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Preface to the English Edition

This is a translation from the revised
edition of the Russian book which was
issued in 1982. It is-actually the first in
a two-volume work on solving problems in
geometry, the second volume “Problems in
Solid Geometry” having been published in
English first by Mir Publishers in 1986.

Both volumes are designed for school-
children and teachers.

This volume contains over 600 problems
in plane geometry and consists of two
parts. The first part contains rather simple
problems to be solved in classes and at
home. The second part also contains hints
and detailed solutions. Over 200 new prob-
lems have been added to the 1982 edition,
the simpler problems in the first addition
having been eliminated, and a number of
new sections (circles and tangents, poly-
gons, combinations of figures, etc.) having
been introduced. The general structure of
the book has been changed somewhat to
accord with the new, more detailed, clas-
sification of the problems. As a result, all
the problems in this volume have been
rearranged.

Although the problems in this collection
vary in “age” (some of them can be found
in old books and journals, others were
offered at mathematical olympiads or pub-
lished in the journal “Quant” (Moscow)),
I still hope that some of the problems in
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this collection will be of interest to expe-
rienced geometers.

Almost every geometrical problem is non-
standard (as compared with routine exer-
cises on solving equations, inequalities,
etc.): one has to think of what additional
constructions must be made, or which for-
mulas and theorems must be used. There-
fore, this collection cannot be regarded as
a problem-book in geometry; it is rather a
collection of geometrical puzzles aimed at
demonstrating the elegance of elementary
geometrical techniques of proof and methods
of computation (without using vector alge-
bra and with a minimal use of the method
of coordinates, geometrical transforma-
tions, though a somewhat wider use of trig-
onometry).

In conclusion, I should like to thank
A.Z. Bershtein who assisted me in prepar-
ing the first section of the book for print.
I am also grateful to A.A. Yagubiants who
let me know several elegant geometrical
facts.

The Author



Section 1

Fundamental Geometrical Facts
and Theorems.
Computational Problems

1. Prove that the medians in a triangle
intersect at one point (the median point)
and are divided by this point in the ratio
1:2.

2. Prove that the medians separate the
triangle into six equivalent parts.

3. Prove that the diameter of the circle
circumscribed about a triangle is equal
to the ratio of its side to the sine of the
opposite angle.

4. Let the vertex of an angle be located
outside a circle, and let the sides of the
angle intersect the circle. Prove that the
angle is measured by the half-difference of
the arcs inside the angle which are cut out
by its sides on the circle.

5. Let the vertex of an angle lie inside
a circle. Prove that the angle is measured
by the half-sum of the arcs one of which
is enclosed between its sides and the other
between their extensions.

6. Lot AB denote a chord of a circle, and
l the tangent to the circle at the point 4.
Prove that either of the two angles between
AB and ! is measured by the half-arc of the
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circle enclosed inside the angle under con-
sideration.

7. Through the point M located at a dis-
tance a from the centre of a circle of radius R
(2 > R), a secant is drawn intersecting the
circle at points A and B. Prove that the
product | MA |-| MB ] is constant for all
the secants and equals a® — R? (which is
the squared length of the tangent).

8. A chord AB is drawn through the point
M situated at a distance a from the centre
of a circle of radius R (¢ << R). Prove that
| AM |-| MB | is constant for all the chords
and equals R? — a®

9. Let AM be an angle bisector in the
triangle ABC. Prove that |[BM |: |CM| =
|AB| |AC|. The same is true for
the bisector of the exterior angle of the
triangle. (In this case the point M lies on the
extension of the side BC.)

10. Prove that the sum of the squares of
the lengths of the diagonals of a parallelo-
gram is equal to the sum of the squares of
the lengths of its sides.

11. Given the sides of a triangle (a, b,
and ¢). Prove that the median m, drawn to
the side a can be computed by the formula

m, =% V2024 22 —a?.
12. Given two triangles having one ver-

tex A in common, the other vertices being
situated on two straight lines passing
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through 4. Prove that the ratio of the areas
of these triangles is equal to the ratio of
the products of the two sides of each triangle
emanating from the vertex 4.

13. Prove that the area of the circum-
scribed polygon is equal to rp, where r
is the radius of the inscribed circle and p
its half-perimeter (in particular, this for-
mula holds true for a triangle).

14. Prove that the area of a quadrilateral
is equal to half the product of its diagonals-
and the sine of the angle between them. -

15. Prove the validity of the following
formulas for the area of a triangle:

§=28nBsC g 2Resin Asin BsinC,
sin 4

where 4, B, C are its angles, a is the side
lying opposite the angle 4, and R is the
radius of the circumscribed circle.

16. Prove that the radius of the circle
inscribed in a right triangle can be com-
puted by the formula r = i*% ,
where a and b are the legs and ¢ is the
hypotenuse.

17. Prove that if a and b are two sides of
a triangle, o the angle between them, and !
the bisector of this angle, then

a
- 2ab cos 5
— ad
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18. Prove that the distances from the
vertex A of the triangle ABC to the points
of tangency of the inscribed circle with the
sides AB and AC are equal to p — a (each),
where p is the half-perimeter of the triangle
ABC, a = | BC|.

19. Prove that if in a convex quadrilat-
eral ABCD |AB |+ |CD |=|AD | +
| BC |, then there is a circle touching all
of its sides.

20. (a) Prove that the altitudes in a
triangle ‘are concurrent (that is intersect at
one point). (b) Prove that the distance
from any vertex of a triangle to the point
of intersection of the altitudes is twice
the distance from the centre of the cir-
cumscribed circle to the opposite side.

® % %

21. Points A and B are taken on one side
of a right angle with vertex O and |04 | =
a, | OB | = b. Find the radius of the circle
passing through the points A and B and
touching the other side of the angle.

22. The hypotenuse of a right triangle is
‘equal to ¢, one of the acute angles being
30°. Find the radius of the circle with
centre at the vertex of the angle of 30°
which separates the triangle into two equiv-
alent parts.

23. The legs of a right triangle are a and
b. Find the distance from the vertex of the
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right angle to the nearest point of the
inscribed circle.

24, One of the medians of a right triangle
is equal to m and divides the right angle
in the ratio 1:2. Find the area of the
triangle.

25. Given in a triangle ABC are three
gides: |BC |=a, |CA| =0, |AB | =c.
Find the ratio in which the point of inter-
section of the angle bisectors divides the
bisector of the angle B.

26. Prove that the sum of the distances
from any point of the base of an isosceles
triangle to its sides is equal to the altitude
drawn to either of the sides.

27. Prove that the sum of distances from
any point inside an equilateral triangle
to its sides is equal to the altitude of this
triangle.

28. In an isosceles triangle ABC, taken
on the base AC is a point M such that
|AM | = a, | MC | = b. Circles are in-
scribed in the triangles ABM and CBM.
Find the distance between the points at
which these circles touch the side BM.

29. Find the area of the quadrilateral
bounded by the angle bisectors of a paral-
lelogram with sides @ and b and angle a.

30. A circle is inscribed in a rhombus
with altitude 2 and acute angle a. Find
the radius of the greatest of two possible
circles each of which touches the given
circle and two sides of the rhombus.
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31. Determine the acute angle of the
rhombus whose side is the geometric mean
of its diagonals.

32. The diagonals of a convex quadrilat-
eral are equal to a and b, the line segments
joining the midpoints of the opposite sides
are congruent. Find the area of the quadri-
lateral.

33. The side AD of the rectangle ABCD
is three times the side AB; points M and
N divide AD into three equal parts. Find
LAMB 4+ LANB + £LADB.

34. Two circles intersect at points A
and B. Chords AC and AD touching the
given circles are drawn through the point
A, Prove that |AC |*.|BD | = | AD |?.
| BC |.

35. Prove that the bisector of the right
angle in a right triangle bisects the angle
between the median and the altitude drawn
to the hypotenuse.

36. On a circle of radius r, three points
are chosen so that the circle is divided
into three arcs in the ratio 3 : 4 : 5. At the
division points, tangents are drawn to the
circle. Find the area of the triangle formed
by the tangents.

37. An equilateral trapezoid is circum-
scribed about a circle, the lateral side of
the trapezoid is !, one of its bases is equal
to a. Find the area of the trapezoid.

38. Two straight lines parallel to the
bases of a trapezoid divide each lateral
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side into three equal parts. The entire
trapezoid is separated by the lines into
three parts. Find the area of the middle
part if the areas of the upper and lower
parts are S, and S,, respectively.

39. In the trapezoid ABCD | AB | = a,
|BC | =1b (a5 b). The bisector of the
angle 4 intersects either the base BC or the
lateral side CD. Find out which of them?

40. Find the length of the line segment
parallel to the bases of a trapezoid and
passing through the point of intersection
of its diagonals if the bases of the trapezoid
are a and b.

41. In an equilateral trapezoid circum-
scribed about a circle, the ratio of the
parallel sides is k. Find the angle at the
base.

42. In a trapezoid ABCD, the base AB
is equal to a, and the base CD to b. Find
the area of the trapezoid if the diagonals
of the trapezoid are known to be the bisec-
tors of the angles DAB and ABC.

43. In an equilateral trapezoid, the mid-
line is equal to a, and the diagonals are
mutually perpendicular. Find the area of
the trapezoid.

44. The area of an equilateral trapezoid
circumscribed about a circle is equal to S,
and the altitude of the trapezoid is half
its lateral side. Determine the radius of
the circle inscribed in the trapezoid.

45. The areas of the triangles formed by
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the segments of the diagonals of a trapezoid
and its bases are equal to S, and S,. Find
the area of the trapezoid.

46. In a triangle ABC, the angle ABC is
a. Find the angle AOC, where O is the
centre of the inscribed circle.

47. The bisector of the right angle is
drawn in a right triangle. Find the distance
between the points of intersection of the
altitudes of the triangles thus obtained,
if the legs of the given triangle are a and b.

48. A straight line perpendicular to two
sides of a parallelogram divides the latter
into two trapezoids in each of which a
circle can be inscribed. Find the acute
angle of the parallelogram if its sides are
a and b (a < b). A

49. Given a half-disc with diameter AB.
Two straight lines are drawn through the
midpoint of the semicircle which divide
the half-disc into three equivalent areas.
In what ratio is the diameter AB divided
by these lines?

50. A square ABCD with side a and two
circles are constructed. The first circle is
entirely inside the square touching the side
AB at a point E and also the side BC and
diagonal AC. The second circle with centre
at A passes through the point E. Find
the area of the common part of the two
discs bounded by these circles.

51. The vertices of a regular hexagon
with side a are the centres of the circles
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with radius o/} 2. Find the area of the
part of the hexagon not enclosed by these
circles.

52. A point A is taken outside a circle
of radius R. Two secants are drawn from
this point: one passes through the centre,
the other at a distance of R/2 from the
centre. Find the area of the region enclosed
between these secants.

53. In a quadrilateral ABCD: /. DAB =
90°, £LDBC =90°. | DB | =a,and | DC |=
b. Find the distance between the centres
of two circles one of which passes through
the points D, A and B, the other through
the points B, C, and D.

54. On the sides AB and 4D of the
rhombus ABCD points M and N are taken
such that the straight lines MC and NC
separate the rhombus into three equivalent
parts. Find |MN | if |BD | =d.

55. Points M and N are taken on the
sidle AB of a triangle ABC such that
|AM|:|MN|: |NB|=1:2:3.Through
the points M and N straight lines are
drawn parallel to tHe side AC. Find the
area of the part of the triangle enclosed
between these lines if the area of the triangle
ABC is equal to S.

56. Given a circle and a point 4 located
outside of this circle, straight lines AB
and AC are tangent to it (B and C points
of tangency). Prove that the centre of the
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circle inscribed in the triangle ABC lies
on the given circle.

57. A circle is circumscribed about an
equilateral triangle ABC, and an arbitrary
point M is taken on the arc BC. Prove that
|AM | = |BM | + |CM |.

58. Let H be the point of intersection of
the altitudes in a triangle ABC. Find the
interior angles of the triangle ABC if
/BAH = a, LABH = f.

59. The area of a rhombus is equal to S,
the sum of its diagonals is m. Find the side
of the rhombus.

60. A square with side a is inscribed in
a circle. Find the side of the square in-
scribed in one of the segments thus ob-
tained.

61. In a 120° segment of a circle with
altitude %2 a rectangle ABCD is inscribed
so that |AB|:|BC|=1 4 (BC lies
on the chord). Find the area of the rect-
angle.

62. The area of an annulus is equal to S.
The radius of the larger circle is equal to
the circumference of the smaller. Find the
radius of the smaller circle.

63. Express the side of a regular decagon
in terms of the radius R of the circumscribed
circle.

64. Tangents MA and MB are drawn
from an exterior point M to a circle of
radius R forming an angle a. Determine

2—-01557
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the area of the figure bounded by the tan-
gents and the minor arc of the circle.

65. Given a square ABCD with side a.
Find the centre of the circle passing
through the following points: the midpoint
of the side AB, the centre of the square,
and the vertex C.

66. Given a rhombus with side 2 and acute
angle a. Find the radius of the circle pass-
ing through two neighbouring vertices of
the rhombus and touching the opposite
side of the rhombus or its extension.

67. Given three pairwise tangent circles
of radius r. Find the area of the triangle
formed by three lines each of which touches
two circles and does not intersect the third
one.

68. A circle of radius r touches a straight
line at a point M. Two points A and B
are chosen on this line on opposite sides of
M such that | MA | = | MB | = a. Find
the radius of the circle passing through A4
and B and touching the given circle.

69. Given a square ABCD with side a.
Taken on the side BC is a point M such that
| BM | =3 | MC | and on the side CD a
point N such that 2 |CN | = | ND |. Find
the radius of the circle inscribed in the
triangle AMN.

70. Given a square ABCD with side a.
Determine the distance between the mid-
point of the line segment AM, where M is
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the midpoint of BC, and a point N on the
side CD such that |CN | |ND | =3 1.

71. A straight line emanating from the
vertex A in a triangle ABC bisects the
median BD (the point D lies on the side
AC). What is the ratio in which this line
divides the side BC?

72. In a right triangle ABC the leg CA
is equal to b, the leg CB is equal to a, CH
is the altitude, and AM is the median.
Find the area of the triangle BMH.

73. Given an isosceles triangle A BC whose
LA =0a>90° and | BC | = a. Find the
distance between the point of intersection
of the altitudes and the centre of the cir-
cumscribed circle.

74. A circle is circumscribed about a
triangle ABC where | BC | = a, /B = «,
Z.C = P. The bisector of the angle A meets
the circle at a point K. Find | AK |.

75. In a circle of radius R, a diameter is
drawn with a point A taken at a distance
a from the centre. Find the radius of another
circle which is tangent to the diameter at
the point A and touches internally the
given circle.

76. In a circle, three pairwise intersecting
chords are drawn. Each chord is divided
into three equal parts by the points of
intersection. Find the radius of the circle
if one of the chords is equal to a.

77. One regular hexagon is inscribed in
a circle, the other is circumscribed about

2%
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it. Find the radius of the circle if the differ-
ence between the perimeters of these hexa-
gons is equal to a.

78. In an equilateral triangle A BC whose
side is equal to a, the altitude BK is drawn.
A circle is inscribed in each of the triangles
ABK and BCK, and a common external
tangent, different from the side AC, is drawn
to them. Find the area of the triangle cut
off by this tangent from the triangle ABC.

79. Given in an inscribed quadrilateral
ABCD are the angles: Z DAB =a, /ABC=
B, £LBKC = y, where K is the point
of intersection of the diagonals. Find the
angle ACD.

80. In an inscribed quadrilateral ABCD
whose diagonals intersect at a point K,
d. Find | AC |.

81. A circle is circumscribed about a
trapezoid. The angle between one of the
bases of the trapezoid and a lateral side is
equal to o and the angle between this base
and one of the diagonals is equal to f.
Find the ratio of the area of the circle to
the area of the trapezoid.

82. In an equilateral trapezoid ABCD,
the base AD is equal to a, the base BC
is equal to b, | AB | = d. Drawn through
the vertex B is a straight line bisecting the
diagonal AC and intersecting 4D at a point
K. Find the area of the triangle BDK.

83. Find the sum of the squares of the
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distances from the point M taken on a diam-
eter of a circle to the end points of any
chord parallel to this diameter if the radius
of the circle is R, and the distance from M
to the centre of the circle is a.

84. A common chord of two intersecting
circles can be observed from their centres
at angles of 90° and 60°. Find the radii of
the circles if the distance between their
centres is equal to a.

85. Given a regular triangle ABC. A point
K divides the side AC in the ratio 2:1,
and a point M divides the side AB in the
ratio 1 2 (as measured from the vertex A4
in both cases). Prove that the length of the
line segment KM is equal to the radius of
the circle circumscribed about the triangle
ABC.

86. Two circles of radii R and R/2 touch
each other externally. One of the end points
of the line segment of length 2R forming
an angle of 30° with the centre line coincides
with the centre of the circle of the smaller
radius. What part of the line segment lies
outside both circles? (The line segment
intersects both circles.)

87. A median BK, an angle bisector BE,
and an altitude AD are drawn in a triangle
ABC. Find the side AC if it is known that
the lines BK and BE divide the line segment
AD into three equal parts and | AB | = 4.

88. The ratio of the radius of the circle
inscribed in an isosceles triangle to the
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radius of the circle circumscribed about this
triangle is equal to k. Find the base angle
of the triangle.

89. Find the cosine of the angle at the
base of an isosceles triangle if the point of
intersection of its altitudes lies on the circle
inscribed in the triangle.

90. Find the area of the pentagon bounded
by the lines BC, CD, AN, AM, and BD,
where A, B, and D are the vertices of a
square ABCD, N the midpoint of the side
BC, and M divides the side CD in the ratio
2:1 (counting from the vertex C) if the
side of the square ABCD is equal to a.

91. Given in a triangle ABC: /. BAC =
a, LABC = 8. A circle centred at B
passes through 4 and intersects the line AC
at a point K different from A, and the line
BC at points E and F. Find the angles of
the triangle EKF.

92. Given a square with side a. Find the
area of the regular triangle one of whose
vertices coincides with the midpoint of one
of the sides of the square, the other two
lying on the diagonals of the square.

93. Points M, N, and K are taken on the
sides of a square ABCD, where M is the
midpoint of 4B, N lies on the side BC
2|BN|=|NC}). K lies on the side
DA (2 |DK|=|KA|). Find the sine
of the angle between the lines MC and VK.

94. A circle of radius r passes through the
vertices A and B of the triangle ABC and



Sec. 1. Fifndamental Facts 23

intersects the side BC at a point D. Find
the radius of the circle passing through the
points A,D, and C if | AB |=e¢,| AC | =b.

95. In a triangle ABC, the side AB is
equal to 3, and the altitude CD dropped
on the side AB is equal to V3. The foot D
of the altitude CD lies on the side AB, and
the line segment AD is equal to the side BC.
Find | AC |.

96. A regular hexagon ABCDEF is in-
scribed in a circle of radius R. Find “the

radius of the circle inscribed in the triangle
ACD.

97. The side AB of a square ABCD is
equal to 1 and is a chord of a circle, the
rest of the sides of the square lying outside
this circle. The length of the tangent CK
drawn from the vertex C to the circle is
equal to 2. Find the diameter of the circle.

98. In a right triangle, the smaller angle
is equal to a. A straight line drawn per-
pendicularly to the hypotenuse divides
the triangle into two equivalent parts.
Determine the ratio in which this line
divides the hypotenuse.

99. Drawn inside a regular triangle with
side equal to 1 are two circles touching
each other. Each of the circles touches two
sides of the triangle (each side of the
triangle touches at least one of the circles).
Prove that the sum of the radii of these

circles is not less than (V'3 — 1)/2.
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100. In a right triangle ABC with an
acute angle 4 equal to 30°, the bisector of
the other acute angle is drawn. Find the
distance between the centres of the two
circles inscribed in the triangles ABD and
CBD if the smaller leg is equal to 1.

101. In a trapezoid ABCD, the angles
A and D at the base AD are equal to 60°
and 30°, respectively. A point N lies on
the base BC, and |BN |:|NC|=2.
A point M lies on the base AD; the straight
line MN is perpendicular to the bases of
the trapezoid and divides its area into
two equal parts. Find |4AM |: | MD |.

102. Given in a triangle ABC: | BC | =
a, LA = a, £B = p. Find the radius of
the circle touching both the side AC at
a point A and the side BC.

103. Given in a triangle ABC: | AB | =

¢, |BC|=a, £B = p. On the side AB,
a point M is taken such that 2 |AM | =
3 | MB |. Find the distance from M to the
midpoint of the side AC.
\ 104. In a triangle ABC, a point M is taken
on the side AB and a point N on the side
AC such that |AM | =3 |MB| and
2|AN | = | NC|. Find the area of the
quadrilateral MBCN if the area of the
triangle ABC is equal to S.

105. Given two concentric circles .of
radii R and r (R > r) with a common centre
0. A third circle touches both of them.
Find the tangent of the angle between the
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tangent lines to the third circle emanating
from the point O.

106. Given in a parallelogram ABCD:
|AB | =a, | AD | = b (b > a), LBAD =
a (@ <<90°. On the sides AD and BC,
points K and M are taken such that BKDM
is a rhombus. Find the side of the rhombus.

107. In a right triangle, the hypotenuse
is equal to c¢. The centres of three circles
of radius ¢/5 are found at its vertices. Find
the radius of a fourth circle which touches
the three given circles and does not enclose
them.

108. Find the radius of the circle which
cuts on both sides of an angle a chords of
length a if the distance between the nearest
end points of these chords is known to be
equal to b.

109. A circle is constructed on the side
BC of a triangle ABC as diameter. This
circle intersects the sides AB and AC at
points M and N,. respectively. Find the
area of the triangle AMN if the area of the
triangle ABC is equal to S, and L BAC=a.

110. In a circle of radius R two mutually
perpendicular chords MN and PQ are
drawn. Find the distance between the points
M and Pif | NQ | = a.

111. In a triangle ABC, on the largest
side BC equal to b, a point M is chosen.
Find the shortest distance between the
centres of the circles circumscribed about
the triangles BAM and ACM,
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142. Given in a parallelogram ABCD:
|AB | =a, | BC | = b, LABC = a. Find
the distance between the centres of the
circles circumscribed about the triangles
BCD and DAB.

113. In atriangle ABC, /. A = a, | BA |=
a, |AC| = b. On the sides AC and
AB, points M and N are taken, M being the
midpoint of AC. Find the length of the
line segment M N if the area of the triangle
AMN is 1/3 of the area of the triangle ABC.

114. Find the angles of a rhombus if the
area of the circle inscribed in it is half
the area of the rhombus.

115. Find the common area of two equal
squares of side a if one can be obtained
from the other by rotating through an angle
of 45° about its vertex.

116. In a quadrilateral inscribed in a
circle, two opposite sides are mutually
perpendicular, one of them being equal to
a, the adjacent acute angle is divided by
one of the diagonals into a and . Determine
the diagonals of the quadrilateral (the
angle o is adjacent to the given side).

117. Given a parallelogram ABCD with
an acute angle DAB equal to a in which
|AB | =a, |AD|=0b (a<<b). Let K
denote the foot of the perpendicular dropped
from the vertex B on AD, and M the foot
of the perpendicular dropped from the point
K on the extension of the side CD. Find the
area of the triangle BKM,
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118. In a triangle ABC, drawn from the
vertex C are two rays dividing the angle
ACB into three equal parts. Find the ratio
of the segments of these rays enclosed
inside the triangle if |BC | =3 | AC |,
£LACB = a.

119. In an isosceles triangle ABC (| AB |=
| BC |) the angle bisector AD is drawn.
The areas of the triangles ABD and ADC
are equal to S, and S,, respectively. Find
| AC ).

120. A circle of radius R, is inscribed
in an angle a. Another circle of radius R,
touches one of the sides of the angle at
the same point as the first one and inter-
sects the other side of the angle at points
A and B. Find | 4B |.

121. On a straight line passing through
the centre O of the circle of radius 12,
points A and B are taken such that | 04 | =
15, | AB | = 5. From the points 4 and B,
tangents are drawn to the circle whose points
of tangency lie on one side of the line
OAB. Find the area of the triangle ABC,
where C is the point of intersection of these
tangents.

122. Given in a triangle ABC: | BC | =
a, LA =a, £B=2p. Find the radius
of the circle intersecting all of its sides
and cutting off on each of them a chord of
length d.

123. In a convex quadrilateral, the line
segments joining the midpoints of the oppo-
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site sides are equal to @ and b and intersect
at an angle of 60° Find the diagonals of
the quadrilateral.

124. In a triangle ABC, taken on the
side BC is a point M such that the distance
from the vertex B to the centre of gravity
of the triangle A MC is equal to the distance
from the vertex C to the centre of gravity
of the triangle AMB. Prove that | BM | =
| DC | where D is the foot of the altitude
dropped from the vertex 4 to BC.

125. In a right triangle ABC, the bisector
BE of the right angle B is divided by the
centre O of the inscribed circle so that
|BO| |OE|=YV3 V2. Find the acute
angles of the triangle.

126. A circle is constructed on a line
segment AB of length R as diameter. A sec-
ond circle of the same radius is centred at
the point A. A third circle touches the
first circle internally and the second circle
externally; it also touches the line segment
AB. Find the radius of the third circle.

127. Given a triangle ABC. It is known
that | AB | =4, |AC | =2, and | BC | =
3. The bisector of the angle 4 intersects
the side BC at a point K. The straight line
passing through the point B and being
parallel to AC intersects the extension of
the angle bisector 4 K at the point M. Find
| KM |.

128. A circle centred inside a right angle
touches one of the sides of the angle, inter-
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sects the other side at points A and B and
intersects the bisector of the angle at points

C and D. The chord AB is equal to V6,

the chord CD to V7. Find the radius of
the circle.

129. Two circles of radius 1 lie in a paral-
lelogram, each circle touching the other
circle and three sides of the parallelogram.
One of the segments of the side from the
vertex to the point of tangency is equal
to V' 3. Find the area of the parallelogram.

130. A circle of radius R passes through
the vertices A and B of the triangle ABC
and touches the line AC at A. Find the
area of the triangle ABCif /B = a, /A =

B.

131. In a triangle ABC, the angle bisector
AK is perpendicular to the median BM,
and the angle B is equal to 120°. Find the
ratio of the area of the triangle ABC to the
area of the circle circumscribed about this
triangle.

132. In a right triangle ABC, a circle
touching the side BC is drawn through the
midpoints of AB and AC. Find the part of
the hypotenuse AC which lies inside this
circle if |AB | =3, | BC | =4.

133. Given a line segment a. Three
circles of radius R are centred at the end
points and midpoint of the line segment.
Find the radius of the fourth circle which
touches the three given circles.
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134. Find the angle between the common
external and internal tangents to two circles
of radii R and r if the distance between
their centres equals V 2 (RZ + r?) (the cen-
tres of the circles are on the same side of the
common external tangent and on both sides
of the common internal tangent).

135. The line segment AB is the diameter
of a circle, and the point C lies outside
this circle. The line segments AC and BC
intersect the circle at points D and E,
respectively. Find the angle CBD if the
ratio of the areas of the triangles DCE and
ABC is 1 4.

136. In a rhombus ABCD of side a, the
angle at the vertex A is equal to 120°.
Points E and F lie on the sides BC and AD,
respectively, the line segment EF and the
diagonal AC of the rhombus intersect at M.
The ratio of the areas of the quadrilaterals
BEFA and ECDF is 1:2. Find | EM |
if |AM| |MC|=1 3.

137. Given a circle of radius R centred
at 0. A tangent AK is drawn to the circle
from the end point A of the line segment
OA, which meets the circle at M. Find
the radius of the circle touching the line
segments AK, AM, and the arc MK if
LOAK = 60°.

138. Inscribed in a circle is an isosceles
triangle ABC in which | 4B | = | BC |
and £B = f. The midline of the triangle
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is extended to intersect the circle at points
D and E (DE || AC). Find the ratio of the
areas of the triangles ABC and DBE.

139. Given an angle a with vertex O.
A point M is taken on one of its sides and
a perpendicular is erected at this point
to intersect the other side of the angle at a
point N. Just in the same way, at a point
K taken on the other side of the angle a
perpendicular is erected to intersect the
first side at a point P. Let B denote the
point of intersection of the lines MN and
KP, and A the point of intersection of the
lines OB and NB. Find |04 |if |OM | =
a and |OP | = b.

140. Two circles of radii R and r touch
the sides of a given angle and each other.
Find the radius of a third circle touching
the sides of the same angle and whose centre
is found at the point at which the given
circles touch each other.

141. The distance between the centres
of two non-intersecting circles is equal to a.
Prove that the four points of intersection
of common external and internal tangents
lie on one circle. Find the radius of this
circle.

142. Prove that the segment of a common
external tangent to two circles which is
enclosed between common internal tangents
is equal to the length of a common internal
tangent.

143. Two mutually perpendicular ra-
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dii OA and OB are drawn in a circle
centred at O. A point C is on the arc AB
such that £A40C = 60° (LBOC = 30°).
A circle of radius AB centred at A inter-
sects the extension of OC beyond the point
C at D. Prove that the line segment CD
is equal to the side of a regular decagon
inscribed in the circle.

Let us now take a point M diametrically
opposite to the point C. The line segment
MD, increased by 1/5 of its length, is assum-
ed to be approximately equal to half the
circumference. Estimate the error of this
approximation.

144. Given a rectangle 7 X 8. One vertex
of a regular triangle coincides with one of
the vertices of the rectangle, the two other
vertices lying on its sides not containing
this vertex. Find the side of the regular
triangle.

145. Find the radius of the minimal circle
containing an equilateral trapezoid with
bases of 15 and 4 and lateral side of 9.,

146. ABCD is a rectangle in which
|]AB | =9, |BC|=17. A point M is
taken on the side CD such that |CM | =
3, and point N on the side AD such that
| AN | = 2.5. Find the greatest radius of
the circle which goes inside the pentagon
ABCMN.

147. Find the greatest angle of a triangle
if the radius of the circle inscribed in the
triangle with vertices at the feet of the
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altitudes of the given triangle is half the
least altitude of the given triangle.

148. In a triangle ABC, the bisector of
the angle C is perpendicular to the median
emanating from the vertex B. The centre
of the inscribed circle lies on the circle
passing through the points 4 and C and the
centre of the circumscribed circle. Find
|AB | if | BC | = 1.

149. A point M is at distances of 2, 3 and
6 from the sides of a regular triangle (that
is, from the lines on which its sides are
situated). Find the side of the regular
triangle if its area is less than 14.

150. A point M is at distances of V'3
and 3 /3 from the sides of an angle of 60°
(the feet of the perpendiculars dropped from
M on the sides of the angle lie on the sides
themselves, but not on their extensions).
A straight line passing through the point M
intersects the sides of the angle and cuts off

a triangle whose perimeter is 12. Find the
area of this triangle.

151. Given a rectangle ABCD in which
|4AB | = 4, | BC | = 3. Find the side of
the rhombus one vertex of which coincides
with A, and three others lie on the line
segments AB, BC and BD (one vertex on
each segment).

152. Given a square ABCD with a side
equal to 1. Find the side of the rhombus one
vertex of which coincides with 4, the oppo-

3-01557
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site vertex lies on the line BD, and the two
remaining vertices on the lines BC and CD.

153. In a parallelogram ABCD the acute
angle is equal to a. A circle of radius r
passes through the vertices 4, B, and C
and intersects the lines AD and CD at points
M and N. Find the area of the triangle
BMN.

154. A circle passing through the vertices
A, B, and C of the parallelogram ABCD
intersects the lines AD and CD at points
M and N. The point M is at distances of
4, 3 and 2 from the vertices B, C, and D,
respectively. Find | MN |.

155. Given a triangle ABC in which
£ BAC = n/6. The circle centred at A
with radius equal to the altitude dropped
on BC separates the triangle into two egual
aréas. Find the greatest angle of the triangle
ABC.

156. In an isosceles triangle ABC /B =
120°. Find the common chord of two circles:
one is circumscribed about ABC, the other
passes through the centre of the inscribed
circle and the feet of the bisectors of the
angles A and C if | AC | = 1.

157. In a triangle ABC the side BC is
equal to a, the radius of the inscribed circle
is equal to r. Determine the radii of two
equal circles tangent to each other, one of
them touching the sides BC and BA, the
other—the sides BC and CA.

158. A trapezoid is inscribed in a circle
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of radius R. Straight lines passing through
the end points of one of the bases of the
trapezoid parallel to the lateral sides inter-
sect at the centre of the circle. The lateral
side,can be observed from the centre at an
angle a. Find the area of the trapezoid.

159. The hypotenuse of a right triangle
is equal to c. What are the limits of change
of the distance between the centre of the
inscribed circle and the point of intersec-
tion of the medians?

160. The sides of a parallelogram are
equal to a and b (a %= b). What are the
limits of change of the cosine of the acute
angle between the diagonals?

161. Three straight lines are drawn
through a point M inside a triangle ABC
parallel to its sides. The segments of the
lines enclosed inside the triangle are equal
to one another. Find their length if the
sides of the triangle are a, b, and c.

162. Three equal circles are drawn inside
a triangle ABC each of which touches two
of its sides. The three circles have a common
point. Find their radii if the radii of the
circles inscribed in and circumscribed about
the triangle ABC are equal to r and R,
respectively.

163. In a triangle ABC, a median AD
is drawn, £ZDAC + LABC = 90° Find
4L BAC if |AB |~ |AC |

164. Three circles of radii 1, 2, and 3
touch one another externally. Find the

3
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radius of the circle passing through the
points of tangency of these circles.

165. A square of unit area is inscribed
in an isosceles triangle, one of the sides
of the square lies on the base of the triangle.
Find the area of the triangle if the centres
of gravity of the triangle and square are
known to coincide.

166. In an equilateral triangle ABC,
the side is equal to a. Taken on the side BC
is a point D, and on the side AB a point E
such that |BD | = a/3, |AE | = | DE |.
Find | CE |.

167. Given a right triangle ABC. The
angle bisector CL (|CL | = a) and the
median CM (| CM | = b) are drawn from
the vertex of the right angle C. Find the
area of the triangle ABC.

168. A circle is inscribed in a trapezoid.
Find the area of the trapezoid given the
length a of one of the bases and the line
segments b and d into which one of the
lateral sides is divided by the point of
tangency (the segment b adjoins the base
a).
169. The diagonals of a trapezoid are equal
to 3 and 5, and the line segment joining the
midpoints of the bases is equal to 2. Find
the area of the trapezoid.

170. A circle of radius 1 is inscribed in a
triangle ABC for which cos B = 0.8. This
circle touches the midline of the triangle
ABC parallel to the side AC. Find AC.
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174. Given a regular triangle 4ABC of
area S. Drawn parallel to its sides at equal
distances from them are three straight lines
intersecting inside the triangle to form a
triangle 4,B,C, whose area is Q. Find the
distance between the parallel sides of the
triangles ABC and A4,B,C,.

172. The sides AB and CD of a quadri-
lateral ABCD are mutually perpendicular;
they are the diameters of two equal circles
of radius r which touch each other. Find
the area of the quadrilateral ABCD if
|BC |:|AD | = k.

173. Two circles touching each other are
inscribed in an angle whose size is «a.
Determine the ratio of the radius of the
smaller circle to the radius of a third circle
touching both the circles and one of the
sides of the angle.

174. In a triangle ABC, circle intersect-
ing the sides AC and BC at points M and
N, respectively, is constructed on the
midline DE, parallel to AB, as on the
diameter. Find |[MN |if |BC | = a, |AC | =
b,|AB | =c.

175. The distance between the centres
of two circles is equal to a. Find the side of
a rhombus two opposite vertices of which
lie on one circle, and the other two on the
other if the radii of the circles are R
and r.

176. Find the area of the rhombus ABCD
if the radii of the circles circumscribed
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about the triangles ABC and ABD are R
and r, respectively.

177. Given an angle of size a with vertex
at A and a point B at distances a and b
from the sides of the angle. Find | 4B |.

178. In a triangle ABC, the altitudes &,
and hy drawn from the vertices A and B,
respectively, and the length [ of the bisector
of the angle C are given. Find £C.

179. A circle is circumscribed about a
right triangle. Another circle of the same
radius touches the legs of this triangle, one
of the vertices of the triangle being one of
the points of tangency. Find the ratio
of the area of the triangle to the area of
the common part of the two given circles.

180. Givenin a trapezoid ABCD: | AB |=
|[BC|= |CD|=a, | DA | = 2a. Taken
respectively on the straight lines AB
and AD are points E and F, other than the
vertices of the trapezoid, so that the point
of intersection of the altitudes of the
triangle CEF coincides with the point of
intersection of the diagonals of the trape-
zoi(; ABCD. Find the area of the triangle
CEF.

*x % %

181. The altitude of a right triangle ABC
drawn to the hypotenuse AB is h, D being
its foot; M and N are the midpoints of the
line segments AD and DB, respectively.
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Find the distance from the vertex C to the
point of intersection of the altitudes of the
triangle CMN.

182. Given an equilateral trapezoid with
bases AD and BC: |AB | = |CD | = a,
|AC|=|BD|=b, |BC|=¢, M an
arbitrary point of the arc BC of the circle
circumscribed about ABCD. Find the ratio
|BM| + | MC|
|AM |+ |MD|

183. Each lateral side of an isosceles
triangle is equal to 1, the base being equal
to a. A circle is circumscribed about the
triangle. Find the chord intersecting the
lateral sides of the triangle and divided
by the points of intersection into three
equal segments.

184. MN is a diameter of a circle, | MN|=
1, A and B are points on the circle
situated on one side from MN, C is a point
on the other semicircle. Given: 4 is the
midpoint of semicircle, | MB | = 3/5, the
length of the line segment formed by the
intersection of the diameter MN with the
¢hords AC and BC is equal to a. What is
the greatest value of a?

185. ABCD is a convex quadrilateral.
M the midpoint of AB, N the midpoint of
CD. The areas of triangles ABN and CDM
are known to be equal, and the area of
their common part is 1/k of the area of
each of them. Find the ratio of the sides
BC and AD,
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186. Given an equilateral trapezoid ABCD
(AD || BC) whose acute angle at the larger
base is equal to 60°, the diagonal being
equal to /3. The point M is found at
distances 1 and 3 from the vertices 4 and
D, respectively. Find | MC |.

187. The bisector of each angle of a
triangle intersects the opposite side at a
point equidistant from the midpoints of
the two other sides of the triangle. Does it,
in fact, mean that the triangle is regular?

188. Given in a triangle are two sides:
a and b (a > b). Find the third side if it
is known that a 4+ k, << b + hy, where h,
and hy are the altitudes dropped on these
sides (k, the altitude drawn to the side a).

189. Given a convex quadrilateral ABCD
circumscribed about a circle of diameter 1.
Inside ABCD, there is a point M such that
| MA * 4+ | MB |* 4 | MC |* + | MD |*=
2. Find the area of ABCD.

190. Given in a quadrilateral ABCD:
|AB | =a, |BC| =0, |CD|=c, |DA |=
d; a®+c® %= b2 +d?, cs5%=d, Mis a
point on BD equidistant from 4 and C.
Find the ratio |BM | | MD |.

191. The smaller side of the rectangle
ABCD is equal to 1. Consider four concentric
circles centred at 4 and passing, respective-
ly, through B, C, D, and the intersection
point of the diagonals of the rectangle
ABCD. There also exists a rectangle with
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vertices on the constructed circles (one
vertice per circle). Prove that there is a
square whose vertices lie on the constructed
circles. Find its side.

192. Given a triangle ABC. The perpen-
diculars erected to AB and BC at their mid-
points intersect the line AC at points M
and N such that | MN | = | AC |. The
perpendiculars erected to AB and AC at
their midpoints intersect BC at points K

and L such that | KL | =+ |BC |. Find

the smallest angle of the triangle ABC.

193. A point M is taken on the side AB
of a triangle ABC such that the straight
line joining the centre of the circle cir-
cumscribed about the triangle ABC to the
median point of the triangle BCM is per-
pendicular to CM. Find the ratio | BM |
|BA |if |BC| |BA | =k

194. In an inscribed quadrilateral ABCD
where |AB | = |BC |, K is the inter-
section point of the diagonals. Find | 4B |
if |BK|=0b, | KD |=4d.

195. Give the geometrical interpretations
of equation (1) and systems (2), (3), and
(4). Solve equation (1) and systems (2)
and (3). In system (4) find = + y + 2

WVa2ta2—azy3
+Vy2+b2—byV37
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—l—V:l:z—l-yz—zy V3
=Vm (a>0| b>0).
m{x=Vﬂ—ﬁ+Vw—&

y ==1/.1:2—b2 +V2—0%,

=V yPr—ct +V2—ct.
3) 224 y2=(a—2?) + b2 =a2+ (b—y2.}
4) { 22} zy 412 = a?,

vty 22 =02
221 2z 4 22 = a2 + b2,

196. The side of a square is equal to a
and the products of the distances from the
opposite vertices to a line ! are equal to
each other. Find the distance from the centre
of the square to the line [ if it is known that
neither of the sides of the square is parallel
to L

197. One of the sides in a triangle ABC
is twice the length of the other and /B =
2 £ C. Find the angles of the triangle.

198. A circle touches the sides AB and
AC of an isosceles triangle ABC. Let M
be the point of tangency with the side AB
and N the point of intersection of the circle
and the base BC. Find | AN |if | AM | =
a, | BM | = b.

199. Given a parallelogram ABCD in
which |AB | =k |BC|, K and L are
points on the line CD (K on the side CD),
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and M is a point on BC, AD being the
bisector of the angle KAL, AM the bisector
of the angle KAB, |BM | =a, |DL | =
b. Find | AL |
200. Given a parallelogram ABCD. A
straight line passing through the vertex C
intersects the lines AB and AD at points
K and L, respectively. The areas of the
triangles 'KBC and CDL are equal to p
and g, respectively. Find the area of the
parallelogram ABCD.
. Given a circle of radius R and two
mts A and B on it such that | 4B | = a.
%o o circles of radii z and y touch the given
circle at points A and B. Find: (a) the
length of the common external tangent to
the last circles if hoth of them touch the
iven circle in the same way (either inter-
nally or externally); (b) the length of the
c¢ommon internal tangent if the circle of
radius  touches the given circle externally,
wlnlo the circle of radius y touches the
given circle mternally
.202. Given in a triangle ABC: | AB | =
2 |BC|—~13 | CA | = 15. Taken on
the side AC is a point M such that the
adii of the circles inscribed in the triangles
M and BCM are equal. Find the ratio
M [: | MC |
The radii of the circles inscribed
1 and circumscribed about a triangle are
dl(;ual to r and R, respectively. Find the
area of the triangle if the circle passing
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through the centres of the inscribed and
circumscribed circles and the intersection
point of the altitudes of the triangle is
known to pass at least through one of the
vertices of the triangle.

204. Given a rectangle AFCD where
| AB | = 2a, | BC|=a V2. On the side
AB, as on diameter, a semicircle is con-
structed externally. Let M be an arbitrary
point on the semicircle, the line MD inter-
sect AB at N, and the line MC at L. Find
| AL |> 4+ | BN | (Fermat’'s* problem).

205. Circles of radii R and r touch each
other internally. Find the side of the
regular triangle, one vertex of which coin-
cides with the point of tangency, and the
other two, lying on the given circles.

206. Two circles of radii R and r (R >r)
touch each other externally at a point A.
Through a point B taken on the larger
circle a straight line is drawn touching the
smaller circle at C. Find | BC | if | AB | =

a.

207. In a parallelogram ABCD there are
three pairwise tangent circles**; one of
them also touches the sides AB and BC, the
second the sides AB and AD, and the third
the sides BC and AD. Find the radius of
the third circle if the distance between the

* Fermat, Pierre de (1601-1665), a French
amateur mathematician.
** Any two of them have a point of tangency.
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points of tangency on the side AB is equal
to a.

208. The diagonals of the quadrilateral
ABCD intersect at a point M, the angle
between them equalling a. Let O,, 0,, O,
0, denote the centres of the circles circum-
scribed about the triangles ABM, BCM,
CDM, DAM, respectively. Determine the
ratio of the areas of the quadrilaterals
ABCD and 0,0,0,0,.

209. In a parallelogram whose area is S,
the bisectors of its interior angles are drawn
to intersect one another. The area of the
quadrilateral thus obtained is equal to Q.
Find the ratio of the sides of the parallel-

ram.

210. In a triangle ABC, a point M is
taken on the side AC and a point N on the
gide BC. The line segments AN and BM
intersect at a point O. Find the area of the
triangle CMN if the areas of the triangles
OMA, OAB, and OBM are equal to §,, S,,
ahd S,, respectively.

211. The median point of a right triangle
lies on the circle inscribed in this triangle.
Find the acute angles of the triangle.

212. The circle inscribed in a triangle
ABC divides the median BM into three
equal parts. Find the ratio | BC | |CA |
{AB |.

213. In a triangle ABC, the midperpendic-
ular to the side AB intersects the line AC
at M, and the midperpendicular to the side
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AC intersects the line AB at N. It is known
that | MN | = | BC | and the line MN
is perpendicular to the line BC. Determine
the angles of the triangle ABC.

214. The area of a trapezoid with bases
AD and BC is S, |AD |:|BC | =3;
situated on the straight line intersecting the
extension of the base AD beyond the point
D there is a line segment EF such that
AE || DF, BE ||CF and |4AE |: |DF | =
|CF | | BE | = 2. Determine the area of
the triangle EFD.

215. In a triangle ABC the side BC is
equal to a, and the radius of the inscribed
circle is r. Find the area of the triangle if
the inscribed circle touches the circle con-
structed on BC as diameter.

216. Given an equilateral triangle ABC
with side a, BD being its altitude. A second
equilateral triangle BDC, is constructed
on BD, and a third equilateral triangle
BD,C, is constructed on the altitude BD,
of this triangle. Find the radius of the circle
circumscribed about the triangle CC,C,.
Prove that its centre is found on one of the
sides of the triangle ABC (C, is situated
outside the triangle 4BC).

217. The sides of a parallelogram are
equal to a and b (a 7= b). Straight lines are
drawn through the vertices of the obtuse
angles of this parallelogram perpendicular
to its sides. When intersecting, these lines
form a parallelogram similar to the given
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one. Find the cosine of the acute angle of
the given parallelogram.

218. Two angle bisectors KN and LP
intersecting at a point Q are drawn in a
triangle KLM. The line segment PN has
a length of 1, and the vertex M lies on the
circle passing through the points N, P,
and Q. Find the sides and angles of the
triangle PNQ.

219. The centre of a circle of radius r
touching the .sides AB, AD, and BC is
located on the diagonal AC of a convex
quadrilateral ABCD. The centre of a circle
of the same radius r touching the sides
BC, CD, and AD is found on the diagonal
BD Find the area of the quadrilateral
ABCD if the indicated circles touch each
other externally.

~220. The radius of the circle circumscribed
about an acute-angled triangle A BC is equal
to 1. The centre of the circle passing through
the vertices A, C, and the intersection point
-of the altitudes of the triangle ABC is known
40 lie on this circle. Find | AC |.

1" 221. Given a triangle ABC in which
points M, N, and P are taken: M and N
sn the sides AC and BC, respectively, P
o the line segment MN such that | AM |
YMC | = |CN|:|NB|=|MP]:|PN|.
#ind the area of the triangle ABC if the
sreas of the triangles AMP and BNP are T
#nd. Q, respectively.

#» 222. Given a circle of radius R and a
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point A at a distance a from its centre
(@ > R). Let K denote the point of the
circle nearest to the point 4. A secant line
passing through A4 intersects the circle at
points M and N. Find | MN | if the area
of the triangle KMN is S.

223. In an isosceles triangle ABC
(|AB | = | BC |), a perpendicular to AE
is drawn through the end point E of the
angle bisector AE to intersect the extension
of the side AC at a point F (C lies bet'veen
A and F). It is known that | AC | = 2m,

| FC | = m/4. Find the area of the triangle
ABC.

224, Two congruent regular triangles
ABC and CDE with side 1 are arranged
on a plane so that they have only one com-
mon point C, and the angle BCD is less than
n/3. K denotes the midpoint of the side
AC, L the midpoint of CE, and M the mid-
point of BD. The area of the triangle KLM
is equal to }/3/5. Find | BD |.

225. From a point K situated outside a
circle with centre O, two tangents KM
and KN (M and N points of tangency) are
drawn. A point C (JMC | < |CN |) is
taken on the chord MN. Drawn through the
point C perpendicular to the line segment
OC is a straight line intersecting the line
segment NK at B. The radius of the circle
is known to be equal to R, LMKN = a,
| MC | =b. Find |CB |.
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226. A pentagon ABCDE is inscribed in
a circle. The points M, Q, N, and P are the
feet of the perpendiculars dropped from the
vertex E of the sides AB, BC, CD (or their
extensions), and the diagonal 4D, respective-
ly. It is known that | EP | = d, and the
ratio of the areas of the triangles MQE and
PNE is k. Find | EM |.

227. Given a right trapezoid. A straight
line, parallel to the bases of the trapezoid
separates the latter into two trapezoids
such that a circle can be inscribed in each
of them. Determine the bases of the original
trapezoid if its lateral sides are equal to ¢
and d (d > ¢).

228. Points P and Q are chosen on the
lateral sides KL and MN of an equilateral
trapezoid KLMN, respectively, such that
the line segment PQ is parallel to the bases
of the trapezoid. A circle can be inscribed
in each of the trapezoids KPQN and
PLMQ, the radii of these circles being
equal to R and r, respectively. Determine
the bases | LM | and | KN |.

229. In a triangle ABC, the bisector of
the angle A intersects the side BC at a
point D. It is known that |AB |—|BD |=
a, | AC|+ |CD | = b. Find | AD |.

230. Using the result of the preceding
problem, prove that the square of the
bisector of the triangle is equal to the prod-
uct of the sides enclosing this bisector
minus the product of the line segments of

4—01557
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the third side into which the latter is divided
by the bisector.

231. Given a circle of diameter AB. A sec-
ond circle centred at A intersects the first
circle at points C and D and its diameter at
E. A point M distinct from the points C
and E is taken on the arc CE that does not
include the point D. The ray BM intersects
the first circle at a point N. It is known that
|{CN | =a, | DN |=5. Find | MN |.

232. In a triangle ABC, the angle B is
n/4, the angle C is n/6. Constructed on the
medians BN and CN as diameters are cir-
cles intersecting each other at points P
and Q. The chord PQ intersects the side
BC at a point D. Find the ratio | BD |
| DC |.

233. Let AB denote the diameter of a
circle, O its centre, AB = 2R, C a point
on the circle, M a point on the chord AC.
From the point M, a perpendicular MN
is dropped on AB and another one is erect-
ed to AC intersecting the circle at L (the
line segment CL intersects AB). Find the
distance between the midpoints of AO
and CL if |AN | = a.

234. A circle is circumscribed about a
triangle ABC. A tangent to the circle
passing through the point B intersects the
line AC at M. Find the ratio |AM |
|MC | if |AB|:|BC | =k

235. Points 4, B, C, and D are situated
in consecutive order on a straight line,
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where | AC | =a |AB |,|AD |=§ | 4B |.
An arbitrary circle is described through A
and B, CM and DN being two tangents to
this circle (M and N are points on the circle
lying on opposite sides of the line AB).
In what ratio is the line segment AB divided
by the line MN?

236. In a circumscribed quadrilateral
ABCD, each line segment from A to the
points of tangency is equal to a, and each
line segment from C to the points of tan-
gency is b. What is the ratio in which the
diagonal AC is divided by the diagonal
BD?

237. A point K lies on the base AD of the
trapezoid ABCD. such that [AK | =
A | AD |. Find the ratio |AM |: | MD |,
where M is the point of intersection of the
base AD and the line passing through the
intersection points of ‘the lines AB and CD
and the lines BK and AC.

Setting A =1/n (n =1, 2, 3, .), di-
vide a given line segment into n equal parts
using a straight edge only given a straight
line parallel to this segment.

238. In a right triangle ABC with the
hypotenuse AB equal to ¢, a circle is con-
structed on the altitude CD as diameter.
Two tangents to this circle passing through
the points 4 and B touch the circle at points
M and N, respectively, and, when extended,
intersect at a point K. Find | MK |.

239. Taken on the sides AB, BC and CA

4w
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of a triangle ABC are points C,, 4, and B,
such that |AC,|:|CB|=|BA,;|:
|4, C| = |CB;|:|B;A | = k. Taken on
the sides 4,84, B,C;, and C,A, are points
C,, 4,, and B,, such that |A4,C, |
|CaBy | = B4, | | A6 | = | Ci1B, |

| BbA, | = 1/k. Prove that the triangle
A,B,C, is similar to the triangle ABC and
find the ratio of similitude.

240. Given in a triangle ABC are the
radii of the circumscribed (R) and inscribed
(r) circles. Let 4,, B, C, denote the points
of intersection of the angle bisectors of the
triangle ABC and the circumscribed circle.
Find the ratio of the areas of the triangles
ABC and 4,B,C,.

241. There are two triangles with corre-
spondingly parallel sides and areas S, and S,
one of them being inscribed in a triangle
ABC, the other circumscribed about this
triangle. Find the area of the triangle ABC.

242, Determine the angle A of the triangle
ABC if the bisector of this angle is per-
pendicular to the straight line passing
through the intersection point of the alti-
tudes of this triangle and the centre of the
circumscribed circle.

243. Find the angles of a triangle if the
distance between the centre of the circum-
scribed circle and the intersection point
of the altitudes is one-half the length of the
largest side and equals the smallest side.

244. Given a triangle ABC. A point D
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is taken on the ray BA such that | BD | =
| BA | 4+ | AC |. Let K and M denote two
points on the rays BA and BC, respectively,
such that the area of the triangle BDM
is equal to the area of the triangle BCK.
Find £BKM if /. BAC = a.

245. In a trapezoid ABCD, the lateral
side AB is perpendicular to AD and BC,
and | AB | = YV 1AD |-| BC |. Let E denote
the point of intersection of the nonparallel
sides of the trapezoid, O the intersection
point of the diagonals and M the midpoint
of AB. Find L EOM.

246. Two points A and B and two straight
lines intersecting at O are given in a plane.
Let us denote the feet of the perpendiculars
dropped from the point 4 on the given lines
by M and ¥, and the feet of the perpendic-
ulars dropped from B by K and L, respective-
ly. Find the angle between the lines MN
and KL if LAOB = a < 90°.

247. Two circles touch each other inter-
nally at a point A. A radius OB touching
the smaller circle at C is drawn from the
centre O of the larger circle. Find the angle
BAC.

248. Taken inside a square ABCD is a
point M such that Z MAB = 60°, L MCD =
15°. Find £ MBC.

249. Given in a triangle ABC are two
angles: £ A = 45° and £ B = 15° Taken
on the extension of the side AC beyond the
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point C is a point M such that |CM | =
2| AC |. Find LAMB.

250. In a triangle ABC, /B = 60° and
the bisector of the angle A4 intersects BC
at M. A point K is taken on the side AC
such that ZAMK = 30°. Find ZOKC,
where O is the centre of the circle circum-
scribed about the triangle AMC.

251, Given a triangle ABC in which
|AB | = | AC |, £A = 80°. (a) A point
M is taken inside the triangle such that
£ MBC = 30°, £ MCB =10°. Find ZAMC.
(b) A point P is taken outside the triangle
such that £ PBC = /PCA = 30°, and
the line segment BP intersects the side
AC. Find £ PAC.

252. In a triangle ABC, /B = 100°,
£.C = 65°% a point M is taken on AB such
that ZMCB = 55°, and a point N is taken
on AC such that ZNBC = 80°. Find
ZNMC.

253. In a triangle ABC, | AB | = | BC |,
Z.B = 20°. A point M is taken on the side
AB such that Z MCA = 60°, and a point N
on the side CB such that ZNAC = 50°.
Find L NMC.

254. In a triangle ABC, 4B = 70°
£.C = 30°. A point M is taken on the side
AB such that ZMCB = 40°, and a point N
on the side AC such that ZNBC = 50°.
Find £LNMC.

255. Let M and N denote the points of
tangency of the inscribed circle with the
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sides BC and BA of a triangle ABC, K the
intersection point of the bisector of the
angle A and the line MN. Prove that
LAKC = 90°.

256. Let P and Q be points of the circle
circumscribed about a triangle ABC such
that |PA 2= |PB|-|PC|, |QA |*=
| Q@B |-} QC | (one of the points is on the
arc AB, the other on the arc AC). Find
L PAB — £/ QAC if the difference between
the angles B and C of the triangle ABC
is a.

257. Two fixed points A and B are taken
on a given circle and —AB = a. An arbit-
rary circle passes through the points A4 and
B. An arbitrary line ! is also drawn through
the point A and intersects the circles at
points C and D different from B (the point
C is on the given circle). The tangents to
the circles at the points C and D (C and D
the points of tangency) intersect at M;
N is a point on the line [ such that | CN | =
| AD |, |DN | = |CA |. What are the
values the ZCMN can assume?

258. Prove that if one angle of a triangle
is equal to 120°, then the triangle formed
by the feet of its angle bisectors is right-
angled.

259. Given in a quadrilateral ABCD:
LDAB = 150°, L. DAC + £LABD = 120°,
£LDBC — £ ABD = 60°. Find £BDC,
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* % %

260. Given in a triangle ABC: | AB | =
1. | AC | = 2. Find | BC | if the bisectors
of the exterior angles A and C are known
to be congruent (i.e., the line segment of
the bisectors from the vertex to the inter-
section point with the straight line includ-
ing the side of the triangle opposite to the
angle).

261. A point D is taken on the side CB
of a triangle ABC such that |CD | =
a | AC |. The radius of the circle circum-
scribed about the triangle ABC is R. Find
the distance between the centres of the
circles circumscribed about the triangles
ABC and ADB.

262. A circle is circumscribed about a
right triangle ABC (£C = 90°). Let CD
denote the altitude of the triangle. A circle
centred at D passes through the midpoint of
the arc AB and intersects AB at M. Find
|]CM | if |AB | =c.

263. Find the perimeter of the triangle
ABC if | BC | = a and the segment of the
straight line tangent to the inscribed circle
and parallel to BC which is enclosed inside
the triangle is b.

264. Three straight lines parallel to the
sides of a triangle and tangent to the in-
scribed circle are drawn. These lines cut
off three triangles from the given one. The
radii of the circles circumscribed about them
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are equal to R,, R,, and R,. Find the radius
of the circle circumscribed about the given
triangle.

265. Chords AB and AC are drawn in a
circle of radius R. A point M is taken on
AB or on its extension beyond the point B,
the distance from M to the line AC being
equal to | AC |. Analogously a point N
is taken on AC or on its extension beyond
the point C, the distance from N toathe
line AB being equal to | AB |. Find MN.

266. Given a circle of radius R centred
at 0. Two other circles touch the given
circle internally and intersect at points A
and B. Find the sum of the radii of these
two circles if LOAB = 90°.

267. Two mutually perpendicular inter-
secting chords are drawn in a circle of ra-
dius R. Find (a) the sum of the squares of
the four segments of these chords into
which they are divided by the point of in-
tersection; (b) the sum of the squares of the
chords if the distance from the centre of
the circle to the point of their intersection
is equal to a.

268. Given two concentric circles of radii
r and R (r << R). A straight line is drawn
through a point P on the smaller circle to
intersect the larger circle at points B and
C. The perpendicular to BC at the point P
intersects the smaller circle at A. Find
|PA |2+ |PB |+ |PC |2

269. In a semicircle, two intersecting
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chords are drawn from the end points of the
diameter. Prove that the sum of the prod-
ucts of each chord segment that adjoins
the diameter by the entire chord is equal
to the square of the diameter.

270. Let a, b, c and d be the sides of an
inscribed quadrilateral (a be opposite to c),
hg, hy, ke, and by the distances from the cen-
tre of the circumscribed circle to) the corre-
sponding sides. Prove that if the centre of
the circle is inside the quadrilateral, then
ah, + ch, = bhy + dh,.

271. Two opposite sides of a quadrilat-
eral inscribed in a circle intersect at points
P and Q. Find | PQ | if the tangents to the
circle drawn from P and Q are equal to a
and b, respectively.

272. A quadrilateral is inscribed in a cir-
cle of radius R. Let P, Q, and M denote
the points of intersection of the diagonals
of this quadrilateral with the extensions of
the opposite sides, respectively. Find the
sides of the triangle PQM if the distances
from P, Q, and M to the centre of the cir-
cle are a, b, and ¢, respectively.

273. A quadrilateral ABCD is circum-
scribed about a circle of radius r. The point of
tangency of the circle with the side 4B
divides the latter into segments a and b,
and the point at which the circle touches
the side AD divides that side into segments
a and ¢. What are the limits of change of r?

274. A circle of radius r touches inter-
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nally a circle of radius R, 4 being the point
of tangency. A straight line perpendicular
to the centre line intersects one of the cir-
cles at B, the other at C. Find the radius
of the circle circumscribed about the tri-
angle ABC.

275. Two circles of radii R and r intersect
each other, A being one of the points of in-
tersection, BC a common tangent (B and
C points of tangency). Find the radius of
the circle circumscribed about the trian-
gle ABC.

276. Given in a quadrilateral ABCD:
| AB | = a, | AD | = b; the sides BC, CD,
and AD touch a circle whose centre is in the
middle of AB. Find | BC|.

277. Given in, an inscribed quadrilat-
eral ABCD: |AB | =a, |AD | =b (a>
b). Find |BC | if BC, CD, and AD
touch a circle whose centre lies on AB.

* * %
278. In a convex quadrilateral ABCD,
|AB | = | AD |. Inside the triangle

ABC, a point M is taken such that
4L MBA = £ ADC, /£ MCA = £ ACD.
Find £ MAC if £ BAC = a, £ ADC —
L ACD =¢, |AM | <|AB|.

279. Two intersecting circles are inscribed
in the same angle, A being the vertex of
the angle, B one of the intersection points
of the circles, C the midpoint of the chord
whose end points are the points of tangency
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of the first circle with the sides of the an-
gle. Find the angle ABC if the common chord
can be observed from the centre of the
second circle at an angle a.

280. In an isosceles triangle ABC,
|AC | = | BC |, BD is an angle bisec-
tor, BDEF is a rectangle. Find £ BAF
if £ BAE = 120°

281. A circle centred at O is circumscribed
about a triangle ABC. A tangent to the cir-
cle at point C intersects the line bisecting
the angle B at a point K, the angle BKC be-
ing one-half the difference between the tri-
ple angle A and the angle C of the trlangle
The sum of the sides AC and AB is equal

to 2 + V3 and the sum of the distances
from the point O to the sides AC and 4B
equals 2. Find the radius of the circle.

282. The points symmetric to the verti-
ces of a triangle with respect to the oppo-
site sides represent the vertices of the trian-

gle with sides /'8, V'8, V 14. Determine the
sides of the original triangle if their lengths
are different.

283. In a triangle A BC, the angle between
the median and altitude emanating from
the angle 4 is «, and the angle between the
median and altitude emanating from B
is p. Find the angle between the median and
altitude emanating from the angle C.

284. The radius of the circle circum-
scribed about a triangle is R. The distance
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from the centre of the circle to the median
point of the triangle is d. Find the product
of the area of the given triangle and the
triangle formed by the lines passing
through its vertices perpendicular to the
medians emanating from those vertices.

285. The points 4,, A; and 4 ; are situated
on one straight line, and the points A4,,
A,, and A4 on the other intersecting the
first line. Find the angles between these
lines if it is known that the sides of the
hexagon A,4,434 A4, (possibly, a self-
intersecting one) are equal to one another.

286. Two circles with centres O, and O,
touch internally a circle of radius R cen-
tred at O. It is known that | 0,0, | = a.
A straight line touching the first two cir-
cles and intersecting the line segment 0,0,
intersects their common external tangents
at points M and N and the larger circle at
points A and B. Find the ratio | AB |
| MN| if (a) the line segment 0,0, con-
tains the point O; (b) the circles with cen-
tres O, and O, touch each other.

287. The circle inscribed in a triangle
ABC touches the side AC at a point M and
the side BC at N; the bisector of the angle
A intersects the line MN at K, and the bi-
sector of the angle B intersects the line MV
at L. Prove that the line segments MK,
NL, and KL can form a triangle. Find the
area of this triangle if the area of the
triangle ABC is S, and the angle C is a.
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288. Taken on the sides AB and BC of a
square are two points M and N such that
|BM |+ | BN | = | AB|. Prove that
the lines DM and DN divide the diagonal
AC into three line segments which can form
a triangle, one angle of this triangle being
equal to 60°.

289. Given an isosceles triangle ABC,

| AB | = |BC |, AD being an angle bi-
sector. The perpendicular erected to AD
at D intersects the extension of the side
AC at a point E; the feet of the perpendicu-
lars dropped from B and D on AC are points
M and N, respectively. Find | MN |if
| AE | = a.

290. Two rays emanate from a point A
at an angle a. Two points B and B, are
taken on one ray and two points C and C,
on the other. Find the common chord of the
circles circumscribed about the triangles
ABC and AB,C, if |AB|—|AC| =
|AB, | — |AC, | = a.

291. Let O be the centre of a circle, C
a point on this circle, M the midpoint of
OC. Points A and B lie on the circle on the
same side of the line OC so that /. AMO =
Z BMC. Find |AB| if |AM | —
| BM | = a.

292. Let A, B, and C be three points ly-
ing on the same line. Constructed on AB,
BC, and AC as diameters are three semicir-
cles located on the same side of the line.
The centre of a circle touching the three
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semicircles is found at a distance d from the
line AC. Find the radius of this circle.

293. A chord AB is drawn in a circle of
radius R. Let M denote an arbitrary point
of the circle. A line segment MN (| MN | =
R) is laid off on the ray M4 and on the
ray MB a line segment MK equal to the
distance from M to the intersection point
of the altitudes of the triangle MAB. Find
| NK | if the smaller of the arcs sub-
tended by AB is equal to 2a.

294. The altitude dropped from the right
angle of a triangle on the hypotenuse sepa-
rates the triangle into two triangles in each
of which a circle is inscribed. Determine the
angles and the area of the triangle formed by
the legs of the original triangle and the line
passing through the centres of the circles
if the altitude of the original triangle is h.

295. The altitude of a right triangle
drawn to the hypotenuse is equal to k.
Prove that the vertices of the acute angles
of the triangle and the projections of the
foot of the altitude on the legs all lie on the
same circle. Determine the length of the
chord cut by this circle on the line contain-
ing the, altitude and the segments of the
chord into which it is divided by the hypo-
tenuse.

296. A circle of radius R touches a
line I at a point A, AB is a diameter
of this circle, BC is an arbitrary chord.
Let D denote the foot of the perpendicular
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dropped from C on AB. A point E lies on the
extension of CD beyond the point D, and
| ED | = | BC | The tangents to the cir-
cle, passing through E, intersect the line
! at points K and N. Find | KN |

297. Given in a convex quadrilateral
ABCD: |AB | =a, |AD|=0b, |BC | =
p—a, |DC| = p — b. Let O be the
point of intersection of the diagonals. Let
us denote the angle BAC by a. What does
| AO| tend to as a— 0?



Section 2

Selected Problems and
Theorems of Plane Geometry

Carnot’s Theorem

1. Given points A and B. Prove that the
locus of points M such that | AM |2 —
| MB | 2 = k (where %k is agiven number)
is a straight line perpendicular to AB.

2. Let the distances from a point M to
the vertices 4, B, and C of a triangle ABC
be a, b, and ¢, respectively. Prove that there
is no d = 0 and no point on the plane
for which the distances to the vertices in the
same order can be expressed by the numbers
Vat +d, V2 +4d, Vet + d.

3. Prove that for the perpendiculars drop-
ped from the points 4,, B,, and C, on the
sides BC, CA, and AB of a triangle ABC
to intersect at the same point, it is nec-
essary and sufficient that

| 4,B |*— | BC, |* + | C,A |*— | AB, P+
| B,C |* — | CA, | * = 0 (Carnot’s theorem).

4. Prove that if the perpendiculars drop-
ped from the points 4,, B;, and C; on the
sides BC, CA, and 4B of the triangle ABC,
respectively, intersect at the same point,
then the perpendiculars dropped from the

5—~01557
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points A, B, and C on the lines B,C,, C,4,,
and A,B, also intersect at one point.

5. Given a quadrilateral ABCD. Let A,,
B,, and C,; denote the intersection points
of the altitudes of the triangles BCD,
ACD, and ABD. Prove that the perpen-
diculars dropped from A4, B, and C on the
lines B,C,, CiA,, and A,B,, respectively,
intersect at the same point.

6. Given points 4 and B. Prove that the
locus of points M such that k| AM |2 +
l|BM |%2 =d (k, I, d given numbers,
k + 1 5= 0) is either a circle with centre on
the line AB or a point or, an empty set.

7. Let 4,, A,, .., A, be fixed points
and k,, k,, . ., k, be given numbers. Then
the locus of points M such that the sum
by LM by [AM ]2 -

k, | A,M |? is constant is: (a) a cxrcle, a
point, or an empty set if ¥, + &k, +. +
k, 5= 0; (b) a straight line, an empty set,
or th% entire plane if &, + k, + +

8 Given a circle and a point A outside
the circle. Let a circle passing through 4
touch the given circle at an arbitrary point
B, and the tangents to the second circle
which are drawn through the points 4 and
B intersect at a point M. Find the locus of
points M.

9. Given points 4 and B. Find the locus
of points M such that |AM | |MB| =

k1.
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10. Points A, B, and C lie on a straight
line (B between 4 and C). Let us take an ar-
bitrary circle centred at B and denote by M
the intersection point of the tangents drawn
from A and C to that circle. Find the locus
of points M such that the points of tangency
of straight lines AM and CM with the cir-
cle belong to the open intervals AM and CM.

11. Given two circles. Find the locus of
points M such that the ratio of the lengths
of the tangents drawn from M to the given
circles is a constant k.

12. Let a straight line intersect one cir-
cle at points 4 and B and the other at
points C and D. Prove that the intersection
points of the tangents to the first circle
which are drawn at points A and B and the
tangents drawn to the second circle at
points C and D (under consideration are the
intersection points of tangents to distinct
circles) lie on a circle whose centre is found
on the straight line passing through the cen-
tres of the given circles.

13. Let us take three circles each of which
touch one side of a triangle and the exten-
sions of two other sides. Prove that the per-
pendiculars erected to the sides of the tri-
angle at the points of tangency of these cir-
cles intersect at the same point.

14. Given a triangle ABC. Consider all
possible pairs of points M, and M, such that

| AM, |+ |BM, |: | CM, | = | AM, |:
|BM,| |CM,|. Prove that the lines
5%
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M,M, pass through the same fixed point
in the plane.

15. The distances from a point M to the
vertices A, B, and C of a triangle are equal
to 1, 2, and 3, respectively, and from a
point M, to thesame verticesto 3, V15, 5,
respectively. Prove that the straight line
MM, passes through the centre of the cir-
cle circumscribed about the triangle ABC.

16. Let A,, B,, C, denote the feet of the
perpendiculars dropped from the vertices
A, B, and C of a triangle ABC on the line 1.
Prove that the perpendiculars dropped from
Ay, By, and C, on BC, CA, and AB, re-
spectively, intersect at the same point.

17. Given a quadrilateral triangle ABC
and an arbitrary point D. Let 4,, B,, and
C, denote the centres of the circles inscribed
in the triangles BCD, CAD, and ABD,
respectively. Prove that the perpendiculars
dropped from the vertices 4, B, and C
on B,C,, C,A,, and 4,B,, respectively, in-
tersect at the same point.

18. Given three pairwise intersecting cir-
cles. Prove that the three comman chords of
these circles pass through the same point.

19. Points M and N are taken on lines AB
and AC, respectively. Prove that the com-
mon chord of two circles with diameters
CM and BN passes through the intersection
point of the altitudes of the triangle ABC.

20. A circle and a point N are given in a
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plane. Let AB be an arbitrary chord of the
circle. Let M denote the point of intersec-
tion of the line AB and the tangent at the
point N to the circle circumscribed about
the triangle ABN. Find the locus of points
M.

21. A point A is taken inside a circle.
Find the locus of the points of intersection
of the tangents to the circle at the end points
of all possible chords passing through the
point 4.

22. Given numbers a, B, y, and k. Let
z, ¥, z denote the distances from a point M
taken inside a triangle to its sides. Prove
that the locus of points M such that az +
By + yz = k is either an empty set or
a line segment or coincides with the set of
all points of the triangle.

23. Find the locus of points M situated
inside a given triangle and such that the
distances from M to the sides of the given
triangle can serve as sides of a certain trian-
gle.

24. Let A,, B,, and C, be the midpoints
of the sides BC, CA, and AB of a triangle
ABC, respectively. Points 4,, B,, and C,
are taken on the perpendiculars dropped
from a point M on the sides BC, CA, and
AB, respectively. Prove that the perpen-
diculars dropped from A4,, B,, and C; on
the lines B,C,, C;A4,, and 4,B,, respective-
ly, intersect at the same point.

25, Given a straight line ! and three
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lines 1, l,, and /3 perpendicular to l. Let
A, B, and C denote three fixed points on
the line I/, 4, an arbitrary point on I, B,
an arbitrary point on l;, C, an arbitrary
point on lg. Prove that if at a certain arrange-
ment of the points 4,, B;, and C, the per-
pendiculars dropped from A, B, and C
on the lines B,C,, C,4,, and A4,B,, respec-
tively, intersect at one and the same point,
then these perpendiculars meet in the same
point at any arrangement of A4,, B,, C;.

26. Let AA,, BB,, CC, be the altitudes of
a triangle ABC, A,, B,, and C, be the pro-
jections of 4, B, and C on B,C,, C,4,,
and A,B,, respectively. Prove that the per-
pendiculars dropped from A4,, B,, and C,
on BC, CA, and AB, respectively, inter-
sect at the same point.

Ceva’s* and Menelaus™* Theorems.
Affine Problems

27. Prove that the area of a triangle whose
sides are equal to the medians of a given
triangle amounts. to 3/4 of the area of the
latter.

* Ceva, Giovanni (1647-1734). An [Italian
mathematician who gave static and geometric
proofs for concurrency of straight lines through
vertices of triangles.

** Menelaus of Alexandria (first cent. A.D.).
A geometer who wrote several books on plane and
spherical triangles, and circles.
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28. Given a parallelogram ABCD. A
straight line parallel to BC intersects AB
and CD at points E and F, respectively,
and a straight line parallel to AB intersects
BC and DA at points G and H, respectively.
Prove that the lines EH, GF, and BD either
intersect at the same point or are parallel.

29. Given four fixed points on a straight
line l: A, B, C, and D. Two parallel lines
are drawn arbitrarily through the points
A and B, another two through C and D.
The lines thus drawn form a parallelogram.
Prove that the diagonals of that parallelo-
gram intersect ! at two fixed points.

30. Given a quadrilateral ABCD. Let
O be the point of intersection of the diago-
nals AC and BD, M a point on AC such that

| AM | = |OC |, N a point on BD such
that |BN | = |0OD |, K and L the mid-
points of AC and BD. Prove that the lines
ML, NK, and the line joining the median
points of the triangles ABC and ACD inter-
sect at the same point.

31. Taken on the side BC of a triangle
ABC are points 4, and A, which are sym-
metric with respect to the midpoint of BC.
In similar fashion taken on the side AC are
points B, and B,, and on the side AB
points C; and C,. Prove that the triangles
A.B,C, and A,B,C, are equivalent, and
the centres of gravity of the triangles
A,B\C,, A,B,C,, and ABC are collinear.

32. Drawn through the intersection point
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M of medians of a triangle ABC is a
straight line intersecting the sides AB and
AC at points K and L, respectively, and
the extension of the side BC at a point P (C
lying between P and B). Prove that l 1‘; X =
4,1

IML| " IMP| ‘

33. Drawn through the intersection point
of the diagonals of a quadrilateral ABCD
is a straight line intersecting AB at a point
M and CD at a point N. Drawn through
the points M and N are lines parallel to
CD and AB, respectively, intersecting AC
and BD at points E and F. Prove that BE
is parallel to CF.

34. Given a quadrilateral ABCD. Taken
on the lines AC and BD are points K and
M, respectively, such that BK || AD and
AM || BC. Prove that KM || CD.

35. Let E be an arbitrary point taken on
the side AC of a triangle ABC. Drawn
through the vertex B of the triangle is an
arbitrary line . The line passing through the
point E parallel to BC intersects the line
l at a point IV, and the line parallel to 4B
2";1;; point M. Prove that AN is parallel to

* * X

36. Each of the sides of a convex quadri-
lateral is divided into (2n + 1) equal parts.
The division points on the opposite sides
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are joined correspondingly. Prove that the
area of the central quadrilateral amounts to
1/(2n + 1)2 of the area of the entire quadri-
lateral.

37. A straight line passing through the
midpoints of the diagonals AC and BC of a
quadrilateral ABCD intersects its sides AB
and DC at points M an N respectively.
Prove that Spcpy = Sup

38.In a parallelogram ABCD the ver-
tices 4, B, C, and D are joined to the mid-
points of the sides CD, AD, AB, and
BC, respectively. Prove that the area of
the quadrilateral formed by these line seg-
ments is 1/5 of the area of the parallelogram.

39. Prove that the area of the octagon
formed by the lines joining the vertices of a
parallelogram to the midpoints of the oppo-
site sides is 1/6 of the area of the parallelo-
gram.

40. Two parallelograms ACDE and
BCFG are constructed externally’ on the
sides AC and BC of a triangle ABC. When
extended, DE and FD intersect at a point
H. Constructed on the side AB is a paralle-
logram ABML, whose sides AL and BM are
equal and parallel to HC. Prove that the
parallelogram ABML is equivalent to the
sum of the parallelograms constructed on
AC and BC.

. Here and elsewhere, such a notation symbo-
lizes the area of the figure denoted by the subscript.
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41.Two parallel lines intersecting the larg-
er base are drawn through the end points
of the smaller base of a trapezoid. Those
lines and the diagonals of the trapezoid sepa-
rate the trapezoid into seven triangles and
one pentagon. Prove that the sum of the
areas of the triangles adjoining the lateral
sides and the smaller base of the trapezoid
is equal to the area of the pentagon.

42. In a parallelogram ABCD, a point E
lies on the line AB, a point F on the line
AD (B on the line segment AE, D on AF),
K being the point of intersection of the
lines ED and FB. Prove that the quadrilat-
erals ABKD and CEKF are equivalent.

®* % %

43. Consider an arbitrary triangle ABC.
Let 4,, B,, and C; be three points on the
lines BC, CA, and AB, respectively. Using
the following notation

R___lAcll'_lBAll L _1CB}
|CiB| | AC| 2V W
Rs_ i LACC, _sin LBAA, _ sin (CBB,
~ 8in £C,CB sin LA;AC  sin £LB,BA

prove that R = R*.

44. For the lines AA,, BB,, CC, to meet
in the same point -(or for all the three to be
parallel), it is necessary and sufficient that
R =1 (see the preceding problem), and of
three points 4,, B, C, the one or all the
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three lie on the sides of the triangle ABC,
and not on their extensions (Ceva's theorem).

45. For the points 4,, B,, C, to lie on the
same straight line, it is necessary and suffi-
cient that R = 1 (see Problem 43, Sec. 2),
and of three points 4,, B, C; no points or
two lie on the sides of the triangle ABC,
and not on their extensions (Menelaus’
theorem).

Remark. Instead of the ratio TCBT

the other two, it is possible to consider
the ratios of directed line segments which
AC,

are denoted by B and defined as fol-
AC, | 1AC I Ac
lows: TE |- |C1B| , CB is positive

when the vectors AC, and C,B are in the
same direction and

C B negative if these
vectors are in opposite directions.
(2 I; has sense only for points situated

on the same straight line.) It is easily

seen that the ratio gcl; is positive if the
1

point C, lies on the line segment AB and
the ratio is negative if C, is outside AB.
Accordingly, instead of R, we shall consid-
er the product of the ratios of directed line

segments which is denoted by R. Further,
we introduce the notion of directed angles.
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For instance, by X ACC, we shall understand
the angle through which we have to rotate
CA about C anticlockwise to bring the ray
CA into coincidence with the ray CC,.
Now, instead of R* we shall consider the
product of the ratios of the sines of directed

angles R*.
Now, we have to reformulate Problems

43, 44, and 45 of this Section’ in the fol-
lowing way:

43*. Prove that R = R*.
44*, For the lines 44,, BB,, CC, to meet
in the same point (or to be parallel), it is

necessary and sufficient that R =1
(Ceva’s theorem).

45*, For the points 4,, B,, C, to be col-
linear, it is necessary and sufficient that

R = — 1 (Menelaus’ theorem).

46. Prove that if three straight lines, pas-
sing through the vertices of a triangle, meet
in the same point, then the lines symmet-
ric to them with respect to the correspond-
ing angle bisectors of the triangle also
intersect at one point or are parallel.

47. Let O denote an arbitrary point in a
plane, M and N the feet of the perpendicu-
lars dropped from O on the bisectors of the
interior and exterior angle A of a triangle
ABC; P and Q are defined in a similar man-
ner for the angle B; R and T for the angle
C. Prove that the lines MN, PQ, and RT
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{nltersect at the same point or are paral-
el.

48. Let O be the centre of the circle in-
scribed in a triangle ABC, 4,, B, C,
the points of tangency of this circle with the
sides BC, CA, AB, respectively. Taken on
the rays OA,,! OB,, OC, are points L, M,
K, respectively, equidistant from the point
0. (a) Prove that the lines AL, BM, and
CK meet in the same point. (b) Let 4,,
B,, C, be the projections of A, B, C, re-
spectively, on an arbitrary line ! passing
through O. Prove that the lines A,L, B,M,
and C,K are concurrent (that is, intersect
at a common point).

49. For the diagonals AD, BE, and CF
of the hexagon ABCDEF inscribed in a cir-
cle to meet in the same point, it is necessa-
ry and sufficient that the equality | AB |X
|CD |- |EF| = |BC|-|DE| |FA|
be fulfilled.

50. Prove that: (a) the bisectors of the ex-
terior angles of a triangle intersect the ex-
tensions of its opposite sides at three points
lying on the same straight line; (b) the tan-
gents drawn from the vertices of the trian-
gle to the circle circumscribed about it in-
tersect its opposite sides at three collinear
points.

51. A circle intersects the side AB of a
triangle ABC at points C, and C,, the side
CA at points B, and B,, the side BC at
points A, and 4,. Prove that if the lines 44,,
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BB,, and CC; meet in the same point, then
the lines 44,, BB,, and CC, also intersect
at the same point.

52. Taken on the sides AB, BC, and CA
of a triangle ABC are points C,, 4,, and
B,. Let C, be the intersection point of the
lines AB and 4,B,, 4, the intersection point
of the lines BC and B,C,, B, the intersec-
tion point of the lines AC and A,C,.
Prove that if the lines 4A4,, BB,, and
CC, meet in the same point, then the
{)oints 4A,, B,, and C, lie on a straight
ine.

53. A straight line intersects the sides 4B,
BC, and the extension of the side AC of
a triangle ABC at points D, E, and F, re-
spectively. Prove that the midpoints of the
line segments DC, AE, and BF lie on a
straight line (Gaussian* line).

4. Given a triangle ABC. Let us define
a point 4, on the side BC in the following
way: A, is the midpoint of the side KL
of a regular pentagon MKLNP whose ver-
tices K and L lie on BC, and the vertices M
and N on AB and AC, respectively. De-
fined in a similar way on the sides AB and
AC are points C, and B,. Prove that the
lines A4,, BB,, and CC, intersect at the
same point.

* Gauss, Carl Friedrich (1777-1855). A Germ-
an mathematician.



Sec. 2. Selected Problems 79

55. Given three pairwise* nonintersect-
ing circles. Let us denote by A4,, A,, 4,
the three points of intersection of common
internal tangents to any two of them and by
B,, B,, B, the corresponding points of inter-
section of the external tangents. Prove that
these points are situated on four lines, three
on each of them (4,, 4,, B,; 4,, B,, Aj;
B,, 4,, A, By, B,, Bj).

56. Prove that if the straight lines pass-
ing through the vertices A, B, and C of a
triangle ABC parallel to the lines B,C,,
C.4,, and AB; meet in the same point,
then the straight lines passing through A,;
B,, and C, parallel to the lines BC, CA,
and AB also intersect at the same point (or
are parallel).

57. Given a triangle ABC, M being an ar-
bitrary point in its plane. The bisectors of
two angles formed by the lines AM and BM
intersect the line AB at points C, and C,
(C, lying on the line segment AB), deter-
mined similarly on BC and CA are points
A,, A,, and B,, B,, respectively. Prove
that the points 4,, 4,, B,, B,, C,, C, are
situated on four lines, three on each of them.

58. Points A;, B,, C, are taken on the
sides BC, CA, and AB of a triangle ABC,
respectively, and points 4,, B,, C, on the
sides B,C,, C,A,, A,B, of the triangle
A,B,C,. The lines AA,, BB,, CC, meet in

* No two of which intersect.
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the same point, and the lines 4,4,, B,B,,
C,C,, also intersect at one point. Prove that
the lines AA4,, BB,, CC, are either concur-
rent or parallel.

99. In a quadrilateral ABCD, P is the
intersection point of BC and 4D, Q that of
CA and BD, and R thatof AB and CD. Prove
that the intersection points of BC and
QR, CA and RP, AB and PQ are collinear.

60. Given an angle with vertex O. Points
A,, Ay, Ay, A, are taken on one side of the
angle and points B,, B,, B, B, on the other
side. The lines 4,B, and 4,B, intersect at
a point N, and the lines 4,B; and 4,B,
at a point M. Prove that for the points
O, N and M to be collinear, it is necessary
and sufficient that the following equality™
be fulfilled:

OB, OBy BB, _ 0A; 04y A4,
0B, " 0B, 'B,By _ 0A, 04, A, °

(See Remark to Problems 43-45).

61. Given a triangle ABC. Pairs of points
4, and A,, B, and B,, C, and C, are taken
on the sides BC, CA, and AB, respectively,
such that 44,, BB,, and CC, meet in the
same point, and A4y, BBy, and CC, also
intersect at one point. Prove that: (a) the
points of intersection of the lines 4,8, and
AB, B,C, and BC, C,4, and CA lie on a
stralght line /,. Just in the same way, the
points A4,, By, and C, determine a straight
line I3, (b) the point 4, the intersection point
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of the lines I, and I; and the intersection
point of the lines B,C, and B,C, lie on one
straight line; (c) the intersection points of
the lines BC and ByC,, CA and C;4,;, AB
and A,B, are collinear.

62. An arbitrary straight line intersects
the lines AB, BC, and CA at points K, M,
and L, respectively, and the lines A,B,,
B,C,, and C,A, at points K;, M,, and L,.
Prove that if the lines 4,M, B,L, and C,K
meet in the same point, then the lines A M,,
BL,, and CK, are also concurrent.

63. Given a triangle ABC and a point D.
Points E, F, and G are situated on the lines
AD, BD, and CD, respectively, K is the in-
tersection point of AF and BE, L the inter-
section point of BG and CF, M the intersec-
tion point of CE and AG, P, Q, and R
are the intersection points of DK and AB,
DL and BC, DM and AC. Prove that all
the six lines AL, EQ, BM, FR, CK, and
GP meet in the same point.

64. The points 4 and A, are symmetric
with respect to a line /, as are the pairs B
and B;, C and C,, and N is an arbitrary
point on /. Prove that lines AN, BN, CN
intersect, respectively, the lines B,C,,
C,A,, and 4,B, at three points lying on a
straight line.

65. Let 4,, 45, A, be three points situat-
ed on onestraight line, and A,, 4,4, on the
other. Prove that the three points at which
the pairs of lines 4,4, and 4,4, A,4,
6—01557
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and A A4,, A;A, and A A, intersect lie on
a straight line.

Loci of Points

66. Drawn through the intersection point
of two circles is a straight line intersecting
the circles for the second time at points A
and B. Find the locus of the midpoints of
AB.

67. Given a point A and a straight line /,
B being an arbitrary point on I. Find the
locus of points M such that ABM is a regu-
lar triangle.

68. Given a regular triangle ABC. Points
D and E are taken on the extensions of its
sides AB and AC beyond the points B and C,
respectively, such that |BD | |CE | =
| BC |2 Find the locus of the points of
intersection of the lines DC and BE.

69. Given three points 4, B, and C on a
straight line, and an arbitrary point D
in a plane not on the line. Straight lines par-
allel to AD and BD intersecting the lines
BD and AD at points P and Q are drawn
through the point C. Find the locus of the
feet M of perpendiculars dropped from C
on PQ, and find all the points D for which
M is a fixed point.

70. A point K is taken on the side AC
of a triangle ABC and point P on the me-
dian BD such that the area of the triangle
APK is equal to the area of the triangle
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BPC. Find the locus of the intersection
points of the lines AP and BK.

71. Two rays forming a given angle a are
passing through a given point O inside a
given angle. Let one ray intersect one side
of the angle at a point A, and the other
ray the other side of the angle at a point B.
Find the locus of the feet of the perpendicu-
lars dropped from O on the line 4B.

72. Two mutually perpendicular diame-
ters AC and BD are drawn in a circle. Let
P be an arbitrary point of the circle, and
let PA intersect BD at a point E. The
straight line passing through E parallel to
AC intersects the line PB at a point M.
Find the locus of points M.

73. Given an angle with vertex at A4
and a point B. An arbitrary circle passing
through the points 4 and B intersects the
sides of the angle at points C and D (differ-
ent from A4). Find the locus of the centres
of mass of triangles ACD.

74. One vertex of a rectangle is found at a
given point, two other vertices, not belong-
ing to the same side, lie on two given
mutually perpendicular straight lines. Find
the locus of fourth vertices of such rectan-
gles.

75. Let A be one of the two intersection
points of two given circles; drawn through
the other point of intersection is an arbitra-
ry line intersecting one circle at a point B
and the other at a point C, both points differ-

6w



84 Problems in Plane Geometry

ent from common points of these circles.
Find the locus of: (a) the centres of the cir-
cles circumscribed about the triangle ABC;
(b) the centres of mass of the triangles ABC;
(c) the intersection points of the altitudes of
the triangle ABC.

76. Let B and C be two fixed points of a
given circle and 4 a variable point of this
circle. Find the locus of the feet of the per-
pendiculars dropped from the midpoint of
AB on AC.

77. Find the’ locus of the intersection
points of the diagonals of rectangles whose
sides (or their extensions) pass through four
given points in the plane.

78. Given two circles touching each other
internally at a point 4. A tangent to the
smaller circle intersects the larger one at
points B and C. Find the locus of centres of
circles inscribed in triangles ABC.

79. Given two intersecting circles. Find
the locus of centres of rectangles with ver-
tices lying on these circles.

80. An elastic ball whose dimensions may
be neglected is found inside a round billi-
ard table at a point A different from the
centre. Indicate the locus of points 4 from
which this ball can be directed so that after
three successive boundary reflections, by-
passing the centre of the billiard table, it
finds itself at the point A.

81. Through a point equidistant from two
given parallel lines a straight line is drawn
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intersecting these lines at points M and N.
Find the locus of vertices P of equilateral
triangles MNP.

82. Given two points 4 and B and a
straight line l. Find the locus of the centres
of circles passing through A and B and inter-
secting the line I

83. Given two points O and M. Deter-
mine: (a) the locus of points in the plane
which can serve as one of the vertices of a
triangle with the centre of the circumscribed
circle at the point O and the centre of mass
at the point M; (b) the locus of points in
the plane which can serve as one of the
vertices of an obtuss triangle with the cen-
tre'of the circumscribed circle at the point O
and the centre of mass at the point M.

84. An equilateral triangle is inscribed
in a circle. Find the locus of intersection
points of the altitudes of all possible trian-
gles inscribed in the circle if two sides of
the triangles are parallel to those of the
given one.

85. Find the locus of the centres of all
possible rectangles circumscribed about a
given triangle. (A rectangle will be called
circumscribed if one of the vertices of the
triangle coincides with a vertex of the rec-
tangle, and two others lie on two sides of
the rectangle not including this vertex.)

86. Given two squares whose sides are
respectively parallel. Determine the locus
of points M such that for any point P of the
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first square there is a point Q of the second
one such that the triangle MPQ is equilate-
ral. Let the side of the first square be a
and that of the second square is b. For what
relationship between a and b is the desired
locus not empty?

87. Inside a given triangle, find the locus
of points M for each of which and for any
point N on the boundary of the triangle there
is a point P, inside the triangle or on its
boundary, such that the area of the triangle
MNP is not less than 1/6 of the area of the
given triangle.

88. Given two points 4 and 7. Find the
locus of points B such that there exists a
triangle A BC with the centre of the inscribed
circle at the point /, all of whose angles
are less than a (60° < a << 90°).

89. Points 4, B, and C lie on the same
straight line (B is found between A and
C). Find the locus of points M such that
cot LAMB + cot £BMC = k.

90. Given two points A and Q. Find the
locus of points B such that there exists an
acute triangle A BC for which Q is the centre
of mass.

91. Given two points A and H. Find
the locus of points B such that there is a
triangle ABC for which H is the point of in-
tersection of its altitudes, and each of
whose angles is greater than a (& << nt/4).

92. Given two rays in a plane. Find the
locus of points in the plane equidistant
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from these rays. (The distance from a point
to a ray is equal to the distance from
this point to the nearest point of the ray.)

93. Given an angle and a circle centred at
O inscribed in this angle. An arbitrary line
touches the circle and intersects the sides
of the angle at points M and N. Find the lo-
cus of the centres of circles circumscribed
about the triangle MON.

94. Given two circles and two points A
and B (one on either circle) equidistant
from the midpoint of the line segment join-
ing their centres. Find the locus of the mid-
points of line segments AB.

95. Given aline segment AB. Let us take
an arbitrary point M on AB and consider
two squares AMCD and MBEF situated on
the same side of AB. We then circumscribe
circles about these squares and denote the
point of their intersection by N (N is differ-
ent from M). Prove that: (a) AF and BC
intersect at N; (b) MN passes through a
fixed point in the plane. Find the locus of
the midpoints of line segments joining the
centres of the squares.

96. Given a circle and a point A. Let M
denote an arbitrary point on the circle.
Find the locus of points of intersection of
the midperpendicular to the line segment
AM and the tangent to the circle passing
through the point M.

97. Two circles touch each other at a
point A. One line passing through 4 inter-
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sects these circles for the second time at
points B and C, the other line—at points B,
and C, (B and B, lie on the same circle).
Find the locus of points of intersection of
the circles circumscribed about the trian-
gles AB,C and ABC,.

98. Find the locus of the vertices of right
angles of all possible right isosceles trian-
gles the end points of whose hypotenuses
lie on two given circles.

99. The sides of a given triangle serve as
diagonals of three parallelograms. The
sides of the parallelograms are parallel to
two straight lines I and p. Prove that the
three diagonals of these parallelograms,
different from the sides of the triangle, in-
tersect at a point M. Find the locus of
points M if l and p are arbitrary and mutually
perpendicular.

100. Let B and C denote two fixed points
of a circle, 4 being an arbitrary point of the
circle. Let H be the intersection point of the
altitudes of the triangle ABC and M be the
projection of H on the bisector of the angle
BAC. Find the locus of points M.

101. Given a triangle ABC. Let D be an
arbitrary point on the line BC. Straight
lines passing through D parallel to AB and
AC intersect AC and AB at points E and
F, respectively. Find the locus of the cen-
tres of circles passing through the points
D, E, and F.

102. Given a regular triangle ABC.
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Find the locus of points M inside the trian-
gle such that £ MAB + £ MBC +
ZMCA = n/2.

103. A point M is taken inside a triangle
such that there is a straight line ! passing
through M and separating the triangle into
two parts so that in the symmetric mapping
with respect to ! one part turns out to be in-
side, or at the boundary of, the other. Find
the locus of points M.

Triangles. A Triangle and a Circle

104. From the vertex 4 of a triangle ABC,
perpendiculars AM and AN are dropped on
the bisectors of the exterior angles B and
C of the triangle. Prove that the line seg-
ment MN is equal to half the perimeter of
the triangle ABC.

105. An altitude BD is drawn in a trian-
gle ABC, AN is perpendicular to AB, CM
is perpendicular to BC, and |AN | =
IDC|, |CM| = |AD|. Prove that
M and N are equidistant from the vertex
B.

106. Prove that for any right triangle the
radius of the circle which touches internal-
ly the circumscribed circle and the legs is
equal to the diameter of the inscribed cir-
cle.

107. Prove that if one of the sides of
a triangle lies on a fixed line in a plane and if
the point of intersection of the altitudes coin-
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cides with the fixed point, then the circle
circumscribed about this triangle also
passes through the fixed point.

108. Given a triangle ABC. Let A,, B,and
C, be the points of the circle circumscribed
about ABC and diametrically opposite
to the vertices 4, B, and C, respectively.
Straight lines parallel to BC, CA, and AB
are drawn through 4,, B,, and C,, respec-
tively. Prove that the triangle formed by
these lines is homothetic to the triangle
ABC, with the ratio of similitude 2 and
centre at the intersection point of the al-
titudes of the triangle ABC.

109. Prove that the projections of the foot
of the altitude of a triangle on the sides
enclosing this altitude and on the two other
altitudes lie on one straight line.

110. In a triangle ABC, a point D
is taken on the side AB extended beyond
the point B such that | BD | = | CB |
In the same manner, taken on the extension
of the side CB beyond the point B is a
point F such that | BF | = | AB |. Prove
that the points A, C, D, and F lie on the
same circle whose centre is found on the
circle circumscribed about the triangle
ABC.

111. Three equal circles pass through a
point H. Prove that H is the intersection
point of the altitudes of the triangle whose
vertices coincide with three other points
of pairwise intersection of the circles.
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112. Let P denote an arbitrary point of
the circle circumscribed about a rectangle.
Two straight lines passing through the
point P parallel to the sides of the rectan-
gle intersect the sides of the rectangle or
their extensions at points K, L, M, and N.
Prove that N is the intersection point of
the altitudes of the triangle KLM. Prove
also that the feet of the altitudes of the
triangle KLM, different from P, lie on the
diagonals of the rectangle.

113. Drawn in a triangle ABC are the
angle bisectors AD, BE, and CF. The straight
line perpendicular to AD and passing
through the midpoint of AD intersects AC
at a point P. The straight line perpendicu-
lar to BE and passing through the midpoint
of BE intersects AB at a point Q. Finally,
the strgight line perpendicular to CF and
passing through the midpoint of CF inter-
sects CB at a point R. Prove that the tri-
angles DEF and PQR are equivalent.

114, In an isosceles triangle ABC
(|4AB | = | BC |), D is the midpoint of
AC, E the projection of D on BC, F the mid-
point of DE. Prove that the lines BF and
AE are mutually perpendicular.

115. A circle inscribed in a triangle ABC
touches the sides AB and AC at points C,
and B,, and the circle touching the side BC
and the extensions of AB and AC touches
the lines AB and AC at points C, and
B,. Let D be the midpoint of the side BC.
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The line AD intersects the lines B,C, and
B,C, at points E and F. Prove that BECF
is a- parallelogram.

116. A bisector AD of an interior angle is
drawn in a triangle ABC. Let us construct
a tangent ! to the circumscribed circle at
a point A. Prove that the straight line
drawn through D parallel to I touches the
inscribed circle of the triangle ABC.

117. A straight line is drawn in a triangle
ABC to intersect the sides AC and BC at
points M and N such that | MN | =
|AM | + |BN | Prove that all such
lines touch the same circle.

118. Prove that the points symmetric to
the centre of the circle circumscribed about
a triangle with respect to the midpoints of
i%s medians lie on the altitudes of the trian-
gle.

119. Prove that if the altitude of a triangle
is V2 times the radius ofi the circumscribed
circle, then the straight line joining the
feet of the perpendiculars dropped from the
foot of this altitude on the sides enclosing
it passes through the centre of the circum-
scribed circle.

120. Let ABC be a right triangle (£ C =
90°), CD its altitude, K a point in the
plane such that | AK | = | AC | Prove
that the diameter of the circle circumscribed
about the triangle ABK passing through
gle vertex A is perpendicular to the line

K.
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121. In a triangle ABC a line is drawn
through the vertex A parallel to BC; a
point D is taken on this line such that
|AD | = |AC | + | AB | ; the line seg-
ment DB intersects the side AC at a point
E. Prove that the line drawn through the
point E parallel to BC passes through the
centre of the circle inscribed in the trian-
gle ABC.

122, Two circles pass through a vertex of
an angle and a point lying on the angle
bisector. Prove that the segments of the
sides of the angle enclosed between the cir-
cles are congruent.

123. Given a triangle ABC and a point D.
The line AD, BD, and CD for the second
time intersect the circle circumscribed about
the triangle ABC at points A,, B,, and
C,, respectively. Consider two circles: the
first passes through A and 4,, the second
through B and B,. Prove that the end
points of the common chord of these two
circles and the points C and C, lie on the
same circle.

124. Three parallel lines !, l,, and [,
are drawn through the vertices A, B, and C
of a triangle ABC, respectively. Prove
that the lines symmetric to I, l,, and I,
with respect to the bisectors of the angles
A, B, and C, respectively, intersect at a
point situated on the circle circumscribed
about the triangle ABC.

125. Prove that if M is a point inside a
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triangle ABC and the lines AM, BM,
and CM pass, respectively, through the cen-
tres of the circles circumscribed about the
triangles BMC, CMA, and AMB, then M
is the centre of the circle inscribed in the
triangle ABC.

126. In a triangle ABC points 4,, B,
and C, are taken on the sides BC, C4, and
AB, respectively. Let M be an arbitrary
point in the plane. The straight line BM
intersects for the second time a circle pass-
ing through 4,, B, and C, at a point B,,
CM intersects the circle described through
A,, B,, and C at a point C,, and AM—
the circle passing through 4, B,, and C,
at a point 4,. Prove that the points 4,,
B,, C,, and M lie on the same circle.

127. Let A, be a point symmetric to the
point of tangency of the circle inscribed in
a triangle ABC to the side BC with respect
to the bisector of the angle 4. Points B,
and C, can be determined in a similar way.
Prove that the lines 4A4;, BB,, CC,, and
the line passing through the centres of the
circles inscribed in and circumscribed about
the triangle ABC meet in the same point.

128. Let AA,, BB,, CC, be the altitudes
of a triangle ABC. A straight line perpen-
dicular to AB intersects AC and A,C, at
points K and L. Prove that the centre of
the circle circumscribed about the triangle
KLB, lies on the straight line BC.

129. Four circles of equal radius pass
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through a point A. Prove that three line
segments whose end points are different
from A and are the points of intersection of
two circles (the opposite end points of each
line segment do not belong to one circle)
meet in the same point.

130. Given a right triangle ABC with a
right angle C. Let O be the centre of the cir-
cumscribed circle, M the point of tangency
of the inscribed circle and the hypotenuse.
Let a circle centred at M passing through O
intersect the bisectors of the angles 4 and
B at points K and L different from O. Prove
that K and L are the centres of the cir-
clesinscribed in the triangles ACD and BCD,
respectively, where CD is the altitude of the
triangle ABC.

131. Prove that in a triangle ABC the
bisector of the angle 4, the midline parallel
to AC, and the straight line joining the
points of tangency of the inscribed circle
with the sides CB and CA intersect at the
same point.

132. Given three straight lines. One of
them passes through the feet of two altitudes
of a triangle, the second line through the
end points of two of its angle bisectors, and
the third through two points at which the
inscribed circle touches the triangle sides
(all the points are situated on two sides of
the triangle). Prove that the three straight
lines intersect at one point.

133. In a triangle ABC points 4,, B,,
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and C, are taken on the sides BC, CA4, and
AB, respectively, such that the lines 44,,
BB,, and CC, meet in the same point. Prove
that if A4, is the bisector of the angle
B,A,C,, then AA, is the altitude of the tri-
angle ABC.

134. Taken on the sides BC, CA, and AB
of a triangle ABC are points A4,, B,,
and C,, respectively, such that £ 44,C =
£ BB,A = £ CC,B (the angles are measured
in the same direction). Prove that the
centre of the cirle circumscribed about the
triangle bounded by the lines AA,, BB,,
and CC,; coincides with the intersection
point of the altitudes of the triangle 4BC.

135. The vertices of -a triangle A4,B,C,
lie on the straight lines BC, CA, and 4B
(4y0n BC, B, on CA, C, on AB). Prove that
if the triangles ABC and A,B,C, are simi-
lar (the vertices 4 and A4,, B and B,, C and
C, are similar pairwise), then the intersec-
tion point of the altitudes of the triangle
A,B,C, is the centre of the circle circum-
scribed about the triangle ABC. Is the
converse true?

136. Two points are taken on each side of
a triangle such that all the six line segments
joining each point to the opposite vertex are
congruent. Prove that the midpoints of the
six segments lie on the same circle.

137. In a triangle ABC, line segments
|AM | = | CN | = p are laid off on the
rays AB and CB, where p is the half-pe-
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rimeter of the triangle (B lies between
A and M, and between C and N). Let K
be a point on the circle circumscribed about
the triangle ABC and diametrically oppo-
site to the point B. Prove that the perpendic-
ular dropped from K on MN passes through
the centre of the inscribed circle.

138. From a point on the circle circum-
scribed about an equilateral triangle ABC
straight lines are drawn parallel to BC,
CA, and AB which intersect CA, AB, and
BC at points M, N, and Q, respectively.
Prove that M, N, and Q lie on a straight line.

139. Prove that three lines which are sym-
metric to an arbitrary straight line passing
through the intersection point of the alti-
tudes of a triangle with respect to the sides of
the triangle are concurrent.

140. Let M be an arbitrary point in the
plane, G the centre of mass of a triangle
ABC. Then the following equality is fulfil-
led: 3| MG |2 = |MA |2+ |MB|% +
|MC|*—5(IAB ' + | BC [P + | CA T)
(Leibniz’'s theorem).

141. Let ABC be a regular triangle with
side a, and M some point in the plane
found at a distance d from the centre of the
triangle ABC. Prove that the area of the

triangle whose sides are equal to the line
segments MA, MB, and MC can be ex-

pressed by the formula § = —‘1121 | a®— 3d?|.

7-01557
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142. Given two regular triangles: ABC
and A,B,C,. Find the locus of points M
such that the two triangles formed by the
line segments MA, MB, MC and MA,,
MB,, MC, are equivalent.

143. Given a triangle ABC. Line segments
AK and CM are laid off on the rays AB and
CB, respectively, which are equal to AC.
Prove that the radius of the circle circum-
scribed about the triangle BKM is equal
to the distance between the centres of the
circles circumscribed about and inscribed
in the triangle ABC, and that the straight
line KM is perpendicular to the line join-
ing the centres of the inscribed and cir-
cumscribed circles.

144. A straight line is drawn through a
vertex of a triangle perpendicular to the
line joining the centres of the inscribed and
circumscribed circles. Prove that this line
and the sides of the given triangle form two
triangles for which the difference between
the radii of the circumscribed circles is
equal to the distance between the centres
of the circles inscribed in and circumscribed
about the original triangle.

145. Prove that if the lengths of the sides
of a triangle form an arithmetic progression,
then: (a) the radius of the inscribed circle is
equal to 1/3 of the altitude dropped on the
middle-length side; (b) the line joining the
centre of mass of the triangle and the centre
of the inscribed circle is parallel to the mid-
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dle-length side; (c) the bisector of the in-
terior angle opposite to the middle-length
side is perpendicular to the line joining the
centres of the inscribed and circumscribed
circles; (d) for all the points of this angle
bisector, the sum of distances to the sides
of the triangle is constant; (e) the centre of
the inscribed circle, the midpoints of the
largest and smallest sides, and the vertex
of the angle formed by them lie on the same
circle.

146. Let K denote the midpoint of the
side BC of a triangle ABC, M the foot of
the altitude dropped on BC. The circle in-
scribed in the triangle A BC touches the side
BC at a point D; the escribed circle touch-
ing the extensions of AB and AC and the
side BC touches BC at a point E. A common
tangent to these circles, which is different
from the sides of the triangle, intersects the
circle passing through K and M at points
F and G. Prove that the points D, E, F,
and G lie on the same circle.

* % X

147. Prove that the centre of mass of a
triangle, the intersection point of the alti-
tudes, and the centre of the circumscribed
circle lie on a straight line (Euler’s* line).

* Euler, Leonhard (1707-1783). A Swiss math-
ematician.

T



100 Problems in Plane Geometry

148. What sides are intersected by Euler’s
line in an acute and an obtuse triangles?

149. Let K denote a point symmetric to
the centre of the cirle circumscribed about a
triangle ABC with respect to the side BC.
Prove that the Euler line of the triangle
ABC bisects the line segment AK.

150. Prove that there is a point P on the
Euler line of a triangle ABC such that the
distances from the centres of mass of the
triangles ABP, BCP, and CAP to the ver-
tices C, A, and B, respectively, are equal.

151. Let P be a point inside a triangle
ABC such that each of the angles APB,
BPC, and CPA is equal to 120° (any inte-
rior angle of the triangle ABC is assumed to
be less than 120°). Prove that the Euler
lines of the triangles APB, BPC, and CPA
meet in the same point. "

Remark. When solving this problem use
the result of Problem 296 of this section.

152. Prove that the straight line joining
the centres of the circles inscribed in and
circumscribed about a given triangle is the
Euler line of the triangle with vertices at
the points of tangency of the inscribed circle
with the sides of the given triangle.

® %x *

153. Prove that the feet of the perpendicu-
lars from an arbitrary point of the circle
circumscribed about the triangle upon the



Sec. 2. Selected Problems 101

sides of the triangle are collinear (Simson’s*
line).

154. Prove that the angle between two Sim-
son’s lines corresponding to two points of
a circle is measured by half the arc between
these points.

155. Let M be a point on the circle circum-
scribed about a triangle ABC. A straight
line passing through M and perpendicular
to BC intersects the circle for the second time
at a point N. Prove that the Simson line
corresponding to the point M is parallel to
the line AN.

156. Prove that the projection of the
side AB of a triangle ABC on the Simson
line, corresponding to the point M, is equal
to the distance between the projections of
the point M on the sides AC and BC.

157. Let AA,, BB,, CC, be the altitudes
of a triangle ABC. The lines AA4,, BB,,
CC, intersect the circle circumscribed about
the triangle ABC for the second time at
points 4,, B,, C,, respectively. The Simson
lines corresponding to the points 4,, B,,
C, form a triangle A,B,C; (4, is the inter-
section point of the Simson lines correspond-
ing to the points B, and C,, and so forth).
Prove that the centres of mass of the trian-
gles A,B,C, and AjB,C; coincide, while
the lines A,4,, B,B,;, and C,C, meet in
the same point.

* Robert Simson (1687-1768). A Scottish math-
ematician,
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158. Let A,, B,, and C,; be points on the
circle circumscribed about a triangle ABC
such that WAA, + UBB, + UCC, =
2knt  (all the arcs are measured in the
same direction, % an integer). Prove that the
Simson lines for the triangle ABC corre-
sponding to the points 4,, By, and C; meet
in the same point.

159. Prove that the tangent to a parabola
at its vertex is a Simson line for a triangle
formed by any three intersecting tangents to
the same parabola.

* % *

160. Prove that the midpoints of the
sides of a triangle, the feet of its altitudes,
and the midpoints of the line segments be-
tween the vertices and the intersection point
of the altitudes all lie on a circle called the
nine-point circle.

161. Let H denote the intersection point
of the altitudes of a triangle, D the mid-
point of a side, and K one of the intersection
points of the line HD and the circum-
scribed circle, D lying between H and K.
Prove that D is the midpoint of the line
segment HK.

162. Let M denote the median ‘point of a
triangle, E the foot of an altitude, F one
of the points of intersection of the line
ME and the circumscribed circle, M lying
between E and"“F. Prove that | FM | =
2| EM |
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163. The altitude drawn to the side BC
of a triangle ABC intersects the circum-
scribed circle at a point 4;. Prove that the
distance from the centre of the nine-point

circle to the side BC is equal to % | A4, |

164. In a triangle ABC, AA, is an alti-
tude, H is the intersection point of the al-
titudes. Let P denote an arbitrary point of
the circle circumscribed about the triangle
ABC, M a point on the line HP such that
| HP | | HM | = | HA, | | HA |
(H lies on the line segment MP if the trian-
gle ABC is acute-angled and outside if
it is obtuse-angled). Prove that M lies on
the nine-point circle of the triangle ABC.

165. In a triangle ABC, BK is the alti-
tude drawn from the vertex B to the side
AC, BL the median drawn from the same
vertex, M and N the projections of the
points A and C on the bisector of the angle
B. Prove that all the points X, L, M,
and N lie on a circle whose centre is located
on the nine-point circlel of the triangle
ABC.

166. Let H be the intersection point of
the altitudes of a triangle, and F an arbitra-
ry point of the circumscribed circle. Prove
that the Simson line corresponding to the
point F passes through one of the intersec-
tion points of the line FH and the nine-point
circle (see Problems 153 and 159 of the
section).
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167. Let ! denote an arbitrary line passing
through the centre of the circle circum-
scribed about the triangle ABC, and let 4,,
B,, and C, be the projections of 4, B, and
C on l. Three straight lines are drawn:
through 4, a line perpendicular to BC,
through B; a line perpendicular to AC,
and through C, a line perpendicular to 4B.
Prove that these three lines meet in a point
situated on the nine-point circle of the
triangle ABC.

168. Given a triangle ABC. AA,, BB,,
and CC, are its altitudes. Prove that Eu-
ler’s lines of the triangles AB,C,, A,BC,,
and A,B,C intersect at a point P of the
nine-point circles such that one of the line
segments PA,, PB,, PC, is equal to the sum
of the two others (T'hebault’s* problem).

169. There are three circles, each of which
passes through a vertex of a triangle and
through the foot of the altitude drawn from
this vertex and touches the radius of the
circle circumscribed about the triangle
which is drawn to this vertex. Prove that
all the circles intersect at two points situat-
ed on Euler’s line of the given triangle.

170. Consider three circles each of which
passes through one of the vertices of a tri-
angle and through the feet of two angle
bisectors (interior and exterior) emanating

* Thebault, Victor. A modern French geom-
eter,
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from this vertex (these circles are called
Apollonius’'s* circles). Prove that: (a) these
three circles intersect at two points (M,
and M,); (b) the line M, M, passes through
the centre of the circle circumscribed about
the triangle; (c) the feet of the perpendicu-
lars from the points M, and M, upon the
sides of the triangle serve as vertices of two
regular triangles.

171. A straight line symmetric to a me-
dian of a triangle about the bisector of the
angle opposite the median is called a syme-
dian. Let the symedian emanating from the
vertex B of a triangle ABC intersect AC
at point K. Prove that |AK | | KC | =
|AB |%2: | BC | 2.

172. Let D be an arbitrary point on the
side BC of a triangle ABC. Let E and F
be points on the sides AC and AB such that
DE is parallel to AB, and DF is parallel to
AC. A circle passing through D, E, and F
intersects for the second time BC, CA, and
AB at points D,, E,, and F,, respectively.
Let M and N denote the intersection points
of DE and F.D,, DF and D,E,, respective-
ly. Prove that M and N lie on the symedian
emanating from the vertex A. If D coin-
cides with the foot of the symedian, then the
circle passing through D, E, and F touches

* Apollonius of Perga (circa 255-170 B.C.).
A great Greek geometer who carried on the work
of Euclid.
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the side BC. (This circle is called Tucker's*
circle.)

173. Prove that the common chords of
the circle circumscribed about a given tri-
angle and Apollonius’ circles are the three
symedians of this triangle (see Problems 170
and 171 of the section).

* X Xk

174. Given a trapezoid ABCD whose lat-
eral side CD is perpendicular to the bases
AD and BC. A circle of diameter AB in-
tersects AD at a point P (P is different
from A). The tangent to the circle at the
point P intersects CD at a point M. Another
tangent is drawn from M to the circle
touching it at a point Q. Prove that the
straight line BQ bisects CD.

175. Let M and N denote the projections
of the intersection point of the altitudes of a
triangle ABC on the bisectors of the inte-
rior and exterior angles B. Prove that the
line MN bisects the side AC.

176. Given a circle and two points A and
B on it. The tangents to the circle which
pass through 4 and B intersect each other at a
point C. A circle passing through C touches
the line AB at a point B and for the sec-

* Tucker, Howard Gregory (b. 1922). A modern
American mathematician.
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ond time intersects the given circle at a
point M. Prove that the line A M bisects the
line segment CB.

177. Drawn to a circle from a point 4,
situated outside this circle, are two tangents
AM and AN (M and N the points of tangen-
cy) and a secant intersecting the circle at
points K and L. An arbitrary straight line
l is drawn parallel to AM. Let KM and LM
intersect ! at points P and Q, respectively.
Prove that the line M N bisects the line seg-
ment PQ.

178. A circle is inscribed in a triangle
ABC. Its diameter passes through the point
of tangency with the side BC and intersects
the chord joining two other points of tan-
gency at a point N. Prove that AN bisects
BC

179. A circle is inscribed in a triangle
ABC. Let M be the point at which the cir-
cle touches the side 4C and MK be the di-
ameter. The line BK intersects AC at a
point N. Prove that | AM | = | NC |

180. A circle is inscribed in a triangle
ABC and touches the side BC at a point M,
MK being its diameter. The line A K inter-
sects the circle at a point P. Prove that the
tangent to the circle at the point P bisects
the side BC.

181. A straight line I touches a circle at
a point A. Let CD be a chord parallel to [
and B an arbitrary point on the line L.
The lines CB and DB for the second time
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intersect the circle at points L and K|, respec-
tively. Prove that the line LK bisects the
line segment AB.

182. Given two intersecting circles. Let
A be one of the points of their intersection.
Drawn from an arbitrary point lying on the
extension of the common chord of the given
circles to one of them two tangents touching
it at points M and N. Let P and Q denote
the points of intersection (distinct from A)
of the straight lines M A and VA and the sec-
ond circle, respectively. Prove that the
line MN bisects the line segment PQ.

183. In a triangle A BC, constructed on the
altitude BD as diameter is a circle inter-
secting the sides AB and BC at points K
and L, respectively. The lines touching the
circle at points K and L intersect at a point
M. Prove that the line BM bisects the side
AC.

184. A s raxght line ! is perpendicular to
the line segment AB and passes through B.
A circle centred on ! passes through 4 and
intersects I at points C and D. The tangents
to the circle at the points A and C intersect
at N. Prove that the line DN bisects the
line segment AB.

185. A circle is circumscribed about a
triangle ABC. Let N denote the intersection
point of the tangents to the circle which
pass through the points B and C. M is a
point of the circle such that AM is paral-
lel to BC and K is the intersection point
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of MN and the circle. Prove that K4 bi-
sects BC.

186. Let A denote the projection of the
centre of a circle on a straight line I. Two
points B and C are taken on this line such
that |AB | = | AC |. Two arbitrary se-
cants each intersecting the circle at pairs of
points, P, Q and M, N, respectively are
drawn through B and C. Let the lines NP
and MQ intersect the line ! at points R
andSS, respectively. Prove that | R4 | =
|AS |

187. Given a triangle ABC. A,, B,, C,
are the midpoints of the sides BC, CA and
AB; K and L are the feet of the perpendicu-
lars from the vertices B and C on the
straight lines A,C, and A,B,, respectively;
O is the centre of the nine-point circle.
Prove that ‘the line 4,0 bisects the line
segment KL.

® % ¥

188. Let the points 4,, B,, C; be symmet-
ric to a point P with respect to the sides
BC, CA, and AB of a triangle ABC. Prove
that (a) the circles circumscribed about
the triangles A,BC, AB,C, and ABC, have
a common point; ( b) the circles circum-
scribed about the triangles 4,B,C, A,BC,,
and AB,C, have a common point.

189. Let AB be the diameter of a semi-
circle and M a point on the diameter AB.
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Points C, D, E, and F lie on the semicircle
so that LAMD = LEMB, /ZCMA =
LFMB. Let P denote the intersection
point of the lines CD and EF. Prove that
the line PM is perpendicular to AB.

190. In a triangle ABC, the perpendic-
ular to the side AB at its midpoint D in-
tersects the circle circumscribed about the
triangle ABC at a point E (C and £ lie on
the same side of AB), F is the projection
of E on AC. Prove that the line DF bisects
the perimeter of the triangle ABC, and that
three such lines constructed for each side
of the triangle are concurrent.

191. Prove that a straight line dividing
the perimeter and area of a triangle in
the same ratio passes through the centre
of the inscribed circle.

192. Prove that three lines passing
through the vertices of a triangle and bisect-
ing its perimeter intersect at one point
(called Nagell's* point), Let M denote the
centre of mass of the triangle, I the centre
of the inscribed circle, S the centre of the
circle inscribed in the triangle with vertices
at the midpoints of the sides of the given
triangle. Prove that the points N, M, I,
and S lie on a straight line and | MN | =
21IM |, |IS|=|SN |

* Nagell, Trygve (1895-1958). A Norwegian
mathematician.
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193. Let a, b, and ¢ denote the sides of
a triangle and a +b + ¢ =2p. Let G
be the median point of the triangle and
O, I and I, the centres of the circumscribed,
inscribed, and escribed circles, respective-
ly (the escribed circle touches the side
BC and the extensions of the sides AB
and AC), R, r, and r, being their radii,
respectively. Prove that the following re-
lationships are valid:

(a) a%4-b2-4-c2=2p>—2r2—8Rr;
(b) | OG [2= R*— & (a?+ b2+ ¢2);
(©) 16 |*= 5 (p*-+5r2—16Rr);

(d) | OI |2= R2—2Rr (Euler);
(e) |01, |>=R?+2Rr,;
(®) [, |>=4R (ro—T).

194. Let BB, and CC, denote the bisec-
tors of the angles B and C, respectively,
of a triangle ABC. Using the notation of
the preceding problem, prove that |B,C, |=

abe IOI l
(b+a)c+a) R at

195. Prove that the points which are
symmetric to the centres of the escribed
circles with respect to the centre of the
circumscribed circle lie on a circle which
is concentric with the inscribed circle
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whose radius is equal to the diameter of the
circumscribed circle.

196. Given a triangle ABC. Prove that
the sum of the areas of the three triangles
the vertices of each of which are the three
points of tangency of the escribed circle
with the corresponding side of the triangle
ABC and the extensions of two othér sides
is equal to twice the area of the triangle
ABC plus the area of the triangle with
vertices at the points of tangency of the
circle inscribed in AABC.

197. Find the sum of the squares of the
distances from the points at which the cir-
cle inscribed-in the given triangle touches
its sides to-the centre of the circumscribed
cifcle if the radius of the inscribed circle
ig r, and that of the circumscribed circle
is-R.

198. A circle is described through the
feet of the angle bisectors in a triangle ABC.
Prove that one of the chords formed by in-
tersection of the circle with the sides of
the triangle is equal to the sum of the other
two chords.

199. Let AA,, BB,, and CC, be the angle
bisectors of a triangle ABC, L the point of
intersection of the lines A4, and B,C,,
and K the point of intersection of the
lines CC, and A,B,. Prove that BB, is
the bisector of the angle LBK.

200. In a triangle ABC, points K and
L are taken on the sides 4B and BC such
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that |AK | = |KL | = |LC|. Through
the point of intersection of the lines AL
and CK a straight line is drawn parallel
to the bisector of the angle B to intersect
the line AB at a point M. Prove that
|AM | = | BC |.

201. In a triangle ABC, the bisector of
the angle B intersects at a point M the line
passing through the midpoint of AC and
the midpoint of the altitude drawn to AC;
N is the midpoint of the bisector of the
angle B. Prove that the bisector of the
angle C is also the bisector of the angle
MCN.

202. (a) Prove that if a triangle has two
equal angle bisectors then such a triangle
is isosceles (Steiner’s theorem).

(b) Prove that if in a triangle ABC, the
bisectors of the angles adjacent to the an-
gles 4 and C are equal and are either both
inside or both outside the angle ABC, then
| AB | = | BC |. Is it true that, if a trian-
gle has two equal exterior angle bisectors,
then the triangle is isosceles?

203. Given a triangle. The triangle form-
ed by the feet of its angle bisectors is known
to be isosceles. Will the statement that the
given triangle is also isosceles be true?

* Steiner, Jakob (1796-1863). A Swiss mathem-
atician.

801557
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* %k %

204. Let ABCDEF be an inscribed hexa-
gon. Let K denote the point of intersection
of AC and BF, and L the point of intersec-
tion of CE and FD. Prove that the diagonals
AD and BE and the line KL intersect at
the same point (Pascal’s theorem).

205. Given a triangle ABC and a point
M. A straight line passing through the
point M intersects the lines AB, BC, and
CA at points C,, 4,, and B,, respectively.
The lines AM, BM, and CM intersect the
circle circumscribed about the triangle ABC
at points 4,, B,, and C,, respectively. Prove
that the lines 4,4,, B,B,, and C,C, inter-
sect at a point situated on the circle cir-
cumscribed about the triangle ABC.

206. Two mutually perpendicular lines
are drawn through the intersection point
of the altitudes of a triangle. Prove that
the midpoints of the line segments inter-
cepted by these lines on the sides of the
triangle (that is, on the lines forming the
triangle) lie on a straight line.

* % %

207. Given a triangle ABC and an ar-
bitrary point P. The feet of the perpendic-
ulars dropped from the point P on the
sides of the triangle ABC serve as the ver-
tices of the triangle 4,B,C,. The vertices
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of the triangle 4,B,C, are found at the
intersection points (distinct from A4, B, C)
of the straight lines AP, BP, and CP
with the circle circumscribed about the
triangle ABC. Prove that the triangles
A,B,C, and A,B,C, are similar. How many
points P are there for a scalene triangle
ABC such that the corresponding triangles
AB,C, and 4,B,C, are similar to the trian-
gle ABC?

208. Let A4,, B,, C, denote the feet of
the perpendiculars dropped from an arbit-
rary point M on the sides BC, CA, and
AB of a triangle ABC, respectively. Prove
that three straight lines passing through
the midpoints of the line segments B,C,
and MA, C,A, and MB, A,B, and MC
intersect at one point.

209. Let S be the area of a given triangle,
and R the radius of the circle circumscribed
about this triangle. Let, further, S, denote
the area of the triangle formed by the feet
of the perpendiculars dropped on the sides
of the given triangle from a point located
at a distance d from the centre of the cir-
cumscribed circle. Prove that S, =

% | '1 — %‘ (Euler’s theorem).

210. Prove that if 4, B, C, and D are
arbitrary points in the plane, then the
four circles each of which passes through
the midpoints either of the line segments
AB, AC, and AD% or BA, BC, and BD;

8*
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or CA, CB, and CD; or DA, DB, and DC
have a common point.

241. Given a triangle ABC and an ar-
bitrary point D in the plane. The triangle
formed by the feet of the perpendiculars
dropped from D on the sides of the triangle
ABC will be called the pedal triangle of the
point D with respect to the triangle ABC, and
the circle circumscribed about the pedal
triangle, the pedal circle. Let D, denote
the point of intersection of the lines sym-
metric to the lines AD, BD, and CD with
respect to the bisectors of the angles 4, B,
and C, respectively, of the triangle ABC.
Prove that the pedal circles of the points D
and D, coincide.

212. Consider four points in the plane no
three of which are collinear. Prove that
the four pedal circles each of which cor-
responds to one of the points under consider-
ation with respect to the triangle whose
vertices are the remaining three points
have a common point.

213. A straight line passing through the
centre of the circle circumscribed about a
triangle ABC intersects AB and AC at
points C, and B,;, respectively. Prove
that the circles constructed on BB, and CC,
as diameters intersect at two points one of
which lies on the circle circumscribed about
the triangle ABC, the other on the nine-
point circle of the triangle ABC.
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Quadrilaterals

214. Given an inscribed quadrilateral
ABCD. The circle diameter is AB. Prove
that the projections of the sides AD and BC
on the line CD are equal in length.

215. In a convex quadrilateral ABCD:
O is the point of intersection of its diago-
nals, E, F, and G are the projections of B,
C, and O on AD. Prove that the area of
the quadrilateral is equal to [4D| 2' fgé'l Cr 1,

216. Let ABCD be a convex quadrilater-
al. Consider four circles each of which
touches three sides of this quadrilateral.

(a) Prove that the centres of these circles
lie on one circle.

(b) Let ry, ry, rg, and r, denote the radii
of these circles (r, does not touch the side
DC, r, the side DA, ry the side AB, and r,

the side BC). Prove that _lfl_Bi + 'fD' _
3
BC| | 14D

r T

2217. Pr(‘)ve that for the area S of an in-
scribed quadrilateral the following formu-
la holds true:
S=Vle—ay(p—0b(p—c) (p — ),
where p is the semiperimeter, and a, b, c,
and d are the sides of the quadrilateral.

218. Let 2¢ be the sum of two opposite
angles of a circumscribed quadrilateral,
a, b, ¢, and d its sides, S its area. Prove
that § = } abed sin ¢.
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219. Points M and N are taken on the
sides AB and CD of a convex quadrilateral
ABCD to divide them in the same ratio
(counting from the vertices A and C). Join-
ing these points to all the vertices of the
quadrilateral ABCD, we separate the latter
into six triangles and a quadrilateral. Prove
that the area of the quadrilateral thus ob-
tained is equal to the sum of the areas of
two triangles adjacent to the sides BC and
AD.

220. A diameter AB and a chord CD
which does not intersect that diameter are
drawn in a circle. Let £ and F denote
the feet of the perpendiculars dropped
from the points 4 and B on the line CD.
Prove that the area of the quadrilateral
AEFB is equal to the sum of the areas of
the triangles ACB and ADB.

221. Given a convex quadrilateral Q.
Four straight lines perpendicular to its
sides and passing through their midpoints
form a quadrilateral Q,. A quadrilateral
Q, is formed in the same way for the quad-
rilateral Q,. Prove that the quadrilateral
Qg is similar to the original quadrilateral

l-

222. Points M and N are taken on oppo-
site sides BC and DA of a convex quadri-
lateral such that | BM |: | MC | = |AN |
| ND | = | AB |: |CD |. Prove that the
line MN is parallel to the bisector of the
angle formed by the sides AB and CD.
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223. A convex quadrilateral is separated
by its diagonals into four triangles. The
circles inscribed in these triangles are of
the same radius. Prove that the given quad-
rilateral is a rhombus.

224. The diagonals of a quadrilateral sep-
arate the latter into four triangles having
equal perimeters. Prove that the quadri-
lateral is a rhombus.

225. In a quadrilateral ABCD, the cir-
cles inscribed in the triangles ABC, BCD,
CDA, DAB are of the same radius. Prove
that the given quadrilateral is a rectangle.

226. A quadrilateral ABCD is inscribed
in a circle. Let M be the point of intersec-
tion of the tangents to the circle passing
through A and C, N the point of intersec-
tion of the tangents drawn through B and
D, K the intersection point of the bisectors
of the angles A and C of the quadrilateral,
L the intersection point of the angles B and
D. Prove that if one of the four statements
is true, i.e.: (a) M belongs to the straight
line BD, (b) N belongs to the straight line
AC, (c) K lies on BD, (d) L lies on AC,
then the remaining three statements are
also true.

227. Prove that four lines each of which
passes through the feet of two perpendic-
ulars dropped from a vertex of an inscribed
quadrilateral on the sides not including this
vertex intersect at one point.

228. Let AB and CD be two chords of
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a circle, M the point of intersection of
two perpendiculars: one of them to 4B at
the point A and the other to CD at the
point C. Let N be the point of intersec-
tion of the perpendiculars to AB and CD
at the points B and D, respectively. Prove
that the line MV passes through the point
of intersection of BC and AD.

229. Given a parallelogram ABCD. A
circle of radius R passes through the points
A and B. Another circle of the same radius
passes through the points B and C. Let
M denote the second point of intersection
of these circles. Prove that the radii of the
circles circumscribed about the triangles
AMD and CMD are R.

230. Let ABCD be a parallelogram. A
circle touches the straight lines AB and AD
and intersects BD at points M and N.
Prove that there is a circle passing through
%D and N and touching the lines CB and

231. Let ABCD be a parallelogram. Let
us construct a circle on the diagonal AC as
diameter and denote by M and N the points
of intersection of the circle with the lines
AB and AD, respectively. Prove that the
lines BD and MN and the tangent to the
circle at the point C intersect at the same
point.

232. A quadrilateral ABCD is inscribed
in a circle. Let 0;, O0,, 05, O, be the cen-
tres of the circles inscribed in the triangles
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ABC, BCD, CDA, DAB, respectively, and
H,, H,, H,, and H, the intersection points
of the altitudes of the same triangles. Prove
that the quadrilateral 0,0,0,0, is a rectan-
gle, and the quadrilateral H,H,H H , is equal
to the quadrilateral ABCD.

233. Given a triangle ABC and an arbit-
rary point D in the plane. Prove that
the intersection points of the altitudes
of the triangles ABD, BCD, CAD are the
vertices of the triangle equivalent to the
given one.

234. Prove that if a circle can be in-
scribed in a quadrilateral, then: (a) the
circles inscribed in the two triangles into
which the given quadrilateral is separated
by a diagonal touch each other, (b) the
points of tangency of these circles with the
sides of the quadrilateral are the vertices
of the inscribed quadrilateral.

235. Prove that if ABCD is an inscribed
quadrilateral, then the sum of the radii
of the circles inscribed in the triangles ABC
and ACD is equal to the sum of the radii
inscribed in triangles BCD and BDA.

* % %

236. Let a, b, ¢, and d be the sides of a
quadrilateral, m and n its diagonals, 4
and C two opposite angles. Then the follow-
ing relationship is fulfilled: m?n® = a%? 4
b%d? — 2abed cos (A + C)  (Bretschneider's
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theorem or the law of cosines for a quadri-
lateral).

237. Let a, b, ¢, and d denote the sides of
an inscribed quadrilateral and m and n
its diagonals. Prove that mn = ac + bd
(Ptolemy’s* theorem).

238. Prove that if ABC is a regular
triangle, M an arbitrary point in the plane
not lying on the circle circumscribed about
the triangle ABC, then there is a triangle
whose sides are equal to | MA |, | MB |,
and | MC | (Pompeiu's** theorem). Find
the angle of this triangle which is opposite
the side equal to | MB | if LAMC = a.

239. Let ABCD be an inscribed quadri-
lateral. Four circles, a, B, vy, and 6, touch
the circle circumscribed about the quadrilat-
eral ABCD at points 4, B, C, and D,
respectively. Let t,s denote the segment
of the tangent to the circles o and B, t,p
being the segment of a common external
tangent if o and P touch the given circle
in the same manner (internally or exter-
nally), and the segment of a common in-
ternal tangent if o and P touch the given
circle in a different way (the quantities
tays tas, etc. are defined in a similar way).

* Ptolemy (Caudius Ptolemaus) (circa A.D.
150). An Alexandrian geometer, astronomer. and
geographer.

** Pompeiu, Dimitrie (1873-1954). A Rumanian
mathematician.
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Prove that

taplys + tpytsa = taylps *

(Ptolemy’s generalized theorem).

240. Let «, B, v, and 8§ be four circles in
the plane. Prove that if the following re-
lationship is fulfilled:

taplye + tavtoa = taylpe: *)

where ¢,5, etc. are line segments of com-
mon external or internal tangents to the
circles @ and B, etc. (for any three circles
we take either three external tangents or
one external and two internal, then the cir-
clesa, B, v, and § touch the same circle.

* % ¥

241. The extensions of the sides AB and
DC of a convex quadrilateral ABCD in-
tersect at a point K, and the extensions
of the sides AD and BC at a point L, the
line segment BL intersecting DK. Prove
that if one of the three relationships

|AB |+ |CD | = |BC|+ |AD |,
|BK |+ | BL |'= |DK | + | DL |,
|AK |+ |CL | = |AL |+ | CK |
is fulfilled, then the two others are also ful-
filled.

242, The extensions of the sides AB and
DC of a convex quadrilateral ABCD in-
tersect at a point K, and those of the sides
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AD and BC at a point L, the line segment
BL intersecting DK. Prove that if one of
the three relationships | AD | + |DC | =
|AB |+ |CB|, |AK |+ |CK|=
|AL |+ [CL|, |BK|+ |DK|=

| BL] + | DL | is fulfilled, then the two
others are also fulfilled.

243. Prove that if there exists a circle
touching the straight lines AB, BC, CD,
and DA, then its centre and the midpoints
of AC and BD are collinear.

244, Let ABCD be an inscribed quad-
rilateral. The perpendicular to BA erected
at a point A intersects the line CD at a
point M, the perpendicular to DA erected
at 4 intersects the line BC at a point N.
Prove that MN passes through the centre
of the circle circumscribed about the quad-
rilateral ABCD.

245. Let ABCD be an inscribed quad-
rilateral, E an arbitrary point on the
straight line AB, and F an arbitrary point
on the line DC. The straight line AF inter-
sects the circle at a point M, and the line
DE at a point N. Prove that the lines
BC, EF, and MN are either concurrent or
parallel.

246. Prove that the feet of the perpendic-
ulars dropped from the intersection point
of the diagonals of an inscribed quadrilat-
eral on its sides are the vertices of a quad-
rilateral in which a circle can be inscribed.
Find the radius of that circle if the diage-
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nalsof the inscribed quadrilateral are mutual-
ly perpendicular, the radius of the given
circle is R, and the distance from its centre
to the point of intersection of the diagonals
is d.

247. The diagonals of an inscribed quad-
rilateral are mutually perpendicular. Prove
that the midpoints of its sides and the
feet of the perpendiculars dropped from the
point of intersection of the diagonals on
the sides lie on a circle. Find the radius
of that circle if the radius of the given
circle is R, and the distance from its centre
to the point of intersection of the diagonals
of the quadrilateral is d.

248. Prove that if a quadrilateral is both
inscribed in a circle of radius R and cir-
cumscribed about a circle of radius r, the
distance between the centres of those cir-

cles being d, then the relationship ®T ~|1- d)’+

—('1%——"17)'5_ = 1/r* is true. In this case
there are infinitely many quadrilat-
erals both inscribed in the larger circle
and circumscribed about the smaller one
(any point of the larger circle may be taken
as one of the vertices).

249. A convex quadrilateral is separated
by its diagonals into four triangles. Prove
that the line joining the centres of mass
of two opposite triangles is perpendicular
{o the straight line connecting the inter-
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section points of the altitudes of two other
triangles.

250. Let ABCD be an inscribed quadri-
lateral, M and N the midpoints of AC
and BD, respectively. Prove that if BD
is the bisector of the angle ANC, then AC
is the bisector of the angle BMD.

251. Let ABCD be an inscribed quad-
rilateral. When extended, the opposite
sides AB and CD intersect at a point K,
and the sides BC and AD at a point L.
Prove that the bisectors of the angles BKC
and BLA are mutually perpendicular and
their intersection point lies on the straight
line joining the midpoints of AC and BD.

252. The diagonals of a quadrilateral are
mutually perpendicular. Prove that the
four straight lines each of which joins
one of the vertices of the quadrilateral to
the centre of the circle passing through
that vertex and two adjacent ones of the
quadrilateral intersect at one point.

253. Let P, Q, and M are the respective
intersection points of the diagonals of an
inscribed quadrilateral and the extensions
of its opposite sides. Prove that the inter-
section point of the altitudes of the triangle
PQM coincides with the centre of the circle
circumscribed about the given quadrilateral
(Brodcard’s theorem).

254. Let ABCD be a circumscribed quad-
rilateral, K the point of intersection of the
straight lines AB and CD, L the point of in-
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tersection of AD and BC. Prove that the
intersection point of the altitudes of the
triangle formed by the lines KL, AC, and
BD coincides with the centre of the circle
inscribed in the quadrilateral ABCD.

255. Let ABCD be a convex quadrilater-
al, LABC = £ZADC, M and N the feet
of the perpendiculars dropped from A on
BC and CD, respectively, K the point of
intersection of the straight lines MD and
NB. Prove that the straight lines AK and
MN are mutually perpendicular.

* %k ¥

256. Prove that four circles circum-
scribed about four triangles formed by four
intersecting straight lines in the plane
have a common point (Michell's* point).

257. Prove that the centres of four circles
circumscribed about four triangles formed
by four intersecting straight lines in the
plane lie on a circle.

258. Given four pairwise intersecting
lines. Let M denote the Michell’s point
corresponding to these lines (see Problem
256 of Sec. 2). Prove that if four of the six
points of pairwise intersection of the given
lines lie on a circle centred at O, then the
straight line passing through the two re-

* Michell, John Henry (1879-1940). An Aus-
tralian mathematician.
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maining points contains the point M and
is perpendicular to OM.

259. Four pairwise intersecting straight
lines form four triangles. Prove that if
one of the lines is parallel to Euler's line
(see Problem 147 of Sec. 2) of the triangle
formed by the three other lines then any
other line possesses the same property.

260. Given a triangle ABC. A straight
line intersects the straight lines AB, BC,
and CA at points D, E, and F, respectively.
The lines DC, AE, and BF form a triangle
KLM. Prove that the circles constructed
on DC, AE, and BF as diameters intersect
at two points P and N (these circles are
assumed to intersect pairwise), and the line
PN passes through the centre of the circle
circumscribed about the triangle KLM and
also through the intersection points of the
altitudes of the triangles ABC, BDE, DAF,
and CEF.

261. Given a triangle ABC. An arbitra-
ry line intersects the straight lines AB, BC,
and CA at points D, E, and F, respectively.
Prove that the intersection points of the
altitudes of the triangles ABC, BDE, DAF,
and CEF lie on one line perpendicular to
the Gaussian line (see Problem 53 of Sec. 2).

262. Prove that the middle perpendicu-
lars to the line segments joining the in-
tersection points of the altitudes to the cen-
tres of the circumscribed circles of the
four triangles formed by four arbitrary
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straight lines in the plane intersect at one
point (Herwey’s point).

263. Consider sixteen points serving as
centres of all possible inscribed and escribed
circles for four triangles formed by four
intersecting lines in the plane. Prove that
these sixteen points can be grouped into
four quadruples in two ways so that each
quadruple lies on one circle. When the first
method is used the centres of these circles
lie on one line, when the second—on the
other line. These lines are mutually perpen-
dicular and intersect at Michell’s point,
which is a common point of the circles cir-
cumscribed about four triangles.

Circles and Tangents.
Feuerbach’s Theorem

264. On a straight line, points 4, B, C,
and D aresituatedso that | BC | = 2 | AB |,
|CD | = | AC |. One circle passes through
the points 4 and C, and the other through
the points B and D. Prove that the common
chord of these circles bisects the line seg-
ment AC.

265. Let B denote a point belonging to
the line segment AC. The figure bounded
by the arcs of three semicircles of diame-
ters AB, BC, and CA lying on the same
side of the line AC is called the shoemaker
knife or Archimedean arbelos. Prove that
the radii of two circles each of which

9—015657
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touches both two semicircles and the line
perpendicular to AC and passing through
B are equal to each other (Archimedean
problem).

266. Of three circles each passes through
two given points in the plane. Let O,, O,,
O, denote their centres. The straight line
passing through one of the points common
to all the three circles intersects them for
the second time at points 4,, A,, A4,, re-
spectively. Provethat | 4,4, | | 4,45 =
10,0, | : | 0,0, |.

267. Given two non-intersecting circles.
Prove that the four points of tangency of
common external tangents to these circles
lie on a circle; in similar fashion, the
four points of tangency of common internal
tangents lie on a second circle, and the four
points of intersection of the common inter-
nal tangents with the common external tan-
gents lie on a third circle, all the three
circles being concentric.

268. Given two non-intersecting circles.
A third circle touches them externally and
is centred on the line passing through the
centres of the given circles. Prove that the
third circle intersects the common internal
tangents to the given circles at four points
forming a quadrilateral two sides of which
are parallel to the common external tangents
to the given circles.

269. Given two circles. A straight line
intersecting one circle at points A and C
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and the other at points B and D is drawn
through the centre of the first circle. Prove
that if |AB| |BC|=|AD |:|DC|,
then the circles are perpendicular, that
is, the angle between the tangents to them
at the point of their intersection is a right
one.

270. Points A, B, C, and D lie on a
circle or a straight line. Four circles are
drawn through the points A and B, B
and C, C and D, D and 4. Let B,, C,, D,,
and A, denote the intersection points (dis-
tinct from 4, B, C, and D) of the first and
second, the second and third, the third and
fourth, the fourth and first circles, respec-
tively. Prove that the points 4,, B,, C;,
and D, lie on a circle (or a straight line).

271. From a point 4 taken outside a
circle, two tangents AM and AN (M and
N points of tangency) and two secants are
drawn. Let P and Q denote the intersec-
tion points of the circle with the first sec-
ant, and K and L with the second one, re-
spectively. Prove that the straight lines
PK, QL, and MN either intersect at a
point or are parallel.

Try to develop the method of construc-
tion of atangent to a given circle through
a given point with a ruler alone.

272. Given a circle with centre O and a
point A. Let B denote an arbitrary point
of the circle. Find the locus of intersection
points of tangents to the circle at the point

g
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‘B with the straight line passing through
O perpendicular to AB.

273. Given a circle and two points A and
B on it. Let N be an arbitrary point on
the line AB. We construct two circles, each
passing through the point N and touching
the given circle: one at a point 4, the other
at a point B. Let M denote a second point
of intersection of those circles. Find the
locus of points M.

274. Two arbitrary chords PQ and KL
are drawn through a fixed point inside
a circle. Find the locus of intersection points
of the lines PK and QL.

275. Two circles intersect at points A4
and B. An arbitrary straight line passes
through the point B and, for the second time,
intersects the first circle at a point C,
and the second at a point D. The tangents
to the first circle at C and to the second at
D intersect at a point M. Through the
point of intersection of AM and CD, there
passes a line parallel to CM and intersect-
ing AC at a point K. Prove that KB touches
the second circle.

276. Given a circle and a tangent ! to
it. Let -N denote the point of tangency,
and VM the diameter. On the line NM
a fixed point A is taken. Consider an ar-
bitrary circle passing through the point
A with centre on . Let C and D be the points
of intersection of this circle with I, and P
and Q the points of intersection of the
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straight lines MC and MD with the given
circle. Prove that the chord PQ passes
through the fixed point in the plane.

277. The points O, and O, are the centres
of two intersecting circles, A being one of
the points of their intersection. Two com-
mon tangents are drawn to the circles; BC
and EF are the chords of those circles
with ends at the points of tangency (C and
F being most remote from A4), M and N
are the midpoints of BC and EF, respec-
tively. Prove that £0,40, = LMAN =
2 LCAE.

278. A diameter AB is drawn in a circle,
CD being a chord perpendicular to AB.
An arbitrary circle touches the chord CD
and the arc CBD. Prove that a tangent to this
circle drawn from the point 4 is equal to AC.

279. Given a segment of a circle. Two
arbitrary circles touch the chord and the
arc_of the segment and intersect at points
M and N. Prove that the straight line MN
passes through a fixed point in the plane.

280. Given two equal non-intersecting
circles. Two arbitrary points F and F’ are
taken on two common internal tangents.
From both points one more tangent can
be drawn to each of the circles. Let the tan-
gents drawn from the points F and F’ to
one circle meet in a point 4, to the other
in a point B. It is required to prove that:
(1) the line AB is parallel to the line join-
ing the centres of the circles (in the case
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of unequal circles, it passes through the
intersection point of the external tangents);
(2) the line joining the midpoints of FF’
and AB passes through the midpoint of
the line segment joining the centres of the
circles.

(This problem was suggested to the read-
ers of “The Bulletin of Experimental Phys-
ics and Elementary Mathematics” by Pro-
fessor V. Ermakov. This journal was is-
sued in Russia last century. The problem
was published in issue 14(2) of “The Bullet-
in” in 1887. A prize, some mathematical
books, was offered to readers for the correct
solution.)

281. Given three circles «, P, and y.
Let I, and !, denote the common internal
tangents to the circles a and f, m; and m,
the common internal tangents to the circles
B and vy, and n; and r, to the circles y and
a. Prove that if the lines /;, m,, and r, are
concurrent, then the lines l,, m,, and nr,
are also concurrent.

282. An arc AB of a circle is divided
into three equal parts by the points C and
D (C is nearest to A). When rotated about
the point A through an angle of n/3, the
points B, C, and D go into points B,, C,,
and D,; F is the point of intersection of
the straight lines AB; and DC,; E is a
point on the bisector of the angle B,BA
such that | BD | = | DE |. Prove that the
triangle CEF is regular (Finlay’s theorem).
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283. Given an angle with vertex A4 and
a circle inscribed in it. An arbitrary straight
line touching the given circle intersects the
sides of the angle at points B and C. Prove
that the circle circumscribed about the
triangle ABC touches the circle inscribed
in the given angle.

284, In a triangle ABC, a point D is
taken on the side AC. Consider the circle
touching the line segment AD at a point
M, the line segment BD and the circle
circumscribed about the triangle ABC.
Prove that the straight line passing through
the point M parallel to BD touches the
circle inscribed in the triangle ABC.

285. In a triangle ABC, a point D is
taken on the side AC. Let O, be the centre
of the circle touching the line segments AD,
BD, and the circle circumscribed about
the triangle ABC, and let O, be the centre
of the circle touching the line segments CD,
BD, and the circumscribed circle. Prove
that the line 0,0, passes through the centre
O of the circle inscribed in the triangle
ABC and |0,0| |00, | = tan® (¢/2),
where ¢ = £BDA (Thebault's theorem).

286. Each of four circles touches inter-
nally a given circle and two of its mutually
intersecting chords. Prove that the diag-
onals of the quadrilateral with vertices
at the centres of those four circles are mu-
tually perpendicular.
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287. Prove that the nine-point circle
(see Problem 160 of Sec. 2) touches the
circle inscribed in the triangle and all of
the escribed circles (Feuerbach’s theorem).

288. Let H denote the intersection point
of the altitudes of a triangle ABC. Prove
that the nine-point circle touches all of
the inscribed and escribed circles of the
triangles AHB, BHC, and CHA:

289. Prove that the intersection point
of the diagonals of the quadrilateral with
vertices at the points of tangency of the
nine-point circle of a triangle ABC with the
inscribed and escribed circles of the triangle
lies on its midline.

290. Let F, F,, F,, and F. denote the
points of tangency of the nine-point circle
of a triangle ABC with the inscribed and
three escribed circles (F, is the point of
tangency with the circle centred at I, and
so on). Let further 4, and A4,, B; and B,,
and C, and C, denote the intersection points
of the bisectors of the interior and exterior
angles A, B, and C with the opposite
sides, respectively. Prove that the follow-
ing triangles are similar pairwise: AF FyF,
and AA4,B,C,, AFF,F, and AA,B,C,,
AFF.F, and AB,C,A,, AFF,F, and
ACyA B, (Thebault’s theorem).
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Combinations of Figures. Displacements
in the Plane. Polygons

291. Three squares BCDE, ACFG, and
BAHK are constructed externally on the
sides BC, CA, and AB of a triangle ABC.
Let FCDQ and EBKP be parallelograms.
Prove that the triangle APQ is a right
isosceles triangle.

292. Let ABCD be a rectangle, E a point
on BC, F a point on DC, E, the midpoint
of AE,, F, the midpoint of AF. Prove that
if the triangle AEF is equilateral, then the
triangles DE,C and BF,C are also equi-
lateral.

293. Two squares ACKL and BCMN are
constructed externally on the legs AC and
BC of a right triangle. Prove that the quad-
rilateral bounded by the legs of the given
triangle and the straight lines LB and
NA is equivalent to the triangle formed
by the lines LB, NA, and the hypotenuse
AB.

294. Squares are constructed externally
on the sides of a convex quadrilateral.
Prove that if the diagonals of the quadri-
lateral are mutually perpendicular, then
the line segments joining the centres of
the opposite squares pass through the in-
tersection point of the diagonals of the
quadrilateral.

295. Prove that if the centres of the
squares constructed externally on the sides
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of a given triangle serve as the vertices
of the triangle whose area is twice the area
of the given triangle, then the centres of
the squares constructed internally on the
sides of the triangle lie on a straight line.

296. Constructed externally on the sides
BC,CA, and AB of a triangle ABC are
triangles A,BC, B,CA, and C,AB such that
LABC = £LC,BA, ALCAB = /LB,AC,
4 B,CA = L A,CB. Prove that the lines
AA,, BB,, CC, intersect at a point.

297. Let ABC be an isosceles triangle
(|]1AB | = |BC|) and BD its altitude.
A disc of radius BD rolls along the straight
line AC. Prove that as long as the vertex
B is inside the disc, the length of the cir-
cular arc inside the triangle is constant.

298. Two points move in two intersecting
straight lines with equal velocities. Prove
that there is a fixed point in the plane
which is equidistant from the moving
points at all instants of time.

299. Two cyclists ride round two inter-
secting circles, each running round his
circle with a constant speed. Having
started simultaneously from a point at
which the circles intersect, the cyclists
meet once again at this point after one
circuit. Prove that there is a fixed point
such that the distances from it to the cyc-
list are equal all the time if they ride: (a)
in the same direction (clockwise); (b) in
opposite directions.
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300. Prove that: (a) the rotation about
a point O through an angle a is equivalent
to two successive axial symmetry map-
pings whose axes pass through the point
O and the angle between the axes is a/2;
a translation is equivalent to two axial
symmetry mappings with parallel axes;
(b) two successive rotations in the same di-
rection, one about the point O, through an
angle o and the other about the point O,
through an angle f 0<<a <2xn, 0<PB <
2n) are equivalent to one rotation through
an angle o 4 f about a certain point O
if a+ P ~2n. Find the angles of the
triangle 0,0,0.

301. Given an arbitrary triangle ABC.
Three isosceles triangles A KB, BLC, and
CMA with the vertex angles K, L, and M
equal to a, B, and y, respectively, a + B +
¥ = 2n are constructed on its sides as bases.
All the triangles are located either out-
side the triangle ABC or inside it. Prove
that the angles of the triangle KLM are
equal to a/2, B/2, y/2.

302. Let ABCDEF be an inscribed
hexagon in which |4AB|=|CD | =
| EF | = R, where R is the radius of the
circumscribed circle, O its centre. Prove
that the points of pairwise intersections of
the circles circumscribed about the triangles
BOC, DOE, FOA, distinct from O, serve as
the vertices of an equilateral triangle with
side R.
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303. Four rhombi each having an acute
angle o are constructed externally on the
sides of a convex quadrilateral. The angles
of two rhombi adjacent to one vertex of
the quadrilateral are equal. Prove that
the line segments joining the centres of
opposite rhombi are equal to each other,
and the acute angle between those segments
is a.

304. Given an arbitrary triangle. Con-
structed externally on its sides are equi-
lateral triangles whose centres serve as ver-
tices of the triangle A. The centres of the
equilateral triangles constructed internally
on the sides of the original triangle serve
as vertices of another triangle 8. Prove that:
(a) A and & are equilateral triangles; (b)
the centres of A and 8 coincide with the
centre of mass of the original triangle; (c)
the difference between the areas of A and 6
is equal to the area of the original triangle.

305. Three points are given in a plane.
Through these points three lines are drawn
forming a regular triangle. Find the locus
of centres of those triangles.

306. Given a triangle ABC. On the line
passing through the vertex A and perpen-
dicular to the side BC, two points 4, and
A, are taken such that | 44, | = |44, | =
| BC| (A; being nearer to the line BC
than A4,). Similarly, on the line perpendic-
ular to AC and passing through B points
B, and B, are taken such that | BB, | =
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| BB, | = | AC |. Prove that the line seg-
ments A,B, and 4,B, are equal and mutual-
ly perpendicular.

% % ¥

307. Prove that a circumscribed polygon
having equal sides is regular if the num-
ber of its sides is odd.

308. A straight line is drawn through
the centre of a regular rn-gon inscribed in
a unit circle. Find the sum of the squares
of the distances from the line to the vertices
of the n-gon.

309. Prove that the sum of the distances
from an arbitrary point inside a convex
polygon to its sides is constant if: (a) all
the sides of the polygon are equal; (b)
all the angles of the polygon are equal.

310. A semicircle is divided by the
points A4, A4,, .., Agpyy into 2n +1
equal arcs (4, and A4,,4, the end points
of the semicircle), O is the centre of the
semicircle. Prove that the straight lines
A Agn, AgAgn 4, - ., AnAp 4y, When inter-
secting the straight lines 04, and OA,4,,
form line segments whose sum is equal
to the radius of the circle.

311. Prove that if perpendiculars are
drawn to the sides of an inscribed 2n-gon
form an arbitrary point of acircle, then the
products of the lengths of the alternate
perpendiculars are equal.

312, Let 4,4, ... A, be an inscribed
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polygon; the centre of the circle is found
inside the polygon. A system of circles
touch internally the given circle at points
A, A,, . ., A,, one of the intersection
points of two neighbouring circles lying
on a side of the polygon. Prove that if n
is odd, then all the circles have the same
radius. The length of the outer boundary
of the union of the inscribed circles is
equal to the circumference of the given
circle.

313. Consider the circle in which a re-
gular (2rn 4+ 1)-gon 4,4, Agpyq i in-
scribed. Let A be an arbitrary point of the
arc A;Az,4q-

(a) Prove that the sum of the distances
from A to the even vertices is equal to the
sum of the distances from 4 to the odd ver-
tices.

(b) Let us construct equal circles touch-
ing the given circle in the same manner at
points A;, A4,, .y Agn+y. Prove that
the sum of the tangents drawn from A to
the circles touching the given circle at even
vertices is equal to the sum of the tangents
drawn to the circles touching the given
circle at odd vertices.

314. (a) Two tangents are drawn to a
given circle. Let 4 and B denote the points
of tangency and C the point of intersec-
tion of the tangents. Let us draw an arbit-
rary straight line I which touches the given
circle and does not pass through the points
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A and B. Let u and v be the distances from
A and B to I, respectively, w the distance
from C to l. Find wv/w? if LACB = a.

(b) A polygon is circumscribed about
a circle. Let I be an arbitrary line touching
the circle and coinciding with no side of the
polygon. Prove that the ratio of the prod-
uct of the distances from the vertices of
the polygon to the line ! to the product of
the distances from the points of tangency
of the sides of the polygon with the circle
to ! is independent of the position of the
line 1.

(c) Let 4,4, A,, be a 2n-gon cir-
cumscribed about a circle and ! an arbit-
rary tangent to the circle. Prove that the
product of the distances from the odd ver-
tices to the line I and the product of the
distances from the even vertices to the line
l are in a constant ratio independent of
l (the line I is assumed to contain no ver-
tices of the polygon).

315. Drawn in an inscribed polygon are
non-intersecting diagonals separating the
polygon into triangles. Prove that the sum
of the radii of the circles inscribed in those
triangles is independent of the way the
diagonals are drawn.

316. Let 4,4, . A, be a polygon
of perimeter 2p circumscribed about a
circle of radius r, B,, B,, ., B, the
points at which the circle touches the
sides A;4,, A,A,, ..., A,A,, respective-
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ly, and M a point found at a distance d
from the centre of the circle. Prove that
IMBll2‘|A1Aa|+ |MBx '2"A2As|+- +
| MBy | And, | = 2p (r* + d%).

317. Let ABCD denote an inscribed
quadrilateral, M an arbitrary point on the
circle. Prove that the projections of the
point M on Simson’s lines (see Problem
153 of Sec. 2), corresponding to the point M
with respect to the triangles ABC, BCD,
CDA, and DAB, lie in a straight line (Sim-
son's line of a quadrilateral).

Further, knowing Simson’s line of an
n-gon, let us determine Simson’s line of
an (n + 1)-gon by induction. Namely,
for an arbitrary inscribed (n + 1)-gon
and a point M on the circle, the projec-
tions of this point on all possible Simson’s
lines of this point with respect to all pos-
sible n-gons formed by r vertices of this
(n 4+ 1)-gon lie on a straight line which
is Simson's line of an (r + 1)-gon.

318. A circle B is situated inside a
circle . On the circle &, two sequences
of points are given: A4,, 4,, A, and
B,, B,, B, following in the same di-
rection and such that the straight lines
AA,, A;A;, AA, . and B,B,, B,B,,
BgB, ... touch the circle f. Prove that
the straight lines 4,B,, A,B,, A B,
touch one and the same circle whose centre
is found on the straight line passing through
the centres of the circles @ and f.



Sec. 2. Selected Problems 145

319. Using the result of the preceding
problem, prove the following statement
(Poncelet’s* theorem). If there is one n-gon
inscribed in a circle @ and circumscribed
about another circle B, then there are in-
finitely many n-gons inscribed in the circle
a and circumscribed about the circle p and
any point of the circle can be taken as one
of the vertices of such an n-gon.

320. On the sides of a regular triangle
PQR as bases, isosceles triangles PXQ,
QY R, and RZP are constructed externally

so that £PXQ = -« (v + 2 LA),

LQYR = 4 (n+2£B), RIP = —4x

(m + 2 £C), where A, B, C are the an-
glesof acertain triangle ABC. Let A, denote
the intersection point of the straight lines
ZP and YQ, B, the point of intersection
of the lines XQ and ZR, and C, the point
of intersection of YR and XP. Prove that
the angles of the triangle 4 ,B,C, are con-
gruent to the corresponding angles of the
triangle ABC.

Using the obtained result, prove the fol-
lowing Morley's** theorem: if the angles
of an arbitrary triangle are divided into
three equal parts each (or trisected, hence,

* Poncelet, Jean Victor (1788-1867). A French
geometer and engineer.

*¢ Morley, Frank (1860-1937). An English ma-
thematician.

10-01557
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the relevant lines are called trisectrices),
then the three points which are the inter-
section points of the pairs of trisectrices ad-
jacent to the corresponding sides of the
txiiangle are the vertices of a regular trian-
gle.

321. We arrange the vertices of a trian-
gle ABC in positive order (anticlockwise).

P
For any two rays o and f the symbol (a, §)
denotes the angle through which the ray
a must be rotated anticlockwise to be
brought into coincidence with the ray .
Let a, and a; denote two rays emanating

N\ VA
from A for which (4B, «,) = (o, ;) =

N 1
(o, AC) = T ZA, a, and o, the rays for

N N P
which (4B, a,) = (&, ;) = (a,, AC) =
5 (£A + 2), and, finally, a, and o

A S
the rays for which (4B, a;) = (a3, a;) =
N 1
(@; AC) = 5 (LA + 4n) (@i, ai, where

i=1, 2, 3, are called trisectrices of the
first, second and third types). In similar
fashion, for the vertices B and C we deter-
mine ﬂiv ﬁ; and Yk Y'h (j’ k= 1» 21 3)' We
denote by a;f;y, the triangle formed by
respectively intersecting lines (not rays)
a; and Bj, B; and yi, v, and aj. Prove that
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for all i, j, k such that i +j 4+ k —1 is
not multiple of three, the triangles a;By,
are regular, their corresponding sides are
parallel, and the vertices lie on nine straight
lines, six on each line (Morley's complete
theorem).

Geometrical Inequalities.
Problems on Extrema

322. At the beginning of the nineteenth
century, the Italian geometer Malfatti*
suggested the following problem: from a
given triangle, cut out three circles such
that the sum of their areas is the greatest.
In later investigations, Malfatti's circles
were understood as three circles touching
pairwise each other, each of which also
touches two sides of the given triangle.
Prove that for a regular triangle Malfatti's
circles yield no solution of the original
problem. (Only in the middle of this cen-
tury was it proved for any triangle that
Malfatti’s circles yield no solution of the
original problem.)

323. Prove that p>—g—l/m, where p

is the semiperimeter, r and R are the radii
of the inscribed and circumscribed circles
of a triangle, respectively.

* Malfatti, Giovanni Francesco Giuseppe
(1731-1807). An Italian mathematician.

10%
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324. Prove that the perimeter of the
triangle whose vertices are the feet of the
altitudes of a given acute triangle does not
exceed the semiperimeter of the given trian-
gle.

325. Prove that if the triangle formed
by the medians of another triangle is ob-
tuse, then the smallest angle of the former
triangle is less than 45°

326. Let ABCD be a convex quadrilat-
eral. Prove that at least one of the four
angles BAC, DBC, ACD, BDA does not
exceed m/4.

327. Prove that the median drawn to
the largest side of a triangle forms with the
sides enclosing this median angles each of
which is not less than half the smallest angle
of the triangle.

328. Prove that if in a triangle ABC the
angle B is obtuse and |AB | = | AC |/2,
then £C > £ A/2.

329. Prove that the circle circumscribed
about a triangle cannot pass through the
centre of an escribed circle.

330. In a triangle, a median, a bisector,
and an altitude emanate from the vertex A.
Given the angle A, find out which of the
angles is greater: between the median and
bisector or between the bisector and the
altitude.

331. Prove that if the medians drawn
from the vertices B and C of a triangle
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ABC are mutually perpendicular, then
cot B + cot C> 2/3.

332. Given a triangle ABC, |4AB | <
| BC |. Prove that for an arbitrary point
M on the median drawn from the vertex
B, LBAM > /LBCM.

333. Two tangents AB and AC are
drawn to a circle from an exterior point 4;
the midpoints D and E of the tangents are
joined by the straight line DE. Prove that
this line does not intersect the circle.

334. Prove that if a straight line does
not intersect a circle, then for any two
points of the line the distance between them
is enclosed between the sum and difference
of the lengths of the tangents drawn from
these points to the circle. Prove the con-
verse: if for some two points on the straight
line the assertion is not fulfilled, then the
line intersects the circle.

335. In a triangle ABC, the angles are
related by the inequality 3 LA — £C <
n. The angle B is divided into four equal
parts by the straight lines intersecting the
side AC. Prove that the third of the line
segments (counting from the vertex 4) into
which the side. AC is divided is less than
| AC (/4.

336. Let a, b, ¢, d be successive sides of
a quadrilateral. Prove that if S is its area,
then S<C (ac + bd)/2, an equality occur-
ring only for an inscribed quadrilateral
whose diagonals are mutually perpendicular.
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337. Prove that if the lengths of the
angle bisectors of a triangle are less than 1,

then its area is less than }/3/3.

338. Prove that a triangle is either acute,
or right, or obtuse accordingly as the
expression a? + b2 + ¢ — 8R? is, respect-
ively, either positive, or zero, or negative
(a, b, ¢ the sides of the triangle, R the ra-
dius of the circumscribed circle).

339. Prove that a triangle is either acute,
or right, or obtuse accordingly as its semi-
perimeter is, respectively, either greater
than, or equal to, or less than the sum
of the diameter of the circumscribed circle
and the radius of the inscribed circle.

340. Prove that if the lengths of the sides
of a triangle are related by the inequality
a® + b% > 5¢?, then c is the smallest side.

341. In a triangle ABC, LA < /LB <
ZC, I is the centre of the inscribed circle,
O the centre of the circumscribed circle, and
H the intersection point of the altitudes.
Prove that I lies inside the triangle BOH.

342. The triangles ABC and AMC are
arranged so that MC intersects AB at a
point O, and |AM |+ |[MC | = | 4B | +
| BC |. Prove that if |AB | = |BC|,
then |OB | > |OM .

343. In a triangle ABC, a point M lies
on the side BC. Prove that (JAM | —
|AC 1) | BC |< (1 4B | — | AC |) | MC |.

344. Let a, b, c be the sides of a triangle
ABC, and M an arbitrary point in the
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plane. Find the minimum of the sum
| MA >+ | MB P + | MC |2

345. The sides of an angle equal to a
form the sides of a billiards. What max-
imum number of reflections from the sides
can be done by a ball (the ball is assumed
to be dimensionless)?

346. Four villages are situated at the
vertices of a square of side 2 km. The vil-
lages are connected by roads so that each
village is joined to any other. Is it possible
for the total length of the roads to be less
than 5.5 km?

347. A point A lies between two parallel
lines at distances a and b from them. This
point serves as a vertex of the angle a for
all possible triangles, two other vertices
of which lying on the given straight lines
(one on either line). Find the area of the
least triangle.

348. In a circle of radius R centred at
0, AB is its diameter, a point M is on
the radius OA such that |AM | | MO | =
k. An arbitrary chord CD is drawn through
the point M. What is the maximal area of
the quadrilateral ABCD?

349. Given an angle with vertex 4 and
two points M and N inside this angle.
Drawn through M is a straight line inter-
secting the sides of the angle at points B
and C. Prove that for the area of the quad-
rilateral ABNC to be minimal, it is nec-
essary and sufficient that the straight line
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BC intersects AN at a point P such that
| BP | = | MC |. Give the method of con-
struction of this line.

350. The vertex of an angle « is found at
a point O, A is a fixed point inside the
angle. On the sides of the angle, points M
and N are taken such that LMAN =
B(ax+ Pp<<mn). Prove that if |AM | =
| AN |, then the area of the quadrilateral
OMAN reaches its maximum (of all pos-
sible quadrilaterals resulting from change
in M and N).

351. Bearing in mind the result of the
preceding problem, solve the following.
A point A is taken inside an angle with
vertex O. The straight line OA4 forms angles
¢ and ¢ with the sides of the angle. On
the sides of the former angle, find points M
and N such that ZMAN =8 (9o + ¢ +
p < n) and the area of the quadrilateral
OMAN is maximal.

352. Given a triangle OBC (£ BOC = a).
For each point 4 on the side BC we define
points M and N on OB and OC, respectively,
so that ZMAN = B (& + B << =n) and the
area of the quadrilateral OM AN is maximal.
Prove that this maximal area reaches its
minimum for such points A, M, and N
for which | MA | = | AN |, and the straight
line MN is parallel to BC. (Such points
exist if the angles B and C of the triangle

n B
ABC do not exceed 5 + T )
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353. Let ABCD be an inscribed quadri-
lateral. The diagonal AC is equal to a and
forms angles @ and f§ with the sides AB and
AD, respectively. Prove that the magnitude
of the area of the quadrilateral lies between
a? sin (o -} B) sin f and a? sin (a4 f) sin o

2sina 28inf

354. Given an angle o with vertex at
a point O and a point A inside the angle.
Consider all quadrilaterals OMAN with
vertices M and N on the sides of the angle
and such that ZMAN = B (@ + p > n).
Prove that if among these quadrilaterals
there is a convex one such that | M4 |=
| AN |, then it has the least area among
all the quadrilaterals under consideration.

355. Consider a point A inside an angle
with vertex O, OA forming angles ¢ and ¥
with the sides of the given angle. On the
sides of the angle, find points M and N
such that ZMAN =B (p +vy + B > =)
with minimal area of the quadrilateral
OMAN.

356. Given a triangle OBC, £ BOC = a.
For any point A on the side BC we define
points M and N on OB and OC, respectively,
so that ZMAN = f, and the area of the
quadrilateral OMAN is minimal. Prove
that this minimal area is a maximum for
such points A, M, and N for which | MA |=
| AN | and the straight line MN is paral-
lel to BC. (If there is no such a point 4,
then the maximum is reached at the end
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of the side BC for a degenerate quadrila-
teral.)

357. Find the radius of the largest circle
which can be overlapped by three circles
of radius R. Solve the problem in the gener-
al case when the radii are R,, R,, R,.

358. Is it possible to cover a square 5/4
on a side with three unit squares?

359. What is the greatest area of an
equilateral triangle which can be covered
with three equilateral triangles of side 1?

360. In a triangle ABC, on the sides
AC and BC, points M and N are taken,
respectively, and a point L on the line
segment MN. Let the areas of the triangles
ABC, AML, and BNL be equal to S, P,

and @, respectively. Prove that [3/ S >
YP+ V0.

364. Let a, b, ¢, S denote, respectively,
the sides and area of a triangle, and «,
B, v the angles of another triangle. Prove
that a?cota + b%2cot B + ¢ cot y> 4S,
an equality occurring only in the case
when the triangles are similar.

362. Prove the inequality a2 + b% +
A>4SY3 4@ — b 4+ (b — o +
(¢ — a)?, where a, b, ¢, S are the sides
and area of the triangle, respectively (the
Finsler-Hadviger inequality).

363. Given a triangle with sidesa, b, and
¢. Determine the area of the greatest regu-
lar triangle circumscribed about the given
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triangle and the area of the smallest regular
triangle inscribed in it.

364. Let M be an arbitrary point inside
a triangle ABC. A straight line AM inter-
sects the circle circumscribed about the
triangle ABC at a point A4,. Prove that

W:l_)-}l‘{(:# > 2r, where r is the ra-
1

dius of the inscribed circle, .an equality
being obtained when M coincides with the
centre of the inscribed circle.

365. Let M be an arbitrary point
inside a triangle ABC. Prove that
|AM | sin £LBMC +| BM |sin LAMC +
| CM | sin LZAMB < p (p the semiperime-
ter of the triangle ABC), an equality occur-
ring when M coincides with the centre of
the inscribed circle.

366. Let h;, h,, hy be the altitudes of
a triangle ABC, and u, v, w the distances
to the corresponding sides from a point M
situated inside the triangle ABC. Prove
the following inequalities:

h h h .
(b) hyh,hs =2Tuvw;
(©) (hy—u) (hy—) (hy— w) >8Buvw.
367. Let & be the greatest altitude of a

non-obtuse triangle and R and r the radii
of the circumscribed and inscribed circles,
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respectively. Prove that R 4 r<Ch (the
Herdesh theorem).

368. Prove that the radius of the circle
circumscribed about the triangle formed
by the medians of an acute triangle is great-
er than 5/6 of the radius of the circle cir-
cumscribed about the original triangle.

369. Prove that the sum of the squares
of the distances from an arbitrary point
in the plane to the sides of a triangle takes
on the least value for such a point inside
the triangle whose distances to the corre-
sponding sides are proportional to these
sides. Prove also that this point is the inter-
section point of the symedians of the given
triangle (Lemuanr's point).

370. Given a triangle each angle of which
is less than 120° Prove that the sum of
the distances from an arbitrary point inside
it to the vertices of this triangle takes
on the least value if each side of the triangle
can be observed at an angle of 120° (Torri-
celli’s point).

371. Prove that among all triangles
inscribed in a given acute triangle the one
whose vertices are the feet of the altitudes
of the given triangle has the smallest pe-
rimeter.

372, Prove that the sum of the distances
from a point inside a triangle to its vertices
is not less than 6r, where r is the radius
of the inscribed circle.

373. For an arbitrary triangle, prove the
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inequality —llf;—_ﬁ:i +a< p < bct“’ ,
where a, b, and ¢ are the sides of the triangle
and p its semiperimeter.

374. Let K denote the intersection
point of the diagonals of a convex quadri-
lateral ABCD, L a point on the side 4D,
N a point on the side BC, M a point on the
diagonal AC, KL and MN being parallel
to AB, LM parallel to DC. Prove that
KLMN is a parallelogram and its area is
less than 8/27 of the area of the quadri-
lateral ABCD (Hattori's theorem).

375. Two triangles have a common side.
Prove that the distance between the
centres of the circles inscribed in them is
less than the distance between their non-
coincident vertices (Zalgaller's problem).

376. Given a triangle ABC whose angles
are equal to a, P, and y. A triangle DEF
is circumscribed about the triangle ABC
so that the vertices A, B, and C are found
on the sides EF, FD, and DE,respectively,
and LECA = £LDBC = LFAB = ¢. De-
termine the value of the angle ¢ for which
the area of the triangle EFD reaches its
maximum.

377. In a triangle ABC, points 4,, B,
C, are taken on its sides BC, CA, and AB,
respectively. Prove that the area of the
triangle 4,B,C, is no less than the area of
at least one of the three triangles: 4B,C,,
4A,BC,, A,B\C.
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378. Let O, I, and H denote the centres
of the circumscribed and inscribed circles
of a triangle and the point of intersection
of its altitudes, respectively. Prove that
|OH |> | IH | V2.

379. Let M be an arbitrary point inside
a triangle ABC; z, y, and z the distances
from the point M to the vertices 4, B,
and C; u, v, and w the distances from the
point M to the sides BC, CA, and AB,
respectively; a, b, and ¢ the sides of the
triangle ABC; S its area; R and r are the
radii of the circumscribed and inscribed
circles, respectively. Prove the following
inequalities:

(a) az + by + cz> 4S;

Mzt+y+z22@uw+v+w

(Herdesh’s inequality);

(c) zu + yv + 2w > 2 (wv + vw + wu);

@ 3(4ri+)aietids

(@) 2yz>— () 04 w) (w4 u);

() xyz>4TR uw;

© zy+yz+ 12> 2 (o vw 4 w).

380. In a given triangle, we draw the
median to the greatest side. This median

separates the triangle into two parts. In
each of the triangles thus obtained, we
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also draw the median to the greatest side,
and so forth. Prove that all the triangles
thus constructed can be divided into a
finite number of classes in such a manner
that all the triangles belonging to the
same class are similar. Also, prove that
any angle of any newly obtained triangle
is no less than half the smallest angle of
the original triangle.

381. Find the triangle of the least area
which can cover any triangle with sides
not exceeding 1.



Answers, Hints, Solutions

Section 1

17. The angle bisector separates the given

triangle into two parts whose areas are "—21- sin 32 .
bl

o) sin -g— , and the area of the entire triangle is

ab . al /bl . o ab .
-2— sin hence (T+T) sin —2— —T sin o,

a
B 2ab cos 3
~  a+b

19. Let us take a circle touching the sides 4B,
BC, and CA. If this circle does not touch the side
DA, then drawing the tangent DA, (4, lies on A B),
we obtain a triangle DAA; in which one side is
equal to the sum of the two others.

20. Drawing through the vertices of the triangle
straight lines parallel to the opposite sides, we get
a triangle for which the altitudes of the original
triangle are perpendiculars to the sides at their
midpoints.

at+b ¢ l/-3‘/§
21. —5 22, 5 —

23. ‘/22"‘ (atb—VTTF). 24 ™V3

2
|a—b| 1 s
. R 29. 2(a b)%sina.

25, c-ll;a. 28
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h n—a

— 3 °
30.2tan % 31. 30° 32.

33. 90°. 36. r1(2V3+3). 37. ll/a(zl—a)-
38. -g—(sl+s,).

39. If a>b, then the bisector intersects the
lateral side CD; if a << b, then the base is BC.

40. ——2—@— 41. arccos ———¥

atb 1+% -
42. “-'j}'i V3T 2ab—ai. 43. at.

ERVE
2V 2

5. (V§1+ VS, 46 w2,

47, la—bl +b Va’+b’ 48. arcsm(——i)

49. (6—m):2n: (6—m).

50. %(Vﬁ—i) ® Vﬁ—i)n-—ln]-

N - 1/'3
51. - (6V3—6—x). 2. 2 35 )
53. lpfbs-—a’. 55, 3 55. is.

3.
58. lf o <90° B<<90° then the angles of

A ABC are equal to 90°—a, 90°—§@, a;l—osl

a > 90°, ﬂ<90° then they are o —90° +8,

180° — o — B; if @< 90°, P> 90°, then they are

90°+ «, ﬂ 90°, 180°—a-—ﬂ

59. —-th 5. 60. %, 6t 384

5. W
62, ‘/n«m’—o'

11-01557
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63. In an isosceles triangle with the vertex angle
of n/5, the bisector of the base angle separates the
triangle into two isosceles triangles one of which is
similar to the original one.

V5—1
2

Answer; R.

4. R 24 ] LY.
64. R [cot —— (@—a)|. 65. VT

a (48in2 a+41) 5
66. _—BSina— 67. 2r2 (2 V3 {“3)-
8. L4 g 3a 70, 2¥10
4 ° 2(6+V13) " 4
asb a a
71. 2. 72, mb—z). 73.? (tan -i—cota) .
a cos __%b__ RE—at
74. 5. ——.
sin (o +f) 2R
a V7 V3 1 VY3
.. . T (T*z) ..
1 bd
9. o (B+y—a). 80. %

k11
81. 2sin?a sin2f °
83. 2 (R%+-a?).
84. Two cases are possible: the two centres
are on both sides of the common chord and on
the same side of it. Accordingly, we have two

g2.! "z“ N iE—p—ap.

- /9 -
pairs of answers: a (' 3—1), 61—22(1/3—1) and

s 3+ o L2340, 35T
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87. V'13. 88. arccosi—w~

2 3a2 n B =
89. T 90. -—8— . 9. —2— N |a+-§-—-2-|
n B = . 2 V33
.E_-Ia.{-.f_i . 92.a 3 . (Generally

speaking, two triangles are possible, but in one
of them two vertices lie on the extensions of the
diagonals.)

V2 br =
93. —5—. 9%. —. 9. V.

R (/s = V2
96. T(1/3—1). 97. V'10. 98. Tt
100. %Vge—sufﬁ. 101. 3:4.

102. a s'infi cot G—H,
sin a 2
103. i‘6y’.‘zsat+cH-maccosﬂ. 104. %s.
4VR—"'(R—r) a?+ b2 —2ab cos a
105. 6Rr—r3—R? * 106. 2(b—acosa) °
3 l/b*+a’+24bsin—;'—
107. —c. 108.
10 [
2C08 ——
P
109. Scos?a. 110. V4RI —q%. 1{11. %

112. YV a¥+-b3+2abcosa-| cota |-

1 7 2
—_ b3 —_— 8 —
113. l/ T b+ 5 et~ 5-abeosa,

114. arcsin iand n—-arcsin-z—.
n n

11»
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- acos (@+P) asin(x-+P)
15. a2 (' 2—1). 116. c0s 2a+P) ' cos CatP)°

2 cos %—}-3

117. .
6 cos %—}-1

a(b—acosa)sinda. 118.

NI»

2V 55(S1+Sy)
YisT—s:

120. 4cos— ‘/(R, R,) R, sm*—+ R, cos’;) .

150 sm* cos’ +B

124, —., 122. .
7 - . . a
a® cos? — -5

119.

123. V a®+b2—ab, V ad4-b2}ab. 125. 15° 75°.
126. m. 127. 2V6. 128. V3.

2R? 8in® a sin f
129. 3(2 V'3+3). 130. YR

131. M%f—"-’) 132. 14 133, M a/k <

R < a/2, there is only one solution: a®/(16R).
HH0< R<alhor R > 2, we have two solutions:
a*/(16 R) and a*/(8 R). \

r

3
134. 2 and arccos -R—-— 135. 30°.

2 Rt
136. oV 7/4. 137. R(3—2V 2)/3.
T—cosp abtan a
138. 4 l/ 3" cosp"’ 139. V avtan? at(a—b3%)

(In the triangle ONP, KP and NM are altitudes,
therefore OA is an altxtude)
140.  2Rr/(R+r). 141, a/2.
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143. The error does not exceed 0.00005 of the
radius of the circle.

146, 113—56 /3. 145. 7.5. 146. 3 Tiz"

. 2 e, Y3HVB e 2VE
3 2 3
150. 41/3. 151. _19§ G—V7). 152 %
153. 2r?sin2? a sin 2. 154, 2 %
5 1 3 V3

155. —1—2-31-'-—2- arccos (T_T .

156. Y 12(2—V'3). 157. ar/(a+2n).

158. If a < % , then the problem has two
solutions: R?sina (htsin%); if—g—ga<u,
the only one: R?sina (1-|—sin —;—) .

159. From -6‘-(3 Vi—é4)to % 160. From
| a®— b2 | 2abc
'a’—_H’— to 1. 161. m.

(Through an arbitrary point inside the triangle,
we draw three straight lines parallel to its sides.
Let the first line cut off the triangle which is similar
to the original one with the ratio of similitude
equal to A, the second line, with the ratio equal to
i, and the third—with y. Prove that A 4+ p -+

y=2)
Rr
162. —R_I_—r.

163." Take on the line BA a point 4, such that
| 4;B| = | A,C|. The points 4, 4, D and ¢
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lie on acircle (L DA,C=90°— LABC=LDAC).
Consequently, LAAC = LA,DC = 90°, and
hence £LBAC = 90°.

1 13
164. 1. 165. 2 —. 166. = a
2 2 3 ]

167. O e l:a 8 6s. 0 -}:(d ).

169. 6. 170. 3.

171. 1f 0> —%—S, then the desired distance is

)

‘-%-g(lfg-—— V' 0)- And if Q<—%—S, then two
o =

answers are possible; 4 VS+VQ).

2 (H—cos %)

.. a
1+ sin —2—-

[1—k2 |

ey 173.

172. 3r?

o (@+b2—cYe
174. —

175. Let A and B denote two adjacent vertices
of the rhombus, M the point of intersection of its

diagonals, O, and O, the centres of the circles
(O, on AM, O, on BM) We have: | 4B |2 =

[AM |* + | BM |2 = (10,4 P —| OM 17) +
(0B —|oMp) =R+ — (1 0M 2+
[ OM %) = R + 8 — a3,

Answer: I/R’—|-r'—a’

8RS
176. m.
177. | ap| =Y @itbit2abeosa o oo
sSino

ingide the given angle or inside the angle vertical
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T L pe
to it: | AB | = V a?+-b2—2abcosa

) in the re-
maining cases.
. hah 3V3
8. 2 —atb __ L=
17 arcsin TOEITR 179 B3 -

180. Since EF is perpendicular to CO (O the
point of intersection of the diagonals), and the
conditions of the problem imply that AC is the
bisector of the angle A which is equal to 60°, we
have: | AE | = | AF | = | EF |. If K is the mid-

point of EF, then | A0 | = 2a Q,ICO|=
alfg—"’. | CK |-| 0K |= | EK P = & | AK I

2 V3 ~
Answer; [:/3 and 2a2 l/3-
181. '2'"' 182. Denote: £ BAC= /. BDC=a,
L CBA=/ BCD=f, £ BAM=¢. Then

|BM |+ | MC| sin ¢--sin (a — @) _
|AM |+ |IMD| ™ sin(B+a—q)+sin(B+o)
. a
Sin 5 €08 ('2'_ q’) sina

sin (B+%) cos (2 —9) Tsin BFa)Fsinp

(4

a-t+b °

183. There is always a chord parallel to the

base of the triangle. The chord is divided by the

lateral sides into three equal parts (undoubtedly,
. 3a e

I<a<< %). Its length 1s—§m In addition, if

a < 1// 2, then there exists one more chord, which

is not parallel to the base and possesses the same

property. The length of this chord is 3/)/9 — 2aZ.



168 Problems in Plane Geometry

184. Let BC and AC intersect MN at points P

and Q, respectively. Setting —II}C‘,ITC;=:¢, we

|MP|  Spmc _ | MB|-{MC| 3z

bave: BN = Sevc  [BNI.|CN| &
Hence, | MP | =3T3::7;' Analogously, | MQ | =
T-:;:-_i" For z we get the equation _:;%_
g‘_,‘,i_’_{‘[ =a, 3az2+(7a — 1)z4-4a=0. Since

D >0 and 0 <<a<<1, the greatest value of a

is equal to 7 — 4 V3.

185. The equality S, gy = Scpp implies that
Syan = Smcn since MN is a median of the
triangles ABN and CDM. Hence BC || MN and
AD || MN, that is, ABCD is a trapezoid with bases
AD and BC.

Answer:  Sk—2£2 V' 2k 2k—1) .

2—3k
186. We have: | AD | » |DM | — |AM | =
| BD| _
2. On the other hand, | 4D | < prew il 2.

Consequently, | AD | = 2, AD is the larger base,
and the point M lies on the line 4D.

Answer: l/7.

187, Let BD denote an angle bisector in a
triangle ABC, A, and C, the midpoints of the sides

BC and AB, | DA, | = | DC,|. Two cases are
possible: (1) L BA;D = L BC,D and (2) £ BA,D +
L BCyD = 180°. In the first case | AB | = | BC |.

In the second case, we rotate the triangle AC,\D
about D through the angle C;DA,; to carry C,
ba

atc '

into A;. We get a triangle with sides
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a+c be .
7T (a, b, and ¢ the sides of AABC),
which is similar to the triangle A BC. Consequently,

ba_ L, 8tc b= be te, 80 atc=
atec’ ¢= 3 T aFe -
bV 2. Since as£c, at least one of the two
inequalities b = a, b £ c is true. Let b 3~ ¢, then
b+c=aV2 b=a, and we get a triangle
with sides a, a, a (VZ — 1), possessing this
property. Thus, there are two classes of triangles
satisfying the conditions of the problem: regular
triangles and triangles similar to that with sides
1,1, V2 1.

188. If « is the angle between the sides e and b,
then we have: ¢ 4 b sin @ < b+}a sin &, (a—b)X
(sin @ — 1) > 1, sin a3 1. Hence, a = 90°

Answer: V % + b2,

189. Prove that of all the quadrilaterals cir-
cumscribed about the given circle, square has the
least area. (For instance, we may take advantage
of the inequality tan a + tan p» 2 tan|(az + B)/2]
where @ and p are acute angles.) On the other hand,

1
Sapecp < 5 (1 MA || MB |+ | MB || MC | +

| MC1-| MD |+ | MD || MA |) <3 (IMAP+
| MB %) + 4 (I MB 2| MC |8 +-(MCI+

| MD )+ & (I MDI* + | M4 ) = 1. Conse-

quently, ACBD is a square whose area is 1.
190. Let us denote: | BM | =z, | DM | = y,
|AM | =1, LAMB = @. Suppose that M lies
on the line segment BD. &’riting the law of cosines
for the triangles AMB and AMD and eliminating
cos ¢, we get: I (z+ y) + zy (z + y) = o’y +
@®z. Analogously, we get the relationship 2 (z-y)+-
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zy (x+ y) = b3y + c2z. Thus, (a® — b}y =
(2 — d?) z.
a3 —b?
a_—ds

191. If the vertices of the rectangle lie on the
concentric circles (two opposite vertices on the
circles of radii R, and R,, and the other two on
the circles of radii Ry and R,), then the equality
R: 4+ R} = R} + R} must be fulfilled. Let us
prove this. Let A denote the centre of the circles,
the vertices X and M of the rectangle KLMN lie
on the ¢ircles of radii R, and R,, respectively, and
L and N on the circles of radii R, andR,, respective-
ly. In the triangles A XM and ALN, the medians
emanating from the vertex 4 are equal, the sides
KM and LN are also equal. This means that our
statement is true.

Let the second side of the rectangle be 2, z > 1.
The radii R,, R,, R, R, are equal, in some order,

to the numbers 1, z, /z* + 1, —;— VaaFi,

Checking various possibilities of the order, we
find: 22=7, Ry=1, Ry=2V2, Ry= V2,
R,= V1.

Consider the square K,L,M;N, with side y
whose vertices lie on the circles of radii R, = 1,

Ry= V2 R,=2V2 R,=V7. Denote:
LAKL; = @, then LAK,N, = 90° + ¢ or ¢ +
90°. Writing the law of cosines for the triangles
AK.L, and AK,N,, we get

1422 —2zcosp=2, = {2zcosq>=x=—1,

1422 + 228in =7, + 2z sin 9=23—6.
Squaring the last two equalities and adding the
results, we get: 2r* — 1022 4+ 37 =0, 22 = 5 +

1 —
3 V' 26.

Answer: VS +2V2.

Answer: l
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192. Let us first prove the following statement.
If the perpendiculars to AB and BC at their mid-
points intersect AC at points M and N so that
| MN | = A| AC |, then either tan 4 tan C =
1 — 2\ or tan 4 tan C =1-+42A. Let us denote:
|AB|=¢, | BC|=4a, | AC| = b. If the seg-
ments of the perpendiculars from the midpoints of
tll:e sides to the points M and N do not intersect,
then

| MN | =b— —— "

2cosd  2cosC
A) sin B cos 4 cos c:% (sin 2C + sin 24) =

2(1 —A)sin (A + C)cos A cos C=
sin (4 + C)cos (4 — C)=>2(1—A)cosA4d X
co8C =034 cosC +8ind sinC =tan 4 X
cos C =1 — 2A.
And if these segments intersect, then tan 4 tan C=
1 4+ 2A. In our case A = 1, that is, either tan 4 X
tan C = —1 or tan A tan C = 3. For the angles
B and C we get (A = 1/2) either tan B tan C = 0
(this is impossible) or tan B tan C = 2. The
system

{tanAtanC:——l,

=AM=>2(1—

tan Btan C=2,
A+B+C=mn

has no solution. Hence, tan 4 tan C = 3. Solving
the corresponding system, we find: tan 4 = 3,
tan B =2, tanC = 1.

Answer: n/4.

193. Let R denote the radius of the circle cir-
cumscribed about A4 BC, O its centre, N the median
point of the triangle BCM. The perpendicularity
of ON and CM implies the equality | CN |2 —
|MN|2=|CO|?—|OM|% Let |AB| =1,
| MB | = z, |CM | =1y, then |MN|2=

3+ 200 — ), | ON |2 = o 4+ 28 — 29,
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|COP =R, |0M P =Ricost C+ (:—1)"
We get equation for z: 222 — 3z + &% = 0.

T
Answer: 3"':—‘/;’—-& (f 1<k<3‘/2

then both points are found inside the lme seg-
ment AB).

194. If O is the midpoint of AC, then | AB |?
|BO1*+140 |2 = | BK |*— | KO |*+| A0 |3
| BK |2 4 (1 40| — IAKI)(|AOI+ | AK |)
| BK |2+ | AK |-| CK | =b%+bd

Answer: V031 bd .
195. (1) The length of a broken line of three

flan

segments is equal to the line ent joining its
end points. This is possible only if all of its ;e;tlces
a

lie on this segment. z =

+b V 3 aV3+p’

(2) z, y, z are the sides of a triangle whose alti-
tudesarea, b, and c. Such a triangle must not be
obtuse—angled To find z, y, z, let us take advan-
tage of the fact that a triangle whose sides are
inversely proportional to the altitudes of the-given
triangle is similar to the latter.

1 1

1
=% YT *T

s-u/ D) ) () -t

. 1
—b-—l——c-. The problem has a solution if Z_+T’>

1 1 1 1 1 1 1
Fowta e at a2

(3) Conslder the points A (a, b), B (z, 0),
C (0, y) in a rectangular coordinate system. It
follows from the given system that ABC is an
equilateral triangle. When rotated about A through
an angle of 60° in the appropriate direction, the

, where
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point B goes into C. We can find the equation of
the straight line into which the z-axis is carried
by this rotation. (In particular, the slope is equal
to + V'3) _

A nswer: =—aj—_bl/3, y=—b-_|;al/3.

4)1fz>» 0,y >» 0,z 0, then z, y, z are the
distances to the vertices of a right triangle ABC
in which the legs BC and CA are a and b, respec-
tively, from such a point M inside it from which
all of its sides can be observed at an angle of 120°.
To determine the sum z 4 y + z, let us rotate
the triangle CMA about C through an angle of 60°
in the direction external with respect to the tri-
angle ABC. Asaresult, M and A gointo M, and 4,,
respectively. Then BMM A, is a straight line and,
consequently, z+4y+:z=|BM |+ |CM |+

| AM | = | BA; | = V a® + b® + ab V/ 3. Analo-
gously, we consider the case when one of the
variables is negative (generally speaking, not any
of them can be negative) and other cases.

Answer: + Va’-l—b’ +ab V3.

196. Let z be the distance from the centre of the
square to the straight line !, ¢ the acute angle
formed by one of the diagonals of the square and
the line /. The distances from the vertices of the
square to ! are equal to (in the order of traverse):
z+a % sing, z-+a —2—2 cos @,

v vz

z—a = sin(p', |z—a 3 cos(pl. By hy-

3 3
pothesis, 73— %-sin’ ] l = | 23 —%- cos? @

’

whence either tan® =1, which is impossible,
or z3=a?/4.

Answer: a/2.

197. From the condition ZB = 2 L C there
follows the relationship for the sides of the tri-
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angle: b2 = ¢ + ac. Looking over b = 2¢, a =
2¢, b = 2a, and a = 2b, we choose a = 2¢ since
in other cases the triangle inequality is not
fulfilled.

Answer: £C = n/6, LB = n/3, LA = n/2.

198, Let D be the midpoint of BC. We have:
b2 = | BM |*=(|IBD |+ |DN |) (| BD |— | DN I2=
|BD|*—~|DN|*=|AB|?—|AD|?*—| DN |*=
(a+ b2 —|AD|2— | DN |2 Hence, |AN|? =
| AD |2+ | DN |2 = (a + b)? — b% = a® + 24ab.

Answer: V a® I 2ab.

199. We take on BC a point N such that the
triangle ABN is similar to the triangle ADL. Then
L NMA = L MAK + £ KAD = L MAB +
LDAL = LMAN. Consequently, | MN |=
|AN| = k| AL |.

Answer: %-}—b.

200. 2 V pg.
201. (a) —% V(R £ 2) (R £ ), the plus sign

corresponding to external tangency of the circles,
the minus sign to internal. (b) T‘;— VRF2)ER—y).

202, Let |AM | :| MC| = k. The equality
of the radii of the circles inscribed in the triangles
ABM and BCM means that the ratio of their
areas is equal to the ratio of their perimeters.
Hence, since the ratio of the areas is k, we get

| BM | = ﬁi‘_’_:i . It follows from this equal-
ity, in particular, that 12/13 << k << 1. Writing
for the triangles A BM and BCM the laws of cosines
(with respect to the angles BMA and BMC) and
eliminating the cosines of the angles from those
equations, we %et. for k a quadratic equation with
roots 2/3 and 22/23. Taking into account the limi-
tations for k, we get k = 22/23
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203. Let ABC denote the given triangle, O, X,
H the centres of the circumscribed and inscribed
circles, and the intersection point of the altitudes
of the trianfle ABC, respectively. Let us take
advantage of the following fact: in an .arbitrary
triangle the bisector of any of its angles makes
equal angles both with the radius of the circum-
scribed circle and with the altitude emanating
from the same vertex (the proof is left to the reader).
Since the circle passing through O, K, and H con-
tains at least one vertex of the triangle ABC (say,
the vertex A), it follows that | OK | = | KH |.
The point K is situated inside at least one of the
triangles OBH and OCH. Let it be the triangle
OBH. The angle B cannot be obtuse. In the tri-
angles OBK and HBK, we have: | OK | = | HK |,
KB is a common side, LOBK = £ HBK. Hence,
AOBK = AHBK, since otherwise £ BOK 4
£LBHK = 180° which is impossible (K is inside
the triangle OBH). Consequently,| BH |=| BO |=
R. The distance from O to AC equals 0.5 | BH |==
0.5R (Problem 20 of Sec. 1), that is, LB = 60°
(4B is acute), | AC| =R V3. If now A,, B,
and C, are the points of tangency of the sides BC,
CA, and AB to the inscribed circle, respectively,

‘then | BA, | = | BC, | = r V'3, | CA, |+4Cy|=
| CBy |+t B,A |=|AC|=R V3. The perim-
eter of the thiangle is equal to 2 V'3 (R +r). It
is now easy to ﬁnd its area.

Answer: V'3 (R+r1)r.

204. Let P be the projection of M on AB,
|AP|=a~+ 2. Then| PB|=a — 2z, | MP | =

=V @—23, | AN | = -———"‘{E,NB=
y=Va—z3, | AN | (a+z)“,2+y| |

aV2 _ aV2(@—z+y V?2)

%a—(ata) aV§+y- aV24y
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ap) =2 VEtz by V)

aV2+y '
Hence
|AL 3+ | NB "= —2 (a2 4 2 Y Zay+
(@ V'2+y)

22+ 3’)=‘G“7%t}_—y)‘z‘(a’+ 2V 2ay+2y + (a*—

¥Y)) =4a’.

205. Let z denote the side of the triangle, and
the sides emanatini from the common point of the
circles form with the straight line passing through
the centres angles a and B; a + B = 60°, then

z z . .o
cos o = 5 , C08 p= o (or vice versa). Finding
sin o and sin B from the equation cos (@ + f) =

5 we determine the side of the regular triangle:
er/§

VR ¥ —FRr

206. We draw a straight line BA and  denote
by D the second point of intersection with the
smaller circle. Consider the arcs AB and AD (each
less than a semicircle). Since the common tangent
to the circle at 4 forms equal angles with 4B and
AD, the central angles corresponding to these
14D} _ r
| AB | R’
|BC| = VIBD|-[BA| =

arcs are also equal. Consequently,

AD = a%,
a

1/ REtr
—

207. Let Oy, Oy, and O denote the centres of
the circles (the first two touching 4 B), z, y, and R

their radii, respectively. The common tangents to
the circles centred at O, and 0,, 0, and 0, 0, and
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0 are equal to 2 V' zy, 2 V{?i, 2 V Ry, respective-
ly. By hypothesis, 2 V' zy = a. Consider the
right triangle O,M 0O, with t%ne right angle at the
vertex M; O\M is parallel to BC, | 0,0, | =
z+y, |0OM| =2R — (z+y), |OM]| =
12 VRz — 2V Ry| (OM being equal to the
difference between the common tangents to the
circles with centres O, O, and O, 0,). Thus,
@+y*=Q@R—z—y*+ 2 VEz — 2 VR,
whence R =2 V¥ zy = a.

208. Note that 0,0,0,0, is a parallelogram with
angles a and nn — a (0,0, | AC and 0,04 || AC,
hence, 0,0, || 0404, etc.). i x is the midpoint of

AM, L the midpoint of MC, then | 0,0, | = | KLY _

sina
| AC | _ _BD
m, Analogously, ‘ 0,0, | = m ’
| AC || BD | sina
consequently, S, 5 0.0, = Tsint o =
SaBco
2sin?a °

Answer: 2 sin? a.

209. When intersecting, the angle bisectors of
the parallelogram form a rectangle whose diago-
nals are parallel to the sides of the parallelogram
and are equal to the difference of the sides of the
parallelogram. Consequently, if a and b are the
sides of the parallelogram and a the angle between

them, then S = absina, Q = —;- (e — b)? 8in a,
S 2ab

0 @
S+Q+V Q" F208
< .

Answer:

210. Let z denote the area of the triangle
OMN, y the area of the triangle CMN, then

12—-01557
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ION|_ = Sy . 518y 1AM | Sitz_
fOA|™ S, Sy " S "IMC| T y
SitkSs oy, sought-for area is equal to
Sytz+y°

8155 (S1+S9) (Ss+ 1)
83 (S3—S15s) T
211. Let in the triangle ABC the angle C be
a right one, M the median point, O the centre
of the inscribed circle, r its radius, £ B=a;

2 n a
then |AB | =r (00‘.—2—+00t(—4—-——2—))-—
r V2 . 1CM|=— | 4B,
0 Eoin (22 )
2 4 2

ICOI=r /3, |OM|=r, LOCM=a—.

Writing the law of cosines for the triangle COM,

T
we get1=2 = — , where
g +9 (@z—Vv2)* 3(z—V2)
( n 4V6—-3V32
Z=cos T-—a) , whence £=——o———",

6
Answer: % =+ arccos l—‘ﬁ;—a—@ .

212, Let each segment of the median be equal
to a. We denote by z the smallest of the line
segments into which the side corresponding to the
median is divided by the point of tangency. Now,
the sides of the triangle can be expressed in terms
of a and z. The sides enclosing the median are

a V24 2z, 3a VZ+ z, the third side is
22 V2 + 2z. Using the formula for the length of
a median (see Problem 11, Sec. 1), we get 9a%2 =

%[2 @ VI 4+ 28 4+ 2@aVZ+ 2 —
(2a V2 + 2z)?), whence z = a V 2/4.
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Answer: 10:5 :13.

213, Let | BC| =a,4C > /B, Dand E be
the midpoints of AB and AC. The quadrilateral
EMDN is an inscribed one (since L MEN =
LMDN = 90°), | MN | = a, | ED | = a/2, MN
is a diameter of the ecircle circumscribed about
MEND. Consequently, L/DME = 30°, LCAB =
90° — LEMD = 60°, (CBA = (EDN =
LEMN = LEMD/2 = 15°, LACB = 105°.

Answer: LA = 60°, LB =15° /C = 105°
or LA =60° B =105° «C = 15°

214, We denote by K and M the points of
intersection of the straight line EF with AD and

A

Fig. 1

BC, respectively. Let M lie on the extension of
BC beyond the point B. If | AD | = 3a, | BC | =
a, then from the similarity of the corresponding

triangles, it follows that | DK | = | AD | = 3a,
| MB| = | BC | = a (Fig. 1, a).
In addition, |"ME | =|EF|=|FK|. If h

is the altitude of the trapezoid, then the distance
12v
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from £ to AD is equal to% h, Sgpx = ak, Sgpr =

i ah 1
-i-SED"E:'Z:TS'

If the line EF intersects the base BC at a point
M, then | BM | = % a (Fig. 1, b). In this case
| EXK | _

2 :% = -g— and the distance from E

IMK|
to AD equals —g-h. 80 that Sppp = %SEDK =
1 6 9
-4—‘30'—5— h = 2—(')S.
Answer: 4 S or —9—-S
Y7 355

215, Let O be the centre of the inscribed circle,
M the midpoint of BC, K, L and N the points of
tangency of the inscribed circle with the sides
AC, AB, and BC of the triangle, respectively. We
denote: | AK|=|AL| =12z, |CK}|=|CN|=
v |BL|=|BN|=13, y+z=a. By hy-

pothesis, |OM| =-;— — r. Consequently, | NM | =

V 10M |3— | ON |’=l/aT'—ar and one of the

line segments, either y or z, is equal to %—-

2
1/34’-“” and the other to _‘2£+l/aT’—‘""

Equate the expressions for the area of the triangle
by Hero's formula and S=pr: V (z-+y+32) zyz=

(z+y+2)r=zar=(z+a)rd= z= af:r . Thus,

a +a) r=

the sought-for area is equal to ( Py

atr
a—r
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216. Let us prove that if €, and C, (Fig. 2) are
situated on the other side of BC than the vertex 4,
then the centre of the circle circumscribed about
the triangle CC,C, is found at the point O on the

gside AB, and | BO | = % | AB |. Drawing the

altitude CM from the vertex C, we obtain the
quadrilateral BC,CM which is a rectangle. Hence

7 A
0,4\ -
\\

" L
7,
A /4 A

Fig. 2

the perpendicular drawn to CC, at its midpgint
passes through O. Taking into consideratiop/that

C,Cs || BD and | C,C, | = —;- | BD |, we see that
the middle perpendicular to C,C, also passes through
0. Now, we find easily the aesired radius: it is
equal to VICMEF | MO | =

3a® ,a® _a =
Vi ig=1va

217. Consider two cases: (1) the feet of the
Perpendiculars are found on the sides of the paral-
elogram, and (2) one of the perpendiculars does

not intersect the side on which it is dropped. In
the first case we arrive at a contradiction, while

. . 2ab
in the second case we obtain cos a = TF
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where « is the acute angle of the given paralle-
logram.

218. Exﬁressmg the angle PQN in terms of the
angles of the triangle ang bearing in mind that
LPMN + LPQN = 180°, we find: LPMN =
60°; hence ZNPQ = LQMN = 30°, £ZPNQ =
LPMQ = 30° that is PQN is an isosceles triangle
with ingles at the side PN of 30°, |PQ| = |QN| =

3.

219. It follows from the conditions that ABCD
is a trapezoid, BC || AD, and AC is the bisector of
the angle BAD hence | AB | = | BC |, analogous-
ly,lBCl— | cD |.Let| AB | = |BC| =|CD|=
a, | AD | = b. The distance between the mid-

points of the diagonals is 2r, consequently b ; ¢ =
2r. We draw the altitude BM from the point B

on AD and we get that |AM[=b—2a=2r,
| BM | = 2r. Consequently,a = | AB | = 2r V2,
b=4r+2r V2 _

Answer: 413 (V2 + 1).

220, Let us denote the angles A, B, and C by
a, B, and v, resEectlvely Let H be the point of
intersection of the altitudes, O the centre of the
circle passing through 4, H, and C. Then £/ HOC =
2 LHAC =2 (90° — g LHOA—24HOA=
2(90° — o). But LAOC = 180° (since BAOC
is an inscribed quadnlateral), (90° — y) +
2 (90° — @) = 180° — B, 360° — 20 — 2y =
180° — B, 2ﬁ—180°—ﬂ, p=60° | AC | =
2Rsinp= V3.

. . lAM | .
221. Denoting the ratio l—Mz,—l—_)., we have:
T
Smcp = -, Scpn=M, Smcp=AScpnN; conse-
1ACY | BC|

quently, (T/Q) =A3, S sBc= [ MC1 TCN lSCMN—
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G+ (T 450)= (e

(A 17Q = (T34 Q1)
222. If O is the centre of the circle, then the

area of A OMN 1s

(T+13Q) =

R times the area of A KMN.

1f £ MON=a, then —R 8in @ = —— S, sina=
2 a—R
248

. a —
R’(a 7 |MN|=2Rsm—2—=RI/1—cosa=

"/1 + l/i T (a R)" The problem has a

R*(a—R)
—.

solution if § <<

223. If £ BAC= 4 BCA=2a, then by the law

of sines, we find: | AE | =-2mS820  4p
sin 3a

| AE | 2m sin 2a 9 2m sin 2a
=— . Thus, —m=—u—n——,

cosa sin3acosa 4 sin 3o cos &

whence cos 2a = 1—'; , SaBc = m?tan2a =

5m2 V' 11

—_—-

224, The points C, M, D, and L lie on a circle,
consequently, ZCML = /CDL = 30°. In sim-
ilar fashion ZCMK = 30° thus, LLMK = 60°
and ALMK is regular, | KM | = 2/V'5. By the
law of cosines, we find: cos £ LCK = —3/5. Since
ya DCB: LLCK — 120°, we have: | DB | =
2—- V3

V5

225. Let A be the point of intersection of the
straight lines BC and KM. The quadrilateral
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ONBC is an inscribed one (L0OCB = LONB =
90°), consequently, LOBC = LONC = a/2. Sim-
ilarly, CMAO is also an inscribed quadrilateral and
LCAO = LCMO = a/2, that is, OAB is an iso-

sceles triangle. Thus, | CB |=| AC | = | CO| X
e’ . 2 2 _ 3 &
cot 5 ‘/H + b 2Rb cos 3 cot 7

226. The points E, M, B, and Q lie on a circle
of diameter BE, and the points E, P, D, and N

M
A

¢
Fig. 3

on a circle of diameter ED (Fig. 3). Thus, L EMQ =
LEBQ = 180° — LEDC = LEDN = LEPN,
analogously, £ EQM = LENP, that is, the tri-
angle EMQ is similar to the triangle EPN with
the ratio of similitude of V k. (For completeness of
solution, it is necessary to consider other cases of
the arrangement of the points.)

Answer: d V'k.

227, Extending the non-parallel sides of the
trapezoid to their intersection, we get three similar
triangles, the ratio of similitude of the middle to
larger triangle and of the smaller to middle one
being the same. Let us denote this ratio by A, the
larger base by z, the radius of the larger circle by
R. Then the line segments parallel to the larger
base are, respectively, equal to Az and A3z, the
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larger lateral side of the lower trapezoid to 2R %,

the second radius to AR. Hence, R 4 AR = %

By the property of an circumscribed quadrilateral,
z+ Az = 2R + 2R % And finally, dropping

from the end point of the smaller base of the entire
trapezoid a perpendicular on the larger base, we
get a right triangle with legs ¢, z — A%z, and hy-
potenuse d. Thus, we have the system

z(@+0 =28 S18

z(1—M)=Vd—a3,

R(A4+N)=c/2,
a—Va=a

whence A= ———— ",
c

—Vdai—=c
Answer: the bases are equal to “/%
md SEVF—C

c

228. Let us draw perpendiculars from the centres

of the circles to one of the sides and draw through
the centre of the smaller circle a straight line
parallel to this side. In doing so, we obtain a right
triangle with hypotenuse R - r, one of the legs
R — r and an acute angle a at this leg equal to the
acute angle at the base of the trapezoid. Thus
R—r
R+

2R cot% 2R 1/1% The smaller base is

to 2r L ]/Z
equal tan2 2r "

cos a = . The larger base is equal to
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229. Let us take on the side AB a point X such
that | BK | = | BD |, and on the extension of
AC a point E such that | CE | = | CD |. Let us
show that the triangle ADK is similar to the tri-
angle ADE. 1f A, B, and C are the sizes of the
interior angles of the AABC, then, /DKA =
180° — LDKB = 180° — (90° — £ B/2) = 90° +
4B/2, LADE = 180° — LCED — 2A/2 =

180° _% (LA + £C) = 90° + £B/2. Thus,

LAKD = ADE. In addition, by hypothesis,
LDAE = (DAK.
Answer: l/ab.

230. Using the notation of the preceding prob-
lem, we have:
|AD |*= (|AC|+|CD)(|AB|—| BD|)=
| AC|-|AB| — | CD|-|BD | +
(|AB|-1CD | — | AC|-| BD ).
But theA terin in Iglll; parentheses is equal to zero

|4B| _ | | .

since| ac] 1 CD 1 (see Problem 9 in Sec. 1).

231. Let us extend BN and CN to intersect the
second circle for the second time at points X and
L, respectively; | MN | = | NK | since ZANB =
90° and MK is a chord of the circle centred at 4.
Since the corresponding arcs are equal, we have
LLNK = (BNC = £BND. Thus, |LN|=
IND|=b, | MN|-INK|=|MN|*= ab,
| MN | = V ab.

232. Note that PQ is perpendicular to CB. Let
T be the point of intersection of MN and PQ,
and L and KX the feet of the perpendiculars dropped
from C and B on the straight line MN (L and X
lie on the circles constructed on CN and BM as
diameters). Using the properties of intersecting

chords in circles, we get: | PT || TQ|= |NT| X
|LTY|, |PT|-|TQ|=|MT|-|TK|. But
|LT|=\|CD |, | TK|= | DB | (since CLKB is

a rectangle and PQ is perpendicular to CB). Thus,
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|MT )| | CD |
INT|-|CD|=|MT]- IDB"INTI DB
that is, the straight line PQ divides CB and MN
in the same ratio, hence, P Kasses through the
point A, and D is the foot of the altitude.

Answer: |BD | ;| DC|=1:V3.

233. Let .BOC = 2a, /BOL = ?it Then
| AC | = 2R cos a, |CL|—2Rsm(a

| CM| = | CL | cos (90° — B) = 2Rsm(a+B)x
smﬁ,lAM|—|AC|—|CM|——2R (cos a —
sin (@ 4 B) sin ﬂ)—2R cosﬂcos (@ + B), and,
finally, | AN |=a= | A lbsa—2RcosaX

cos B cos (@ + ). On the other hand, if K, P,
and Q are the midpoints of A0, CO, and CL re-

spectively, then | KP | = % | AC| = R cos a.
Further | PQ | = R/2, LKPQ = LKPO +
LOPQ = a + 180° — LCOL = 180° — a — 28,
and, by the law of cosines, | KQ |2 = %’ +
R® cos® o + R? cos @ cos (@ -+ 2B) = R%4 +
2R3 cos a cos P cos (@ + B) = %’ + Ra.

Answer: l/ —+Ra .

234, It iollows from the similarity of the tri-
angles MAB and MBC that
IMA| __ IMA| |MB| |BA|?
|MC| — |MB| |MC| = |BC|3

235. From Problem 234 in Sec. 1, it follows
that 1AM |3 _ |AC) |AN|2 _ |AD| If K

IMB|* _ |BC| ' |\NB[®* _ |BD|
is the point of intersection of MN and AB, then
|AK| _ Samn _ |AM|-|AN|sin L MAN
IKB| ~— SBMN lMBl lNBlsinLMBN =

l4C|  1AD} =

IBC| " 1BD| V (a-—i)(B—i)

= k2.
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236. Let X, L, M, and N be the points of tan-
gency of the sides AB, BC, CD, and DA with the
circle, respectively. Let P denote the point of in-

tersection of AC and KM. If LAKM = ¢, then

|4P] Sakm
MC = °— @. Th = =
LK 180 @ us, [PC] Sk
1 .
TIAK|'|KM|SIB¢ ___IAKI _i
T IMCl T b

—;— |IKM|-|MC] sin (180°— @)

But in the same ratio AC is divided by the straight
line NL. Hence, the lines AC, KM, and NL meet
in the same point. Considering the diagonal BD
and reasoning in the same way, we prove that BD
also passes through the point P. The sought-for
ratio is equal to a/b.

237. Let P and Q be the intersection points of
BK and AC, and AB and DC, respectively. The
straight line QP intersects AD at a point M, and
BC at a point N. Using the similarity of the cor-

. . . |AM| _ |BN| _
responding triangles we get: MDT = T[NC| —
IMK|  |AK|—|AM)| _
TAM| |AM]| If {AM|==z |AD|,
then |AM) P z___
IMD| " [AD|—|AM| - 1—z ' 1—z
A=z whence z=— 2
z A1
A
Answer: "1
A=, then |AM| = —+_ |AD|, Thus,

taking first X to be coincident with D (A = 1), we
get the midpoint of AB as M,; taking K to be
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coincident with M, we find that M, is 1/3 distant
from AD, and so lfol-t.h.

238, Let | KM |=| KN |=2z, |AD | =y,
and | DB |=z. Then |CD | =V yz, y +z=c.
The radius of the circle inscribed in the triangle
AKB is equal to -%- icD| = % V ys. Express

the area of the triangle A KB by Hero's formulas
and S = pr. We get the equation

VEeFTvFaa=G+y+95 Vi

Knowing that y 4 z = ¢, we find z = ¢/3.

239. Through the point A,, draw a straight
line parallel to AC. Let R be the point of inter-
section of this line and AB. Bearing in mind that

|AR| _ |Bidsl _ 1 |ACy|

= =, =k, we find:
IRCy| ~ [AsCil k' T1CiBI v
|AR] _ &

4Bl = GhF1p * In similar fashion, drawing
through C, a straight line parallel to AC to in-

tersect BC at a point S, we obtain that ‘lgill =
k .
—W . Therefore the points R, Ay, C;, and

S lie on a straight line parallel to AC. Thus, the
sides of the trianfles ABC and A3ByC, are corre-
spondingly parallel. Now it is easily obtained
that |4;Cs| = |RS| — [RAs| — |CyS| = | AC | X

3k . e s
(1—W). therefore the ratio of similitude

B—k+1

(k-+1)3

240. Let us use the following formula for the
area of a triangle: S =2R%sin A4 sin Bsin C, where
A, B, and C are its angles. Then the area
of the triangle A4,B,C,, where 4,, B,, and

is equal to
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C, are the intersection points of the angle
bisectors of the triangle ABC with the cir-
cumscribed circle, will be equal to §; =2R? X

A+B sin B+C in C+A

. C
— 2R3 i

sin ) ) si D) = 2R3 cos 3 X

A B S . A . B

cos TOOS 5 and S—l'—SSlD —2—8111 - X

sin—g,On the other hand, |BC| = 2Rsin 4, r X

(cot —g—-{—col.%):z}i' sin A, and r=4R sin%x

. B . C S _2r

sin ?sm 5 . Thus, S=F

241. Let O be the centre of similarity of the
inscribed and circumscribed triangles, M, and M
two similar vertices (M, lies on the side AB), an
let the line segment OA intersect the inscribed
triangle at a point K. Then Sgy, - =AS,, Som,a=

Som,a __ | OM, | S
AS,, 2 = 1 =V—' whence
®  Somua  10M,] Sy !

—_— S
Som,a=H V' 5:5,, where A=—O§‘+K . Consider-

1
ing six such triangles and adding together their
areas, we get: S4pc = VS,S,.

242, Let O denote the centre of the circum-
scribed circle, H the intersection point of the alti-
tudes of the triangle ABC. Since the straight line
OH is perpendicular to the bisector of the angle 4,
it intersects the sides AB and AC at points K and
M such that | AK | = | AM |. Thus, £ AOB =
2 £ C (we assume the anglle C to be acute); L OA K=
90° — £C = LHAM. Hence, AOAK = AHAM,
and |OA | = | HA | = R (R the radius of the
circumscribed circle). If D is the foot of the per-
pendicular dropped from O on BC, then | OD | =
| AH |/2=R/2. Consequently, cos 4 = cos L DOC =
1/2, LA = 60°,
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243. Prove that the triangle will be acute, right,
or obtuse according as the distance between the
centre of the circumscribed circle and the point
of intersection of the altitudes is less than, equal
to, or greater than half the greatest side.

Answer: 90°, 60°, and 30°.

244. The condition S,ppy = S,pex Means
that | BD |-| BM | = | BK |-| BC |, that is,
(I1BA|+1AC)IBM|=|BK|-|BC|. (1)
Throuih M, draw a straight line parallel to AC;

let L be the point of intersection of this line and
BA. Prove that | LM | = | KL |; hence it follows

that the desired 4BKM=—;- LBA C=%’— . Since

the triangle BLM is similar to the triangle BAC,

BM BM
we have |LM| = %-mch |BL|=||B—CI|x

|AB|. Now, we find |BK| from (1) and compute:
|KL| = |BK| — |BL| — _|BAI+14CT |BM| —

|BC|
|BM | |BM | _
TBC |AB | TBC AC|, whence | LM |
(KL].
255. Let |AD|=a, |BC|=0b. Drop from O a
perpendicular OK on AB. We now find: |BK| =

Vab oo—, IBEI =V 25 |MK|=
V& = b = a—b ~
7~V g =V gy Bl =
|BE|4|BK| = V ab— @ 2ab |0K | =

—b)(@+tb) '
ab . 2 .
P It is easy to check that |OK|?=|EK|-|MK]|.
Answer: 90°.
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246. Note that the points A, M, N, and O lie
on the same circle (see Fig. 43 Consequently,
LNMO = LOAN = 90° — LAON. Hence, with
0A rotated about O through an angle ¢, the straight
line N M rotates through the same angle @ (in the
opposite direction), and when 4 displaces along

Fig. 4

OA, the line N M displaces parallel to itself. Hence
it follows that the desired angle is equal to a.
247. 1f O, is the centre of the smaller circle and

LBOA =g, then 43A0=90°--‘21, £COA =

90° + @, 4CA01=45°—:§—. Thus, £BAC =

LBAO — LCAO, = 45°,

248. Construct a regular triangle ABK on AB
inside the square. Then £ KAB = 60°, L KCD =
15°, that is, K coincides with M.

Answer: 30°.

249, Let M, be symmetric to M with respect to
BC and CB is the bisector of the angle MCM,.

Since £ M,CA = 60° and | AC | = -;- | CMy | we
have that £ M;AC = 90°, hence A B is the bisector
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of the angle M,AC. In addition, CB is the bisector
of the angle M,CM, that is, B is equidistant from
the straight lines M;C and M;A and lies on the
bisector of the angle adjacent to the angle A M,C.
Thus, £ BMC = ZBM,C = 75°.

Answer: 75°.

250. If £ BAC = 2a, then we readily find that
LKMC = ZMKC = 30° + «, that is, | MC | =
| KC |. Let us extend MK to intersect the circle
at a point N; AKMC is similar to AKAN, hence,
| AN | = | KN | = R, i.e., to the radius of the
circle (since LAMN = 30°). The points A, K,
and O lie on a circle centred at N, ZANO = 60°,
consequently, £AKO = 30° or 150° depending
on whether the angle AMC is obtuse or acute.

A nswer: 30° or 150°.

251. (a) Draw the bisector of the angle 4 and
extend BM to intersect the bisector at a point N
(Fig. 5). Since | BN | = | NC |, LBNC = 120°,

hence each of the angles BNA and CNA4 is also
equal to 120°, L NCA = ZNCM = 20°, that is,
ANMC = ANCA, | MC | = | AC |. Consequent-
ly, the triangle A MC is isosceles, and LAMC =
70°

.Sb) The points M, P, A, and C lie on the same
circle (the point M from Item (a)); LPAC =
LPMC = 40°.

13-01557
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252, Describe a circle about the triangle MCB
(Fig. 6) and extend BN to intersect this circle at
a point My; | CM, | = | CM | since the sum of
the angles subtended by them (80° and 100°) is
equal to 180°% /M,CM = £M,BM = 20°, that

A

Fig. 6 Fig. 7

is, NC is the bisector of the angle M,CM and
AM,CN = ANCM, LNMC = /NM,C =
LCMB = 25°,

253. On BC, let us take a point K (Fig. 7)
such that £ KAC = 60°, MK || AC. Let L be the
intersection point of A K and MC; ALC is a regular
triangle, ANC is an isosceles triangle (the reader
is invited to determine the angles). Hence, LNC
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is also an isosceles triangle, £/ LCN = 20°. Let us
now find the angles NLM and MKN—each of
them is equal to 100°. Since M KL is a regular
triangle, each of the angles KLN and NKL is equal
to 40°, ie.,, | KN|=|LN| and AMKN =
AMLN, (NML = L KMN = 30°.

254. Let us take a point K (Fig. 8) such that
LKBC = £KCB = 30° and denote by L the
intersection point of the straight lines MC and BK.

A

30° 30

Fig. 8

Since ABNC is isosceles (LNBC = /NCB =
50°), £ KNC = 40°. L is the intersection point
of the angle bisectors of the triangle NKC (LK
and LC are angle bisectors). Consequently, NL
is also the bisector of the angle KNC and L/ LNB =
60°; BN, in turn, is the bisector of the angle MBL;
in addition, BN is perpendicular to ML; hence,
BN bisects ML, and £ZMNB = £/BNL = 60°
and ZNMC = 30°

255. Let O be the centre of the inscribed circle;
the points C, O, K, and M lie on the same circle
(LCOK = LAI2 + £C/2 = 90° — £ B/2 =

13+
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LKMB = 180° — L KMC; if the point K lies
on the extension of NM, then L COK = LCMK).
Thus, LOKC = LOMC = 90°.

256. If P lies on the arc AB, Q on the arc AC,
then, denoting the angle PAB by ¢, and the angle
QAC by v, we get two relationships:

{ sin? (C — ¢) = sin @ sin (B 4+ C — ¢),
sin? (B — 1[2 = sin P sin (B + C — ).
Writing out the difference of these equalities and
transforming it, we get: sin (B + C — ¢ — ) X
sin [(B -0+ (@ — Y)l=sin (B + C—q> ) X
sin (p — ¢), whence (since 0 << B4 C — ¢ —
Y<n)B—C+H+¢—YP=n—(p—1y) and we
get the answer.
n—a

A nswer:

257. Let us prove that the triangle CMN is
similar to the triangle CAB (Fig. 9). We have:

f

M
Fig. 9

LMCN = LCBA. Since the quadrilateral CBDM
ICM| _sin £ CBM _
|CB| ~ sin L CMB ™
sin . CDM _ sin . DBA __ |AD| __ |CN|

sin £ CDB ~ sin £ ADB =~ |AB)] ~— |AB|

is an inscribed one, we have
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Hence, £ CMN = £ BCA, that is, the desired

angle is equal to either % or n— %

258. Let LABC = 120°, and BD, AE, and CM
the angle bisectors of the triangle ABC. We are
going to show that DE is the bisector of the angle
BDC, and DM the bisector of the angle BDA.
Indeed, BE is the bisector of the angle adjacent
to the angle ABD, that is, for the triangle ABD,
E is the intersection point of the bisectors of the
angle BAD and the angle adjacent to the angle
ABD; hence, the point E is equidistant from the
straight lines AB, BD, AD; thus, DE is the bisect-
or of the angle BDC. Exactly in the same way,
DM is the bisector of the angle BDA.

259. Denote: ZABD = a, (BDC = ¢. By
hypothesis, /DAC = 120° — a, L BAC = 30°+
a, LADB = 30° —a, /DBC = 60° - a. By
the law of sines for the triangles ABC, BCD, ACD,
|BC| _ sin(30°4-a) 1
|AC| ~ sin(60°+2a) ~ 2cos (30°+a) °’
IDC|  sin(60°4-a) |AC| _ sin(30°—a+¢)
|BC| ~~ _sing ' |DC| sm(i2¥—a) °
Multiplying these equalities, we have: sin (30°—
a-+@) =2cos(30° -} a) sin = 2cos (60° + a) X
8in (30°— @) = 0; thus £ BDC == =230°.

260. In Problem 17 of Sec. 1 we derived the
formula for the bisector of an interior angle of a
triangle ABC. In the same way it is possible to
prove that the bisector of the exterior angle 4 is

we get

2bcsin%
TTo—er (M1 =

¢, |BC|=a, |CA|=2b)). We then find

sin %:sin%—: ],/%(ﬁ—cosA) =

computed by the formula I, =
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V) -y B

Finding in the same way I¢ sin % and sin % in

terms of the sides of the triangle, and equating

Ve(@+b—c) _ l/a (b+c—a)
[b—cl - lb—al
By hypothesis, b=2, ¢=1. Hence, ¢ must satisfy

the equation Va+1= Lfl?z_(—ai_l_a)- =@ —1) X

(a2—a—4)=0. But a = 1, consequently, | BC|=a=
14V 17

2

261. If O and O, are the centres of the circles
circumscribed about the triangles ABC and ADB,
respectively, then the triangle A00, is similar
to the triangle ACD.

Answer: aR.

262. If K is the midpoint of the arc AB, O the
centre of the circle, | AB | = 2R = ¢, then
| CM |2=|CD |? 4 | DM*=| CD |* + |DK|”—
| AD | -| DB |+Bz+|00|2— (R-+|DOY) X
(R—|DO|)+ R?+ | DO |* = 2R? = ¢%/2.

Answer: ¢ V 2/2.

263. Let KM be a line segment parallel to BC,
and N and L the points at which the inscribed
circle touches the sides AC and BC. As is known

la to lc, we get

(see Problem 18 ir Sec. 1), | AN | = | AL | =
— a, where p is the semiperimeter of the triangle
ABC On the other hand, | AN | = | AL | is the

semiperimeter of the triangle A XM which is
similar to the triangle ABC. Consequently,

p—a__i __a®

P o' PT e
2

Answer: 2a

-b
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264. I1f a, b, ¢ are the sides of the given triangle,
then the perimeters of the cut-off triangles are
2(pp —a), 2(p — b), 2(p — ¢), where p is the
semiperimeter of the given triangle. Consequently,
if R is the radius of the circumscribed circle, then

Ry RatRy= ( P2t p;b +E25 ) R=r.
Answer: Ry, 4+ R, 4+ R,.

|AC|

265. If £ A=a, then |[AM| =— , |AN|=
sina
lf‘Bl , that is, |AM|:|AN|=|AC|:|AB)|; thus,
sin o

A AMN is similar to A ABC with the ratio of
IBCl _,p
sina

266. Let O, and O, be the centres of the inter-
secting circles. We denote their radii by z and y,
respectively, | OA | = a. Since, by hypothesis,
the triangles 400, and 400, are equivalent, ex-
pressing their areas by Hero’s formula and bearing
in mind that |04 | =12z, |00,| =R — z,
| 0,4 | =y, | 00,| = R — y, after transforma-
tions we get: (R — 21)? = (R — 2y)%, whence
(since z 5= y) we obtain: z -} y = R.

Answer: R.

267. Let AB and CD be the given chords and M
the point of their intersection.

(a) The sum of the arcs AC and BD is equal to
180° (semicircle); conse%uently. |AC |2+ | BD|2=
4R?, thus, |AM |2+ | MC|*+ | MB |2+
| MD 12 = | AC |2+ | BD |2 = 4R2.

Answer: 4R2,

(b)|ABI2+ |CD 2= (|AM |+ | MB |)* +
(ICM |+ | MD |)>=4R*+ 2| AM| | MB |+
2|CM|-|MD|=4R%+ 2 (R? — a?) = 6R? — 2a2.

Answer: 6R? — 2a2.

268. If M is the second point of intersection of
BC and the smaller circle, then | BM | = | PC |

similitude —1— , therefore |MN|=
sin a
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(M between B and P), | BP | = | MP | + | BM |,
| PA 2+ | PB|2+ | PC |2=| PA |+ (| PB| —

|PC)*+2|PB|-|PC |=|PA|*+ | MP |*+
2|

PB||PC|=4r*4+ 2 (R —r®%) =2 (R*4 r¥).
269. Let us denote the lengths of the segments
of the chords as in Fig. 10 and the diameter by 2r.

¢ g7

T )
2.

Fig. 10

Taking advantage of the fact that the angles based
on the diameter are right ones, and zy = uv, we
getz(z+y) +u(mtv)=(u+tv)+ 22 —v’=
(u + v)2 + m? = 4r2.

270. If a, B, v, 6 are the arcs corresponding to
the sides a, b, ¢, and d, then the equality to be
proved corresponds to the trigonometric equality

.o v a .y B 8

sin —é co.~36—2 +cos —- :l_n - =sin ﬂz—l_c(‘)ss 5 +
) ety

c0s - sin  , or sin — sin +—

271. Let ABCD be an inscribed quadrilateral.
AB and CD intersect at a point P, A and D lie on
the line segments BP and CP, respectively. BC
and AD intersect at a point Q, while C and D lie
on the line segments BQ and AQ. Let us circum-
scribe a circle about the triangle ADP and denote
by M the intersection point of this circle and the
straight line PQ. (Prove that M lies on the line
segment PQ.) We have: /DMQ = LDAP =
LBCD. Consequently, CDMQ is an inscribed
guadrilateral. Since, by hypothesis, the tangents

rawn from P and Q to the original circle are equal
to a and b, respectively, we have | QM || QP | =
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1QD |-1Q4 | =% | PM|-|PQ|=|PD|X
| PC | = a®. Adding together these equalities,
we get | PQ |2 = a2 4 b2,

Answer: V a® + b3.

272. The line segment QP is equal to

V2 =R+ (2 —R%) = VB2 F & — 2R? (see
the preceding problem). Let ABCD be the given
quadrilateral, Q the intersection point of AB and
CD (A lies on the line segment BQ). To find the
length of PQ, we circumscribe a circle about the
triangle QCA and denote the point of intersection
of QP with this circle by N. Since LANP =
LACQ = LABP, the points A, B, N, and P
also lie on a circle. We have | QP |-| QN | =
| QA |-| QB | = b* — R%, | PN |- |PQ| = |CP |X
| PA | = R? — q?. Subtracting the second equal-
ity from the first one, we get | QP |2 = % +} a2 —
2R%. Analogously, | PM |2 = ¢? -} a2 — 2R®.

Answer: | QM| VB F & — 2R?, |QP|=
V' b3+ a?— 2R3, |PM|=V c*+a*— 2R",

273. The radius of the inscribed circle is con-
tained between the values of the radii for the two
limiting cases. It cannot be less than the radius
of the circle inscribed in the triangle with sides
a+ b, b+ ¢, ¢ + a which is equal to S/p, where
S is the area and p the semiperimeter of the tri-

S _ VieaFb+o abe_

angle; thus r > > Py
abe .
l/a—m. On the other hand, r is less

than the radius of the circle shown in Fig. 11 (on
this figure, the opposite tangents are parallel, and
the point C tends to infinity). Since for the angles
a, B, and y marked in the figure the following
equality is fulfilled: @ + f + y = n/2, tan @ =
¢/p, tan p = a/p, tan y = b/p, where p is the
radius of the shown circle, tan (@ 4 f) = cot ¥,
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(;;'-_f’lf =T’ whence p = V'ab + be + ca-
Thus, Va:b+c <r<l/ab+bc+ca

Fig. 11

274. Let M be the point of intersection of the
straight line CB and the lines of centres of the
given circles. Let usdenote: | AM | = z, LACB =

¢; | AB |2 = 2rr, | AC |2 = 2Rz, sin ¢ = .l_A""'C_I
If p is the radius of the circle circumscribed about

AABC, chenp-zlgﬁl‘p IABZII-IAC| VT

A nswer: I/Rr

275. Let Oy, O, be the centres of the circles and
A the point o their intersection most remote from
BC, £0,A0, = ¢. Let us show that LBAC =

@/2. (For the other point the angle is 180° — —gﬂ )

Indeed, L BAC = 180° — LABC — LBCA =
180° — (90° — £ ABO,) — (90° — L ACO,) =
LABO, + LACO, = LBAO, + LCAO, = ¢ —
LBAC). Let | 0, Oy | = a.qDrawing O,M || BC
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(M on OB), we get |BC| = |O,M| =
V& = (R—rr. 2l"'rorn the 2triangle 0,A0, we find
that cos ¢ = ﬁ_—_l—_r’_—_a; thus, the radius of
the circle circumscribed about the triangle ABC
is equal to ‘BCI(P = ‘/aﬂ____(_R}:.__!_L:_a=
2sint /3 Ao r—a
2 Ve l/ 1 2Rr
V Rr.

Answer: V Rr (for both triangles).
276. DO and CO are the bisectors of the angles
ADC and DCB. Let a, B, and y denote the corre-

Fig. 12

sponding angles (Fig. 12). Buta + 2f 4 2y +a =
2n; hence, @ + B + y = n; hence it follows that
LDOA =y, LCOB = B, and the triangle 40D
is similar to the triangle COB; consequently,
|AD |-|CB| =] AO |-| OB | = | AB |%4.

Answer: a?/4b.

277. It follows from the conditions of the
problem that the bisectors of the angles C and D
intersect on the side 4B. Let us denote this point
of intersection by O. Circumscribe a circle about
the triangle DOC. Let K be a second point of
intersection of this circle with AB. We

have: LDKA = LDCO = -;—/.DCB= %X
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(180°  LDAK) —;-(LDKA + LADK).

Hence, LDKA = LADK and | AD | = | AK|.
Similarly, | BC | = | BK |; consequently, | AD |+
|CB|=|AB|.

Answer: a — b.
278. On the ray MC, we take a point N such

that | AN | = | AB|= | AD |. Since
sinZMNA _ | AC| _ | AC| _ sin| £ADC
sin ZMCA |AN| T1AD| sin ZACD

and L MCA = LACD, we have: sin LMNA =
sin £LADC = sin LABM, that is, the angles
ABM and MNA are either congruent or their
sum totals to 180°. But M is inside the triangle
ABN, hence, LABM = LMNA. Now, we can
prove that AABM = AAMN; LNAC =
LMNA — LNCA = LADC — LACD = ¢.
a4 ¢
7
279. Let K and L denote the points of tangency
of the first and second circles with one of the sides
of the angle, and M and N the other points of
intersection of the straight line AB with the first
and second circles, respectively. Let O denote the
centre of the second circle. Since A4 is the centre

A nswer:

o . . |AK | _|AM]| _
oi'snmllantyoftheglvencu'cle:’,,l AL~ TAB|
:—:IIViIJ= A, whence | AK |-| AL | = A | AL |2=
M| AB|-|AN | = | AB |2. On the other hand,
from the similarity of the triangles 4 XC and ALO
we have: |AK |- |]AL|=|AC|-|AO0|. Con-
sequently, | AC |-| A0} = | AB |?; hence, the

triangles ABC and AOB are similar.
A 2 orm— 2
nswer: - =5

280. Let L BAF = ¢, LDBA = a, LDAB =
2a (by hypothesis, it follows that the points 4, E,
and F lie on the same side of BD, and £ BDA <
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90°, that is, @ > 30°). By the law of sines, for the

triangles DEA, DAB, and BAF we have: :2?'
sin (120° — 2a) o |AD| _sina
sin @0 Fa) 208 B0+a) =g =

1 |AB| _ cos (@a—¢@)
4cos (30°+a) cos (30°—a)' (BF| sing

Multiplying the equalities, we find: % =

2 cos (@—30°), whence £ BAF =q@=230°,
281, Consider two cases.
(1) The line segment BK intersects AC. From
344 —-L4LC
the condition that £ BKC = —————— it fol-

lows that £C = 90° (LBCK = LB + /C,
LCBK = %, 3_4"2—_~’—C+ (LB + zC) +
4B = 180°, etc.). Consequently, the point O is

found on A B, and the sum of the distances from O
to AC and AB is equal to | BC |; thus, | BC |=

4> 2 + V3—-|AC|+|AB|>|AB|,
that is, a leg is greater than the hypotenuse which
is impossible. Thus, we have arrived at a contra-
diction.

(2) The line segment BK does not intersect AC.

In this case, / CBK—180°— ‘TB , L BCK =

34—/ C
2
(15— 42) 4 cas

‘whence £ A =30°.
Again, two cases are possible.

LA, LBKC= (by hypothesis);hence,

34—/, C

J— o
5 =180°,
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(2a) The centre of the circumscribed circle O
is inside the triangle ABC. Let the perpendicular
dropped from O on AB intersect AB at N, and AC
at K, and let the perpendicular drawn to AC inter-
sect AC at M and AB at L. Let us denote: |OM|=
z, |ON |=y; = 4+ y =2 (by _hypothesis),
|0K| = 22/V'3, | MK| = z/V3, |AK| =
2|NK| =2+ 42/V'3, |AM| = | AK |
| MK | = 2y + z/V/3.Similarly, we find: |[AN|=
2z 4+ y V3. By hypothesis, | AN | + [AM|=

FUABL +'| AcC |)=%(2+1/§). On the

other hand, | AN | + |AM| (2 +V3) X
(z+ y) = 2 (2 + V'3), which is a contradiction.
(2b) The point O is outside the triangle ABC.
We can show that £ B is obtuse. Otherwise, if
o 34LA— /C .

£C > 90° then — < 0, thus, O is
found inside the line segment A C not containing B;
however, this does not affect the answer. Using
the notation of the preceding item, we have:

|AM | =2y —z V3, |AN| =y V3—2¢
From the system y + 2= 2, | AM |+ |AN | =

C+ViHy—@+ Vi)::ﬁzlfi we find:
3 5 5 3V3

= = I = — .-, th

T 7 v T | AM | 5 7 he

radius of the circle is VIAM 2 | MO |2 =

1/2 V34 — 15 V3.

282, If C, is a point symmetric to C with respect
to AB, and B, is symmetric to B with respect to
AC, then (as usually, a, b, c are the sides of AABC,
S its area) | C,B, |2 = b2 + ¢ — 2bc cos 34 =
a? - 2be (cos A — cos 34) = a“\—l—- 8bc sin? A X

°

cos A = a% 4 16 (b + ¢ — a?) bSTci' Thus, we get
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the system of equations:

a%b%c? 4 1682 (b2 - 2 — a?) = 8b%?,
{ a%bc® 4 1652 (a? + b2 — ¢?) = 8a2b?,

a?b%c? + 1652 (c2 + a® — b2) = 14c%a2.
Subtracting the second equation from the first one

and bearing in mind that a 5= ¢, we find: 45?2 =
b2. Replacing S? by b%/4, we get:

a%c?® + 4 (b2 — ¢2 — a?) = 0,
a%b2c® + 4b2c? + 4b%a? — 4b% — {4a%? = 0,
b2 = 482,
Denoting a*?* = z, a® + ¢ = y, we have:
by — z = 4b2,
{z (b2 — 14) + 4b2y = 4b8.
Multiplying the first equation of the latter system

by b2 and subtracting the result from the second
equation, we find: z (2b2 — 14) = 0, whence b =

V7.
T —
Answer: 1, V7, V8 or ]/ 31_2ﬂ .
7 A+ VT
Vi, l/ 3

283. Prove that tan a =

is the area of the triangle (prove this for the other
angles in a similar way).

Answer: arctan | tan a + tan p |.

284. Let us find the cotangent of the angle
between the median and the side of the triangle
ABC. If LAAB = ¢ (AA,; a median of the tri-
angle ABC, a, b, c the sides of the triangle, m,,
my, m, its medians, S the area), then cot ¢ =
2c —acosP _ 22— ac cos B _ 3c® 4 b2 — a®

2 __ A2
I—b———c—l,where S

he 28 4S *
Let M be the median point of the triangle ABC;
the straight lines perpendicular to the medians



208 Problems in Plane Geometry

emanating from the vertices A and B intersect at C,;
L MC,B= . MAB=@(MAC,B is an inscribed quza(i-

rilateral). Consequently, Sy pc, = -—;-( -:‘;-mb) X

21 902 p2)(3c24-p2—g2
=(2a +2 7172 ;,(36 Fbi—a ). The area of the
required triangle is the sum of the areas of the six

triangles, each area being found in a similar way.
(a® + b + c2)? _ 27 (R? — d?)?

cot @

Finally, we get

48
(the equality a2 4 b2 + ¢ = 9 (R?2 — d4?) is left
to the reader).

Answer: 22‘{ (R® — d?)2.
285. 60°.

286, First note that | MN | is equal to the
common external tangent to the circles with centres
at 0, and O, (Problem 142, Sec. 1). Consequently,
if the radii of these circlesarezand yand z 4 y =
2R —a, then | MN | = V' a® — (z — y)°. Let ¢
denote the angle formed by AB with 0,0,, L the
point of intersection of AB and 0,0,. We have:

x

ra ra .
L:‘Ll_x y 2R —a smq’——lOlLl
==, 10Ll |z + |0L]|— R
R R
mlzt-l—a—Zﬂl—zR—_ﬁlr—yl,
| AB | 2 VRT — | OL |? sin® ¢ =

2R -— 2R
- Va—(@—y?= - | MN |.
2R |,
Answer: - (in both cases).

287. The angle A KB is equal to 90° (see Problem
255, Sec. 1). Let R be the point of intersection
of BK and AC, Q apoint on BK such that NQ || AC.
Using the usual notation, we have: |[AR | = |AB|=
¢ |MR| =c —(p—a)=p—>b=|NB|,
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IMK| _ |MR|_ |CB| _ _a
KNT ~ [oN1_ TRC] = b—=< &>
Since |MN| 2 (p —¢) sin §,|MK|=

] . . .
a sin 3. Other line segments are considered in a

similar way. The desired triangle is similar to the
triangle ABC, the ratio of similitude being equal
to sin (@/2). Its area equals S-sin? (a/2).

288. Let | AM | =1z, |CN|=y,z+ y = a,
where a is the side of the square. We denote by E
and F the points of intersection of MD and DN
with AC. The line segments | AE |, | EF |, | CF |
are readily computedg in terms of a, z, y, where-
upon it is possible to check the equality | EF |2 =
|AE |*+ | FC |2 — | AE |-| FC ).

289. Let P be the point of intersection of the
straight line DE with AB, K a point on AB such
that XD is parallel to AC, AKD is an isosceles
triangle (L KDA = LDAC = LDAK). Hence,
11(D isamedian in the right triangle, and | MN | =

1 1 1
5 | KD | =7 |AP|= 2 |AE|= 7.

290. Let A, be another point of intersection of
the circles circumscribed about tha AABC and
AAB.C,. It follows from the hypothesis that

| BBy | = | CC, |, in addition, ZABA, = LACA,
and LABjA, = LAC,A,. Consequently,
AABB, = AA,CC,. Hence, | A4,B | = | A,C .

Let LZABC = B, LACB = vy, LABA, =
LACA; = ¢. Since AA,BC is isosceles, we have
LABC = LACB, ie., P+o=v—9, ¢=

-;— (y — B) and if the radius of the circle circum-
scribed about the AABC is R, then | 44, | =
2Rsin”;'3;but |AB| | AC | =

2R (sin y — sin B) = 4R sin Y 2_ B cosﬁ—;——v

14—-01557
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2| AA, | sin %; consequently, |44, |

a
2 sin 22‘-

291. Note that the points 4, O, M, B lie on the
same circle (£ AMB is measured by one-half of the
sum of the arc AB and the arc symmetric to 4B
with respect to OC, that is, LAMB = L AOB).
We lay off on A M a line segment M K equal to MB;
then the triangle 4 KB is similar to the triangle
OMB.

Answer: | AB | = 2a.

292. Let | AB| = 2r, | BC| = 2R, 0, the
midpoint of 4B, O, the midpoint of BC, O4 the
midpoint of AC, O the centre of the fourth circle
whose radius is z. From the conditions of the
problem it follows that | 0,05 | = R, | 0,05 | =
P, 10,0 =r+z |00 =R+2,|00|=
R 4 r — z. Equating the expressions for the areas
of the triangles 0,00, and 0,00, obtained by
Hero's formula and as one-half of the product of
the corresponding base and altitude, we get two
equations:

VRTDr(R—2)z= —,:—Rd.

V(R-i-—r—l-r)_m:—;—(ﬂ-}-r)d,

Squaring each of them and subtracting one from
the other, we find: z = d/2.

Answer: df2.

293. Let P be the foot of the perpendicular
dropped from N on the straight line MB, then
| MP | = R cos a; consequently, | MP | is equal
to the distance from the centre O to AB. But the
distance from the vertex of a triangle to the point
of intersection of its altitudes is twice the distance
from the centre of the circumscribed circle to the
opposite side (Problem 20, Sec. 1), i.e., | MP | =
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-;— | MK |. Hence, it follows that if M is located

on the major arc, that is, ZLAMB = a, then
| NK | = R; and if LAMB = 180° — a (that is,
M is found on the minor arc of the circle), then
| NK |2 = R%* (1 4 8 cos? @).

Answer: | NK | = R if M is on the major arc
and | NK| =R V'1F 8cos?a if M lies on the
minor arc of the circle.

294. Let ABC be the given triangle, CD its
altitude, O, and O, the centres of the circles in-
scribed in the triangles ACD and BDC, respective-
ly, K and L the points of intersection of the
straight lines DO; and DO, with AC and (B,
respectively. Since the triangle ADC is similar to
the triangle CDB, and KD and LD are the bisectors
of the right angles of these triangles, 0, and 0,
divide, respectively, KD and LD in the same
ratio. Hence, KL is parallel to 0,0,. But CKDL
is an inscribed quadrilateral (£ KCL = L KDL =
90°). Consequently, LCKL = LCDL = nl4,
LCLK = LCDK = n/4. Thus, the straight line
0,0, forms an anﬁle of nt/4 with each of the legs.
If M and N are the points of intersection of 0,0,
with CB and AC, then the triangle CMO, is con-
gruent to the triangle CDO, (CO, is a common side,
20,CD = LO,M, LCDO, = L CMO,). Hence,
|CM | =|NC|=h.

Answer: the angles of the triangle are n/4, n/4,
n/2, and its area is h%/2.

295. For designation see Fig. 13. CKDL is a
rectangle. Since ZLKA = 90° + a, L LBA =
90° — a, BLKA is an inscribed quadrilateral,
|LC| __ hcosa 1

tan @ = CAl — W =-2—sm2a. (1)
sino

‘M R is the radius of the circle, then

o |KLL _ _h

{? ~ 2sing = 2sing ° @

4w
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Since £ LOK = 2¢, we have: |ON| = Rcos @ =
h___ kb
2tan¢g  sin2a
(1) and (2)), |OM | = | ON | sin (90° — 2a) =
I
A g K
20 (4
LS
1)

we have used the equalities

——

A
A, 7

¢
Fig. 13
cos 2a
<in 9% = h cot 2a, and, finally, we get the ex-
pression—;—IP()l — QM| =V = OMt =

]/__'_L’_.__hz cot% 2G —
4s8in2 ¢ -
h ‘/—;;— (1+4cot? ¢)—cot? 2a =

1 4 son _ RV5
WV 3 (1 ) —es = A

|PQ|=h VS. If now the segments | PD | and
|DQ| of the chord are denoted by z and y, then

z4+y=hV5, zy=h? whence the desired line
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V541 V5—1
2

segments are equal to h, 3 h.

296. Let (Fig. 14) P and Q be the points of
tangency of the tangents drawn from E. Prove that

g
aq
L J
A C £
\ ! /\
\,
N 4 AN
A N N
Fig. 14
|EP | = |EQ|=|BD|. Indeed, |EP|2=
(lED|+ |DC\)(IED| —|DC|)=|ED|? —
IDCI*P=|BC|>?—|DC|*=|BD|* (by hy-
pothesis, | ED | = | BC |). Denote | KN | = z,
PN|=|NA|=y. | EQ|=|EP |=| BD |=1z.
4

. We have: Sgpy =

%z (2R—z); on the other hand, Sgrpny=Skon T+
1

SKOE—SEON=-2—-R(x+z+y-—z—y—z)=

R (z — z). Thus, —;-z (2R—1z)=R (z—1z), z=2R.

Answer: 2R.
| 40|

297, First, find lim <=1  Denote: £ C=§.
’ a0 [0C] ° P
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We have:
1
|40\ _ SaBp __ 2

_ - )
10Cl — Sspc _;_(p_.,) (p—b)sinp

absina

But by the law of cosines, a?+ b2 — 2abcosa =
(p—a)*+(p— b)=—2<p~a)(p b) cos B = cos p=
p(p—a—>b) -+ abcosa

(p—a)(p—0)
sinp= V1—cos2p = V{— cosp)(1 - cos p)
V ab (1 —cos a) (2p2 — 2ap— 2bp 4 ab+-ab cos a)

, whence

(p—a) (p—D)

2
If @« —>0, then cos a — 1; consequently,
M V3cos 2}V 2asa—0. Taking
V1-—cosa 2
this into account, we obtain from (1) and (2):
im |A0| l/' .

A
ot JocT e G +Sinee 14C1 .
pV ab

lim | 40 | = = e
i O YR Ve—a o
Section 2

1. Prove that if D is the projection of M on AB,
then |AD |2 — | DB |2 = lAMIz—lMB]2

2. Suppose that there is such a point (let us
denote it by N), then the straight line MN is per-
pendicular to all the three sides of the triangle.

3. If M is the point of intersection of the per-
pendiculars from A, and B, on BC and AC, then
(see Problem 1 in Sec. 2) | MB |2 — | MC 12 =
| 4B 22— | A, C 12, |MCPP—|MA|»=
| B,C 12— BIA I’. adding together these equal-
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ities and taking into consideration the conditions
of the problem, we get: | MB |2 — | MA |2 =
| C1B |2 — | C14 |2, that is, M lies on the per-
pendicular drawn to AB through C,.

4, It follows from the result of the preceding
problem that the condition of intersecting at one
point for the perpendiculars dropped from 4,, B,,
and C, on the sides BC, CA4, and AB is the same
as that for the perpendiculars from 4, B, and C
on B,C,, C{4,, and A,B,, respectively.

5. We note that the perpendiculars dropped from
4,, B,, C, on BC, CA, AB, respectively, inter-
sect at one point D and then use the result obtained
in the preceding problem.

6. The next problem proves a more general
fact. From the reasoning of that problem it will
follow that the centre of the circle lies on the
straight line AB.

7. We introduce the rectangular coordinate
system. If the coordinates of the points 4,,4,, = .,
A, are, respectively, (z1, ¥1), (Za) ¥2)s - s (Tn, ¥n)
and those of the point M are (z, y), then the locus
is given by the equation a (z2 + y2) + bz + cy +
d =0, where a =k, + k, + -+ k,; hence,
there follows our statement.

8. If B is the point of tangency and O the centre
of the given circle, then |OM |2 — | AM |* =
| OM |2 — | BM |2 = | OB |2 = R?. Hence, M lies
on the straight line perpendicular to OA (see Prob-
lem 1 of Sec. 2).

9. The condition defining the set of points M
is equivalent to the condition | AM |2 —k2 | BM|*=
0, that is, this is a circle (see Problem 7 in
Sec. 2). This circle is called Apollonius’ circle;
obviously, its centre lies on the straight line 4AB.

| A10. Since{lillBB is the bisector of the angle AMC,

M| | | .

Mc] = 1BCT Consequently, the bisector of

the exterior angle with respect to the angle AMC
intersects the line AC at a constant point K:
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{AK| _|AB|
[KC|  |BC|
M is the arc of the circle constructed on BX as
.diameter and enclosed between the straight lines
perpendicular to the line segment AC and passing
through the points 4 and C.

11. Let O, and O, be the centres of the given
circles, r; and r, their radii, M a point of the
desired set, MA, and M4, tangents. By hypothe-
sis, | MA; |=k | MA, |. Consequently, | MO, |>—
k* | MOy |2 = r} — k%3. Hence (see Problem 6 of
Sec. 2), for k = 1, the sought-for set of points M
is a circle with centre on the straight line 0,0,,
while for £ = 1, the desired set is a straight iine
perpendicular to 0,0,.

12. Let (Fig. 15) K and L be the points of
intersection of the tangent to the second circle

, and the sought-for set of points

passing through D and the tangents to the first
circle passing through B and 4, and M and N two
other points. It is obvious that L/ DKB = L CMA
(either of these angles is equal to one-half of the
difference between the angles corresponding to the
arcs AB and CD). Therefore (in the figure)
LLMN 4 LLKN = 180°. Consequently, KLMN
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is an inscribed quadrilateral. Further, we have

g
IDK| _sinZ pDBK_ S 3 — 4B The rati
[KB| snZ BDK 1~ ¢ rauos
sm—z—vDC

of the lengths of the tangents drawn through the
points L, M, and N are found in a similar way. All
these ratios are equal; hence, the centre of the
circle circumscribed about KLMN lies on the
straight line passing through the centres of the
given circles (see Problem 6 in Sec. 2).

13. Expressing the distances from the vertices
of the triangle to the points of tangency, check the
gulﬁllénent of the conditions of Problem 3 in

ec. 2.

14. Let | AM, | : | BMy|:|CM, ]| = p:
Then the set of points M suc lh that(r2 — q’)IAM |’+
(p2—r?) | BM |* + (g  |CM|*=10is a
straight line passing t rougﬁ , M,, and the
centre of the circle cu'cumscnbed about the triangle
ABC (see Problem 7 in Sec. 2).

15. Points M, and M, belong to the set of points
M forwhich5 | MA |2 — 8| MB |2+ 3| MC |12=
0. This set is a straight line, and, obviously, the
centre of the circumscribed circle satisfies the con-
dition that defines this set (see Problem 7 of Sec. 2).

16. Let|AA1|—a,|BBl|——b ] CCy | = ¢,
| AyB,y | = z, chxl—y, | C,A 1|—z Then
| AB, |2 = a® + z" |B,C|2 = ¢? + y? and so forth.
SNow 21t iseasy to check the conditions of Problem 3,

ec

17. Let |AD | =1z, |BD | =y, |CD | =
| AB| = a. Let A,, B,, C, denote the points of
tangency of the circles inscribed in the triangles
BCD, CAD, ABD, respectively, with sides BC,
CA, 'AB. The perpendlculars drawn through the
points A,, By, C, to the sides BC, CA, and 4 B coin-
cide with those drawn to the same sides at the

points A,, B, Cs But | BA,| = :‘_‘_"2-'/_—_’
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14,01 =2FE=Y: 1 4c,1, 16,81, 1 4B,

| B,C | are found in a similar way. Now, it is
easy to check the conditions of Problem 3, Sec. 2.

18. Apply the conditions of Problem 3 in
Sec. 2, taking the centres of the circles as the points
A, B, and C, and each one of the two intersection
points of the circles as the points 4,, B,, C; (4, is
one of the points of intersection of the circles with
.centres B and C, and so on).

19. Take the third circle with diameter BC. The
altitudes of the triangle drawn from the vertices
B and C are common chords of the first and third,
and also the second and third circles. Consequently
(see Problem 18 in Sec. 2), the common chord of the
given circles also passes through the intersection
point of the altitudes of the triangle ABC.

20. Let O denote the centre of the given circle,
R its radius, MC a tangent to the circle. We have
| MOP3—| MN |2= | MO |* — | MB |-| MA |=
| MO |2 — | MC | = R?, that is, the point M
lies on the straight line perpendicular to the
straight line ON (see Problem 1 in Sec. 2). It can
be easily shown that all the points of this line
belong to the set.

21. Let O denote the centre of the circle, r the
radius of the circle, | OA | = a, BC a chord passing
through A, and M the point of intersection of the
tangents. Then

|OM |2 = | BM * + 1,
|AM|3= |BM|*— 1 1BC|*+ (5 1BCI — 1BA] ) =
4 2

|BM\*— |BC|-|BA| 4+ |BA|*=

|BM|2— |BA|+|AC| = |BM|3—r2+{a3.

Thus, | OM |2 — | AM |2 = 2r2 — a2, that is (see
Problem 1 of Sec. 2) the required set of points is
a straight line perpendicular to OA. This line is

called the polar of the point A with respect to the
given circle.
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22. Show that if M, and M, are two distinct
points belonging to the set, then any point M of
the segment of the straight line M;M, enclosed
inside the triangle also be%ongs to this set. To this
end, let us denote by z,, y;, and z; the distances
from M, to the sides of the triangle, and by z,, y,,
z, the distances from M,. Then we can express the
distances z, y, z from M to the sides of the triangle
in terms of those quantities and the distances
between M,, M,, M. For instance, if | MM | =
k| MM, | and the directions of MM and MM,
coincide, then z= (1 — k)2 + kz,, y=
(1 —k)y, + ky,, z = (1 — k) z, + kz,. Hence, it
follows that if the equality is true for three non-
collinear points inside the triangle, then it is true
for all the points of the triangle.

Remark. The statement of the problem remains
true for an arbitrary convex polygon. Moreover,
we may consider all the points in the plane, but the
distances to the straight line from the pointssituat-
ed on opposite sides of the line must be taken with
opposite signs.

23. For the distances z, y, z to be the sides of
a triangle, it is necessary and sufficient that the
inequalities z <<y 4+ 2, y<<z+4 z,2<<z -+ y be
fulfilled. But the set of points for which, for in-
stance, z = y -+ z is a line segment with the end

oints lying at the feet of the angle bisectors (at the
oot of the angle bisector two distances are equal,
the third being equal to zero; consequently, the
equality is true; and from the preceding problem
it follows that this equality is true for all points
of the line segment).

A nswer: the sought-for locus consists of points
situated inside the triangle with vertices at the
feet of the angle bisectors.

24. Since the perpendiculars from 4,, B,, and
C, on B,C,, C,A,, and A,B,, respectively, are
concurrent, the perpendiculars from 4,, B,, and
C, on B,C,, C,A4,, and A4,B,, respectively, are
also concurrent (see Problem 4 of Sec. 2).
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25. Let a; and a, denote the distances from A4
to the straight lines I, and I3, respectively, b, and
b, the distances from B to the straight lines I,
and 1, respectively, ¢, and ¢, the distances from C
to the straight lines I, and l,, respectively, z, y,
and z the distances from 4,7 By, and C, to [, re-
spectively. For the perpendiculars drawn respectiv-
ely from 4, B, and C on B,C,, Ci4,, and A.By,
it is necessary and sufficient that the following
equality be true (see Problem 3 of Sec. 2): | 4B, |*—
| B,C |3+ CAy |*—| A;B >+ BC|*— | C,4 |2=0
or (ai+y?) — (c3-+y°) + (c1+ 2*)— (b3 + 2%+ (b +
22)— (a3 +22) =0 which. leads to the condition
a} —a}+ b3 — b3+ 2 — c3=0, independent of z, y, z.

26. It suffices to check the fulfillment of the
condition (see Problem 3 of Sec. 2) | AB, |? —
|B,C 12+ | CAy |12 — | A,B |12 + | BCy, |2 —
| Cq4 |2 = 0. Note that the triangles BB,C, and
AA,C, are similar, hence, | AC,|:| (1B, | =
| BCy |-| C44, |; in addition, LACyBy= L BC,A,,
consequently, | AB2 12— BA,2| = (| AC,4 |2 —
| C1B 1) + (1 C1B, |2 — | A4C, [%). By writing the
corresponding equalities for | CA4, |2 — | AC, |®
and | BC, |2 — | CB, |? and adding them together,
we see that the sum of the difference in the first
parentheses yields zero (aﬂply the conditions of
Problem 3 of Sec. 2 to the triangles ABC and
4,B,C,; we get zero since the altitudes intersect
at one point). It is easy to prove that A4,, BB,,
and CC, pass through the centre of the circle cir-
cumscrited about ABC, that is, the sum of the
differences in the second parentheses is also zero.

32. Through K and L, draw straight lines
parallel to BC to intersect the median AD at points
Nand S.Let| AD | = 3a,| MN | = za,| MS | =

o Since (£S5t _ 14S| - ILS| __ IMS|
have [ASI _ |MS| tya _ ¥

1AN] = TMN[® (@C—-a =z Y7
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z . 1 1 1
1—z ° The equality TRT = LT T A
: . it 1
is equivalent to N = TMS] + D
1 — 1 1 1 . . . r
Frimr et Substituting y= = Ve get

a true equality.

34. Let O be the point of intersection of the
diagonals AC and BD; taking advantage of the
similarity of the appropriate triangles, we get
10K| _|OK| 10B| _ |0A| |OM| _|OM]|

JoC| ~10B] "T|0C| ~ 0D| ‘104 ~ |0D|’
which was to be proved.

35. Let F and D denote the points of intersection
of EN and EM with AB and BC, respectively.
Prove that the triangles AFN and MDC are simi-
lar. Using the similarity of various triangles and
equality of the opposite sides of the parallelogram,

_INF| _|NF| I|FB|__ |BD|
we have: 4 =TFB| TFAl DM "
|ED|___ | BD | |DC|__ | BD | IDCI_
| FA|l — DM [ TFE| 1DM[ 1BD| —
IIII)) , that is, the triangle A FN is similar to

the triangle MDC.

36. The statement of the problem becomes
obvious from the following two facts:

(1) If, on the sides of the quadrilateral ABCD,
points K, L, M, and N are taken so that the sides
AB, BC, CD, and DA are divided by them in the

IBK| _ ICM| __ |BL| __
KA |MD|~ |LC| —

) , then the line segments KM and LN are

same ratio (

|AN]
| ND |
also divided in the same ratio by the point P of
their intersection.
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Indeed, from the fact that the straight lines KL
and NM are parallel to the diagonal AC it follows

{KP\ _ |KL| __ |KL| |AC| _ |BK|

that o T =TNMT = 14C] " TNM| — 1BAT <
|AD| _ |BK| |BA| _ |BK]
{ND| " |BA| |KA| ~— |(KA| -

2) If, on the sides AB and CD of the quadri-
lateral, points K; and K, M,; and M are taken
1K K| M M| 1 .
TAB] — 1CD| o |AK,| = |KB|,

| DMy | = CM, then the area of the quadrilateral

so that

K.\KMM, is % of the area of the quadrilateral

{BK|
ABCD. Indeed, Sggc= TBA| S aBc, SAM‘D =

IM,D| _ |BK|
1CD] SACD_TBM_l Sacp. Consequently,

= (1— .ﬂ'_) — 14K]
SAKCM, = (1 [BA SABCD‘"W'SABC’D-
similarly, Sy xan = -'5‘7(’5"— S axc,. Thus,
KK 1
Sk, kMM, = -ITZlBTlsABcp=-;; S.

37. Let K be the midpoint of DB, L that of
AC, SANM = SCNM (Since |AL ' = l LC I). In
similar fashion, Sgpya = Spyam, Whence there
follows the statement of the problem.

38. If M is the midpoint of DC, N that of BC,
K and L are the points of intersection of DN

with AM and AB, respectively, then _:li(_ll:ll—l_ =
IDM| _ 1 . _ 4 ) )
AL =T that is, |AK|=—- | AM]|; conse
quently,SADK=—g- SADM=%--2—S= % S (S the
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area of the parallelogram). Thus, the area of
the sought-for figure is S—4S s px= %S.
39. Let Q, N, and M be the midpoints of AD,

BC, and DC; K, P, and R the points of intersec-
tion of DN and AM, QC and DN, and QC and

AM, respectively. Then | DK | = —g— | DN |,
1
|DP|=|PN|, |QP| = |PC|, |QR| = 3 1QC|,
Sepq  IRP| |KP| _ 4 4 _ 1
SqPD 1QP| |DP| ~— 3 5 = 15’

M S

1
SePK =5 X §=130 -
Consequently, from the quadrilateral considered
in the preceding problem, four triangles, each

having an area of S are thus cut off, the area

120 A
. . S S S
of the desired octagon being 06

40. Let the straight line HC intersect AB and
LM at points T and N, respectively, the straight
line AL intersect ED at a point K, and the straight
line BM intersect PG at a point P. We have:
SacoE=SacHk = SarnLy SBcrG = SpcHP=
S pmnTi thus, Sacpe + Spere = SaBmL:

41. Let Q denote the area of the pentagon,
81, Sg, and sg the areas of the triangles adjoining
one of the lateral sides, the smaller base, and the
other lateral side, respectively; = the area of the
triangle enclosed between the triangles of areas s
and s;, and y the area of the triangle enclose
between the triangles having areas s, and s3. Then

strtn=styta=getytnto

and, thus, s, + z+sa+s3t+y+ss=z+y+
83+ Q=5+ 83+ ss= Q.
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42, 1f S is the area of the parallelogram, then
Sask + Skcp =5 §. On the other hand,

1
Spec = Sgxc + Skcp = 3 S, hence, S,px =
Sgrc- Analogously, Saxp = Skcp; adding to-
gether the last two equalities, we get: Sppxp =
ScEKF-

1AC,| S acc,
43. We have; = ——
v GBI Scc,p

1 .
5 14C1-1CC sin L ACCy 4oy gin £ acc,

~1BC| ‘sin 2 C,.CB*

-;— |CCy|-|CB| sin £ 0,CB

Having obtained similar equalities for the ratios
|BA , o ICBy
14,01 " VB4

get the required statement.

44. Let us show that if the straight lines in-
tersect at the same point (let M denote this point),
then R* =1 (and consequently, R = 1; see
Problem 43, Sec. 2). By the law of sines for the
sin LACC, | AM |
sin LA, AC™ | MC| °
Writing out similar equalities for the triangles
AMB and BMC and multiplying them, we get the
required assertion. Conversely: if R = 1, and all
the points A, B,, C; lie on the sides of the triangle
(or only one of them), then, drawing the straight
lines AA; and BB,, we denote the point of their
intersection by M,; let the straight line CM, in-
tersect AB at a point C,. Taking into consider-
ation the conditions of the problem and that the
necessary condition R = 1 is proved, we have:

1AC, | - | 4C,| , both of the points Cy and C,

{CiB| | CaB |

lying -either on the line segment A B or outside it.

Consequently, €, and C, coincide.

and multiplying them, we

triangle AMC we have:
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45. Let A,, B,, C, be collinear. Through ¢, we
draw a straight line parallel to A B and denote the
point of its intersection with the straight line
A,B; by M. From the similarity of appropriate

. |BA, | __ IBC | | CBy]
triangles, we get: == s =
C; BV TACT ~TCM | " 1BA]
—:‘47—:- Replacing the corresponding ratios in

1

the expression for R (see Problem 43 of Sec. 2)
with the aid of those equalities, we get: R = 1.
The converse is proved much in the same way as
it was done in the preceding problem (we draw
the straight line B,4,, denote the point of its
intersection with AB ﬁy C,, and so forth).

46. Check the following: if for the given straight
lines R* = 1, then for the symmetric lines the
same is true. If the straight line passing, say,
through the vertex A intersects the side BC, then
the line symmetric to it with respect to the bisector
of the angle will also intersect the side BC (see
Problems 43 and 44 in Sec. 2).

47. 1If A,, B, C, are the midpoints of the line
segments A0, BO, CO, respectively, then the
constructed straight lines turn out to be symmetric
to the lines 4,0, B,0, C,0 with respect to the
angle bisectors of the triangle A4,B,C, (see the
preceding problem).

48. (a) Let the straight line BM intersect AC
at a point B’, and the line CK intersect AB at a
point C’'. Through M, we draw a straight line
parallel to AC and denote by P and Q the points
of its inlersectionl with AB and BC, respectively.
Obviously, :‘;,li: Il == llf}:fAO“ . Drawing through
K a straight line parallel to AB and denoting by
E and F the points of its intersection with C4 and
| BC'| _1FK| We
|C'A | | KE| -~
carri' out a similar construction for the point L.
Replacing the ratios entering the expression for R

15—01557

CB, respectively, we have:
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(see Problem 43 of Sec. 2) with the aid of that
equality we take into account that for each line
segment in the numerator there is an equal segment
in the denominator, for instance: | PM |=| KE |.

(b) Let, for the sake of definiteness, the line !
intersect the line segments CyA, CA, and form an
acute angle ¢ with OK. The straight line A4,L

SLMA.

LKA
(starting from the point M). The ratios in which
the sides XL and LM of the triangle KLM are
divided can be found in a similar way. We have
to prove that there holds the equality R = 1
(see Problem 43, Sec. 2). Let us replace the ratios
of the line segments by the ratio of the areas of
the corresponding triangles. Then R will contain
SLMA‘ in the numerator and Sgme,in the denom-

divides the line segment MK in the ratio

Sima, __sinC

inator. Prove that =————+, where 4
Skmc, sind

and C are angles of the triangle ABC. Obviously

SBuA, _ sinC

In addition, £ A;By4y =

Sp,0c, ~ sind °
£ CoBoAg+ £ AyByCo=90° — £2—’1+q) (this fol-
lows from the fact that the circle of diameter AO
passes through B,, C, and 4,) and £ By4,0 =
£ ByAO = Azi In similar fashion £ B,C,0=
‘Tcand £ CyBoCo= (90° — 4—2‘3) + £ C0L=
(00— £2£)+(180°~ £ C— £ ByOCy) = 90°—

B
'LT'-H £ B0A,— £ C)=90°— £ B/2+4-(180°—
LA— LC — @) = 90° 4+ £ B2 — ¢, ie,
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s
sin £ A By, = sin £ C1B,Cy. Thus, —A1Bede

C,BoC,
. C
1Bosl-1Bodel _ "2 %7  sinc
|Bocl|‘|BoCo| - . A A T sinAd
sin -—2—"003?

r denote the radius of the inscribed circle
|OL| = |OK| = |OM| = a. We have:

Sima, - SLom+S roma,
S gme, SkoM + S komc,

* s 2s
75 54,08, 75 54,08B,4,

Ly s
<5 Sc,08, T Sc,08,c,

a
T SAOOB. +(SA.B.A v SAoOBo)

a
~ Sc,08,1S¢,p,c, —Sc,08,)
a
(“,‘ —'1) 54,08, 54,8,4, _sinC

a ~sind °
(T —1) SC°OB° +SCbBoC|
(The latter of the equalities follows from the
fact that SA-OBo — SA.B.A. __8inC )

SC.OB. SC.B.C. sin A
In similar fashion, we single out in the numerator
and denominator of the expression for R, two more
pairs of magnitudes whose ratios are equal to
sin A sin B *
sin B sin C
remains only to prove that the number of points

15%

, respectively. Hence, R=1. It
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of intersection of the straight lines LA,, KC,, and
MB,; with the line segments KM, ML, and LK,
respectively, is odd.

49. Consider the triangle ACE through whose
vertices the straight lines AD, CF, and EB are
drawn. The sines of the angles formed by these
lines with the sides of the triangle ACE are pro-
portional to the chords they are based on; con-
sequently, the condition R = 1 (see Problem 44
of Sec. 2) is equivalent to the condition given in
the problem.

50. Find out whether the equality R =1 is
fulfilled (in Item (b) use the result obtained in
Problem 234 of Sec. 1) and all the three points lie
on the extensions of the sides of the triangle. Thus,
our statement follows from Menelaus’ theorem
(see Problem 45 of Sec. 2).

51. By the property of the secants drawn from
an exterior point to a circle, or by the property
of the seiments of the chords of a circle passing
through the same point, we have: | BC, |-| BCy | =
| BAy|-| BAg |, | CBy || CBy |=| CA, || CA, |,
| ABy || ABg| = | AC, || AC4 |. Now, it is easy
to check that if the assertion in Ceva's theorem
(the equality R = 1) is true for the points
Ay, By, C;, then it is also true for the Foints A4,,
B,, C,. It follows from the statement of the prob-
lem that either all the three points 4,, By, C, lie
on the corresponding sides of the triangle or only
one of them (see Problem 44 of Sec. 2).

52. Writing out the equality R = 1 (according
to Ceva's and Menelaus’ theorems—see problems
44 and 45 in Sec. 2) for the points 4,, B,, Cy;
A,, By, Cy; Ay, B,, Cy; and A,, B,, Cy, we get that
for the points A4 ,, By, C, the equality R = 1 is also
true. Now, it remains only to prove that either
all the three points 4, B,, and C, lie on the
extensions of the sides of the triangle (that is the
case when the points 4,, B,, C, are found on the
sides of the triangle) or only one lies on the exten-
sion (if only one of the points 4,, B, and C, is on
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the sides of the triangle) and use Menelaus’ theorem
(see Problem 45 of Sec. 2).

53. Make use of Menelaus’ theorem (see Problem
45 of Sec. 2). As the vertices of the given triangle,
take the midpoints of the sides of the triangle 4 BC
on whose sides and their extensions the points under
consideration lie.

54. If a is the length of the side of the pentagon
MKLNP, b the length of the side of the pentagon
with one side on 4B, ¢ the length of the side of
the pentagon whose one side is on AC, then

| BAy 1 _a [AGI|_ b ICBi1 e\
| C1B | b’ | B 4] c' |AC|  a

tiplying these equalities, we find R = 1 and then
use Ceva's theorem (Problem 44 of Sec. 2).

55. Check to see that the points 4,, 4,, A, and
B,, B,, B, are found either on the sides of the
triangfe 0,0,0;4 (04, 04, Oy centres of the circles)
or on their extensions, and the ratio of the distances
from each of these points to the corresponding
vertices of the triangle 0,0,0; is equal to the
ratio of the radii of the corresponding circles.
Further, make use of Menelaus' theorem (see
Problem 45 of Sec. 2) for each of these three points.

56. The statement of the problem follows from
Problems 43 and 44 of Sec. 2.

sin £ ByAA;

58. Make use of the equality S A,AC. =
2 1

|ACy| |B144]
14By| 1A45C,|
the other angles and multiplying them, we get

our statement on the strength of the results of
Problems 43 and 44 of Sec. 2.

59. We apgly Menelaus’ theorem to the trian-

Obtaining similar equalities for

gles ABD, BDC,and DCA (Problem 45* in Sec. 2,
. AL BQ DP _ BM CR
Remark): 77 op P4 =1 3¢ ®”D

DQ __ AP DR CN _
TB—__L-P_DT'—I'?_C_‘TVT— 1 (L,M, and N
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the points of intersection of AB and PQ, BC and

QR, AC and PR, respectively). Multiplying these
CN AL BM 1. that

NA'LB .MC "

is, the points L, M and N are collinear.

60. Consider the coordinate system whose axes
are the given lines (this is the affine system of
coordinates). The equation of a straight line in
this system, in the usual fashion, has the form
az + by + ¢ = 0. We shall first prove the neces-
sary condition. Let the point N have coordinates
(z, v) and the point M the coordinates (Au, Av).
The equations of the straight lines 4,B;, 4,B,,
A3B,, A,B, have the form: y — v = k; (z — u),

=k @—u), y— Av = ky (& — D), y—
v = k, (x — Au), respectively. Then the points
A,, A,, A4, A situated on the z-axis have, respec-

equalities, we get:

tively, the coordinates on this axis: u— b
it}
u— k-i— v, Au — %‘- v, Au — kl v, while the points
2 4
B,, B,, B;, B, saituated on the y-axis have the
coordinates v — kyu, v — kou, Av — kghu, Av —
kehu, respectively. Now, it is easy to check the
equality given in the hypothesis. Sufficiency, in
usual fashion, can be proved by contradiction.

61. In Items (a) and (c), make use of Ceva's
and Menelaus’ theorems (Problems 44 and 45 of
Sec. 2, Remark). In Item (b), in addition, use the
result of the preceding probiem; here, it is con-
venient, as in Problem 60, to consider the affine
coordinate system whose axes are the straight
lines AB and AC, and the points B and C have
the coordinates (0, 1) and (1, 0).

62. Let S denote the point of intersection of the
straight lines 4,M, B,L, and C,K. Applying
Menelaus’ theorem (Problem 45 in Sec. 2, Remark)
to the triangles SMK, SKL, and SLM, we get

KL, MA, 8C, _ 1 LM, KC, SB, _
LM A4S K- O MK CS BL ™
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., MK, LB, sS4, _ .
1, 5L BS AIM——L Multiplying

these equalities we get:
KL, LM, MK,
LM MK K,L

Equality (1) is a necessary and sufficient condition
for the lines A,M, B,L, and C,K to intersect at
a point. The necessity has been already proved.
The sufficiency is proved, as usually, by contra-
diction. (Let us denote by S’ the point of inter-
section of A,M and B,L, draw S'C,, denote by K’
the point of its intersection with the given straight
line, and prove that K and K’ coincide.) Since the
equality (1) goes over into itself with X, L, M
replaced by K,, L,, M, respectively, and vice
versa, the assertion of the problem has been
proved.

63. Applying Ceva’s theorem (Problem 44* in
Sec. 2, Remark) to the triangles ABD, BDC and
CDA, we get:

AP BF DE BQ CG DF _ CR

"FDEA -V Qoc'CD FB ' R4
AE DG

FE-G—C———L Multiplying these equalities, we

get: DB oc’ R—A—i, that is, the straight
lines AQ, BR and CP intersect at a point. Let us
denote it by N. Let T be the point of intersection of
PG and DN. By Menelaus’ theorem we have

=—1. )

X

DT NP (G DT PC

TN PC gD = 1 Whemee po=—gpX

GD __CP GD w AE_. B_F__B

CG~ ~ PN CG ED_ ' FD ™

G the AP _a CR_y CN _

GD =V Ve FE =T RA- a«' NP
BA RC oa+p ¥

-

PE AR B L =+ 75)
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_a____ﬂ+ﬁv+va' Thus _Dl=a_____ﬂ+ﬁv+va The
a ’ :

TN afy
line segment DN is divided in the same ratio by
the other straight lines.

64. Let us first consider the limiting case when
the point N is found at infinity; then the straight
lines AN, BN, and CN are parallel to the straight
line I. Let the distances from the points 4, B, and
C to the line ! be equal to a, b, and ¢. (For con-
venience, let us assume that A, B, and C are on
the same side of 1.) The straight lines parallel to !
and passing through 4, B, and C intersect the
straight lines B,C,, C;4,, and A;B, at points
A, B,, C,, respectively. It is easy to see that
|Alca|=¢+c |31A2|=b+d |ClBa|=
[CoBy | e+ b’ 1 A,C | a4 ¢’ | Bya|
;—+——i’—. Multiplying these equalities, we make
sure that the statement of Menelaus’ theorem
(Problem 45 of Sec. 2) is fulfilled (it is necessary
also to make sure that an odd number of points
from among 4 ,, B,, C, are found on the extensions
of the sides of the triangle A4,B,C,). Hence, the
points A,, B,, C, are collinear.

The general case can be reduced to the consid-
ered one if, for instance, the given arrangement of
the triangles is projected from a point in space on
another plane. In choosing this point, we should
get that the symmetry of the triangles is not vio-
lated, and the point N tends to infinity. It is also
possible not to resort to spatial examinations. Let
us introduce a coordinate system with the straight
line ! as the z-axis and the origin at N. We carry
out the transformation z’ = 1/z, y’ = y/z. As a
result of this transformation, the points of the
z-axis (y = 0) go into the straight line y' = 0;
the points symmetric about the z-axis go into the
points symmetric with respect to the line y’ = 0;
also straight lines go into straight lines; straight
lines passing through the origih go into straight
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lines parallel to the line y’ = O (this transforma-
tion is, in essence, the projection mentioned above).
When this transformation is carried out, we get
the arrangement we considered.

65. We assume the given lines to be parallel.
This can be achieved by projecting or transformin
the coordinates (see the solution of Problem 6

Fig. 16

of Sec. 2). Apply Menelaus' theorem (Problem 45
of Sec. 2) to the triangle A;4¢M (Fig. 16, N'K’
is parallel to the given straight lines). We have

[AL| |AK| IMN| _ [AAg| | Akl
[ZAg| "TEM | TNAL| _ 1A Asl TKM]
| MN' | 1Ay IMN'T 1 AsAs | _
T 4dr |~ TK'M|  [Ads | TAA |

[ A1ds] | MA;| |Aeds| _|AM| I MA|
IJ‘::M | 1 Asde | | A54:]1 [AsM | | AM |
:M—AI-=1. Thus, the points L, N, and K are
1
collinear. According to the Remark to Problems 44
and 45 of Sec. 2, we could consider the ratios

14;—1;‘- and others instead of :—2:4["—:—-

apd others. In this case the product of the appro-
priate ratios is equal to (—1).



234 Problems in Plane Geometry

67. The desired locus consists of two straight
lines passing through the point symmetric to the
Foint A with respect to the straight line ! and
orming angles of 60° with I.

68. The required set is the arc BC of the circle
circumscribed about the triangle 4 BC correspond-
ing to a central angle of 120°.

69. If N is the point of intersection of the

straight lines PQ and A B, then 1CN T _1PC I

CB AN| T 4Q1
'I|TC—|I' that is, N is a fixed point. The required

set is a circle with diameter CN. If now M is a
fixed point, then D lies on the straight line parallel
to the line M N and passing through a fixed point L

. . | AL\ | AN |
on the straight line A B such that TIB| = [CN |’
L being arranged relative to the line segment AB
in the same manner as N with respect to the line
segment AC.

70. Let ¢ denote the angle between BD and AC;
1 . 1
Sapk= | AK|-| PD|sing, Sppc=- | BP | X

| DC | sinq;:% | BP|+| AD | sin @. Since S pspg =

Sppc, |AK|-|PD|=|BP|-|AD|, or \AKL

|AD |
| PD | )
5P =1, but by Menelaus’ theorem for the

triangle BDK (see Problem 45 of Sec. 2).
|AK| | DP| |BM|

[AD | TPB| TME[ .
(M the point of intersection of AP and BK), con-
sequently | BM | = | MK |, that is, the required

locus is the midline of the triangle ABC parallel
to the side AC (if the points P and K are taken
on the straight lines AC and BD, then we get a
straight line parallel to the side A C passing through
the midpoints of the line segments 4B and BC).
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71. Let C denote the vertex of the given angle,
and B its size. We drop perpendiculars OK and OL
from O on the sides of the angle (Fig. 17, a).
A circle can be circumscribed about the quadri-
lateral OKAM. Consequently, « KMO = /KAO.
Analogously, ZOML = LOBL. Hence, L KML =
LKAO + LOBL = a + B, that is, M lies on

Fig. 17

an arc of the circle passing through X and L and
containing the anﬁlle a + ?, all the points of this
arc belonging to the set. If @ << B, then there are
no other points in the set. And if @ > f, then added
to the set are points M located on the other side of
the straight line KL for which Z KML =a —
(Fig. 17, b). In this case, the set of points is a pair
of arcs whose end points are determined by the
limiting positions of the angle AOB. If the rays
of .the fixed angle p and movable angle o are ex-
tended, and instead of the angles, the pairs of
straight lines are considered, then the desired
set is a pair of circles (containing both arcs men-
tioned above).

72. Consider the quadrilateral DEPM in which
4LDEM = LDPM = 90°, consequently, this is
an inscribed quadrilateral. Hence, LDME =
4L DPE = 45°. The required locus is the straight
line DC.

73. Consider the case when the point B lies
inside the given angle. First of all we note that
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all possible triangles BCD (Fig. 18) are similar
since /BCD = LBAD, LBDC = /BAC. There-
fore, if N is the midpoint of CD, then the angles
BNC and BND are constant. Let us circumscribe
a circle about the triangle BNC and let K be the
second point of intersection of this circle and AC.

Fig. 18

Since ZBKA = 180° — ZBNC, K is a fixed
point. Analogously, also fixed is L, the second
point of intersection of the circle circumscribed
about the triangle BND and the straight line AD.
We have: L/LNK = LLNB + LBNK = 180° —
4LBDA 4+ LBCK = 180° that is, N lies on the
straight line LK. The set of points N is the line
segment LK, and the locus of centres of mass of
the triangle ACD is the line segment parallel to
LK dividing A K in the ratio 2 : 1 (obtained with
the aid of a homothetic transformation with centre
at A and the ratio of similitude equal to 2/3).
74. If O is the vertex of the angle, ABCD is a
rectangle (4 fixed), then the points 4, B, C, D and
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0 lie on the same circle. Consequently, £ COA =
90°, that is, the point C lies on the straight line
perpendicular to OA and passing through 0.

75. Note that all the triangles ABC obtained
are. similar. Consequently, if we take in each
triangle a point K dividing the side BC in the
same ratio, then, since £ 4 KC remains unchanged,
the point K describes a circle. Hence, the point M
dividing A K in a constant ratio also describes a
circle which is obtained from the first circle by a
homothetic transformation with centre at 4 and
the ratio of similitude k = | AM | /| AK |. This
reasoning is used in all the items: (a), (b), and (c).

76. Let K denote the midpoint of AB, and M
the foot of the perpendicular dropped from K on
AC. All the triangles A KM are similar (by two
congruent angles), consequently, all the triangles
ABM are similar. Now, it is easy to get that the
desired locus is a circle with a chord BC, the angles
based on this chord being equal either to the angle
AMB or to its complementary angle. (The minor
arc of this circle lies on the same side of BC as
the minor arc of the original circle.)

77. If M, N, L, and K are the given points
(M and N lie on opposite sides of the rectangle as

R
I~
M I~
\ L
p 0
\N
Fig. 19

do L and K), P is the midpoint of MN, Q the mid-
point of KL, O the intersection point of the diag-
onals of the rectangle (Fig. 19), then £ POQ =
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90°. Consequently, the desired locus is the circle
constructed on PQ as diameter.

78. Let R and r denote the radii of the given
circles (R > r), D the point of tangency of the
chord BC and the smaller circle. Let K and L be the
points of intersection of the chords AC and AB
with the smaller circle, and, finally, let O be the
centre of the circle inscribed in the triangle ABC.
Since the angular measures of the arcs 4K and
AC are equal, | AK | = rz, | AC | = Rz; hence,
we get | DC|2=|AC|-| CK| = (R — r) Rz2.
Similarly, | AB| = Ry, | DB |2 = (R — r) Ry%

| CD | z | AC |

'consequently, TDBE =3 = TAB1 " that is, AD

is the bisector of the angle BAC. Further, we have:
1401 _ 1AC| Rz _ R
|OD| — | CD| _I/(R-—r_)Rz— R—r"

Thus, the desired locus is a circle touching in-
ternally the two given circles at the same point 4
with radius

| A0 | _ rVR

|AD | yVR+VER—r '

79. Let O, and O, denote the centres of the
given circles, the straight line 0,0, intersect the
circles at points 4, B, €, and D (in succession).
Consider two cases:

(a) The rectangle KLMN is arranged so that
the opposite vertices K and M lie on one circle
while L and N on the other. In this case, if P is
the point of intersection of the diagonals
(Fig. 20, a), then | O,P |* — | O,P |* = (| O,K |*—
| KP|?) — (|OL|* — |LP|*) = | O,K |* —
| OgL |1* = R? — R%, where R, and R, are the
radii of the circles, that is, the point P lies on a
common chord of the circles; the midpoint of the
common chord and its end points are excluded,
since in this case the rectangle degenerates.

(b) Two neighbouring vertices of the rectangle
KLMN lie on one circle, and two others on the

p=r
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other circle. Since the perpendiculars from O, on
KN and from O; on LM must bisect them, the
straight line 0,0, is the axis of symmetry for the
rectangle KLMN.

Let R, be less than R, and the radius O,L form
an angle ¢ with the line of centres. We draw
through L a straight line parallel to 0,0,. This
line intersects the circle O, at two points K, and
K, and to the point L there will correspond two
rectangles: K,LMN, and K,LMN, (Fig. 20, b).
With ¢ varying from 0 to /2, the angle ¢ formed
by the radius O,K, and the ray 0,0, varies from 0
to a certain value ¥,. With a further change in ¢
(from n/2 to m), ¢ decreases from Y, to 0. Mean-
while, the centres of rectangles K,LMN, will
trace a line segment from the midpoint of CD
to the midpoint of BC excluding the extreme points
and the point of intersection of this line segment
with the common chord. Analogously, the centres
of rectangles K,LMN, will fill in the interval with
end points at the midpoints of AB and AD (the
end points of the interval are not contained in the
locus).

If three vertices of the rectangle and, hence,
the fourth one lie on a circle, then the centre of
the rectangle coincides with the centre of the
corresponding circle.

Thus, the locus is the union of three intervals:
the end points of the first interval—the midpoints
of AB and AD, respectively, the end points of the
second interval—tﬁe midpoints of BC and CD,
the end points of the third interval—the points of
intersection of the circles, the midpoint of the
common chord being excluded.

80. If B and C are the first and second points
of reflection, O the centre, then BO is the bisector
of the angle CBA. The path of the ball is symmet-
ric with respect to the diameter containing C,
therefore A lies on this diameter. If ZBCO =
L CBO = ¢, then LABO = ¢, L BOA = 2g; ap-
plying the law of sines to the triangle 4ABO
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. R a
(| BO | R, | OA | = a), we get: 3 S g’
whence cos 2¢ = R2a 2, and for a > 3 We can
find .

Answer: points situated outside the circle of
radius R/3 centred at the centre of the billiards.

81. The required locus are two straight lines
perpendicular to the given lines.

- 82, If the line A B is not parallel to I, then there
are two circles passing through A and B and
touching I. Let O; and O, denote their centres.
The sought-for locus is the straight line 0,0,
ex.cludin%\the interval (0,0,). If AB is parallel to
1, then the desired locus consists of one ray per-
pendicular to 1.

83. (a) Let A (Fig. 21) be a vertex of a triangle.
fxtend the line segment AM beyond M such that

A

Fig. 21

the extension has a magnitude | MN |= %- | AM |.

The point 'V is the midpoint of the side opposite
the vertex A, consequently, N must lie inside the
éircumscribed circle, that is, inside the circle of

1601557
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radius | OA | centred at O. Drop a perpendicular
OR from O on AN. There must be fulfilled the
inequality | AR | > |RN|. If LAMO > 90°
then this inequality is fulfilled automatically. And
if LAMO < 90°, then |AM | — | MR| >

1
IMN| + |MR| = |AM| — 5 |AM | >

2|MR|=|AM | > 4| MR|. But R lies on
the circle @ of diameter OM, hence A must be loc-
ated outside the circle which is homothetic to the
circle a with the ratio of similitude equal to 4 and
centre at M. Further, the point N must not get on
the circle a since otherwise the side of the triangle
whose midpoint it is, being perpendicular to ON,
would lie on the straight line AN, that is, all the
vertices of the triangle would be located on a
straight line. Consequently, A must not lie on the
circle which is homothetic to a with centre of
similitude M and the ratio of 2. Thus, if we take
on the straight line OM points L and K such that
|LO|:|OM | :| MK | = 3:1 2, andconstruct
on LM as diameter the circle 7, on MK the circle 2,
then the required locus is represented by all the
points outside the circle I excluding the points
of the circle 2 except the point K (the point K
belongs to the locus).

(b) If O is the centre of the circumscribed cir-
cle, M the centre of mass of the triangle, then K
(see Item (a)) is the intersection point of the altit-
udes of the triangle (see Problem 20 in Sec. 1).
But the distance from the centre of the circle
circumscribed about an obtuse triangle to the
point of intersection of the altitudes is greater
than the radius of the circumscribed circle. Con-
sequently, the yertices of the obtuse triangle are
found inside tl}h circle 3, constructed on LK as
diameter, outside the circle 7 excluding the points
of the circle 2 (the vertices of obtuse angles lying
inside the circle 2).

84. Let ABC (Fig. 22) be the original regular
triangle, 4,B,C, an arbitrary triangle with 4,C, ||
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AC, A,B, || AB, O the centre of the circle, O,
the intersection point of the altitudes of the tri-
angle AIBICI. Let LBOBI = @. Since 01.81 " OB,
we have £ 0B,0, = ¢; since £ C,0,B;=4 C,0B,=
420°, the quadrilateral C,0,0B, is inscribed
in a circle, and, hence, £0,0C, = £0,B,C, =
30° — @. Thus £0,0B = ¢ + 120° 4 30° — T =
150°, that is, the straight line 0O, is parallel to

Fig. 22

CB. To find the path which can be “covered” by the
point Oy, while moving along this straight line,
note that to determine the Eosition of the point O,
we draw through the variable point B; a straight
line parallel to OB to intersect the straight line
passing through O parallel to CB. Obviously, the
most remote points are obtained for the end points
of the diameter perpendicular to OB. Thus, MN
(the segment of the line parallel to CB, whose length
is 4R with the midpoint at O) is a part of the locus,
the entire locus consisting of three such line
segments (with the end points of the segments
excluded).

85. If ABC (Fig. 23) is the given triangle, and
the vertex of the circumscribed rectangle 4 KLM
coincides with 4 (B on KL, C on LM), then L
belongs to the semicircle of diameter BC, the angles
ABL and ACL being obtuse, that is, L has two

18w
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extreme positions: Lyand Ly, £/ L,CA = LL,BA=
90°, while the centre O describes an arc homothetic
to the arc L,L, with the centre of similitude at A
and ratio 1/2.

A
K )/} l’[:
\\\\ |
S~ |
T
7 1y
¢
A M
Fig. 23

Answer: if the triangle is acute, then the desired
set is a curvilinear triangle formed by the arcs
of the semicircles constructed on the midlines as
diameters and faced inside the triangle formed by
the midlines; if the triangle is not acute, then the
required set consists of two arcs of the semicircles
constructed on two smaller midlines in the same
fashion.

86. If the first square is rotated about the point
M through an angle of 60° (see Fig. 24) either
clockwise or anticlockwise, then it must be entirely
inside the second square. Conversely, to each
square situated inside the larger square, and con-
gruent to the smaller one, whose sides form angles
of 30° and 60° with the sides of the larger square,
there corresponds a point M possessing the needed
proserty. (This square is shown in the figure by
a dashed line.) This point is thecentre of the
rotation through an angle of 60° carrying the
square ABCD into the square A4;B,C,D,; this
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point can be obtained from O; by rotating about O
in the needed direction through an angle of 60°.
Consider the extreme positions of squares 4,B,C,D,
(when two vertices are found on the sides of the

-
K 7RSS
. 4 o / o N1
0 A,‘// e’ lll
Y/i v ~/ ;
<0,
A /4 H R
Fig. 24

larger square). Their centres serve as vertices of
the square KLRN whose side is equal to b — é— ax

(V3 +1) (the sides of the square KLRN are
parallel to the sides of the given squares, the centre
coinciding with the centre of the larger square).
The centres of another family of squares forming
angles of 30° and 60° with the sides of the larger
square also fill up the square XLRN. Thus, the
required locus consists of the union of two squares
one of which is obtained from the square XLRN
by rotating the latter about O through an angle of
60° in one direction, and the other by rotating
through an angle of 60° in the opposite direction.

The problem has a solution if b> % (/3 +1)

(the points P and Q may be located on the boundary
of the squares).

87. There is only one such point, viz. the
centre of mass of the triangle (the median point).
It is easily seen, that in this case for any point N
on the boundary of the triangle we may take one
of the vertices of the triangle as a point P. Let us
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take some other point M;. We assume that this
point is found either inside the triangle AMD or
on its boundary, where M is the centre of mass of
the triangle ABC, D the midpoint of AC. We draw
through M, a straight line parallel to BD and take
the point of intersection of this line and AD as N,
denoting its intersection point with AM by M,.
Obviously, for any point P inside the triangle or
on its boundary the area of the triangle M, NP does
not exceed the area of one of the triangles AM,N,
M¢NC, M,NB. It is also obvious that S ,p,n <

SAMD=%S. Further, if | AD|=|DC |=a,

S
M,NC | MgN| |NC|
| ND | ==z, then 35 c__IMDl.lDCI-:

a?— 11 . Sm,NB __ | MsN |
o <1. Finally, Sawp — TMD]

IND| (a—2)z

| AD| — ad
88. If A, B, C are the angles of the triangle

ABC, then the angles of the triangle ABI are

equal to i, -g, 90° + -g—‘ (Fig. 25); consequently,

X

< 1.

the sought-for locus is a pair of triangles two sides
of which are line segments, the third being an arc
which is a part of the segment constructed on 47
and containing an angle a/2.

89. We erect a perpendicular to BM at the
point M; let P denote the point of intersection of
this perpendicular and the perpendicular erected
to the original straight line at the point B. Let us
show that the magnitude | PB | is constant. Let
L MBC be @; K and L denote the feet of the
perpendiculars from 4 and ¢ on MB. By hy-

IMK| | |LM| _
KA +|LC| =k, but |LC|=

| BC | sin ¢, | AK |=)| BA | sing. Hence,

pothesis,
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| MK | + LM | |BM |+ |BK|

1BA | sing |BC|sinc|>_k‘=F> |BA] sin @ +
IBMIF|BL| _, . 1BM| 1
| BC | singp sin @ | BA |

1 |BK| ____|BLI )=
|BC|)iI(B|AzTA|sCm«p |BC|sinq>Al_"B:’

|BM|_ k|BA|-|BC| k |BA|-|
- PB|=—at 11
<1 PB|=Tga1F1BC|

sing ~ |BA|+|BC|

Fig. 25

which was to be proved. Consequently, the sought-

for locus consists of two circles touching the

straight line AC at a point B and whose diameters
k|BA|-| BC |

| BA|+| BC |

90. Extend AQ beyond the point Q and take

on thisray a point M such that | QM | = % | 4Q |

and a point 4, such that | MA, | = |AM |; M is
the midpoint of the side BC of the triangle ABC;
LCBA, = LBCA, LABA, = 180° — LBAC.

are equal to
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Conseguently, if we construct circles on AM,
MA,, and AA, as diameters, then the sought-for
locus consists of points situated outside the first
two circles and inside the third one.

91. Consider four cases: either the triangle ABC
is acute, or one of the angles 4, B or C is obtuse.
In all the cases, it is possible to express the angles
of the triangle ABH in terms of the angles of the
triangle ABC.

92. If the end points of the rays do not coincide,
then the required locus is formed by the parts of
the following lines: the bisectors of the two angles
formed by tie straight lines containing the given
rays, the midperpendicular to the line segment
joining the end.points of the rays, and two parabolas
(the parabola is a locus of points equidistant from
a given point and a given straight line). If the end
Koints coincide, then the desired locus consists of

oth the bisector of the angle formed by the rays
and the Eart of the plane enclosed inside the angle
formed by the perpendiculars erected at the end
points of the rays.

93. Let A denote the vertex of the angle. It
is possible to prove that the centre of the circle
circumscribed about the triangle MON coincides
with the point of intersection of the angle bisector
AO and the circle circumscribed about AMN. Let o
be the size of the angle, r the radius of the circle,
K the midpoint of A0. On the angle bisector A0,
we take points L and P such that | AL | =

r r
y |AP ]| =m————————

.o . a . a .

smz(i-l-smz) smz(i sin 2)
The sought-for locus consists of the line seg-
ment KL (K not belonging and L belonging to
this set) and the ray lying on the angle bisector
with origin at P.

94. Let 0, O, denote the centres of the circles,
ry, ry their radii, M the midpoint of 4 B, O the mid-
point of 0,0,. We have (by the formula for the
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longth of a median, Problem 11 of Sec. 1)
10, M |'=-,1:(2rg+2|013 12— | AB |3),|0,M*=

T @i+ 21040 — (4B, (0B =
00,1 + 41081 — 23), 10,41 =

7-;: (10104 I* + 4| 04 |* — 2r}). Thus, | O,M |* —

| OM |2 = r} — 1}, that is (Problem 1 of Sec. 2)
points M lie on the perpendicular to 0,0,. If the
¢frcles have different radii and do not intersect,
‘thén the sought-for locus consists of two line
segments obtained in the following way: from the
line segment with end points at the midpoints of
the common external tangents, we remove the
points situated between the midpoints of the com-
mon internal tangents (if M is a point on the line
segment with eng points at the midpoints of the
common internal tangents, then the straight line
passing through M perpendicular to OM does not
jntersect the circle). In the remainin% cases (the
¢ircles intersect or are equal) the sought-for locus
is the entire line segment with end points at the
midpoints of the common external tangents.

95. (a) Since £ FNB = 90°, LCNM = 135°,
4 FNM = 45° (we suppose that | AM | > | MB |),
£LFNC = 90° and C, N, and B are collinear, and
8o forth.

(b) We consider the right isosceles triangle
ABK with hypotenuse 4B (K lying on the other
side of AB than the squares). The quadrilateral
ANBK is an inscribed one, ZANK = LABK =
45°, that is, NK passes through M. ‘

The desired locus is the midline of the triangle
ALB, where L is a point symmetric to the point X
with respect to AB.

96. Let N denote the point of intersection of the
middle perpendicular and the tangent; O the centre
of the circle, B its radius. We have: | ON |3 —
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| NA|®=R34 | MN |2 — | NA |* = R%. Thus,
the required locus is a straight line perpendicular
to OA (Problem 1 of Sec. 2).

97. If O, and O, are the centres of the given
circles, Q; and Q, are the centres of the circles
circumscri'bed about the triangles A BC, and 4 B,C,
then 0,Q,0,Q; is a parallelogram. The straight
line Q,Q, passes through the midpoint of the line
segment 0,0, (the point D). The second point of
intersection of the circles circumscribed about
the triangles ABC, and A B,C is symmetric to the
point A with respect to the straight line Q,Q,. The
sought-for locus is a circle of radius | AD | centred
at the point D.

98. Let O, and O, denote the centres of the
given circles, r, and r, their radii. Consider two
right isosceles triangles 0,0,0 and 0,0,0’ with
hypotenuse 0,0,. The desired locus is two annuli
with centres, at O and O’ and the following radii:

external %@ (r, + r,) and internal }Q Iry—ryl.

Let us prove this. Let M be a point on the circle
04, N on the circle O,. If M is fixed, and N trav-
erses the second circle, then the vertices of the
right angles of the right isosceles triangles des-

cribe two circles of radius _2_2 rq, which are ob-

tained from the circle O, by rotating about M
through an angle of 45° (f»oth clockwise and anti-
clockwise) followed by a homothetic transforma-
tion with centre of similitude at M and the ratio
V' 2/2. Let O, be the centre of one of those circles.
The point O, is obtained from O, by rotating the
latter about M in the appropriate direction fol-
lowed by a homothetic transformation with centre
of similitude at M and the ratio V 2/2. But Oy,
can be obtained by corresponding rotation and a
homothetic transformation with the centre of
similitude at 0;. Consequently, when M describes
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the circle 0;, Oy, describes a circle of radius V2 r

2

with centre at O or O’.

99. The union of the three constructed parallelo-

ams represents the parallelogram circumscribed
about the given triangle separated into four
smaller parallelograms. It is easy to express the
relationships in which each of the diagonals under
consideration is divided by the other diagonal in
terms of the segments of the sides of the larger
parallelogram.

If the parallelograms are rectangles, then, on
having translated two of the three considered diag-
onals, we get a triangle conﬁruent to the given one,
and this means that the angles between them either
oqual the corresponding angles of the triangle or
sapplement them to 180°. The sought-for locus is
a circle passing through the midpoints of the sides
of the given triangle.”

1AM|

100. We prove that TAD] = co8 £ BAC, where
D is the point of intersection of A M with the circle.
Let O denote thecentreofthe circle, P the mid-
peint of BC, K the midpoint of AH. The triangles

DOA and MKA are similar. Hence, M4 _

%g—:=%=lcos {BAC|. The desired

ocus consists of two arcs belonging to two distinct
¢frcles.

* 101. Let B, and C, be the midpoints of the
sides AC and AB, BB, and CC, the altitudes, K
the midpoint of DE (Fig. 26), GK and C,N per-
pendicular to A B, B M perpendicular to AC. Then
INM| | CoCi| 1CoCi|l | BC |

equality follows from the similarity of the triangles
BCE and ABC, K, P and C,, C, being the corre-
sponding points in those triangles). In similar
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fashion, the middle perpendicular to DF intersects

. | NLy| _ | BD|
MN at a point L; such that (NM] - TBCT

that is, the points L and L, coincide.

Fig. 26

The sought-for locus is the straight line MN.

102. It is obvious that any point of any of the
altitudes of the triangle A BC belongs to the requir-
ed locus. We show that there are no other points.
Let us take a point M not lying on the altitudes of
the triangle ABC. Let the straight line BM inter-
sect the altitudes dropped from the vertices A4
and C at points M; and M,, respectively. If the
conditions of the problem were fulfilled for all
the three points M,, M,, and M, then the equal-
ities L MAM, = L MCM,, L MAM,= LMCM,
would hold, and then the five points 4, M, M,, M,
and the point C, symmetric to C with respect to
the straight line BM would lie on one circle, which
is impossible.

103. Note that if a straight line I possessing the
required property passes through M, then there
exists either a straight line !, passing through M
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#nd a vertex of the triangle or a straight line !
ssing through M and perpendicular to a side o
he triangle and possessing the same property.
trideed, let the line I intersect the sides AB and CB
of the triangle ABC at points C, and 4,, and let
there be & point B, symmetric to B with respect
to l-inside the triangle ABC. We rotate I about M
s0 that B, moving in the arc of the corresponding
circle, approaches AB or BC until the point C,
or B, coincides with the vertex C or 4 (and we get

the line ;) or until B, gets on the correspondi
side (and we get the line ;). Let a denote the set o
the points of our triangle situated inside the
uadrilateral bounded by the angle bisectors
gawn to the smallest and largest sides of the
griangle and the perpendiculars erected at their
midpoints. (If the given triangle is isosceles, then
& is empty. In all other cases o is a quadrilateral
or a pentagon.) The sought-for locus consists of all
&% ,pointfs of the triangle excluding the interior
nts of a.

105. We have: | MB |2 = a® 4 c2cos? 4 =
a8+ 3 —c?sin?d = a2 4 ¢ — q? sin? C =
8+ a%cos® C = | NB |2
107, Prove that the point symmetric to the
intersection point of the altitudes of a triangle
with respect to a side of the triangle lies on 51«3
¢ircumscribed circle.

109. Let H denote the intersection point of the
altitudes of the triangle ABC, AD the altitude,
K, L, M, and N the projections of D on AC, CH,
HB, and BA, respectively. Take advantage of the
fact that X and L lie on the circle of diameter CD,
L and M on the circle of diameter HD, and M and

on the circle of diameter DB.

111, Prove that the radius of the circle circum-
scribed about the triangle under consideration is

al to the radius of the given circles, and these
oftcles are symmetric to the circumscribed one
with respect to the sides of the triangle.

112. Let ABCD denote the given rectangle,
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and let the points K, L, M, and N lie on the
straight lines AB, BC, CD, and DA, respectively.
Let P, be the second point of intersection of the
straight line LN with the circle circumscribed
about the given rectangle (the first point is P).
Then BP, || KN, P.D || LM, and £ B,D = 90°.
Hence, KN | LM. In addition, LN | KM;
thus, N is the intersection point of the altitudes
of the triangle KLM. Let now, for definiteness,
L and N be on the sides BC and DA. Denote:
|AB|=a, |BC|=b, | KP| =2z, | PN | =y.
The straight line KN divides BD in the ratio

—((:—_4___—%))—{, counting from the vertex B. The straight
line LM divides BD in the same ratio.

113. The line segments | AP |, | BQ |, and
| CR | can be expressed in terms of sides of the
triangle, for instance: | AP | = b'L

114. Let M denote the midpoint of AD. Check
to see that | BF |2+ | FM |2 = | BM |3,

115, Draw through D a straiﬁht line perpendic-
ular to the bisector of the angle 4, then denote
the points of its intersection with AB and AC by
K and M, respectively, and prove that | AKX | =

|AM|=b2‘. Since | AC, | = | ABy | =

p—a, | ACy| = | BCy| = p (p the semiperim-
eter of the triangle ABC, and a, b, c its sides), the
points K and M are the midpoints of the line
segments C,C, and B,B,.

116. Prove that ! forms with 4D the same
angles as the straight line BC touching the circle.
Hence it follows that the other tangent to the
circle passing through D is parallel to 1.

117. We construct the circle touching the
straight lines MN, AC and BC so that the points
of tangency P and Q with the lines AC and BC
lie outside the line segments CM and CN (this is
a circle escribed in the triangle MCN). If R is the
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int of tangency of MN with the circle, then

MP|=|MR|, | NQ|=| NR |, consequently,
| MN | = | MP | + | NQ |; but we are given that
| MN|=|MA |+ | NB|. Thus, one of the

jnts P or Q lies on the corresponding side, while
the other on its extension. We have: | CP | =

16Q1= 5 (CPL + 1CQ) =5 (AC) +

| CB |), that is, the constructed circle is constant
for all the straight lines.

418. If O is the centre of the circle circumscribed
about the triangle ABC, D the midpoint of CB, H
the point of intersection of the altitudes, L the
midpoint of AN, then | AL | = | OD | and, since
AL is parallel to OD, OL bisects AD, that is, Lis
symmetric to O with respect to the midpoint of AD.

119. Let BD denote the altitude of the triangle,
and | BD | = R V' 2, where R is the radius of
the circumscribed circle, X and M are the feet
g;the perpendiculars dropped from D on 4B and

C, respectively, O is the centre of the circum-
ribed circle. If the angle C is acute, then Z KBO =
%" — £C. Since BMDK is an inscribed quadri-
Yateral, L MKD = LDBM = 90° — L C. Hence,
LMKB = 180° — 90° — (90° — £ C) = £ C; con-
sequently, BO is perpendicular to KM.

But Spga = — | BD | sin A sin B sin € =
KM 2

R? sin A sin B sin C = % Sapc- (We have used

the formula S = 2R? sin 4 sin B sin C.) On the
other hand, if h, is the altitude of the triangle

§KM drawn from the vertex B, then —1—S =

2
1 1
1 . _l4ac) _ o, -
rl BD |h, sin B, hence, k= SenB = R; bear
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in% in mind that BO | KM, we get that the point
O lieson KM.

120. Note that the triangles ADK and ABK
are similar since | AK |2 = | AC|®2= |AD| X
| AB |. If O is the centre of the circle circumscribed
about the triangle ABK, then L0OAD + LADK =
90° — LAKB + LADK = 90° (LAKB was as-
sumed to be acute; if £ 4 KB is obtuse, our reason-
ing is analogous).

121. Prove that the straight line parallel to BC
and passing through E divides the bisector of the
angle 4 in the sameratio as it is divided by the
bisector of the angle C.

122. If O is the vertex of the angle, 4 a point on
the angle bisector, B, and B, the intersection
points of one circle with the sides of the angle,
C, and C, (B, and C, on the same side) the inter-
section points of the other circle, then AAB,C, =
AAB,C,.

123. Take advantage of the fact that the com-
mon chord of the two circles passing through 4, 4
and B, B, passes through the point D (Problem 1§
of Sec. 2).

125. If O is the centre of the circle circumscribed
about the triangle AMB, then £ MAB = 90° —
LOMB = /BMC — 180°. The angle MAC has
the same size.

126. It is easy to prove that the circles under
consideration intersect at one point. Let us denote
this point by P. If the points are arranged as in
Fig. 27, then AL PBM = 180° — LBB,P =
LPC,B = 180° — LPC,A = (PBA =
LPA,A = 180° — L PA M, that is, the points
P, By, M, and A, lie on one circle. In similar fash-
ion, we prove that the points P, B,, M, C, lie on
one circle, consequently, the five points P, M, 4,,
B,, C, lie on one and the same circle.

127. Prove that the sides of the triangle 4,8,C,
are parallel to the corresponding sides of the tri-
angle ABC.

128. Prove that as the straight line KL dis-
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places, the centre of the circle circumscribed about
KLB, describes a straight line.

129. Prove that any two line segments are
bisected by the point of their intersection.

Fig. 27

130. If KN is a perpendicular from K on 4B,
2 CAB=a, then |KN|__IAK| 140|—|KO|_

[OM|~140]~ ~ |40]
|AO| —2 |OM| sin—g— | 40| —2 | 40| sin’%
[40] - [40] =

1CD |

cos o = Since the triangles ACB and

ACD are similar, it follows that KN isequal to
the radius of the circle inscribed in the triangle
ACD, and since K lies on the bisector of the angle
A, K is the centre of the circle inscribed in the
triangle ACD. The proof for L is carried out in
a similar way.

131. Denote by C, and 4, the midpoints of AB
and BC, by B’ and A’ the points of tangency of
the inscribed circle to AC and BC. Let, for definite-

17—-01557
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ness, ¢ > b (c and b sides of the triangle ABC),
then the bisector of the angle A intersects the
extension of C,4, at a point K such that | 4,K | =

c b , and the straight line B’A’ must pass

2
through the same point X since the triangles K4,4"’
and A’'B’'C’' are isosceles, | A'C|=|B'C|,
|AK|=|4,4"|, LtA'A K= LA'CB’

132. Consider the angle at vertex A. Three
points B,, B,, B, are taken on one side of the angle
and three points C,, C,, C3 on the other side. From
Menelaus’ theorem (Problem 45 of Sec. 2, Remark)
it follows that for the straight lines B,C,, B,C,,
B4C4 to meet in the same point, it is necessary
gillddsufﬁcient that the following equality is ful-

ed:

AB, C,C; AB, C(,C, )
B:B, - C;A BB, C,A

(the ratios are understood in the sense indicated in
Remark). Indeed, if the equality (1) is fulfilled,
then it follows from Menelaus’ theorem that the
straight lines B,C, and B;Cg intersect the side
B,C; of the triangle A B,C, at one point.

133. Through A, draw a line parallel to BC
and denote by K and L the points of its intersec-
tion with A4,C, and A,B,, respectively. We have:

|KA| _ |ACy| |CBy| _ |44C| )
= , = . And, by Ceva’s
1BA;| ~ 1CiB| * 1BiAl  TAL| ic
theorem (Problem 44 in Sec. 2), |AC41 o
|C1B]|
1BAU 1CBil _ ¢ pence, | KA| = | AL
14,C| | BA] )
But if AA, is the bisector of the angle KA4,L, then,
since | KA |= | AL |, AA, is perpendicular to

KL, that is, A4, is the altitude of the triangle
ABC.

134. Let K be the point of intersection of 44,
and BB, H the interseetion point of the altitudes
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of the triangle ABC. The points 4, K, H, and B
lie on a circle (the angles A KB and A HB are either
equal to each other or their sum yields 180° accord-
ing as the points K and H are located either on
the same side of the straight line AB or on differ-
ent sides). The radius of this circle is equal to the
radius R of the circle circumscribed about the
triangle ABC. If ¢ is the angle between A4, and
AH, then | KH | = 2R sin ¢.

135. Let H denote the intersection point of
the altitudes of the triangle 4,B,C,. The points
Ay, H, B, and C lie on the same circle, the points
B,, H, Cy, and A also lie on a circle, the radii of
these circles being equal; the angles HB,C and
HBsA are either equal or supplement each other to
180°. Consequently, | HA | = | HC |. The converse
is false. For each point 4; on the straight line
BC there exist, generally speaking, two triangles:
A,B,C, and A,B|C; (B, and Bj lying on AC, C,
and C; on A B), for which the points of intersection
of the altitudes coincide with the centre of the
circle circumscribed about the triangle ABC, one
of them being similar to the triangle ABC, the
other not. For instance, if ABC is a regular tri-
angle, 4, the midpoint of BC, then we may take
the midpoints of AC and AB as B, and C,, and,
the points on the extensions of AC and 4B beyond
Cand B,asBjand C,,| CB,| = | CB |, | BC, | =
| BC|. The converse is true provided that the
points 4,, By, and C, are situated on the sides of
the triangle ABC, but not on their extensions.

136. We prove that the centre of the desired
circle coincides with the orthocentre (the inter-
section point of the altitudes). Let BD denote the
altitude, H the intersection point of the altitudes,
and K and L the midpoints of the constructed line
segments emanating ifrom the vertex B, | BK | =
|BL{=1 M the midpoint of BD. Then

|KH|®? = |LH|®* = | MH|* + | KM |2 =
B IBM|? + |MH|* = B —IBfl +

17+
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2
(|BH|-'BZﬂ) — P |BH|*—|BH| X
|BD | =1 — | BH |-| HD |. It remains to prove
that the products of the segments of the altitudes
into which each of them is divided by the point of
their intersection are equal. We draw the altitude
AE. Since the triangles BHE and AHD are simi-
lar, we have: |BH |-|HD |= | AH |-| HE |,
which was to be proved.

137. We denote (Fig. 28): | BC | = a,| CA | =
b, | AB | = c. Through the centre of the inscribed

Fig. 28

circle, we draw straight lines parallel to AB and
BC to intersect AK and KC at points P and Q. In
the triangle OPQ we have: LPOQ = LANC,
|0Q|=p—c, |OP| = p — a, where p is the
semiperimeter of the triangle ABC. But, by hy-
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pothesis, ZNBM = LABC, | NB| p— a,
| MB | = p — c. Consequently, APOQ = ANBM,
If we take on the straight line OP a point M, such
that |OM; | = |0Q| and on OQ a point N,
such that |ON,| = | OP |, then AON,M, =
ANBM, and its corresponding sides turn out to
be parallel, i.e., BM || OM, and BN || ON,. Hence,
N;M, || NM. Let us prove t}mt OK is perpendicular
to N,M,. Since two opposite angles are right ones,
in the quadrilateral OPKQ, the latter is an in-
scribed quadrilateral, consequently, ZOKP =
LOQP. Further, £ KOP 4 LOM,N, = L KOP +
L0QP = LKOP + LOKP = 90°, and this
means that OK | M.N,.

138. Let, for definiteness, P lie on the arc AC.
The points 4, M, P, and N lie on one and the
same circle, hence, L NMP = LNAP. Analo-
gously, the points P, M, Q, and C are located on one
and the same circle, £ PMQ = 180° — L PCQ =
180° — L PAN = 180° — LPMN.

139. Let ABC be the given triangle (Fig. 29), H
the point of intersection of its altitudes. Note that

Fig. 29

the points symmetric to H with respect to its sides
lie on the circle circumscribed about the triangle
ABC (see Problem 107 in Sec. 2). If H, is a point
symmetric to H with respect to the side BC, then
the straight line I; symmetric to ! with respect to
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the same side passes through H,. With [ rotated
about H through an angle @, the line !, rotates about
H, through the same angle ¢ in the opposite di-
rection. Consequently, if P is the second inter-
section point of the line !; with the circumscribed
circle, then the radius OP (O the centre of the cir-
cumscribed circle) rotates about O through an
angle 2¢ in the appropriate direction. The same
reasoning holds true for the two other straight lines
symmetric to I. But if ! coincides with an altitude
of the triangle, then the statement of the problem
is obvious (the point P coincides with the corre-
sponding vertex of the triangle). Consequently, this
stat-ment is always true.

140. Let the points 4, B, C, and M have the
following coordinates in the rectangular Cartesian
system: (zy, y,), (29, ¥a), (3, ¥s), (z, y), respec-
tively, an(i let the coordinates of the point G are

(11+12+1‘3 Y1+ya+ys)
3 ! 3 )

Then the validity of

the assertion follows from the identity 3(:——

DFATD ) it @zt o — 2

3 (@1— 2+ (za— 23+ (23— 2) and analogous
relationship for the ordinates.

141. Ccnsider the case when the point M
(Fig. 30) lies inside the triangle ABC. Rotate the
triangle ABM about A through an angle of 60° to
bring B into C. We get the triangle 4 M,C which is
congruent to thoe triangle A BM; the triangle A MM,
is equilateral, consequently, the sides of the tri-
angle CMM, are equal to the line segments MA,
MB, MC. T\me points M, and M, are obtained in a
similar way. The arca of the hexagon AM,CMBM,
is twice the area of the triangle ABC, that is,

equals a2}/ 3/2. On the other hand, the area of
this hexagon is expressed as the sum of the areas
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of three equilateral triangles AMM,, CMM,, and
BMM, and the three triangles congruent to the
desired one. Conseguently, _3S 4+ (| MA |2 +

| MB |+ | MC 12)43 = q? 1;_3 Using the result
of Problem 140 of Sec. 2, we get 35 + (342 4-

W/

a?) '_/_3= ang, whence S=%§ (a® — 3d?). Other

cases of arrangement of the point M can be con-
sidered in a similar way.

142. Use the results of Problems 141 and 6 in
Sec. 2. Generally speaking, the sought-for locus
consists of a straight line and a circle.

143. Let (Fig. 31,a) O be the centre of the cir-
cumscribed, and I the centre of the inscribed cir-
cle. From O and I, we drop perpendiculars ON,
OP,IL,and IQ on AB and BC. If a, b, c denote the
corresponding lengths of the sides BC, CA, and
AB, and p the semiperimeter of the triangle ABC,
then |BK|= |c—b|, |BM| = |la—5b],
IBN|=¢/2, |BP|=al/2, |BL|=1|BQ|=

1
P—b I NL|=gla—0bl |PQI=
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%| ¢ — b | (see Problem 18 in Sec. 1). Consequent-

ly, if we draw, through O, straight lines parallcl
to the sides 4B and BC to intersect the perpendic-
ulars dropped from 7, then we get the triangle
ORS similar to BKM with the ratio of similitude
of 1/2. But the circle constructed on OI as dia-
meter is circumscribed in the triangle ORS. Conse-

[/

S, <\

Q
Qx~

Fig. 31

quently, the radius of the circle circumscribed
about the ABKM is equal to OI. To prove the
second part of the problem, we note that if a line
segment OR, equal to OR is laid off on the straight
line O0S, and a line se%ment 0S8, equal to OS—on
the line OR, then the line SR, is parallel to KM
(Fig. 31,b); but ZOR,S, + LIOR, = LORS +
Z10S = 90°, that is, S,R; 1 OI.

144. Using the notation of the preceding prob-
lem, we draw through A a straight line perpen-
dicular to O7 and denote by D the point of its in-
tersection with the straight line BC. Prove that
the difference between the radii of the circles cir-
cumscribed about the triangles ABD and ACD is
equal to the radius of the circle circumscribed
about the triangle BKM.

145. Let the sides of the triangle be equal to
a, b, and ¢, and b = (a + ¢)/2.
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(a) From the equality pr = —;—bhb (p the semi-

perimeter, r the radius of the inscribed circle, &,
the altitude drawn to the side b), we get:

‘;—(a 4+ b+ ¢ ‘=%bhb; but a + ¢ = 2b, hence,

hy = 3r.
b (b) This assertion follows from the fact that

=-%hb and the median point divides each median

in the ratio 2 1.,

(c) Extend the angle bisector BD to interseot
the circumscribed circle at a point M. If we prove
that O, the centre of the inscribed circle, bisects
BM, then thereby our statement is proved. (We
draw the diameter BN, then the line joining the
centres of the inscribed and circumscribed circles is
parallel to NM, and 4ZBMN = 90°.) But
the triangle COM is isosceles since LCOM =

LO0CM =—;- (LC + LB). Hence, | CM | =

| OM |. From the condition b = (a + ¢)/2,
by the property of an angle bisector, we get:
|CD | = a/2. Let K be the midpoint of CB;
ACKO = ACDO (|ICK| = |CD |, LKCO =
£0CD); hence it follows: LBKO = LCDM; in
addition, £DCM = LOBK = LBJ/2, |CD | =
| BK| that is, ABKO = ACDM, |CM | =
| BO|, hence | BO| = | OM | which was to be
proved.

(d) We take any point on the angle bisector.
Let the distances to the sides BC and BA be equal

to z, while to the side AC to y. We have:%x

(az +cx+ by) ="Sa = b 2z+4 y) = 28p =
22 + y = hb'

(e) If L is the midpoint of BA, then the desired
quadrilateral is homothetic to the quadrilateral
BCMA with the ratio 1/2 (see Item (c)).
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146. Let N denote the intersection point of
the common tangent with BC. It suffices to check

that | FN | | NG| = | KN | |NM | =
| DN || NE |. All the line segments are readily
computed, since |BD| = |CE| = p—b,

IDE| =1b—c]|, ‘Izgl' = =20, the
a

radius of the circle touching the side BC and the
extensions of the sides AB and AC), and so on.

147. Through the vertices of the triangle ABC,
we draw straight lines parallel to the opposite sides
to form a triangle A,B,C, which is similar to the
triangle ABC. Tt is obtained from the triangle
ABC by a homothetic transformation with centre
at the centre of mass, common for the triangles
ABC and A,B,C,, the ratio of similitude being
equal to —2. The intersection point of the alti-
tudes of the triangle A BC is the centre of the circle
circumscribed about the triangle 4;B,C,. Conse-
quently, the points O (the centre o} the circum-
scribed circle), G (the centre of mass), and H (the
intersection point of the altitudes of the triangle

ABC) lie on a straight line, and | 0G | =;—» | GH |,

G lying on the line segment OH.

148. In an acute triangle, Euler's line inter-
sects the largest and the smallest sjdes. In an ob-
tuse triangle—the largest and the middle sides.

150. Sﬁow that the required property is posses-
sed by such a point P on Euler’s line for which
| PO | = | OH | (O the centre of the circumscribed
circle, H the intersection point of the altitudes); in
this case, for each triangle the distance from the
centre of mass to the opposite vertex of the origi-

nal triangle is equal to %R, where R is the radius

of the circle circumscribed about the triangle ABC,
and the straight line passing through the centre of
mass of this triangle and the opposite vertex of the
ariginal triangle passes through the point O,
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151. Let C, denote the centre of the circle cir-
cumscribed about the triangle APB, and C, the
oint symmetric to C; with respect to AB. Simi-
arly, for the triangles BPC and CPA we determine
the points 4, and 4,, B, and B,, respectively.
Since the triangles AC,B, AC,B, BA,C, BA,C,
CB,A, CB,A are isosceles with vertex angles of
120°, the triangles A,B,C; and 4,B,C, are regular
(see Problem 296 of Sec. i). Computing the angles
of the quadrilaterals with vertices P, 4,, B,, and
C4, We can prove that they lie on the same circle.
Further, if H is the intersection point of the al-
titudes of the triangle A PB, then, since | PH | =
1C,C, | and, hence, PHC,C, is a parallelogram,
the straight line C,H (Euler’s line of the triangle
APB) passes through the midpoint of PC,. But
PC, is a chord of the circle witlg centre at C,, con-
sequently, C,H is perpendicular to PC,. Thus, the
three Euler’s lines coincide with the midperpen-
diculars of the line segments PC,, PB, and PA,,
and since the points P, 4,, B,, C, lie on the same
eircle, those lines intersect at its centre which is
the centre of the regular triangle 4,B,C,. It fol-
fows from the result of Problem 296 of Sec. 2 that
these three Euler’s lines intersect at the median
point of the triangle A BC.

152. Let ABC be the given triangle whose sides
are a, b, and ¢ (a > b > ¢), 4,, B,;, C, the points
of tangency of the inscribed circle, I the centre of
the inscribed circle, O the centre of the circum-
scribed circle. Since, with respect to the triangle
A,B,C,, I is the centre of the circumscribed circle,
it suffices to prove that the straight line 7O passes
through the intersection point of the altitudes of
the triangle 4,B,C,. Lay off on the rays AC and
BC line segments AK and BL (| AK | = | BL | =
¢), and on the rays AB and CB line segments AM
and CN (| AM | = | CN |) = b). As is known (see
Problem 143 in Sec. 2), the line 70 is perpendicular
to LK and MN, hence, LK || MN. Denote:
LKLC = LBNM = @. By the law of sines for
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the triangles KLC and BNM, we have:

|LC| a—c _ sin(p4+0) )
|KC| ™ b—c¢  sing
IBN| a—b__ sin(B—¢) @
IBM|— b—c singp °

Now, in the triangle 4,B,C,, we draw the altitude
to the side B,C,. Let Q be the point of its inter-
section with tfle straight line 70. We have to prove
that Q is the intersection point of the altitudes of
the triangle 4,B,C,. But the distance from I to

B,C,is |IA, | cos A,= rsin g— . Hence, the equal-

ity | 4,Q | = 2rsin g must be true. The angles

of the triangle QJA,; can be expressed in terms of

the angles of the triangle ABC and ¢, namely,
C

LQIA; = 180° — @, LQA,I = ‘—2”— We
A sin @
have to prove that 2 sin =" B\
sm(tp— 3

sin (p + C) — sin (B — ¢) = sin@. The last
equality follows from (1) and (2).

153. When carrying out the proof, we make use
of the fact that if perpendiculars PX and PL are
dropped from a point P on the straight lines inter-
secting at a point M, then the points P, K, L,
and M lie on the same circle.

154. Use the result of Problem 246, Sec. 1.

156. The distance between the projections of M
on AC and BC is equal to | CM |sinC. If K
and L are the projections of M on AB and BC,
then the projection of AB on the straight line XL
(this is just Simson’s line) is equal to | AB | X
| cos LBKL |= | AB | | cos LBML | =
| AB | sinL CBM = | CM | sin C.
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157. Prove that the sides of the triangles
AB1C1, A3B,C,, and AyB4C; are correspondingly
para‘lel.

158. Prove that Simson’s line corresponding to
A, is perpendicular to B,C, (the same for the other
points). Further it is possible to prove that Sim-
son's line corresponding to the point A; passes
through the midpoint of A,H, where H is the
point of intersection of the altitudes of the triangle
ABC (see also the solution of Problem 166 of
Sec. 2). Consequently, Simson's lines are the alti-
tudes of the triangle whose vertices are the mid-

ints of the line segments A,H, B,H, C.H.

emark. We can prove that Simson’s lines of arbi-
trary points A, B,, C, with respect to the triangle
ABC form a triangle similar to the triangle 4,B,C,,
the centre of the circle circumscribed about it coin-
ciding with the midpoint of the line segment joining
the points of intersection of the altitudes of the
triangles ABC and A,B,C,.

159. First of all, we check the validity of the
following statement: if the perpendiculars drawn
to the sides (or their extension) of the triangle at the
points of intersection with a straight line meet at
a point M, then M lies on the circle circumscribed
about the triangle. (This statement is the converse
of the statement of Problem 153.) Consider the
parabola y = az?®. An arbitrary tangent to it has

2
the form: y = kz — -2—‘; (the. tangent has only one

common point with the parabola, hence, the discrim-
inant of the equation az? = kz -4 b is equal to
zero). This tangent intersects the z-axis at the
point z = k/4a. The perpendicular to the tangent
at this point is represented by the straight line
=—-(x-— ZZ) = ——;— + 515’ Consequently, all
#uch perpendiculars pass through the point
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(0; 7:;) (the focus of the parabola). Now we use

the remark at the beginning of the solution.

160. Let ABC denote the given triangle, H
the point of intersection of its altitudes, 4,, B,, C
the midpoints of the line segments AH, BH, an(i
CH, respectively; AA, the altitude, 4; the mid-
point of BC. We assume, for convenience, that
ABC is an acute triangle. Since £ B;A;Cy =
LBAC and ABA,C, = AByHC,, we have
ZB,A,C, = /BHC, = 180° — L B;A,C;, that
is, tile points A,, By, A,, and C, lie on the same
circle. It is also easy to see that £ ByA3C, =
LBHC, = 180° — £ B;A,C,, that is, the points
Ay, By, A4, and C, also lie on one (that is, on the
same) circle. Hence it follows that all the nine
points, mentioned in the hypothesis, lie on one
and the same circle. The case of an obtuse triangle
ABC is considered in similar fashion. Note that the
nine-point circle is homothetic to the circumscribed
circle with centre of similitude at H and the ratio
of 1/2. (The triangles A BC and A,B,C, are arranged
just in such a manner.) On the other hand, the
nine-point circle is homothetic to the circumscribed
circle with centre of similitude at the median point
of the triangle ABC and the ratio of —1/2. (The
triangle ABC and the triangle with vertices at the
midpoints of its sides are arranged exactly in
such a way.)

161. Our statement follows from the fact that
D lies on the nine-point circle, and this circle is
homothetic to the circumscribed circle with centre
of similitude at H and the ratio of 1/2 (see Prob-
lem 160 of Sec. 2).

162. Our statement follows from the fact that £
lies on the nine-point circle, and this circle is ho-
mothetic to the circumscribed circle with centre of
similitude at M and the ratio of —1/2 (see Prob-
lem 160 of Sec. 2).

163. This distance is half the sum of the dis-
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tances to BC from the intersection point H of the
altitudes and the centre of the circumscribed circle,
the latter being equal to half | HA4 |.

164. Let M, be the midpoint of HP, 4, the
midpoint of HA4, and the points 4,, 4,, an& M,
lie on the nine—{)oint circle. Consequently, M also
lies on this circle since the hypothesis implies the
equality | M H |-| HM | = |A H |-| HA, |, and
H is simultaneously either inside or outside each
of the line segments M M and A4,4,.

165. We prove that M and N lie on the corre-
sponding midlines of the triangle ABC. If P is
the midpoint of AB, then L MPA = 2/ ABM =
LABC = L APL. Let, for the sake of definite-
ness, ABC be an acute triangle, £ C > £ A4, then
/L MNK = 180° — LKNB = L KCB = L MLK
(we have taken advantage of the facts that the

ints K, N, B, and C lie on the same circle and
that ML is parallel to BC). Hence, the points M,
L, N, and K lie on the same circle. Further

LLMK  LPMB + /_NMK:-;— LB +

LBMK =% Z B+ £ A. If Oisthe centre of the

circle circumscribed about the triangle LMK,
then LLOK = 2LLMK = LB + 2/LA =
180° — L C + LA = 180° — LLPK (LLPK =
LAPK — LAPL = 180° — 2LA — /B =
£LC — £ A), that is, O lies on the circle passing
through the points L, P, and K, and this is just
the nine-point circle.

166. Since the midpoint of FN lies on the
nine-point circle (see Problem 4160 in Sec. 2), it
suffices to show that Simson's line corresponding to
the point F also bisects FH. Let K be the projection
of F on a side of the triangle, D the foot of the
altitude drawn to the same side, H; the point of
intersection of this altitude and the circumscribed
circle, | H,D | = | HD | (see the solution of
Problem 107 in Sec. 2), L the point of intersection
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of Simson’s line with the same altitude, and, final-
ly, M the point on the straight line HH, for which
FM || KD; then AFMH,= AKDL (| FM | =
| KD |), both of them being right-angled, and
LDLK = £ MH,F since the altitude of the tri-
angle is the Simson line corresponding to the vertex
it emanates from, and we may use the statement of
Problem 154 of Sec. 2. It is also easy to show that

—
the directions of H:TW and DL coincide, that is,
FKHL isa parallelogram whence there follows our
statement.

167. In Fig. 32: O is the centre of the circum-
scribed circle, 4,, B, C; the midpoints of the sides,

Fig. 32

L and K are respective projections of 4 and B on
!, M the point of intersection of the straight lines
passing through the points L and K perpendicular
to BC and CA. For definiteness, the triangle A BC
is acute-angled. First, we prove that C, is the
centre of the circle circumscribed about the tri-
angle KLM. The points 4,, O, K, C,, and B lie
on the same circle. Consequently, £ C,KL =
LOAC,= 90° — C; in similar fashion,
LCLK = 90° — LC. Hence, | KC, | = | C,L |,
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LLCK = 2/C, and since L KML = £ C, our
statement has been proved. Further, KM is per-
pendicular to A4,C,, | KCy | = | C;M |, hence,
LCMA, = LC, KA, = 180° — LB, that is, M
lies on the citclle circumscribed about A,B,C,.
168. Let H denote the intersection point of the
altitudes of the triangle ABC, and A4,, B,, C,
the midpoints of the line segments AH, BH, CH,
respectively. Note that the triangles 4B,C,,
A(BC,, A;B,C are similar (the corresponding ver-
tices being Aenoted by the same letters), 4,, B,,
and C, denoting the corresponding centres of the
circles circumscribed about them. First, we prove
the following assertion: three straight lines passing
through the points 4 ,, B,, and C, and occupying the
same positions relative to the triangles 4B,C,,
A,BC,, A,B,C meet in a point on the nine-point
circle. Note that the straight lines A,B,, B,B,
and C,B, are equally arranged with respect to the
triangfes AB\C,, ABC,, and 4,B,C and intersect
at the point B, iying on the nine-point circle. Since
the points 4,, B,, C, lie on the nine-point circle,
it is obvious that the three lines obtained from the
straight lines 4,B,, B,B, and C,B, by rotating
them about the points 4,, B,, amf C,, respective-
ly, through the same angle, also intersect at one
point located on the nine-point circle. Let now P
be the intersection point of the Euler lines of the
triangles 4 B,C,, 4,BC,, A,B,C.Denote: L PA,A =
¢. For the sake of convenience, we assume that
ABC is an acute triangle, and the point P lies on
the arc B;A, of the nine-point circle (see Fig. 33).
Then £ PA,A; = 180° — ¢, L PA,B, = 180° —
— LBjA,A; = 180° — ¢ — LBICIA%

LC — @, LPA,C, = 180° — ¢ + 180° —
2/ B = 360° — ¢ — 2£B. Since the chords PA,,
PB,, and PC, are proportional to the sines of the
angles subten}led by them, it remains to prove that
one of the three quantities: sin ¢, sin (2C — @),
— sin (2B + ?), (in our case the first one) is equal
to the sum of the two others, that is, sin ¢ =

18—-01557
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sin (2€ — @) — sin (2B - ¢). But in the triangle
AAH,: |AA, | =R, | AH,| = 2B cos A (R the
radius of the circumscribed circle, R cos 4 the
distance from the centre of the circumscribed circle
A4, to BC,), LHAA,= LA+ 2/ B — 180°.
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Fig. 33

By the law of sines for the A4AA,H,, we have:

2cos A 1 .

sme  Sm@BrAtq)  Sin(@Bt2d+e)
sin 2B 4+ ¢@) = sin ¢ = sin 2C — @) —
sin (2B 4 @) = sin ¢, which was required to be
proved. Thus, we have proved the statement for an
acute triangle. The case of an obtuse triangle ABC
can be considered exactly in the same way.

169. Let ABC be the given triangle, 4,, B,
and C,; the midpoints of the corresponding sides.
Prove that the circle passing, for instance, through
the vertex A4 and satisfying the conditions of
the problem pagses through the points of inter-
section of the bisectors of the internal and external
angle 4 and the midline B,C,. Hence, for all
points M of this circle the equality | B,M |:
[CM | =1|BiA|:|CA|=b:ais fulfilled (sce
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Problem 9 in Sec. 2). Thus, if M, and M, are in-
tersection points of two such circles, then
| AAMy Vs | ByM, | 2 |CiM, | = a:b:c(the same
for the point M,), therefore M, and M, belong to a
third circle. In addition, M, and M, belong to a
straight line for all points M of which the equality
(¢ — b)) | AM |2+ (a® — ) |BM |2 +
(b — a?) | CyM |2 = 0 is fulfilled (see Problem 14
in Sec. 2 and its solution). This line passes through
the centre of the circle circumscribed about the
triangle A4,B,C, and through the point of inter-
section of its medians (check this, expressing the
lengths of the medians in terms of the lengths of
the sides), that is, it coincides with the Euler line
of the triangle 4,B,C,, and, hence, with that of
the triangle ABC.

170. (a) As it was done in the preceding prob-
lem, we can prove that these three circles inter-
sect at two points M; and M, and | AM, |
| BMy| : | CMy | = bc : ac ab (the same for the
point M,).

(b) Follows from (a) and Problem 14 of Sec. 2.

(c) Prove that if M is inside the triangle ABC,
then £AM,C =60°+ B, /LBMA = 60°+
£C, LCMB = 60° + LB (for this purpose, use
Bretschneider’'s theorem —Problem 236 of Sec. 2).

171. Take on BC a point A; and on BA a
point C, such that | BA, | = |BA |, | BCy | =
| BC | (the triangle A,BC, is symmetric to the
triangle ABC with respect to the bisector of the
angle B). Obviously, BK bisects 4,C,. We construct
two parallelograms BA,MC, and BCND (the
corresponding sides of the parallelograms are par-
allel, the points B, K, M, and N are collinear);

| BC| |BC|®
CN AA, | ——— = ———, consequently,
| | 1 A4, | [BA,] TBA| q y
14K| _ |AB| _ |AB|?
{KC|  |CN| ~ |BC|*

172. We have (Fig. 34) LFEA = LEDF =
ZA, hence, |AF|=|E,F|, LFE\N =
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/. FDB = £C, LE,FN = A. Consequently,

is simi JAF| _ 1EJFy_
AEFN is similar to AABC, [FN| = [FN] —
:j“lc;‘: , ZAFN = 180° — £ A. Now, we can show

A
4

that AN is symedian. To this end, consider the
parallelogram ACAB; AA; bisects BC, the tri-
angle ACA, is similar to the triangle AFN, hence
LNAF = £ A,AC.

173. The Apollonius circle passing through the
vertex B of the triangle A BC is the locus of points
M for which |AM] _ |AB| (Problem 170, of

or WSR3 T 1BC ’
Sec. 2, Solution). Consequently, if D is the point of
intersection of this Apollonius circle and the circle
circumscribed about the triangle ABC, then the

straight line BD divides AC in the ratio SBAD _

SBcp
|4B|-|4AD| _ |AB|*
{CB|-|CD| ICB|*"
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174. Let N denote the point of intersection of
BQ and CD, O the centre of the circle, R its ra-

dius. Note that ZNBC = —;—LPMQ. (If Q lies on
the line segment NB, then A NBC = 90°

LQBP = 90°—1.£.Q0P =%—PMQ.) Hence, the
triangles NBC and POM are similar, | CN | =

_ IPD| _ _IBPl _ 4 oo
VBC 1537 = Bipany = Biag — 7 1BP' =

1
-2-|CD|.

175. Let H be the intersection point of the al-
titudes, O the centre of the circumscribed circle, B,
the midpoint of CA. The straight line MN passes
through K, which is the midpoint of BH, | BK| =
| B,O |. Prove that the line M N is parallel to OB
(if £C> LA, then L MKN = 2/ MBN = £(C—
LA = LOBH).

176. Let the straight line A M intersect for the
second time the circle passing through B, C, and
M at a point D. Then LMDB =/ MBA=
LMAC, LMDC = LMBC = /MAB. Conse-
quently, ABCD is a parallelogram.

177. From the solutior;w (l) Problem 234 of

i |LM| _ |LN|
Sec. 2 it follows that [MK| |NKl'we may
assume that ! passes through N. Appyling the law
of sines to the triangle NXP and replacing the
ratio of sines by the ratio of ;}he corresponding
. _ INK|sin LNKP _
chords, we have: | NP | <57 KPN

INK|sinL NKM _ |NK|
S Z KM A KM | NM| and so forth.
178. Let O denote the centre of the inscribed
circle, X and L the points of tangency with the
sides AC and A B. The straight line passing through
N parallel to BC intersects the sides AB and AC
at points R and M. The quadrilateral OKMN is




278 Problems in Plane Geometry

an inscribed one (LONM = LOKM = 90°;
consequently, ZOMN = LOKN, analogously,
£LORN = LOLN, but LOLN = LOKN, hence
£ ORN = LOMN, and the triangle ORM is iso-
sceles, ON is its altitude; thus | RN | = | NM|.

179. If |BC|=a, |CA|=0b, |AB|=c,
then, as is known (see Problem 18 in Sec. 1),

| MC | =a+b2_c . We draw through K a straight

line parallel to AC, and denote its intersection
points with AB and BC by 4, and Cy, respectively.
The circle inscribed in the triangle ABC is an
escribed one for the triangle A,BC; (it touches
A,C, and the extensions of BA; and BC,). But the
triangle A4,BC; is similar to the triangle ABC.
Consequently, the circle escribed in ABC will
touch AC at a point N; let R and L denote the
points of tangency of the circle with the extensions
of BA and BC, respectively. We have: | BR | =

|3L|=_;.(a+b+c),hence|AN|=IAR|=

|RB| — | BA |= "—‘*'2’123=|MC|.

180. Draw through K a straight line parallel
to BC. Let L and Q denote the points of intersec-
tion of the tangent at P with the line BC and the
line constructed parallel to it, and N the point of
intersection of AK and BC. Since |CN | =
| BM | (see Problem 179 of Sec. 2), it suffices to

rove | NL|=|LM|; but |PL | =| LM |,
ence, have to prove that | PL | = | NL |. Since
the triangle PLN is similar to the triangle PQK,
in which |PQ|=|QK| we have |PL|=
| NL'| and | CL| = | LB |.

181. Let M and N denote the points of inter-
section of the straight line LK and the straight
lines ! and CD. Then | AM |2 = | ML |-| MK |.
From the similarity of the triangles KMB and

: |KN|-|MB|
DKN it follows that | MK | = —DNT
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Since the triangles CNL and MLB are similar, we

) _ ILN|-|MB|
have: | ML1 = —jent [KN) | LN|
Thus, | MK| |ML| = ICNT-1DN] *

| MB |2 = | MB |2, that is | MA |2= | MB |?,
| MA | = | MB |.

182. Let B be a second common point of the
circles, C the point on the straight line AB from
which the tangents are drawn, and, finally, K the
point of intersection of the straight lines MN and

P

Fig. 35

PQ (Fig. 35). Making use of the law of sines and
the result of Problem 234 in Sec. 1, we get:

|PM| __|PM|_sin/PBM | BM|
[MA| —sin 2 PBM'~ | MA| “—sin Z BPM X
sin 2 PBM CTBT si

< = ! | sin £ PBM Thus, de-

IMA| — |CA| "sin L BPM*
noting the angle AMB by o and the angle APB
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| PM | __
I MA|

Analogously, we find:

by B (@ and B constant) we get:
| CB| sin(a+B)
1CAT " sin

IANI_‘/|CA| sin p _
TweT =V TeBT sm@rp - Bub by Mene
| PM |

laus’ theorem (see Problem 45 in Sec. 2), THAT

AN | 10QK|

TNOT TKP] 1. Hence, | QK |/| KP |=1.
183. Through the point M, we draw a straight

line parallel to AC to intersect the straight lines

BA and BC at points 4, and C,. We have:

LA KM = 90° — LDKM = 90° — LKBD =

L BAD = L KAM; consequently, KMA, is an

X

isosceles triangle, and | A;M | = | MK |. Analo-
ﬁously, | MCy | = | ML |; but | KM | = | ML |,
ence | A;M | = | MC, |, that is, the straight line

BM bisects AC.

184. Let M denote the point of intersection of
ND and AB, and P the point of intersection of the
tangents to the circle at the points 4 and D.

Since the straight lines NC, AB, and PD are
parallel, from the similarity of the corresponding
triangles we get:

_ | AN |
IAMI—-IDplw; (1)
|MB|__|MD|_|AP| @
|NC| ~ |\ND| ™~ |ND| '

= | AP | |
| MB|=| NC| 51>
but | DP| = |AP |, | NC| = |AN |. Consequ-

ently, the right-hand sides of the expressions (1)
Iallli(ll B(2l) are equal to each other, that is, | AM | =
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185. We assume that D is the midpoint of CB,
and AD intersects the circle for the second time at
a point K. Let us prove that the tangents to the
circle at the points B and C intersect on the straight
line MK.

Consider the quadrilateral CMBK. For inter-
section point of the tangents to the circle at the
points C and B to lie on the diagonal MK, it is
necessary and sufficient (see Problem 234 of Sec. 1)

ICM| _ IMB) IeM| _ |4B| _
that {2xT = TBRT’ P TCR] = 1CKI
|BD| __ |CD| _ {AC| __ |MB|
DK~ [DK| — 1BK] — IBKI'([n the first
and last equalities we have used the fact that
|CM |=|A4AB|, | AC| = | MB | since AM is

parallel to CB, in the second and fourth equali-
ties—that the triangle ABD is similar to the tri-
angle CDK, and the triangle ADC to the triangle
KDB, in the third, the fact that AD is a median.)

186. Let O denote the centre of the circle, Ny,
M,, P,, R, the points symmetric to the points N,
M, P, R with respect to the straight line OA4, re-
spectively,'K the point of intersection of the straight
lines NyR, and QS. We have to prove that the
points R,, S, and K coincide. The points N,, M,,
and B lic on the same straight line symmetric to
the straight line NMC; the points N,, Py, R
also lie on a straight line symmetric to the straight
line NPR (Fig. 36). The points B, Ny, Q, and K
lie on one circle since LBN,K = L MNP, =
LMNP = £ PQM = £ BQK. The points B, Ny,
Q, and R, are also on one circle since LN;RB =
LN,P,P = /N, QP = /N,QB. Consequently,
the five points B, Ny, Q, Ry, and K are located on
the same circle; but the points N,, R,, and X are
collinear, hence R; and K coincide.

187. Let us confine ourselves to the case when
ABC is an acute triangle. Consider the parallelo-
gram A,MON (M and N on A,B, and A,C,, respec-
tively). Since A,0 forms with 4,C, and A,B,
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angles of (90° — £.B) and (90° — £.C), we have
A M| 1AM| _ cosB_ | AL|
|AN| — | MO| — cosC IAlKl

Fig. 36

188. The statements of the problem follow
from the fact: if a circle is constructed on each side
of the triangle so that the sum of the angular values
of their arcs (located on the same side with the
triangle) is equal to 2x, then these circles have a
common point.

189. Take the points £, and F; symmetric to
the ]lmmts E and F with respect to AB. Then the
problem is reduced to a particular case of Problem
186, Sec.

190. On the extension of AC beyond the point
C, we take a point M such that | CM | = | CB |;
then E is the centre of the circle circumscribed
about the triangle AMB (|AE| = | BE|,
LAEB = LACB = 2/ AMB). Hence it follows
that F is the midpoint of AM, and DF bisects the
perimeter of the triangle ABC In addition, DF
is parallel to BM, and BM is parallel to the bisector
of the angle C of the triangle ABC that is, DF
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is the bisector of the angle D of the triangle DKL,
where K and L are the midpoints of AC and CB,
respectively.

191, Let the straight line intersect the sides AC
and AB of the triangle ABC at points M and N.
Denote: | AM | + | AN | = 2l. The radius of the
circle with centre on MN touching AC and 4B
is equal to S 4 prn/!, and, by hypothesis, S 4pn/l =
Sapclp =, Where p_is the semiperimeter and r
21; Cl:a ius of the circle inscribed in the triangle

192. Prove that in the homothetic transforma-
tion with centre at M and the ratio of similitude of
—1/2 the point N goes into I (obviously, this ho-
mothetic transformation carries the point I into
S). Let ABC be the given triangle, 4,, B,, and
C, the midpoints of the sides BC, CA, and AB,
respectively, 4; a point on the side BC such that
AA, divides the perimeter into two equal parts.
It is easy to see that A, is the point of tangency
with the side BC of the escribed circle which also
touches the extensions of the sides AB and AC, 4,
the point of tangency of the inscribed circle with
the side BC. We have: | BA,| = | CA,|. We
erect at point 4, a perpendicular to BC and denote
by D the point of its intersection with 44,. Repeat-
ing the reasoning for the solution of Problem 179
of Sec. 2, we prove that | A, | = | ID |. Conse-
quently, the straight line 4,/ is parallel to 44,. If
we carry out the homothetic transformation men-
tioned at the beginning, then the straight line 44,
goes into the line 4 /. In similar fashion, two other
straight lines bisecting the perimeter go into B,/
and C,l, respectively. Hence, all these three lines
intersect at such a point N which goes into 7 in
this transformation. This implies the statement of
the problem.

193. (a) Using the formulas r=% , R=%.

S=Vp(p—a)(p—b)(p—c), where S is the area
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of the triangle ABC, we easily prove the given
relationship.

(b) Use Leibniz’s formula (Problem 140 in
Sec. 2), taking the centre of the circumscribed cir-
cle as M.

(c) Use Leibniz’s formula (Problem 140 of
Sec. 2), taking the centre of the inscribed circle as
M. To compute, for instance, | MA |2, we drop a
perpendicular MK on AB; we have: | MK | = r
|AK|=p—a; hence, |AM |3= (p — a)® 4>
r?, | MB |? and | MC |2 are computed in a similar
way. For simplifying the right-hand side, use the
result of Item (a).

(d) Let M denote the intersection point of the
bisector of the angle B and the circumscribed circle.
If1I0|=d, then |.BI | | IM | = R?* — d?. The
triangle ICM is isosceles (| IM | = | CM |) since

LCIM = % (LB + £C) and LICM = % (LB +
£.C). Consequently, R®— d? = |BI|.|IM|=

| BI|.| CM | =—"— .2Rsin 2 —2pr.
— B D
sm-?

(e) Can be proved in much the same way as
Item (d)

(f) The distance between the projections of I
and I, on AC is a. We take a point X such that
IK || AC, I,K 1 AC. In the right triangle IKI,,

we have: LKII, = —;—LA, |IK | = a, |IK |=

| IK|®2 a
. A _'sinAz”K|><
005—2-

rq—r. Thus, |II,|2=

tan—g—=4R (rq—n.

194. Through the point O, we draw straight
lines parallel to 4B and AC and denote by L and
K the intersection points of these lines with the
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perpendiculars dropped from. I, on 4B and AC,
respectively. Let us prove that the triangles AB,C,
and OLK are similar. We have: 2 B,AC,= ¢/ LOK,

_be __be _ c_

;ABI'_c_-i—a VAC | =707 10L|=p—5=
b 1

?(a—l—-b), |0K|=p——2'=§(a+c); thus,

|AB1|_|ACI|__ 2be i

[OL] —TOK| —(FaGFa °ut 0o is

the diameter of the circle circumscribed about
the 2triangle OLK. Consequently, |B,C,|=
be 2be

mlLKl:m—wlolalsinAz
e o1,
cTaeTtar %l

196. Prove that the area Q, of the triangle with
vertices at the points of tangency of the escribed
circle centred at I, can be computed by the formula

S2
= re _ ABC
Qo= Sascsy SR(p—a)
is the same as in Probfem 193 of Sec. 2. Analogous
formulas can be obtained for the areas of other
griang:es. (See the solution of Problem 240 of
ec. 1.)

197. Let O be the centre of the circle circum-
scribed about the triangle ABC, B, the midpoint
of AC, N the point of tangency of the inscribed
circle with AC. Then | AN |=p —a, |CN | =
p —c (see Problem 18 in Sec. 1), | ON |2 =
10B, 12 + |BN |2 = |AO|®? — | AB, | +

s p_ 02 b\, 2
IBINI——R—-Z--}-(p—a—--E) R

(p — a) (p —¢). We then determine the squares
of the distances to the other points of tangency and
add them together to get the desired sum; it is
equal to 3R — (p—a) (p.—c¢)—(p —¢) X
(p—b) —(p—b) (p —a) = 3R? — M. Making
use of Hero's formula for the area of a triangle
and the formulas S = pr and S = abc/4R, we get:

, where the notation
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2= (p —a)(p—b) (p — c)/p, 4Rr = abc/p. Add-
ing together the last equalities and using the iden-
tity (p — a) (p — b) (p — ¢) + abe = p ((p— a) X
p—=bF+(—d—c)+(p—c)pp—a) =
pM, we find M = 4Rr + r2.

Answer: 3R®* — 4Rr — 1.

198. The product of the lengths of the line* seg-
ments from the vertex A of the triangle ABC to the
points of intersection of the side A B with the given
circle is equal to the product for the side AC.
Eachof these line segments can be readily expressed
in terms of the sides of the triangle and the
chords under consideration. Thus, we obtain a
system of three equations enabling us to express
the chords in terms of the sides of the triangle. To
avoid the looking over of variants, it is conve-
nient to choose a certain direction of traversing the
triangle and regard the line segments to be directed
and their lengths to be arbitrary real numbers.

199. Let K, and L, be points on BC and BA,
respectively, such that K K || L,L || ByB. It suffices
to prove that the triangles BK,K and BL,L are

L . | BKy| _ | BLy| .
similar, that is, LKl —TLLT" We have:
|BK, | _ | ByK | | K\K | TAKE g
{BAy| ~ |Bi4y | ' BByl = | B4’

by the property of an angle bisector (Problem 9 in
Sec. 1), VBKi| _IBK| 1BAi|_ I1CB|

BA’ lKlKlCB|AlKl { BBy | |CA4|
| BA | _c 1CBi | i The last

|BB,| b [BB,| (cta)[BB,| "
expression is symmetric with respect to a and e,
and, hence, it is also equal to Il f[i‘ I'
1

200. Let L KAL = /LKLA = ¢, LKCL=
LLKC = ¢. Then £LBKL =29, LBLK = 2y,
2¢ + 2¢ = 180° — £B. If Q is the point of in-
tersection of AL and KC, then £LAQC = 180° —

(o + ¢) = 90° -I—%—L.B. Through M, we draw a
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straight line parallel to BC to intersect KC at a
point N, then MQ is the bisector of the angle AMN

and ZAQN = 90° + —;—LB. Hence it follows that

Q is the intersection point of the angle bisectors of
the triangle AMN (see Problem 46 in Sec. 1{;
hence the triangle 4 M N is similar to the triangle
KBL, and the triangle KMN is similar to the

triangle KBC. Let | AK | = | KL | = | LC | = z,

| AM | ¥, | MN | z. Then —— = Y
a-z c¢—z

=z - Z . whence y=a.

c—z a

201. Let B, be the midpoint of AC. Extend the
angle bisector to intersect the perpendicular, erect-
ed at the point B, to AC, at a point B,. The
point B, lies on the circumscribed circle. Through
the point M, we draw a perpendicular to AC;
let L be the point of its intersection with AC, X
that with BB,, then | KM | = | ML |. We draw
through the point K a straight line parallel to AC
to intersect the straight lines AB and BC at points
D and E, respectively. If G and F are the projections
of D and E, respectively, on AC, then M is the
centre of the rectangle GDEF, the triangle DME
being similar to the triangle AB,C (the triangle
DME is obtained from the triangle 4 B,C by means
of a homothetic transformation with centre at B).

. _ ILCl _ |LF|
We have: cot ZMCL = [ML] = ML +
{FC| __ |ABy| |FC| B
ML}~ BB, —}—2——|EF'——cot—2 + 2cot C.

If now B’ is the foot of the angle bisector, P and
T are, respectively, the projection of N and B’
_ |pC| | PT|

on BC, then cot LNC;B = NP = NP +
iTC| _ |BP| Irc) _ B
_INPI __INPI “+ _iB'TI cot 3 + 2cot C,

that is, ZMCA = L NCB.
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202. (a) This well-known problem has many
proofs. Consider one of them based on the follow-
ing test for the congruence of triangles. Two tri-
angles are congruent by one egual side, an equal
angle opposite to this side, and an equal bisector
of this angle. Let us prove this test. Consider two
triangles ACB and ACB, in which LB = /B,
(B and B, lying on the same side of AC). These
triangles have a common circumscribed circle. We
may assume that B and B, lie on the same side of
the diameter of this circle which is perpendicular to
AC. Let the bisector of the angle B intersect AC at
a point D, and the bisector of the angle B, at a
point D,;, M the midpoint of AC, N the midpoint
of the arc AC not containing the points B and B,.
The points B, D, and N are collinear, as well as
B,, D{, and N. Let B and B, be non-coincident,
and, hence, D and D, are also non-coincident.
Suppose that | MD | > | MD, |; then | BN | <
| ByN |, | DN |> | DN |. Consequently,
|BD,|=|BN|—|ND|>|BN|—
| ND | = | BD | which is a contradiction. Let now
the bisector A4, in the triangle ABC be equal to
the bisector CC;. Apply the test just proved to the
triangles BAA, and BCC,.

(b) If both bisectors of the external angles 4
and C of the triangle ABC are found inside the
angle B, then the proof can be carried out just in
the same manner as in Item (a).

Let these bisectors be situated outside the angle
B. We shall assume that | BC | > | BA |. Take on
CB a point B, such that | CB, | = | AB, |. Let
LBAC = /BCA = a, LB,AB = ¢, L the in-
tersection point of the bisector of the external angle
C and AB, M the intersection point of the bisector
of the external angle A and CB. The rest of the
notations are clear from Fig. 37. By hypothesis,
|CL|= | AM |, in addition, | CL, | = | AM, |,
since BjAC is an isosceles triang{e, |CM; | =
| AM | since the triangles CL,M; and AM,M are
congruent. Further, | CM;|> | CM]|, since
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LMMC > LM{CA > 90°. On the other hand,
the points C, 4, L, and M’ lie on the same circle
in which the acute angle subtended by LC (L LAC)
is greater than the acute angle subtended by M}C.
Hence, |AM |= |CM;| <|CM;|<<|CL|.
But this is a contradiction.

In the general case, the equality of the bisectors
of the external angles does not imply that the

Fig. 37

triangle is isosceles. Problem 256 of Sec. 1 gives
an example of such a triangle,

203. Let ABC be the given triangle, A4,, BB,,
CCl the angle bisectors. If I AlBl ’ = | Alcl I,
then either £ZA4,B,C = £ A,C\B (in this case the
AABC is isosceles) or ZA,BC 4 £ A,C,B=
180°. In the second case, we rotate the triangle
A,B,C about the point 4, through an angle B, 4,C,.
As a result, the triangles 4,C,B and A,B,C turn
out to be applied to each other and form a triangle
similar to the triangle ABC. If the sides of the
triangle ABC are a, b, and ¢, then the sides of the

1901567
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ac ab

obtained triangle are equal to e m and
ac ab . . . .
paw + ate Bearing in mind that the triangles

are similar, we get:
c b a

a+b + atc = b+ec

<> W4 c3—ad-+b2c+b2a+ b+ c?a— a?b—a’c
+abe =0. (1)
Let us denote cos £ BAC = z. By the law of cosines,
b2+ c2—-a2 =2bcz. Multiplying the last equality,
in succession, by a, b, and ¢ and subtracting it
from (1), we get:

_ __20+t9=
2z(a+b+c)ta=0<>a= BTES

Since 0 <a < b+¢, we have

—p<z<0. @

Expressing a in the law of cosines in terms of
b, ¢, and z and denoting b/ec = A, we obtain for A
the equation (4z + 1) A — 2\ (423 - 822 + z) +
4z 4+ 1 = 0. For this equation to have a solution
(A > 0, A 5= 1) under the conditions (2), the fol-
lowing inequalities must be fulfilled:

42+ 822 + 2> 0, )
D = (4 + 82 + ) — (b + 1)
= @z+H1)? (z4+1) @z—1) (2234+52-+1) > 0, (4)

where D is the discriminant of the quadratic equa-
tion. The system of inequalities (2), (3), (4) is

true for -—%-<z< _l/'_1[7!_——_5_
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Thus, the original triangle is not necessarily
isosceles. But it has been proved that it can be iso-
sceles if one of the angles of the original triangle is

obtuse and its cosine lies in the interval (—-3-

4 1
__1/147—5) , Which corresponds approximately to an

angle from 102°40’ to 104°28’ If z = —1/4, then
the constructed triangle degenerates; for z =

K}-Z———s we have: £4,B,C = £A4,C,B=90° that

is, the two cases considered at the beginning of the
solution coincide for this size of the angle.

204. Let M denote the point of intersection of
AD and KL:

1KM| Sakp %-IAKI-lADIsinLKAD

IML! = SaLp

—12- |DL|-|AD|sin L ADL

_ |4K]|.|CD|
~ \DL\-|AF| °
(We have used the fact that the sines of the inscribed

angles are proportional to the chords.) Analo-
gously, if M, is the point of intersection of BE

. AEMy| _ _|BK|-|EF|
Bt o he sty o5t gt 4 5 o
BKC, and CLD and FLE, we have ||—AT:=||LI;JC_: ,
%:—:—i’—;:—; multiplying these equalities,
we get: "I:}l{‘: = llllflji!Ll: , that is, M and M,

coincide. Remark. We can show that the state-
ment of the problem is retained if A, B, C, D, E,
and F are six arbitrary points on the circle. Usual-

19#
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ly, Pascal’s theorem is formulated as follows: if
A, B, C, D, E, F are points on a circle, then the
three intersection points of pairs of straight lines
AB and DE, BC and EF, CD and FA lie on a
straight line.

205. Let N be the point of intersection of the
straight line 4,4, and the circle, N being distinct
from 4,. Apply Pascal's theorem to the hexagon
ABCC,NA, which is possibly self-intersectin
(Problem 204 in Sec. 2). Intersection points o
two pairs of straight lines AB and C,N, BC and
NA, (the point 4,), CC, and A4, (the point Af)
lie on one straight line. Consequently, 4B and
C,N intersect at a point C,.

206. Let the given mutually perpendicular
straight lines be the z- and y-axes of a rectangular
coordinate system. Then the altitudes of the tri-
angle lie on the lines y = k;z (i =1, 2, 3); in
this case the sides of the triangle must have slopes

equal to —kl' and given the condition that

]
the vertices (z;, y;) belong to the altitudes we find
the ratios of absolute terms ¢; in the equations of
the sides kjy+z=c;: ¢y =kiys+ 3, ca=lkayy+zs,

 kgky 1

(4 .
ys=kyzy => -;:—-..W , etc. With a properly

chosen unit of length, we may take c'=7-,:—l_k, ’
where &=k kqsks. The points of intersection of the

. __ ki i . 1
line kiy-f;‘:c._ P with axes: (0, Py )
i . . 3
and (T—F—Ici' 0) , the midpoint (P;) of 1the line
. ki
segment between them: (2(k+k;) " T+ k) ) .

The slope of the straight line P,P, is equal to
1 1 k

( Z(k4k)  2(kT k) )"( 2k h);
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ky . _ 14
e )_(k1 ko) + (dky— k)= — = The
slopes of the lines P,P; and PyP, are just the
same. Therefore the points P,, P,, Py lie on
a straight line (its equation: ky+ z==1/2).

Remark 1. Joining the point H of intersection
of the altitudes of the triangle to the points Py, P,,
and P, with straight lines, we get an intersecting
consequence. Let a,, &, and ay be the angles of
the triangle enumerated anticlockwise, ay, a,, and
ag the straight lines containing the sides opposite
these angles; three straight lines p,, p,, and p, pass
through the point H so that the angles between the
pairs p, and ps, ps and p;, p; and pg (measured
anticlockwise) are equal to a,, a,, as. Then the
points of intersection of the pairs p; and a,, p,
and a,, ps and aglie on a straight line. The partic-
ular cases of this theorem are left to the reader
(many of these geometrical facts being elegant,
and far from obvious).

Remark 2. In our problem, instead of the mid-
points of the line segments cut out on the sides of
the triangle, we might have taken the points divid-
ing them in the same ratios. These points will
also turn out to be collinear.

207. To determine the angles of the triangle
A,B,C,, take advantage of the fact that the points
P, A,, B,, and C, lie on a circle (the same is true
for tllle other fours of points). If the point P lies
inside the triangle ABC, then <ZA4,C,B, =
LA, CoBy, = LAPB — LACB. For a scalene tri-
angle ABC there exist eight distinct points P
such that the corresponding triangles 4,B,C; and
A yBgC,are similar to the triangle A BC (the triangle
A,B,C, being congruent to it). Of these eight
points, six lie inside the circle circumscribed about
the triangle 4 BC, and two outside it.

208. The straight lines under consideration are
the middle perpendiculars to the sides of the tri-
angle AIBICI.
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209. Notation: ABC is the given triangle, M
the point situated at a distance d from the centre
of the circle circumscribed about the triangle ABC,
4,, By, and C; the feet of the perpendiculars drop-
ped from M on BC, CA, and AB; A,. B,, C, the
intersection points of AM, BM, CM with the
circle circumscribed about the triangle ABC, re-
spectively, a, b, and ¢ the sides of the triangle
ABC, a,. by, ¢, and a,, b,, ¢, the sides of the tri-
angles 4,B,C, and 4,B,C,, respectively; S, §,,
and S, the areas of those triangles, respectively.
We have:

a,=|AM| sin A= |AM| 3“17. €Y}

The sides b, and ¢, are found in a similar way.
From the similarity of the triangles B,MC, and
BMC, we get:

2 __ |BaM| _ |CaM|

a  |CM| — |BM| ° @

Analogous ratios are obtained for % and —c;”—

.

The triangles 4,B,C, and 4;B,C, are similar (see
Problem 207 of Sec. 2); in addition,

Sy agbsyey

$ = abe - @
Bearing all this in mind, we have:

( Sy )3__ S3 83 ajbict  adbicd

S TS ST Tagbiadk %’

_ (A _\3 IAM|? BM|® (CM|2a%tes
_( 4R? ) prxr " 0a026a
1 3
=(_4£—=) |AM|2 |BM|? |CM|?

|BsM | |CaM| |A,M|_( 1 le_dzl)3
|CM| "|AM| |BM| ~ \ 4R?

X
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(In the second equality we have used the similarity
of the triangles 4,B,C, and 4,B,C, and the equali-
ty (3), in the third the formulas (1), in the fourth
the formulas (2).) Remark. For d = R the area of
the triangle formed by the feet of the perpendic-
ulars turns out to be equal to zero, that is, these
feet are situated on a straight line. This line is
Simson's line (see Problem 153 in Sec. 2).

210. The statement follows from a more general
fact: if on the sides of the triangle circles are con-
structed so that their arcs located outside the
triangle are totally equal to 4n or 2z, then those
circles have a common point (in our case, as such
a triangle, we may take the triangle with vertices
at the midpoints of the sides of the triangle ABC
and prove that the three circles passing through
the midpoints of AB, AC, and AD; BA, BC, and
BD; CA, CB, and CD have a common point).

211. The statement is based on the following
fact. Let an arbitrary circle intersect the sides
of the angle with vertex N at points 4, B and C,
D; the perpendiculars erected at the points A and
D to the sides of the angle intersect at a point X,
and the perpendiculars erected .at the points B
and C intersect at a point L. Then the straight
lines NK and NL are symmetric with respect to
the bisector of this angle. Indeed, LANK =
LADK (the points A, K, D, and N lying on the
same circle). In similar fashion, / LNC = L LBC.
Then £ADK = 90° — LADN=90°—4ZNBC =
L LBC. (The quadrilateral ABCD was supposed
to be non-self-intersecting.)

212, Let 4, B, C, and D be the given points, D,
the point of intersection of the straight lines
whicg are symmetric to AD, BD, and CD with
respect to the corresponding angle bisectors of the
triangle ABC. It was proved in the preceding
problem that the pedal circles of the points D
and D, with respect to the triangle 4 BC coincide.
Let the straight lines symmetric to BA, CA, and
DA with respect to the corresponding angle bisec-



296 Problems in Plane Geometry

tors of the triangle BCD intersect at a point 4,.
It is easy to prove that the points 4, and D, are
symmetric with respect to the straight line CB.
Consequently, the pedal circles of the points D
(or D,) with respect to the triangle ABC as well
as the points 4 (or 4,) with respect to the triangle
BCD pass through. the midpoint of D;4,. On hav-
ing determined the points B, and C, in a similar
way, we sece that each of the pedal circles under
consideration passes through the midpoints of the
corresponding line segments joining the points
A,, By, Cy, and D,. Thus, our problem has been
reduced to Problem 210 of Sec. 2.

213. Let B, and C, be the points diametrically
opposite to the points B and C, M the second
point of intersection of ByB, and the circle circum-
scribed about the trianglle ABC, C; the point of
intersection of AB and C,M. By Pascal’'s theorem
in Problem 204 in Sec. 2 applied to the hexagon
AB,CMBC,, the points O (the centre of the circle),
B, and C; lie on one straight line, that is, C;
coincides with Cy. But /BMB, = /BMB, = 90°,
LCMCy = LCMCy= 90°, hence, M is one of
the intersection points of the circles with the dia-
meters BB, and CC,. Let N be the second point of
intersection of those circles. Their common chord
MN contains the point H of intersection of the
altitudes of the triangle ABC (Problem 19 in
Sec. 2). If BB, is the altitude of the triangle ABC,
then | MH |.| HN | = | BH |-| HB, |. Hence (see
Problem 164 in Sec. 2), N lies on the nine-point
circle of the triangle ABC.

218. Let the radius of the circle be r, and the
angles between the neighbouring radii drawn to
the points of tangency, in the order of traverse, are
%ual to 2a, 2B, 2y, 26 @+ P+ y+ 8= n).
en

S = r? (tan & -+ tan § -+ tan y - tan 6). 1)

The sides of the quadrilateral (we are going to find
one of them) are equal to r (tan o -} tan B) =
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sin (a--p) ) ] _
08 @ C03 P and so forth. Since sin (a + f) =

sin (y + 8), sin (B + y) = sin (« + 8), the for-
mula given in the hypothesis is reduced to

Syt sin (&} P) sin (B y) sin (y+ ) @

cos a cos f cos y cos 6

It remains to prove the equality of the right-hand
xsnembers of (1) and (2) provided thata + B + v +
= 7.
219. Prove that SBNA = SBMC + SAMD‘ If
1AM] _ 1CN] 3 then Spye=(—4)S
1AB| — |ND)| =My BMC™— BAC»
Samp = ASpap.- On the other hand, denoting
the distances from C, D, and N by k,, h,, and k,
respectively, we find that h = My, + (4 — A) h,.

Consequently, S 4 gy =5 |AB|-h= 5 |4B| hy-+

1
(1—1)7|A3|hz= ASapp+ (1 — AN Spsc =

Samp + Spmc-

221, Tthtﬁlgles between the sides and also
between the sides and diagonals of the quadrilater-
al Q, are expressed in terms of the angles between
the sides and between the sides and diagonals of the
quadrilateral Q,. (The diagonals of the quadrilater-
al Q, are perpendicular to the corresponding diago-
nals of the quadrilateral Q, and pass through their
midpoints.)

222. Consider the parallelograms ABM K and
DCML and prove that KL divides DA in the same
ratio as the point N, and the straight line MN is
the bisector of the angle KML.

223. First of all, prove that the diagonals of the
given quadrilateral are bisected by the point of
intersection, that is, that the quadrilateral isa par-
allelogram. Let ABCD be the given quadrilateral,
O the point of intersection of the diagonals. Suppose
that | BO|<<|OD |, | A0 | < | OC|; consider
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the triangle OA;B, symmetric to the triangle OAB
with respect to the point O; obviously, the radius
of the circle inscribed in the triangle OA4,B, is less
than the radius of the circle inscribed in the tri-
angle OCD, while, by hypothesis, they are equal.
Thus, O is the midpoint of both diagonals. We
prove that all the sides of the quadrilateral are
equal. We use the formula S = pr (S the area, p
the semiperimeter, r the radius of the circle in-
scribed in the triangle). Since the areas and the
radii of the circles inscribed in the triangles ABO
and BOC are equal, their perimeters are also equal,
that is, | AB| = | BC |.

224. Using the solution of the preceding prob-
lem, prove that the diagonals of the quadrilateral
are bisected by the point of their intersection.

225. The hypothesis implies that ABCD
(Fig. 38) is a convex quadrilateral. Consider the

4, G
Fig. 38

parallelogram ACC,4, in which the sides 44, and
CC, are equal to each other and parallel to the
diagonal BD. The trianﬁles ADA,, €DC,, and
C,DA, are congruent to the triangles ABD, BCD,
and ABC, respectively. Consequently, the line
segments joining D to the vertices 4, C, Cy,
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and A, separate the parallelogram into four tri-
angles in which the radii of the inscribed circles
are equal. If O is the intersection point of the
diagonals of the parallelogram ACC,A,, then D
must coincide with O (for instance, if D is inside
the triangle COC,, then the radius of the circle
inscribed in the triangle ADA, is greater than the
radius of the circle inscribed in the triangle 404,,
and the more so in the triangle CDC,). Thus,
ABCD is a parallelogram, but, in ad(iition. it
follows from Problem 223 of Sec. 2 that ACC,4,
is a rhombus, that is, ABCD is a rectangle.

226. The necessary and sufficient condition for
all four items to be fulfilled is the equality
| AB |-|CD | = | AD |-| BC |. For Items (a) and
(b) it follows from the theorem on the bisector of an
interior angle of a triangle, for Items (c) and (d)
from the result of Problem 234 of Sec. 1.

227. Let ABCD be the given quadrilateral. We
assume that the angles 4 and D are obtuse, B and

Fig. 39

C are acute. Denote the feet of the perpendiculars
dropped from the vertex A by M and N, and
from the vertex ¢ by K and L (Fig. 39, a), R the
point of intersection of MN and LK. Note that
the points 4, K, N, C, L, and M lie on one and
the same circle of diameter AC. Let us show that
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MK || LN: LAMKL = LMAL=90°—4{B =

_ IMR| _ |MK| _
LKCB = LKLN. Thus, BENT = TILN]
sin LMCK ~ sin(LC 4+ 4B — 90°
sin LLAN =  sin(LA + 4B — 90°

cos (L A— £ B)
S (ZATZB—90% Let now P and Q be the feet
of the perpendiculars dropped from the vertex B,
and S is the point of intersection of MN and PQ
(Pig. 39, b). Since LPNB = LPAB = LC, PN
is parallel to DC, that is, MQNP is a trapezoid
(ANBP is an inscribed quadrilateral with

. IMS| _ IMQ
diameter AB). Thus SN = PN
|AB| cos(L A+ £ D—-180°)  cos(LA— £(B)
|AB| sin(£B+ £A — 90°) " sin(L A+ L B—90°"
(We have used the fact that MQ is the projection
of AB on DC; the angle between AB and DC is
equal to £ A+ £ D—180°) Thus the points R and
S divide MN in the same ratio, that is, they
coincide; hence, the three straight lines intersect
at one point. Now, it is easy to show that all the
four straight lines intersect at the same point.

228. Let us find the ratio in which BC divides
MN. This ratio is equal to the ratio ‘;MCB =

CBN
{MC| cos LBCD .. .
TBN|cos ZCBA Analogously, the ratio in which

o, . {AM | cos £ BAD
AD divides MN is equal to [ND| cos ZADC

But these ratios are equal to each other since
LBCD = LBAD, LCBA = LCDA, and the
triangle AMC is similar to the triangle DNB.

229. Take M, such that BCM M, is a parallelo-
gram; M, lies on the circle passing through the
points B, M, and A. Since | AM,| = |DM |
(ADMM, is also a parallelogram), the triangles
CDM and BA M, are congruent, that is, the radius
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of the circle circumscribed about -the triangle
CDM is equal to R. The radius of the circle gircums-
cribed about the triangle ADM is also equal to R.

230. Let K and L denote the points of tangency
of the given circle with the straight lines 4B and
AD. Let, for definiteness, KX and-L be situated
inside the line segments AB and AD. On the
straight line CB, we take a point P such that
|BP| = |BK|, B lying between P and C, and on

the line CD a point Q such that | DQ | = | DL |,
D lying between C and Q. We have: | CP |
|CB|+ |BK| = |CB|+|AB| — | AK |

| CQ |. The circle Kassing through the points
P and Q and touching the lines CB and CD
intersects BD at such points M, and N, for which
the equalities | BM, |-| BN, | = | BM |-| BN |;
| CNy|-| CMy|=| CN |-| CM | are valid. These
equalities imply that M; and N, must coincide
with M and N, respectively. The other cases of
arrangement of the points are considered much in
the same way. It is possible to avoid looking over
alternate versions by specifying positive directions
on the lines 4B, BC, CD, and DA and considering
directed segments on these lines.

231. For definiteness, we assume that the
points B and D lie inside the circle. Let P and Q

ote the points of intersection of the straight
line BD and the circle (P is the nearest to B), L
the point of intersection of CB and the circle, !
the tangent to the circle passing through the
point C.

Consider the triangle PCN from whose ver-
&ces the straight lines PQ, NM, and ! emanate.

ith the aid of Ceva's theorem (Problem 44 of
Sec. 2) reasoning in the same way as ‘n Problem 49
of Sec. 2, we get that for the lines PQ, NM, and !
to intersect at one lpoint, it is necessary and suf-
ficient that the following equality be fulfilled:

\PM|  1CQI _ INC| _
1Mcy QN S TIeP T @
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On the other hand, in the hexagon ALPMCQ
the diagonals AM, LC, and PQ intersect at one
point. Hence (see Problem 49 in Sec. 2)

[AL|-| PM |-| CQ |=|LP || MC|-|QA|. (2

Obviously, |NC|=|AL|, |QN|=|LP|,
| CP | = | QA |. Thus, from the validity of the
equality (2) there follows the validity of the
equality (1).

232. 1. Since O, is the centre of the circle in-
scribed in the triangle ABC, we have: £B0O4A =

90° + —;- £LBCA (Problem 46 of Sec.1). Hence,

£LBOA = LBOA, and ABO,0, is an inscribed
quadrilateral (see Fig. 40, a); consequently, the
angle adjacent to the angle BO,0, is equal to

£LBAO, = % ZBAD. Similarly, the angle adja-

cent to £LBO,0, is equal to %LB(JD. But

% (L BAD+ £LBCD)=90° hence, 0,0,04=90°.

2. To prove the second part of the statement,
let us first show that the distance from a vertex of
the triangle to the point of intersection of the al-
titudes is completely determined by the size of the
angle at this vertex and the length of the opposite
side, namely (Fig. 40,%): |CH|=|CB| X

cos @ ~_|AB a .
S CAB — sma °® % = |4B | cot a. Since

ABCD is an inscribed quadrilateral, | AHg | =
| BHy| and AHg is parallel to BH, hence,
ABH,H4 is a parallelogram. Thus, the point of
intersection of AH, and BHg bisects these line
segments. Considering the other parallelograms, we
see that the line segments H,A, HyB, H,C, and
H,D intersect at the same point (M) and are bi-
sected by this point, that is, the quadrilaterals
ABCD and H,H,Hj H, are centrally symmetric
with respect to the point M (Fig. 40, c).




Fig. 40

303
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233. If the sides of the triangle ABC, opposite
the vertices A, B, and C, are respectively equal to
a, b, and ¢, and the angles ADB, BDC, and CDA
are, respectively, equal to a, B, and y (we assume
that @ 4+ B + y = 2n), then the distances from
the point D to the intersection points of the alti-
tudes of the triangles ADB, BDC, and CDA are
equal to the magnitudes of ¢ cot a, a cot B, b cot ¥y,
respectively (see the solution of Problem 232 of
Sec. 2). It is easy to make sure that the area of
the triangle with vertices at the intersection points
of the altitudes of the triangles ADB, BDC, and

CDA isequal to % c cot a-a cot B sin B + %X

a cot B.b cot y sin C + %b cot y-ccot a sin 4 =

S aBc (cot a.cot B+ cot fcot y+cot ycot a)=S 48c
since the expression in the parentheses is equal to
1. (Prove this taking into account that a + f -+
Y = 2n). Analogously, we consider other cases of
ocation of the point D (when one of the angles a, §,
vy is equal to the sum of two others).

234. (a) Let ABCD bethegiven quadrilateral, R
and Q the points of tangency of the circles inscribed
in the triangles ABC and ACD, respectively,
with the straight line AC. Then (see Problem 18

of Sec. 1) | RQ | = | 4Q |~ AR | = o I(|4B] +
| AC|—1BCI) — (14D |+ | AC| = |€D )=
— ||4B|+|CD|—|AD|—|BC||. Since ABCD

is a circumscribed quadrilateral, |AB|+ |CD| =
|AD | + | BC |, that is, | RQ | = O.

(b) If K, L, M, N are the points of tangency of
the circle with the sides of the quadrilateral, and
K,, L,, M,, and N, the points of tangency of the
circles inscribed in the triangles ABC and ACD
(Fig. 41), then NyK, || NK, and M,L, || ML. Let
us prove that K,L; || KL and N,M, || NM. Since
the circles inscribed in the triangles ACB and ACD
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touch each other on the diagonal at a point P, we
have: |AN,|=| AP} =AM |, that s,
NM,; || NM. Consequently, K,L,M,N,, as well as
KLMN, is an inscribed quadrilateraf.

Fig. 41

235. Let 0y, 0,4, Og, O, denote the centres of
the circles inscribed in the triangles ABC, BCD,

A ¢ 8 ¢
A A
a 7 ¢ 7

Fig. 42

CDA, and DAB, respectively, (Fig. 42, a, b). Since
0,0,040, is a rectangle (see Problem 232 in Sec. 2),
we have: | 0,0; | = | 0,0, |. If K and L are the

20-01557
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points of tangency with AC of the circles inscribed
in the triangles ABC and ACD, then | KL | =

;—IIAB | &1 CD|—|BC|—|AD|| (see the so-

lution of Problem 234 in Sec. 2). Analogously, if
P and Q are the points of tangency of the corre-
sponding circles with BD, then | PQ | = | KL |.
Through Og4, we draw a straight line parallel to AC
to intersect the extension of O;K. We get the
triangle 0,04M; we then construct the triangle
0,0,R in a similar way. These two right triangles
are congruent, since in them: | 0,05 | = | 0,0, |,
|OsM| = |KL| = |PQ|=|04R|. Hence, O M|=
| O,R |; but | O,M | equals the sum of the radii
of the circles inscribed in the triangles ABC
and ACD, and | O,R | is equal to the sum of
the radii of the circles inscribed in the triangles
ACD and BDA (see also Problem 315 in Sec. 2).

0

Fig. 43

236. In the quadrilateral ABCD (Fig. 43):
[AB|=ga, | BC|=0b,|CD|=c, | DA | = d,
| AC| = m, | BD | = n. We construct externally
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on the side 4B a triangle A KB similar to the
triangle ACD, where /BAK = LDCA, L{ABK =
LCAD, and on the side AD we construct the tri-
angle AMD similar to the triangle ABC, where
LDAM = LBCA, LADM = LCAB. From the
corresponding similarity we get: | AK | = % y

|AM|=de. \KB| = |DM|=%. In addi-
tion, £ZKBD + L MDB = /CAD + LABD +
LBDA + LCAB = 180°, that is, the quadrilater-
al KBDM is a parallelogram. Hence, | KM | =
| BD | = n. But LKAM = LA + 4LC. By the
law of cosines for the triangle KAM, we have:
= (55 (B) (£ (o o
m m m m
whence m?n? = a2c% + b%d? — 2abcd cos (4 + C).

237. The statement of Ptolemy’s theorem isa
corollary of Bretschneider's theorem (see Prob-
lem 236 of Sec. 2), since for an inscribed quadri-
lateral £A4 + £C = 180°.

238. If MB is the greatest of the line segments
| MA |, | MB |, and | MC |, then, applying Bret-
schneider’s theorem (Problem 236 of Sec. 2) to the
quadrilateral ABCM, we get: |MB|*=|MA |2+
| MC |12—2| MA |-| MC | cos (LAMC+60°, that
is, |MB|<<|MA\|+ |MC| since LAMC £120°.

239. Replacing in the expression

taplys + tavtsa = layips (1)

the segments of the tangents with the aid of the
formulas obtained when solving Problem 201 of
Sec. 1, we make sure that if the relationship (1) is
fulfilled for some circles a, f§, ¥, and 6 touching
the given circle at points 4, B, ¢, and D, then
it is fulfilled for any such circles. It remains to
check the validity of the relationship (1) for some
particular case. If a, B, y, and & are circles of
zero radii, then we get an ordinary Ptolemy's theo-
rem (Problem 237 og Sec. 2). In order not to refer to

20%
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Ptolemy’s theorem, we may take the circles & and
8 having a zero radius, and the circles E and y
touching both the circle circumscribed about the
quadrilateral ABCD and the chord AD. In this
case, the validity of the relationship (1) is readily
verified. Hence, in accordance with the remark
made, we get the validity of (1) in all the cases
(thereby we have simultaneously proved Ptolemy’s
theorem itself).

240. When proving our statement, we shall use
the method of “extension” of circles. The essence
of this method consists in the following. Let two
circles, say a and P, touch externally some circle
2. Consider the circles a’, ', and £’ which are
concentric with a, B, and X, respectively. If the
radius of the circle 2’ is greater than the radius of
the circle £ by a quantity % and the radii of the
circles a’ and P’ are less than those of the circles a
and P by the same quantity x which is sufficiently
small, then the circles @’ and B’ touch the
circle 2’ externally, and the length of the common
external tangent to the circles a’ and P’ is equal
to the lengtﬁ of the common external tangent to
the circles & and f§. The case when a and f touch
the circle £ internally is considered in the same
way. And if one of the circles & and f touches I
externally, and the other internally, then, with an
increase in the radius of 3, the radius of the first
circle decreases and the radius of the second circle
increases, the length of the common internal tan-
gent to the circles a’ and f’ remaining unchanged.

For the sake of definiteness, consider the case
when in the equality (») (see the statement of the
problem) there appear only the segments of the
common external tangents. (Note that none of the
circles can be found inside the other.) Let us prove
that the circles a, B, y, and 8 touch a certain circle
3 in the same manner, all of them either externally
or internally. Let not all of the circles a, f, y, and
§ have equal radii (the case of equal radii is readi-
ly considered separately), and, for definiteness,
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let rg, the radius of the circle a, be the smallest.
Consider the circles a’, p’, ¥', 6’, where o’ is a
circle of zero radius, that is, a point coinciding
with the centre of the circle & and §’, Y, 8’ circles
concentric with the circles P, v, 6 with radii re-
duced by the quantity r,. For further reasoning, let
us take advantage of the following assertion which
is marked by (T):

If p’, ¥, 6’ are three circles none of which lies
inside another and at least one of them has a non-
zero radius, then there are exactly two circles X,
and X, each of which touches the circles B, y’,
and 8’ in the same manner. We shall return to
this assertion at the end of the solution.

On the circles ; and I,, take points &, and

to . @’ | e t,ar

@y such that 287 98" _ o'’
ary  logs  lae

o, lying on the arcs not containing the point
of tangency of the circle y’. For three fours of
Circles (a'v ﬂlv Ylv 6')v (alv ’ ?'$ 6,)1 (am ﬂ" ?'v
§’) the relationship (») is fulfilled: for the first
four circles, this is the assertion of the problem,
for two other fours—on the basis of the assertion of
Problem 239 of Sec. 2 (a', a,, @, are circles of

=\, a, and

ty.g  toop’
zero radius). Consequently, -8 — tazﬂ -
%2y’ agy’
‘aﬂb' .
talvl

But the locus of points M for which the ratio of
tangents to two fixed circles is constant is a circle
(see Problem 11 in Sec. 1). Hence, a,, a,, and a’
belong both to the locus of points for which the
ratio of the tangents drawn to the circles §’ and
8’ is equal to A and to the locus of points for which
the ratio of the tangents drawn to the circles f’ and
vy’ is equal to p. And this means that &’ must coin-
cide either with a; or a,.

Let a; and a, coincide. Prove that in this case
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the circles defined by the parameters A and p touch
each other. Let us take A £ A, but sufficiently close
to A. Then A defines on X, and Z, two points ;,

~ o toar o~
and a, for which —228° — 928" _ ¥ we fing:
tam' 28’

~ to g to.ar
po= a1p’ b Hence, the circles correspond-

it o

@1y’ a2y’

ing to the parameters  and p have a common

chord a,&,. If A — A, then p — p, | @@y | > 0,
that is, the circles corresponding to the parameters
A and p touch each other at a point a; = a,. Thus,
a’, B’, v', and 8’ touch either I, or Z,. “Extend-
ing” T, or Z, by the quantity +r,, we get that
a, B, v, and 8 touch a circle or a straight line
(2, or 2, may turn out to be a straight line) or
have a common point.

If in the equality (») some of the line segments
are segments of common internal tangents, then
we have to prove the existence of a circle £ touch-
ing a, B, vy, and & and such that those of the
circles a, B, y, 8 for which in the equality () there
appears a common internal tangent touch I in
different ways. The assertion (T) must change ac-
cordingly.

Let us return to the assertion (T). By means of
“extension”, we can reduce the assertion to the
case when one of the circles §’, y’, and &’ has a zero
radius, i.e. is a point. The reader familiar with the
notion of inversion can easily prove that the as-
sertion (T) now turns out to be equivalent to the
assertion that any two circles not lying one inside
the other have exactly two common external tan-
gents (see Appendix). Remark. If three of the four
given circles a, B, y, 6 have a zero radius (they are
points), the proof can be considerably simplified.
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Do this independently. Henceforward (see Prob-
lem 287 -of Sec. 2), we shall need just this particu-
lar case.

241. Show that each of these conditions is both
necessary and sufficient for a circle inscribed in
the quadrilateral ABCD to exist (see also Prob-
lem 19 in Sec. 1).

242. Show that each of these conditions is both
necessary and sufficient for a circle, touching the
lines AB, BC, CD, and DA, whose centre is out-
side the quadrilateral ABCD, to exist.

243. Let ABCD be a circumscribed quadrilat-
eral, O the centre of the inscribed circle, M, the
midpoint of AC, M, the midpoint of BD, r the
radius of the circle (the distances from O to the
sides are equal to r each), zy, y;, z;, and u,; the
distances from M, to AB, BC, CD, DA, respec-
tively; z,, y,, z,, and u, the distances from M, to
the same sides, respectively. Since | AB | +
|CD|=|BC|+ |DA|, we have: | AB|r —
|BC|r+|CD|r—|DA|r=0. In addition,
|AB|zy — | BC |y, + |CD |2z —|DA |y =
0, |AB | z,=|BC |y,+|CD|z,=| DA | uy=
0, and this just means that the points O, My,
and M, lie on a straight line (see the remark to
Problem 22 of Sec. 2). Other cases of the arrange-
ment of the points 4, B, C, and D and the centre
of the circle are considered exactly in the same
way. Here, use the relationships occurring among
the line segments | AB|, | BC|, |CD |, | DA |
(see Problems 241 and 242 in Sec. 2), and, as is
said in the remark to Problem 22 of Sec. 2 assign
unlike signs to corresponding distances if any two
points turn out to be located on both sides of a
straight line.

244. Let L and P denote the points of inter-
section of the straight lines AM and AN with the
circle, respectively. As there follows from Prob-
lem 204 of Sec. 2, the straight lines BL, DP, and
MN meet at one point. But, being diameters, BL
and D P intersect at the centre of the circle, conse-
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quelln]y, MN passes through the centre of the
circle.

245. Make use of Pascal’s theorem (Problem 204
in Sec. 2).

246. Let P denote the point of intersection of
the diagonals, and K, L, M, and N the feet of the
perpendiculars from P on AB, BC, CD, and DA,
respectively, (Fig. 44). Since PKXBL is an inscribed

Fig. 44

quadrilateral, we have: L PKL = £ PBC, analo-
gously, LPKN = LPAD; but L PBC = LPAD
since they are subtended by the same arc. Conse-
quently, KP is the bisector of the angle NKL;
hence, the bisectors of the angles of the quadrilater-
al KLMN intersect at the point P which is just
the centre of the circle inscribed in the quadrilat-
eral KLMN. Let now AC and BD be mutually
perpendicular, R the radius of the given circle, d
thze dis:itzance from P to its centre, | AP || PC | =
R?* — a2,

The radius r of the sought-for circle is equal, in
particular, to the distance from P to KL. Denot-
ing LKLP = LABP = a, LPBC = @, we find:



Answers, Hints, Solutions 313

r=|PL| sin o= |PB| sin P sina = | PB| -llgg—: X
1AP| oy |PB| |AC|
48 =~ =) g AR sn P~
sin (e} P) — (R~ a¥) 2Sapc 1 _ R—a* .
|AC| 2SaBc 2R 2R
A R?—gq2
nswer. T.

247. Let ABCD be thegiven quadrilateral, P the
point of intersection of tﬁe diafonals, K the mid-
point of BC, L the midpoint of 4D (Fig. 45). Let

us prove that the straight line LP is perpendicular
to BC. Denoting the point of intersection of LP
and BC by M, we have: LBPM = LLPD =
LADP = L PCB. Consequently, PM is perpen-
dicular to BC. Hence, OK is parallel to LP.
Similarly, PK is parallel to LO, and KOLP is
a parallelogram, | LK |24 | PO |2 = 2 (| LP |2 +

3
1Py =2 (1420 1BER) et the
chords AD and BC are brought to a position in
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which they have a common end point and the cor-
responding arcs continue each other, then a right
triangle is formed with legs | AD | and | BC | and
hypotenuse 2R, hence, | AD |2 4+ | BC |® = 4R?))
Consequently, | LK |2 = 2R? — d?, and the peints
L and X lie on the circle with centre at S (the mid-

point of PO) and the radius 1/2 Y 2R*—d3. But
LMK is aright triangle, M S isits median, |MS|=

—;—-l LK | =% V 2R* = &%, that is, M lics on the
same circle.
Answer: 1/2 V' 2R® — &2,

248. From Problems 246 and 247 it follows
that if the diagonals of the inscribed quadrilateral
are mutually perpendicular, then the projections of
the intersection point of the diagonals of this
quadrilateral on its sides serve as vertices of a
quadrilateral which can be inscribed in a circle and
about which a circle can be circumscribed. The
radii of the inscribed and circumscribed circles and
the distance between their centres are completely
determined by the radius of the circle circumscribed
about the original quadrilateral and the distance
from its centre to the intersection point of the dia-
gonals of the quadrilateral inscribed in it. Conse-
quently, when the diagonals of the original quadri-
lateral are rotated about the point ogtheir inter-
section, the quadrilateral formed by the projections
of this point rotates remaining inscribed in one and
the same circle and circumscribed about one and
the same circle. Taking into consideration the ex-
pressions for the radii of the inscribed and circum-
scribed circles obtained in the two previous prob-
lems, it is easy to show that the relationship to be
proved is fulfilled for such quadrilaterals.

To complete the proof, it remains to prove that
any “inscribed-circumscribed” quadrilateral can be
obtained from an inscribed quadrilateral with
mutually perpendicular diagonals using the above
method. Indeed, if KLMN isan“inscribed-circum-
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scribed” quadrilateral, P the centre of the inscribed
circle, then drawing the lines perpendicular to the
angle bisectors KP, LP, MP, and NP and passing
through the points X, L, M, and N, respectively,
we get the quadrilateral ABCD (see Fig. 44). In

this case, LBPK — ¢ KLB = 90°--;— LMLK

(here, we have used the fact that in the quadrilat-
eral PKBL the opposite angles are right ones and,
consequently, it is an inscribed quadrilateral). Sim-

ilarly, LKPA — /KNA — 90° — % LMNK,
and, hence, /LBPA = /BPK + LKPA =
180° — % (LMLK + 2 MNK) = 90°. Thus, all

the angles BPA, APD, DPC, and CPB are right
ones, P is the intersection point of the diagonals of
the quadrilateral ABCD, the diagonals themselves
being mutually perpendicular. It is easy to show
that ABCD is an inscribed quadrilateral since

LABC + LADC = /PBL + /PBK
+ 4ZPDN + ,PDM = LPKL + LPLK

+ LPMN + /PNM = % (LNKL + LKLM

+ LLMN + £LMNK) = 180°.

Note:: see also Problem 319, Sec. 2.

249. The midpoints of the sides of the quadrilat-
eral form a parallelogram whose diagonals are
parallel to the line segments joining the centres of
mass of the opposite triangles. The other parallel-
ogram is formed by the four altitudes of the tri-
anglesin question emanating from the vertices of the
quadrilateral. The sides of the first parallelogram
are parallel to the diagonals of the quadrilateral,
while*those of the second parallelogram are perpen-
dicular to them. In addition, the sides of the sec-
ond parallelogram are cot @ times greater than the
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corresponding sides of the first one (@ is an acute
angle between the diagonals of the quadrilateral).

250, We l;])rove that both assertions (BD is the
bisector of the angle ANC, and AC is the bisector
of the angle BMD) are equivalent to the equality
| AB|-|CD | = | AD |-| BC|. On the arc BAD
we take a point A, such that | DA, | = | AB|.
The conditions of the problem imply that the
straight line 4 ,C passes through N, the midpoint of
BD, that is, tl\e areas of the triangles DA,C and
A,BC are equal, whence |DA,|:|DC| =
lBél {-1BC |, that is | AB || CD | = | AD | X
| BC |.

251. The perpendicularity of the angle bisectors
is proved quite easily. Let us prove the second
assertion. Let M denote the midpoint of AC, and
N the midpoint of BD. From the similarity of the
triangles A KC| angBKD,;%frllows that LM KA =

MK| | . .
LNKD and KN\ = 1BD[ ° that is, the bi
sector of the angle BKC is also the bisector of the
angle MKN and divides the line segment MN in
IMK| _ |AC|
|KN| — |BD|
bisector of the angle ALB divides the line seg-
ment MN in the same ratio.

252, Let ABCD be the given quadrilateral, O
the centre of the circle circumscribed about the
triangle ABC, O, and O, the centres of the circles
circumscribed about the triangles DAB and BCD,
K and L the midpoints of the sides AB and BC,
respectively. The points O, and O, lie on OK and
10, K| {0sL] *
follows from the fact that 0,0, is perpendicular to
DB and, consequently, parallel to LK (LK is par-
allel] to AC). Hence, the straight lines A0, and
CO, divide OB in the same ratio. (We apply Mene-
laus’ theorem (Problem 45 in Sec. 2) to the tri-
angles OKB and OLD.)

the ratio Obviously, the

OL, respectively, and
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253. Let R denote the radius of the circle, and
a, b, and c the distances from P, Q, and M to its
centre, respectively. Then (Problem 272 of Sec. 1)
| QP |?=a®+ b —2R%, | QM |2 = b2 + c* —
R, | PM 12 = ¢ 4 o — 2R2. If O is the centre
of the circle, then for QO to be perpendicular to
PM, it is necessary and sufficient that the inequali-
ty I1QPE—|QM|2=|0OP*—|OM |2 or

(a® + b — 2R?) — (B3 + ¢ — 2R?) = a% — ?

(Problem 1 of Sec. 2). The perpendicularity of the
other line segments is checked in a similar way.
254. If M, N, P, and Q are the points of tan-
gency of the sides AB, BC, CD, and DA with the
eircle, respectively, then, as it follows from the
solution of Problem 236 of Sec. 1, MP and NQ
.meet at the point of intersection of AC and BD. In
similar fashion, we prove that the lines MN and
f’Q meet at the point of intersection of the straight
fhes AC and KL, and the straight lines MQ and
NP at the point of intersection of the lines KL
and BD. Now, we use the result of the preceding
problem for the quadrilateral MNPQ.

255. Denote: ZDAN = L MAB = ¢. Let L
be the point of intersection of AM and NB, P the
point of intersection of AN and DM, Q the point
of intersection of A K and MN. By Ceva's theorem
{ll:rohlem 44 of Sec. 2), for the triangle AMN we

ve:

INQ| _ AL\ INP| _ SnaB  Sonm __
AOM| — |LM|  |PA| SvMB  Spam
AN| |AM| |4N] .
er sin ANAB—T |NM| tan @ cos L ANM
LEMY vt tang cos £ AMNIANY) | aar ) sin 204D

2 2c0s
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__ |ANjcos LANM
" |AM| cos LAMN

that is, Q divides N M in the same ratio as the alti-
tude drawn from 4 on NM.

257, First, prove the following additional asser-
tion: if A, B, and C are collinear points, M is an
arbitrary point in the plane, then the centres of
the circles circumscribed about the triangles MAC,
MBC, MCA and the point M lie on one and the
same circle. Then use the result of Problem 256,
Sec. 2.

258. Let 4, B, C, D, P, and Q denote the inter-
section ‘Yoints of the straight lines (the points are
arranged in the same way as in the solution of
Problem 271 of Sec. 1); O the centre of the circle
passing through A, B, C, and D; R its radius; a
and b the tangents drawn to the circle from P
and Q, reipectively. The fact that M lies on PQ
was proved when we were solving Problem 271 of
Sec. 1. In addition, it was proved that | PM | X
| PQ | = a? | QM |-| QP | = b?, | QP |2 =

———— 2
Va® F b2 Thus, | PM |=——e—oe, |OM | =
Vat 152
2 ——
7‘.;2% In addition | PO | = l/a2 — R?,

| Q0| = V b — R3. Consequently, | PO |? —
| QO |2 = a2 — b2 = | PM |2—| QM |2. And this
means that OM is perpendicular to PQ. To
complete the proof, we have to consider the case
when (using the same notation) the points 4, C, P,
and Q are found on the circle (see also Problem 253
in Sec. 2 and its solution).

259. If one of the straight lines isdisplaced par-
allel to itself, then Euler’s line of the triangle one
of whose sides is the line displaced moves parallel
to itself. Taking this into account, we can easily
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reduce the problem to the following. Let 4, C,
and D be three collinear points, and B an arbitrary
point in the plane. If Euler’s line of the triangle
ABC is parallel to BD, then Euler’s line of the
triangle CBD is parallel to AB (Fig. 46). Let us
prove this. We denote: £BCD = 8 (we assume
that C lies between 4 and D, ¢ < 90°, 0O, and H,
the centre of the circumscribed circle and the in-
tersection point of the altitudes of the triangle

Fig. 46

ABC, respectively, O, and H, the centre of cir-
cumscribed circle and the intersection point of the
altitudes of the triangle BCD. Describe a circle
about ABH, to intersect O H, at a point M. Let us
prove that the quadrilaterals 0,A MB and O,DH ,B
are similar. First of all, the triangles 0;4B and
0,DB are similar isosceles triangles, and Z M4 B=
LMH,B = L H,BD = L H,BD (BD is parallel to
O\H,), LMBA = tMHA = LH,DB (AH, and
DH, are perpendicular to CB). The similarity of
the quadrilaterals has been proved. Further:
LOgHyB= / O.MA=/ HMA=L H BA= £ HyBA,
that is, H,0, is parallel to 4B.
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260. It follows from the result of Problem 19
in Sec. 2 that the common chord of the circles with
the diameters AE and DC (and also DC and BF,
BF and AE) contains the intersection points of
the altitudes of the triangles ABC, BDE, DAF,
and CEF. Further, let K denote the point of in-
tersection of AE and DC and L the point of inter-
section of AE and BF. By Menelaus’' theorem
(Problem 45 in Sec. 2), for the triangles BEA and

. _|4AK| |EC| |BD|

EAC we have: [KE] TICB]" " DA

AL\ |EB| |CF| _ I

[ZE| " 1BC " TFAl — 1. Dividing these
equalities, one by the other, termwise and bearing
|CE| |BD| |AF|
|EB| |DA| |FC|
14K| _ IKE|

|AL\ — |LE|
diameter AE. For all points P of this circle the
|PK|
|PL]|
The same is true for the circles with diameters DC
and BF. Thus, these three circles intersect at two
points P; and P, such that the ratios of the dis-
tances from P, and P, to K, L, and M for them are
equal.2 Now, we can use the result of Problem 14,
Sec.

261. The statement follows from the result of
the preceding problem.

262. Let I (ABC) denote the midperpendicular
to the line segment joining the point of intersec-
tion of the altitudes to the centre of the circle cir-
cumscribed about the triangle ABC. Let a straight
line intersect the sides BC, CA and AB of the
triangle ABC at points D, E, and F, respectively.
Let us first prove that as the straight line DEF
displaces parallel to itself, the point M of inter-
section of the lines ! (DFB) and ! (DEC) describes
a straight line. Let the points D,, E,, F; D,, E,,

= 1,

in mind that

=1, we

get: Consider the circle with

ratio

is constant (see Problem 9 of Sec. 2).
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Fg; D3, E3, Fg correspond to three positions of
this line. The lines ! (D;F;B) and I (D;E;C), where
i =1, 2, 3, meet at M; and intersect the straight
line BC at points NV; and K;. It is easily seen that
the point N, divides the line segment ¥,N; in the
same ratio in which the point K, divides the line
segment K;Kj. This ratio is equal to the ratio in
which D, divides D,D;, E, divides E{E;, and
Fq—F1F3. Since the straight lines I (D;F;B) are
parallel, and the straight lines I (D;E;C) are also
parallel, the line I (D,F,B) divides the line seg-
ment M;Mgin the same ratio as the line ! (D,E,C),
that is, M, lies on the line segment M, M.

Let us now show that the point M describes a
straight line I (ABC). To this end, it suffices to
prove that for two positions of the straight line
DEF the corresponding point M lies on ! (ABC).
Consider the case when this line passes through 4
(the points £ and F coincide with 4). We intro-
duce a coordinate system in which the points 4, B,
C, and D have the following coordinates: 4 (0, a),
B (b,0), C (¢, 0), D (d, 0). We then find the equa-
tion of the straight line ! (ABC). The intersection
point of the altitudes of the triangle ABC has the

coordinates (0, ——-—%c-) , the centre of the circum-

scribed circle the coordinates ( b-;-c , % (a+
% Let us write the equation of the straight
line ! (ABC):

2oty (ot 2 ) LIRSy, T

4a2 °

Replacing ¢ by d in this equation, we get the equa-
tion of the line I (4 BD), and replacing b by d the
equation of the line I (ACD).

We can verify that all the three straight lines
have a common point Q (zy, y,), where zy=

21—-01557
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LA
N, L, A
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n - m
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N
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Nl
M
a
L 4

Fig. 47
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3bed 1
%(b +otd) = S5, vo= - (@—be—cd—db).
And this is the end of the proof since the case
when the line DEF passes through B or C is
equivalent to the above case.

263. Let I, m, n, and p be the straight lines
which form the triangles (Fig. 47, a). Let us intro-
duce the following notation: P is the centre of the
circle inscribed in the triangle formed by the lines
1}, m, and n, and P, is the centre of the escribed
circle for the same triangle which touches the side
lying on the line I. The ‘notations L, M, N,
etc. have the same sense.

L N M, P, 0,
M pP Ly, Ny 0,
Pp | My N Lp 0,
Nl Ln Pl My 04
Q1 Q: Qs Q.

In the above table, the four points forming a
row or a column lie on the same circle, the centres
of the circles corresponding to the rows lying on
one straight line (g,), while the centres correspond-
ing to the columns on the other (g,); ¢, and ¢,
are mutually perpendicular and intersect at Mich-
ell's point (Problem 256 in Sec. 2). Let us prove
this. The fact that the indicated fours lie on the
same circle is proved easily. Let 0;,Q; (i=1, 2, 3,
4) denote the centres of the corresponding circles.
Let us prove that 0,0, is perpendicular to 01?,
and Q,Q,. If in the triangle (!, m, n) the angle
between ! and m is equal to a, then LLNM; =

LL,PM = 90° + %; consequently, £ LOM,;=

21
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LLyp0,M = 180° — a. In similar fashion,
LLP M=ZL L P M=a/2, LLQM =L, QsM ;=
a. The triangles LO\M,;, L,,0,M, LQ:M, L, 0sM,
are isosceles ones, their lateral sides being respec-
tively perpendicular (for instance, O,L and LQ,).
Further (Fig. 47, b) |Q%01|2—— 10,04|2 = (a%+ ¢?)—
(@3 4-d¥) = (B2 — (b2 4-d2) = | 040y 12— | 0405 2.
Consequently, 0,0, and Q,Q; are mutually per-
pendicular. In similar fashion, we prove that 0,0,
and Q,0, are also mutually perpendicular (consider
the straight line on which the points N, P, Np,
and P, are located). Therefore Q,Q; and Q,Q, are
parallel] (if these points do not lie on one and‘ the
same straight line). In similar fashion, @,Q, and
Q3Q, are also parallel (they are perpendicular
to 0,0,), Q:Qs is parallel to Q40, (they are
perpendicular to 0,0,), and this means that
the points Q;, Q,, Qg, Q. are collinear, they lie
on the straight line g,; the points 0,, O0,,
Og, 0, are also collinear, they lie on the line g¢,.
Obviously, ¢; and g, are mutually perpendicular.

We shall displace the straight line m parallel
to itself. Let L', Ly, O;, O; (;:oorrespond to the
. . ' . 0404] |LL'|
straight The ratio =

ight line m e II?ZO;I L]
is constant {it is equal to |,I4TI) This means

m

that when the line m is displaced, the line 0,0,,
that is, ¢, passes through a fixed point. The straight
line g, also passes through a fixed point. Since ¢
and ¢, are mutually perpendicular, the point 0}
their intersection describes a circle. But when m
passes through 4 (and also B or C), the points L
and L,, coincide with A4, the lines 0,0, and qu 3
that is, ¢, and ¢, pass through A (correspondingly,
B or C). Thus, the point of intersection of ¢; and
gp traverses the circle circumscribed about the
triangle A BC. Displacing the other lines (I, =, p),
we prove that the point of intersection of ¢; an
¢, belongs to any circle circumscribed about one of
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the triangles formed by the lines I, m, n, p, that
is, the lines ¢; and ¢, meet at the intersection point
of the circles circumscribed about those triangles,
that is, at Michell’s point.

Note that we have proved at the same time
that the four circles circumscribed about the four
triangles formed by four straight lines in the plane
intersect at one point (Problem 256 of Sec. 2).

266. Let C denote one of the intersection points
through which the straight line passes. Let B, B,,
Bjg be the feet of the perpendiculars dropped respec-
tively from O,, O,, O; on the straight line, and K
and M the points of intersection of the straight
lines, parallel to 4,4, and passing through 0, and
0,, with 0,B, and OgBj;. Since B, and B, are the
midpoints of the chords 4,C and CA,, we have:

| BBy | = | A14, |/2. If @ is the angle between the
straight lines 4,45 and 0,04, then [414s] _
2 | B,Bs| 101K} 1010
103 . 1 — . . ..
10031 2 10,051 2cosa; in  similar
fashion, ——2-3_—=2cosa.

2Vs

268. Let O, and O, be the centres of the circles,
R, and R, their radii, | 0,0, | = a, M the point
of intersection of the common internal tangents.
A circle of diameter 0,0, passes through the points
of intersection of the common external and in-
ternal tangents. In the homothetic transformation
with the centre of similitude at the point M and
a—Rl—

the ratio of R2 this circle goes into the

circle with the centre on the straight line 0,0,
which is tangent to the given circles externally.
269. Let M be one of the points of intersection
of the circles; then MA and MC are the bisectors
of the (exterior and interior) angle M of the tri-
angle BMD since the circle of diaﬂn}eter AC 1islthe
. . IMA| |IMB|
locus of points M for which el = \MD]
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(see Problem 9 in Sec. 2). Using the relationships
between the angles of the right triangle 4 MC and
the triangle BMD, make sure that the radii of the
circumscribed circles drawn from the vertex M
are mutually perpendicular.

271. Note (Fig. 48, a) that the triangle APM
is similar to the triangle AMQ, APL to AKQ,
and A KN to ALN; from these facts of similarity

|PM| [AM| QK| 40|
t: = =
Ve 8 \aor ~ TAel ' 1PLI T 1ALl ’
ILN| _ |AL| . -
TNE[ = TANT - Multiplying these equalities and

taking into consideratigl}( that | AM | = | AN |,
|PM| |QK| |LN| .

. . =1, and this
|MQ|  |PL| |NK|™
(see Problem 49 in Sec. 2) is just a necessary and
sufficient condition for the straight lines MN, PK,
and QL to meet in one point.

The method of constructing tangent lines by a
ruler only is clear from Fig. 48, . The numbers
1, 2, indicate the succession in which the
lines are drawn.

272. The desired set is a straight line which is
the polar of the point with respect to the given
circle (see Problem 21 in Sec. 2).

273. The angles A MN and BN M can be expres-
sed in terms of the central angle corresponding to
the arc AB of the given circle (consider various
cases of location of the point N); this done, it is
possible to determine the angle A MB. The sought-
for locus is a circle.

274. Take advantage of the results of Prob-
lems 271 and 21 in Sec. 2. The obtained locus coin-
cides with the locus in Problem 21 of Sec. 2, that
is, this is the polar of the point A with respect to
the given circle.

275. Let O denote the point of intersection of
AM and DC (Fig. 49). Through the point B, we
draw a tangent to the second circle and denote the
point of its intersection with AC by K (as in the

we get that
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hypothesis). Obviously, the statement of the
problem is equivalent to the assertion that KO is
parallel to CM. Let the angle subtended by the
arc AB in the first circle be &, in the second P,
then LBCM = LBAC, LBDM = /BAD,
LDMC = 180° — L BDM — /BCM = 180° —
LBAD — LBAC = 180° — L DAC; consequent-
ly, ADMC is an inscribed quadrilateral, L AMC =
B. Further, if the tangent BK intersects DM at a

Fig. 49

point L, then £ KBO = LLBD = LBDL =
£ CAM; hence, KABO is also an inscribed quadri-
lateral, and £ KOA = L KBA = B, that is, KO
is parallel to CM (the cases of other relative posi-
tions of the points D, B, and C are considered in
similar fashion).

276. Since the circle with diameter CD passes
through a fixed point 4 on MN (MN 1 CD), the
quantity

| CN || ND|=|NA| (1)
is constant. Denote the point of intersection of PQ
and MN by K. Let us show that % is a con-
stant. Note that £ PNQ = 180° — 4 PMQ; hence,
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|MK| __ Spmq_ |PM|-IMQ| _|MN| [MN|_
[KNI = Spon  IPN[-INQ| |CN| |ND|
|[MN|3
|AN|3
fact that the triangle MNP is similar to the
triangle MNC, and the triangle MNQ to the tri-
angle MND).

277. The equality £ 0,40, = L MAN follows
from the result of Problem 279 of Sec. 1, the equal-
ity 20,40, = 2L CAE was proved when solving
Problem 275, Sec. 1.

278. Let O and O, denote the centres of the two
circles under consideration (O the midpoint of 4 B),
K the point of tangency of the circles (K on the
straight line 00,), N the point of contact of the
circle O, with the straight line CD, M the point
of intersection of AB and CD. Since O, N is parallel
to AB, and thetriangles KO,N and KOA are iso-
sceles and similar, the points K, N, and 4 are col-
linear. Let ¢ denote the tangent to the circle 0,
from the point A (the circle O, is assumed to lie
inside the segment CBD). We have: i2 = | AN | X

(we have used Equality (1) and the

|AK|=|AN |2+ | AN |- | NK | = | AM |*+
| MN|*+ |CN || ND | = |AM |2+ | MN |* +
(1CM | — | MN|)(|CM |+ | MN |)=|AM|* +

|CM |2 = | AK |®, which was to be proved.

279. Let A be the midpoint of the arc of the
given circle not contained by the segment, and let
the tangents from A4 to the circles inscribed in the
segment be equal (Problem 278 in Sec. 2). This
means that 4 lies on the straight line MN since
| A0y |2 — | A0, |2 = | O\M |2 — | O,M |2, where
0, and O, are the centres of the circles.

280. Consider the general case of arbitrary cir-
cles. Let the points F and F’ be arranged as in
Fig. 50. The notations are clear from the figure.
Prove that there is a circle inscribed in the quadri-
lateral A KBM, and then use the result of Prob-
lem 55 of Sec. 2. To this end, it suffices to prove
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that (see Problems 241 and 242 of Sec. 2)

|BF |+ | BF' | = | AF' | + | AF]|. ]
Bearing in mind that | BL |=| BT |,and | FS| =
| FT|, we get: |BF|=|BL| — | FS|, and
similarly, | FA |=|FQ| — | AE|, | BF' | =
| FFP| — |BL|,| F’A | = | AE| — | F'R|. Sub-

stituting these expressions into (1), we get:

Fig. 50

|BL|—|FS| + |F'P|—|BL| = |AE|—|F'R|+
|FQI— |AE| == |F'R|+-|F'P|=|FQI|+|FS|=>
|PR| =|SQ|. The remaining cases of arrangement
of the points F and F’ on the tangents are consid-
ered exactly in the same way (the results of
Problems 241 and 242 of Sec. 2 being taken into
account). Since each tangent is diviged into four
parts by the points of tangency and the point of
intersection, we have 1/2 X 4% = 8 cases.

To prove the second part of the problem, we
note that the midpoints of AB, FF’ and the centre
of the third circle O,, inscribed in A KBM, lie on
a straiﬁht line (see Problem 243 in Sec. 2). But
since the radii of the given circles are equal, AB
is parallel to 0,0, (0;, O, the centres of the given
circles); A and B lie on the straight lines 0,04 and
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0403, respectively. Hence, the straight line pas-
sing through O; and the midpoint of AB bisects

0,0,.

1"281. Let M be the point of intersection of the
tangents l;, m;, and n,, N the point of intersection
of I, and m, (Fig. 51). Through N, we draw a
straight line n;, touching @, distinct from l,. In
the same way, as it was done in Problem 280 of

Fig. 51

Sec. 2, we can prove that the lines m,, n;, m,, and
ng touch the same circle, this circle being escribed
with respect with the triangle PMQ (it touches
the side PQ), that is, coincides with y. Remark. Fig-
ure 51 corresponds to the general case of the ar-
rangement of the circles satisfying the conditions
of the problem.

282. Prove that the straight line D,C passes
through O, the centre of the arc AB, and the
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straight line DC, through O,, the centre of the
arc AB, (Fig. 52). DAD, is a regular triangle,
| DC | = | AC |, consequently, D,C is perpendicu-
lar to DA, and D,C passes through 0. Analogously,

Fig. 52

DC, is perpendicular to Dy4. The point O, lies on
the arc A B since it is obtained from O by rotating
the latter about the point 4 through an angle of
n/3. Let both arcs be measured by the quantity
6a (for convenience, @ > n/6). Then, £ A40,C, =
2a, £0,C1A = n/2 — a, LFACy = 2a.. Conse-
quently, LAFC, = n — 20— (—:zt———a) = -22——
a=LFC,A, that is, |AF| = |AC,| = |AC].
Let us prove that the triangles FAC and EDC
are congruent. We have: |AF|=|AC|=|DC|=
|\DE|, .CDE = (CDB — LBDE = nn — 20 —
(n—2 £ DBE)= — 2+ 2 (2a—%)=2a—— 5=
£LFAC; thus, |FC|=|CE|. Further, we find
L DCE =—3n——a, LByFD= —’;——a (measured by
half the sum of the corresponding arcs), £B,FC=

u—ACFA=-g-+a, 40FC=—2— %, 2DCF—=n—
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5 r_r_ =
_6_:;—-a+ =3 % and, finally, £ FCE

(F-4)=(3-9)=3.

283. Consider two cases: (1) the triangle ABC
is circumscribed about the given circle; (2) the
given circle touches the extensions of the sides AB
and AC.

In the first case, we consider the circle touching
both the sides of the angle at points M, N and the
circle circumscribed about the triangle ABC inter-
nally. Let a, b, ¢ be the sides of the triangle ABC,
r the radius of the given circle, LA = a,| AM | =

AN | = z. Let us make use of Ptolemy’s general-
jzed theorem (Problem 239 in Sec. 2): za =

(b —z)c+ (¢ — z) b, whence z= ZTZ%-T—_?:

4S ABC _2r
(a+d+c)sina” sina
(It is possible to prove that M N passes through the
centre of the given circle.z‘

In the second case, we have to take the circle
touching externally both the sides of the angle
alglcthe circle circumscribed about the triangle
ABC.

284. Denote the sides of the triangle ABC in a
usual way: a, b, c; let | BD | =4d, | AD | = b,,
| AM | = z. Use Ptolemy’s generalized theorem
(Problem 239 in Sec. 2): za + (d — b, + z) b =
(b — z) ¢ whence

, that is, z is constant.

_b(e+b—a)
= "a¥rrec - )

Take on AB a point N such that MN is parallel to
BD. We have:

z xz
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x 2 x 2 b
SAMN=('?1‘) SABD=('H) —bLSABc

i 2
=55 SABC: (2)

Let r be the radius of the circle touching MN and
the extensions of AN and AM. Then from (1) and
(2) it follows that

r 25 AMN _ 2228 ABC
~ |AM| + |AN|—|MN| — bz (by+c—ad)
__25aBc
T atbtc’

that is, r is equal to the radius of the circle in-
scribed in the triangle A BC, which was to be proved.

285. Let M and K denote the points of tangency
of the circles, with centres at O, and 0,, and AC,
respectively. It follows from the result of the pre-
ceding problem that Z0,DM = LOKD = —g R
LO,DK = LOMD = 90°—% We extend OK

and OM to intersect O\M and 0,K at points L
and P, respectively (Fig. 53). In the trapezoid

LM KP with bases LM and PK we have: 'llg(;,lll =
1
|IMD| | PO,|
DRI —10.K|* Consequently, 0,0, passes

through the intersection point of the diagonals of
the trapezoid—the point O. In addition,

P
001 _ jzmy _ WMETRry o
100l TPEL gy cor 2 2

286. The statement of the problem follows from
the results of Problems 285 and 232 Sec. 2.
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287. The statement of this problem can be
proved with the aid of the result of Problem 240,
more precisely, of its particular case, when the
three circles have a zero radius, that is, they are

L
0, P
U
l
M y/j K
Fig. 53

points. In this case, these points are the midpoints
of the sides of the triangle.

288. The statement of this problem follows
from Feuerbach’s theorem (see Problem 287 in
Sec. 2) and from the fact that the triangles ABC,
AHB, BHC, and CHA have the same nine-point
circle (the proof is left to the reader).

289. Let in the triangle ABC, for definiteness,
a < b < c. Denote the midpoints of the sides BC,
CA, and AB by A,, B,, and C,, respectively, and
the points of tangency of the inscribed and escribed
circles and the nine-point circle of the triangle
ABC by F, F,, Fy, F., respectively. We have to
prove that in the hexagon C,F.FA,F,F, (the
points taken in the indicated order form a hexagon
since a < b < ¢) the diagonals Cy4,, F.F,, and
FF, meet at a point. To this end, it suffices to
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prove (see Problem 49 of Sec. 2) that
| CoFe |-l FAL || FoFy | = | F.F |
X | AyFa |1 FpCy|. (1)

Using the formulas obtained in Problem 201 of
Sec. 1, we find

_b—a l/ R
ICIFCI‘_ 2 H+2rc ]

c—b " R
Py =)

@+b) R
FoFy| = ,
|FaFol VE+2r, VRE2
\FF| = (b—a)R

VR—2r-V R+ 2r,

__c—b l/- R
|A1Fa| = ) R+2ra L]

__a+b l/ R
|FpCy| = 5 T

Now, the equality (1) can be readily checked.
Remark. It is possible to prove that the intersec-
tion points of the opposite sides of the quadrilateral
whose vertices are the points of tangency of the
inscribed and escribed circles of the given triangle
with its nine-point circle lie on the extensions of
the midlines of this triangle.

290. Using the formulas of Problems 193, 194,
and 289 in Sec. 2 (in the last problem, see its
a: 1FpFel _ (D) (b+c) (c+a) R®

[ByCy| abe-|O1,)-[01p 101"
The ratios of the other corresponding sides of the
triangles F,F,F, and A,B,C, are the same. The
similarity of the other pairs of triangles is proved
in similar fashion. For | 4,B,| and the other

solution), we fin
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quantities, we derive formulas similar to that of
Problem 194, Sec. 2.

291. Prove that AABP = AACQ. For this
purpose, it suffices to prove that AKBP =
AABC and AFCQ = AABC (by two sides and
the angle between them): ZQAP = LCAB +
LCAQ+ LBAP = LCAB + LCAQ+ LCQA=
LCAB+180°— LQCA=LCAB+90°— LQCF =
90° (it was assumed that £ CAB < 90°% the case
ZCAB > 90° is considered in a similar way).

292, Since L FE\E = L FCE = 90°, FE,EC is
an inscribed quadrilateral, £ FCE, = L FEE, =
60°. Analogously, FE,AD is an inscribed quadri-
lateral, and L E,DF = LE,AF = 60°, that is,
DE,C is an equilateral triangle. In similar fash-
ion,l we prove that BF,C is also an equilateral tri-
angle.

293. Let P, Q, and R denote the points of in-
tersection of LB and AC, AN and BC, LB and
AN, respectively. Let | BC| = a, | AC| =b.
It suffices to show that S 4cq = S 4 pp (both of these
areas differ from the areas under consideration
by the area of the triangle 4 PR). By the similarity
of the corresponding triangles we get [CQ|=

|PC|=T%, Consequently, SAcq=-;—|AC| X
b2 1
1€Q| = 5(2—_,_5 ) SAPB=SACB—SPCB=-2—ab—
a2b ab?

2(a+b) — 2(a+d) "

295. Prove that the area of the triangle with
vertices at the centres of the squares constructed
on the sides of the given triangle and located
outside it and the area of the triangle with vertices
at the centres of the squares constructed on the
same sides inside the given triangle are respectively

equal to S + —;— (a® -+ b2 + ¢2) and S——%x

2201557
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(a2 + b® + ¢?) |, where a, b, and ¢ are the sides

and S the area of the given triangle.
296. Denote: £ A,BC=a, ,A,CB=f; then

AA, divides BC in the ratio equal to —224L —
1 Saca,
5 |4B|-|BA;| sin (2B+a) ¢ sinp
b sina

5 14C1-1C4y ] sin (£C+B)

sin(/B+a)
sin(£CH+B) °
putations for the other sides of the triangle ABC,
use Ceva's theorem (Problem 44 of Sec. 2).

297. Let KL be the arc contained inside the
triangle ABC. Extending the sides AB and BC

Having carried out similar com-

beyond the point B, we get the arc MN symmetric
to the arc KL with respect to the diameter par-
allel to AC. Since £ B is measured by the arc equal

o = (=KL + —MN) = <KL, the arc KL has
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a constant length, and a central angle equal to
the angle B corresponds to it.

298, Let O be the intersection point of the
straight lines, A and 4, two positions of the point
on one line of different instants, B and B, the
positions of the other point on the other line at
the same instants (Fig. 54). Erect perpendiculars
at the midpoints of AB and 4,B, and denote the
point of their intersection by M: AAA;M =
ABB; M since they have three equal sides: one is
obtained from the other by rotation through the
angle AOB with centre at M. This rotation makes
a point on A0 go into the corresponding position
of a point on OB so that the point M possesses the
required property.

299. (a) Let A and B denote the points of in-
tersection of the circles, A the starting point of the
cyclists, M and N the positions of the cyclists at a
certain instant of time. If M and N are on the
same side of AB, then L ABM = L ABN, if they
are on both sides, then ZABM + L ABN = 180°,
that is, the points B, M, and N lie on a straight
tine. If L and K are two points of the circles dia-
metrically opposite to B (L and K are fixed), then,
since ZLNM = L NMK = 90°, the point P which
is the midpoint of LK is equidistant from N and
M. We can make sure that P is symmetric to the
point B with respect to the midpoint joining the
centres of the circles (Fig. 55, a).

sb) Let O, and O, denote the centres of the
circles. Take a point 4, such that 0;40,4, is a
parallelogram. It can be easily seen that the triangle
MO,A, is congruent to the triangle NO,A, since
MO, | =104 | =|0,4,], |014,]=10,4]|=
INOy|, ZMOA,=¢+ 2 A0 A, =¢+ L A0 A=
ZNO,A,;, where ¢ is the angle corresponding
to the arcs covered by the cyclist (Fig. 55, b).
Thus, the sought-for points are symmetric to the
points of intersection of the circles with respect
to the midpoint of the line segment 0,0,.
Remark. In Item (a) we could proceed just

22%
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in the same way as in Item (b). Namely, takin,
the point P so that AO,PO, = A0, 40, (A an
P are on the same side of 0,0, and do not coincide),
it iseasy to prove that the corresponding triangles
are congruent.

300. (b) Use the result of Item (a). Replace the
rotation about O; by two axial symmetry mappings,
taking the straight line 0,0, as the axis of sym-
metry for the second mapping and the rotation
about the point O, by two symmetry mappings,
taking the straight line 0,0, as the axis of the
symmetry for the first mapping. Remark. If a +
p = 2m, then the application of the given rotations
in succession, as it is easy to make sure, is
equivalent to a translation.

Answer: if o + p << 2n, then the angles are

equal to %, %, n——?—jz-—ﬂ, and if a4 >
2x, then the angles are equal to n — —;— , u—% ,

a-4-p
7 -
301. Let us carry out three successive rota-
tions in the same direction about the points K, L,
and M (or about K,, L;, and M,) through the
angles a, B, and y. Since o + B + y = 2=x, the
transformation obtained in a translation (see Prob-
lem 300 in Sec. 2). But since one of the vertices
of the original triangle remains fixed in these
l‘:lota‘:ions, all the points of the plane must remain
xed.

Thus, the centre of the third rotation (the point
M) must coincide with the centre of the rotation
resulting from application in succession of the
first two rotations: about the points K and L.
Now, take advantage of the result of the preceding
problem.

302. Denote: A BOC = 2a, <«DOE = 28,
£ FOA = 2y. Let K, M, and L be, respectively,
the intersection points of the circles circumscribed
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about the triangles BOC and AOF, BOC and
DOE, AOF and DOE. The point K lies inside the
triangle AOB, and /ZBKO = 180° — 4L BCO =
90° + &, LAKO = 90° 4 ¥, and since a + p+
v = 90°, LAKB = 90° + B. Similarly, L lies
inside the triangle FOE, and ZOLF==90° 4 vy,
LOLE=-90°4-B, £ FLE=90°+q. Hence, |OL| =
|AK|, LKOL = 2y + LKOA + £LLOF = 2y+
LKOA + LKAO = 90°+9y = LAKO; thus, the
triangles KOL and A KO are congruent, that is,
| KL} = | AO|=R. We then prove in a similar
way that each of the two other sides of the
triangle KLM is equal to R.

303. Let ABCD denote the given quadrilateral,
0y, 0,, Og, O, the centres of the rhombi constructed
on AB, BC, CD, DA, respectively; K and L the
midpoints of the sides AB and BC, respectively,
M the midpoint of the diagonal AC. The trian-

gles O, KM and O,LM are congruent ( | O.K | =
S4B LM\, [KM| +BC|=

| 0,L |, LOIKM=LO,LM) If LABC + a <

7, then these triangles are located inside the trian-
gle OyMO,, and if LZABC + a > =, then they are
ound outside the triangle O,MO0, (the angles of
the rhombi with vertex at B are equal to &). Thus,
|OM | = | O,M |, LOMO,=n — a. In sim-
ilar fashion, |OM |=|0OM |, LOMO,=
n — a.. Consequently, the triangles O,M0,; and
0,MO, are congruent, and one is obtained from the
other Ly a rotation about M through the angle
n — a. Hence, there follows the statement of the
problem.

304. Let ABC be the given triangle, 4,B,C
the triangle A, 4,B,C, the triangle 6 (4; an
A, the centres of the triangles constructed on BC),
a, b, ¢ the sides of the triangle ABC.

(a) The fact that A;B,C, and A,B,C, are reg-
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ular triangles follows, for instance, from the re-
sult of Problem 301, Sec. 2.

(b) Let us prove a more general assertion. If
on the sides of the triangle A BC there constructed
externally (or internally) similar triangles 4,BC,
B,CA, CAB so that £ABC = /B,CA =
£ CAB, L A,CB = £B,AC = £.C,BA, then the
median points of the triangles ABC and 4,B,C,
coincide. First note that if M is the point of inter-
section of the medians of the triangle ABC, then

— — —
MA + MB + MC = 0, and, conversely, if this
equality is fulfilled, then M is the median point of

_
the triangle ABC. It remains to check that MA, +
—_ — — —_— —
MB{+ MC;, =0 o (MA+4 AC) + (MB +
— —_— — —_— -—
BA,) + (MC + CB,) = 0. But MA 4 MB -+
— —_ —_ —

MC = 0. In addition, AC, + BA, + CB; =0

—_—— —

since each of the vectors AC,, BA,, CB, is obtained
—_— - —

from the vectors AB, BC, CA, respectively, by

rotating the latter through the same angle (£.4,BC)

and multiplying by the same number.

(c) Consider a more general case. The isosceles
triangles A,BC, B,CA, C,BA and A{BC, Bi{CA,
C:BA in which the ratio of the length of the al-
titude drawn to the base to the length of the base
is equal to & are constructed on the sides of the
triangle ABC externally and internally as on
bases. Let O denote the centre of the circle circum-
scribed about the triangle ABC; a, b, c its sides;
A,, By, C, the midpoints of BC,CA, A B, respective-
ly. For definiteness, we assume ABC to be acute

triangle. Then, Saj00,= % |4,0|-1C,0| sin B =

_;-uom + ka) (10C| + ke)sin B = + 104y] X
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|0C,| sin B—l—-;— k%ac sin B-l—%(alOC’ol-l-clOAol)x

sin B==k3S aBc 1S 4500, —[’:— b2, Obtaining similar

relationships for the triangles 4,0B, and B,0C,
and adding them together, we find: S ALB1C1 =

(3k2 + _1_) SaBc+ % (a®+ b2+ c?) (this equality

is also valid for an obtuse triangle ABC). For the
. TR k

triangle A;B;C; we have: SAiBici =l T (a2+b2+4

c’)—-—(.‘ik’-{—%) Sapc|. Consequently, if % X

(@ + b2 + ¢?) — (exk2 + %) Sapc =0, then

1 Lk
SA18101 — SAiB{Ci = (6k2 -+ E)SAﬂc,and lfzx
(@ + b2 + ) — (3k= + %) SaBc <0, then

Sapci— S arpo= —g»(az—i—b’—l—c’). We can prove
17174 _

that always a2-+-b?+c2>4V 3 Sapc (in Prob-

lem 362 of Sec.2, a stronger inequality is

proved), and this means that for k = the

7=

difference between the areas of the triangles
AB,C, and A{B:C; is equal to S, gc.

305. Let the three given points form a triangle
ABC. Two families of regular triangles circum-
scribed about the triangle ABC are possible. The
first family is obtained in the following way.
Let us construct circles on the sides of the triangle
so that the arcs of these circles lying outside the
triangle are measured by the angle of 4n/3. We
take an arbitrary point 4, on the circle constructed
on BC. The straight line 4,B intersects the circle
constructed on BA for the second time at a poini
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C;, and the straight line 4,C intersects the circle
constructed on CA at a point B;. The triangle
AyB,C; is one of the triangles belonging to the
first family. Let E, F, and G denote the intersection
points of the angle bisectors of the triangle 4,B,C,
and the circles constructed on the sides of the
given triangle. The points E, F, and G are fixed
(E the midpoint of the arc of the circle constructed
on BC and situated on the same side of BC with the
triangle ABC). The points E, F, and G are the
centres of the equilateral triangles constructed
on the sides of the triangle ABC internally. The
triangle EFG is a regular one (see Problem 304 in
Sec. 2), its centre coinciding with the median point
of the triangle ABC. The centre of the triangle
A.B,C, lies on the circle circumscribed about the
triangle EFG; the square ;)f tgle r’adius of this
circle being equal to % a—_*—bT-l_i—2S l/3) ,
where a, b, and ¢ are the sides and S the area of
‘the triangle ABC (see the solution of Prob-
lem 304 of Sec. 2).

The second family of equilateral triangles cir-
cumscribed about the triangle A BC is obtained if
on the sides of the triangle ABC circles are con-
structed whose arcs located outside the triangle
ABC are equal to 2t/3 (each).

The required locus consists of two concentric
circles whose centres coincide with the median
point of the triangle ABC, and the radii are equal

to %]/%(a=+b2+c2)i2sv’§.

306. Prove that the triangles CB,A, and CA,B,
are obtained one from the other by rotation about
the point C through an angle of 90°. Indeed,
ACAA, = ACBB, (| BB, | =| AC|, |BC|=
|AA4,|, £CBB,= /4. CAA,), and since A4A, | BC
and BB, |. AC, we have: B,C | A,C. Similarly,
A C and B,C are equal to each other and mutually
perpendicular.
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307. Prove that the tangents to the circle drawn
from the vertices between which one of the vertices
of the polygon is located are equal to each other.
Hence, it follows that for a polygon with an odd
number of sides the points of tangency are the
midpoints of the sides.

308. Note that if we consider the system of
vectors whose initial points lie at the centre of
the regular n-gon and whose terminal points are
at its vertices, then the sum of these vectors equals
zero. Indeed, if all of these vectors are rotated
through an angle of 25/n, then their sum remains
unchanged, and on the other hand, the vector equal
to their sum rotates through the same angle.
Hence, the sum of the projections of these vectors
on any axis is also equal to zero.

Let us return to our problem. If ¢ is the angle
between the given straight line (let us denote it
by I) and one of the vectors, then the remaining

vectors form the angles cp-{—zTn Y9+ 2 2;” ,

¢+ (n—1) 2;:1 . The square of the distance from

2
the kth vertex to [ is equal to sin? (q)—l—k %r_l"_) =

% (1—cos (2(p+k %) ) But the quantities

20+k 4Tn) can be regarded as projections on
1 of the system of n vectors forming angles 2¢ -+
k-ii k=0, 1, n—1) with . If »n is odd,
these vectors form a regular n-gon, if n is even,

then they yield an %-gon repeated twice.

n
Answer: T .

309. (a) If the side of the polygon is equal to
a, S is its area, z,, z,, . .., z, are distances from
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a certain point inside the polygon to its sides,
then the statement of the problem follows from the
equality S = (azy + azy + . + az,)/2.

(b) Consider the regular polygon containing
the ﬁiven one whose sides are parallel to the sides
of the given polygon. The sum of distances from
an arbitrary point inside the given polygon to the
-gides of the regular polygon is constant (Item (a))
and differs from the sum of the distances to the
sides of the given polygon by a constant.

310. Let By, B,, ., Bpn,1 denote the points
symmetric to 4,, A,, ..., Ap,; with respect to
the diameter 4,4 45,,, Cp, and C}, the points of in-

tersection of the straight line 44354, With 04,
and OA,,,. Let D,_, and D, be the points of in-
tersection of the straight lines 4,B;_, and A, By,
with the diameter. Obviously, the same points are
the points of intersection of the straight lines
BypAy_; and BypAy,, with the diameter. It is also
obvious that the triangle D,_;4,D; is congruent
to the triangle €, 0C;. Thus, the sum of the line
segments Cy,C}, is equal to the sum of the line seg-
ments D, D, (k=1, ..., n), Dg=A4,, D, =
0, that is’;i éq\fals the radius. oo
311. Let A (Fig. 56) be the given point, 4, a
vertex of the 2n-gon, B,_, and B, the feet of the
perpendiculars dropped from the point A on the
sides enclosing A,, and a«, and B, the angles
formed by the straight line 44, with those sides
(P = £AA By, ap = £LAA,B}). Since a circle
can be circumscribed about the quadrilateral
AB;_,A;B,, we have: LABy_ B, = a,,
LAByBy_ =P (or supplement these angles to

180°); thus, by the law of sines, L?%h;;—l—:
sin By |ABg_1| |ABpsy| __ sin Br sin ag,y,

sinay ' |ABp |2 sin ay sin fgyg
Multiplying those equalities for k¥ = 2, 4, .. .,
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2n and replacing the index 2n 41 by 1, we
get the desired result.

312. Prove that if Oy and Oy,, are the centres
of the circles touching the given circle at points
Ay and Ap,y; B the point of their intersection lying
on the chord A,4,.;3 ry, rp. their radii,
then Th + The1 = T, ZA hohB = LAh +10h + =
LAROAy . (r the radius of the given circle, 0

Fig. 56

its centre). Hence it follows the equality of every
other radii, which for an odd » means that all of
them are equal to r/2. In addition, —A,B +
~BA, o = —~A,A, ,; (the minor arcs of the cor-
responding circles are taken).

313. (a) Let A be an arbitrary point of the
circle (4 on the arc 4.4,,,1). Let a denote the
side of the polygon, and b the length of the diagonal
joining every other vertex. By Ptolemy's theorem
(Problem 237 in Sec. 2), for the quadrilateral
AApAyaAy o We have: | A4, |a+] Ady ,, | a=
|AApaql b (k=1, 2, .., 2n—1). " Similar
relationships can be written for the gquadri-
laterals A,,4,,,,44, and 4,,,,44,4,:

IAA1|0+|AAzn+1|b=|AA2n|ao
| Adgpsla+ | AA, | b= | A4, | a.
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Adding together all these equalities and leaving
even vertices on the right and odd vertices on the
left, we get the required statement.

(b) Our statement follows from Item (a) and
the result of the Problem 206 of Sec. 1 (A similar
formula can be obtained for the case of internal
tangency.)

314. (a) Let ! intersect AC and BC at points
K and N, respectively, and touch the circle at
a point M (Fig. 57). Let us denote: | AC | =

Fig. 57

|BC|=4a, |AK|=|KM|=2z, |BN|=
2 — —
| NM | = y. Obviously, %:_(a—z)(a_y)’

zy

but, by the law of cosines, for the triangle CKN
the following equality holds true: (z 4 y)? =
(a—2)+(a—y)?—2(a—=z)(a—y)cosa =
L. ; — LY o sint Z
si' =TT G =) Thus, ot = sin o
(Other cases of arrangement of the line I are con-
sidered in a similar way.)

{(b) Let us use the result of Item (a). Multiplying
the corresponding equalities for all the angles of
the n-gon, we get the square of the sought-for ra-
tio, and the ratio itself turns out to be equal to

a .a
1/ (sin —2—‘ sin T’ sin —24) where o,

ag, ..., a, arc the angles of the polygon.
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(c) We use the result of Item (a). We denote
the points of tangency of the sides 4,4 ,, 4,43,
Agp 1A ,y,, AspA, with the circle by By, By, . .,
Bap-1, B,,, respectively; the distances from

Ay, Ay . ., Ay to LDy 24, 24, . ., Zapogy 2y
res’pectively; thendistances from 'Bl, B',, .n. : :,:
to ! by y;, ya Yan, respectively. Then we
get:
z 1 2 1
V¥ gipe % T¥r e O
x3n _ 1
Ye2n-1Y2n sin? Qan
where a,;, a,, ..., a,, are the angles of the
polygon. Muftiplying the equalities containing
Ty, Ty, . . +y Tap-q and dividing them by the pro-
duct of the remaining equalities, we get:
( Z1Z3 ... Tap-1 )2
TaZy Tan
. O3 . O . Ogn \2
_ sin—5~— sin =5 sin P
. %y . Og i Qan-1
$in —5- sIn— sin 2

315. The statement of the problem can be prov-
ed by induction. The beginning step of the proof,
n = 4, is considered in Problem 235 of Sec. 2.

However, we can suggest another way of solu-
tion based on the following equality. Let in the
triangle ABC the angle A be the greatest, r and R
the radii of the inscribed and circumscribed cir-
cles, respectively, d,, dy, and d, the distances from
the centre of the circumscribed circle to the corre-
sponding sides of the triangle. Then

r4+R = d, + dp + d 1)
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for an acute triangle and
r+R=—dy+dy+d, )

for an obtuse one (for a right triangle, d, = 0 and
for it any of the above relationships holds true).

Proof. Let ABC be an acute triangle; 4,, B,,
C, the midpoints of the sides BC, CA, AB, respec-
tively; O the centre of the circumscribed circle.
By Ptolemy's theorem (Problem 237 in Sec. 2),

for the quadrilateral 4B,0C, we have: —g—dc+

% db:—.% R. Writing two more similar relation-
shidps for the quadrilaterals BC 04, and CB,04,
and adding them together, we get:

(4] (45 e (345)-
:—%—(a—}—b—!—c) R=DpR,

whence p (d, + d, + dc)—% (cdo+ bdy+-adg) =

pR. Since %(edc—{— bdy +ad,) = S = pr, after

reducing by p, we get the equality (1). The case
Z.A > 90° is considered in a similar way.

The statement of the problem follows from
the relationships (1) and (2). To this end, let us
write the corresponding equalities for all the trian-
gles of the partition. Note that each of the diago-
nals serves as a side for the two triangles. Conse-

uently, the distance to the chosen diagonal enters
the relationships, corresponding to these triangles,
with opposite signs. Hence, adding together all
these equalities, we get (provided that the centre

of the circle lies inside the polygon): D) r+R=

d!+d2+...+dn, where dy, dyy, ..., dp are the
distances from the centre of the circle to the
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sides of the polygon. If the centre of the circle
is outside the polygon, then the distance to the
greatest side should be taken with the minus sign.

316. Consider, for definiteness, the case when
the point M is found inside the polygon. Let u
and v denote the distances from M to A4, and
A,A,, respectively; z and y the projections of
AM on AyA, and A4, (z and y should be as-
sumed to be positive, if these projections are sit-
uated on the rays 4,4, and 4,4,, and negative
otherwise). | A{B, | = |A\B, | = a, LAJA 1A, =
a. The distances u and v can be expressed in terms

y cos o z
of r and y: u= — —T— , V=—/———
sin a sin a sin a
cosa 1 —cosa
Vo hence u+v—(z+y)———*sina =
o
(z + y) tan -5 = (z+ v) %. We now have:

(I MBy |>+ | MB, |*) a = ((z — a)® + u?
+ -t e
=((z—a+@w—1N2+@y—a+@w—r?
+2r(u+v) —2rt)a
= 2d% + 2ra (u 4 v) — 2r%a = 2d%

+2r2 (z + y) — 2r2a.

Writing similar equalities for each of the vertices
and adding them together, we get the statement of
the problem.

317. Consider three triangles ABC, ACD,
and ADB having a common vertex 4. Denote the
projections of M on AB, AC, and AD by B,, C,,
and D,, respectively. The straight lines B,(,,
C,D,, and DB, are Simson's lines of the point M
with respect to the triangles ABC, ACD, and
ADB. But the points A, M, B,, C,, and D, lie
on the same circle (A M being its diameter). Con-
sequently, the projections of the point M on B,C,,
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C,D,, and D,B, lie on a straight line which is
the Simson line of the point M with respect to
the triangle B,C,D,. Considering then the pro-
jections of the point on Simson’s lines correspond-
ing to the three triangles with a common vertex
B, we get that those three projections also lie on
a straight line, hence, the four projections are col-
linear.

The passage by induction from n to n 4+ 1 is
performed exactly in the same way.

318. Let, for definiteness, B, lie on the arc 4,4,
which bounds the segment not containing the circle

Fig. 58

p. Let Cy, Cy, denote the points of tangency
of 4,4,, A,4,, with the circle p, respectively;
D,, D,, . the points of tangency of B,B,,
BgBg, with the same circle (Fig. 58); K, L,

23—-01557
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and P the points of tangency of D,C, and A4,B,,
D,C, and A,B,, A,B, and 4,B,.

In the triangles 4,KC; and D,LB,, we have:
LKCIA]_ = LLDle, LCIAIK = LDIBQL; hence,
£CKA, = £D,LB,, that is, KPL is an iso-
sceles triangle, | KP | = | PL |.

Consider the circle y touchingl KP and PL at
points K and L, respectively. The centre of this
circle is found on the straight line passing through
the centres of « and B (see Problem 12 in Sec. 2).

Let the line D,C, intersect 4,B, and A3B; at
points L’ and M, respectively. As in the preced-
ing case, let us prove that there is a circle ' with
centre on the straight line passing through the
centres of @ and P and touching A,B, and 4B,
at points L’ and M, respectively. Let us prove that
v and ¥’ coincide. To this end, it suffices to prove

the coincidence of L and L’ We have: IA’Ll.—
. |LBy|

Sagcspy 2 [ D1Cy|-|AsCy] sin £ 43C1 Dy _

8i0iD1 1| DyCy1-1BaDy| sin £ ByDyCy

| AsC, | - |AsL'| |AgCal _ [AgC4]

—=——— . Similarl —_— =: ,

|BaD | Y 1LBa]  1BaDal . |BaDyl

that is, L and L’ coincide. Remark. It follows from
our reasoning that in the case under consideration
the points of tangency of y with the straight lines
AB;, A B,, .., are formd inside the line seg-
ments 4,B,, 4,B,, ...

319. Using tfle notatipn of the preceding prob-
lem, the statement is reduced to tﬁe following: if
A, 4 coincides with A4,, then B, ,; coincides
with B;. Suppose.the contrary. Then 4,B; and
A,B, ., touch the circle y, 4,4, intersects y, and
B, and B, ,, lie on the arc 4,4, corresponding to
the segment not containing B. The points of tan-

ency of 4;B, and A,B,,, with y lie inside the
ine segments A,B; and A;B,,;. Thus, we have
obtained that two tangents are drawn from A4, to
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v, the points of their contact with y being located
on the same side of the secant 4,4 ,. But this is im-
possible.

320. Let us consider the triangle B,XC,. The
straight line X R is the bisector of the angle C X B,.

It is readily checked that ACoRB,,:%—{—

%— £.CyXB,. Hence, it follows that C,R and B¢R

are the bisectors of the angles XCyB, and XB,C,,
resEectively (see Problem 46 in Sec. 1). In similar
fashion, in the triangles C,YA, and A,ZB, the
points P and Q are the points of intersection of
the angle bisectors. Hence, taking into considera-
tion that £ PA,Q = £ A/3, LQB,R = LB/3,
ZLRC\P = £(C/3, we get the statement from which
Morley’s theorem follows.

321. When solving the problem, we use the
following assertions which can be easily proved.

(a) If a point N is taken on the bisector of
the angle M of the triangle KLM (inside this

triangle) so that ZKNL = % (m + £LKML),

then N is the intersection point of the angle bi-
sectors of the triangle KLM (see Problem 46 of
Sec. 1).

(b) If a point N is taken inside the angle KML
and outside the triangle KXLM on the extension
of the bisector of the interior angle M so that

ZKNL =%(n— £ KML), then N is the in-

tersection point of the bisector of the angle M and
the bisectors of the exterior angles K and L.

(c) If a point N is taken inside the angle XKML
and on the bisector of the exterior angle K of the
triangle KML so that LMNL = % LMKL,
then N is the intersection point of the bisector
of the angle M and the bisectors of the exterior
angles K and L.

23+



356 Problems in Plane Geometry

We carry out the proof of the assertion for all
possible values of i, j, &k (all in all, seven cases)
according to one scheme. Each time we formulate
and prove the corresponding converse assertion
equivalent to the considered case of Morley’s theo-
rem. The preceding problem is an example of
following such a scheme. In order to avoid repeti-
tion, let us first single out the general part of rea-
soning. Consider the regular triangle PQR. Con-
structed on its sides as bases are isosceles triangles
PXQ, QYR, RZP (what triangles and how they
are constructed is explained for each of the seven
cases). Let A, denote the point of intersection of
the straight lines ZP and YQ, B, the point of
intersection of XQ and ZR, and C, the point of
intersection of YR and X P. Then we prove for each
case that the triangle 4,B,C, is similar to the
triangle ABC, and that the rays 4,P and A4,Q,
B,Q and B4R, C,R and C,P are its angle trisectors
of the corresponding kind.

Let us now indicate what triangles and how they
should be constructed on the sides of the triangle
PQR in each case.

Wi=j=k=1; LPX()=%(::+24A),

LQYR= —;— (n+2 £LB), LRZP:% (n+2 £C).
All the triangles are arranged externally with
respect to the triangle PQR.

@) i=1, j=k=2, LPXQ= % (n—2 £4),

LQYR = n — 2§B , LRZP = 1 — 2§C )
All the triangles are arranged externally with
respect to the triangle PQR. (We assume that
LA < /2. If LA >n/2, then the triangle PXQ
is “turned out” on the other side of the triangle

PQR, LPXQ = -31— @24 —n) 1 LA =n/2,
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then the triangle PXQ turns to a pair of parallel
straight lines. This note should be borne in mind
when considering the further cases.)

@) i=j=1, k=3; LPXQ:% (n—2 £.4),

LOYR=-;— (n—2 £B), LRZP = % (n+2 £0).

The triangles PXQ and QYR are arranged exter-
nally and RZP internally with respect to the
triangle PQR (see Item (2)).

@) i=j=hk=2 LPXQ=-;—(n—2/_A),

LQYR= % (n—24B), ARZP:% (n—2 £0).

All the triangles and the triangle PQR itself are
arranged on the same side of the corresponding
sides of the triangle PQR, (see Item (2)).

G) i=1, j=2, k=3; APX():—;—(n—l-ZLA),
2/C
3

LQYR.:%(n—zLB), LRZP=n— The

triangle PXQ is constructed externally with
respect to the triangle PQR, while the other two
internally (see Item 2)).

2,4

©® i=2, j=k=3; LPXQ=n——%5—,

LQYR:% (n+24B), < RZP:-;)—(:! +2.0).
The triangle PXQ is arranged externally and the
two others internally with respect to the triangle
PQR.

() i=j=k=3; LPXQ=n— 2‘3‘4

ZgB , LRIP=n— 2éc . All the trian-

gles are arranged inside the triangle PQR.
Item (1) was proved in Problem 320, Sec. 2.
Let us, for example, prove Item (2).

, LQYR=
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Let £ A << a/2. Consider the trian%le B,XC,
in which XR is the bisector of the angle B, XC,.

In addition, ZByRC, = —;‘— (n+ £ByXCy). In

accordance with the assertion (a), R is the inter-
section point of the angle bisectors of this triangle
(if A > n/2, then B,R and C,R are the bisectors
of the exterior angles of the triangle ByXC,). Fur-
ther, in the triangle C,YA, we have: YP is the
bisector of the exterior angle Y, Z£A4,PC,=
-;—LAYC‘, (this can be readily checked). In ac-
cordance with the assertion (c), P is the intersec-
tion point of the bisector of the angle Co4 ,Y and the
bisectors of the exterior angles 4,C,Y and C,YA,
of the triangle C,YA,. In similar fashion, the
point Q with respect to the triangle 4,ZB, is the
intersection point of the bisector of the angle ZA4 ,B,
and the bisectors of the exterior angles A4,ZB,
and A,B,Z. (This implies that the triangle PQR,
with respect to the triangle 4 ,B,C,, is formed by
the intersection of the trisectors of the first kind
of the angle A, with the trisectors of the second
kind of the ang‘ies B, and C, (Item (2) is meant).)
'I/;he triangle 4 ,B,C, itself is similar to the triangle
BC.

In all the remaining items (from 3 to 7) we rea-
son in a similar way varying only the assertion
used ((a), (b), (c)).

Interchanging the indices i, j, k, we note that
to Item 5 there correspond six regular triangles,
to each of Items (2), (3), and (6) three regular
triangles, to each of Items (1), (4), and (7) one equi-
lateral triangle. Thus, the total number of regular
triangles obtained is eighteen.

Now, in each case we choose the dimensions of
the triangle PQR so that the corresponding triangle
A B,C, is equal to the triangle ABC. We superim-
pose the eighteen obtained drawings by turns so
that the triangles A BC are brought into coincidence.
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It should be done in the following succession:
first, we take the drawing corresponding to Item
(1), then the three drawings corresponding to Item
(3), then the six drawings corresponding to Item
(5), then the three drawings corresponding to
Item (2), and, finally, the three drawings from Item
(6), one from Item (4) and one from Item (7). In
each successive superposition, at least one of the
vertices of the corresponding regular triangle
must coincide with one of the vertices of the trian-
gles already superimposed. If we count the angles
we can see that five vertices of two equilateral
triangles, having a common vertex, lie on two
straight lines passing through this common vertex.
Thus, the vertices of all the eighteen equilateral
triangles “must” be arranged, without fail, as in
Fig. 59. (In this figure, a,f; denotes the point of
intersection of the trisectrices @, and f;, etc.).
322. For the equilateral triangle with sjide
equal to 1 the radius of each of Malfatti’'s circles
is equal to £11—1 The sum of the areas of the

3n(2g V3 And
the sum of the three circles one of which is in-
scribed in this triangle and each of the two others
touches this circle and two of the sidgs of the
n _ 3n@— V'3)

108 8 °

abe
__ 4
ity 2p=a+b+c> 3Vabc (the mean-value
theorem).

324, If p, is the semiperimeter of the triangle
with its vertices at the feet of the altitudes of the
given triangle; p, S, r, and R the semiperimeter,
the area, the radii of the inscribed and circum-
scribed circles, respectively, then S=pr and, in
addition, § = pR (the latter follows from the fact

corresponding circles equals

triangle is equal to

323. Use the equality Rr=

and inequal-
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that the radius of the circumscribed circle drawn
into the vertex of the triangle is perpendicular to
the line segment joining the feet of the altitudes
dropped on the sides emanating from this vertex).

Consequently, p,=p -7;— < % p-

Fig. 59

325. Let m, be the greatest of the medians.
If we use the relationship m2 > m} + m2, follow-
ing from the hypothesis, and replace the medians
by the sides a, b, and ¢ of the triangle (Problem 11
of Sec. 1), we get: 5a? << b2 + ¢2, whence cos 4 >
2(02+¢) 2 (b, ¢ 4 _ V2
% =5 (vt3) 5>
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326. Let O denote the intersection point of
the diagonals of the quadrilateral A BCD. Suppose
that all the angles indicated in the hypothesis
are greater than n/4. Then, on the line segments
OB and OC, we can take, respectively, points B,
and C, such that £ B;A0 = £LOB,C; = n/4. Let
£ BOA = a > n/4. We have:

108, _
V 2sin (a-—%)
2sin (a—.’zt.) sin (a_l_%_) 08 20,

In similar fashion, we prove the inequality
f{OA ]| >|0C|. Thus, we have arrived at a
contradiction.

327. Let the sides in the triangle A BC be relat-
ed by the inequalities ¢ << b < a. We take on CB

a point M such that ACAM:%—A_C. Now, we

have to prove that | CM | < —g—. By the law of
sines, for the triangle CAM we have: | CM | =

|10C| > 10C,| =

= |04].

bSIIlT _ b B ab? <_a_
. 3C T 2cosC+1 T adtab+b2—c2T 2
sm—2—

328. Let D denote the midpoint of AC. We erect
at D a perpendicular to AC and denote the point
of its intersection with BC by M. AMC is an iso-
sceles triangle, hence, ZMAC = L BCA. By hy-
pothesis, ABD is also an isosceles triangle,
ZABD = /. BDA, /. ABM > 90° (by hypothesis),
ZADM = 90°, hence, ZLMBD > /MDB, and
|MD| > |BM|. Hence it follows that ZMAD >
L MAB (if B is mapped symmetrically with re-
spect to the straight line 4 M, then we get a point B,
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inside the angle MAD since MD is perpendicular
to AD and | MD | > | MB|=| MB, |); thus

LC> LA — LC, LC>%LA.

329. If the circle touches the extensions of the
gsides AB and AC of the triangle ABC, and its
centre is O, then it is easy to find that L BOC =

90° ——% £LA. Thus, ZBOC + £A = 90° +

o LA 180°,

330. Let AD denote the altitude, AL the angle
bisector, AM the median. We extend the angle
bisector to intersect the circle circumsecribed about
the triangle at a point 4,. Since M A, is parallel
to AD, we have: LMAA = LLAD.

Answer: if £ A << 90° then the angle between
the median and angle bisector is less than the angle
between the angle bisector and altitude. If £ 4 >
90°, then vice versa; if £Z4 = 90°, then the angles
are equal.

331. If AD is the altitude, AN the median, M
the median point then cot B -} cot € =———

iICD|  |CB| |CBj| |CBY| 2

|AD| _ |AD| = 1AN|] 3|MN|_3*

332. From the fact that Spanm = Spem,
|BC|>|BA|,and |CM | > | MA | it follows
that sin £LBAM > sin LBCM. Hence, if the
angles are acute, then /. BAM > /. BCM; only
the angle BAM can be obtuse. Thus, we always
have: /BAM > /BCM.

333. If | OA | = a, R the radius of the circle,
K the point of intersection of 04 and DE, then

A a®— R2
it is easy to find that |OK | = a — 5 =
a? + R?

2

> R,
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334. The notation is given in Fig. 60. In the
first case (Fig. 60, a), |AB| << lAAlli | 4By +
|B,B| = |44,| + [A4,C| + |BD| + |BB,| =
|AC| <4 |BD|. In the second case (Fig. 60, b),

¢
N J/
K
A 4,
A b A 0
q 4
Fig. 60
|AB| > |BK| — |AK| > | BE| — | AC|. The

converse can be readily proved by contradiction.

335. Let K, L, and M denote the points at
which the drawn lines intersect AC; we further
denote: | AC|=0b, |BC|=4a, |AB|=c¢,
| BL | = l. By the theorem on the bisector of an

interior angle, we find: |LC| = a—'_‘:—c— ; applying
this theorem once more to the triangle BCL, we find

ba l ba a .
\LM| = atc 1+a atfec (1_ a1 ) » but
43[,,4:%434- 40:"___‘%ﬂ>4,4
(since £LC >3 ZA—n). Hence, c>1land |LM| <
ba __a —b ac i
atc atec )— (atc)2 ~ 4

336. Let ABCD be the given quadrilateral.
Consider the quadrilateral 4B,CD, where B, is
symmetric to B with respect to the midperpen:lic-
ular to the diagonal AC. Obviously, the areas
ABCD and AB,CD are equal to each other, the
sides of the quadrilateral AB,CD, in the order of
traverse, are equal to b, a, ¢, d. For this quadrilat-
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eral, the inequality S <% (ac + bd) is obvious,

the equality occurring if /. DAB, = £B,CD =
90°, that is, AB{CD is an inscribe quadrﬁateral
with two opposite angles of 90° each; hence, the
quadrilateral ABCD is also inscribed (in the same
circle), and its diagonals are mutually perpen-
dicular.

337. Consider two cases.

(1) The given triangle (4BC) is acute. Let
Z_B be the greatest: 60° < £ B << 90°. Since the bi-
sectors of the angles 4 and C are less than 1, the
altitudes of these angles h, and ko are also less

hahe  _ V3
2 sin B 3 -

(2) If one of the angles of the triangle, say B,
is not acute, then the sides containing this angle
are less than the corresponding angle bisectors,
that is, less than 1, and the area does not exceed 1/2.

338. Let ¢ be the greatest side lying opposite
the vertex C. If a® + b2 4 ¢ — 8R?2 > 0, then
a® + b2 > 8R? — 2> ¢* (since ¢ << 2R), that is,
the triangle is acute. Conversely, let the triangle

be acute, then a® + b2 - ¢ = 2m§+—§—cz (m, the

median to the side c); therefore, the less the medi-
an, the less the sum a2 4+ b2 4 ¢2. But the medi-
an is maximal if C is the midpoint of the arc and
its length decreases as C displaces in the arc. When
the triangle becomes right-angled, the sum a? +
b2 4 ¢2 — 8R? is equal to 0.

339. Replacing R and r by the formulas R=

%. r=—, for computing § make use of

than 1. We have: S, gc=

Hero's formula and the equality

abce S abe S
s (p—g5—5) (P55 +7)

= (@b ct) @— b1 (— a4t o),
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340. Let us assume the contrary, for instance,
c> a; then 2¢> ¢ + a > b; squaring the in-
equalities and adding them together, we get:
5c2 > a? 4 b2, which is a contradiction.

341. The bisector of the angle B is the bisector
of LOBH, and the bisector of the angle 4 is the
bisector of LOAH. Further, L/ BAH=9%0°—4LB<
90°— <L A= L ABH; hence, |4H|> |BH|. If K
and M are the intersection points of the bisectors

of the angles A and B with OH, then —'|}II(IO(|I =
|AH| _ |AH| _ |BH| _ |BH| _ |HM]
|dop = R R |0B| _ [MO| *

Thus, | HK | > | HM |, and the point of inter-
section of the bisectors is found inside the tri-
angle BOH.

342, Denote: |AB| = |BC| = a, |AM| = ¢,
IMC|=b, | MB |=m, LBMO=%, LMBO=g¢.
We have to prove that |OB| > |OM| or > ¢
or cos P << cos ¢. By the law of cosines for the
triangles MBA and MBC, we get:

2.2 c2 2. Lp2__ g2

cos p—cosP= m _*;na c._n _;r’:zb a
__ m2(b—a)—a(b?—a?)+b(a2—c?)
- 2mab ‘

But a—c=b—a; hence,
(b—a) (m? — ab— a%+-ab--bc)

cos 9—cos Y=

2mab
_ (b—a) (m*—a2—b(2a—))
- 2mab
(b—a)(m-+b—a)(m—a+b)
= 2mab >0,

which was to be proved. .
343. Through the point M, we draw a straight
line parallel to AC to intersect AB at a point K.
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We easily find: | AK | = | CM |.-:%g—|'. |MK|=
IMB|- !‘22" Since |AM| < |AK|+|KM]|, re-
1

placing |AK| and II;ACI'L we get |AM| <
CM|-|AB MB|-
! Il‘%’ll L |cI'B'| Lo (1am|—14cy x
|BC| < (|AB|— |AC|) |IMC|, which was to be

proved.
a®+4 b2+ c?
3

344. The minimum is equal to

and is reached if M is the centre of mass of the
triangle ABC. (This can be proved, for instance,
using the method of coordinates or Leibniz’ theor-
em-—see Problem 140 in Sec. 2).

345. Let us “rectify” the path of the ball. To
this end, instead of “reflecting” the ball from the

A

side of the billiards, we shall specularly reflect
the billiards itself with respect to this side. As
a result, we obtain a system of rays with a com-
mon vertex; any two neighbouring rays form an
angle a. The maximal number of rays in the sys-
tem which can be intersected by a straight line
is just the maximal number of reflections of the
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ball. This number is equal to [%]+1 if —2— is
not a whole number ([z] the integral part of the
number 2); if % is a whole number, then it is

equal to the maximal number of reflections.

346. If the roads are constructed as is shown in
Fig. 61 (4, B, C and D denote the villages, and
the roads are shown by continuous lines), then
their total length is 2 + 2 l/3 << 5.5. It is possible
to show that the indicated arrangement of the roads
realizes the minimum of their total length.

347. If one of the sides of the triangle through
A forms an angle @ with the straight line perpen-
dicular to the given parallel straight lines, then
the other side forms an angle of 180° — ¢ — a;
on having found these sides, we get that the area

ab sin a

] 2o:os(pcos(<p—|-cz)=
afsina This expression is

" cos @ 1 098 (@ + 2¢)
minimal if o+ 2¢ = 180°.

of the triangle is equal to —

Answer:  Syiyn = ab cot .-°2L_

348. We  have: SACBD=||%I;|T Socp =
2 (k+1) Socp- Consequently, S4 gcp is the great-
es(t if the area of the triangle OCD Igs the greatest.
But OCD is an isosceles triangle with lateral side
equal to R, hence, its area is maximal when the
sine of the angle at the vertex O reaches its max-
imum. Let us denote this angle by ¢. Obviously
Py < ¢ << m, where ¢, corresponds to the case
wgnen AB and CD are mutually perpendicular.
Consequently, if ¢, << n/2, then the maximal area
of the triangle OCD corresponds to the value ¢; =
n/2, and if ¢, > n/2, then to the value @; = @,.

Answer: if k<y 2—1, then Sy axy=(k+1) R?%;
if k> 2—1, then Spax=2R? V k (k1 2)/(k+1).
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349. Let the straight line BC satisfy the con-
dition: | BP | = | MC | (the order in which the
points follow is B, P, M, C). We are going to
prove that the area of the quadrilateral ABNC
is the smallest. We draw another straight line
intersecting the sides of the angle at points B,
and C,. Let the point B lie between the points A
and B, then the point C; lies between 4 and C.
We have to prove that Spp v > Sco n- This

inequality is equivalent to the inequality Sy >
S S

BB\P __ °CCiP _ |;;1P[ Adding
SN~ Sceyn 14N
S BpC, 0 both sides of the last inequality, we get:

Spp.p + Sgpc, = SBB;PCI = Sc¢,cB, (follows
from the equality | BP | = | MC |) for the left-
hand member and SCC;P + SBPC, = SC,CB for
the right-hand member. But, obviously, Sc,cB, >
S¢,cp- The case when the point B, lies between A4
and B is considered in a similar way.
Construction. It suffices to draw a straight line
to intersect the sides of the given angle and the
straight lines AN and AM at points B,, P,, M,,
and C,, respectively, so that | ByP, | = | MyC, |
and then to draw through M a straight line paral-
lel to ByC,. Consider the parallelogram AB,DC,;
let K and L denote the points of intersection of
the straight lines A P, and A M, with B,D and CyD,
respectively. It follows from the equality
IBDPO I = IMOCO I that SABOK = SACQL‘ The
problem is reduced to constructing two equivalent
triangles AB,K and AC,L all of whose angles are
known. Taking B, arbitrarily, we construct the
triangle AB,K. We then take on AB, a point
E such that £ZB,KE = LALC, and construct
the line segment AC, equal to Vi BE | |ByA |.
B,C, is the required straight line.
emark. Consider the following problem.
Through a point M lying inside a given angle draw

SCC;[P' since
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a straight line intersecting the sides of the angle
at points B and C so that the line segment BC
is the smallest. It follows from the above problem
that BC will be the smallest line segment if
| BP | = | MC |, where P is the projection of
the vertex of the given angle on BC. (It follows
even a stronger assertion, namely, if the line seg-
ment BC possesses the indicated property, then
for any other straight line passing through M and
intersecting the sides of the angle at points B,
and C, the projection of the line segment B,C, on
the line segment BC is greater than| BC |.) How-
ever, it is not always possible to construct such a
line segment by means of a pair of compasses and
a ruler.

350. Let M, and N, be two other points on the
sides of the angle (Fig. 62). Then LM,AN; = B,

Fig. 62 Fig. 63

LAMM 360° —a — p — LON;A > 180° —
£LON,A = £ AN,N. Hence, bearing in mind that
LMAM, = /. NAN,, we get that | M4 | <<
| NyA |, and, hence, SM;AM<SN1AN; thus,

SomiaNy < Soman-

351. Taking into account the results of the pre-
ceding problem, we have to find out on what con-
ditions we can find on the sides of the angle points
M and N such that ZMAN = f and | MA | =
| AN |. Circumscribe a circle about the triangle
MON (Fig. 63). Since ¢ + ¢ + p <<180° the

24—01557



370 Problems in Plane Geometry

point A is located outside this circle. If L is the
point of intersection of the straight line O4 and
the circle, then the following inequalities must be

fulfilled: ZAMN = 90°-—T > LLMN=LLON
and ZANM = 90° — —g— > £ LOM. Thus, if

P <<90° — —g— and << 90° — -g— , then it is
possible to find points M and N such that
| MA|=|AN| and ZMAN = . If the con-
ditions are not fulfilled, then such points cannot
be found. In this case, the quadrilateral of the
maximal area degenerates into a triangle (either
M or N coincides with 0).

352. Let us take a point A; on BC (Fig. 64).
The quadrilateral OMA ;N is equivalent to the

I

M Ay

0 ] 4
Fig. 64

quadrilateral OMAN, L MA,N < ZMAN; conse-
quently, if we take on OB a point M, such that
AMlAlN = LMAN, then SOM]AlN > SOMAN;
hence, the area of the quadrilateral corresponding
to the point 4,, which, taking into consideration
the results of the two previous problems, proves
the statement.

353. Let, for definiteness, sin a>> sin f; on
the extension of AB, we take a point K such that
£LBKC = B. Since <LCBK = LADC (since
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ABCD is an inscribed quadrilateral), the triangle

KBC is similar to the triangle ACD. But | BC | >

| CD |, consequently, Sfcx >iABDc and Sagc >
__ a*sin(a+f)sina

SaBcp- But Spgc= 35 B , hence,

a?sin (@ 4P) sina - .
Sapep < 2 sin b In similar fashion,

2 i .
we can prove that S,pcp> 2 sméas;l—g) sin p .

354. Consider the other positions of the points
M, and N, (LM;AN, = B) and, bearing in mind
the condition a@ + P > 180°, show that the “added”
triangle has a greater area than the triangle by
which the area is reduced (similar to the so%ution
of Problem 350 of Sec. 2).

355. Taking into account the result of the pre-
ceding problem and reasoning exactly as in Prob-

lem 351 in Sec. 2, we get: if ¢ > 90°—% and

P > 90° — 2£ , then a quadrilateral of the smallest

area exists and for it |MA|=-|AN|. If this con-
dition is not fulfilled, then the desired quadrilat-
eral degenerates (one of the points M or N coincides
with the vertex 0).

356. We take the point A for which the condi-
tions of the problem are fulfilled and some other
point A,. Drawing through A, straight lines paral-
lel to AM and AN and which intersect the sides
at points M, and N,, we make sure that
SomiaN; <Soman and, consequently, the more
80, the area of the minimal quadrilateral corre-
sEonding to the Foint A, is less than the area of
the quadrilateral OMAN which is the minimal
quadrilateral corresponding to 4.

357. The radius of the largest circle is equal to

2R/V 3, thatis, to the radius of the circle circum-
scribed about the regular triangle with side 2R.
(Let us take such a triangle and, on its sides as

24
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diameters, construct the circles.) For any circle
of a greater radius, provided it is coverable by the
given circles, there is an arc of at least 120° covered

y one circle, but such an arc contains a chord
greater than 2R. Thus, we have arrived at a con-
tradiction.

In the general case, if there is an acute triangle
with sides 2R, 2R,, 2R3, then the radius of the
circle circumscribed about this triangle is the re-
quired one. In all other cases, the radius of the

reatest circle is equal to the greatest of the num-
ers Ry, R,, R;.

358. It is possible. Figure 65 shows three

unit squares covering a square 5/4 on a side.

Fig. 65

359. Let us first note that the side of the
smallest regular triangle covering the rhombus
with side a and acute angle of 60° is equal to 2a.
Indeed, if the vertices of the acute angles M and
N of the rhombus lie on the sides AB and BC of
the regular triangle ABC and £LBNM = a, 30°<<
a << 90°, then, using the law of sines for finding
| BN | from the triangle BNM and | CN | from
the triangle KNC (K the vertex of the obtuse angle
of the rhombus which may be assumed to lie on
the side AC), we get after transformations: |BC| =
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(]

2a 6050(3330° ) . Taking into account that 30°<C
a<< 90° we find that | BC | > 2a. It is easy to
see that an equilateral triangle 3/2 on a side can
be covered by three regular triangles with side 1.
To this end, we place each of the unit triangles so
that one of its vertices is brought into coincidence
with one of the vertices of the triangle to be covered,
while the midpoint of the opposite side coincides
with the centre of the covered triangle.

Let us now show that it is impossible to cover
an equilateral triangle with side b > 3/2 with three
equilateral triangles of unit area. If such a cover-
ing were possible, then the vertices 4, B, and C
would be covered by different triangles, and each
of the sides AB, BC, and CA would be covered by
two triangles. Let A belong to the triangle I, B
to the triangle II, C to the triangle III, the centre
O of the triangle belonging, say, to the triangle I.
Let us take on AB and AC points M and N, respec-

tively, such that |AM|=|AN|=—%—b. Since

| BM | = | CN | =%b>i, the points M and
N also belong to the triangle I and, consequently,
the rhombus A MON is entirely covered by the
triangle whose side islessthan2|AM | (2|AM| > 1),
which is impossible.

. |AM| |CN|
l 260. Denote the ratios TMC ——-—lNBI and
ML) .
(LM by a, B, and y. Then (see the solution of

Problem 221 in Sec. 1) P=Qafy, S=Q (a+1) X
(B + 1) (v + 1). Finally, take advantage of the
inequality (o + 1) (B -+ 1) (y-+1) > (Y apy+1)*.

361. Let cot a==z, cotPp=y, then coty=

—azy+1 3414
z_"}’_-; = ";j__y —z, a?cota + b2cotf +
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ctcot y=(a?—b2—c?) z 4 b2 (z+y) + c* f_:—i .

The2 minimum of the expression b2 (z + y)+
: jyi with z fixed and z+y >0 is reached

for such an y for which the following equality is

341 z+y ¢
fulfilled: 2 e
u (zt+y)=c P e = b
¢ __zty _ siny
b yzaf1 sinf
value of the given expression is reached for such
a, B, and y whose sines are proportional to the
sides a, b, and ¢, that is, when the triangles
under consideration are similar. But in this case
an equality occurs (it is readily checked).

362. Denote:p —a=z,p—b=y,p—c=
z (p the semiperimeter). Leaving 4S V'3 in the
right-hand side of the ineﬂuality, we get, after
transforming the left-hand side (for instance,
a? —(b—c)*=4(p —b) (p — ¢) = 4yz) and re-
placing S by Hero's formula, the inequality zy +
yz + 32> V 3 (z + y + 2) zyz. Dividing both
sides of the inequality by V zyz and making the
substitutions u = V (@), v= V )z, w=
Vea)y (z = uw, y = vu, z= wv), we get the
inequality ut+v4w> V3w + w + wu),
which, on squaring, is reduced to the known in-
equality u? + v? 4+ w?> uv + vw + wu.

363. There are two families of regular triangles
circumscribed about the given triangle (see Prob-
lem 305 in Sec. 2). On the sides of the triangle ABC,
we construct externally the triangles ABC,, BCA,,
and CAB,; and circumscribe circles about them.
The vertices of the triangles of the first family lie
on these circles (one Per each circle). Let 0,0,0,
denote the centres of those circles (0,0,0; is a
regular triangle, see Problem 304 in Sec. 2). The
triangle whose sides are parallel to the sides of

c?

Hence, the least

* Thus,
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the triangle 0,0,0, has the greatest area (the sec-
ant passing through the point of intersection of
the two circles has the greatest length when it is
parallel to the line of centres; in this case its length
is twice the distance between the centres). The
area of the greatest triangle is S, = 454, 0,0, =
2 2 2 -
‘23 (a +2b mally + 28 l/3) , where § is the area

of the given triangle (see the solution of Problem
305 in Sec. 2). The area of the greatest triangle
belonging to the second family is less. Among
the regular triangles inscribed in the given one,
the triangle whose sides are parallel to the sides
of the greatest circumscribed triangle has the
smallest area. This follows from the result of Prob-
lem 241 of Sec. 1. Its area is equal to §, = S2/S,.
Thus, the area of the greatest circumscribed regular

V'3 (a? + b2
6

2
malla) -+ 2S5, and
the area of the smallest inscribed triangle equals

2
S;= —%—— , where S is the area of the given triangle.

triangle is S, =

364. Circumscribe a circle about the triangle
AMC. All the triangles A;MC obtained as M
displaces in the arc AC are similar, consequently,

ICM|

the ratio is the same for them. Therefore,
|A,\ M|

if M is the point of minimum of the expression

(M) = M , then BM must pass

1

through the centre of the circle circumscribed about
the triangle A MC, otherwise we can reduce | BM |

iemy -
A, M|
and C, be, respectively, the points of intersection
of the straight lines BM and CM with the circle
circumscribed about the triangle ABC, then

leaving the ratio

unchanged. Let now B,
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|IBM|-|[CM| _{CM|.|AM | _|AM]|-|BM|
|4, M) 1B1M | |CM |

Consequently, the straight lines AM and CM
must also pass through the centres of the circles
circumscribed about the triangles BMC and
AMB, respectively. Thus, the point M is the
centre of tﬁe inscribed circle (see Problem 125 of
Sec. 2). In addition, in this case A, is the centre
of the circle circumscribed about the triangle

. r cCM
CMB, sin ZMBC = B’ S ZMBC =
| BM |-| CM |
2|A;M|; hence, ——————— = 2r.
14, M1 1A M|

Let us return to the question of the least value
for the function f (M). One of the theorems of
mathematical analysis states that a function,
continuous on a closed set, always reaches its
greatest and least values on that set. In particular,
this theorem is true for a function of two var-
iables defined on a polygon. But the theorem is not
applicable directly to this problem, since the
function f (M) is not defined at the vertices of
the triangle ABC. But cutting away from the
triangle its small corners, we get a hexagon on
which f (M) becomes a continuous function and
has, consequently, its least value. It is possible
to prove that near the boundary of the triangle
f (M) > 2r. Therefore, if the cut-away corners
are sufficiently small, then the function f (M)
reaches its least value on the hexagons, and hence,
on the triangle, when M is the centre of the inscribed
circle, thisleast value being equal to 2r. On the
other hand, the function 7 (M) does not attain
its greatest value although it is bounded. Prove
that f (M) << I, where [ is the length of the greatest
side of the triangle ABC, for all the points of the
triangle with the exception of the vertices, and that
f (M) can take on values arbitrarily close to .

365. On the rays MB and MC, we take points
C, and B,, respectively, such that | MC, | =
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| MC |, | MBy, | = | MB | (the triangle MCB,
is symmetric to the triangle MBC with respect
to the bisector of the angle BMC), C, and B, are
the projections of €, and B; on the straight line
AM, respectively. We have: | BM | sin LAMC +
|ICM| sin LZAMB= |B,M) sin LZAMC+ |C;M| X
sin LZAMB = | BB, | + | C,C; | > | ByC, | = a.
Writing two more such inequalities and adding
them together, we prove the statement of the
problem. It is easy to check that if M coincides
with the centre of the inscribed circle, then the
inequality turns into an equality.

366. (a) Let us first solve the following prob-
lem. Let M be a point on the side 4 B of the trian-
gle ABC; the distances from M to the sides BC and
AC are equal to u and v, respectively; &, and &,
are the altitudes drawn to BC and 4 C, respectively.

Prove that the expression hT‘—f——%’— reaches the

least value when M is the midpoint of AB. We
denote, as usually: |BC|=a, |AC|=Db, S
the area of the triangle ABC. We have: au.+ bv =

28, v = 28 ; 2% . Substituting v into the expres-

sion —hul—{—-’:—’zt, we get: atu?—2Stu + 2h; 8§ =0.

The discriminant of this equation is nonnegative,
S§2% (12 — 4t) > 0, whence t> 4. The least value
= 4 is reached for u = S/a = h)/2, v = h,/2.
It follows from this problem that the least value
of the left-hand member of the inequality of Item
(a) is attained when M is the median point. The
inequalities of Items (b) and (c) are proved in a
similar way. In Item (b) we have to determine for
what point M on the side 4 B the product uv reaches
its greatest value. In Item (c), we first divide both
sides of the inequality by uvw and solve the prob-
lem on the minimum of the function (k,/u — 1) X
(ha/v — 1) for the point M on AB.
367. Let for the acute triangle A BC the inequal-
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ity | AC |< | AB | < | BC | be fulfilled; BD the
altitude, O the centre of the circumscribed and 7
the centre of the inscribed circle of the triangle
ABC, E the projection of I on BD. Since | ED | =
r, we have to prove that | BE |>» R = | BO|.
But BI is the bisector of the angle EBO (BI is the
bisector of the angle ABC and LABD = £ OBC),
LBEI = 90°, £ BOI'>» 90° (the latter follows
from the fact that the projection of CI on BC does
not exceed |BC|/2). Consequently, |BE|> | BO |
(we map BO symmetrically with respect to BI).
368. Since the area of the triangle formed by
the medians of the other triangle is 3/4 of the
area of the original triangle, and for any triangle
abc = 4RS, we have to prove that for an acute
triangle the following inequality holds true:

mgmpme > % abe. (1)

Let, for the convenience of computations, one of
the sides be equal to 2d, and the median drawn
to this side be m. Since the triangle is acute-angled,
we have: m > d. Let ¢t denote the cosine of the
acute angle formed by this median and the side
2d, 0<t<<d/m (t<<d/m is the condition for
a triangle to be acute-angled). Expressing the
sides and median in terms of d, m, and ¢ and
substituting the found expressions into the
inequality (1), we get after transformations:
m2 (9d2 4 m2)? — 25d% (d2+ m?)® > t2d2m? (64m®—
1004?). The left-hand member of the inequality
is reduced to the form: (m? — 4dm + 5d%) X
(m? 4 4dm + 5d2) (m® — d?). For m > d this
expression is positive. In addition, if m =4
(the triangle is right-angled), then the left-hand
member of the inequality is no less than the
right-hand member (equality for ¢ = 0). Further,

ifd<<m< —i)—d, then the right-hand member
of the inequality is nonpositive, and the inequality
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holds true. Let m > %d. In this case, the right-

hand member of the inequality is less than the
value obtained for ¢t = d/m. But for t = d/m the
original triangle is right-angled, and for right
triangles the validity of a slack inequality has
been already proved. (It suffices to repeat the same
reasoning with respect to the other side of the
triangle.) Thus, it has been proved that the in-
equality (1) is valid for any nonobtuse triangles
except for isosceles right triangles; for the latter
an equality occurs.

369. Let M lie inside ABC at distances z, y,
and z from the sides BC, CA, and A B, respectively.
The problem is to find the minimum of z2 4 y% +
22 provided that az + by 4- ¢z = 254 pc. Obvious-
ly, this minimum is reached for the same values
of z, y, z as the minimum of 2% 4 y% + 22 —
2\ (az+ by +e2) = (z— Aa)?+ (y — AB)3+- (2 — Ae)? —
A2 (a® 4 b% + c?), where A is an arbitrary fixed
number (also provided that az+- by +cz=2S5 4 g¢).

. 28 sBC .
Taking A=——a3 T+ (A is found from the
equations z = Aa, y = Ab, z = A¢, ar -+ by +
¢z = 28,4 gc), we see that the minimum of the
last expression is reached for z = Aa, y = Ab,
z = he. Let now the point M be at distances Aa,
Ab, and Ac from BC, CA, and AB, respectively,
and the point M, symmetric to M with respect
to the bisector of the angle 4. Since S,y ¢ =

S am,;p» My lies on the median emanating from

4, and this means that M lies on the symedian
of this angle (see Problem 171 in Sec. 2).

370. Let M be a point inside the triangle A BC
whose greatest angle is less than 120°. We rotate
the triangle AMC about the point A through an
angle of 60° externally with respect to the triangle
ABC. As a result, the point C goes into the point
C,, and the point M into the point M,;. The
sum |AM |+ |IBM |+ |CM | is equal to the
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broken line BMM,C. This line is the smallest
when the points M and M, lie on the line segment
BC,. Hence, there follows the statement of the
pro%lem.

371. Let ABC be the given acute triangle, 4,
a point on the side BC, B, a point on the side CA,
C; a point on the side AB; 4, and 4 points sym-
metric to A, with respect to the sides AB and AC,
respectively. The broken line A4 ,C,B,4; is equal
to the perimeter of the triangle A;BC,; conse-
quently, with the point A4, fixed, ti\is perimeter
is the smallest and equafs | AjAg | when the
points C; and B; lie on the line segment A,4;.
But AA4,A4; is an isosceles triangle, L A,4AA;=
2 LBAC, |A,A | = | A4A | = |AA,|. Hence,
| Agd 4| is the smallest if AA, is the altitude of
the triangle BAC. In similar fashion, BB, and CC,
must also be altitudes.

372. If the greatest angle of the triangle is
less than 120°, then the sum of the distances takes
on the least value for the point from which the
sides can be observed at an angle of 120° (see
Problem 370 in Sec. 2). This sum is equal to | BC, |
(using the notation of Problem 370 of Sec. 2). Tlle
square of this sum is equal to a2+ b2 —

2ab cos (£LC+60°) = % (@ + b + ) +25 V3.

But it follows from Problem 362 of Sec. 2
that a2 4 b2 c’)és_l/& It remains to prove
the inequality S > 31/ 3r2. It is proved in a rather
simple way; it implies that among all the triangles
circumscribed about a given circle the equilateral
triangle has the smallest area (for this triangle the
equality is fulfilled). To complete the proof, it
is necessary to check whether the inequality
a + b> 6r is true, since for a triangle with an
angle exceeding 120° the least value is reached by
the sum of the distances to the vertices at the vertex
of the obtuse angle.
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373. Let us prove the right-hand member of
the inequality. Let, for definiteness, b > c.

(1) If a<<b, then 2p=a-+bic=(b—a)+c+
be be-}-a?
2a<2c+2a<27+2a=2—-—

@2)If a>b>c, then a<<2b and 2p=a-+b-+}

2bc bc+a?

c=b+c—a)t2a <L c+2a< - +2a=2—a—-—.

The left-hand member of the inequality follows
from the right-hand member and the identity

2
(b+¢)(p—a)—bccos d=a ( b‘;"“ —p
. IBN| _ |AM| _ ALl __
374. We have: NeT = e = 1Ior =
—" zll()'l , that is, KN is parallel to CD, the quad-

rilateral KLMN is a parallelogram. Let |AK|=a,

|KC| =b, |BK| =z, |KD| =y, %>%; then

z 2
SkLM=8SALM—SAkL= (z—_|_—y—) Sabpc

— Ll Sinp=—T
z+y a+b ADc—z—l—y

z a y z%
. - N — S .
(z_*_y PR ) T ABCD<(z+y)3 ABCD

We denote: y/z = t. It is easy to prove that the
greatest value 4/27 is attained by the function
t/ (1 + t) for t = 1/2 (for instance, by taking
the derivative of this function). Thus, Sgryny =

8
2SkLm < 57 Sabep-

375. Let a, b and ¢ denote the sides of the trian-
le ABC, I the centre of the inscribed circle. The
ollowing vector equality holds true (it follows
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from the property of the angle bisector, see Problem
9 in Sec. 1):

-— — -—
IA.a+ IB-b+ IC-c = 0. ()

In addition, | IB | <<¢, | IC | < b. These inequal-
ities follow from the fact that the angles A/B
and AIC are obtuse. Let us take a point A, suffi-
ciently close to the point A so that the inequali-
ties are fulfilled as before: | 1B | <e¢, | I;,C | <
b, where I, is the centre of the circle inscribed in
the triangle A,BC. The sides of the triangle 4,BC
are equal to a, b, ¢;. The same as for the triangle
ABC, we write the equality

-— —_— —
IlAl-a-l—IlB-bl-l-]lC-cl:O. (2)
Subtract (1) from (2):
— -— — —_ —_— -—
a([lAl'—IA)"‘IIB'bl'—lB'b+IIC'L'l—IC'C=0.
®
Note that
—_— e = —>
IlAl—‘IA———-]lI"i‘AAl, (4)
— —_— —_ —
I1,B-b,—IB-b—I,B (by—b)+4I,1-b, (5)
— — —_ —
11C'L‘1—IC'C+IIC(Cl—C)'*‘lll-c. (6)

Replacing in (3) the corresponding differences
by the formulas (4), (5), (6), we get

— —_— R
II(a+b+c)+AAy-a+1,B(by—b)
—_—
+11C(cl—c)=0.
P —
Since |I1B| <e, |I,C| <b, |bj—b| < |A44],
—
ley—e| < |4,A|, we have: |111l=7*:b+—c><

— — —
{AAy-a + I1B(by — b) + I,C (e; — ¢)| < |AA;| X
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at+b+te
at+b+te
statement of the problem for any position of A4,.
Remark. We have actually differentiated the
equality (1) and proved that |V,| > |Vy|, where
Va and V; are the velocities of displacement of
the points A and I, respectively.

376. Circumscribe circles about the triangles
ABF, BCD, and CAE. They have a common point
M. Since the angles of the triangle DEF are con-
stant, /D =9y, LE=a, LF =§, the con-
structed circles and point M are independent of
@. The side DF (and, consequently, EF and ED)
is the smallest when DF is perpendicular to BM.
Let @, be the angle corresponding to this position.
Then /MBC = LMCA = LMAB = 90° — g,.
Extend CM to intersect the circle circumscribed
about the triangle A MB at a point F,. We can find
that £F,BA = a, L F,AB = B; F,B turns out
to be parallel to AC. l"rom F, and B, we drop
perpendiculars F\N and BL, respectively, on AC.

=|AA,|, whence we can derive the

Since | F,N|=|BL|, we A’mve: tan @, =
ICN| 14N| |AL]

cot (90° — = ==

ot 00" =90 = TRNT = TRNT T BLT T

ICL|

[BL| =cot B + cot @ 4 cot y. Thus, tan ¢, =

cot @ + cot f + cot y. Remark. The angle o =
90° — @, is called the Brocard angle, and the
point M the Brocard point. There are two Brocard
points for each triangle. The position of the sec-
ond point M, is determined by the condition:
LMBA = LJ}I‘I&AC = /L M,CB.
. 146, |BA,| _ |CBy| _
377. Set: TAB| z, TBCI Y, TCAl 2.
We assume that z < 1/2. Suppose that the areas
of the triangles AB,C,, BC,A,, and CA,B, are
greater than the area ofl the triangle 4,B,C,. Then
2<< 1/2 (otherwise Sac,B; <SayciBy) 80y < 1/2.
The areas of all the triangles under consideration
are readily expressed in terms of S, g¢ and z, y,
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z, for instance: S,p o =2z (1 —2) Sypc. The
inequality S, g0, < SaByc, 18 reduced to the
fom1—z2(1—2) —y(l—2) —z(1 —p<
z (1 — z). Adding three such inequalities toge-
ther, we get: 3 —4z(1 —z) —4y (1t —2) —
4z (1 — y) << 0. The last inequality is linear with
respect to z, y, z. If it were fulfilled for certain
z,y, z between 0 and 1/2, it should also be fulfilled
for a set of the extreme values of the variables,
that is, when each variable is equal either to 0 or
1/2. But it is possible to check to see that this
is not so. The obtained contradiction proves our
statement.

378. Let Q denote the midpoint of OH. As is
known, Q is the centre of the nine-point circle
(see Problem 160 in Sec. 2). We have: | OH |2 +
4|QI|12=2|0I|2+ 2| HI|2 Since |QI| =
R/2 — r (by Feuerbach’s theorem, Problem 287
of Sec. 2), | OI |* = R? — 2Rr (Euler's formula,
Problem 193 of Sec. 2), and bearing in mind that
R > 2r, we get:
|OH |2 =2 |IH |2+ R? — 4r* > 2| IH |®.

379. An elegant idea for proving inequalities
of such a type was suggested by Kazarinoff (Michi-
gan Mathematical Journal, 1957, No. 2, pp. 97-98).
Its main point consists in the following. Take

oints B, and C, on therays4 B and A C, respective-
y. It is obvious that the sum of the areas of the
parallelograms constructed on 4B, and AM and
on AC, and AM is equal to the area of the paral-
lelogram one of whose side is B,(,, the other being
parallel to AM and equal to | AM | (see also
Problem 40 of Sec. 2). Consequently,

|AC, v+ | AB, | w< | BiCy | = )

(a) Let us take the points B, and C, coinciding
with the points B and C; then the inequality (1)
yields the inequality bv 4 cw < az. Adding to-
gether three such inequalities, we get the required
inequality.
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(b) If | AB, | = [AC |, | AC,| = | AB |, then
the inequality (1) will yield cv + bw<< az or 2>
-z-— v+% w. Adding together three such inequali-
ties, we get:

stites (ot g )ut (S+2) v

a
Heta) w2 @tvto.

(c) In Item (a), we proved the inequality ar >
bv+cw, whence zu >—a—uv+% wu. In similar

fashion, yv > -%— uv—|—% wo, w > % uw -+ % w.

Adding together these three inequalities, we get:
a b b c
au+tyv+w > (—b- —;—) uv—{—(T—l—T) vw-t

(%—}—%) wu =2 (wv+vw+wu).

(d) Let 4,, B,, and C, denote, respectively, the
projections of the point M on the sides BC, CA,
and AB of the triangle ABC. On the rays MA4,
MA,, MB, MB,, MC, MC,, take, respectively,
points A’, A{, B, By, C’, C; such that | MA | X
| MA' | = | MA,| | MA;|= | MB|-| MB'|=
| MBy| IMB;|=|MC]|:|MC'|=|MC|X
|MC;| = d%*. It is possible to prove that the
points A’, B’, €’ lie on the straight lines B;Cj,
CiA{, A{Bj], respectively, MA’, MB', MC' being
respectively perpendicular to these lines. Thus,
in the triangle A{B{C;, the distances from M

* This transformation is called inversion. See
the Remark to the solution of Problem 240, Sec. 2,
and also Appendix.

1)2 25—01557
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2 2

to the vertices are equal to ﬁ-, -d—, 2 ,
u v ow
a¢ d* 42

and to the opposite sides to = v I
Applying the inequality of Item (b), we get the
required inequality.

(e) Let us take in the inequality (1) by=c,=1;
then g, =2lsin % . We have z > ! v (u+v).

2s8in —2—

On having obtained similar inequalities for y
and z, and multiplying them, we get:

2ys > e (uh0) () (o)

8 sin —A—sin — 8in ——
2 2 2

=5 @+v) @+u) (@+w

. r

. . A . C
(the equality sin sin —- - 8in —-==7= was

-5
proved when solving Problem 240 in Sec. 1‘ .

(f) From the inequality of the preceding it'em it
follows: zyz> % 2V uw-2 Y vw-2 V.EZ:"_?. X

uvw,

(g) Dividing the inequality of Item (d) by the
inequality of Item (f), we get the required in-
equality.

Remark. In the inequality of Item (a), equality
is achieved for any acute triangle when M coincides
with the intersection point of the altitudes of the
triangle. In Items (b), (c), (d), and (g), equality
is achieved for an equilateral triangle, when M
is the centre of this triangle. In Items (e) and (f),
equality is achieved in any triangle, when M is
the centre of the inscribed circle.

380. Consider the class of similar triangles.
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As a representative of this class we choose such
a triangle ABC in which | AB| = v, | BC | = u,
| 4C | =1, u<v<<1. Thus, to each class of
similar triangles there corresponds a point B in-
side the curvilinear triangle CDE, where D is the
midpoint of the arc AC, the arc EC is an arc of
the circle with centre at 4 and the radius of 1,
ED being perpendicular to AC (Fig. 66). The trian-

\E
F
PING
M
KIV
8
B, BZ_ _ﬂ B,,
X J
Y
A L y/j c

Fig. 66

gle ABD will be called a “left-hand” triangle, the
triangle BDC a “right-hand” triangle. Consider
the process described in the hypothesis; in doing
so, at each step we shall leave only the triangles
similar to which we have not met before. For each
triangle we shall take the representative of the
class described above. Let X, Y, Z be midpoints of
AB, DB, CB, respectively; m = | DB |, h the
altitude of the triangle ABC. For “right-hand”
triangles, the following three cases are possible.

25
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1) u<<1/2, m< 1/2 or u<< m, 1/2< m, that
is, the greatest is the side DC or BD. This case
occurs if B is located inside the figure DMFC,
where DM is an arc of the circle of radius1/2
centred at the point C, FC the right-hand part of
the arc EC, | DM | = | MC | = 1/2, DC and FM
line segments, FM | DC. In this case, the arc
MC (centred at D) separates the domain for which
DC is the greatest side in the triangle DBC
from the domain for which the greatest side is
DM. In this case, the representative of the
triangle DBC has an altitude equal to 2k if DC

h R
2m? = 2\ DB,

is the greatest side, or

5 h___ =q®h g®)>1if h<
7_2‘/1“"’
Vila.

(2) u>m, u>1/2, v> 2m. Note that the
equality v = 2m occurs for the circle with dia-
meter LC, where | AL | = 1/3. Inside this circle
v > 2m. This case takes place if the point B is in-
side the curvilinear triangle DKN (KN and ND
arcs, DK a line segment). Since the triangle DZC
is similar to the original triangle ABC, we con-
sider only the triangle DZB. Its greatest side is
DZ equal to v/2. Its representative has the altitude

Lo 1 h R
equal W O BE = > TAB,F ~ [AB;T

h

5/9 + (4/3) V179 — h3

(3) ux 1/2, u> m, v<< 2m. In this case, the
greatest side in the triangle BZD is BD equal to
m, and there is no need to consider the parts of the
triangle BDC since the triangle BYZ is similar
to the triangle BDC, and the triangle DYZ is
similar to the triangle ABD (we do not consider
the triangle DZC any longer).

= gqg (k) by, qq (h) > 1.
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For “left-hand” triangles, two cases are possible,
they are analogous to Cases 2 and 3 for “right-
hand” triangles.

(2') If B is inside the figure DKNC, then the
triangle DXB, congruent to the triangle DZB, is
left for further consideration; its representative
has an altitude no less than g, (k) A.

(3') If B is outside the figure DKNC, then
further consideration of parts of the triangle ABD
is ceased.

Note that, with an increase in &, the coefficient
g, () increases, while g, (k) decreases and becomes
equal to 1 at the point F, h = V' 7/4. Let us take
points P and Q on FM and the arc FC, respectively,
sufficiently close to F. Inside the figure
B;KNMPQB,, the inequalities gq; (k) > qq, g2 (R) >
go, and g, > 1 are fulfilled. Consequently, in all
cases the rate of increase of % is no less than g,
and in a finite number of steps or for all the trian-
gles under consideration either Case 3 will occur or
the vertex of the triangle will be located inside
the curvilinear triangle PFQ. The case when the
point B is inside the triangle PFQ involves no dif-
ficulties and is considered separately. In that case,
“right-hand” triangles should be considered. It
suffices to meet the condition | FP | < | FM | =

ices to
ﬂ[“—:*. In the triangle BDC, the side BD

equal to m is the greatest, h2< 7/16. We can
show that to the representative of the class of
triangles similar to the triangle BDC, there will
correspond a point lying outside the curvilinear
triangle PFQ. And since the altitude is not de-
creased in this case, Case 3 will occur for both
parts of the triangle BDC. The proof of the first
part has been thereby completed.

The second part follows from the result of Prob-
lem 327 of Sec. 2 and also from the fact that all
the triangles which are considered after the first
division have a representative whose altitude is
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no less than &, and, consequently, the smallest
angle is mo less than 4B, AC > -;— LBAC>

% £L.BAC.

381. Let us formulate and prove the result
obtained by M. D. Kovalev which is stronger
than it is required by the hypothesis. Among all
the convex figures covering any triangle with sides
not exceeding unity, the smallest area is possessed
by the triangle A BC in which £ A4 =60°, | AB|=1,
and the altitude drawn to AB is equai to cos 10°.

The area of this triangle equals lccosl 10° ~

2
0.4924.

(1) Note that it suffices to find a triangle cov-
ering any isosceles triangle whose lateral sides
are equal to 1, the angle ¢ between them not ex-
ceeding 60°. This follows from the fact that any
triangle with sides not exceeding 1 can be covered
by an isosceles triangle of the indicated type.

(2) Let us prove that any isosceles triangle
mentioned in Item (1) can be covered by the triangle
ABC. We construct a circle of radius 1 and centred
at the point C. Let K, L, M, and N be the suc-
cessive points of its intersection with CB, BA,
and AC (L and M are found on BA), LLCM =
£LMCN = 20°. Hence, isosceles triangles with the
angle 0<< @< 20° are coverable by the sector
CMN, whereas triangles in which 20° < << £C
are covered by the triangle ABC if the end points
of the base are taken on the arcs KL and MN and
the third vertex at the point C. Let us now con-
struct a circle of unit radius with centre at the
point A. This circle passes through the point B,
again intersects BC at a point P, intersects the
side AC at a point Q. We get: LPAB =
180° —2 LB << £.C, since B is the greatest angle
of the trian%le ABC. Hence, taking the vertex
of the isosceles triangle at the point 4 and the
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end points of the base at the point B and the
arc PQ, we can cover any isosceles triangle for
which ZC <9< 60° (even 180° — 2 4LB<
P < 60°).

(3) Let us prove that whatever the arrange-
ment (in the plane) of the isosceles triangle DEF
in which ZDEF = 20°, | DE | = | EF { = 1 and
the equilateral triangle XYZ with side 1, the
area of the smallest convex figure containing the
triangles DEF and’XYZ is no less than 0.5 cos 10°.
First note that the side of the regular triangle con-

taining DEF is equal to 72§cos 10°. (The follow-

ing statement is true: if one triangle can be placed
inside the other, then it can be arranged so that two
of its vertices are found on the sides of the larger
triangle. We are not going to prove this general
statement. It suffices to check to see its validity
in the case when one of them is the triangle DEF,
the other being a regular triangle. This can be
done easily.) Now, consider the smallest regular
triangle X,Y,Z; with sides parallel to those of the
triangle XYZ, and containing the triangles DEF
and XYZ. The side of A X,Y;Z, is no less
than (2/)/ 3)cos 10°, and the altitude is no less
than cos 40°. The vertices of the triangle DEF
must lie on the sides of the triangle X,Y,;Z, not
containing the sides of the triangle XYZ. Conse-
quently, the sum of the distances from the vertices
of the triangle DEF which are outside the triangle
XYZ to the corresponding sides of the triangle
XYZ must be at least cos 10°— }/3/2, and the area
of the smallest convex polygon containing the
triangles DEF and XYZ is no less than
0.5(cos 10°—V/3/2)+ V'3/4=0.5 cos 10°.

(M. D. Kovalev also proved that the smallest (by
area) convex cover found for triangles with sides
exceeding unity is unique.)



Appendix: Inversion

Definitions

Consider in the plane a circle a of radius R
centred at a point O. For any point 4, distinct from
0, let us define the point A’ in the following way.
The Point A’ is located on the ray OA so that
|0A" || OA | = R2. Thus, for all points in the
plane, except for the point O, a transformation
is assigned which is called the inversion with respect
to the circle a. This transformation is also called
a symmetry with respect to a circle, the points 4
and A’ being said to be symmetric with respect to
the circle a. (If a straight line is assumed to be a
circle of infinite radius, then the symmetry with
respect to a straight line can be represented as a
limiting case of symmetry with respect to-a circle.)
The point O is called the centre of inversion, the
ql:lantity k = R?2, the power of inversion. Obviously,
the points A and A’ are interchanged: 4 goes into
A’, and A’ goes into 4. All the points of the circle
a, and only those points, remain fixed. The inter-
ior points of the circle @ become exterior, and vice
versa.

We can “supplement” the plane with a point
at infinity (co) and assume that as a result of the
inversion the point O goes into oo, and oo into O.

Henceforward, the points into which the
points A, B, C, . . . go as a result of the inversion
are denoted by A’, B’, C’,

Basic Properties of Inversion

Let us consider the basic properties of an in-
version leaving the simplest and obvious proper-
ties unproved and outlining a scheme for reasoning
in the rest of the cases. (Completing the reasoning
with missing links, considering various configu-
rations, as well as carrying out computations and
making drawings are left to the reader.)
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1. A straight line passing through the centre
of inversion goes into itself.

2. If- the points O, 4, and B are not collinear,
then the triangles 04 B and OB’A’ are similar. The
vertices A and B’, B and 4’ are similar. In addi-
tion, | A'B' | = (k| AB |)/ |04 |- |OB |.

Note that the last equality is also true if the
points O, A, and B are collinear.

3. A straight line not passing through the cen-
tre of inversion O, goes into a circle passing through
0. In this case, if I is a given line, A the foot of
the perpendicular from O on I, then ! goes into a
circle of diameter 0A4’.

Let us take an arbitrary point B on l. From
the similarity of the triangles OAB and OB’'A’
g(')goperty 2) it follows that LOB'A’ = LOAB =

4. A circle © passing through the centre of
inversion O, goes into a straight line perpendicu-
lar to the straight line passing through O and the
centre of the circle .

5. If a straight line ! and a circle © go into
each other in an inversion with centre at O, then
the tangent to  at the point O is parallel to l.

6. A circle o not passing through O goes into
the circle ' which does not contain O either.
In this case, O is the external centre of similitude
of the circles ® and ®’.

To prove this property, let us draw a straight
line through O and denote by 4 and B the points
of its intersection with the circle (in particular,
we may assume A and B to be diametrically oppo-
site points on ). Suppose that B lies on the line
segment OA. Then A’ belongs to the line segment
OB’. If C is an arbitrary point of the circle, then,
taking into account the similarity of appro riate
triangles (Property 2), we have: LA'C'B' =
LOC'B' — £LOC'A’' = LOBC — LOAC =
LACB.

Since the number of intersection points of two
lines remains unchanged in inversion, we have:

26—-01557
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7. Depending on the position of the centre of
inversion, two touching circles go into:

(a) two touching circles (if O lies on neither
of them);

(b) a circle and a line tangent to this circle
(O lies on one of the circles, but does not coincide
with the point of tangency);

(c) a pair of pamflel ines (O coincides with
the point of tangency).

The Angle Between Circles

The angle between two intersecting circles is
defined as the angle between the tangents to the
circles passing through one of the points oft their
intersection. The angle between a circle &nd a
straight line intersecting this circle is defined as
the angle between that line and the tangent to
the circle passing through one of the points of
intersection. Here, we may assume that the angle
between the lines does not exceed 90°.

Obviously, the choice of the point of intersec-
tion is of no importance for determining the angle
between two circles. It is also obvious that the
angle between the circles is equal to the angle
between their radii drawn to the point of inter-
section.

8. The inversion retains the angle between
straight lines, i.e., the angle between straight
lines is equal to the angle between their images.

If the centre of inversion coincides with the
point of intersection of the lines, then the asser-
tion is trivial. And if this centre does not coincide
with the point of intersection of ‘the lines, then
it follows from Property 5 and the definition of
the angle between two circles or between a circle
and a straight line.

9. In inversion. the angle between two circles
is equal to the angle between their images.

Consider the case when the centre of inversion
does not lie on given circles. Let 4 be one of the
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intersection points of the circles ®, and w,, I
and [/, the tangents to ©, and w,, respectively,
passing through 4. Let us also assume that the
centre of inversion O does not lie on the straight
lines /; and I,. In the inversion with centre O,
the circles », and w, go into ; and w;, respective-
ly, and the lines !, and [, into the circles I; and
I3 touching ®; and ; at the point A’ of their
intersection (Property 7), that is, the angle be-
tween I and I; is equal to the angle between o]
and o;, and since the angle between !; and ] is
equal to the angle between !; and !, (Property 8),
the angle between 0} and ®, is equal to the angle
between ©; and o,.

10. If the circles @ and ® are orthogonal, that
is, the angle between them is equal to 90°, then
in inversion with respect to o the circle o goes
into itself. And conversely, if in inversion with
respect to the circle o the circle @ not coinciding
with o goes into itself, then o and o are orthogonal.

Obviously, the last property is symmetric with
respect to & and ®. The radii of the circles a and
® are, respectively, equal to the tangents drawn
from the centre of one circle to the other circle.

On the basis of Property 10, the inversion can
be defined in the following way. All the points
of the circle @ go into themselves. If A does not
belong to @ and does not coincide with its centre,
then the image of the point 4 i> represented by
the point A4’ which is the second point of inter-
-section of any two circles orthogonal to @ and pas-
sing through 4. Now, the sense of the synonymic
name for inversion—symmetry with respect to
a circle—becomes clearer. From this definition
and the property of inversion to preserve the angle
between two intersecting circles, it follows that:

11. For any circle w and two points A and B
going into each other in the inversion with respect
to @ their images in the inversion with respect
to the circle & whose centre does not belong to
© are represented by the circle ©’ and points A’

26%
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and B’ which go into each other in the inversion
with respect to o’. If the centre of a lies on o,
then © goes into the straight line I/, and the
points A and B into the points A’ and B’, sym-
metric with respect to 1.

The Radical Axis of Two Circles

Solve the following problem.

Given two non-concentric circles w; and w,.
Find the locus of points M for which the tan-
gents drawn to the circles w;-and g are equal.

Solution. Let Oy and O, denote the centres
of the circles w, an:l @y, 1y and ry their radii, 4,
and A4, the goints of tangency, respactively. We
have |MO, 2 — | MO, |3 = (| MA, |3 4 r}) —
(Il MA, 12 4+ r}) = r} — r}. Thus, all the points
belong to one and the same straight line perpendic-
ular to 0,0,. This line is called the radical azis
of the circles ®, and w,. To complete the solu-
tion of the problem, it remains to determine which
points of the found line satisfy its conditions.
It is possible to show that if the circles do not
intersect, then all the points of the radical axis
are suitable. If o, and ®, intersect, then the rad-
ical axis contains their common chord; but all
the points of the common chord are not contained
in the required locus of Koints. Therefore, if ©, and
wq touch each other, then the point of tangency
is ‘excluded.

Consider the circle & with centre M on the
radical axis of the circles o, and », and radius
equal to the length of the tangent drawn from
M to ©, or ®,. (M is assumed to be located out-
side , and ®,.) The circle « is orthogonal to the
circles @, and w,. Thus, the points of the radical
axis situated outside the circles which intersect
or touch each other constitute the locus of centres
of the circles orthogonal simultaneously to ,
and ®,, and there is an inversion that carries
each of them into itself.
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Now, let us prove one more property of the
inversion. .

12. If the circles oy and ©; do not intersect,
then there is an inversion carrying thém into
concentric circles.

Let us take a circle a orthogonal to “w, and
w, with centre on the straight line I containin,
the centres of o, and w4. Since the circlesw, an
@, do not intersect, such a circle a is existent.
Let O be one of the intersection points™of the
circle @ and the line !. In the'inversion with centre
0, the line ! goes into itself, and the circle a into
the straight line p. The lines ! and p intersect and
are orthogonal to the circles ®; and w; whieh are
the images of w; and w, in the inversion with
respect to a. Hence it follows that the centres of
w; and ®; coincide with the point of intersection
of the lines ! and p, that is, o] and ®; are concen-
tric circles. (Prove that if a straight line is ortho-
gonal to a circle, then the former passes through
its centre.)

Here, we should like to note that any circle
orthogonal to the concentric circles @, and w;
is a straight line, that is, a circle of infinite ra-
dius. Hence, in the inversion with respect to the
circle o all the circles, orthogonal to the circles
®; and 0, must go into straight lines. Consequent-
ly, all the circles orthogonal to », and w, intersect
the line ! at two fixed points.

13. For any two circles ©, and w,, there exists
at least one inversion which carries them into
each other. The circle defining this inversion
is called the middle circle of ©; and w,.

Theorem 13 should be formulated more exactly
in the following way. If ©, and o, intersect, then
there exist exactly two inversions in which w,
goes into ®,, and vice versa. If w; and wy touch
each other or do' not intersect, then there is only
one such inversion.

Let us first consider the case of intersecting
circles ®; and w,. Apply an inversion / with centre



398 Problems in Plane Geometry

in one of the points of their intersection; as a re-
sult, ®, and ®, go into intersecting straight lines
!, and I,. The lines /, and I, have two bisectors with
respect to which !, and I, are symmetric. Conse-
quently (Property 11), in the inversion I those
bisectors go into two circles with respect to which
®; and @, are symmetric.

If o, and @, do not intersect, then there is an
inversion I (Property 12) carrying them into con-
centric circles of and ;. Let O denote the centre
of o; and ®;, and r; and r, their radii. Inversion
with respect to the circle a’ with centre at O and

radius V' r;r, carries ®; and ®; into each other.
In the inversion I applied, the circle a’ goes into
the required circle @ with respect to which o,
and @, are symmetric.

To conclude this section, let us give the defini-
tion of the radical centre of three circles. Consider
three circles w;, ®,, and ®; whose centres do not
lie on a straight line. It is possible to prove that
three radical axes corresponding to three pairs
of those circles intersect at a point M. This point
is called the radical centre of the circles w;, ®,,
and ®;. The tangents drawn from M to the circles
®;, ®,, and oy are equal to one another. Hence,
there is an inversion with centre M that carries
each of the circles 0, ©,, and o, into itself.

Problems and Exercises

1. Find the image of a square in the inversion
with respect to the circle inscribed in the square.

2. Given a triangle ABC. Find all points O
such that the inversion with centre O carries the
straight lines AB, BC, and CA into circles of
the same radius.

3. Let A’, B’, and C’ denote the images of
the points 4, B, and C, respectively, in the in-
version with centre at a point O. Prove that:

(a) if O coincides with the centre of the circle
circumscribed about the triangle ABC. then the
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triangle A'B'C’ is similar to the triangle ABC;

Sb) if O coincides with the centre of the inscribed
circle, then the triangle A’B’C’ is similar to
the triangle whose vertices lie at the centres of
the escribed circles;

(c) if O coincides with the intersection point
of the altitudes of the triangle ABC, then the
sriangle A’B’C’ is similar to the triangle with
vertices at the feet of the altitudes of the triangle.

4. Points A and A’ are symmetric with re-
spect to a circle a, M is an arbitrary point of the
circle. Prove that | AM |/| A’'M | is constant.

5. Two mutuwally perpendicular diameters are
drawn in a circle a. The straight lines joining the
end points of one of the diameters to an arbitrary
point of the circle a intersect the second diameter
and its extension at points A and A’. Prove that
A and A’ are symmetric with respect to the circle a.

6. Prove that if a circle @ passes through the
centre of a circle a, then the image of ® in the
inversion with respect to o« is their radical axis.

7. Given a circle and two points A and B on
it. Consider all possible pairs of circles touching
the given circle at the points 4 and B and touch-
ing each other at a point M. Find the locus of
points M.

8. Given two touching circles. An arbitrary
circle touches one of them at point A and the other
at B. Prove that the straight line AB passes through
a fixed point in the plane. (In the case of equal
circles AB is parallel to the straight line passing
through their centres.)

9. Given three circles a,, a,, a3, passing
through the same point. The straight line passing
th:ough the points of intersection of the circles

, o; and a, contains the centre of the circle ag; the
straight line passing through the points of inter-
section @, ans ag contains the centre of the circle
a,. Prove that the straight line passing through
the points of intersection oy and a; contains the
centre of the circle a,.
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10. Given two circles ®;, and ©,. Consider
two arbitrary circles which touch the given circles
at some points and also each other at a point M.
Find the locus of points M.

11. Prove that by inversion any two circles
can be carried into two equal circles.

12. Prove that by inversion any four points
A, B, C, D, not lying on a straight line can be
carried into the vertices of a parallelogram.

13. The inversion with respect to a circle with
centre O and radius R carries the circle with centre
A and radius r into the circle of radius r’ Prove
that r’ = (rR?)/|| 04 |2 — r?|.

14. Four points A, B, C, and D are given in
a plane. Prove that |AB |- | CD | +
|AD| - |BC|>]|AC|-|BD}.

15. In a triangle ABC, the side AC is the
greatest. Prove that for any point M the following
inequality holds: | AM |+ |CM |> | BM |.

+16. Prove that all the circles passing through
a'given point 4 and intersecting a circle a at dia-
metrically opposite points contain one more
fixed point distinct from 4.

17. Given four points 4, B, C, and D. Prove
that the angle between the circles circumscribed
about the triangles ABC and BCD is equal to
the angle between the circles circumscribed about
the triangles CDA and DAB.

18. A circle ® passes through the centre of a
circle @. 4 is an arbitrary point of the circle o.
The straight line passing through 4 and the centre
of the circle o intersects a common chord of the
circles a and @ at a point A’. Prove that A and 4’
are symmetric with respect to the circle a.

19. Given two non-intersecting circles, which
do not contain each other, and a point A lying
outside the circles. Prove that there are exactly
four circles (straight lines can also occur among
them) passing through 4 and touching the given
circles.

20. Let s denote the area of the circle whose
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centre is found at a distance a from the point O.
The inversion with respect to the circle with centre
O and radius R carries the given circle into the
circle of area s’. Prove that s’ = s-R4/(a® — R?)?,

21. Given two circles tangent to each other.
Consider two other circles tangent to the given
circles and to each other. Let r, and r, denote the
radii of the last two circles, and d; and d, the dis-
tances from their centres to the straight line
passing through the centres of the given circles.
Prove that 44 =2 or d—’+£‘—= 2.

2 81 ra ry

22. Let o; and w, be two circles tangent to
each other. Consider the sequence of distinct circles
g, &gy Ay, . ., Gy, ..., 6ach of which touches
0y and ©,, and, in addition, the circle o ,; touches
the circle a;. Denote tl;)e radii of the circles
Qgy gy oo oy Opy .. TosTiy « o2 Tna ooy
agd lt.he distances from yl:};)eirl centres to the
straight line passing through the centres of
and w, by d,, d,, o 8p, Express d, in
terms of r, if:

(a) dy =0 (this case is possible if w, and o,
touch each other internally);

(b) dy = kr,.

23. Let a, and a, denote two intersecting circles,
A and B the points of their intersection, @ an
arbitrary circle touching o, and a,, r the radius
of the circle @, and d the distance from its centre
to the straight line AB. Prove that the ratio r/d
can take on only two distinct values.

24. Given two non-intersecting circles o, and
a, and a collection of circles ®,, ®,, .., @,
touching a, and a4, where @, touches ®,, ®3 touches
g, ., 0, touches ®,_;. We say that the sys-
tem of circles w;, w,, . ., w, forms a chain
if 0, and @, touch each other. Prove that if for the
circles a, and @, there exists at least one chain
consisting of n circles, then there are infinitely
many chains. In this case, for any point 4 on either
@, or @, there is a chain for which 4 is the point
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of tangency of one of the circles of the chain.

25. Prove that if for the circles a, and a4 there
exists a chain of n non-intersecting circles (see
the preceding problem), then (R + r)3 —d* =
4Rr tan3® (n/n), where R and r are the radii of the
circles a, and a; and d is the distance between
their centres. (The minus sign is taken il one circle
is located inside the other, and the plus sign if
otherwise.)

26. Consider three circles each of which touches
three escribed circles of a triangle, each of those
circles touching one of the escri beg circles internally
and the two other escribed circles externally.
Prove that the three circles intersect at one point.

27. Let dy, dy, . ., d, denote the distances
from a point M lying on the arc 4,4, of the circle

circumscribed about the regular n-gon 4,4, . .4,
to the vertices Ay, 4, ., 4,. Prove that ——
dd,
1 1- 1
AL P M R
28. Let a,, ag, . ap.y, a denote the sides

AA,, AA5, ., A L4, A4, of the n-gon
1434, oy Ap3 PryPas -« o Pn-1y Po the distances

from an arbitrary point M on the arc 4,4, of the

circle to the straight lines 4,4,, 4,4,,

A 1A, ARA,.

Prove that . —2t 9 | ZJn-1
Po P Ps Pn-1

Hints and Solutions

2. There are four points possessing the required
property: the centre of the circle inscribed in
the triangle and the centres of the threc escribed
cireles.

3. (b) Prove that the triangles OAB and Ol,/,
are similar. Now from Property 2 it follows that
the straight lines 4'B*"and I/, are parallel.
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7. Let a and B be circles touching the given
circle @ at points 4 and B. In the inversion with
centre at A4, the circles ® and a go into paralle)
straight lines I and p, the circle p into the circle £'
which touches ! at a fixed point B’ and the straight
line p at a point M’. Thus, M’ lies on the straight
line passing through B’ perpendicular to !. The
required locus is a circle passing through 4 and B
and orthogonal to «. (The points 4 and B them-
selves a e excluded.) Its centre is found at the point
of intersection of the tangents to » passing through
A and B. '

8. Let O denote the point of tangency of the
given circles. In the inversion with centre at' O
those circles go into a pair of parallel straight lines
containing the points A’ and B’, the line seg-
ment A'B’ being perpendicular to them. The
straight line AB foes into the circle circumscribed
about the trian%le A'B’0; this circle, obviously,
passes through the point P symmetric to the point
O with respect to a straight line equidistant from
the obtained parallel lines.

9. Let O be the point of intersection of the cir-
cles a,, a,, as; and A, A4, 4, respectively, the
points of intersection, distinct from O, of the cir-
cles @, and ay, @5 and @, &; and a,. The inversion
with centre at O carries the circles a,, a,, ag into
the straight lines forming the triangle A;A;A3.
From the hypothesis and Property 3 it follows
that A;0 | A{A;, A;0 | A;4;. Hence, O is the in-
tersection point of the altitudes of the triangle
A{AjA; and A0 | AA;.

10. If 0, ana @, intersect, then the desired locus
consists of two circles—the middle circles w; and
®g (Theorem 13) excludibg the points of inter-
section of @, and w, themselves. If they touch each
other, then it consists of one middle circle, ex-
cluding the point of tangency. To prove this, it
suffices to apply an inversion with ‘centre at a
common point of the circles @; and w,;. If @, and
®4 have no points in commmon, then the entire mid-
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dle circle is the locus. In this case, we have to apply
the inversion carrying @, and o, into concentric
circles.

14. Any inversion with centre on the middle
circle possesses the desired property since this
inversion carries the middle circle into a straight
line with respect to which the images of the given
circles are symmetric.

12. Consider two cases.

(1) The points 4, B, C, and D lie on the same
circle w. The given points may be regarded as the
successive vertices of the inscribed quadrilateral.
Let O be the point of intersection of the circle
orthogonal to  and passing through 4 and C with
the circle orthogonal to w and passing through B
and D, In the inversion with centre O the quadri-
lateral ABCD goes into the inscribed quadrilater-
al A'B'C'D’ whose diagonals are diameters, that
is, A'B’'C’'D’ is a rectangle.

(2) A, B, C, and D do not lie on the samecircle.
Let w4, 0 g, w¢, ©p denote the circlescircumscribed
about the triangles BCD, CDA, DAB, ABC,
resgectively‘. We take the middle circle for wg
and o©p separating the point B from the point D
and the middle circle for v, and w, separating
.the points A and C. Let O denote the point of
their intersection. (Prove that those circles in-
tersect.) In the inversion with centre O, the given
points go into the vertices of a convex quadrilater-
al A'B'C'D’ each of whose diagonals separates
it into two triangles with equal circumscribed
circles (see Problem 11); consequently, the opposite
angles of the quadrilateral are equal, hence it fol-
lows that 4’B’C’D’ is a parallelogram (prove it),

13. Let the line OA intersect the circle with
centre at A at points B and C. Then | B'C’' | = 2r’
Now, we can use the formula given in Item 2.

14. We agply the inversion with centre at 4.
We have | B'C’' |+ | C'D’ |> | B’D’ |. Then use
the formula given in Item 2.
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15. It follows from the preceding problem that
|AC |- |BM |< | AB |- |CM |+ | BC|- 1AM |.

Since AC is the largest side, | BM |<'_I%‘C9—Il.
BC ‘
| CM |+ M 1< 1AM | +) MC ),

16. Let A’ be obtained from 4 by inversion
with respect to the circle a; A, is symmetric to 4’
about the centre of the circle a. Prove that all the
mentioned circles pass through 4,.

17.We apply the inversion with centre at 4.
The first angle is equal to the angle between the
straight line B’C’ and the circle circumscrib¥d
about B'C'D’, the second—to the angle between
the lines D’C’ and D'B’.

18. The inversion with respect to the circle
o carries the straight line AB into o.

19. We apply-the inversion with centre at 4.
Then the statement of the problem is equivalent
to the statement that two circles arranged outside
each other have exactly four tangent lines. ,

20. Let the straight line passing through the
centre of the inversion and the centre of the given-
circle intersect the given circle at points: whose
coordinates are z, and z, (the origin lying at the

int 0). Then o= - (RL_R1)2_
poin ). n A ( z s )
—’-t—(z — z5)% R =s R
& VTV (gzg)h @V — R

24. Note that in the inversion with centre at O,
for any straight line ! passing through O the fel-
lowing equality is true: d/r = d'/r’ for an arbi-
trary circle, where r and r’ are the radii of the
given circle and its image, respectively, d and
d’ are the distances from their centres to the line
1, respectively. This follows from the fact that
0 is tﬂe external centre of similitude of both cir-
cles (Property 8). ‘

Let us return to our ﬂroblgm. We apply the
inversion with centre at the point of tangency of
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the given circles. The given circles go into a pair
of parallel straight lines, the line ! passing through
the centres of the given circles is perpendicular
to them. The circles with the radii r, and r; go
into a pair of circles of the same radius r’ which
touch each other and also a pair of parallel lines
obtained. Now it is obvious that if the centres of
the last two circles lie on the same side of I, apd,
for definiteness, d; > d;, then ‘.:g_f_}zij:_z’__
‘:—‘,:2. If on both sides, then -‘:T"‘-{-%: .

22. Use the result of the prpcedingh problem.
We get in Case (a) d,, = 2nry,; in Case (b) two an-
.;:v;"ers 2tu‘e possible: d, = (2n + k) r, and d, =

—2n|r,.

23. We gpply the inversion with centre at 4;
the circles @, and a, go into the straight lines
!, and I, intersecting at the point B’ situated on
the straight line AB. As was proved when solv-
ing Problem 21, r/d = r'/d’. But r’/d’is the ratio of
the radius of the circle touching the lines !, and I,
to the distance from its centre to the fixed straight
line gassinlgI through the point of intersection of
l, and I,. Hence, r'/d’ takes on only two values
dlepending on which of the two pairs of the vertical
angles formed by I, and I, the circle is located.

24. We apply tlne inversion carrying o, and a,
into concentric circles (see Theorem 12). This done,
the assertion of the problem becomes obvious.
This theorem is called Steiner's porism.

25. If @, and a«, are concentric circles with
radii R andl r, then the validity of the e%uality
(R — r)? = 4Rr-tan? (n/n) (d = 0) is readily ob-
tained from the obvious relationship R — r =
(R + r) sin (n/n), R > r. We apply the inversion
whose centre is at a distance a from the common
centre of the circles a, apd a,. Let, for definiteness,
a > R. The circles a, and a, will go into the
circles a; and a;, ag inside a;. In this case, by
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the f:)rmula from Problem 13, we have R' =
3

ey -1 o) r'= a,’i ol where p? is the power of
inversion. To find d’ (the distance between the
centres of the circles a; and a;) we draw a straight
line through the centre of the inversion and the
centres of o, and a,; the segment of this line en-
closed between the first two points of intersection
with the circles a, and a, is equal to the width of
the annulus (R — r). The inversion carries thisg
segment into the segment of length b =

-_—.z%)— (see Item 2), consequently,

, - Rp? rp?
d=IR—r=bl= a’-—pR’ - a’p—-r.’
(R—r)p* [_ _ a(R'—r%)p?
NGB |~ @-m@—y - Fortker

replacing R’ and r’ with the aid of) thf forn)mlas
. . ,_(R—r)(@*+Rr)p?
derived above, weget R’ —r' = _——(a'—r') @—RY -

We have to verify the validity of the equality
(R' — r')® — (@) = 4R’'r' tan® (n/n). Expressing
all the quantities entering this equality in terms
of R, r, a, and p and simplifying the result ob-
tained, we lead to the equality (R — r)2 (a2 4
Rr)! — (R — r)? a® (R 4 r)2= 4Rr (a® — r) X
(a3—R?) tan? (n/n). But (R — r)*=4Rr tan (n/n).
Hence, we have to check to see that (a2 -}
Rr)® — a® (R + r)® = (a2 — r?) (a® — R?). This
can be done easily.

The case a << R is identic to the above. And
if r << a <R, then a; and a; are located outside
gach other, and in the given formula the plus sign
should be taken.

26. We apply the inversion with centre in
the radical centre of the escribed circles in which
the escribed c;lrcles go Iimntlo themselves. T!‘xglse igi\‘"::
sion carries the straight lines containipe *s®
of the triangle into the ciré_l,e&r""}gned in the
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‘hy‘rothesis. All the three cittles pass through the
radical centre of the escribed-circles of the triangle.

27. We apply the inversion with centre at M
and of power 1. As a result, the points 4,, 4, ...,
Ay, go-into the points A§, A3, ..., 47 situated
on a straight line. Let the side of the n-gon be equal
to a. From the formula of Item 2 it follows that

A —_ 1 . rp — 1 .
| AIA" | = dyd, a, lAaAal = ‘d_i"z‘a-
| Apadn | = T % "4;‘4'”'_“':11:1 a. Sub-

stituting these expressions into the obsious rela-
tionship | A;Ay |=| AjA; | + 1 4;45) + ..+
|An_1A4n |, we get the desired result.

28. We apply the inversion with centre at M.
The vertices of the given n-gon go into n points
lying on a straight line, and

lAfAn =] AjA3 | + 143451 +. .. + 1 47045 ).
(*)

Let p’denote the length of the perpendicular from
the point M on the straight line 4{A4,. From the
similarity of the triangles 4 ,MA ;and 4 {M A (Prop-

: 2 l AIA’ ' —_— 141 1A .
erty 2) it ,foll?ws that A =5 |A{A}) =
—a‘—p'. Similarly,

P
AZAZ1 = _aL ’ A’_A' — an-1
l aa] p’pl l‘ni nl p-n--lp’
| Aidy | =—2p'
Substituting these expressions into the relationship
(#) and reducing by p’, we get the required equality.






