = r ,
\ A D \ = t l .  Than ) SD | =  — , | BD \ = 1  tan — . Sincer  n
S \  y \  y \  I SD  I i

SBD  =* 2OBD, tan SBD =  ^  = ----------—  ,
' r tan —n
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✓ \ 
tan OBD =

, * «I tan —  n

, we may write the equation

,  * «I tan —n
nr tan —  1n

12 tan2 —  n

tan
whence —

V

Jl
n

j / "  1 +  2 tan2 —  

Answert 2 arcsin -
x ntan — n

n1 + 2  tan2 —n

s* i I

150. Let the'plane A K N  touch the.ballat the point P , 
and the straight line A P  intersect N X  at the point M

i * f it •* i
(Fig. 29)J. Then the plane *QXNA is the bisector planexof 
the dihedral angle formed by the planes D\C\A  and C*MA 
(the planes D^AN and A N M  touch the ball," ana the 
planes D,C,A and C M A  pass through its centre). In the
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same way, the plane CXKA is the bisector plane of the 
dihedral angle formed by the planes MCXA and CXBXA.  
Thus, the dihedral angle between the planes ACXK  and 
ACXN  is one-half the dihedral angle between the planes 
AD 1 C1  and AB 1 C1  equal to 2ji/3.

A nswer:  ̂Jl/3.
151. Let K , L, and Af be the midpoints of the edges 

A B , AC , and AD  (Fig. 30). From the conditions of the

A

Fig. 30 -

problem it  then follows that'the tetrahedron A 1 B 1 C1 D 1  

is bounded by the planes D K A X, BLA i ,  CMA i ,  and the 
plane passing through A parallel to BCD. And the vertices 
2?i, Clt and Dx are arranged so that the points M, K , 
and L are the midpoints of CBlt DCi , and BD 1  (the 
points Blt Clt and Dx are not shown in the figure).

Let now Q be the midpoint of BCt P  the point of 
intersection of BL  and KQ. To find the volume of the 
common part of two pyramids ABCD and A ^ XCXD^  we 
must from the volume V of the pyramid ABCD subtract 
the volumes of three pyramids equivalent to DKBQ  (each
of them has the volume equal to j  V)»*and add the vol­
umes of three pyramids equivalent to A XBQP. The volume
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4
of the last pyramid is equal to — F. Thus, the volume

•j
of the common part is equal to ^

8 V.
152. Let us first prove that the dihedral angles at the 

edges DB and AC  are equal to ji/2 (each). Let I AD  I =  
| CD\ =  \ BC \ =  a, | BD | =  \AC \ =  5, | AB \ =  c,

M

Fig. 31
& > a. From D and C drop perpendiculars D K  and CL on 
the edge AB  (Fig. 31, a). Let us introduce the following 
notation:

| A K  | =  | BL  | =  x, | KL  | =  | c — 2x |, | DK\  =•
| CL | =  flu

Since the dihedral angle a t  the edge A B  is  equal to 
ji/3, we have | DC |2 =  1 D K  |2 +  | CL | 2 — | D K  | X 
1 CL | +  | KL  |8, that Is, a* =  fe2 +  (c— 2xf.  Replac­
ing h2 by a* — xa, we get 3a;2 — 4cx +  c2 =  0, whence 
xi =  c!3, a;* =  c. From the condition b >  a it follows 
that x <  c/2, hence x  =  c/3. Thus, the quantities a, &, 
and c are related as follows: c2 =  3 (b2 — a2).

Find the areas of the triangles ABD  and ACD:

S a b d ^ S a b c
1 T /" , C* 1 ,  /

= -2-c K  a - t = t c K
/* 4a2—

J^a2—&*.

3
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Expressing the volume of the tetrahedron ABCD by 
the formula of Problem 11 in terms of the dihedral angle 
at the edge AB  and the areas of the faces ABD  and ABC , 
and then in terms of <p the dihedral angle at the edge AC  
(it is also equal to the angle at the edge BD) and the 
areas of the faces ABC  ana ACD, we get

To determine the sum of the remaining three dihedral 
angles, consider the prism BCDMNA (Fig. 31, 6). The 
tetrahedron ABCN  is congruent to the tetrahedron 
ABCD , since the plane ABC  is peroendicular to the plane 
of ADCN , but ADCN  is a rhombus, consequently, the 
tetrahedra ABCD and ABCN  are symmetric with respect 
to the plane BCA.  Just in the same way the tetrahedron 
A B M N  is symmetric to the tetrahedron ABCN  with re­
spect to the plane AB N  (the angle at the edge BN  in the 
tetrahedron ABCN  is congruent to the angle at the edge 
BD of the tetrahedron ABCD, that is, equal to n/2), conse­
quently, the tetrahedron A B M N  is congruent to the 
tetrahedron ABCN  and is congruent to the original 
tetrahedron ABCD .

The dihedral angles of the prism at the edges CN and 
BM  are respectively congruent to the dihedral angles at 
the edges DC  and BC  of the tetrahedron ABCD . And 
since the sum of the dihedral angles at the lateral edges 
of the triangular prism is equal to ji, the sum of the dihed­
ral angles at the edges AD, DC, and CB of the tetrahed­
ron ABCD is also equal to j i ,  and the sum of a ll the

whence

b Y  4a2 — b* c I 

Hence, q> =  —  .
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dihedral angles of the tetrahedron excluding the given 
angle at the edge AB  is equal to 2ji.

153* Let in the triangle ABC  the sides BC> CAf and 
AB  be respectively equal to a, &, and'c. Since the pyramids 
ABCCu ABB-fi^ and AA^B1 C1  are congruent, it follows 
that each of them has two faces congruent to the triangle 
ABC . Indeed, if each pyramid had only one such face, 
then between the vertices of the pyramids ABCCX and 
A ^ B ^ A  there would be the correspondence A -> A^

B - + B i, C-+ C1% Ct ->*Af that is, | CCX | =  | AC  , | ,  
I B & 1  1 =  I B\A |, and this would mean that none of the 
faces in the pyramid A B C ^ i  is equal to the triangle ABC.  
Now, it is easy to conclude that the lateral edge of the 
prism is equal to a, or &, or c (if, for instance, the 
triangle ACXB is congruent to the triangle ABC,  then 
the face A iZ?ii4 in the pyramid A-fiiC-yA corresponds 
to the face AC^B of the pyramid ABCCx and the tri­
angle is congruent to the^triangle ABC).

Consider all possible cases.
' (1) I A A i  | =  | BB 1  | =  | CC1  | =  a (Fig. 32, a).
Then from the vertex C of the pyramid ABCC\  two edges 
of length a and one edge of length b emanate, and an edge 
of length c lies opposite the edge CC^ Hence it follows 
that to the vertex C of the pyramid ABCCX there must 
correspond the vertex Ci of the pyramid A^B^C^A and 
\ AC 1  | =  a. Now it is possible to conclude that | AB 1  | =
I BC1  | =  b.

In all the three pyramids, the dihedral angles at the 
edges of length b are congruent, the sum of two such
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angles being equal to ji (for instance, two angles at the 
edge C^B in the pyramids ABCCl and ABBXCi), that is, 
each of them is equal to ji/2.

Draw perpendiculars BL  and CXK  to the edge AC  
(Fig. 32, &). Since the dihedral angle at the edge AC  is 
equal to 90°, we have
&a =  I C-fi |a =  | C^K |2 +  | KL  |a +  | LB |2

=  | CXC |2 -  | KC  |2 +  (| KC  | -  | LC |)2 +  \BC\2
—| LC |2 =  2a2 — bx,

where x =  | LC |, and is found from the equation 

a2 _ x2 =  c2 _ (b_ x)2t * =  -a2+^ ~ C2 .

Thus, 3a2 — 362 +  c2 =  0. But, by the hypothesis, 
ABC  is a right triangle. This is possible only under the
condition c2 =  a2  +  b2. Consequently, b =  a Y 2, c =
a Y  3-

Now, it is possible to find the dihedral angle at the

edge BC  of our prism. ACCX =  n/4 is the linear angle of 
this dihedral angle (ABC and CXCB are right triangles 
with right angles at the vertex C). The dihedral angle 
at the edge AB  of the pyramid ABCCX is equal to n/3. 
Let us show this. Let this angle be equal to <p. Then the 
dihedral angle at the edge AB  of the prism ABCA^BXCX is 
equal to 2<p, and at the edge A XB X to q>. Thus,
o n3q>=n, <P=-g-.

(2) | A A 1  | =  | BB 1  | =  | CC1  | =  b (Fig. 32, c). In 
this case, in the pyramid ABCCX two edges of length b 
and one edge of length a emanate from the vertex C. 
Hence, the pyramid A-fiiC^A has also such a vertex. It can 
be either the vertex A or Cx. In both cases we get | ABi\ =  
a, | AC± | =  b (we remind here that two faces with sides 
a, &, and c must be found). Thus, each of the pyramids 
ABCCt and A ^ X i A  has one face representing a regular 
triangle with side &, while the pyramid A B BXĈ  has not 
such a face whatever the length of the edge BC1  is. Thus, 
this case is impossible.
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(3) | A A X | =  | BB 1  | =  | CC1  | =  c . This case actu­
ally coincides with the first, only the bases ABC  and 
A XBXCi are interchanged.

. n Jt / 3j i \ Jt / 2j i \
Anaur: _  _  (or — T  (or — ) .

154, Drop perpendiculars A XM  and B-Jd on CD, B±N 
and CXN  on AD, CXK  and DXK  on A B , DXL and A XL 
on CB .

Since

I A1M  | \ B XN  | _ | CXK.\ | Z>!L|_  1 
| ***” I KDX | | ^ L |  3

(these ratios are equal to the cosine of the dihedral angle 
at the edges of the tetrahedron) and \A 1B1| =  |2?i£il =  I

I C\Di 1 — I D i^i  I, the following equalities must be 
fulfilled: | A XM  | =  | B-fl  | =  | CXK  \ =  \ Dx L \ =  x,
| B XM  | =  | N C i  | =  | K D 1 | =  | A XL  | =  3x (Fig. 33 
represents the development of the tetrahedron). Each of 
the edges C D ,  D A ,  A B ,  and B C  w ill turn out to be di-



Answers, Hints, Solutions 143

vided into line segments m and n as is shown in the figure. 

Bearing in mind that m +  n =  a, we find x  =  ,

m =  , n =  , and then find the volume of the tetra­
hedron

a «8 / 2Answer: — — .
155. Without loss of generality, we will regard that 

all the elements of the cone tangent to the balls are in

S

contact simultaneously with two balls: inner and outer. 
Let us pass a section through the vertex S  of the cone 
and the centres of the two balls touching one element 
(Fig. 34, the notation is clear from the figure). From the 
condition that n balls of radius R touch one another there
follows the equality | OA \ = -----------  , analogously,, ji sm —  n21> p
| OB | = -------- . Consequently | AB  | =  a --- ------------ .. ji . jisin — sm —n n

R 2 RLet I AC  I =  x. Then tan a  =  — , cot a  = --------. Mul-' x a —x
tiplying these equalities, we get the equation for x: 

x2 — ax +  2 R 2  =  0,
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w hence x x =  

w here a  =  -  ^

_  a + Y a 2—$R*J2—

sin 71
n

The condition a2 —8i?2 > 0  yields the inequality 
ji 1sin— < -----7=*. Besides, there must be fulfilled the in-
n 2V2

.
equality t a n a = —  < 1 .  Now, it is  not difficult Oto obrX Lt '

1 JT 1tain that the root xt fits if -^  <  sin —  < -----7=- . For
1 3 n 2 2 ?

ji 1the root x2 it remains one restriction: sin — ^ -----r=*.
n 2 Y 2-

1 Jl 1
It is possible to prove that 7  <  sin — <  — 7-= only

3 n 2 y 2
for n — 9. . 1

The volume of the cone w ill be equal to -g- ji (a +
x) 3 tan 2a. Expressing a, x, and tan 2a in terms of R and 
n by the appropriate formulas, we get the answer. ■

A nswer:

•v  ̂ r - -  . _ . . . . . . — ,

12 sin?— f  1 — 6 sin2 ——1-1/ 1 — 8 sin2 — V . n \ n V , n 1
n > 9 .• * • 

Besides, for n = 9  one more value is possible:

rtiJ* l - 8 s ln « ^ ) 3 ( l  — 1X 1 - 8 sin*y)

4 2 sin * - |-  1 1 — 6 sin* ——  j / " l - 8 sin2 - y )

156. Projecting the cube on the plane perpendicular to 
B\D , we get a regular hexagon (Fig. 35) with
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side j / ~ |  a = b ,  where a is the edge of the cube (the regu­
lar triangle BC1 A 1  w ill be projected into a congruent 
triangle, since the plane of BC1 A 1  is perpendicular to

B*D)t Consider the triangle KACV where | KA | =* 
\ACi \ = 2 b, the line N M  passes through the midpoint of
ACV Let-j-j— =  x. We then draw CXL parallel to 
M N . We have:

I m l  I =  I AM  I,
I K N  | | K M  | 2 + x
I KCX | ”  |KL  | -  2 + 2 * ’

whence

I BN  | _  2 ( \KN \ — \BC |)
\B C X\ | KCX |
_ o  \&N \ 2 + x  , 1

TSCTT 5+F
10—0449
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Thus,

B C 1 \ \ A M  I _ i  | x _ l  
B N  | \ A A t \ ~ 1 +  x

157. If two noncongruent and similar triangles have 
two equal sides, then it is easy to make sure that the 
sides of each of them form a geometric progression, and 
the sides of one of them may be designated by a, Xa, X*a 
and those of the other by Xa, X*a, X*a.

Further, if the sides of a triangle form a geometric 
progression and two of them are equal to 3 ana 5, then
the third side will be equal to |^ 15  (in other cases the 
sum of two sides w ill he less than the third one). Now, it 
is easy to prove that in our tetrahedron two faces are
triangles with sides 3, Y 15, 5 and two other faces have 

sides Y 15, 5, 5 Y l o t  3 j / " , 3, Y 15; accord­

ingly the problem has two answers: and — Y 10.

158. Introduce a rectangular coordinate system so that 
the first line coincides with the z-axis, the second line is 
parallel to the y-axis and passes through the point 
(0, 0, a), and the third line is  parallel to the z-axis and 
passes through the point (a, a, 0). Let ABCDAXBXCXD X be 
a parallelepiped in which the points A and C lie on the 
first line and have the coordinates (zt, 0, 0), fz2, 0, 0), 
respectively, the points B and Cx on the second line, their 
coordinates are (0, yx, a) and (0, y2, a), and the points D 
and Bx on the third line, their respective coordinates are 
(a, a, z j  and (a, a, z4). From the condition of the equality
of the vectors AD  =  BC  =  B XCX, we get a — xx — z 2 =  
—a, a =  — yx =  — a, zx =  — a =  a — z2, whence
xt =  2a, x2 =  — a, yx =  — a, y 2  =  2a, zx =  — a, z* =  
2a. Thus, we have A (2a, 0, 0), B (0, —a, a), C (—a, 0, 0), 
D  (a, a, —a), Bx (a, a, 2a), Cx (0, 2a, a). It is possible
to check that AB =  DC.  Further, | AC  | =  3a, | AB \ =  
aY$>  I BC | =  a Y 3 ,  that is, ABC  is a right triangle, 
hence, the area of ABCD will be \AB\ '\BC\  — 3a2 Y 2 .
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The equation of the plane ABCD is y +  z =  0, hence, 
the distance from Bx to this plane will be equal to

A nswer: 9a3.
159. Consider the regular pyramid ABCDS  in which 

the section KLM NP  is drawn representing a regular pen­

s'

Fig. 36

tagon with side a (Fig. 36). Let the diagonal of the base 
of the pyramid be equal to b, and its lateral edge to I. Let 
us also set | SM  \ =  xl, | SN  | — yl. Since the pentagon 
KLMNP  is regular, we have

. r . o Ji 1 +  1^5 | LM  | =  2a cos — "  — — —  a =  pa,o £
A 2 j lIMF I 1 cos —g- '

| FG | ~  n . 2n 2cos -g-+COS

We have: | KP  | = a ,  | GO \ ~  & a . On the other hand, 

I OE I =  I OC | =  *, | Af£ | =  | 5 0  | - | — ■=

10*
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A ( l —x), | FO | (1 — y), where h is the altitude of
the pyramid, consequently,

I GO I \ O E \  \ r n \ —
| FO | ~  I ME I -  | FO | ’ 1 1  2 ( y ~ x )  ‘
Equating the found expressions for | GO | , we get the 
equation

Further
\ O E \  | MF  | 
| GO | “  | F 0 |

whence

Since | LiV | =  \ia, \ LN  | =  y \ DB  |, we have 
yb =  pa. (3)
And, finally, consider the triangle PNB  in which | PN  | =

a, \ N B \  =  ( i - y )  l, \ PB  | =  -b-—  / 2 ,  cos PBN  =

cos ABS = ------—
l Y  2 1

By the theorem of cosines, we get

(1I± * L =  b _ a
( 1 )v—X

_i
- — ^—  , from Equations (l)-(3) we find y =  

b =  a, then from Equation (4) we get

,a_ aa (7 + 3 /5 )  P
4 ”  2 •
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Thus, the volume of the pyramid is equal to

1 68 &3 ■ ( 9 + 4  V D  fl,
3 2 V  4 ~  12 12

160. We introduce the usual notation: a, 6, c denote 
the sides of the given triangle, ha, fy,, its altitudes, 
p one half of its perimeter, r the radius of the inscribed 
circle. Let M  denote the point of intersection of the 
planes A ^ i C ,  A ^ C ^  and ABXCV Oa, Ob, Oe the cen­
tres of the externally inscribed circles (Oa is the centre of 
the circle touching the side BC and the extensions of AB 
and AC , and so on). Prove that OaObOeM  is the desired 
pyramid, the altitude dropped from the point M  passing 
through the centre of the inscribed circle (0), and | MO | =  
2r.

Consider, for instance, the plane AxB X .  Let K  be the 
point of intersection of this plane with the line A B ,

| KA | _  | AAt | ha b \ AC |
| K B \  | BBX | hb a | BC \ ’

that is, K  is the point of intersection of the line AB  and 
the bisector of the exterior angle C. Hence it follows that 
the base of our pyramid is indeed the triangle OaObOc and 
that the point M  is projected into the point O. Find | MO |;

| M O \ ^ \tOOa \ = ra- r  
ha I AOa | ra

where ra is the radius of the externally inscribed circle
S S 2 Scentred at On: ra = --------- , r =  — , hn =  —  , conse-a a p — a p a a

quently,
1 1

\ M O \ = h a
ra— r _  2S p —a 

~~ a 1
2S =  2r.

a
p — a

Find the area of the triangle OaObOe. Note that OaA,  
0bB , OcC are the altitudes of this triangle. The angles of
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the triangle OaObOc are found readily, for instance,

/ V  / B \ / C \
OcOaOb =  BOaC - 1 8 0 ° -  ( 9 0 ° - — ) - ( 9 0 ° -  — )

A- 8 0 - - 4 .

Other angles are found in a similar way. The circle with 
diameter ObOc passes through B and C, eonsequently.

ObOt \BC\ a
/ X

sin BObC sinT

exactly in the same way | ObOt , hence
. CsmT

X s- c £
OaA | =* | OaOb | sin OaObA=*------- — cos

. C
SInT

2 #

Thus, the area of the triangle OaObOc (let us denote it 
by Q) w ill be

Q = ae

. A . Csin —  sin T

cos B

ac sin B

. A . B . Csm y s m y s m y
a)
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Find sin - y  :

sin i =

-V (p — b)(p — e) 
be

B CThen sin-^- and sin-=- are found in the same way. 
Substituting them in (1), we get

n _ c  ___________ ________________
V 2 ( p - a ) ( p - b ) ( p - c )  ’

and the volume of the pyramid MOaObOe w ill be

V   5-;------ n --—M7-------x =  4 -  a b c = \ s R .3 (p—a)(p—b)(p— c) 3 3

Section 2
161. No, not in any.
162. The indicated property is possessed by a pyramid 

in which two opposite dihedral angles are obtuse.
163. Prove that if the straight line is not perpendicur 

lar to the plane and forms equal angles with two inter­
secting lines in this plane, then the projection of this 
line on the plane also makes equal angles with the same 
lines, that is, it is parallel to the bisector of either of 
the two angles made by them.

164. A triangle, a quadrilateral, and a hexagon. 
A cube cannot be cut in a regular pentagon, since in a sec­
tion having more than three sides there is at least one 
pair of parallel sides, but a regular pentagon has no 
parallel sides.

165. On the edges of the trihedral angle lay off equal 
line segments S A , SB, and SC  from the vertex S . Denote 
by O the projection of S  on the plane ABC . ASB  and AOB 
are isosceles triangles with a common base AB,  the lat-
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eral sides of the triangle A OB being shorter than those of
/ \  / \

the triangle A S B . Consequently, AOB >  ASB.  Similar 
inequalities hold for other angles. Thus,

/ \  / \  / \  / \  / \  / \
ASB  +  BSC  +  CSA <  AOB +  BOC +  COA<  2n.

(The last sum is equal to 2ji if O is inside the triangle 
ABC  and is less than 2n if 0  lies outside of this trian­
gle.)

To prove the second statement, take an arbitrary point
inside the given angle and from this point drop perpen­
diculars on the faces of the given angle. These perpendicu­
lars w ill represent the edges of another trihedral angle. 
(The obtained angle is called complementary to the given 
trihedral angle. This technique is a standard method in 
the geometry of trihedral angles.) The dihedral angles of 
the given trihedral angle are complemented to n by the 
plane angles of the complementary trihedral angle, and 
vice versa. If a , 6, y  are the dihedral angles of me given 
trihedral angle, then, using the above-proved inequality 
for plane angles, we shall have (ji — a) +  (ji — P) +  
(ji — y) <  2ji, whence it follows that a  +  P +  y >  ji .

166. (1) Let S  be the vertex of the angle, M  a point 
on an edge, M x and M 2  the projections of M  on two other 
edges, N  the projection of M  on the opposite face. Suppose 
that the edge SM  corresponds to the dihedral angle C. 
If | SM  | =  a, then, finding successively | SM , | and 
then from the triangle M M XN, \ M N  |, or in a different 
way, first | S M 2  I, and then from the triangle M M 2 N ,
| M N  j, we arrive at the equality

| M N  | =  a sin a  sin B — a sin p sin A ,

that is,

sin a   sin P
sin A sin B * 2

(2) Denote by a, b, and c the unit vectors directed 
along the edges of the trihedral angle (a lies opposite the 
plane angle of size a , b opposite P, c opposite y). The 
vector b can be represented m the form: b =  a cos y +  q,
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where | r\ | =  sin y, q is a vector perpendicular to a; 
analogously, c — a cos P +  £ where | f  | =  sin P, £ is 
perpendicular to a. The angle between the vectors q and £ 
is equal to A .

Multiplying b and c as scalars, we get
be =  cos a  — (a cos y +  q) (a cos P +  ?)
— cos p cos y +  sin p sin y cos A,

which was just required to be proved.
(3) From a point inside the angle drop perpendiculars 

on the faces of the given angle. We get, as is known (see 
Problem 165), a trihedral angle complementary to the 
given. The plane angles of the given trihedral angle make 
the dihedral angle of the complementary angle he equal 
to ji. Applying the first theorem of cosines to the comple­
mentary trihedral angle, we get our statement.

167. Take advantage of the first theorem of cosines 
(see Problem 166).

168. Take advantage of the second theorem of co­
sines (see Problem 166).

169. The sum of all the plane angles of the tetrahedron 
is equal to 4n. Hence, there is a vertex the sum of plane 
angles at which does not exceed it. All the plane angles 
at this angle are acute. Otherwise, one angle would be 
greater than the sum of two others.

170. This property is possessed by the edge having 
the greatest length.

171. Let ABC  be a perpendicular section, | BC  | — a,
| CA | — &, | AB  | — c. Through A pass the section 
ABXCX (B and Bu C and Cx lie on the corresponding edges). 
Let then | BBX \ =  \ x |, | CC1 | =  | y |. (If Bx and Cx lie 
on one side from the plane ABC , then x and y have the 
same sign, and if on different sides, then x and y have 
opposite signs.) For the triangle ABXCX to be regular, 
it is necessary and sufficient that the following equalities 
be fulfilled:

+  *2 =  b2 +  ^
b2  +  y2  =  a2 +  (x -  y ) \

Let us show that this system has always a solution. Let 
b and c >  b. It is easy to show that the set of points 

n the (x, £/)-plane satisfying the first equation and
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situated in Quadrant 1 is a line which approaches without 
bound the straight line y =  x with increasing x and
for x =  0, y  =  y c 2  — b2. (As is known, the equation 
y* — x2  =  k describes an equilateral hyperbola.) Simi­
larly, the line described by the second equation ap­
proaches the straight line y =  x/ 2  with increasing x and for x 
tending to zero y increases without bound. (The set of 
points satisfying the second equation is also a hyperbola.) 
Hence it follows that these two lines intersect, that is, the 
system of equations always has a solution.

172. Denote the remaining two vertices of the tetra­
hedron by C and D. By the hypothesis, | A C | +  | A d  | =  
I AB  |. Consider the square KLM N  with side equal to 
j AB  j. On its sides LM  and M N  take points P and Q such 
that | P M  | =  | AD  |, | QM \ =  \ AC  |. Then | LP \ =  
\AC |, | NQ | =  | AD  | t I PQ I =  I DC | and, con-

A BDC =  A KPQ. These equalities i  ̂ „ 
of the problem.

173. No, not any. For instance, if one of the plane 
angles of the trihedral angle is sufficiently small ana two 
other are right angles, then it is easy to verify that no 
section of this trihedral angle is a regular triangle.

174. Show that if at least one plane angle of the 
given trihedral angle is not equal to 90°, then it can be 
cut by a plane so that the section thus obtained is an 
obtuse triangle. And if all the plane angles of the trihed­
ral angle are right angles, then any of its sections is 
an acute triangle. For this purpose, it suffices to express 
the sides of an arbitrary section by the Pythagorean 
theorem in terms of the line segments of the edges and 
to check that the sum of the squares of any two sides of 
the section is greater than the square of the third side.

175. Let a be the length of the greatest edge, b and c 
the lengths of the edges adjacent to one of the end points 
of the edge a, and e and /  to the other.

We have: (& +  c — «) +  (« +  /  — a) =  6 +  c +  e +  
/  — 2a >  0. Hence it follows that at least one of the 
following two inequalities is fulfilled: b +  c — a >  0 
or e +  /  — a >  0. Hence, the triple of the line seg­
ments a, 6, c or a, c, /  can form a triangle.

176. In any tetrahedron, there is a vertex for which the 
sum of certain two plane angles is less than 180°. (Actu-

sequently, A KLP  =  A ABC ,
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ally, a stronger statement holds: there is a vertex at 
which the sum of all plane angles does not exceed 180°.) 
Let the vertex A possess this property. On the edge ema­

nating from A take points K , L, M  such that ALM  =
/ \  / \  / \

KAL  =  a, A L K  =  LAM  =  p. It can be done if a  +  
p <  180°.

Thus,
A KAL  =  A LAM,  A KLM  =  A  KAM .

In the pyramid A KLM,  the dihedral angle at the 
edge A K  equals the angle at the edge LM, the dihedral 
angle at the edge A M  equals the angle at the edge K L . It 
is easy to make sure that the tetrahedron KLMA  w ill be 
brought into coincidence with itself if the edge KA  is 
brought into coincidence with LM, and the edge A M  with 
KL.

i l l .  Suppose that none of the plane angles of the given 
trihedral angle is equal to 90°. Let S  be the vertex of the

-S’

given angle. Let us translate the other trihedral angle so 
that its vertex is brought into coincidence with a point A 
lying on a certain edge of the given angle (Fig. 37). A B , 
AC, and AD  are parallel to the edges of the other dihedral 
angle. The points B and C are found on the edges of the 
given angle or on its extensions. But AB  is perpendicular 
to SC, AC  is perpendicular to SB, consequently, the pro­
jections of BS and CS on the plane ABC  w ill be respec­
tively perpendicular to AC  and AB,  that is, S  is projected 
into the point of intersection of the altitudes of the trian­
gle ABC, hence, A S  is perpendicular to BC. Thus, the



156 Problems in Solid Geometry

edge AD  is parallel to BC , and this means that all the 
edges of the other trihedral angle belong to the same 
plane. And if one of the plane angles of the given trihed­
ral angle is a right one, then all the edges of the other 
trihedral angle must lie in one face of the given angle 
(in one that corresponds to the right plane angle). If exact­
ly two plane angles of the given trihedral angle are right 
angles, then two edges of the other trihedral angle must 
coincide with one edge of the given angle. Thus, the 
other trihedral angle can be nondegenerate only if all the 
plane angles of the given trihedral angle are right ones.

178. The straight line I can be regarded as the diago­
nal of the rectangular parallelepiped; it makes angles a , 0,

Fig. 38
and y  with edges. Then, arranging three congruent paralle­
lepipeds in the way shown in Fig. 38, we obtain that 
the angles between the three diagonals of these parallele­
pipeds emanating from a common vertex are equal to 
2a, 26, 2y. Consequently, 2a +  2p +  2y <  2ji.

179. Let S  be the vertex of the angle, A, B t and C 
certain points on its edges. Let us prove that the angle 
between any edge and the plane of the opposite face is 
always less than either of the two plane angles including 
this edge. Since an angle between a straight line and a plane 
cannot be obtuse, it suffices to consider the case when 
the plane angles adjacent to the edge are acute.

Let A x be the projection of A on the face SBC , A 2  the 
projection of A on the edge S B , since | S A 2  | >  | SA 1  | t 
/ \  / \

A S A i^ .  A S A 2  =  A SB (remember that all the plane 
angles at the vertex S  are acute). From here readily fol­
lows the first part of our problem.
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, / \  / \
Let us prove the second part. We have: A S B —B S A ^

/ \  / \
A S A t 1  ASC  — A SA lt (at least one inequality
is strict). Adding together these inequalities, we get
/ \  / \

A SB +  ASC  -  CSB <  2ASA1.

Writing similar inequalities for each edge and adding 
them, we obtain our statement. Taking a trihedral angle 
all the plane angles of which are obtuse and their sum 
is close to 2j i ,  we make sure that in this case the state­
ment of the second part w ill not be true.

180. Let a and a lt p and Pi, y and yx be dihedral 
angles of the tetrahedron (the angles corresponding to 
opposite edges are denoted by one and the same letter). 
Consider four vectors a, b, c, and d perpendicular to the 
faces of the tetrahedron, directed outwards with respect to 
the tetrahedron, and having lengths numerically equal 
to the areas of the corresponding faces. The sum of these 
vectors is equal to zero. (We can give the following 
interpretation of this statement. Consider the vessel 
having the shape of our tetrahedron and filled with gas. 
The force of pressure on each face represents a vector per­
pendicular to this face and with the length proportional 
to its area. It is obvious that the sum o f  these vectors is 
equal to zero.) The angle between any two vectors com­
plements to ji the corresponding dihedral angle of the 
tetrahedron. Applying these vectors to one another in 
a different order, we will obtain various three-dimen­
sional quadrilaterals. The angles of each quadrilateral 
are equal to the corresponding dihedral angles of the 
tetrahedron (two opposite angles are excluded). But the 
sum of angles of a space quadrilateral is less than 2a. 
Indeed, draw a diagonal of this quadrilateral to separate 
it into two triangles. The sum of angles of these triangles 
is equal to 2ji, whereas the sum of angles of the quadri­
lateral is less than the sum of angles of these triangles, 
since in any trihedral angle a plane angle is less than the 
sum of two others. Thus, we have proved that the fol­
lowing three inequalities are fulfilled: a + c ^ + p  +  Pi <C 
2ji, P +  Pi +  y +  Yi <  2ji, Y +  Yi +  a +  cti<; 2ji. 
(Thus, we have proved the first part of the problem.) 
Adding these inequalities, we get a  +  a x +  p +  Px +
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V +  Yi <  3n. To complete our proof, let us note that 
the sum of dihedral angles in any trihedral angle is 
greater than ji (see Problem 165).

Adding up the inequalities corresponding to each ver­
tex of the tetrahedron, we complete the proof.

Remark. In solving this problem, we have used the 
method consisting in mat instead of the given trihedral 
angle, we have considered another trihedral angle whose 
edges are perpendicular to the edges of the given angle. 
The pair of trihedral angles thus obtained possesses the 
following property: the plane angles of one of them com­
plement the dihedral angles of the other to j i . Such 
angles are said to be complementary or polar. This method 
is widely used in spherical geometry. It was also used 
for solving Problem 165.

181. The statement of the problem follows from the 
fact that for a regular polygon the sum of the distances 
from an arbitrary point inside it to its sides is a constant.

182. If S 9, S 9 , and SA denote the areas of the cor­
responding faces of the tetrahedron, V its volume, then

X1 I X2 I Xt  I XA $1X1 I *^2^2 I S$XZ | S j Xi
Ai ^  ht h9 kA ^  S 2ht ^  S 9 h9  S AhA

-  3F

183. Let M  and K  denote the midpoint of the edges 
AB  and DC  of the tetrahedron ABCD . The plane passing 
through M  and K  cuts the edges AD  and BC  at points 
L and N  (Fig. 39, a). Since the plane DMC  divides the 
volume of the tetrahedron into two equal parts, it suf­
fices to prove that the pyramids D L K M  and KCMN  are 
equivalent. The ratio of the volume of the pyramid 
KCMN  to the volume of the entire tetrahedron ABCD
is equal to 1

4
I CN  | 
\C B  | Analogously, for the pyramid

D LKM  this ratio is equal to 4- } j . ̂ 4 | D A |
have to prove the equality:

Hence, we

\ D L \  | C N |
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Let us project our tetrahedron on the plane perpendic­
ular to the line KM.  The tetrahedron A BCD w ill be 
projected in a parallelogram with diagonals AB  and CD 
(Fig. 39, &). The line LN w ill pass through the point of 
intersection of its diagonals, consequently, our statement 
is true.

A

Fig. 39

( 6 )

184. Let for the sake of definiteness | DA | <  | DB  | <  
I DC  |, and at least one of the inequalities is strict. Let 
us superpose the triangles D A B , DBC , and DCA so as to 
bring to a coincidence equal angles and equal sides 
(Fig. 40).

In the figure, the vertices of the second triangle have 
the subscript 1 , those of the third triangle the subscript 2 . 
But | D^A2  j =  | DA | <  | D XCX | (by the hypothesis).

/ \  / V
Consequently, D J ) XB is acute and BDXD is obtuse and 
| DB  | >  | DXCX | which is just a contradiotion.

185. Through each edge of the tetrahedron pass a 
plane parallel to the opposite edge. Three pairs of planes 
thus obtained form a parallelepiped. Opposite edges of the 
tetrahedron will serve as diagonals of a pair o f opposite 
faces of the parallelepiped. Let, for instance, a and ax 
denote the diagonals of two opposite faces of the parallele­
piped, m and n their sides (m ^  n). Then axatl cos a  =
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m * — n%. W ritin g  such e q u a litie s  fo r each  p a ir  of oppo­
s ite  edges, we w ill prove o u r s ta tem en t.

186. L et th e  sphere p ass  th ro u g h  th e  v ertices  A, B ,  
an d  C  an d  in te rsec t the  edges D A ,  D B ,  an d  D C  a t  p o in ts

K , L , and M . From the similarity of the triangles DKL  
and ABD,  we find: | LK  | =  | AB | and from the
similarity of the triangles D M L  and DBC: | ML  | =

1 B C 1 T & )  I ' But I AB  I -I CD I =  I B C I • I BD I =
Now, it is easy to make sure that | LK \ =  | ML  |. 
Remark. The statement of our problem will be true 

for any tetrahedron in which the products of opposite 
edges are equal.

187. The fact that the points K , L , J \  and N  belong 
to the same plane (coplanarity) implies that

Vm k l p  +  Vm p n k  =  Vm n k l  +  Vm l p n • (*)
From Problem 9 it follows that

| M K  | ■ | ML  1 ■ | M P  | 
v m k l p  | MA  | *| MB  |* | MC  |
T/ | MP  | • | M N  | . | M K  |
Vm p n k  | MC  | • | MD  | • | MA \
T7 | M N  | . |  ML  M  M K  |
Vm n l k  \ M D \ . \ M A \ . \ M B \

V m a b c , 

Vm a DCi

V m A B D i
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Vm l p n  =
| ML  | • | MP  | • | M N  |

Vm b c d -\ M B \ - \ M C \ - \  \MD |

Substituting these expressions for the corresponding 
quantities in (1), dividing by | M K  |*| ML  | • \MP\  X 
| M N |, multiplying by | MA |*| MB  H  MC\ ■ |MD |, 
expressing the volume of each of the remaining pyramids 
in terms of the area of the base and altitude k , we will 
get after the reduction by ft/3 the statement of our 
problem.

188. Prove that the straight line passing through the 
given point parallel to a diagonal of the cube will touch 
each ball.

189. Both items follow from the following general 
statement: if the sum a  | A M  | +  P | BN  | +  y  \ CL |, 
where a, p, y  are given coefficients, is constant, then toe 
plane MNL  passes through the fixed point. This state­
ment, in turn, follows from the equality

190. If in the tetrahedron A BCD the equality | AB  | +
| CD | =  | BC  | +  | DA | is fulfilled, then, the same as 
it is done in the two-dimensional case, it is possible to 
prove that there is a ball touching the edges AB, BC, CB, 
D A , all the points of tangency being inside the line seg­
ments AB, BC, CD, and DA. If through the centre of the 
ball and some edge a plane is passed, then each of the 
dihedral angles under consideration w ill be divided 
into two parts, and for each part of any dihedral angle 
there is a part of the neighbouring angle which turns out 
to be equal to it. For instance, the angle between the planes 
OAB and ABC is equal to the angle between the 
planes OBC and ABC.

191. Let R denote the point of intersection of OM 
with the plane K L N  (Fig. 41). The assertion that R is the 
centre of gravity (centroid) of the triangle K L N  is equi­
valent to the assertion that die volumes of the tetrahed­
rons MKLO , MLNO , and MNKO  are equal. Denote

a  | A M  | +  p | BN  | =  (a +  p) | PQ |,

where P  is a point on AB, Q on MN,

1AP 1 \ M Q \  p 
\ P B \ ~  \ Q N \ ~  a  *

1 1 -0 4 4 9
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by x, y, z the distances from M  to the corresponding 
sides of the triangle ABC.  Since the plane K L M  is perpen­
dicular to the edge AD,  the distance from O to K L M  is 
equal to the projection of OM on AD  which is equal to 
the projection of M P  on AD,  where P  is  the foot of the

O

Fig. 41

perpendicular dropped from M  on BC.  It is easily seen 
that the projection of MP  on AD  equals — , where % is

the distance from M  to BC . If a  is a dihedral angle be­
tween the faces of the tetrahedron A BCD,  then

VK L M 0 ---- g- I K M  | • | M L  | sin a  . - ± = = xyt^  .

Each of the two other tetrahedrons MLNO  and MNKO  
will have the same volume.

192. Project the tetrahedron on the plane passing 
through N  perpendicular to CN . Let A,,  B1$ Dr, K 1$ and 
M 1  denote the projections of the points A , B , D ,  K,  and M.  
The distance between B K  and CN w ill be equal to the 
distance from the point N  to B t K 1$ just in the same way, 
the distance between A M  ana CN is equal to the dis­
tance from N  to A ±M ±. But A 1D 1 B 1  is an isosceles tri-
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angle. The line A 1 M 1  passes through K, (Kx is the point 
of intersection of the medians). And since the triangle 
A i K xBx is also isosceles, N  is usually distant from A^K* 
and BXKX. 1

193. Let A denote a vertex of the base of the pyra­
mid, B a point in the plane of a lateral face, | AB  | =  a, 
B 1  the projection of B on a side of the base, B 2  the pro­
jection of B on the plane of the base, B z the projection

of B 2  on the edge of the base adjacent to AB1# £* the 
projection of Bz on the lateral face adjacent to the face 
containing AB  (Fig. 42). If now a  is a dihedral angle at

the base of the pyramid, BABX =  <p, then

\ B zBt \ =  \ABx | =  a cos q>,
| ABt  | =  | BXB% | =  | BXB | ces a  =  a sin q> ces a ,

18*8* I =  I | cos a = a  cos <p cos a, 

and, finally,

I ABK I =  V I ABa \ * + \ B , B t  |«

y  sin* <p cos* a + co s*  <p cos2 a  =  a cos a .

Hence it follows that the length of any line segment 
lying in the plane of a lateral face after a twofold pro- 
ection indicated in the conditions of the problem will 
>e multiplied by cos a  (with the aid of translation we 
)ring one of the end points of the given line segment into 

the vertex A).  Consequently, in such projecting any
ii*
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figure will go into the figure similar to it with the ratio 
of similitude equal to cos a .

194. The statement of the problem follows from the 
equalities

V a A i BC =  Va A i B iC =  ^ A A i B i d

and similar equalities for the volumes of the pyramids 
AAxCD and AAyDB .

195. Let M  denote the point of intersection of the 
straight lines CBi and CvB . The vertex A lies on DM.

Fig. 43

Through the points D, D+, and A pass a plane. Denote 
by K  and L  the points of its intersection with CiB 1  and 
CB, and by A t  the point of intersection of the line A A X 
with DJC (Fig. 43). From the fact that CC^B^B is a trap­
ezoid and KL  passes through the point of intersection 
of its diagonals it follows that | K M  | =  | ML  |. Further, 
considering the trapezoid D-yKLDi we w ill prove that
| A A 1  | =  | |  A A t  |. Consequently,

Va b c d ~  —  V a  %b c d *
But it follows from the preceding problem that 

v a %b c d =  vA{BiCtDr T*1118’ the ratio of the volumes of 
the pyramids A 1 B 1 C1D 1  and ABCD is equal to 3.
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196. Introduce the following notation: ABCD is the 
given tetrahedron | BC  | =  a, | CA | =  &, | AB  | =  c, 
| DA  | =  /», | | =  n, | DC  j =  p.  Let then G denote
the centre of gravity of the triangle ABC , N  the point 
of intersection of the straight line D M  with the circum­
scribed sphere, and K  the point of intersection of the

A C 

Fig. 44

straight line AG with the circle circumscribed about the 
triangle ABC  (Fig. 44). Let us take advantage of the 
following equality which is readily proved:

| -4G | • | GX | =  —  (a*+6a+c®).

Then

I DG | • | GN I =  | AG | • | GK \ — - -  («*+&*+«*), 

consequently,

H
B D

where

t *  | DG | *=-5 -  V 3/n2 + 3 » 2 + 3 p 2 —a%—b%— c2  o (i)
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(see Problem 51), | DN  | =  | DG | +  | GN | =  t +
a2+ ^ + c2 ^ - ”»!± g ± P l .  The assertion that OM is 

perpendicular to DM,  is equivalent to the assertion that 
| DN  | =  2 | DM  | = 2  • | DG | =  - | -  t, that is,

m ~ '̂3 t ~̂ ~P ~ ~ |r  whence replacing t by its expres­
sion (1), we get
aa +  &a +  ca =  m? +  7ia +  p2. (2)

If S i, are the centres of gravity of the respective 
faces DEC, DC A,  and DAB,  then in the tetrahedron 
AxB ^ D  we w ill have

I B &  I =
a I C,Ai  | = M A  l =  f

I T ma, \ D B 1 \ ---- _  nb, \ D C 1 \ = Pc\

where ma, n ,̂ and pc are the respective medians to the 
sides BC , CA,  and AB  in the triangles DEC, DC A,  and 
D A B . If now ti is the distance from the vertex D to the 
point M,  then, since M,  by the hypothesis, lies on the 
surface of the sphere circumscribed about the tetrahedron 
A^xCyD and the line D M  passes through the centre of 
gravity of the triangle A^B^Ci, to determine the quantity 
| D M  | we may take advantage of the formula obtained 
above for | D N  |, that is,

| DM  

where

^ l + ^ 62+4&2
27fx

<!=--- V i 2  K+"g+^)-«s- 6a-^-
Taking advantage of the formula for the length of the 
median of a triangle, we get

| DM
4ma+4rea+ 4 p a— a?—b2— ca
~  2?f; t
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where

=  —  Y  +  3rea +  3/>2— a2 — b2 — c2 =  £.

3
On the other hand, | D M  | =  £, that is,

4m2 + 4 tt2 +4/>a—a2—&2— c2 3 4

18* ~ ~ T

Replacing t  by its expression (Formula (1)), we get (2) 
which was required to be proved.

197. Fix some axis of symmetry I. Then, if V  is also 
an axis of symmetry and V  does not intersect with I or 
intersect I but not at right angles, then the line T, which 
is symmetric to V  with respect to I is also an axis of 
symmetry. This is obvious. And if some line is an axis 
of symmetry and intersects with, and is perpendicular 
to, J, then the line l2  passing through the point of inter­
section of I and and perpendicular to them will also be 
an axis of symmetry. It is possible to verify it, for ins­
tance, in the following way. Let us take the lines /, lly and

for the coordinate axes.
Applying, in succession, to the point M  (a:, y, z) 

symmetry transformations with respect to the lines I 
and Jj, we w ill bring the point M  first to the position 
Mi  (a:, —y, —z), anathen Afx to M% (—a:, —y, 2). Thus, 
a successive application of symmetry transformations with 
respect to the lines I and is equivalent to symmetry 
with respect to

Our reasoning implies that all axes of symmetry, 
except for /, can ne divided in pairs, that is, the number 
of symmetry axes is necessarily odd if it is finite.

198. Let M  denote the projection of B on A D . Obvi­
ously, M  belongs to the surface of the sphere with diame­
ter AB.  On the other hand, we can show that | A M  \ X 
I AD | =  | AB  |2. Hence it follows that all points AT must 
belong to a certain spherical surface containing the given 
circle. Hence, points M  belong to one circle along which 
these two spherical surfaces intersect.

199. Prove that the projections of the point M  on the 
sides of the quadrilateral ABCD lie on one and the same 
circle (if K  and L are projections of M  on AB  and BC>
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then the points B , K,  M,  and L lie in one circle, and,

hence, MLK  =  M B K , MKL  =  MBL.  The same for 
other sides).

Then take advantage of the result of Problem 198.
200. Since the centre of gravity lies on the lines 

joining the midpoints of the edges AB  and CD, it will 
follow from the hypothesis that this line w ill be perpen­
dicular to the edges AB  and CD.

201. Let K  and M  denote the midpoints of the edges 
AB  and CD. It follows from the hypothesis that the line 
K M  passes through the point O which is the centre of 
the inscribed sphere; O is equidistant from the faces A CD 
and BCD.  Consequently, the point K  is also equidistant 
from these faces. Hence it follows that these faces are 
equivalent. In the same way, the faces ABC  and ABD 
turn out to be equivalent. If we now project the tetrahed­
ron on the plane parallel to the edges AB and CD, then its 
projection w ill be a parallelogram with diagonals AB 
and CD. Hence there follows the statement of our 
problem.

202. Rotate the cube through some angle about the 
diagonal ACX. Since the plane of the triangle A±BD is 
perpendicular to ACX and its sides are tangent to the 
ball inscribed in the cube, the sides of the triangle ob­
tained from A±BD after the rotation will also touch the 
inscribed ball. With the angle of rotation appropriately 
chosen, the face A A - J l ^  w ill go into the given plane, 
and the line segment M N  w ill he a line segment of the 
rotated face.

203. Denote by a , p, y  the angles formed by rectan­
gular faces with the fourth face. If Su S2, Sz, S4 are 
the respective areas of the faces, then St =  SA cos a,  S2=  
St  cos S, S s =  SA cos y.  After this, we may take advan­
tage of the fact that cos2a + c o s a B + cos2 y  =  1, This 
follows, for example, from the fact tnat the angles made 
by the altitude dropped on the fourth face with the lat­
eral edges of the pyramid are also equal to a,  P, and y  
(see Problem 10).

204. Take a straight line perpendicular to the given 
plane and denote by a,  p, ana y the angles made by this 
line with the edges of the cube. The projections of the 
edges on the plane take on the values sin a,  sin p, sin y.  
And since cos? a  +  cos2 p +  cos2 y = l ,  the sum of the
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squares of the projections w ill be equal to 

4a2 (sin2 a  +  sin2 P +  sin2 y) =  8a2,

where a is the edge of the cube.
205. Through each edge of the tetrahedron pass a plane 

parallel to the opposite edge. We will obtain a cube 
with a tetrahedron inscribed in it. If the edge of the 
tetrahedron is b, then the edge of the cube will be equal 
to b / y  2. The projection of each face of the cube is a paral­
lelogram whose diagonals are equal to the projections of 
the edges of the tetrahedron. The sum of the squares of 
all diagonals is equal to the doubled sum of the squares 
of the projections of the edges of the tetrahedron and is 
equal to twice the sum of the squares of the projections of 
the edges of the cube.

Taking advantage of the result of the preceding prob­
lem, we get that the sum of the squares of the projections 
of the edges of a regular tetrahedron on an arbitrary

b2
plane is equal to 8 — 4&2.

206. Consider first the case when the given straight 
lines are skew lines. Denote by A and B the positions of 
the points at some instant of time, k is the ratio of their 
velocities (the velocity of the body situated at the point 
A is k times the velocity of the other body). M  and N  are 
two points on the line AB  such that | A M  | : | MB  | =
| A N  | : | NB  | =  k (M  is on the line segment AB ), 
O is the midpoint of M N . The proof of the statement of 
our problem is divided into the following items:

(1) The points M, N , and O move in straight lines, 
the straight lines in which the points A, B,  M,  N , and O 
move are parallel to one plane.

(2) The lines in which the points M  and N  move are 
mutually perpendicular.

(3) If two straight lines are mutually perpendicular 
and represent skew lin es, then any sphere constructed on 
the line segment whose end points lie on these lines, as 
on the diameter, passes through the points P and Q, 
where PQ is a common perpendicular to these lines 
(P and Q are situated on the straight lines).

(4) The locus of points L such that | AL  | : | LB | — 
k is the surface of the sphere constructed on MN,  as on 
the diameter.
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From the statements (1) to (4) it follows that the circle 
whose existence is asserted in the problem is the circle 
obtained by rotating the point P  (or Q) about a straight 
line in which the point 0  moves, where P  and Q are the 
end points of the common perpendicular to the straight 
lines in which the points M  and N  are displaced.

Items (1) and (2) can be proved, for instance, in the 
following way. Let A 0  and B 0  denote the positions of the 
points at a certain fixed instant of time. Let us project 
our points parallel to the straight line AqB0  on a plane 
parallel to tne given lines. The points A 0  and B 0  w ill be 
projected into one point Cy and the points Ay B, My N , 
ana 0  w ill be projected into the respective points A \  B \  
M'y N',  and O' . Then the points M ' and N'  w ill repre­
sent the end points of the bisectors of the interior and the 
exterior angle C of the triangle A*B§C \  Hence, M ', N 'y

and O' move in straight lines, and M'CN ' =  90°. Hence 
it follows that the points My N , and O also displace in 
straight lines, since it is obvious that each of these points 
lies in the fixed plane parallel to the given lines. Item (3) 
is obvious. Item (4) follows from the corresponding state­
ment of plane geometry.

In the case when the points A and B move in two inters 
secting lines, the relevant reasoning is somewhat changed. 
The problem is reduced to the proof that in the plane 
containing the given lines there are two fixed points P 
and Q such that | A P  | : | PB  | =  | AQ | : | QB | =  k.

207. Let O denote the centre of the ball, r its radius, 
A P  and BQ the tangents to the ball (P and Q being the 
points of tangency), M  the point of intersection of the 
lines AP  and BQ . Setting | OA \ =  a, | OB \ =  &, 
I P M  | =  | QM  | =  x. Then | OM |* = r a+a:2, | A M  |2=
( / a2 — r* ±  *)*, | B M  I2 =  ( l / >  — r* ±  x f .

If the signs are of the same sense, then the following 
relationship is fulfilled:

/ &*— r2 | AM |2— / a 2— r5 | BM  | a 

+  / 6 * = r * )  | OM  | * = Z X.  ( 1 )
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If the signs are opposite, then

171

Y b 2 —r2 | AM r2 \BM\*

— | Oitf |2 =  J2, (2)

where lx and l2  are constants depending on r, a, and b.
Since the sum of the coefficients of | A M  |2, | |a 

and | OM |2 in Equations (1) and (2) is equal to zero, 
the locus of points M  for which one of these relation­
ships is fulfilled is a plane. In both cases this plane is 
perpendicular to the plane OAB.

208. Let ABC  be the given triangle whose sides, as 
usually, are equal to a, b, and c. The radii of the three 
balls touching one another and the plane of the triangle
at points A , B , and C are respectively equal to — , — ,

~  . Denote by x the radius of the ball touching the three Ac
given balls and the plane of the triangle, M  is the point 
of tangency of this ball and the plane. We have:

Consequently, | MA \ : \ MB  | =  b : a, | MB \ : \MC\ =  
c : b or | MA \ : | MB \ : | MC \ =  be : ac : ab.

For any irregular triangle there are exactly two points 
M 1  and M % for which this relationship is fulfilled. Here 
we take advantage of Bretschneider’s theorem. Let ABCD 
be an arbitrary plane quadrilateral. Let AB  =  a, BC  =  
bj CD =  c, and DA =  d, AC =  m and BD =  n. The sum

A A

of the angles A +  C =  q). Then the equality m2 n2  =  
a2 c2  +  b2dr — 2abed cos q) holds. We then obtain that
if A *= a  is the smallest angle of the triangle, then the 

angles B M XC and BM^C are equal to 60* +  «  and 60*— sc.
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Let B M XC =  60° +  a . Write for the triangle B M XC 
the theorem of cosines, denoting the radius of the ball 
touching the plane at point M x by r (x =  r),

2 abr
e 4ar cos (6 0 °+ a)

2 cos (60°-|-a) 
a )■ (i)

Analogously, designating the radius of the ball touching 
the plane at point M z by p, we get

1 0 /  c , b 2 cos (60°—a) \ /ox
T  { --------------a---------- )  * {i)
Subtracting (2) from (1), we obtain
1 ___1 4 [cos (60°—a ) — cos (60°-roc)]
r p — a

8 sin 60° sin a  2 ]^3 
— a “  R ’

which was required to be proved.
209. Let M  denote the midpoint of A B , Ox and 0 % 

the centres of the balls, R 1  ana R 2  their radii, then

I M ° i  I*—I -  (« i+ i ^ )
=  R l - R l

This means that the midpoints of all the line segments of 
common tangents to the given balls lie in one and the 
same plane which is perpendicular to the line segment 
OxOv Hence follows the truth of the statement of our 
problem.

210. Such pentagon does not exist.
211. Let A i A iA p A ^ b  be the given pentagon. It fol­

lows from the hypothesis that all the diagonals of the pen­
tagon are equal to one another. Choose three vertices of 
the pentagon so that the remaining two vertices lie on 
one side of the plane determined by the three chosen 
vertices, say, A $, and Af . Then the vertices A x and Ax 
will be symmetric to each other with respect to the plane
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passing through the midpoint of A%AZ perpendicular to 
A *4 3. This follows from the fact that the triangle A tA tA b 
is isosceles, | A zA h \ =  \AZA 6  |, A x and A a lie on one 
side of the plane A^A^A^ and | A^AZ \ =  \AaA z |, 
| A\A 5 | =  | AaA 5 | , and I A xA t  \ =  \ A aA z I. Hence, 
the points A lt A z, A& and A a lie in one plane. The further 
reasoning is clear. The cases when the sought-for plane 
passes through other vertices are considered in a similar
way. . _

212. Let M  denote the point of intersection of the 
diagonal ACX and the plane A-yBD* Then M  is the point

of intersection of the medians of the triangle A-JSD (so- 
called median point) and, besides, M  divides the diago-

I
nal ACX in the ratio 1 : 2, that is \ A M  \ =  -^ d.o

Consider the pyramid ABAXD (Fig. 45). On the line 
B M  take a point K  such that | M K  | =  | B M  |, and con­
struct the prism MK DA NP.  You can easily notice that 
the distances between the lateral edges of this prism are 
equal to the respective distances from the points A 1 9  B,  
and D to A M .  Consequently, the sides of the section per­
pendicular to the lateral edges of the prism MK DA NP  
are equal to these distances. Further, the volume of the 
pyramid ABA^D is equal to the volume of the constructed
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prism and amounts to one sixth the volume of the paral­
lelepiped, i.e.-i* V =  dSy V =  2dS.

213. Let M  denote the centre of gravity of the tetra­
hedron ABCD . The volume of the pyramid MABC  is one 
fourth the volume of the given tetrahedron. Complete the 
pyramid MABC  to get a parallelepiped so that the line 
segments M A , MB, MC  are its edges. Figure 46 repre­

sents this parallelepiped separately. It is obvious that 
the edges MC , CK , KL  and diagonal ML  of this parallel­
epiped are respectively equal and parallel to MC , M A , 
M B , and MD.  But the volumes of the pyramids MABC  
and MCKL  are equal to each other, that is, each of them
is equal to  ̂ VABCD. Consequently, the volume of the tet-

4
3

214. When solving Problem 180, we proved that the 
sum of the vectors, perpendicular to the faces of the 
tetrahedron, directed towards outer side with respect to 
the tetrahedron, and whose lengths are numerically equal 
to the area of the corresponding faces, is equal to zero. 
Hence follows the existence of the tetrahedron KLMN.

In finding the volume of the tetrahedron, we shall 
take advantage of the following formula;

V =  abc sin a  sin P sin C,

rahedron in question equals!
2 1 

4• t  VABcd — — V*
16
27
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where a, 6, and c denote the respective lengths of the 
edges emanating from a certain vertex of the tetrahedron, 
a  and P two plane angles at this vertex, and C the dihed­
ral angle between the planes of the faces corresponding to 
the angles a  and B. If now a , p, and y are all plane angles 
at this vertex and A, B,  and C are dihedral angles, then

V3 =  J azbzcz sin2 a  sin2 p sin2 y  sin A sin B sin C. (1)

Take now a point inside the tetrahedron, and from it 
drop perpendiculars on the three faces of the tetrahedron 
corresponding to the trihedral angle under consideration, 
and on each of them lay off line segments whose lengths 
are numerically equal to the areas o f these faces. Obvious­
ly, the volume of the tetrahedron formed by these line 
segments is equal to that of the tetrahedron KLMN.  
The plane angles at the vertex of the trihedral angle 
formed by these line segments are equal to 180° — A, 
180°—Bj 180° — Cj and the dihedral angles to 180° — 
a, 180°— p, 180°—y.  Consequently, making use of Equal­
ity (1), we get for the volume W  of this tetrahedron

W3  =   ̂g j £7££5§ sin2 A sin2 B sin2 C sin a  sin p sin y, (2)

where SlT Sz, S z are the areas of the faces formed by the 
edges a, 6, and c, respectively, that is, y  sin y,

1 1 ̂6c sin a , S z =  g ca sin p.
Replacing S 1 7  S z, S z in (2), we get 

W9— ( g ) 3 ( ^ ) °  sin4 a  sin4 p sin4 y sin2 A sin2 B

X sin2 C. (3)
Comparing Equations (1) and (3), we obtain

W =  4  V*-

215. The statement of the problem follows from the 
faGt that the products of the line segments into which each 
of these chords is divided by the point of intersection 
are equal.
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217. The statement of our problem follows from the 
following fact of plane geometry. If through a point P  
lying outside of the given circle two straight lines are 
drawn intersecting the circle at the respective points A 
and A ly B and B i, then the line A 1 B 1  is parallel to the 
circle circumscribed about PAB  passed through the 
point P.

Thus, the set of points under consideration will be­
long to the plane parallel to the plane which touches (at 
the point P) the sphere passing through the given circle 
and point P .

218. The equation

(x — a)2 +  (y — b) 2  =  k2  (z — c)*

describes a conical surface whose vertex is found at the 
point S (a, b, c), the axis is parallel to the s-axis, k =  
tan a , where a  is the angle between the axis of the 
cone and its generatrix. Subtracting from each other 
the equations of two conical surfaces with axes parallel 
to the z-axis, equal parameters k , but different vertices, 
we get a linear dependence relating x , y, and z.

219. Denote by F the point of intersection of the 
lines KL  and M N  and by E the point of intersection 
of the line PF and the sphere passing through the points 
P, i4, B, and C (supposing that P  does not lie in the plane 
of the face ABC).

The points P , Q, R,  and E belong to one circle repre­
senting the section of the sphere passing through the 
points P, A,  B,  and C by the plane passing through the 
points P , K , and L. But since F is the point of inter­
section of the lines KL  and MN,  the points P , S , 7\ and 
E must belong to the circle which is the section of the 
sphere passing through the points P, A,  C, and D by the 
plane determined by the points P , M , and N .  Conse­
quently, the points Q, R , S , and T lie on two circles 
having two common points P  and E> and such two cir­
cles belong to one sphere.

Remark. We have considered the case of the general 
position of the given points. To get a complete solution 
we have to consider several particular cases, say, P  lies 
in the plane of the face, KL  and M N  are parallel lines, 
and so on.
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220. Let the edges S A , SB, SC , and SD of a quadri- 
hedral angle be elements of a cone whose axis is SO. Then 
in the trihedral angle formed by the lines SO, SB,  and 
SC,  the dihedral angles with the edges SA and SB are 
equal. Considering three other such angles, we get easily 
that the sums of opposite dihedral angles of the given 
quadrihedral angle are equal.

Conversely. Let the sums of opposite dihedral angles 
be equal. Consider the cone with the lines SA, SB,  and 
SC as its elements. Suppose that SD is not an element. 
Denote by SDX the straight line along which the surface 
of the cone and the plane ASD  intersect. We will obtain 
two quadrihedral angles SABCD and SABCDx in each 
of which the sums of opposite dihedral angles are equal. 
This w ill imply that in the trihedral angle which is 
complementary to the angle SCDDX (see the solution of 
Problems 165 and 166) one plane angle is equal to the 
sum of two others which is impossible.

221. Let all the vertices of the hexahedron 
ABCDEFKL,  except for C, lie on the surface of the

L

Fig. 47

sphere with centre O (Fig. 47). Denote by Cx the point 
of intersection of the line KC  with the surface of the 
sphere.

For the sake of brevity we shall symbolize by FEL 
the dihedral angle between the planes FEO and FLO 
(the remaining dihedral angles are denoted in a similar
1 2 -0 4 4 0
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way). Using the direct statement of Problem 220, we 
may write:

FEL +  FKL  =  X  EFK  +  X  ELK ,
X  AEF  +  X  ABF  =  X  EAB  +  X  EFB,
X  AEL  +  ADL  =  2C ELD +  X  EAD ,
X  FKCi  +  X  FBCi =  X  KFB +  X  KCJB,
X  LKCX +  X  LDC1  =  X  KLD +  X  KC-J).

Adding together all these equalities and taking into 
consideration that the sum of any three dihedral angles 
having a common edge (say, OE) is equal to 2n, we get

X  ABC! +  X A D C % =  BAD  +  X  BCJ),
and this means (see the converse statement of Problem 220) 
that the edges OA, OB, OCi, and OD are elements of one 
cone. Hence it  follows that C1  lies in the plane ABD,  
that is, coincides with C.

The case when 0  is situated outside the polyhedron 
requires a separate consideration.

222. Let ABCD be the given tetrahedron, K , L, M , 
N, P , and Q the given points on the respective edges 
A B , AC, AD,  BC, CD,  and D B . Denote by D x the point 
of intersection of the circles passing through K, B, N  
and C, L, N.  It is not difficult to prove that the point D 1  

belongs to the circle passing through the points A, K,  
and 1 .  Analogously, we determine the points A ly B l 7  

and Ci in the planes BCD, ACD,  and ADB.  Let, finally, 
F be the point of intersection of the three spheres circum­
scribed about the tetrahedrons KBNQ, LCNP,  and 
NDPQ.  Take advantage of the result of Problem 221. 
In the polyhedron with vertices B, N,  A ly Q, K,  Z>i, F, Cx 
all the vertices lie on the surface of the sphere, five faces 
BKDiN,  BKCiQ, BNAXQ, D J V A J ,  AgC^F  are plane 
quadrilaterals, consequently, KDiFC-! is also a plane 
quadrilateral. In the same manner, prove that 
and MB^Cy  are also plane quadrilaterals.

And, finally, in the nexahedron A KDxLMB^Ci  seven 
vertices A, K,  Z>j, L, M, B lt Ci lie on the surface of the 
sphere passing through A,  K,  L, and M,  hence, the 
point F also lies on the same sphere.
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Section 3
224. Let S  be the vertex of the angle. Cut the angle 

by a plane so as to form a pyramid SABCD in which 
ABCD is the base and the opposite lateral edges are equal;
| SA | =  | SC  |, \ SB \ =  \ SD \.
(Prove that this can be done always.) Since the plane 
angles at vertices are equal, ABCD is a rhombus. Let 
O be the point of intersection of AC  and BD.  Set | AC \ =  
2x, | BD | =  2y, \ SO | =  z and suppose that * <  y, 

s \  s \
If A SC and BSD are acute, then z >  y, and this means 
that in the triangle ASB \ AB  | <  | A S  | <  | BS  I, 

/ \  / \  
that is.  A SB is the smallest angle of this triangle, ASB  <  
60°.

The supposition that both angles are obtuse is con­
sidered in the same manner.

4
225. From Sh to -g- Sh.
226. The greatest volume is possessed by the tetra­

hedron two opposite edges of which are mutually per­
pendicular and are the diameters of the bases. Its volume

2
is equal to -g* R*h.

227. Let \ A B \  =  \ B C \ * * l ,  \ A A X | =  a:.

x, 1 c / 2 _  1
V D D t B C t ~ * D B D t '  2 “ 6- 

On the other hand,

V D D t B C t =  “3" s d b c % I I s*n

T ' + xa' ^  2+ * asin *P.

where q) is the angle between D^B and the plane DBC^. 
Thus,

g i n  rp = -------------- *  ■ ■ ■ - A -  =  2 * * + 4 - + 5 > 9 ,
/ ( 2 + x * )  (1+2**) ’ sina<P X2

12*
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whence it follows that the greatest value of q> will be 

arcsin-g*.
228. Let the altitude of the prism be equal to 1, 

| A M  | =  x. Circumscribe a circle about the triangle 
I A 1 MC 1  |. Consider the solid obtained by revolving the 
arc AxMCi  of this circle about the chord AyCy. The angle 
A 1 MC 1  w ill be the greatest if the line AB  touches the 
surface of the solid thus generated. The latter happens 
if the lines MO and AB,  where 0  is the centre of the circle 
circumscribed about the triangle ABC,  are mutually 
perpendicular; hence, the line MO divides A yCy in the 

4. | AM  | x
ratl°  | MB  | — 2— x ■

On the other hand, it is possible to show that MO

divides A yCy in the ratio
| AyM | cos /yC^M

Ex-
| CyM | cos CyAyM 

pressing the sides and cosines of the angles of the 
triangle A 1 MC 1  in terms of x, we get the equation

(1+x*) (4— x)
x (9—4x+x*) 2— x s*+ 3 * —4 =  0,

whence x = i .  The greatest value of the angle A1 MCt  
equals— .

229. The lines AE and CF are mutually perpendicu­
lar. Let Qy be the projection of Q on the plane ABByAy. 
Qi lies on the line segment BL,  where L is the midpoint 
o f  AAy. Let N  be the point of intersection of AE and
LB . It is easy to find that | AN 7 1  ■ Settia«

| AP  I =  — = +  x, | NQy | =  y, we get | P M  |* =

a t t a i M

the greatest value for y = 0. It remains to find the
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. . . . . .  9 /5 + ( 2 / / 5 )  z + z 2greatest value of the fraction -----  -2J_ . — ■— ,
X  | X

1
This value is attained for z = —r=-.

Y  5
Answer: ]/^2.
230. Consider the triangle K L M  representing the 

projection of the given triangle on the plane ABCD, 
K  lying on the line CB, L on CD, M  on CA. If \CK \ —
a;, then | CL | =  | a—x | , ] CM \ — ]/*2 a ---- #

I  ̂ I
It is rather easy to get that

S k l m  ~ x { a —x)—a  ̂a 

(2x*—3ax+ 2a2).

x
2 )i

The least value is equal to .Ob
231. Let x denote the altitude of the parallelepiped. 

Consider the section of the pyrami&by the plane passing 
at a distance x from its base. The section represents 
a square with side (1  — x); a rectangle of area s which 
is a face of the parallelepiped is inscribed in the square. 
Two cases are possible:

(1) The base of the parallelepiped is a square with
side y s .  The diagonal of the parallelepiped d =
y x 2  +  2s, and

( 1 -* )

or

l  — ]/'2 s < a : < l - - l / ' s -

Thus, in this case if 5 <  , 1 —2 y  2s +  <
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S The sides of the face of the parallelepiped inscribed 
section are parallel to the diagonals of the section. 

Let us denote them by y and z . Our problem consists in 
investigating the change of the function d2 =  x2  +  
y 2  -J- %a under the conditions
f y z = s ,

\  y + x = ( i —x) 1 ^ 2 , <

(The latter system is consistent if 1-— a; >  ]/*2s, 0 < a :<  
1 — ~\f 2s.) We have
d2 «  x2 +  (y +  z ) 2  — 2 yz =  a:2 +  2 (1 — a:)2 — 2s 

=  3a;2 — 4a; -j- 2 — 2s.

If s <  , then the least value of da is attained for

da< 2 — 2s. Combining the results of items (1) and (2), 
we get the answer.

V 1— 2 Y 2s+4* <  d <  Y 2— 2s;

Y 1— 2 / 2 « + 4 * < d < V r 1— 2 Y »+3s; 

if ~  <  s <  1, then

Y Z * < d ^ V i - 2  / * + 3 * ,
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232. Cut the polyhedron ABCA1MNC1 by the plane 
passing at a distance h from the plane A1B1C1 ana pro­
ject the section thus obtained on the plane AJByCy 
(Fig. 48). In the figure, the projection of this section is

Fig. 48

shown in dashed line. It is obvious that the circle of the 
base of the cylinder must be located inside the trapezoid 
KLNC! (£ , L are the respective points of intersection 
of AyCy and M N  with the projection of this section). If 
h =  3, then the section plane coincides with the plane 
ABC  and the points K  and L with the midpoints of the 
sides ByCy and AyCy. If ft < 3 ,  | ML  | =  | AyK | =
± . ,  | LN  | = 1 -------- , | KC^ | = 2 —

3
We can readily verify that for h <  the radius 

of the greatest circle contained in the trapezoid KLNCy
t/*3 3

is equal to , and for h >  this radius is equal 

to the radius of the circle inscribed in a regular triangle 

with side | KC \ —2 -------- , that is, it is equal to
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Answer: (a) i f O < / i < - | - ,  V = - ^ r n h ;  if

(b) the greatest value of the volume w ill be obtained 
for h =  2 ,

233. If the plane passed through our line segment 
parallel to the face ABB 1 A 1  cuts CB at the point K  so 
that | CK  | =  a;, then the projection of the line segment 
on the face ABC  has a length a;, and its projection on the 
edge CC1  is equal to | a — 2x |; thus, the length of the 
line segment w ill be equal to

]/^c2 +  (a—2x)2=  Y  — 4aa; +  a2.

The minimal length is equal to — .
/  5

234. The following statement is an analogue of our 
problem in the plane. Given an angle and a point N  
inside it. Consider all possible triangles formed by the 
sides of the angle and straight line passing through the 
point N . Among such triangles, the smallest area is 
possessed by the one for which the side passing through N  
is bisected by the point N .

Let us return to our problem. Let M  be the given point 
inside the trihedral angle. The plane passing through 
the point M  intersects the edges of the trihedral angle 
at points A, B , and C. Let the line A M  intersect BC 
at N.  Then, if the passed plane cuts off a tetrahedron of 
the least volume, the point N  must be the midpoint of 
BC. Otherwise, rotating the plane about the line A N , 
we will be able to reduce the volume of the tetrahedron.

235. If h is the altitude of the segment, then its
1 1volume is equal to Sh -----n/i3. The greatest

volume will be achieved £or lh Y ; it w ill be

equal to - f  Y i  ■
236. Note that the shadow thrown only by the upper 

face of the cube (assuming that all the remaining faces
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are transparent) represents a square — — on a side.
Hence it follows that the area of the shadow cast by the 
cube will be the least when the source of light is located 
above the upper face (only the upper face of the cube is
illuminated); it w ill be equal to  ̂  ̂ j with the area
of the lower face of the cube taken into account.

237. The statement (1) is true, let us prove this. 
Denote by the polygon obtained when our polygon is 
cut by a plane not passing through its centre, S  denoting 
the area of this polygon. P a is a polygon symmetric to P i 
with respect to the centre of the polygon. Let us denote 
by II the smallest convex polyhedron containing P 1  and 
P a (II is called the convex shell of P x and P a). Obviously, 
II is a central-symmetric polygon, its centre coincides 
with the centre of the original polyhedron. All the ver­
tices of II are either vertices of P, or vertices of P g. 
Let P  denote the polygon obtained when II is intersected 
by the plane passing through the centre parallel to the 
faces of P x and P 2, q its area. Let us take a face N  of the 
polyhedron II different from Px and P 2. It is obvious 
that any section of the polyhedron II by a plane parallel 
to N  must intersect either simultaneously all the three 
polygons P 1( P 2, and P or none of them. Since the poly­
hedron II is convex, the line segments Zlt J2, and I along 
which this plane cuts P lt P 2, and P are related as follows: 

1
I >  — (Ji +  J2). Hence it follows that q>  S.  (We inte-

grate the inequality I >  -y  (Zx +  l2) with respect to all
possible planes parallel to N.)

The statement (2) is false. Let us construct an example . 
Consider in a rectangular Cartesian coordinate system the 
polyhedron whose points satisfy the inequality | x | +  

<  1. (This polyhedron represents a reg- 
ular^octahed ron.)' All the faces of this polyhedron are
regular triangles with side ]^2 and radius of the circum­

scribed circle j  f  . The section of this polyhedron by 
a plane passing through the origin and parallel to any
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face represents a regular hexagon with side

the same radius of the circumscribed circle. But

Yj L
2
V *
2

and

- <

Remark. For an arbitrary convex central-symmetric 
solid the following statement is true. Let B and B 0  denote 
the radii of the smallest circles containing the sections 
of the given solid by two parallel planes, the second

t/ 3
plane passing through the centre; then As
we have already seen, an equality in this case is 
achieved for a regular octahedron.

238. 4/3.
239. Let A and B be the vertices of the cones, M  and N  

two points on the circle of the bases, L  a point diametri­
cally opposite to the point M  (| A M  | =  V r 1 +  AT*,
\ B M  \ =  ] /7 2 +  A2). Through M  pass a plane perpen­
dicular to A M  and denote the projections of B , AT, and 
L on this plane by Blt ATlt and Ly. The distance between 
A M  and BN  is equal to the distance between M  and 
ByNy, and cannot exceed | MBy |.

The condition H  implies that | MBy  | <  | MLy  |,
that is, the point By is situated inside, or on the boundary
of, the projection of the base of the cones on the passed
plane, and the distance between M  and ByNy is equal to
MBy  if MBy  and ByNy are mutually perpendicular.

(h +  f f ) r  Answer: .
1

240. Extend the edge ByB beyond the point B and 
on the extension take a point K  such that | B K  | =  a. 
As is readily seen, K  is equidistant from all the sides of 
the quadrilateral AByCD. On the diagonal ByD take

I b  jj | _
a point L such that JL =  ]^2. The point L is theI Bu  |
end point of the bisectors of the triangles ByAD and 
ByCD and, hence, L is also equidistant from the sides 
o f the quadrilateral AByCD. Now, we can prove that all 
the points of the line K b  are equidistant from the sides
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of the quadrilateral. Thus, the sought-for radius is equal 
to the shortest distance between the line KL  and any of 
the lines forming the quadrilateral AB^CD. Find the 
distance, say, between the lines KL  and AD.  Projecting 
the points K  and L on the plane CDD\C^ we get the 
points and Lx. The desired distance is equal to the 
distance from the point D to the line K ^ .

Answer : a

241. Let the diagonal ACX lie on the edge of the di­
hedral angle, the faces of the angle intersect the edges 
of the cube at points M  and N.  It is not difficult to notice 
that if the volume of the part of the cube enclosed inside 
this angle reaches its greatest or smallest value, then 
the areas of the triangles AC±M and ACXN  must be equal 
(otherwise, rotating the angle in the required direction, 
we shall be able both to increase and decrease this 
volume).

If 0 <  a  <  60°, then the part of the cube under con­
sideration has a volume contained in the interval from

1 1-----------------  to ------------------------ —. For a  =  60° this
2 / 3 c o t - | -  3 ( l  +  K S c o t - l - j
volume is constant and is equal to 1/6.

For 60° <  a  120° the extreme values of the inter­
val must be increased by 1/6 and a  replaced by a  — 60°, 
for 120° <  a  <  180° they must be increased by 1/3, and 
a  replaced by a  — 120°.

242. Note that the area of the projection of any par­
allelepiped is always twice the area of the projection 
of some triangle with vertices at the end points 
of three edges of the parallelepiped emanating from one 
of its vertices. For a rectangular parallelepiped all such 
triangles are congruent. The greatest area of the pro­
jection of a rectangular parallelepiped will be obtained 
when one of such triangles is parallel to the plane on 
which the parallelepiped is projected. Thus, the greatest 
area of the projection is equal to j^a2&2 +  b2 c2  +  c2 a2.

243. Prove that the volume of such tetrahedron is loss 
than the volume of the tetrahedron two faces of which 
are regular triangles with side of 1 forming a right angle.
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244. (1) This statement is false. For instance, take 
inside the triangle ABC  two points D\  and E-i such that 
the sum of the distances from to the vertices of the 
triangle is less than the sum of the distances from E\ 
to the vertices. Now, take a point D sufficiently close 
to Dj so that the sum of the distances from D to the ver­
tices A , B,  and C remains less than the sum of the 
distances from the point Take E inside A BCD on 
the perpendicular to the plane ABC  erected at the point 
El

(2) This statement is true. Let us prove this. Denote 
by M  the point of intersection of the line DE  and the 
plane ABC.  Obviously, M  lies inside the triangle ABC.

The lines A M , B M , and CM  separate the plane of 
the triangle ABC  into six parts. Tne projection of D 
on the plane ABC , the point is found in one of these 
six parts. Depending on the position of D1$ one of the

angles D^^MA, DiMB, D-iMC is obtuse. If the angle

DXMA is obtuse, then DMA  is also obtuse, and, hence, 
the angle DEA is also obtuse. Hence it follows that 
| DE  | <  | DA |.

245. Let 2a be a side of the base, h the altitude of the 
pyramid. Then R is equal to the radius of the circle cir­
cumscribed about the isosceles triangle with base 2 a Y  2

2aa -1- h2and altitude h, R =  — —r—  ; r is equal to the radius
of the circle inscribed in an isosceles triangle with base 2a 
and altitude h.

r =  (]/"az -\-h2— a).
i t

Let

r 2 a ( y a 2 + h * —a)

We w ill have 2 +  x =  2k (]/^ 1 +  x — 1), whence 
x2  +  4 (1 +  k — /c2) a: +  4 +  8/c =  0. The discriminant 
of this equation is equal to 16Zc2 (k2 — 2k — 1). Thus?

^  -|- 1, which was required to be proved-
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246. The centres of gravity of the faces of the tetra­
hedron serve as the vertices of the tetrahedron similar 
to the given one with the ratio of similitude 1/3. Conse­
quently, the radius of the sphere passing through the 
centres of gravity of the faces of the given tetrahedron 
is equal to B/3.  Obviously, this radius cannot be less 
than the radius of the sphere inscribed in the given tetra­
hedron.

247. Let in the tetrahedron ABCD \ AB \ =  &, 
| CD | =  c, the remaining edges being equal to a. If N  
is  the midpoint of AB  and M  is the midpoint of CD,

Fig. 49

then the straight line MN  is the axis of symmetry of the 
tetrahedron ABCD (Fig. 49, a). Now it is easy to prove 
that the point for which the sum of the distances to the 
vertices of the tetrahedron reaches the smallest value 
must lie on the line MN.  Indeed, let us take an arbitrary 
point P  and a point P* symmetric to it with respect to 
the line MN.  Then the sums of the distances from P  
and P'  to the vertices of the tetrahedron are equal. 
If K  is the midpoint of P P ' (K lies on MN),  then in the 
triangles PAP',  PBP',  PCPf, and PDP ', A K , BK,  CK, 
and D K  are the respective medians, and a median of 
a triangle is less than the half-sum of the sides including

B
F
b

S
a

it.
The quantity | MN  | is readily found:

| MN 4 4
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Consider the equilateral trapezoid LQRS.(Fig. 49, b) 
in which the bases | LS | and | QR | are equal to b and c, 
respectively, and the altitude is equal to d. Let F and E 
be the respective midpoints of the bases LS and QR . 
If K  is a point on MN,  and T on FE , and | FT \ =  \ N K  |, 
then, obviously, the sums of the distances from K  to the 
vertices A, B, C, and D and from T to the vertices 
L, S , Q, and R are equal. And in the trapezoid LQRS 
(as well as in any convex quadrilateral) the sum of the 
distances to the vertices reaches the least value at the 
point of intersection of the diagonals and is equal to the 
sum of d iagonal._____

Answer: y r4a2 -j-2bc•
248. Prove that the shortest way leading from the 

point A belonging to the circle of the greater base to the

diametrically opposite point C of the other base consists 
of the element AB  and diameter BC.  Its length is 2R,  
Denote by r the radius of the smaller base, by 0  its centre. 
Consider the path leading from A to some point M  be­
longing to the smaller base. The arc A M  situated on the 
lateral surface of the cone w ill have the smallest length 
if a line segment w ill correspond to it on the development 
of the lateral surface of the cone. But this development 
with the angle between the generatrix and the base equal 
to n/3 and the radius of the base R represents a semicircle 
of radius 2R.  Hence, the development of a frustum of
a cone is a semiannulus. Here, if to the arc B M  on the 
base there corresponds a central angle q>, then on the
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development, a central angle y  (Fig. 50) will correspond 
to this arc. Consequently,

| AM | 2= 4 i? 2 +  4r2— 8 i? rco s- |-  , | MC | = 2 rco s  . 

It remains to prove that

j /  4i?2+ 4 r 2—8 i? rco s- |-  +  2rcos - ^ - > 2 R.

This inequality is proved with the aid of obvious trans­
formations.

249. Fix the quantities | a | ,  | b | ,  | c | ,  denote by 
y, and z the cosines of the respective angles between a

and b, b and c, c and a.
Consider the difference between the left-hand and 

right-hand sides of the inequality in question.
We get

I a | +  | b | +  | c |

+ Y  | a l 2+ | b | 2+ | c | 2+ 2 | a | - | b | o ; + 2 | b j - | c | y + 2  jc|*|a|z

— Y \a l2+ |  b |2+ 2  | a|*j b | x — Y I b2 l+l cj2+ 2 | b |-| c |y

— Y  \ c | 2+  | a | 2 +  2| c | • | a | z =  f (x ,  y, z).

Note that the function <p ( 0 =  i ^ d + f — \^ l  +  t =  
— — * -- is monotone with respect to t. This

Y d + t + Y i + t
implies that /  (s, y, z) reaches its least value when x , y, 
z are equal to ± 1 , that is, when the vectors a, b, and c 
are coUinear. In this case our inequality is readily 
verified.

250. Let the straight line M N  intersect D\Ci at the 
point L. Set: | A M  \ =  x, \ BN  | =  y. It follows from 
the hypothesis that x >  a, y >  a. Projecting all the

points on the plane ABBXA^  we find t"F7T"T“ — - — 5
| L J J i  | X  —  d

\ C L \and projecting them on the plane ABCD , we find * =
I \
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y —a Consequently, a _  y — a whence xy =a * x —a a
(a; +  y) a. But (a; +  y)2 >  4xy. Hence, xy >  4a2.

Now, we get | M N  |2 =  x2  +  y2 +  a2 =  (a; +  y)2 —

+  «2 =  ' +  «2 =  12xy a1
(xy — a2)2 >

9a2. The least value of | M N  | is equal to 3a.
251. If x is the length of two other sides of the rec­

tangle, then the volume of the pyramid is equal to

w
b2

a- The greatest value of the volume

,  /*  452—a2 , a (462—a2)
will be for x  =  1 /  ----- -̂----  * l% e(Iuals 12-----'•

252. Let Af be a point on the line ABi, N  on the line 
BC1 9  M x and N% the respective projections of M  and N  
on the plane ABCD . Setting | B M X \ — x, \ BNX | =  y , 
we get

| M iN i  | =  / * * + y s, | M N  | =  V x i + y t + ( a —x — y)2.
By the hypothesis, | M N  | =  2 | M iNx |, consequent­

ly* (a — x — y)2 =  3 (x2 +  y2). Let x2 +  y2 =  u2,
x +  y — i?, then 2u2 — v* ^  0, and since u2= - ^  (a—i;)2,
replacing u2 in the inequality relating u and v, we obtain 
the following inequality for v: v2 +  Aav — 2a2 <  0
whence a (2 +  ]/*6) ^  i; ^  a (]/^6 — 2). We jio w  find
the least value of I M N  |, it is equal to 2a ( Y 3 — Y 2).

253. Consider the cube ABCDA^B\CiD\ with an edge 
2R.  Arrange the axes of the given cylinders on the lines 
AAfa DC, B\C±u

(a) The centre of the cube is at a distance of R Y 2 
from all the edges of the Gube. Any point in space is
located at a distance greater than R Y 2 I10111 at least 
one of the edges AA±, DC, B^C^ This follows from the 
fact that the cylinders with axes AAi, aQd radii
R Y 2 have the only common point, the centre of the 
cube. Consequently, the radius of the smallest ball
touching a ll the three cylinders is equal to R ( Y 2 — 1).

(b) If K, L, and M  are the respective midpoints of the 
edges AAlf DC, and BiC^ then the straight line passing



Answers, Hints, Solutions 193

through the centre of the cube perpendicular to the plane
KLM  is found at a distance of R Y 2 from the lines AAX, 
DC, and B 1 B; K L M  is a regular triangle, its centre 
coincides with the centre of the cube. Hence it follows 
that any straight line intersecting the plane KLM  is 
situated from at least one vertex of the triangle KLM  
at a distance not exceeding the radius of the circle circum­
scribed about it which is equal to R Y  2. Thus, the radius 
of the greatest cylinder touching the three given cylinders 
and satisfying the conditions of the problem is equal to
R ( / 2  -  1).

254. Let ABCD be the tetrahedron of the greatest 
volume, O the centre of the given spheres. Each line seg­
ment joining O to the vertex of the tetrahedron must be 
perpendicular to the face opposite to this vertex. If, for 
instance, AO is not perpendicular to the plane BCD , 
then on the surface of the sphere on which the point A 
lies it is possible to find points lying at greater distances 
than the point A does. (This reasoning remains, obvious­
ly, true if A, B , C , and D lie on the surfaces of different 
spheres and even not necessarily concentric ones.) Hence 
it follows that the opposite edges of the tetrahedron ABCD 
are pairwise perpendicular. Let, further^ the points A
and B lie on the sphere of radius R =  1^10, and C and D 
on the sphere of radius r =  2. Denote by x and y the re­
spective distances from O to AB  and CD .

Through A B , draw a section perpendicular to CD . 
Denote by K  the point of intersection of this plane and 
CD . Taking into consideration the properties of our tet­
rahedron ABCD , it is easy to prove that | A K  | =
| BK  | , O is the point of intersection of the altitudes 
of the triangle A B K . Draw the altitudes KL  and AM  
(Fig. 51). From the similarity of the triangles ALO
and OKM  we find | OM \ =  Further, | AB \ =

R
2 Y — x2, and from the similarity of the triangles 
AOL and A MB  we get

R 2 Y R 2 —x2

Y r 2~ ^ ~  /? - *y ’
R -r i r

1 3 - 0 4 4 9
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whence 2a;2 +  xy =  Rz, Proceeding in the same way, we 
get the equation 2y2  +  xy =  r2. From the system of 
equations

f 2a:2 +  a# =  10,
I 2 y2-{-xy =  £

we find x — 2, y  =  1. The volume of the tetrahedron 
ABCD w ill be equal to 6 \ f 2 .

Fig. 51

255. Let A denote the vertex of the trihedral angle 
whose plane angles are right angles, B the vertex of the 
other angle. On the line segment AB  take a point M  such 
that 2 \  A M  \ =  | MB |. Through the point M  pass 
a plane perpendicular to A B . This plane w ill cut each 
of the two trihedral angles in a regular triangle with side 

2

g- . In Fig. 52, a, the triangle PQR corresponds
to the section of the trihedral angle with the vertex A . 
The face BCD cuts off the pyramid QFKL from the pyra­
mid A PQR (the position of the point F is clear from 
Fig. 52, 6). The volume of this pyramid is proportional 
to the product | QK  | -| QL \ *| QF |. The quantity 
| QF |, obviously, reaches the greatest value for a  =  n/3, 

/ \
where a  =  CMQ. Let us prove that | KQ | - | QL \ reaches
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the greatest value also for a  =  n/3. Since KL  is tangent 
to the circle inscribed in PQR , the perimeter of the tri­
angle KQL is constant and is equal to b. We set | KQ \ —

x, | QL | =  y,£2Lthen KL =  b — x — y. Write the 
theorem of cosines for the triangle KQL:

(b — x — y ) 2  =  x2  +  y2  — xy=>  b2  — 2 b (x +  y) +  3xy

=  0 b2  — 4& Y x y  +  3xy >  0*

Consequently, either Y x y  ^

K * < - r

— _ b_
3 
b

and 0 <  y <

j o t  Y x y~ > b .  But 

Hence, Y x y  <  -4 - .

Equality is obtained if 0: =  ̂  =  -^ -.
Thus, the volume of the pyramid QKLF is the great-

b a /" 2
est for a= Jt/3 . Here, | KQ | =  | QL \ = — =  — y
Further, for a  =  Jt/3, N  is the midpoint of QM (Fig. 52, b). 
Drawing QT parallel to FB, we get | BT I =  | MB  j - 
Thus,
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The volume of the pyramid APQR is found readily,

it is equal to a • Three pyramids equal to the pyra­
mid QFKL are cut off the pyramid APQR .

1 1 2  2The volume of each of them amounts to 3 3 5 45
the volume of the pyramid APQR . Thus, for a  =  jt/3 
we get the “remainder” of the pyramid APQRj that is, 
a polyhedron having the volume

a3  Y 3  f 2  \ 13a3 / 3
54 I 1 15 / "  810 '

Reasoning exactly in the same manner, we get that 
for a  — Jt/3 from the pyramid BCDE there w ill remain 
a polyhedron of the smallest volume, and the volume

of this polyhedron w ill be —a .
o & 4

Adding the obtained volumes, we get the answer:
a3

20 •

256. Setting | BD | =  2z, it is easy to find

F =  F^bC.d
* | 1— 2 x* * | Y  3—4r2 

6 (1 —a:2)

Making the substitution u =  1 — a;2, and then w =  
4u +  1/u, we get

_  x2 (1— 2x%) 2  (3—4a2)
{ } (1 — a:2)2

__ ( 1 — u) (2u— l ) 2 (4u — 1)

=  ( 5 - l - 4 u )  ( 4 » + - i ~ 4 )

=  (5— w) (w— 4 ) =  — wz-\-9w— 20.
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The greatest value is attained for w =  9/2, whence 

-----  l A  9 ± / l 7
x = y  i u~ V  i — ie— •

the greatest value of V^bcd  equals -7^ .
257. Let x denote the radius of the ball, V (#) the sum 

of the volume of the part of the ball situated outside the 
tetrahedron and the part of the tetrahedron outside the 
ball. It is easy to see that V* (#) =  S 1  (x) — S\  (a:), 
where Sx (a;) is the surface area of the part of the ball out­
side the tetrahedron, S 2 (#) is the surface area of the part 
of the ball enclosed inside the tetrahedron. Minimum is

I
reached for S 1  (#) =  S 2  (#), whence x =  a -g-

258. Let a, &, c be the sides of the base, />= —
r the radius of the inscribed circle, x , y, z the distances 
from the foot of the altitude of the pyramid to the sides 
a, &, c, and h the altitude of the pyramid. Then

S ia t= --a / / ? + ? +  —  e Y iiH i 5-

Note that the function f (x) =  Y  h2  +  #2 is concave 
(convex downward). And for such functions the following 
inequality is valid:
<*1/  (*i) +  a 2/  (x2) +  . . . +  a vf(xv)
>  f  (<*1*1 +  cc2o:2 +  . . . +  a nxn),
a, >  0, i =  1, 2, . . ., n, a x +  a 2 +  . . . +  a n =  1 
Let us take advantage of this inequality. We get

Sl at =P (— +

Y ĥ + i i p _ x + i y + i f z y

=  P Y h * + ^ = P Y h ? + ^ ,  

which was required to be proved.
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259. If O is the centre of the circle, L is the projection 
of N  on the plane of the base, then the point M  must 
lie on the line segment LO since M  is a point of the circle 
nearest to N.  On the other hand, since N  is a point of the 
diagonal of the face nearest to M , M N  is perpendicular 
to this diagonal, and, hence, K N  is also perpendicular 
to this diagonal, where K  is the projection of M  on the 
face containing this diagonal (Fig. 53).

Fig. 53

Let | AL  | =  ax, A N K  is an isosceles right triangle, 
consequently, | LK  | =  | AL  | =* ax.

| MK  

I KD

OD
LK
LD

a
2

(1—4x).

ax
T = T x  1

Writing the Pythagorean theorem for A  MOE (ME  is 
parallel to AD ), we get the following equations for x:

(1—4a:)2 , / 1 x \ a_  25 
4 + \ 2 l  — 2x/ “ 144

<=> [6 (1— 4x) (1— 2x>la +  [6(1— 4x)]a +  [5(1 — 2x)]a.



Answers, Hints, Solutions 199

Making the substitution 5a =  3a +  4a in the right-hand 
side and transposing it to the left, we get
[6 (1 -  4x) (1 -  2a:)]2
-  [3 (1 -  2a;)]2 +  [6 (1 — 4a:)]2 -  [4 (1 -  2a:)]2 =  0 
<=> 9 (1 -  2a:)2 (1 -  8a:) (3 -  8a:) +  4 (5— 16*) (1— 8a:) 
=  0 < = >  (1 — 8a;) [9 (1 — 2a:)2 (3 — 8a:)
+  4 (5 -  16a;)] =  0.

It is easy to see that the point K  must lie to the left 
of the point D, that is, 0 <  x <  1/4, hence, the expres­
sion in the square_brackets is not equal to zero, x =  1/8.

Answer: a 24
260. (a) Let | SC \ =  d\ a, b, and c the sides of the 

triangle ABC , ha, hb, hc the altitudes of the triangle ABC, 
and s its area. Then

sin a  = h,
y  a2 ~\~b2

sin P = hb
y  d2+ a 2

sin y  = h,
y a * + k

Thus, we get for d the equation 

y ¥ + b 2 , l/da+fl2 ■ V d2+ ht
ha ^  hb ~  hc

Multiplying this equation by 2s, we get 

a y & + b * + b  y da+ a 2 =  2 s + / c 2d2 + 4 s 2. (1)

Multiplying and dividing both sides of (1) by the differ­
ences of the corresponding quantities (assuming that
A A

A ¥= B), we get
________ a2—&2__________________c2
a / d * + 6 2 - 6  ~  ]/><i2 +  4s2— 2 s  ’

whence

ac2 / d2+ 6 2— 6c2 / d2+ a 2 =  (a2- 6 2) ( / c2d2+ 4 s 2— 2s)
(2)
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Multiplying (1) by b2  — a2 and adding the result to (2), 
we obtain

a(b2 -\-c2 —a2) a2 -\-b2-\-b (b2 — a2 — c2) ]^d24-a2
= 4 *  (6®—a2).

With the aid of the theorems of cosines and sines, the 
last equation is transformed as follows

c o s /l-Z  5 * + ^ — (3)

Transform the right-hand member of Equation (3) as 
follows:
«2 2
- ^ -  =  2R (sin2 B — sin2 A) =  2R sin (A + B ) sin (B—A), 

2ii

now, multiplying both sides of (3) by cos A • d2 +  b2  +

cos B • Y &  +  a2, we get the equation

(cos2 A — cos2 B) d2 +  b2  cos2 A — a2  cos2 B 
=  2R sin (A +  B) sin (B — A)

X (cos A ' Y  &  +  b2  +  cos B - V d *  +  a2). (4)

In Equation (4) we see cos2 A — cos2 B =  
sin (A +  B) sin (B — 4 ) , b2  cos2 A — a2  cos2 B =
4R 2  sin (B + 4 )  sin {B— A),  Consequently, after reduc­
tion, Equation (4) is transformed to

*2
c o s 4 - / J S + ^ + c o s £ - / i 2+ ^ = 2 j j - + 2 f l .  (4')

Adding (3) and (4'), we get 

2 c o s 4 - / d 2+F2= ~ \-2R (sin2 £ + cos2 A),
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whence

{ Y d2+&a— 2R cos A)2 =  0, 
d8 =  4R 2  (cos2 A — sin2 B)

=  4i?2 cos (A +  Z?) cos (A — B).

Thus,

| SC | = 2 i?  / cos (A +  B) cos (4 —~B) .

The problem has a solution if A +  B <  90°, that is, in 
the triangle ABC  the angle C is obtuse.

(b) Let us take advantage of the notation used in 
Item (a). Then our inequality is rewritten in the form

h}y ha hc

If the angle C is acute, then the right-hand side, as 
it follows from Item (a), is never equal to 1, consequently, 
the inequality takes place, since it is fulfilled for d — 0. 
And if C is an obtuse angle (or it is equal to 90°), then 
the right-hand side is equal to 1 for the unique value of 
d (if C is a right angle, then d =  0). But for d — 0 and 
sufficiently large values of d the inequality is obvious 
(for large d’s it follows from the triangle inequality), 
consequently, if for some value of d the left-hand side 
were less than unity, then the left-hand side would take 
on the value equal to unity for two different values of d.

261. Let ABCD be the given tetrahedron. On the edges 
BC and BD take points M  and N  and solve the following 
problem: for what position of the points M  and N  does 
the radius of the smallest circle enclosing the triangle 
A M N  (we consider the circles lying in the plane AMN)  
reach the least value? (Obviously, the radius of the 
smallest hole cannot be less than this radius. For this

R ise, it suffices to consider the instant of passing 
e tetrahedron through the hole when two vertices 

of the tetrahedron are found on one side of the plane of 
the hole, the third vertex on the other side, and the fourth 
in the plane of the hole.)

Suppose that the points M  and N  correspond to the 
desired triangle. Suppose that this triangle is acute.
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Then the smallest circle containing this triangle 
coincides with the circumscribed circle. Circumscribe 
a circle about the triangle A M N  and consider the solid 
obtained by revolving the arc A M N  of this circle about 
the chord AN.  The straight line BC  must be tangent to 
the surface of this solid. Otherwise, on BC  we could take 
a point Mx such that the radius of the circle circumscribed 
about the triangle A M XN  would be less than the radius 
of the circle circumscribed about the triangle A M N ♦ 
The more so, BC  must be tangent to the surface of the 
sphere passi g through A , M,  and N  having the centre 
in the plane A MN.  The straight line BD must also touch 
this sphere exactly in the same manner. Consequently, 

BM  | as | BN  |. Set | BM  | =  | BN  | =  x. Let K  
denote the midpoint of MN, L the projection of B on the 
plane A M N  (L lies on the extension of AK),  The fore­
going implies that LM  and LN  are tangents to the circle 
circumscribed about the triangle AM N.  This triangle is
isosceles, | AM  \ =  \ A N  \ =  x2  — x +  1, | M N \ =

y \
x . If M AN  =  ce, then

c o s a =  

I LK  I

x2—2 x + 2  
2 (x2 — x-j-1)

sin a  =

M K  I tan a  =

x 3x2—4x-f-4 
2 (x2  —- x +  lj

y  3x2—4 x + 4  
(x2 — 2 x ~\- 2)

»

Consider the triangle
o 3x— 2cos 6 =  — > ,

y  3 (3xa—4 x + 4 )

AKB,

LK  I

AKh  =  P >  180°; 

-  | KB  | cos |3 =

—  ~ — . Equating two expressions for | LK \ ,
2 / 3 x 2—4 x + 4
we get for x, after simplifications, the equation 
3x2 _  6*2 +  7x -  2 =  0. (1)

The radius of the circle circumscribed about the triangle 
AM N,  w ill be

x2—x + 1
y  3x2—4 x + 4
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(It is possible to show that if A M N  is a right triangle,
then its hypotenuse is not less than V^15 — 10 ]^2 >  
0.9.) Let us show that our tetrahedron can go through 
the hole of the found radius.

On the edges CB and CA mark points L and P  such 
that | CL | =  | CP | =  | B M  \ =  \ BN  | =  x, where x 
satisfies the equation (1).

Place the tetrahedron on the plane containing the 
given hole so that M  and N  are found on the boundary of 
the hole. We will rotate the tetrahedron about the line M N  
until the edge A S, passing the hole, becomes parallel 
to our plane. Then, retaining AB  parallel to this plane, 
we displace the tetrahedron ABCD so that the points P  
and L get on the boundary of the hole. And, finally, we 
shall rotate the tetrahedron about PL  until the edge DC 
goes out from the hole. (The tetrahedron will turn out 
to be situated on the other side of our plane, the face ABC  
lying in this plane.)

Answer: the radius of the smallest hole R =#2 _  -j. |
—  ------ , where x is the root of the equation
/  3 z * - 4 r + 4

3X3 — 6a;2 +  lx  — 2 =  0. The relevant computations 
yield the following approximate values: x & 0.3913, 
R «  0.4478 with an error not exceeding 0.00005.

Section 4
262. Let S  denote the vertex of the angle. Take points 

A, S , and C on the edges such that | SA | =  | SB j =
| SC |. The bisectors of the angles A SB and BSC  
pass through the midpoints of the line segments AB  and 
BCj while the bisector of the angle adjacent to the angle 
CSA is parallel to CA .

264. if is not a whole number,

1
1, i f ----------- ig a whole number, where [or]

2 s in -I -
is an integral part of x.
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265. We shall regard the given lines as the coordinate 
axes. Let the straight line make angles a,  |3, and y  with
these axes. Then the projections of the vectors OA1% OB±,
and OC1  on the axes OA, OB, and OC w ill be respectively 
equal to a cos 2a, a cos 2|3, and a cos 2y, a =  | OA | . Con­
sequently, the point M  of intersection of the planes pass­
ing through ilt, an<̂  respectively perpendicular 
to OA, OB, and OC w ill have the coordinates (a cos 2a, 
a cos 2p, and a cos 2y). The set of points with the coor­
dinates (cos2 a, cos2 p, and cos2 yj is a triangle with 
vertices at the end points of the unit vectors of the axes. 
Consequently, the sought-for locus of points is also 
a triangle whose vertices have the coordinates (—a, —a, 
a); (—a, a, —a); (a, —a, —a).

266. Denote the given lines by and l2. Through 
pass a plane px parallel to l2, and through l 2  a plane p2 
mrallel to lv  It is obvious that the midpoints of the 
ine segments with the end points on and lz belong to 

the plane p  parallel to p x and p2 and equidistant from pi 
and p 2, (It is possible to show that if we consider all 
kinds of such line segments, then their midpoints will 
entirely fill up the plane p.) Project now these line seg­
ments on the plane p parallel to the given plane. Now, 
their end points will lie on two straight lines which are 
the projections of the lines and L, and the projections 
themselves will turn out to be parallel to the given line 
of the plane p representing the line of intersection of the 
plane p  and the given plane. Hence it follows that the 
required locus of points is a straight line.

267. (a) The whole space.
(b) Proceeding exactly in the same way as in Prob­

lem 266, we can prove that the locus of points dividing 
in a given ratio all possible line segments parallel to 
the given plane with the end points on the given skew 
lines is a straight line. Applying this statement twice 
(first, find the locus of midpoints of sides AB, and then 
the locus of centres of gravity of triangles ABC), prove 
that in this case the locus of centres of gravity of triangles 
ABC  is a straight line.

268. Through the common perpendicular to the
straight lines, pass a plane p perpendicular to J3. Let the 
line N M  intersect l3  at point L; N l 9  Mlt be the re­
spective points of intersection of the lines f2, lz with



Answers, Mints, Solutions 205

the common perpendicular, JV2, M 2  the projections of N  
and M  on the passed plane, a  and p the angles made by 
the lines and l2  with this plane, K  the midpoint of

NMj Kx and K 2  the projections of K on the common per­
pendicular and on the plane p (Fig. 54). We have

K K %\
K iK 2  |

I NN% | +  | MM 2  I 
N 2N x I + 1 M 2M x I 

N 2 Nx I tan a  +  | M2Mx | tan p 
I 1 + 1 M2M x !

NxLx | tan a +  | MxLt  | tan P
I I +  ] MxLx | =  const,

hence, the point K  describes a straight line.
269. Let us introduce a rectangular coordinate system, 

choosing the origin at the point A . Let ex (%, blt c j ,  
e? («2» c2), • • •> en (an> cn) he unit vectors par­
allel to the given lines, e (x , y, z) a unit vector parallel 
to the line satisfying the conditions of the problem. Thus, 
we get for e the following equation
I #1# +  btf +  Cjz | +  I a2x +  b2y +  c2z | -f- . . .
+  \ anx +  bny +  cnz \ =  const.
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It is now easily seen that the locus of termini of the 
vector e will be the set of circles or parts thereof situated 
on the surface of the unit sphere with centre at A .

270. Place equal loads at the points A, B, C, A lt 
Blt and C*. Then the centre of gravity of the obtained 
system of loads will coincide with the centre of gravity 
of the triangle with vertices at the midpoints of the line 
segments AA^ BBly CCX~

On the other hand, the centre of gravity of this system  
coincides with the midpoint of the line segment GH, 
where G is the centre of gravity of the triangle ABC , 
H  the centre of gravity of the three loads found at A^  
Blt and Clt

With a change in A lt B 1 7  and the point H  moves 
in the straight lin e /, and the point G remains fixed. 
Hence, the point Af, which is the midpoint of GH, w ill 
describe a straight line parallel to /.

271. Through A draw a straight line t parallel to I. 
The sought-for locus of points represents a cylindrical 
surface, except for I and £, in which I and t are diametri­
cally opposite elements.

272. Let us first prove that if the line M K  is tangent 
to the sphere |3, then it is also tangent to the sphere a.

Consider the section of the given spheres by the plane 
passing through points Af, K, A, B, and N  (Fig. 55). The 
angle MKB  is measured by half the arc KB  enclosed
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inside this angle, consequently, MKB  — B A N , since 
the angle measures of the arcs KB  and BN  are equal (we 
take the arcs situated on different sides of the line KN  
if the tangency is external (Fig. 55, a) and situated on 
one side if the tangency is internal (Fig. 55, 6)). Hence 

/  \  / \  / \  / \  
it follows that A M K  =  ABN  or A M K  — 180° — ABN,

/ \  ^  
and this means that A M K  is measured by half A M , since 
the corresponding arcs AM  and AN  have the same angle 
measure, that is, M K  touches the circle along which the 
considered section cuts the sphere a.

It is now possible to prove that the locus of points M 
is a circle.

273. Let A and B denote the given points, C the point 
of intersection of the line AB  with the given plane, M 
the point of tangency of a ball with the plane. Since 
| CM |2 =  | CA |- | CB |, M lies on the circle with 
centre at the point C and radius V \ CA |- | CB |. Con­
sequently, the centre of the sphere belongs to the lateral 
surface of the right cylinder whose base is this circle. On 
the other hand, the centre of the sphere belongs to the 
plane passing through the midpoint of AB  perpendicular 
to AB.  Thus, the sought-for locus of points is the line 
of intersection of the lateral surface of a cylinder and 
a plane (this line is called the ellipse).

274. Denote by 0 lt 0 2  and /flt R 2  the centres and 
radii of the given spheres, respectively; M  is the midpoint 
of a common tangent. Then, it is easy to see that

I OiM I2 -  | 0 2M  |2 =  -  R l

and, consequently, M  lies in the plane perpendicular to 
the line segment and cutting this segment at a
point N  such that

I O^N |2 -  | 0 2N  |2 =  tf2 -  R l

Let us see what is the range of variation of the quan­
tity | N M  |. Let | O-fij, | — a and R x >  R 2 , then
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If 2x is the length of the common tangent, whose mid­
point is Af, then

| M N  |2= |  Ot M  | 2— | OtN  | 2 =  a:2 +  /?f

Now, if a >  R x +  R 2, then the quantity Ax2  changes 
within the interval from a2 — (./?! +  R 2)2 to a2 — (/?! — 

and, hence, in this case the locus of points Af 
will be an annulus whose plane is perpendicular to 
0 -fi2 9  and the centre is found at the point N , the inner 
radius is equal to

and the outer to

And if a <  R t +  f?«, that is, the spheres intersect, then 
the inner radius of the annulus will be equal to the radius 
of the circle of their intersection, that is, it w ill be

— (a +  # 1+ R2) (« +  /?!—R2) (a +  R 2 —R-]) (if1+ i f 2“ a) -

275. Denote by A and B the points of tangency of the 
lines and l2  with the sphere, and by K  the point of tan­
gency of the line MN  with the sphere. We will have

| A M  | =  | M K  |, | BN  | — | N K  |.

Project and /2 on the plane perpendicular to AB. Let A lt 
Afi, N lt and K ± denote the respective projections of the 
points A (and also B ), Af, N,  and K . Obviously,

where p and q are constants. Let now d and h be the dis­
tances from to the straight lines A 1 M 1  and AXN V
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We have
1

d __ 2 1 AlMl ^  | AlN 1  1 SAiMiK1

h * I A1 N 1  I h 1 AlMl  1 Sa>n1 k 1
Cd

1 a , n , 1
I A1 M 1  1

JlfiJTi I | AXN! \ \ M K \  | A1 N 1

I N A  I * I AxM! | | N K  | ’ | AxMji
I AM  | | | q
AiJIfi | BN  | — p '

Thus, the ratio of the distances from the point K-± to 
two given straight lines in the plane is constant. This 
means that the point K± belongs to one of the two straight 
lines passing through the point A ±. And the sought-for 
locus of points represents two circles on the surface of 
the given sphere. These circles are obtained when the 
sphere is cut by two planes passing through the lines de­
scribed by the point K i and the straight line AB - The 
points A and B themselves are excluded.

279. Let B K  denote the altitude of the triangle A B C , 
H  the point of intersection of the altitudes o f  the tri­
angle ABC , BM  the altitude of the triangle DBC , N  the 
point of intersection of the altitudes in the triangle DBC . 
Prove that N  is the projection of the point H  on the 
plane DBC .

Indeed, K M  is perpendicular to DC , since BM  is 
perpendicular to DC , and K M  is the projection of BM  
on the plane ADC . Thus, the plane KMB  is perpendicular 
to the edge DC , consequently, HN  is perpendicular to DC . 
Exactly in the same way, HN  is perpendicular to the 
edge DB.  Hence, HN  is perpendicular to the plane DBC . 
It is not difficult to prove now, that N  lies in the plane 
passing through AD perpendicular to BC-

The required locus of points represents a circle with 
diameter HL , where L is the foot of the altitude dropped 
from A on BC whose plane is perpendicular to the mane 
ABC.

283. Denote by P and Q the points of intersection of 
the opposite sides of the quadrilateral ABCD. If the 
section by the plane of the lateral surface of the pyra­
mid ABCDM  is a parallelogram, then the plane of the
1 4 — 0 4 4 9
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section must be parallel to the plane PQM , the sides of 
the parallelogram being parallel to the straight lines PM  
and QM . Hence, in order for a section to be a rectangle, 
the angle PMQ must be equal to 90°, that is, M  lies on the 
surface of the sphere with diameter PQ. (Thus, Item (a) 
has been solved.)

(b) Denote by K  and L the points of intersection of the 
diagonals of the quadrilateral ABCD and the straight 
line PQ. Since the diagonals of the parallelogram obtained 
by cutting the lateral surface of the pyramid ABCDM  
by a plane will be parallel to the lines M K  and ML,

/ \
this parallelogram will be a rhombus if KM L  =  90°, 
that is, M  lies on the surface of a sphere with diameter KL.

(c) Items (a) and (b) imply that the locus of points M  
will be a circle which is the intersection of two spheres 
of diameters PQ and KL.

(d) The locus of points is a conical surface with vertex 
at the point of intersection of the diagonals of the quadri­
lateral ABCD whose directing curve is a circle from the 
preceding item.

284. If K  and L are the midpoints of BC  and AM , O 
the centre of the sphere circumscribed about ABCM , 
then, since G is the midpoint of LK  and OG is perpen­
dicular to L K , | OL | =  | OK  |. Hence it follows that 
| A M  | =  | BC  |, that is, M  lies on the surface of the 
sphere of radius BC  centred at A .

Let, further, N  be the centre of gravity of the tri­
angle ABC , 0 ! the centre of the circle circumscribed about 
the triangle ABC, G1  the projection of G on the plane 
ABC. Since, by the hypothesis, OG is perpendicular to 
A K ^ O ^  is also perpendicular to A K .  Hence, G lies in the 
plane passing through 0 X and perpendicular to AK .  
Hence, since

I N G  | =  - j - \ N M \ ,

it follows that the point M  also lies in the plane per­
pendicular to AK .

Thus, the sought-for locus of points represents the 
line of intersection of a sphere and a plane, that is, 
generally speaking, is a circle.

285. Introduce a rectangular Cartesian coordinate 
system taking for O the vertex of the trihedral angle and
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directing the axes along the edges of this angle. Let the 
plane of the circle make angles a , p, and y with the coor­
dinate planes XO Y , YOZ, and ZOX , respectively. Then 
the point 0 1  (the centre of the circle) will have the coor­
dinates (R sin P, R  sin y, R  sin a), where R  is the radius 
of the circle. From the origin draw a straight line per­
pendicular to the plane of the circle. This line will make 
angles p, y, and a  with the coordinate axes. Consequently,

cos2 a  +  cos2 P +  cos2 y =  1 

and, hence,

| Q0 1  |2 =  R2 (sin2 a  +  sin2 p +  sin2 y) *= 2R \

Thus, the point Ox lies on the surface of the sphere with 
centre at O and radius R V"2. On the other hand, the 
distance from Ox to the coordinate planes does not ex­
ceed R .

Consequently, the sought-for set represents a spherical 
triangle bounded by the planes x =  R f y =  R t z = R
on the surface of the sphere | 0 0 1  | =  R Y 2, situated 
in the first octant.

286. Let the spider be found in the vertex A of the 
cube A B C D A ^ ^ D ^  Consider the triangle D C C It 
is rather easy to prove that the shortest path joining A 
to any point inside the triangle DCC1  intersects the edge 
DC. In this case, if the faces ABCD and DCC1D 1  are 
“developed” so as to get a rectangle made from two squares 
ABCD and DCC^D^ then the shortest path will repre­
sent a segment of a straight line. Consequently, the arc 
of a circle with radius of 2 cm whose centre is found at 
the point A of the development situated inside the tri­
angle DCCX w ill be part of the boundary of the sought- 
for locus of points. The entire boundary consists of six 
such arcs ana separates the surface of the cube into two 
parts. The part which contains the vertex A together 
with the boundary is just the required locus of points.

287. We take the edges of the trihedral angle for the 
coordinate axes. Let (a:, y , z) be the coordinates of the
vector OA , (xi 9  yif %i) the coordinates of the ith section
1 4 *
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of the polygonal line. Each section of the polygonal line 
is regarded as a vector. Then

* =  2  xt' y =  2  vi' z =  2
here, the conditions of the problem imply that all the 
are different from zero and have a sign coinciding with 
that of x (the same is true for y t and zi). Obviously, 
| OA | <  a. On the other hand,

I * I +  I y I +  I f I =  S  (I *t I +  I yi I +  I zi i)

^ 2  h =  a
(l£ is the length of the ith section of the polygonal line).

It can be readily shown that any point A satisfying 
the conditions | OA | <  a, \ x \  +  \ y \  +  \ z \ > a t 
where x, y, z are the coordinates of the point A,  can be 
the end point of a polygonal line consisting of not more 
than three sections and satisfying the conditions of the 
problem. Let, for instance, M 1  and Afa be two joints  
lying on one straight line emanating from the point O 
such that I *! | +  | 1̂  | +  | *! | =  a, ^ y f r  =£ 0 (*lt ylt 
Zx the coordinates or the point M0 , | OM% [ =  a. Con­
sider the polygonal line with vertices (0, 0, 0), (x1# 0, 0), 
(*1, 0), (x1# y,, z j .  The length of this polygonal line
is equal to a. ‘‘Stretching” this line, we get all points 
of the line segment M xMp (excluding Afjj. Thus, the 
desired locus of points consists of all points lying outside 
the octahedron | * |  +  | | f |  +  | * |  — a and inside or 
on the surface of the sphere with centre O and radius a. 
In this case, the points situated in the coordinate planes 
are excluded.

288. First of all note that if r is the radius of the ball 
inscribed in ABCDt then, firstly, all the edges of the 
tetrahedron ABCD are longer than 2r and, secondly, the 
radius of the circle inscribed in any face of the tetra­
hedron is greater than r. The first assertion is obvious. 
To prove the second assertion, through the centre of the 
inscribed ball, pass a plane parallel, say, to the face ABC . 
The section cut is a triangle A^xC^ similar to the tri­
angle ABC  with the ratio of similitude less than unity 
ana containing inside itself a circle of radius r.

(1) The condition determining the set of points A 
will be expressed by the inequality | OA \ >  3r, the
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equality | OA | =  3r being true for a regular tetrahedron. 
If for some point A the inequality | OA | <  3r were 
fulfilled, then the radius of the smallest ball containing 
the tetrahedron ABCD would be less than 3r, which is 
impossible (see Problem 246).

(2) The condition determining the set of points B
will be expressed by the inequality | OB | >  r ]^5. In­
deed, if for some point B the inequality | OB | <  r ]^5 
were fulfilled, then for the triangle DBC  the radius of 
the circle containing this triangle would be not greater
than Y 5r2 — r2 =  2r, that is, the radius of the circle 
inscribed in the triangle DBC  would not exceed r, which 
is impossible.

(3) The condition determining the set of points C is
expressed by the inequality | OC | >  r >^2. Indeed, if
| OC | <  r V %  then | CD | <  2r-

(4) The condition determining the set of points D 
will be expressed by the inequality | OD | >  r.

Let us show that | OD | can be arbitrarily large. To 
this effect, for the tetrahedron ABCD take a tetrahedron 
all faces of which are congruent isosceles triangles having 
sufficiently small vertex angles. Then the centres of the 
inscribed and circumscribed balls w ill coincide, and the
ratio —  , where R  is the radius of tho circumscribed ball, r
can be arbitrarily large.

289. If MC is the hypotenuse of the appropriate tri­
angle, then the equality | MC  |2 =  | MA |2 +  | MB |2 
must be fulfilled. Introducing a rectangular Cartesian 
coordinate system, it is easy to make sure that the 
point M  must describe the surface of a sphere. Find the 
centre and radius of this sphere.

Let Cx be the midpoint of AB, C2  lie on the extension 
of CClt CXC2  | =  | CCX | {ACBC2  is a parallelogram). 
Denote the sides of the triangle ABC , as usual, by a, &, 
and c, the median to the side AB  by mc. We shall have

I AB I2 c2
| MA |2+ |  MB  | 2= 2  | MCX 12+ -L-— 2 1MCX|2+ ^ - .

Since
I MA |2 +  | MB |2 =  | MC |2,
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we get

I MC | 2—2 | AfCj l2= - y - .  (1)

Let MC2C =* q), write for the triangles MC2C and MC 2 C1  

the theorem of cosines:
I MC  |2 =  | MC 2  Is +  4m? — 4 | jlfC2 | mc cos <p, (2)
| MC 1  \ 2  =  | MC 2  |2 +  ml -  2 | | mc cos q). (3)

Multiplying (3) by 2 and subtracting the result from (2), 
we get (talcing into account (1))

I MC 2  |2 =  2m2 -  ~  =  a2 +  62 -  c2.

Thus, for this case the set of points M  w ill be non­
empty if a2  +  &2 — c2 >  0, that is, the angle C in the 
triangle ABC  is not obtuse. Consequently, the whole set 
of points M  for an acute-angled triangle consists of three 
spheres whose centres are found at the points A 2  

and B 2  such that CAC^B, A B A 2 C, BCB2A are parallelo­
grams, the radii being respectively equal to V
V^b2  +  c2 — a2, and '[fa2  +  c2 — b2. For the right-angled 
triangle ABC  the sought-for set consists of two spheres 
and a point, and for an obtuse-angled triangle of two 
spheres.

290. Let O denote the centre of the Earth, A the point 
on the equator corresponding to zero meridian, M  the 
point on the surface of the Earth with longitude and lati­
tude equal to q), N  the projection of M  on the plane of 
the equator. Introducing a rectangular Cartesian coordi­
nate system in the plane of the equator, taking the line 
OA for the x-axis, and the origin at the point O , we get 
that N  has the following coordinates: x =  R  cos2 q), 
y =  R  cos q) sin q), where R  is the radius of the Earth. 
It is easv to check that the coordinates of the point N  
satisfy the equation

i.e. the sought-for set is a circle with centre  ̂ -  , 0
and radius R/2.



Answers, Hints, Solutions 215

291. Introduce the following notation: S  is the vertex 
of the cone, N  the projection of the point M  on the plane 
passing through the points S  and A parallel to the base 
of the cone, P a point on the straight line SN  such that

SMP  =  90° (Fig. 56), MP  is a normal to the surface

Fig. 56

of the cone. It follows from the hypothesis that AP  is
/ \  / \

parallel to the reflected ray. Hence A M P  =  M PA , 
| A M  | =  | A P | . Let a  be the angle between the altitude 
and generatrix of the cone | SA \ =  a. The plane passing 
through M  parallel to the plane SPA cuts the axis of the 
cone at the point Su  A 1  is the projection of A on this 
plane,

| SSi  | — x , MS\A\  — <p» | MAi  | y.

By the theorem of cosines for the triangle S-^MA^ we have 

y2 =  x2 tan2 a  +  a2 — 2ax tan a  cos q). (1)

Besides,

| PA |2 =  | MA |2 =  y2  +  a:2, (2)

1 ^ 1 — L g L L . „ « ^ . . 3 » r . pisin a cos a  sin a  sin 2a *
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Writing the theorem of cosines for the triangle SPA 
and using the above relationships, we have

tan2 a —2ax tan a  cos <p+x2 = 4ra 
sin2 2a

4ax
sin 2a cos <p,

whence x =  a sin 2a cos q>.
If now we erect a perpendicular to SN  at the point N  

in the plane SPA and denote by L the point of its inter­
section with S A t then

\ S L \ | S N  | __ x tan a  
cos <p ~~ cos <p 2a sin2 a .

Thus, | SL | is constant, consequently, the point N  
describes a circle with diameter SL.

292. When solving this problem, we shall need the 
following statements from plane geometry.

If in a circle of radius R  through a point P found at 
a distance d from its centre two mutually perpendicular 
chords AD and BE  are drawn, then

(a) | AD |2 +  | BE  |2 =  8 # 2 -  4d2,

(b) the perpendicular dropped from P on AB  bisects 
the chord D E .

For a three-dimensional case, these two statements are 
generalized in the following way.

If through a point P found inside a ball of radius R 
centred at O three mutually perpendicular chords A D , 
BEy and CF are drawn at a distance d from its centre, then

(a*) | AD |2 +  | BE |2 +  | CF |2 =  12R* — &I2,
fb*) a straight line passing through P perpendicular 

to tne plane ABC  passes through the median point of the 
triangle DEF .

Let us prove Item (a*). Let R lt R 2, R z denote the radii 
of the circles circumscribed respectively about the quadri­
laterals ABDEy ACDFy and BCEF, d1# d2, d« the distances 
in these quadrilaterals from the centres of the circum­
scribed circles to the point P , and x , y, z the respective 
distances from the point O to the planes of these quadri­
laterals. Then x2 +  y2 +  z2  =  d2, di +  d2 +  d| =
2 (a* +  y2 +  s2) =  2d2, +  R\  +  =  3R* -  d2.
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Thus, taking advantage of the statement of Item (a), 
we get

| AD |2+  | BE |2 +  | CF | 2= - i - [ (  | AD | 2+  I BE | *)

+  ( | BE | 2+  I CF | 2) +  ( | CF | * +  | AD I2)] 

= - | ~ ( 8 ^ - 4 d f  +  8 J? ? -4 d i +  8/?32- 4 d 32)

=  12/?a—8d2.

To prove Item (b*), project the drawn line on the 
planes of the quadrilaterals ABDE , ACDF , and BCEF , 
and then take advantage of Item (b).

Now, let us pass to the statement of our problem. On 
the line segments P A , PB , and PC construct a parallel­
epiped and denote by M  the vertex of this parallelepiped 
opposite the point P.

Analogously, determine the point N  for the line seg­
ments PD , PE, and PF. K  is the point of intersection 
of PM  with the plane ABC , Q the midpoint of P M , T 
the midpoint of P N , 0 1  the centre of the circle circum­
scribed about the triangle ABC , and H  the foot of the 
perpendicular dropped from P on ABC .

It follows from Item (b*) that H  lies on the straight 
line NP.  Further, K  is the point of intersection of the
medians of the triangle ABC , | PK  | ==4-1 P M  |. Theo
straight line OQ is perpendicular to the plane ABC  and 
passes through the point 0 X, since O and Q are the centres 
of two spheres passing through the points A, B , and Cm 
(Note that we have proved simultaneously that the 
points 0 i, K , and H  are collinear and | KH  | =  2 | 0 \ K  |. 
As is known, this straight line is called the Euler line.)

Thus, OQ is parallel to N P , the same as TO is parallel 
to MP.  Hence, 0  is the midpoint of NM.

On the line segment OP take a point S  such that
| PS  | =  | PO |. The perpendicular dropped from S
on KH  passes through the midpoint of KH. Consequently, 
| SK  | =  | SH  |. But S K  || OM,
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It follows from Item (a*) that I N M  ]2= 1 2 # 2— 8d2  

(NM  is the diagonal of the parallelepiped whose edges are 
equal to | AD | , | BE | , | CF | ), that is | S K  | =

YZR* —2d2 is a quantity independent of the way
in which the line segments PA , PB , PC were drawn.

293. Denote by a, b, and c the unit vectors directed 
along the edges of the trihedral angle, let, further, ON =  
e, P the centre of the sphere, OP =  u, OA =  xa,
OB =  yb, OC =  zc.

The points O, iV, and C belong to one and
the same sphere with centre at P . This means that

(u — e)2 =  u2, (xa — u)2 =  u2,
(yb — u)2 =  u2, (zc — u)2 =  u2,

whence

e2—2eu =  0,

y — 2bu =  0, 
z —2cu =  0.

Lete =  aa +  pb +  yc. Multiplying the second, third, 
and fourth equations of System (1) respectively by a , P, 
and y  and subtracting from the first, we obtain

e2 — ax  — Py — yz =  0. (2)

If M  is the centre of gravity of the triangle ABC , then

0M  =  | - ( 0 4 + 0 B + 0 C ,) = — (xa+j/b+zc) .

Taking into consideration Equation (2), we may conclude 
that the locus of points M  is a plane.

294. Prove that each of these planes passes through 
the point symmetric to the point N  with respect to the 
centre of gravity of the tetrahedron.

295. Prove that all these planes pass through the point 
symmetric to the centre of the sphere circumscribed
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about the tetrahedron with respect to its centre of 
gravity.

296. When solving Problem 295, we proved that 
Mongers point is symmetric to the centre of the sphere 
circumscribed about the tetrahedron with respect to the 
centre of gravity of the tetrahedron. Consequently, if 
Mongers point belongs to the plane of some face of the 
tetranedron, then the centre of the circumscribed sphere 
is situated from this face at a distance equal to half 
the length of the corresponding altitude and is located 
on the same side of the face on which the tetrahedron 
itself lies. This readily leads to the statement of our 
problem.

297. Take advantage of the equality

where D is the midpoint of A B , and also by the fact that 
in an arbitrary tetrahedron the sum of the squares of its 
opposite edges is equal to twice the sum of the squares of 
the distances between the midpoints of two pairs of its 
remaining edges (see Problem 21).

298. Denote the areas of the faces of the tetrahedron
by Si, Sg, S 3, S4 and the volume of the tetrahedron by F. 
If r is the radius of the sphere touching all the planes 
forming the tetrahedron, then, with the signs of e* =  
+ 1 , i =  2, 3, 4, properly chosen, the equality

(ei^i +  e2 ^ 2  +  e3 ^ 3  +  e4^4)~g" =  V must be fulfilled.
In this case if for a given set e(* the value of r determined 
by the last equality is positive, then the corresponding 
ball exists.

Thus, in an arbitrary tetrahedron there always exists 
one inscribed ball (e* =  + 1 ) and four externally inscribed 
balls (one e* =  —1, the remaining ones +1) ,  that is, 
four such balls each of which has the centre outside the 
tetrahedron and touches one of its faces at an interior 
point of this face.

Further, obviously, if for some choice of et there 
exists a ball, then for an opposite set e,* there exists no 
ball. This means that there are at most eight balls. There 
will be exactly eight balls if the sum of the areas of any 
two faces is not equal to the sum of the areas of two others.
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299. For any two neighbouring sides of the quadri­
lateral there are two planes equidistant from them (the 
bisector planes of the angle of the quadrilateral itself and 
the angle adjacent to it). In this case, if three such planes 
corresponding to three vertices of the quadrilateral inter­
sect at a certain point, then through this point there 
passes one of the two bisector planes of the fourth vertex. 
Thus, when finding the points equidistant from the lines 
forming the quadrilateral, it suffices to consider the bi­
sector planes of three angles of this quadrilateral. Since 
two planes correspond to each vertex, there will be, 
generally speaking, eight points of intersection.

It remains to fina out under what conditions some 
three such planes do not intersect. Since our quadrilateral 
is three-dimensional, no two bisector planes are parallel. 
Hence, there remains the possibility of one bisector plane 
to be parallel to the line of intersection of two others. 
And this means that if, through some point in space, 
three planes are passed parallel to the given ones, then 
these three planes w ill intersect along a straight line.

Let, for the sake of definiteness, the bisector planes 
of the three interior angles of the quadrilateral A B CD

not intersect. Through the vertex C , draw straight lines 
parallel to the sides AB and AD (Fig. 57) and on these 
lines lay off line segments CP and CQ, | CP | =  | CQ |. 
Lay off equal line segments CM  and CN on the sides CB 
and CD.

The aforegoing reasoning imply that the bisector 
planes of the angles M CP , PCQ, QCN, and NCM  inter­
sect along a straight line and, hence, all the points of 
this line are equidistant from the straight lines C/>, CQ,
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C N , CM , that is, the lines CP, C@, CN , and CAf lie 
on the surface of the cone, and PQNM is an inscribed 
quadrilateral. Let the plane of the quadrilateral PQNM 
intersect AB and AD at points L and K . The line LK  is 
paralle to QP , and this means that N M L K  is also an 
inscribed quadrilateral. Besides, it is easily seen that
| LB | =  | MB  |, \ KD \ =  \ D N  U I KA | =  | AL  |. 
Hence, in particular, it follows that | AB  I +  \ D C \  =

Let now O denote the centre of the circle circumscribed 
about the qiiadrilateral KLMN.  The congruence of the 
triangles LOB and MOB implies that O is equidistant 
from the lines AB  and BC. Proceeding in the same way, 
we w ill show that O is equidistant from all the lines form­
ing the quadrilateral A. BCD , that is, O is the centre 
of the ball touching the straight lines A B , BC , CD, and 
D A . Other cases are considereaexactly in the same manner 
to obtain analogous relationships among the sides of 
ABCD: | AB | +  | AD  | =  | CD | +  | CB |, \ AB \ +  
| BC | =  | AD  | +  | DC  |. It is not difficult to show 
that the indicated relationships among the sides of the 
quadrilateral ABCD are the necessary and sufficient con­
ditions for the existence of infinitely many balls touching 
the sides of the quadrilateral. In all remaining cases 
there are exactly eight such balls.

300. Using the formula of Problem 11 for the volume 
of the tetrahedron, prove that each of the relationships

S 3, S4 are the areas of the faces of the tetrahedron, V its 
volume.

301. If ht (i =  1, 2, 3, 4) is the altitude of the cor­
responding face of the tetrahedron, then

\ A D \  +  \ B C \ .

under consideration is equal to  ̂ 1 T/g 3, 4> where Slt S 2,AS, S»S*S

1
3 /

4

/
4
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If now di is the distance from the centre of the circum 
scribed ball to the ilh face (B is the radius of this ball), 
then

(see Problem 182), which was required to be proved.
(We assumed that the centre of the circumscribed ball 

lies inside the tetrahedron. If the centre is found out­
side it, proceed in the same way regarding one of the 
quantities dt as being negative.)

302. Denote the lengths of the edges of the tetrahed­
ron ABCD as is shown in Fig. 58, a. Through the vertex A 
pass a plane tangent to the ball circumscribed about the 
tetrahedron ABCD. The tetrahedron ABC 1 D 1 in this 
figure is formed by this tangent plane, the planes ABC , 
ABD , and also by the plane passing through B parallel 
to the face ADC.  Analogously, the tetrahedron AB 2 C2D 
is formed by the same tangent plane, the planes ABD. 
ADC , and the plane passing through D parallel to ABC.

From the similarity of the triangles ABC and ABCX 
(Fig. 58, &, ACX is a tangent line to the circle circum­

scribed about the triangle ABC , consequently, BACX =
/ \  , , / \  / \

BCA, besides, BCX || AC, hence, CxBA-=-BAC) find
df. ft f.

I ACX | = - r - .  Analogously, find | ADX | — — , | AC2  | =O 7TI
| AB2  | = — •. But the triangles AC1 D1 and AB2 C2  

are similar, hence

]  ̂ . 1 AD\ 1 \ r  n  | —
| AC2  I I AB 2  I ’ 1 1 bm •

Note that if the lengths of the sides of the triangle
are multiplied by ------, then these lengths will turn outc
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to be numerically equal to the quantities am 
cp, thus
c C®
^  A D iC i ^  *

Let, further, AM denote the diameter 
circumscribed ball and BK  the altitude of the

Cz Cf

ABC1 D 1 dropped from B on AC1 D 1 (Fig. 58, 
the similarity of the triangles ABK and OLu

. 9.

perpendicular to AB) we find | BK I ~ - f2 R

A D xCxB 2 Rb*m2
S.

bn, and

of the 
pyramid

c). From 
4 (OL is
. Hence,
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And, finally,

^ A D t C t B  _ S A B C i S A B D i _  C 2 C 2 _  C 4
V ~  S ABCS ABD ~  b2  'm 2  ' * AD1C1B b2 m2

Comparing two expressions for VADiCiBl we get the truth
of the statement in question.

Remark. It follows from our reasoning that the angles 
of the triangle the lengths of the sides of which are numer­
ically equal to the products of the lengths of the oppo­
site edges of the tetrahedron are equal to the angles be­
tween tne tangents to the circles circumscribed about three 
faces of the tetrahedron. The tangents are drawn through 
the vertex common for these faces and are situated in the 
plane of the appropriate face. It is readily seen, that the 
same will also be true for a degenerate tetrahedron, that 
is, for a plane quadrilateral. Hence, in particular, it is 
possible to obtain the theorem of cosines (Bretschneider’s 
theorem, see p. 171) for a plane quadrilateral.

303. Let Sx and S 2  denote the areas of the faces having 
a common edge a, S 3, and SA the areas of the two remaining 
faces. Let, further, a, m, and n denote the lengths of the 
edges forming the face Slt and a, y, and 6 the dihedral 
angles adjacent to them, V the volume of the tetrahedron. 
Then it is readily verified that the following equality 
is true:

3F 4 , 3F . . 3F * o ca cot a + m  cot y +  n cot 0 =  2SU 
Ai

or
2 S 2

a c o ta 4 -m c o ty  +  n co t6  — “gjr  -
Writing such equalities for all the faces of the tetra­

hedron, adding together the equalities corresponding to 
the faces Sx and *S2, and subtracting the two others, we 
get

a cot a  — b cot P =  — *S2—*51).

Squaring this equality, 
— -------- 1 and . \  n—

replacing cot2 a  and cot2 P by 
1, and taking advantage of thesin2 a sin2 P
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following equalities: 
a2  AS\Si b2  4S§S% 

sin2 a  9 V2  ’ sin2 P “ " 9F2 
(see Problem 11), we finally get

a2 + b * + 2 ab cot a  cot P = ( 2 Q— T),

with Q the sum of the squares of the pairwise products of 
the areas of the faces, and T the sum of the fourth powers 
of the areas of the faces.

304. The necessity of all conditions is obvious. We 
are going to prove their sufficiency.

(a) The statement of the problem is readily proved by 
making the development of the tetrahedron (to this end, 
the surface of the tetrahedron should be cut along three 
edges emanating from one vertex).

(b) Make the development of the tetrahedron ABCD 
following Fig. 59, a in the supposition that the sums of

DZ

the plane angles at the vertices B and C are equal to 180°. 
The points Dlt Z)2, and D s correspond to the vertex D . 
Two cases are possible:

(1) | AD | =  | BC  |. In this case | D SA | +  | D 2A \ =  
2 | BC  | =  | D%D2  I, that is, the triangle D 2 AD 9  

degenerates, the point A must coincide with the point K 
which is the midpoint of D 2 D 3.
i / a  1 5 - 0 4 4 9
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(2) \ A B \ = \ C D \  (or | AC  | =  | BD |). In this 
case | KB \ — \ AB |, the point A being found on the 
middle perpendicular to the side D 2 D Z. If D XD 2 D Z is 
an acute-angled triangle, then | AB  | <  | KB  | for points 
A situated inside the triangle KBC , and | AB | >  | KB \ 
for the points situated outside the triangle KBC .

And if the triangle D 1DtD z is obtuse-angled (an obtuse 
angle being either at the vertex D z or at the vertex Z?3), 
then at one of the two vertices of the tetrahedron (either 
B  or C) one plane angle will be greater than the sum of 
two other angles.

(c) Let \ A B \  =  \ C D \ ,  \ AC \ — \ DB  |, and the 
sum of the angles at the vertex D is equal to 180°. We 
have: the triangle ACD is congruent to the triangle AB D r

consequently, ADB  =  D AC .

Thus ADB  +  ADC  +  CDB =  'DAC +  ADC  +

CDB =  180°. Hence, it follows that CDB — ACD 
smdAACD  =  A CDB, \ AD  | =  | CB |.

(d) Cut the tetrahedron along the edges, and super­
impose the four triangles thus obtained one over another 
so as to bring to coincidence their equal angles. In 
Fig. 59, 6, identical letters correspond to one and the 
same vertex of the tetrahedron, and identical subscripts 
to one and the same face. Identical letters corresponding 
to one point show that at this point the corresponding 
vertices of the appropriate triangles coincide. Conse­
quently,
I CzA 3  \ =  \ C A U  I B 2 D 2  | =  | B XD X |
and this means that ACZ is parallel to B J ) X which is 
impossible.

(e) Project the tetrahedron ABCD on the plane par­
allel to the edges AB  and CD. Then it is possible to 
prove that the projections of the triangles ABC  and ABD  
will be equivalent. Exactly in the same manner, the 
projections of the triangles ACD and BCD will also be 
equivalent. And this means that the parallelogram with 
diagonals AB and CD will be the projection of ABCD . 
Hence follow the equalities | AC \ =■ | BD |, | AD \ =
J BC  |. The equality | AB \ — \ CD \ is proved exactly 
in the same way.
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(f) Let 0 1 denote the point of tangency of the inscribed 
sphere with the face ABC , and 0 2  with the face BCD . 
The hypothesis implies that 0 1 and 0 2  are the centres 
of the circles circumscribed about ABC  and BCD. Be­
sides, the triangle BC0 1 is congruent to the triangle BC0 2  

This implies that

/ \  * / \  i / \  / x
B A C z= i~  BOX=z±-  B 0 2 C = B D C .

2 2

Reasoning in the same way, we shall obtain that all 
the plane angles adjacent to the vertex D are equal to 
the corresponding angles of the triangle ABC , that is, 
their sum is equal to 180°. The same may be asserted 
about the remaining vertices of the tetrahedron ABCD . 
Further, take advantage of Item (a).

(g) Complete the given tetrahedron to get a parallele­
piped in a usual way, that is, by passing through each 
edge of the tetrahedron a plane parallel to the opposite 
edge. Then the necessary and sufficient condition of the 
equality of the faces of the tetrahedron will be expressed 
by the condition that the obtained parallelepiped be 
rectangular. And from the fact that the edges of this 
parallelepiped are equal and parallel to the corresponding 
line segments joining the midpoints of opposite edges 
of the tetrahedron will follow our statement.

(h) If 0  is the centre of the sphere circumscribed about 
the tetrahedron ABCD , then the hypothesis w ill imply 
that the triangle AOB is congruent to the triangle COD, 
since both triangles are isosceles with equal lateral sides, 
equal medians emanating from the vertex 0  ( 0  coincides 
with the midpoint of the line segment joining the mid­
points of AB  and CD). Consequently, | AB \ — \ CD \. 
The equality of other pairs of opposite edges is proved 
exactly in the same manner.

(i) From the fact that the distances from the centres 
of gravity to all the faces are equal follows the equality 
of the altitudes of the tetrahedron and then also the 
equality of its faces (see Item (e)).

305. Let a, b, c, and d denote vectors perpendicular 
to the faces of the tetrahedron, directed outside and having 
the length numerically equal to the area of the corre­
sponding face, and let ea , e b, ec, and denote the unit
15*
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vectors having the same directions as a, b, c, and d. 
Let, further, s denote the sum of the cosines of the dihedral 
angles, and k =  ea +  e6 +  ec +  &d.

It is obvious that k2  — 4 — 2s. Thus, indeed, s ^  2 
and s =  2 if and only if k =  ea +  e& +  ©c +  ®d =  0. 
But since a +  b +  c +  d =  0 (see Problem 214), we 
obtain that for s =  2 the lengths of the vectors a, b, c, 
and d are equal to one another, i.e. all the faces are equiv­
alent, and from the equivalency of the faces there follows 
their congruence (see Problem 304 (e)). To complete the 
proof, it remains to show that s  >  0 or that | k  | <  2.

For conveniency, we shall regard that | a | =  1, 
| b | < l ,  | c 1, | d | < l .  Then e a =  a, | k |  =
I a  +  b +  c +  d  +  (eb — b) +  (ec — c) - f  (®d — d) | ^  
1 e6 “  b | +  | ec — c | +  ] — d  | =  3 -  (| b | +
I c | +  | d |) <  3 — | b  +  c +  d |  =  3 — | a | = * 2 .  
Equality may be the case only if all the vectors a, b, c, 
and d  are collinear; since it is not so, | k | <  2, s >■ 0.

306. Consider the tetrahedron all faces of which are 
congruent triangles whose angles are respectively equal 
to the plane angles of our trihedral angle. (Prove that 
such tetrahedron exists.) All the trihedral angles of this 
tetrahedron are equal to the given trihedral angle. The 
sum of the cosines of the dihedral angles of such tetra­
hedron is equal to 2 (see Problem 304). Consequently, 
the sum of the cosines of the dihedral angles of the given 
trihedral angle is equal to 1.

307. Constructing a parallelepiped from the given 
tetrahedron, and passing through each edge a plane par­
allel to the opposite edge, we shall get for the equifaced 
tetrahedron, as is known, a rectangular parallelepiped.

The centre of the inscribed ball coincides with the 
centre of the parallelepiped, and the centres of the exter­
nally inscribed balls are found at the vertices of the 
parallelepiped different from the vertices of the tetra­
hedron. This implies both statements of the problem.

308. Let ABCD be the given tetrahedron, D H  its 
altitude, D A X, DB lt and DC 1  the altitudes of the faces 
dropped from the vertex D on the sides BC, CA, and A B . 
Cut the surface of the tetrahedron along the edges DA,  
DB,  and DC  and make the development (Fig. 60). It is 
obvious that H  is the point of intersection of the altitudes 
of the triangle DiD 2 D s. Let F denote the point of inter­
section of the altitudes of the triangle ABC, A K  the
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altitude of this triangle, | AF  I =  hlt \ FK \ — h2. Then 
| D i #  | =  2ftlt | D 1 A 1 | =  Ai +  h2l | H A 1 | =  I h , -  

|. Hence, since h is the altitude of our tetrahedron,

h2  =  | DH  |2 =  | |2 -  | H AX |2
-  (hx +  h2 ) 2  -  (hx -  h2)* =  4AxAa.

Now, let M  denote the centre of gravity of the triangle 
ABC  (it also serves as the centre of gravity of the tri­
angle D^D^D^, 0  the centre of the circle circumscribed

about this triangle. It is known that F, M, and 0  lie 
on one and the same straight line (Euler's line), M  lying 
between F and 0 , | FM \ — 2 | MO |.

On the other hand, the triangle is homothetic
to the triangle ABC  with centre at M  and ratio of simil­
itude equal to (—2), hence, | M N \ =  2 | FM  |. Hence 
it follows that | OH | =  | FO |.

309. When solving the preceding problem, we proved 
that the centre of the sphere circumscribed about the 
tetrahedron is projected on each edge into the midpoint 
of the line segment whose end points are the foot of the 
altitude dropped on this face ana the point of intersection 
of the altitudes of this face. And since the distance from 
the centre of the sphere circumscribed about the tetra­
hedron to the face is equal to where h is the altitude

of the tetrahedron, the centre of the circumscribed sphere
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is found at a distance of h% +  a2 from the given

points, where a is the distance between the point of inter­
section of the altitudes and the centre of the circle cir­
cumscribed about the face.

310. First of all, let us note that all the triangles ABC  
are acute. Indeed, if If  is the point of intersection of the 
altitudes of the triangle ABC , 0  the centre of the given 
circle, then | Off | =  3 | OM  |, M  lying between O

and # ,  that is, If  is found inside the circle circumscribed 
about the triangle ABC , and this means that the triangle 
ABC  is acute, consequently, there is a point D such that 
ABCD is an equifaced tetrahedron. Let us develop this 
tetrahedron (Fig. 61). Obviously, ZTi, which is the point 
of intersection of the altitudes of the triangle D 1D 2 D Z, 
is the foot of the altitude dropped from D on ABC.  But 
the triangles ABC  and D XD ZD Z nave a common centre of 
gravity M  with respect to which they are homothetic 
with the ratio of similitude (—2), hence | f f±M  | =  
2 | M ff  |, M  lying between f f 1 and # ,  f f 1 is a fixed

Eoint. It remains to prove that the altitude of the tetra- 
edron ABCD is also constant. In the triangle ABC 

draw the altitude AK  and extend it to intersect the cir­
cumscribed circle at point L. It is known (and is readily 
proved) that | LK  | =  | K ff  |. Let | A ff  | =  hu
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) H K  | =  h2, the altitude of the tetrahedron is h. We 
know (see Problem 307) that h2 =  =  2 | AH  | X
| HL  | =  2 (7?2 — 9a2), where a =  | 071/ |, which was 
required to be proved.

311. Consider the cube AEFGAiEiFiGx with edge equal 
to the side of the square ABCD. On the edges A 1 E 1  and 
A iGx take the points P  and Q such that | A XP  | =  | BP  | =
I CQ |, I A XQ I -  I QD | -  | PC  | (Fig. 62, a). Con-

Fig. 62

sider the rectangle A ^ M ^ .  In view of the condition 
I A ±P  | +  | AiQ | =  | A 1 E 1  |, the point Mi  lies on the 
diagonal E±GV Consequently, if M  is the projection of M ± 
on EG, then the tetrahedron APQM  has all the faces 
equal to the triangle APQ. The square ABCD whose 
plane contains the triangle APQ is obtained from the 
square AEE±Ai  by rotating about the diagonal AFX 
through some angle a  (Fig. 62, 6). Since the plane EGAX 
is perpendicular to the diagonal AFlt BD belongs to 
this plane. But the planes AEEiA 1 9  ABCD , as well as the 
straight lines EG, EA 1 9  A ±G, and BD are tangent to the 
ball inscribed in the cube. Hence it follows that the 
angle between the planes ABCD and A ±EG has a constant 
size, it is equal to tne angle <p between the planes AEE 1 A 1
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and AiEG for which cos <p =  -^=.  But the planes A^EG

and ABCD intersect along the diagonal BD . Hence, the 
point M  lies in the plane passing through BD and making 
an angle q> with the plane ABCD , and the locus of pro­
jections of points M  w ill be represented by two line seg­
ments emanating from the midpoint of AC  at an angle <p

1 l/*2to A C so that cos <p =  ^ = ,  and having the length a JL-f

(Fig. 62, c).
312. (a) Let ABCD denote the given tetrahedron. If its 

altitudes intersect at the point # ,  then D H  is perpen* 
dicular to the plane ABC  and, hence, DH  is perpendic­
ular to BC . Exactly in the same way, A H  is perpendic­
ular to BC . Consequently, the plane DAH  is perpen­
dicular to BC , that is, the edges DA and BC are mutually 
perpendicular.

Conversely, let the opposite edges of the tetrahedron 
ABCD be pairwise perpendicular. Through DA pass 
a plane perpendicular to BC. Let us show that the alti­
tudes of the tetrahedron drawn from the vertices A and D 
lie in this plane.

Denote by K  the point of intersection of the passed 
plane and the edge BC. The altitude DD 1 of the triangle 
A D K  w ill be perpendicular to the lines A K  and BC , 
hence, it is an altitude of the tetrahedron. Thus, any two 
altitudes of the tetrahedron intersect, hence, all the four 
intersect at one point.

(b) It is easy to prove that if one altitude of the tetra­
hedron passes through the point of intersection of the 
altitudes of the appropriate face, then the opposite edges 
of the tetrahedron are pairwise perpendicular. This 
follows from the theorem on three perpendiculars. Hence, 
Items (a) and fb) are equivalent.

(c) The equality of the sums of the squares of opposite 
edges of the tetrahedron is equivalent to the condition 
of the perpendicularity of opposite edges (see Item (a)),

(d) Complete the tetrahedron to a parallelepiped, as 
usual, by passing through each of its edges a plane parallel 
to the opposite edge. Tne edges of the obtained parallele­
piped are equal to the distance between the midpoints 
of the skew edges of the tetrahedron. On the other nand, 
the condition of perpendicularity of opposite edges of
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the tetrahedron which is, according to item  (a), equiva­
lent to the condition of the orthocentricity of the given 
tetrahedron, is, in turn, equivalent to the condition 
of the equality of the edges of the obtained parallelepiped 
(the diagonals of each face are equal and parallel to two 
opposite edges of the tetrahedron, that is, each face 
must be a rhombus).

(e) From Problems 300 and 303 it follows that this 
condition is equivalent to the condition of Item (c).

(f) Let a and alt b and b1 9 c and cx be the lengths of 
three pairs of opposite edges of the tetrahedron, a  the 
angle between them. From Problem 185 it follows that 
of the three numbers aa± cos a , bbx cos a, and cc± cos a  
one is equal to the sum of two others. If cos a  0, then 
of the three numbers aalt bbl 9  and cc± one number is 
equal to the sum of two others. But this is impossible, 
since there is a triangle the lengths of the sides of which 
are numerically equal to the quantities aa±J bbu and cc± 
(see Problem 302).

313. Let ABCD denote the given tetrahedron. Com­
plete it to get a parallelepiped in a usual way. Since

Fig. 63

ABCD is an orthocentric tetrahedron, a ll the edges of the 
parallelepiped will be equal in length. Let A lB 1 be the 
diagonal of a face of the parallelepiped parallel to ABf O 
the centre of the^ball^circumscribed about ABCD , H  
the point of intersection of the altitudes, M  the centre 
of gravity (Fig. 63). Then the triangles ABH  and AxBxO 
are symmetric with respect to the point M.  This follows 
from the fact that ABB 1 A 1 is a parallelogram and, be-

A C

1 6 - 0 4 4 9
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sides, A xO is perpendicular to the plane ACD (the points
0  and A i  are equidistant from the points A ,  C ,  and Z>), 
and, hence, parallel to BH. Exactly in the same manner, 
OB1 is parallel to AH.

314. Let us introduce the notation used in the pre­
ceding problem. Let K  and L be the midpoints of AB  
and AiBv  Then KOLH is a parallelogram. Consequently,

> OH | 2 =  2 | OK | 2+ 2  | OL | 2— | KL  | 2

=  4R 2 ---- - - (  | AB |2+ |  CD Is) — — 3P.

315. If ABCD is an orthocentric tetrahedron, then 
(see Problem 312 (d))

\ A B  I2 +  | CD |2 =  | AD  |2 +  | BC |a, 

whence
1 AB  |2 +  \ A C  |2 — | BC |2 =  | AD  |2 +  | AC |2 
-  I CD I2,

that is, the angles BAC  and DAC  are both acute or ob­
tuse.

316. The section of an orthocentric tetrahedron by 
any plane parallel to opposite edges and passing at an 
ecpal distance from these edges is a rectangle whose 
diagonals are equal to the distance between the midpoints 
of opposite edges of the tetrahedron (all these distances 
are equal in length, see Problem 312 (d)).

Hence it follows that the midpoints of all the edges 
of an orthocentric tetrahedron lie on the surface of the 
sphere whose centre coincides with the centre of gravity 
of the given tetrahedron and the diameter is equal to 
the distance between the opposite edges of the tetrahed­
ron. Hence, all the four 9-point circles lie on the surface 
of this sphere.

317. Let 0 , M , and H  respectively denote the centre 
of the circumscribed ball, centre of gravity and ortho- 
centro (the point of intersection of altitudes) of the ortho-
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centric tetrahedron, M  the midpoint of the line segment 
OH (see Problem 313). The centres of gravity of the faces 
of the tetrahedron serve as the vertices of the tetrahedron, 
homothetic to the given one, with the centre of similitude 
at the point M  and the ratio of similitude equal to —(1/3). 
In this homothetic transformation the point 0  w ill move 
into the point Ox situated on the line segment MH  so 
that | M 0 1  | =  1/3 | OM |, 0 ± w ill be the centre of the 
sphere passing through the centres of gravity of the faces.

On the other hand, the points dividing the line seg­
ments of the altitudes of the tetrahedron from the vertices 
to the orthocentre in the ratio 2 ! 1 serve as the vertices

of the tetrahedron homothetic to the given with the 
centre of similitude at H  and the ratio of similitude 
equal to 1/3. In this homothetic transformation the point 
0 , as is readily seen, w ill go to the same point Ox. Thus, 
eight of twelve points lie on the surface of the sphere 
with centre at 0 ± and radius equal to one-third the radius 
of the sphere circumscribed anout the tetrahedron.

Prove that the points of intersection of altitudes of 
each face lie on the surface of the same sphere. Let 0 ', 
H \  and M' denote, respectively, the centre of the cir­
cumscribed circle, the point of intersection of altitudes, 
and the centre of gravity of some face. O' and H ' are the 
respective projections of 0  and H  on the plane of this 
face, and the point M' divides the line segment O'H' 
in the ratio 1 : 2 as measured from the point O' (a well- 
known fact from plane geometry). Now, we easily make 
sure (see Fig. 64) that the projection of Oi on the plane of 
this face (point 0 [) coincides with the midpoint of the 
line segment M 'H \  that is, Ox is equidistant from M' 
and H ' which was required to be proved.
16*
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318. The centres of gravity of the faces of the ortho­
centric tetrahedron lie on the surface of the sphere homo- 
thetic to the sphere circumscribed about the tetrahedron 
with the centre of similitude at the point M  and the ratio 
of similitude equal to 1/3 (see the solution of Problem 
317). Hence follows the statement of the problem.

319. The feet of the altitudes of the orthocentric 
tetrahedron lie on the surface of the sphere homothetic 
to the sphere circumscribed about the tetrahedron with 
the centre of similitude at the point G and ratio of simil­
itude equal to —(1/3) (see the solution of Problem 317). 
Hence follows the statement of the problem.

320. Suppose the contrary. Let the planes containing 
the arcs intersect pairwise on the surface of the ball at 
points A and A u B and Bx, C and Cx (Fig. 65). Since each

Bi

arc measures more than 180°, it  must contain at least 
one of any two opposite points of the circle on which 
it is situated. Let us enumerate these arcs and, respec­
tively, the planes they lie in: / ,  / / ,  I I I . A and A x are the 
points of intersection of planes I  and / / ,  B ana Bx the 
points of intersection of planes I I  and I I I , C and Cx 
the points of intersection of planes I I I  and I .  Each o! 
the points A , 4 , ,  B, Bu C, Cx must belong to one arc. 
Let Ai  and Cx belong to arc / ,  Bx to arc II .  Then B and C 
must Delong to arc I I I , A to arc II .  Denote by a , |3, y  
the plane angles of the trihedral angles, as is shown in 
the figure, 0  the centre' of the sphere. Since arc I  does not 
contain the points A and C, the inequality 360° — P >  
300° must be fulfilled.

Similarly, since arc I I  does not contain the points B 
and A u  it must be 180° +  a >  300° and, finally, for
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arc I I I  we will have 360° — y  >  300°. Thus, |3 <  60°, 
a  >  120°, y  <  60°, hence, a  >  6 +  v, which is impos­
sible.

321. Let A and B denote two points on the surface of 
the sphere, C a point on the smaller arc of the great circle 
passing through A and B.

Prove that the shortest path from A to B must pass 
through C. Consider two circles a  and P on the surface 
of the sphere passing through C with centres on the radii 
OA and OB (O the centre of the sphere). Let the line join­
ing A to B does not pass through C and intersect the circle 
a  at point M  and the circle p at N.

Rotating the circle a  together with the part of the 
line enclosed inside it so that M  coincides with C and the 
circle |3 so as to bring N  in coincidence with C, we get 
a line joining A and B whose length, obviously, is less 
than the length of the line under consideration.

322. The circumscribed sphere may not exist. It 
can be exemplified by the polyhedron constructed in the 
following way. Take a cube and on its faces as on bases 
construct outwards regular quadrangular pyramids with 
dihedral angles at the base equal to 45°. As a result, we 
get a dodecahedron (the edges of the cube do not serve as 
the edges of this polyhedron), having fourteen vertices, 
eight of which are the vertices of the cube, and six are 
the vertices of the constructed pyramids not coinciding 
with the vertices of the cube.

It is easy to see that all the edges of this polyhedron 
are equal in length and equidistant from the centre of 
the cube, while the vertices cannot belong to one sphere.

323. Let us note, first of all, that the area of the spher­
ical lune formed by the intersection of the surface of the 
sphere with the faces of the dihedral angle of size a , whose 
edge passes through the centre of the sphere, is equal 
to 2a/?2. This follows from the fact that this area is 
proportional to the magnitude of a , and for a  — at it is 
equal to 2nR%.

To each pair of planes forming the two faces of the 
given trihedral there correspond two lunes on the surface 
of the sphere. Adding their areas, we get the surface 
of the sphere enlarged by 45a , where 5 a is the area 
of the desired triangle. Thus,
5a = / ?2(a+  p +  Y -n ) .
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The quantity a + P  +  y — j i i s  called the spheric excess 
of the spheric triangle.

324. Consider the sphere with centre inside the poly­
hedron and project the edges of. the polyhedron from the 
centre of the sphere on its sphere.

The surface of the sphere will be broken into poly­
gons. If nk is the number of sides of the feth polygon, 
A k the sum of its angles, Sh the area, then
s k =  R2 [Ak — Ji (nk — 2)].

Adding together these equalities for all if , we get 
4ji/?2 =  fl2 (2jiN  — 2nk +  2nM).

Hence,
N  — K  +  M  =  2.

325. Let a  denote the central angle corresponding to

radii of the sphere of the sphere
to the centre of the circle and a point on the circle).

Consider the spheric triangle corresponding to the 
trihedral angle with vertex at the centre of the sphere one 
edge of which (OL) passes through the centre of the circle, 
another (0 4 ), through the point on the circle, and a third 
(OB) is arranged so that the plane OAB touches the circle, 
the dihedral angle at the edge OL being equal to <p,

LOA =  a.
Applying the second theorem of cosines (see Prob­

lem 166), find the dihedral angle at the edge OB, it is 
equal to arccos (cos a  sin <p). Any circumscribed polygon 
(our polygon can be regarded as circumscribed, since 
otherwise its area could be reduced) can be divided into 
triangles of the described type. Adding their areas, we 
shall see that the area of the polygon reaches the smallest 
value together with the sum arccos (cos a  sin q>x) +  
arccos (cos a  sin <p2) +  . . .  +  arccos (cos a  sin cp^),
where q>x, . . q>w are the corresponding dihedral angles, 
<Pi +  Ta +  * • • +  <Pn — 2ji. Then we can take advan­
tage of the fact that the function arccos (k sin <p) is a 
concave (or convex downward) function for 0 <  k <  1. 
Hence it follows that the minimum of our sum is reached 
for <Pi =  — . . .  =

the spheric radius between the
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326. Denote, as in Problem 324, by N  the number of 
faces, by K  the number of edges, and by M  the number 
of vertices of our polyhedron,
N  — K  +  M  =  2. (l)

Since from each vertex there emanate at least three edges
and each edge is counted twice, M  <  — K.  Substituting 

^  3
M  into (1), we get

N ----- U > 2 ,

whence 2K 6 N — 12, - ^ - < 6 .  The latter means that

there is a face having less than 6 sides. Indeed, let us 
numher the faces and denote by the
number of sides in each face. Then

n \ n 2  nN __
N  ~~ N  <C

327. If each face has more than three sides and from 
each vertex there emanate more than three edges, then 
(the same notation as in Problem 324)
K  >  2Af, K  >  2N

and N  — K  +  M  <  0, which is impossible.
328. If all the faces are triangles, then the number 

of edges is multiple of 3. If there is at least one face 
with the number of sides exceeding three, then the num­
ber of edges is not less than eight. An n-gon pyramid has 
2n edges {n >  3); (2n +  3) edges (n ^  3) w ill be found 
in the polyhedron which will be obtained if an n-gon 
pyramid is cut by a triangular plane passing sufficiently 
close to one of the vertices of the base.

329. If the given polyhedron has n faces, then each 
face can have from three to (n — 1) sides. Hence it follows 
that there are two faces with the same number of sides.

330. Consider the so-called d-neighbourhood of our 
polyhedron, that is, the set of points each of which is 
found at a distance not greater than d from at least one 
point of the polyhedron. The surface of the obtained solid



240 Problems in Solid Geometry

consists of plane parts equal to the corresponding faces 
of the polyhedron, cylindrical parts corresponding to the 
edges of the polyhedron (here, if is the length of some 
edge and a* is the dihedral angle at this edge, then the 
surface area of the part of the corresponding cylinder is  
equal to (ji a*) ltd), and spherical parts corresponding 
to the vertices of the polyhedron the total area of which 
is equal to the surface area of the sphere of radius d. 
On the other hand, the surface area of the ^-neighbourhood 
of the polyhedron is less than the surface area oi the sphere 
of radius d +  1, that is,

S  +  d  2  (n—a t )  l i  +  t n d 2 <4n(d +  l)».
a j  . _  2j iAnd since a * ^  —  t we get

which was required to be proved.
331. In Fig. 66, 0  denotes the centre of the sphere, 

A and B are the points of intersection of the edge of the

0

Fig. 66

dihedral angle with the surface of the sphere, D and C

are the midpoints of the arcs ADB  and ACB,  respectively, 
the plane ADB  passes through 0 , and E is the vertex 
of the spherical segment cut off by the plane ACB . The 
area of the curvilinear triangle ADC  amounts to half the
desired area. On the other hand ^assuming

$ a d c  =  $ a e c  ~~ $ a e d * W )
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Find S AEC‘ If <P is tbe angle between the planes AEO 

and OEC, | EK \ = / i ,  then obviously, S a e c  =  J^2jiJ?/i =

h and <p are readily found:

h =  | EK  | = R — | OK | =  R — a sin a,

AL I Y TP—a2sin <p=sin AKL =  

<p=arcsin

. AK
Y R2-a2

Y TP—a2  sin2 a

Y TP—a2  sin2 a
Thus,

Y  R2 — a2
S a e c = R  (R — a  sin a) arcsin — =  .

y R2 —a2  sin2 a

Now find SAED. As is known (see Problem 323),

s akd -  R* (q> +  ^  +  y — « ) .

(2)

where <p, t|), and y are the dihedral angles of the trihedral 
angle with vertex at 0  and edges OE, OA, and OD. The 
angle q> is already found.

To determine the angle ip (the angle at the edge OA), 
take advantage of the first theorem of eosines (Problem 
166) applied to the trihedral angle with vertex A for 
which
/ \

KAL n
2

/ \
— <p, sin KAO a sin a  

~ R ~
/ \

sin LAO — a
7T ‘

Consequently,

Y  R 2 —a2  , / \  a* sin* a , / " .  a2
lh V R * - a *  sin2 a  V  R 2  V 1  R 2cos tp = -1____________________________ — -

a sin a  a
~ iT ' ~ r

Y R2— a2 
Y R 2 —a2 sin2 a

sin a.
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It is obvious that y  =  ji/2. Consequently,
r  i/*  7?2 — a 2

Saed = R 2  arcsin /
L y  R2 — a2 sin2 a

. v y  R2— a2 sin a+  arccos —
K /?2— a2 sin2 a

(3)

Substituting (2) and (3) into (1) and simplifying, we get 
the answer.

A nsweri

2 R2  arccos R cos a  
V  R 2 — a2 sin2 a

— 2 sin a  arccos fl cos a  ^
y  a2 sin2 a

332. Consider the regular octahedron with edge 2R. 
The ball touching all of its edges has the radius R . The 
surface of the ball is separated by the surface of the octa­
hedron into eight spherical segments and six curvilinear 
quadrilaterals equal to the smaller of the two desired.

Amu,,,:  ~  ( 4 ] / - § - - 3 )  .

“ *•  ( “ / T - 2 ) -

333. Twelve lunes with total area na and4
six  curvilinear quadrilaterals whose total area is
n a 2 ( y i— l )

2
334. Suppose that a ball can be inscribed in the given 

polyhedron. Join the point of tangency of the ball with 
some face to all the vertices of this face. Each face will 
be separated into triangles. Triangles situated in neigh­
bouring faces and having a common odge are congruent. 
Consequently* to each “black” triangle there corresponds 
a congruent “white” triangle. The sum of the angles of the 
triangle at each point of tangency is equal to 2n. The



A nsw ers, H ints, Solutions 243

sum of these angles over all faces is equal to 2jin, where 
n is the number of faces. Of this sum more than half 
is the share of “black” triangles (by the hypothesis), 
and the sum of the corresponding angles for “white” 
triangles, as it was proved, is not less. There is a contra­
diction.

335. Prove that there can be not more than six balls. 
Suppose that there are seven balls. Join the centres of 
all the seven balls to the centre of the given ball and 
denote by 0 lr 0 a, . . ., 0 7 the points of intersection of 
these line segments with the surface of the given ball. 
For each point Ot consider on the sphere the set of points 
for which the distance (over the surface of the sphere) to 
the point 0 ( is not greater than the distance to any other 
point Oh, k =£ i. The sphere will be separated into seven 
spherical polygons. Each polygon is the intersection 
of six hemispheres containing the point Ot whose boundary 
is the great circle along which the plane passing through 
the midpoint and perpendicular to it cuts the sphere.

Each of the formed polygons contains a circle whose 
spherical radius is seen from the centre of the original 
sphere at an angle a , sin a  =  0.7.

Denote by K  and N t respectively, the number of sides 
and vertices of the separation thus obtained. (Each side 
is a common side of two adjacent polygons and is counted 
only once. The same is valid for the vertices.) It is easily 
seen that for such separation Euler’s formula holds true 
(see Problem 324). In our case this w ill yield K =  N  +  5.o
On the other hand, K  yAT, since from each vertex
there emanate at least three sides, and each side is 
counted twice.

Now, it is easy to obtain that K  <  15, N  <  10. In 
Problem 325, we have proved that among all spherical 
n-gons containing the given circle a regular n-gon has 
the smallest area. Besides, it is possible to show that 
the sum of areas of regular n- and (n +  2)-gons is greater 
than the doubled area of a regular n-gon. (The polygons 
circumscribed about one circle are considered.) It is also 
obvious that the area of a regular circumscribed n^gon 
is decreased with an increase in n. Hence it follows that 
the sum of areas of the seven obtained polygons cannot 
be less than the sum of areas of five regular quadrilaterals
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and two regular pentagons circumscribed about the circle 
with the spherical radius to which there corresponds the 
central angle a= arcsin  0.7. The area of the correspond­
ing regular pentagon will be

s5  =  9 ^lOarccos | c o s a s i n  — 3jiJ , 

the area of the regular quadrilateral 

s4 =  9 ^8 arccos  ̂ cos a  j — 2n J .

We can readily prove that 2s6+  5s* >  36ji. Thus, seven 
balls with radius 7 cannot simultaneously touch the 
ball with radius 3 without intersecting one another. 
At the same time we can easily show that it is possible 
in the case of six balls.

336. Consider the cube ABCDA 1 B 1 C1 D 1 . On the edges 
AiB  and A XD take points K  and L such that \ A XK \ =  
| CM  |, | AiL  | =  | CN |. Let P  and Q denote the 
points of intersection of the lines A K  and BAU AL  and 
D A lt respectively.

As is easily seen, the sides of the triangle A XPQ are 
equal to the corresponding line segments of the diagonal 
BD. And since the triangle BAXD is regular, our statement 
has been proved.

337. If the point P  did not lie in the plane of the 
triangle ABC , the statement of the problem would be 
obvious, since in that case the points P , A 2, and C2  

would belong to the section of the surface of the sphere 
circumscribed about the tetrahedron ABCP  by the plane 
passing through P  and I. The statement of our problem 
can now be obtained with the aid of the passage to the 
limit.

338. Let ABCDEF denote the plane hexagon circum­
scribed about the circle. Take an arbitrary space hexagon 
A 1 B 1 C1 D 1 E 1 F1 (Fig. 67), different from ABCDEF , whose 
projection on our plane is the hexagon ABCDEF and 
whose corresponding sides pass through the points of 
contact of the hexagon ABCDEF and the circle. To prove 
the existence of such hexagon AiSiC1Z>1̂ 1F1, it suffices 
to take one vertex, say A lf arbitrarily on the perpendic­
ular to the plane erected at the point A , then the remain-
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ing vertices will be determined identically. Indeed, let 
a, b, c, d, e, and /  be the lengths of the tangents to the 
circle drawn through the respective points A , B , C, D , 
£ , F, and h the distance from 4  to the plane. Then B i 
lies on the other side of the plane as compared with A

Ai

Fig. 67

at a distance of —, Cx on the same side as A x at a distance 
a

of from the plane, and so on. Finally, we
a b a

find that Fx lies on the other side of the plane as compared
with A ± at a distance of ^  and, hence, A ± and F1  lie on

&
the straight line passing through the point of tangency 
of AF  with the circle.

Any two opposite sides of the hexagon A 1 B 1 C1D 1 E 1 F1  

lie in one ana the same plane. This follows from the 
fact that all the angles formed by the sides of the hexa­
gon with the given plane are congruent. Consequently, 
any two diagonals connecting the opposite vertices of 
the hexagon A 1 BiC1 D 1 E 1 F1 intersect, and, hence, all 
the three diagonals of this hexagon (they do not lie in 
one plane) intersect at one point. Since the hexagon 
ABCDEF is the projection of the hexagon A1S 1C1Z?1̂ 1F1, 
the theorem has been proved.

339. The plane configuration indicated in the problem 
can be regarded as three-dimensional projection: a tri-
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hedral angle cut by two planes, for which our statement 
is obvious.

340. This problem represents one of the possible 
three-dimensional analogues of Desargues1 theorem (see 
Problem 339). For its solution, it is convenient to go out 
to a four-dimensional space.

Let us first consider some properties of this space.
The simplest figures of the four-dimensional space are: 

a point, a straight line, a  plane, and a three-dimensional 
variety which will be called the hyperplane. The first 
three figures are our old friends from the three-dimen­
sional space. Of course, some statements concerning 
these figures must be refined. For instance, the following 
axiom of the three-dimensional space: if two distinct 
planes have a common point, then they intersect along 
a straight line, must be replaced by the axiom: if two 
distinct planes belonging to one hyperplane have a com­
mon point, then they intersect along a straight line. The 
introduction of a new geometric image, a hyperplane, 
prompts the necessity to introduce a group of relevant 
axioms, just as the passage from plane geometry to solid 
geometry requires a group of new axioms (refresh them, 
please) expressing the basic properties of planes in space. 
This group consists of the following three axioms:

1. Whatever a hyperplane is, there are points belong­
ing to it and points not belonging to it.

2. If two distinct hyperplanes Tiave a common point, 
then they intersect over a plane, that is, there is a plane 
belonging to each of the hyperplanes.

3. If a straight line not belonging to a plane has a 
common point with this plane, then there is a unique 
hyperplane containing this line and this plane.

From these axioms it follows directly that four points 
not belonging to one plane determine a hyperplane; exact­
ly in the same way, three straight lines not Belonging to 
one plane, but having a common point, or two distinct 
planes having a common straight line determine a hyper­
plane. We are not going to prove these statements, try 
to do it independently.

For our further reasoning we need the following fact 
existing in the four-dimensional space: three distinct 
hyperplanes having a common point also have a common 
straight line. Indeed, by Axiom 2, any two of three hyper­
planes have a common plane. Let us take two planes
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over which one of the three hyperplanes intersects with 
two others. These two planes belonging to one hyper­
plane have a common point and, hence, intersect along 
a straight line or coincide.

Let us now pass to the proof of our statement. If the 
three planes under consideration were arranged in a four­
dimensional space, then the statement would be obvious. 
Indeed, every trihedral angle determines a hyperplane. 
Two hyperplanes intersect over a plane. This plane does 
not belong to a third hyperplane (by the hypothesis, 
these hyperplanes intersect one of the given planes along 
three straight lines not passing through one point) and, 
consequently, intersects with them along a straight line. 
Any three corresponding faces of trihedral angles lie 
in one hyperplane determined by two planes on whicb 
the corresponding edges lie, and therefore each triple 
of the corresponding faces has a common point. These 
three points belong to the three hyperplanes determined 
by the trihedral angles, and, as it  was proved, lie on one 
straight line. Now, to complete the proof, it is sufficient 
to “see” in the given hypothesis the projection of the cor- 

dimensional configuration of planes and
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