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Preface

A book popularizing physics pursues two goals.
First, a reader should be told something he
didn’t know before. Thus, the present book on
temperature speaks of numerous facts which
are not mentioned in school textbooks. The book
does indeed popularize but not everything it
describes will be profoundly understood because
attempts to explain some subjects clearly with-
ont resorting to mathematics and those areas of
physics which are omitted from school texts are
not always successful.

There can be only one remedy against this
shortcoming, be optimistic! Later you will det
to know both statistical physics and quantum
mechanics and then everything I describe here
will become clear and comprehensible. No by-
passes exist on the roads to wisdom: you will
get to the summit only by struggling through
uphill stretches and mountain passes regardless
of the difficulties looming ahead.

Nevertheless, even with some details unknown,
it is useful to obtain at the start of a journey
some notion about the route and where it leads.
A popular-science book is to help in precisely
this respect; this is its second, and probably more
important, gcal.

This book on temperature was written to
explain how physical concepts arise, how new
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methods of measuring physical quantities are
developed, and how the progress in physics
makes well-worn concepts move into modern
fields of physics of which our predecessors were
understandably quite ignorant.

The physics of today has grown into a unified
science. When trying to study one of its subjects,
we invariably cross into adjacent, sometimes
very unexpected fields.

The story of how people uncovered the laws
of nature and how the majestic edifice of the
natural sciences was erected is interesting and
instructive. One of the chapters of this story is
that about temperature.

I am grateful to Prof. I. K. Kikoin and Prof.
M. I. Kaganov for their valuable comments on
the manuscript of the book.

Moscow, 1982 Ya. Smorodinsky
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Introduction

‘Everybody knows what is meant by heat. School
textbooks teach us that the particles in gases,
liquids, and solids are in perpetual motion, and
that this motion is perceived by the senses as
heat. The energy of motion of these particles,
averaged over a tremendous number of them,
determines the temperature.

Usually everything concerning heat is treated
in textbooks in such a clear and simple way that
this part of physics may even appear dull.

However, the theory of heat took very long
to mature. The questions, What is heat? and
What is the difference between temperature and
heat? remained unanswered for many centuries.
Physics is a relatively young science. The laws
of nature appeared to be fairly unrelated rules
deduced from observations as recently as two
centuries ago. Only mechanics could compete
with mathematics in rigor and elegance: Only
in mechanics could people derive formulas for
an accurate design of mechanisms. The next to
mechanics in rigor was optics (what we now call
geometrical, or ray, optics). The remainder of
the knowledge about nature comprised two
sciences: physics and chemistry.

Physicists strove to comprehend the unifying
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elements of distinct parts of natural sciences.
Some of them believed that all phenomena could
be explained in terms of mechanics and that
everything in nature consists of minute particles:
atoms, or monads, or corpuscles (these are equiv-
alent terms predominant in different periods).
Others insisted that the primary elements of
nature are liquids and that the universe is filled
with an all-pervading substance, ether. Heat
was also considered a liquid, and the caloric, or
thermogen, theory was a very popular founda-
tion of the understanding of heat.

Many physicists saw a connection between
heat and the motion of molecules, Mikhail V Lo-
monosov was one of them. But it was not easy
to turn general arguments into a rigorous science.

A natural scientist of that period, studying
physics or chemistry, had almost no instruments
at his disposal to conduct a quantitative study
of nature. He c~uld neither design experiments
nor convert the results of his experiments into
equations. This was not considered to be the
true objective. Before Isaac Newton showed in
his great treatise Mathematical Principles of
Natural Philosophy how his new mathematical
method enabled natural phenomena to be trans-
lated into the language of formulas, equations, and
numbers, scientists had only striven to déscribe
and classify what they observed. From antiquity
it had been conjectured that everything in nature
was built of atoms and that the motion of atoms
caused the properties of substances. When dis-
cussing heat scientists argued about what type
of motion is manifested in the thermal proper-
ties of bodies, and about how it is related to
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light. They tried to derive the diversity of phe-
nomena from the hypothetical diversity of atomic
shapes. From our current point of view the books
written by scientists of that period more resemble
fiction than rigorous scientific writing. However,
one should never judge history by today’s cri-
teria. When reading about the history of science
we should bear in mind that it does not reduce
to the accumulation of facts and creation of new
theories. Methods of describing nature change
with time, as do the ways of thinking about its
laws and even the objectives of science change.
Things that may seem naive in the light of our
current knowledge were in fact important in
the evolution of science. Without this apprecia-
tion of history, it might appear miraculous that
science could grow at all.

Something extraordinary took place. Although
mechanics was maturing in a logical fashion (the
motion of planets being found to obey Kepler's
simple laws and Newton using them to found
celestial mechanics), the science of heat, or ther-
mal phenomena, was developing in a very strange
manner. Somehow, all the speculations dealing
with atoms seemed, for a very long, unnecessary
for the theory of heat.

A theory evolves in a sequence quite different
from that in which it is presented now in text-
books. When this story is recounted now, we
are baffled for how the theory of heat could be
developed without questioning what heat was.

This small book is devoted to the science of
thermal phenomena. In order to limit the scope
somehow, I chose temperature as the topic.
The book tells the story of how the notion of
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temperature arose and how its meaning evolved
when scientists began to understand what hap-
pens wlien a body is heated or cooled in ever more
detail,

Degrees and Temperature

It is interesting to trace the unusual history of
how people learnt to measure temperature. Ther-
mometers were invented long before it was under-
stood what was being measured.

When measuring angles between celestial ob-
jects, or distances on the Earth, or even time,
man knew what he was doing. With temperature
it was different. Temperature stems from the
very tenuous sensation of warm and cold which
people believe is similar to those of smell and
taste. But neither smell nor taste are quanti-
fiable (at any rate, exactly quantifiable). Nobody
bothers to ask or define how much one dish is
more tasty than another, or by how much the
smell of hay is different from that of roses. On
the other hand, warm and cold objects can al-
ways bhe placed side-by-side and it can be estab-
lished by touching them which is the warmer.

Man has known from time immemorial that
when two bodies are in close contact, they reach
what we call now a “thermal equilibrium”

A hand immersed in water warms up (or cools
down) to reach the state of the water.

A stove heats the air in a room. A metal rod
heated at one end becomes heated as a whole.
Flows of heat are found everywhere in nature
and the students of nature have always perceived



Degrees and Temperature 13

in this the work of puissant  natural
laws.

Very different opinions have been held about
heat flows, thermal equilibrium, and the degree
of heating of a body.

The scholars of antiquity and the scholastics
of the Middle Ages postulated that there is a
correspondence between heat and cold, on the
one hand, and attraction and repulsion, on the
other, though this definition can explain hardly
anything.

Nevertheless, this explanation was not quite
that meaningless. On the contrary, the reader
must try and get a feeling for the lirst atlempts
to find a connection between our senses and spe-
cific characteristics of the outside world. It is
useful to read what Pierre Gassendi, one of the
best minds of the 17th century, wrote about this
subject in his fundamental treatise Sintagma
Philosophicum: “Cold produces a specilic and
very familiar effect on our senses; and since cold
is antagonistic to heat, the atoms corresponding
to it must be of a nature opposite to that of the
atoms generating the feeling of warmth. Heat
characteristically dissociates while cold charac-
teristically contracts; hence, the atoms corre-
sponding to them must have special masses and
shapes, move in a special manner, and thus gen-
erate what is usually called heat.”

Gassendi did not appreciate that particles
can move in different ways since at that time
nobody knew anything about either the velocity
of atoms or their energy. Nevertheless, Gassendi
had no doubt that heat could be explained in
terms of the motion of particles that nobody even
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hoped to be able to see some day. This was indeed
a daring hypothesis. In this respect Gassendi
hardly differs at all from our contemporaries.
Indeed, when nowadays we deal with the quarks
from which heavy particles are built, we are
following the same path for we explain the prop-
erties of real elementary particles by the motion
of unobservable subparticles.

It is interesting that in the Orient science
went through a completely different evolution.
Oriental scholars have left us no instruments to
measure how hot a body is. They were not looking
for an exact description of physical phenomena
for the language of formulas and numbers was
alien to them, and even unnecessary in their
philosophical systems. Their systems had no
room for the notion of temperature and both
doctors and philosophers were equally happy
without measuring temperature.

The first thermometers were brought to China
around 1670 by a Jesuit missionary called Fer-
dinand Verbiest. But there are things that our
science has inherited from the Orient. The exotic
terms “flavor” and “color” which in modern ele-
mentary particle physics denote certain hidden
properties of quarks, in Chinese writings stood
for the forms of activity of substances, along
with sound. A comparison of the two distinct
ways of learning about nature, one of which
formed in the Orient and the other in the Occi-
dent, is instructive. It tells us of how different
the different scientific outlooks can be, and how
far apart different approaches can diverge. This
topic is not simple but fascinating. Alas, it
would be too much of a digression and we are
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forced to return to our proper theme to find out
when, and in what circumstances, temperature
made its appearance in KEurope.

In all likelihood, the ancient physicians were
the first to feel the need of a comparative, and
fairly precise, scale of body heat. They knew for
a long time that a person’s health is somehow
related to the thermal state of his body, and
that medicines are capable of affecting this
stage. Medicines were attributed cooling or warm-
ing properties and the extent of their action
was described in terms of degrees (i.e. steps,
in Latin). However, cold and warmth were not
regarded as opposite: heat was moderated by
moisture, and cold by dryness. A great Greek
physician Claudius Galen (2nd century A.D.)
taught that medicines must be classified by
degrees. There were supposed to be four degrees
of heat and just as many degrees of cold. There
was also a neutral temperature, that of a mix-
ture of ice and boiling water, and a man’s tem-
perament was determined by comparing it with
this “reference”.

Physicians were not aware that all healthy
people have the same temperature. Instead each
person was assigned his own personal temperature
which depended on his temperament.

Medicines were also classified by degrees.
Medicines were able to warm up or cool down a
patient, so they were regarded as cold or ho
and were additionally divided into four degrees
according to their potency. Medicines were pre-
pared as mixtures that were composed so as to
achieve a mixture of a prescribed degree. Actu-
ally, Galen gave no quantitative relation between
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the concentrations of ingredients of mixtures
and their degrees nor did he say anything about
how to determine the degrees of heal or cold in
a mixture. The evaluation was a matter for the
skill of the doctor and the problem of how to
calculate the degree of a mixture from the de-
grees of its ingredients was never solved. Nev-
ertheless, medical mixtures left their trace
in physics.

In Latin the word “mixture”, or rather “mix-
ing”, is temperatura. However, the word pre-
sumably had taken on its current meaning only
by the 17th century, along with the appearance
of our word “thermometer”.

In 1578 Joannes Haslerus published a book
De Logistica Medica devoted to the problem of
determining the degree of a mixture. 'I'he author
introduced a nine-degree scale. The fourth de-
gree of warmth was considered normal for the body
temperature of equatorial inhabitauts, and the
fourth degree of cold for inhabitants at the poles.
Zero temperature was assigned to those living
at 40-60° latitudes. Each degree was subdivided
into three parts, so that effectively there were
twelve degrees for heat and just as many for
cold. And the zero was there too. Physicians thus
passed on to physicists a twelve-degree scale for
thermometers.

Uncertain “degrees” characterizing a heated
body were discussed even before Galen. Here
Hero of Alexandria, who used the property of
air to expand on heating, is usually cited. But
the true history of the science of thermal phe-
nomena began with Galileo Galilei.
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Galileo

None of Galileo's contemporaries compared with
him in his ability to perceive great laws in
simple phenomena. The reader is of course famil-
iar with how much he found out, purely by
thinking about the way the bodies fall onto
Earth. But it is not as well known that he was
one of the first men (and may be the first) to
write about the mechanical nature of heat. It is
interesting to recall what prompted Galileo to
take up this subject.

Two comets were seen over Rome in 1618
and celestial phenomena always stirred up fear
or hope. Interest in scientific interpretations of
the events was tremendous and people demanded
explanations and predictions.

In December of the same year Lince Cesarini
wrote to Galileo from Rome: “Even people nor-
mally indifferent to everything are excited, and
even the laziest of the lazy have jumped from
their beds, so you can imagine the tumult caused
by the appearance of the two comets and the
stupid conversations they have stimulated.”
A lengthy discussion began concerning the nature
of comets. The Jeosuits were represented by Ho-
ratio Grassi and he was opposed by Galileo’s
student Mario Guiducci, chairman of the Acad-
emy of Florence. Both devoted a great deal
of energy to analyzing the general goals of science.
Galileo joined in the discussion, publish-
ing a book El Saggiatore (A Balance for Weigh-
ir_tg Gold) in which he gave a detailed exposi-
tion of his views on the nature of physical phe-
nomena. The book is regarded as a masterpiece
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of Italian prose and an incomparable gem of po-
lemic literature.

Among other things, the book mentions the
heating of solids by friction and gives other evi-
dence for the mechanical nature of heat. However,
Galileo did not know that liquids and even gases
can also be hecated mechanically. Galileo’s
analysis was also hampered by a lack of quanti-
tative information about heat.

In Galileo’s time there was almost nothing
a scientist could measure. Even a simplest mea-
surement of length or volume was difficult be-
cause there were no generally accepted units
of length. Units of length differed from town to
town and any comparison was extremely cum-
bersome. Time measurements were even more
complicated. Of course, sundials, water clocks,
and sandglasses existed, but they were abso-
lutely unsuitable for even moderately accurate
measurements of short time intervals. Galileo
is said to have observed the pendulum motion
of a chandelier in Pisa cathedral and measured
the period of its oscillations by counting the
beats of his pulse. Galileo discovered the laws
of mechanics only because he was one of the
first to realize the importance of accurate mea-
surements.

When studying thermal phenomena, Galileo
used the same approach: he started with a
method of measuring a body’s temperature.

The thermometers designed by Galileo (around
1597) consisted of a glass sphere D filled with
air; the lower part of the sphere was connected
to a glass tube partially filled with water and
immersed in a jar A also filled with water (Fig. 1).
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When air in the sphere
expanded or contracted,
the level of water in
the vertical tube rose or
fell thus giving a mea-
sure of the temperature,
say, of a hand touching
the sphere. However,
the height of the water
column in the tube de-
pended both on tempera-
ture and on atmospheric
pressure, and accurate
measurements of tem-
perature were impossible.
Galileo’s contempora-
ries knew nothing about
the barometer. It was
Evangelista Torricelli,
Galileo’s student, who
succeeded in establishing
the relation between
the height of a mercury
column and atmospheric
pressure. The very idea
that air could exert a

19

Fig. 1.Galileo's thermoms«
eter.

pressure on the Earth would have appeared too
wild in Galileo’s time. Hence, Galileo's ther-
mometer measured something very uncertain;
but even this device made it possible to compare
the temperatures of different bodies at the same
time and in the same place.

A physician and anatomist Santorio Santoro
(Sanctorius) of Padua University, although un-
aware of Galileo’s work, designed a similar ther-

2
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mometer and, using this crude device, began
recording the temperature of the human body.
In his book Commentaria in Artem Medicinalem
Galenis, published in Venice in 1612, he described
how “to measure the hot or cold temperature of
the air in all the districts, places, and parts of
the body”.

Santorio recommended measuring a patient’s
temperature in a manner quite different from
the way we are used to. He did not measure the
temperature as such but the rate of increase of
the thermometer’s readings, that is, the change
in the readings during ten swings of a pendulum.
In his opinion this procedure revealed the state
of a patient’s health and quite possibly this is
reasonable.

Galileo and Santorio were the first scientists
who can be said to have measured temperature
in our sense of the word.

The art of manufacturing thermometers was
then refined in Tuscany where the Florence Acad-
emy pioneered a systematic study of the pres-
sure, humidity, and temperature of air. Ther-
mometers were sealed, were filled with alcohol
instead of water, and were operational even when
water froze. Florence's craftsmen were extremely
skilful, they produced glass thermometers with
scale divisions marked by enamel, making it
possible to measure temperature to within ap-
proximately one degree (in our scale).

The thermometers manufactured in Florence
(Fig. 2) were very beautiful, resembling objects
of art though, as happens usually, the art de-
clined later. The Academicians of Florence
called their academy Accademia del Cimento (the
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Academy of Experi-
ment). It was founded in
Florence in 1657, but in
1638 Gaspar Enns pub-
lished a book Mathemati-
cal Wizard containing a
chapter “On the Thermo-
meter, or Drebbel’'s In-
strument, that Serves to
Study the Degree of
Heat or Cold in the Air”
Enn’s book is important
in that it describes an
eight-degree temperature
scale and gives the in-
strument the name“ther-
mometer” This word is
also found in a still
earlier book, Les Récré-
ations Mathématiques by
J. Leréchon, published
in 1624. Leréchon also
described an eight-de-
gree scale in which each
degree is subdivided
into eight parts. As for
“Drebbel’s instrument”,

21

Fig. 2. A thermometer
manufactured by Flor-
ence’s craftsien.

Enns meant the thermometers made by Galileo's
compatriot Cornelis Drebbel who studied the
thermal expansion of gases (Fig. 3).

It cannot be excluded that Drebbel invented
his thermometer independently. He had thor-
oughly studied the expansion of bodies and even
designed an engine driven by an expanding
liquid (it was called the perpetuum  mobile



Fig. 3. “Drebbel’s instrument”.

because no human participation was
quired).

A physician, philosopher, and mystic, Robs
Fludd, was another illustrious personality w
contributed to the invention of the thermomet
At the beginning of the 17th century he describ
a number of instruments, including a twelx
degree thermometer.

The history of the thermometer owes much
one of the most impressive personalities of t
17th century, Otto von Guericke. Despite 1
position as Burgomaster (Mayor) of Magdebv
and his frequent diplomatic travels all o\
Europe, Guericke made a valuable contributi
to science. His experiment with the Magdebu
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hemispheres that sixteen horses could not tear
apart is in the annals of physics. In order to
remove that air from the sphere, Guericke in-
vented the first vacuum pump. He also designed
the first barometer, similar to Galileo's device
put with a very long tube. In contrast to Gali-
Jeo’s instrument, Guericke’s barometer had the
air evacuated from the inner space, and the water
filled both the tube and a part of the glass sphere.
The barometer was installed on the outer wall
of a house, and air pressure was marked out
on a scale pointed at by a finger of a wooden
angel floating in the glass sphere. Guericke was
the first to systematically measure atmospheric
pressure and tried to find a correlation between
the pressure changes and the weather. It is funny
that Guericke called his apparatus the “perpetual
motion machine” (mobile perpetuum).

It is not surprising that Guericke also con-
structed a fairly good thermometer. It consisted
of a brass sphere filled with air, and a U-shaped
tube filled with alcohol. As in the barometer,
the temperature was indicated by a woodén
angel linked by a string and pulley to a sealed
brass box floating in the open end of the ther-
mometer (Fig. 4).

Guericke's thermometer was also fixed to the
wall of his house. He wanted to know the air
temperature in some absolute units in order to
be able to compare temperatures in different
places. To achieve this, Guericke had a point
in the middle of the scale of his thermometer where
the pointer indicated when first frosts set in, the
point chosen by Guericke bheing the reference
point (origin) of his scale. The choice was ob-



Fig. 4. Guericke’s thermometer and baromeler.

viously naive, but a first step had been made.

The boiling temperature of water was firs
mentioned as a possible reference point of ther
mometer scale by Christian Huygens in 1655
He wrote that with this choice it would be pos
sible to compare temperature (he called it th
“observable degree of heat”) at different place
without moving the same thermometer fron
place to place.

We should also mention Newton’s paper “On
the Scale of Degrees of Ileat and Cold”, pub
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lished in 1701, which describes a twelve-degree
temperature scale. Newton placed zero where
we place it nowadays, i.e. at the water freezing
point, and 12° corresponded to the temperature
of a healthy human. Newton thus very clearly
formulated the idea of a temperature scale although
other physicists of his time also seem to have
been on the verge of doing the same. Still, the
thermometer had not yet reached the stage of
being instrument for physics.

A long time was required for the idea of con-
stant points on the temperature scale to take
root. In 1703 Guillaume Amontons, commenting
Newton's work, described a new thermometer
in the memoirs of the Paris Academy. This ther-
mometer did not measure the increase in the
volume of the air upon heating, but measured
the change in its pressure and so the air was
locked in by a mercury column. In his new ther-
mometer Amontons introduced constant reference
points: the boiling point of water (he did not
know that this temperature depends on pressure)
and, however, surprising it may sound, he chose
for his zero “that considerable degree of cold” at
which air becomes devoid of all its elasticity.
The point he chose for this “absolute zero” con-
tained a large error, namely, about 240 °C be-
low zero on the modern scale. Nevertheless, it
was quite an achievement. Finally Amontons
was able to construct a completely sealed ther-
mometer thus making its readings independent
of atmospheric pressure.

The first modern thermometer was described
in 1714 by Gabriel Daniel Fahrenheit, a glass-
blower from Holland. His contemporaries were
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surprised to find that Fahrenheit’s alcohol ther-
mometers all agreed with themselves. Fahren-
heit’'s secret was that the divisions on the scale
were made very accurately, by using several
reference points. Fahrenheit imitated the lowest
temperature of the harsh winter of 1709 by a
mixture of ice, common salt, and sal ammoniac.
The second reference point was obtained by im-
mersing the thermometer in a mixture of ice
and water. The distance between the two points
was divided into 32. Fahrenheit tested his scale
by measuring the human body temperature and
this new point was 98 °F. Later Fahrenheit in-
troduced the fourth reference point: the boiling
point of water which he found at 212 °F.

Different Fahrenheit thermometers could be
calibrated by comparing them at different ref-
erence temperatures and they became famous for
their accuracy. The Fahrenheit scale is still used
in Britain and the USA.

The scale that gained general recognition in
France (around 1730) was that of Réaumur and
was based on the freezing and boiling points of
water (0° and 80°). René Antoine Ferchault
de Réaumur determined experimentally that
water expands by 0.08 (the correct figure is 0.084)
between these two points. Soon alcohol was re-
placed with mercury whose thermal expansion
coefficient is less dependent on temperature than
that of alcohol.

The centigrade scale we use now was suggested
in 1742 by the Swedish astronomer Anders Cel-
sius. He disliked negative temperatures and
thought it wonld be expedient to reverse the con-
ventional scale, placing the zero at the boiling
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point of water, and 100 °C at its freezing point.
But the “reversed scale” was never popular and
was very soon returned to the original form.

A few words can be added about a thermometer
with Delisle’s scale. The mercury thermometers
of the Petersburg Academician Joseph Nicolas
Delisle were very popular in Russia in the first
half of the 18th century. Their scale was divided
into 150. The thermometers were well made but
soon lost out to Réaumur thermometers.

In Russia the standard temperature scale up
to 1917 was Réaumur's and Réaumur thermome-
ters were installed in streets and in most houses.
It was only in the thirties they were replaced
with Celsius thermometers.

In Britain and the USA people still use Fah-
renheit thermometers, and anyone used to the
centigrade scale should not be startled when
he reads that meat should be roasted at 350-
400 °F or that the 98 °F body temperature of a
child does not worry his mother.

Whatever the choice of thermometer scale,
one degree remained a more or less arbitrary
quantity. It was defined by dividing the scale
into equal parts, so that it was not possible to
determine the behaviour of the expansion coef-
ficient at different temperatures since the degrees
at freezing point and at boiling point are thereby
identical. Not a single paper was published that
considered the relationship between temperature
and the properties of substances, except thermal
expansion, and incidentally even this was rather
poorly investigated.
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What Is Heat?

The thermometer became a standard instrument
at the beginning of the 19th century, but the
generally accepted point of view as to what it
was that a thermometer measured was only for-
mulated much later.

By this time the properties of gases had been
known rather well. The relation between the
pressure and volume of the gas was clear as early
as 1662. The famous law that we call Boyle's
law (also known as Mariotte’s law) was in fact
found by Boyle’s pupil R. Townley who thought
of comparing two columns on numbers in the
laboratory log of his teacher. Mariotte only
published his paper in 1679. The law relating
gas volume to gas temperature was discovered
in 1802 by John Dalton and Joseph Louis Gay-
Lussac. It was not easy to formulate this law accu-
rately because it called for an ability to measure
temperature rather well. Hence, the coefficient «
in Gay-Lussac’'s law V=1 + at) V, (V, is
the volume at ¢t = 0 °C) was for a long time
known with a considerable error. Gay-Lussac
1
mv
and Mendeleev used the almost modern

estimated it to be Carnot estimated it to be

1
267° 1
value of 73°

But having learnt how to measure temperature,
physicists did not go too far in understanding
what heat was.

Even in mechanics there wasa confusion between
the distinct concepts of force, energy, and mo-
mentum. In the 18th century there were heated
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discussions about whether the kinetic energy
or momentum gives a measure of motion. Kinet-
ic energy was for a long time called the “live
force”, in contrast to the “inanimate force”, such
as the energy of a wound-up spring.

It was even more difficult to separate the con-
cepts of “heat” and “temperature” When a body
is heated, its temperature increases. When heat
flows from one body to another, the temperature
of one body diminishes and that of the other
increases.

In many cases heat behaveslike a stream running
down from a hill to a valley. The similarity be-
tween heat and a fluid became even more con-
clusive after electricity had been discovered be-
cause electric current also flows through wires
like a river, levelling off the potential difference
between two charged bodies.

In 1893 the French physicist L. M. Brillouin
wrote: “As far as I am concerned, I am still
convinced that the definition of the temperature
of a body as the amount of energy, potential
or kinetic, total or partial, of only the standard
matter, is in error. Temperature thus defined,
although rather simply related to the thermc-
dynamic properties of gases, does not seem to be
related in any way to the conditions of equilib-
rium in the case of radiation into the space free
of matter. In this last case the inevitable role
of ether has led Monsieur Boussinesq to a com-
pletely different definition of temperature. This
definition is very little known but, from my point
of view, is much more satisfactory and fruitful....”

Let us have a look at the definition of temper-
ature so appealing to Brillouin.
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In his long-forgotten paper “The Study of the
Principles of Mechanics, Molecular Structure of
Solids, and the New Theory of Ideal Gases”
which was published in 1773, Boussinesq gave
the following definition of temperature: “The
absolute temperature of a small volume of ether
can be defined as one half of the live force that
it possesses per one unit mass, or an amount pro-
portional to it.” Now it is not easy to read any
meaning into this definitior, and I give it only
in order to emphasize how difficult it was to un-
derstand concepts that later grew to be so simple.

Still, it is possible to understand how such
obscure statements could be written. Indeed, in
addition to gases which arerather easily modelled
as collections of molecules (this was the opin-
ion of the majority as early as at the end of the
19th century), there was also radiation. The
radiation emitted, for example, by the atoms
of a gas carries energy, and the intensity of ra-
diation (or the distribution of energy over wave-
lengths of the spectrum) is determined by the
temperature of the emitting gas. The energy of
radiation seemed unrelated to the atoms and
it was very difficult to comprehend its nature.

The problem of determining the distribution
of energy over the spectrum was also extremely
hard to solve. It wasachallenge to the best phys-
icists of that period. We shall return to this
problem, but right now the reader is merely
invited to get a feeling for how tremendous the
obstacles were in the way of an explanation of
the fate of the energy transmitted by the gas to
the radiation. At that time electromagnetic
waves were regarded as oscillations of the world’s
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ether, which was assumed to fill all space con-
tinuously. Hence, this ether was thought to be
the carrier of thermal energy and, as a result,
the carrier of temperature as well.

The progress of science is an extremely inter-
esting and complicated process. The charm of
the chosen path can be admired only when the
destination is reached; at the start science looks
like a maze in which all passages end in cul-de-
sacs. Unfortunately, lessons drawn from the
history of science often do not bear fruit: new
researchers start along wrong paths just as sure
of themselves and the ones who succeed in find-
ing a true approach are only those who over-
come the conservatism of traditional thinking.

The difficulties with radiation did not arise out
of blank space. At the end of the 19th century
William Thomson (Lord Kelvin) could not un-
derstand what portion of the energy of a gas
was taken by the vibrations of molecules. A mol-
ecule was thought to be a small elastic sphere
consisting of a complex coil of springs each of
which takes its own part of energy. But this
model was in clear contradiction with experi-
ment. The amount of heat required to heat a gas,
i.e. the heat capacity of the gas, was such as
would be required by molecules moving as
solid wholes; practically nothing was left for
vibrations. Kelvin was completely baffled and
was even inclined to think that the theorems
about the kinetic theory of heat, discovered by
James Clerk Maxwell, were wrong. Kelvin was
very worried by this unpleasant situation. He re-
garded it as one of the two clouds that darkened
the clear skies of physics on the eve of the new
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century. The failure of Michelson’s attempt to
detect the motion of the Earth relative to the
ether through which light propagates was, Kel-
vin considered, the second cloud. He was right,
these two paradoxes indeed concentrated on the
critical stresses points. They were resolved only
with the advent of the revolution in physics and
with the establishment of quantum and rela-
tivistic principles.

We shall return to the kinetic theory later but
we underline here that is was not easy to get
used to the notion of moving atoms that is so
much of a habit for us nowadays. Difficulties
crept up from different directions. Various types
of motion are possible. Particles can move trans-
lationally; they can vibrate around an equilil
rium position; and finally, they can rotate. It
proved difficult to find out which of the motions
is related with heat and which with light. Ga-
lileo believed that different phenomena corre-
spond to different sorts of particles whilst other
physicists deduced heat from translational mo-
tion (this was the opinion of Bernoulli, for exam-
ple). It is thus clear why Kelvin was looking in
this direction when he was trying to solve the
puzzle. A still more formidable obstacle was
the lack of an explanation of the nature of elec-
tromagnetic radiation which carried energy but
behaved quite differently from an ensemble of
atoms and seemed to form a continuum.

The paradoxes involved in the radiation spec-
trum and heat capacity of the molecules looked
like a trap cleverly set by nature. Physicists
faithful to classical physics could not find a
way out of this trap. Kelvin attempted to show
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that thermal motion does not excite molecular
vibrations and believed that he had given a “final
proof” of the failure of Maxwell’s kinetic ideas.
Kelvin was of course unaware that classical
physics could not in principle resolve the para-
doxes that have been discovered. The solution
only came with Planck’s quantum hypothesis.

Walther Hermann Nernst had started along
the correct way even before Planck’s discovery.
He was the first to realize that some types of
motion do not have “equal rights” in the parti-
tioning of energy, being “frozen out” at low tem-
peratures and entering the picture only at high
temperatures. These ideas enabled Nernst to
predict the behavior of things in the vicinity of
absolute zero, although the actual meaning of
his prediction became clearer much later in
quantum mechanics. We shall see later how these
ideas of Nernst have transformed the concept of
the “number of degrees of freedom”, which looks
so trivial in classical mechanics.

Planck and Nernst were physicists of the older
generation who were enthusiastic about the
novel ideas of the 20th century. It was to them
that Einstein owed the introduction into the
community of the best minds in physics. Both
lived to see their ideas incorporated into the
grand edifice of quantum physics.

Thermal Equilibrium

The concept of “thermal equilibrium” is very
often encountered in the theory of heat, and we
need to discuss it briefly before going on with

3-0140
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our story. Thermal equilibrium is most easily
understood in the case of a monatomic gas. If the
gas in a container behaves such that its temper-
ature is the same at all points in the container
(obviously, the temperature of the walls of the
container is also always the same), then the
gas is in thermal equilibrium. This means that
the gas’s heat does not flow from one part of
the container to another, and neither the pres-
sure nor chemical composition changes. From
the standpoint of classical thermal phenomena,
therefore, “nothing happens” in this gas.

The fact that heat always flows from a hot
body to a colder one, that is, that the temperature
of bodies brought into contact always tends to
level off, must be regarded as a fundamental
natural law. In mechanics, processes can follow
different paths, e.g. a pendulum may swing in
different planes, or a wheel can be rotated in any
direction. The situation is quite different in
the case of heat for a hot kettle in a room cools
down “of itself”, but cannot warm up “of itself”;
in order to freeze the contents of a refrigerator,
work has to be done. A room can be heated by
an electric radiator, but the radiator cannot be
heated up at the expense of cooling the room.

Heat invariably flows so that temperatures
level off and a system reaches a thermal equi-
librium. The transition to thermal equilibrium
may be a complicated and rather protracted
process.

We say that a container is thermally insulated
if the heat flow is minimized —that is the prin-
ciple of thermos flasks. More complicated situa-
tions are possible. In a hot plasma the tempera-
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ture of the electrons may differ from that of the
ions (as if we had a mixture of gases at unequal tem-
peratures) and the two temperatures level off
rather slowly. Hence, one point in the plasma
may be at two temperatures at the same time.
Each of the two systems, that of electrons and
that of ions, is in thermal equilibrium: electrons
with electrons and ions with ions but the heat
flux between ions and electrons is very slow.
We shall come across such flows when discussing
the Universe or the magnetic cooling of crystals.

Now let us emphasize again: in nature two
bodies in contact tend to assume the same ulti-
mate temperature. If energy is not fed into a sys-
tem as heat or in other form, the system reaches
a thermal equilibrium in which heat flows finally
die out.

Heat and Cold

Different opinions have persisted through history
on what heat is. In 1620 Francis Bacon system-
atized the information on the sources of heat
and cold and listed them in tables. Among the
entries one could find lightning and summer (or
heat) lightning, flame and will-o’-the-wisp, as
well as aromatic herbs which produce the feeling
of warmth when digested. From all this Bacon
somehow came to a conclusion that heat is “ex-
panding motion” In 1658 Pierre Gassendi pub-
lished his treatise and contended that heat and
cold are distinct forms of matter. He believed
the atoms of cold to be sharp-angled (shaped as
tetrahedra) and to solidify a liquid when pene-
trating it.

3
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Physicists were mostly hostile to the notion
of atoms. The caloric theory which assigned to
heat the properties of a liquid flowing from one
body to another seemed much more comprehen-
sible. The caloric was similar to phlogiston, a
hypothetical substance of flame, and sometimes
they were even confused. Caloric appeared to
give a conclusive explanation of thermal phe-
nomena. In chemistry the burning and oxidation
of matter could be explained by the release of
caloric. The caloric theory became generally
accepted in the last quarter of the 18th century.
One of natural scientists of that period wrote:
“...light was ascribed two properties: its ability
to illuminate and its ability to heat. Those who
considered light to represent vibrations of ether
believed that heat also consisted of similar
vibrations and of motions generated by the ether
in the particles of a body. But recently heat has
become to be regarded as something distinct
from light and not as its direct effect.”

The caloric theory (nowadays we would say
“the caloric model”) explained a wealth of facts.
The theory of the heat engine developed by Ni-
colas Léonard Sadi Carnot was based on the
caloric model. However, the model failed when
tested by the law of conservation.

If heat were a liquid of some sort, it would
be conserved in the flow so the amount of it would
always be constant. This was indeed the conten-
tion, the amount of heat taken from the heater
is equal to that gained by the heat sink.

At first glance, the statement is correct: a
kettle cools down, the air warms up. But quite
often this is not the case.
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The first to notice this was Benjamin Thompson
(later Count Rumford). He was observing the
drilling of artillery gun barrels in Munich Ar-
mory. Nobody before him had seriously ana-
lyzed the causes resulting in the heating-up of the
barrels and Rumford tried but failed to do so.
The only solution seemed to be that the chips
contained less caloric than the initial ingot, and
the excess was released by drilling. But then
it would be easier to heat the chips than a solid
piece of metal since the chips thus had a lower
heat capacity. Alas! This was in flagrant con-
tradiction with experiment.

A still greater difficulty lay in the fact that
blunt drills “generated” more heat than sharp-
ened ones. Drilling was somehow capable of
generating an almost unlimited amount of heat.
The simple model of caloric flowing from one body
to another was obviously inadequate in these
phenomena. The balance was tipped in favor of
relating heat with motion. Unfortunately, at
the end of the 18th century the accuracy of
experiments was still very poor, and although
Rumford was supported by Sir Humphrey Davy
and Thomas Young who also stressed the role
of the vibration and rotation of molecules in all
substances, few were dissuaded by the gun drill-
ing evidence.

But a theory is bound to remain sterile as long
as its hypotheses remain mere words and are not
converted into numbers and formulas. The rela-
tionship between energy and heat was established
experimentally by James Prescott Joule in 1873;
it was a quantitative relation between work
and heat. Joule demonstrated that stirring a
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liquid with a stirrer and thus heating it, 460
kgi-m of work have to be spent for each kilo-
gram-calorie acquired by the liquid (in another
series of experiments Joule obtained the figure
423 kgf.m). Julius Robert von Mayer, using
the results of Gay-Lussac’s experiments on the
expansion of gases into vacuum, had calculated
this quantity somewhat earlier than Joule but
less accurately (365 kgf-m/kcal).

At this stage the model of a nondisappearing
liquid, the caloric model, was a hindrance to
further progress and was quickly removed from
the stage. The caloric model also met with an-
other difficulty. If caloric is a liquid that does
work when flowing from a higher level (higher
temperature) to a lower level, it was difficult
to understand what happens in a nonuniformly
heated body as the temperature equalizes. Name-
ly, what happens to the work produced by
this flow of caloric?

At that time heat conduction was interpreted
as a sort of wave motion in a body, transferable
from one body to another.

But even if the “loss” of work went unnoticed,
the concept failed to explain how heat is trans-
ferred through a vacuum, for instance, from the
Sun to the Earth. Vibrations of ether were men-
tioned, but no conclusive theory could be con-
structed in these terms. The caloric theory was
losing one battle after another.

Many natural scientists discussed the idea of
the link between heat and motion. Rene Des-
cartes made relevant statements and Daniel
Bernoulli tried to derive a formula for gas pres-
sure.
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The British physicist Robert Hooke must be
specially mentioned. We mostly remember him
as the author of Hooke’s law of elasticity. Hooke
was truly a spectacular scientist of the 17th
century. Boyle’'s student, he greatly influenced
his teacher with his ideas and apparently Hooke
knew about the law of (universal) gravitation
independently of Newton (their contemporary
Sir Christopher Wren had also mentioned it).
He paid much attention to studies of optics.
Hooke expressed quite clearly the relationship
between heat and motion, that is, the vibration
of particles in a heated body. Unfortunately,
Hooke was advancing brilliant hypotheses with-
out being able to “translate” them into the lan-
guage of mathematics. Consequently, the dis-
covery of the law of gravitation became the ac-
complishment of Newton, and for the same reason
Hooke’s name is not mentioned among the foun-
ders of the theory of thermal phenomena.

I have already mentioned that Mikhail Lomo-
nosov also expressed the right ideas, and many
philosophers, including Thomas Hobbes and John
Locke, identified heat as motion. Let us mention
that Locke was probably the first who wrote
(around 1700) about the maximum degree of cold
which “...means the cessation of motion of im-
perceptible particles... .” But these philosophers
also could not turn uncertain statements into
a physical theory verifiable by experiment.

The greatest progress was achieved by Maxwell.
The kinetic theory of heat that he had developed
made it possible to understand thermal phenom-
ena in terms of classical mechanics. Maxwell
derived a formula for the velocity distribution of
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moving particles which made it possible to cal-
culate certain constants characterizing the prop-
erties of matter, such as heat conduction and
viscosity of a gas, and to find their temperature
dependencies.

In much the same way as Newton created ce-
lestial mechanics, Maxwell was the founder of
statistical physics (called the kinetic theory of
gases in the 19th century).

But Maxwell too had his predecessors. The
first formula of the new theory of heat was de-
rived long before Maxwell. But, as happens with
“premature” discoveries, the formula went vir-
tually unnoticed. Later we shall return to the
work of Waterston, but now we should resume
the story of the thermometer and temperature.

Temperature Scale

In all instruments devised in the 18th century
to measure temperature, the measurements in
fact consisted in finding the length of the column
of water, alcohol, or mercury. Of course, two
identical thermometers could be made and ad-
justed always to give identical readings, but the
thermometers only worked in a limited tem-
perature range. The thermometer-filling liquids
froze and boiled, and the thermometers could
not measure very low or very high temperatures.
Besides, it would have been useful to know the
relation between degrees in different ranges of
the scale. By measuring the amount of heat re-
quired to raise the temperature of a body by one
degree, for example, at room temperature and at
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1000 °C, one could not deduce the relation be-
tween the degrees at these points. Two problems
faced the incipient science of thermometry. First,
it was necessary to choose “reference” points, that
is, conditions corresponding to certain chosen
points on the scale of a thermometer, such as the
origin of the scale, and, second, to construct
a definition of the degree that would be indepen-
dent of the choice of thermometer and be usable
to reconstruct the scale at any place on the Earth
and at any time.

The Celsius scale accurately fixed two points,
0 °C and 100 °C, with the distance between them
divided into equal parts. But the role played by
each division remained obscure. It was necessary
to understand what happens in a body when the
mercury column in a thermometer (placed in
contact with this body) rises one additional
degree. The simplest assumption would be that
the energy of the body (or the heat contained in
it) is always incremented by the same amount.
This quantity for a unit mass of the body is called
its specific heat.

We know, however, that different bodies have
different specific heats, and even in the same
material the specific heat is a function of tem-
perature, that is, at different temperatures the
amount of heat needed to raise the temperature
of a body one degree is different. Hence, ordinary
materials are unsuitable for this purpose.

It is, nevertheless, possible to devise a body
which, to a certain extent, possesses the required
properties. This is the ideal gas whose pressure,
by virtue of Gay-Lussac's law, is linearly pro-
portional to temperature (at constant volume).
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Real gases behave very nearly like an ideal gas
if the pressure, and as a result, the density of
the gas is very low.

Obviously, the method cannot be used at some
temperatures and pressures because at some
point any real gas stops behaving like the ideal
gas.

Nevertheless, the gas thermometer (usually
the hydrogen thermometer) serves as the ref-
erence instrument at almost all temperatures
feasible in laboratory conditions.

The question of how to determine temperature
in a more rigorous manner still remains.

If temperature is a physical quantity, there
must be a method of determining it which, at
least in principle, is independent of the material
chosen to design the thermometer. This problem
became solvable only after the advent of thermo-
dynamics. The solution was found by Rudolf
Julius Emmanuel Clausius in 1848 on the basis
of Carnot’s theory of heat.

Carnot

The theory of heat has a definite year of birth.
In 1824 a book was published in Paris by the
young engineer Sadi Carnot: Réflexions sur la
puissance motrice du feu et les machines propres
a développer cette puissance (Reflections on the
Driving Force of Fire and Machines Capable of
Developing this Force). But this really great
work was noticed by practically nobody. Not
one of the leading scientists responded to its pub-
lication, and not one heeded the declaration
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made in the book: “...in order to analyze the
principle of obtaining motion from heat in all
its entirety, it must be studied of a specific ther-
mal agent, and arguments must be valid not only
for steam engines but also for any imaginable
heat engines, whatever the substance used as
the agent, and in whatever the way the substance
is utilized.”

The programme we formulated in these phrases
was exceptionally daring. Probably, only the
discovery of the law of inertia is comparable to
Carnot’s discovery.

Carnot died in 1836, still unaware of any re-
sponse to his werk. The natural scientists of the
19th century could be stone-deaf when new ideas
were proposed. Thus, nobody responded to Rie-
mann’s lecture “On hypotheses which lie at the
foundation of geometry”, and nobody recognized
the genius of Oliver Heaviside when he devel-
oped operational calculus.

In 1834 Carnot’s paper, or memoir as papers
used to be called, was revised and reprinted by
Benoit Clapeyron in the journal of the Polytech-
nical School in Paris. In his presentation, put
in more rigorous mathematical framework, Cla-
peyron introduced the graphical representation
of thermal processes. The currently popular curves,
such as isotherms and adiabats, can be traced
to Clapeyron’s work.

Carnot’s memoir was rejected by the editor of
the leading physics journal Arralen der Physik,
Johann Poggendorff. The same journal rejected
Mayer’s paper (to be true, it was written quite
badly). But Clapeyron’s memoir impressed Pog-
gendorff so much that he translated it’himself into
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German and published in Poggendorfi’'s An-
nalen. Alas, Carnot’s ideas found no followers
in this form either. Clapeyron’s paper was reprint-
ed in German again nine years later, and again
this was not the time for recognition. Only at
the beginning of the 1850’s, more than a quarter
of a century later, were Carnot’s ideas understood.
Together with the law of the conservation of ener-
gy discovered by Robert Mayer (in 1843), they
were at the foundations of the studies of William
Thomson and Rudolf Julius Emmanuel Clausius
which mark the birth of thermodynamics.

It is clear from Carnot’s diary, published by
his brother after Carnot’s death, that Carnot al-
ready knew about the conservation of energy.
In his notes Carnot calculated the mechanical
equivalent of heat, obtaining 3.6 joules per calo-
rie (the correct figure is 4.2).

If Carnot had had time to publish his results,
the law of the conservation of energy would have
become known almost two decades before the
work of Mayer and Joule which we shall discuss
in later sections. Moreover, his main achievement
would have been more comprehensible if the
law of the conservation of energy were included
in it. But in his memoir Carnot made no mention
of the relationship between heat and work. He
shared the opinion that thermal phenomena im-
plied a flow of caloric and built up his argument
on a wrong premise. Nevertheless, he managed
to come to a correct solution. I think that Carnot’s
work represents a spectacular example of physical
intuition.

Let us try to follow Carnot’s line of reasoning
in some detail.
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Carnot formulated the following questions:
How does it happen that a heat engine produces
work and what is the limit on this work? Differ-
ent heat engines work differently, one may be
more efficient, producing more work, another
is less efficient. But can the efficiency of a heat
engine be improved indefinitely?

Ideal Carnot Cycle

The questions as formulated above could be an-
swered only after quite a few concepts had been
refined. To begin with, it was necessary to realize
that a heated body cannot alone do any work.
In order to construct a heat engine, it is neces-
sary to have, in addition to a heated body (the
heater, or hot body), a second body at a lower
temperature (the heat sink, or cold body).
The hot body of a standard steam engine is
a boiler in which water is vaporized and the
heat sink is a condenser in which the steam, having
done some work, is condensed and thus converted
back into water. In addition to a hot body and
a heat sink, the engine must include a working
substance or agent, that is, a liquid or gas which
transfers heat and produces work “as it goes”
Carnot explained the appearance of work by
a flow of caloric from the hot body to the heat
sink. The flow of caloric can be compared with
a flow of water running through a dam and rotat-
ing a turbine of the electric power station. The
amount of caloric is conserved (as well as the
amount of water), and what changes is the “level”
of caloric as determined by the temperature.
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Caloric thus flows from the hot body to the leat
sink and thereby produces work. However, if
we extend this caloric-water analogy, we soon
end in a blind alley. According to the analogy
it would be logical to assume the work done by
the “downflow” of caloric to be proportional to the
temperature difference (like a hydraulic head).
We cannot accept this conclusion. Indeed, if
this were so, a steam engine would be nonsen-
sical. Once the steam had expanded, done the
useful work, and condensed (or simply cooled
down), one has to heat it up anew and make
it work once again. Heating would require exactly
the same amount of work as was produced at the
cooling stage, and even then only if all our
devices had worked without losses.

Now imagine that somebody decided to build
a hydroelectric power station on the shore of
a mountain lake, releasing water through a tur-
bine into another reservoir, for instance, another
lake at a lower altitude. In order to prevent a
drop in the level of the upper lake, he decides to
restore the level by pumping the water uphill.
This idea is obviously idiotic; the work done
by the pumps cannot be less than the work done
by turbines. Actually, part of the work will be
lost on friction in the turbine, on evaporation
of the water, and on some other processes as well.
Whatever the design of the pumps, whether they
are connected in series or in parallel, the law of
the conservation of energy forbids any useful
device to be built which is meant to gain some-
thing from this enterprise.

Why then do the compression and expansion
of a gas in a heat engine yield useful work?
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What is the difference between the operation of
a hydroelectric power station and a heat
engine?

This discussion leads us back to the question
that was posed earlier, namely: Are the degrees
at different parts of the thermometer scale equiv-
alent? If water in a mountain river falls a height
of one meter, it is immaterial whether the meter
is in the valley or high up in the mountains be-
cause the work yielded by one liter of water falling
one meter is the same. This obvious result can
be reformulated. We can say that by measuring
the energy released by falling water we are only
measuring the difference between its levels,
we are not measuring the altitude at which the
process takes place.

Losses are inevitable; thus, the kinetic energy
acquired by water falling a considerable height
onto the turbine blade is almost totally dissi-
pated in the impact on the turbine blades.

In order to reduce these losses, velocity of the
stream has to be reduced and this inevitably
diminishes the turbine's power. Hereafter we
shall see again that reversibility entails infinitely
small power.

In the case of heated steam the situation is
quite different, and that was the first of Carnot's
observations. The work that can be done by steam
cooling from 100 °C to 99 °C is not equal to the
work done by the same amount of steam cooling
from 50 °C to 49 °C. The reason is that the steam
pressure is different in these two cases.

But in addition to the hot body and the heat
sink there is also the working medium, or sub-
stance. Could something depend on its properties
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as well? Carnot found that the problem involved
too many variables.

He overcame the difficulty brilliantly, by
considering a “circular” process, or cycle, in
which the warking substance first does some work
and then returns to the initial state (using for
this a fraction of the work done previously).
Each element of the heat engine (including the
working substance) is thus in the same state at
the start and end of the cycle so that we find
the “net result” after each separate cycle because
every cycle is identical to the one that precedes
it.

Let us analyze such a cycle. Carnot considered
an ideal engine such that he only needed to know
whether it had a cylinder and a pisten (or a tur-
bine) that was driven by the expanding working
substance, for instance, a gas. The temperature
of the gas may vary: the gas may be heated up
by a special system, the hot body, and cooled
by another system, the heat sink. In addition,
it is natural to assume (and this is what makes
the engine “ideal”) that neither heat nor work
disappear, i.e. heat is not radiated away to the
ambient, and work is not spent to overcome fric-
tion.

In order to describe what happens to the gas,
one has to know how its volume V, pressure p,
and temperature I are changed. 1f the temper-
ature of the gas remains constant, the process
is said to be isothermal; if the pressure remains
constant, the process is isobaric; and if the volume
is kept constant, the process is isochoric. Clearly,
any number of processes can be devised in which
all three characteristics p, V, T change simulta-
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neously. The Carnot cycle uses a process of just
this type, the so-called adiabatic, or isentropic,
process. In an adiabatic process the gas neither
gains heat from the outside nor loses it to the
ambient. None of the three variables p, V, or T
remains constant in this process.

We shall illustrate the states of the gas in
the cycle by a graph whose axes indicate the
pressure and volume of the gas. We are dealing
with an ideal gas so the graph can be plotted
by knowing only Boyle’'s and Gay-Lussac’s
laws (Charles’ law). We assume that these laws
are well known and that the reader even was
taught how these two are merged into the Cla-
peyron-Mendeleev law (the gas equation) for
one mole:

pV = RT

where T =t -+ 273.15 is the temperature in
degrees Kelvin, and ¢ is the temperature in de-
grees Celsius.

Recall that segments of curves on graphs are
called isotherms (T = const), isobars (p = const),
or isochors (V' = const), similarly. A segment
of a curve describing an adiabatic process is
called an adiabat. We shall not explain in detail
how to plot the curves for an ideal gas and shall
move directly to our main subject.

In order to describe the Carnot cycle, we use
an illustrative (but by no means real) experi-
ment.

Imagine three units. The first of them is a stove,
and a cylinder containing a gas placed on this
stove is heated to a temperature 7T,. The second is
a thermos such that the same cylinder with the
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gas put into this unit neither loses nor acquires
heat. And finally, the third unit is the heat sink
such that the cylinder with the gas placed in
this unit is cooled to a temperature 7T, << T;.

We insert a piston into the cylinder with the
gas and move the cylinder from one unit to an-
other. To simplify the argument, we will ignore
atmospheric pressure by assuming it to be small
compared to the gas pressure under the piston
or by assuming that the system is placed in vacuo.
If the piston is left free under such conditions,
the gas under it will start expanding.

Let us organize a process consisting of four
stages. Let the gas be initially at a temperature
T,.

I. First put the cylinder on the stove and let
the gas inside it expand. Wait until the gas does
a certain amount of work A,. Since this work is
being done at constant temperature, the graph
of this stage is the isotherm ab (Fig. 5). When
the gas expands, it withdraws heat from the
hot body. We denote the heat supplied to the
gas at this stage by @Q,. (Carnot assumed that
the)work was done by a “downflow” of calo-
ric.

II. Move the cylinder into the thermos and
let the gas continue the expansion, doing an
additional work Aji. Since nothing supplies heat
to the gas within the thermos, doing work means
the gas must cool. Let the gas cool down to a
temperature T,. On the graph this process is
plotted by the adiabat be, which is steeper than
the isotherm ab (Fig. 6). In the figure the thermos
is simply represented by a table on which the
cylinder is neither heated nor cooled.
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Fig. 5. Carnot cycle: stage I.
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Fig. 6. Carnot cycle: stage II.

III. Now that the temperature of the gas is
equal to that of the heat sink, move the cylinder
into the heat sink and start compressing the gas,
watching that at all times its temperature is con-
stant and equal to T,. This will consume a work
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A, and transfér a heat Q, to the heat sink. Stop
the compression when the pressure and volume of
the gas correspond to the third vertex of the cur-
vilinear quadrangle (Fig. 7).

IV Move the cylinder back into the thermos
and, continuing to compress the gas, make it
return to the initial state, that is, make it reach
the pressure and temperature it had at the start of
the first stage (Fig. 8). Of course, this means that
the pressure and volume at the end of the third
stage must be chosen correctly, otherwise we will
miss the initial point. These characteristics are
easily calculated in advance since the laws for
an ideal gas are known. A certain work A, also
has to be done at the stage da.

As a result of the four stages, the working sub-
stance should not change state, the hot body lose
the amount of heat Q,, and the heat sink gain the
heat Q,. The amount of heat Q; — @, is spent do-
ing useful work.

So far the message of our analysis was that a
heat engine cannot utilize all the heat trans-
ferred from the hot body, that some heat must
be transferred to the heat sink.

Carnot proved that the fraction of the utilized
heat, (Q;, — Q,)/Q,, only depends on the tempera-
tures 7, and T,, and is independent of all other
factors including the properties of the working
substance.

The proof of this theorem is one of the most ele-
gant in physics. What surprises us in Carnot's
discovery is that he did not know the law of the
conservation of energy when he wrote his memoir.
For him the transfer of heat was the “downflow”
of caloric. Moreover, by using the experimental
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Fig. Carnot cycle: stage III.

SUARARRRNARRNNNY

O

Fig. 8. Carnot cycle: stage IV.

data on the change in gases’ heat capacity, ac-
companying its change in density, Carnot con-
cluded that “the downflow of caloric produces
more driving force at lower temperatures than at
higher”. In Carnot’s terminology, the driving
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force is the work done by an engine per cycle;
hence, the title of the memoir.

Carnot’s Great Theorem

If, instead of our thought-experiment, all the
operations had been carried out in “live” condi-
tions, we would have found that some heat was
spent to heat up the walls of the cylinder, to pro-
duce irregularities in the piston’s motion, and
so on. “Adverse” losses become larger, the greater
the difference between the gas and the ambient,
and the greater the piston’s velocity. We assume,
therefore, that the piston moves very slowly and
that the temperature difference between the gas
and, for example, the hot body is very small.
Obviously, these assumptions cannot hold for
real heat engines because otherwise an engine
would work infinitely slowly and its power would
be infinitesimal.

But, following Carnot, we are looking for the
conditions that will maximize the useful work and
thus we have to resign ourselves to the fact that
this work is done by an engine with zero power.

It is immediately evident that all the opera-
tions in the cycle (there are only four of them)
can be arranged in the reverse order because
losses are absent. Ifthe stagesare denoted by the
letters a, B, v, 8, the Carnot cycle can be written
in the form C = §yPa (the symbols must be read
from right to left).

The reverse operations are denoted by the sym-
bols a-!, -1, y~t, 86-t. Thus, the operation «
corresponds to the motion along the isotherm
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from the point a to b, and ot corresponds to the
reverse motion from b to a. After two consecutive
operations o and o~! the gas has obviously re-
turned to the initial state. We use the following
notation to indicate this: a~ta = 1.

The cycle C in the ideal case can therefore pro-
ceed in reverse order. This reverse cycle is denot-
ed by C-! = o 1p1y-18-1. Obviously,

CC = a1y 18- 18yPa = 1

This notation simply means that after performing
a cycle C and then a cycle C-* wereturn the sys-
tem to its initial state: the hot body receives
back the amount of heat @, the amount Q, is
widhdrawn from the heat sink, and these opera-
tions will consume all the work gained in the for-
ward cycle.

In order to return the system (the hot body,
heat sink, and working gas) to the initial state,
it is not mandatory to use a cycle C! (the reverse
of cycle C). We can employ any other reversible
cycle, call it D. A composition of two cycles
CD-' or DC! returns all the elements of the sys-
tem to their initial states while each of the cy-
cles C or D (or C-* or D-*) returns only the work-
ing gas to the initial state. After each of these
cycles has been completed, work is done (or con-
sumed) and heat is transferred from the hot body
to the heat sink (or in the reverse direc-
tion).

A question that immediately arises is whether
any reversible cycle that can be performed with the
given temperatures of the hot body and heat sink
is equivalent to the cycle C. In other words, whe-
ther in an arbitrary cycle the heat withdrawn from
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the hot body is @, and the heat transferred to
the heat sinkis @, (theamount of work determines
the difference Q; — Q, (this is the energy con-
servation law), but the quantities Q, and Q,
could be different). Otherwise the system will
not be returned to the initial state. If this condi-
tion is not satisfied, we have consumed in the
new cycle all of the work gained in the cycle C
but because the system has not returned to the
initial state some of the heat has been transferred
from the hot body to the heat sink or from the
heat sink to the hot body without doing (or con-
suming) any work and without any change in the
surrounding medium. The problem can be posed
thus: Does the combination of any two cycles
always give CD-! = 1 for cycle D?

The problem is solved by Carnot’s theorem
which in fact states that every reversible cycle
must have the same efficiency, that is, the ratio
Q,/Q, must be the same and equal to that of the
Carnot cycle.

This statement can be proved very easily. In
fact, the proof is contained by the above words.
If the system does not return to the initial state
after the two cycles, CD-1, and the heat sink re-
ceives less heat in cycle C than it yields in cycle
D1, as a result of the two cycles the content of
heat in the heat sink is diminished and that in
the hot body is increased. In nature, however,
no process is possible without the heat being trans-
ferred from a hot to a cold body changing some
other part of the system. Hence, the process is
impossible.

If some heat passes from the hot body to the
heat sink as a result of the sequence CD-!, con-
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sider another sequence with the direct cycle D
and reverse cycle C-!. The two cycles DC-?!
again cool the heat sink and heat up the hot
body.

Of course, Carnot’s original arguments were
different (he did not use the notion of energy) so
we outlined the modern line of reasoning. But the
theorem is due to Carnot and states that the max-
imum work obtainable from a reversible cycle
is determined only by the temperatures of the
hot body and the heat sink, and is independent
of both the properties of the working substance
and any design features of the heat engine. With
given temperatures of the hot body and the heat
sink, all reversible cycles have the same efficien-
cy, i.e. they convert the same fraction of heat ob-
tained from the hot body into work, as the Car-
not cycle.

Note that if the engines are not ideal or if their
work is not reversible, the situation only deteri-
orates because of additional losses.

Carnot therefore was able to establish a theo-
retical limit for the work obtainable from a heat
engine.

Carnot was unable to derive a formula for this
work and thus his work was not complet-
ed.

We shall conclude this story of Carnot with the
words in which he put his law: “The driving force
of heat is independent of the agents chosen to pro-
duce it; its amount is solely determined by the
temperatures of bodies between which, in the
long run, the caloric is transferred.”
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Carnot’s Line of Reasoning

The arguments we used to arrive at Carnot’s the-
orem are clear and conclusive, but Carnot could
not reason in this way. He did not know that the
work done by a heat engine is equal, if there are
no losses, to the difference between the amount of
heat obtained by the working gas from the heater
and the amount of heat transferred to the heat
sink. The simple formula

work = Q, — O,

was unknown to him. For Carnot, work was pro-
duced by caloric falling from a higher to a lower
level. Note that all the caloric is transferred to
the heat sink, just as all the water at a hydroelec-
tric power station escapes from the dam. None-
theless, Carnot came to the correct result and,
from his standpoint, proved his theorem.

If there were a heat engine more efficient than
the Carnot cycle, it would produce more energy.
This means that it would spend less energy “lift-
ing” the caloric back tothe “higher” level, return-
ing it to the hot body. Hence, work would be
done without changing the content of caloric in
the hot body, and Carnot realized that this is im-
possible. In the language of today, this contra-
dicts the law of the conservation of energy.

Simiiar arguments can be used to “prove” that
there cannot be a reversible cycle with an effi-
ciency lower than that of the Carnot cycle. It
is sufficient to use thelessefficient cycle for trans-
ferring caloric from the hot body to the heat sink
and to return it by the Carnot cycle. It will
again resultin a work’appearing “from nowhere”.
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An almost complete analogy with a dam is evi-
dent. The work obtainable in an ideal hydroelec-
tric power station (zero losses) is determined only
by the water head (the difference between the up-
stream and downstream water levels). But we
know what the level of water is and are able to
measure it; as for the level of caloric, it left the
stage without ever having been estimated. Car-
not’s theorem is not based on the impossibility
of an “ordinary” perpetual motion machine but
on the impossibility of heat transfer from a cold
to a hot body. This would create a perpetual mo-
tion machine of the second kind, which could work
by freezing its surroundings. This engine would
solve any energy crisis beautifully, were it
not forbidden by nature. We can see that Carnot
made a serious mistake, but his result ultimately
proved correct. The intuition of a scientist some-
times enables him to arrive at a correct conclu-
sion despite faulty arguments. No wonder Carnot’s
contemporaries failed to do credit to his spectac-
ular achievement.

He could be understood only by those who ac-
cepted the caloric model but the model was clear-
ly passing out of contention even in Carnot’s
time.

A Simple Problem

Let us pass awhile in order to give an example
of a very simple irreversible process that had mis-
guided some people.

The heating of a room in a well-managed house-
hold is controlled by turning a knob. The Hand-
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book of Useful Hints advises people not to switch
the heating off for the night because all the ener-
gy economized by this operation will be spent in
the morning to heat the room back up to the form-
er level. As if there were a conservation law:
the amount lost must be compensated by the
same amount returned.

It is rather difficult to evaluate how conclu-
sive these arguments sound, but it is simple to
show that they are wrong.

Where does the heat from the room go? It
flows across the walls to the street, to the landing,
even into a neighbor’s apartment if he is out and
the heating is off.

The flow of heat is governed by a law discov-
ered by Newton. The amount of heat lost from the
room per unit time across a unit surface area is
proportional to the temperature difference be-
tween the two sides of the wall:

Q=k(T —Ty) =kAT

where 7T is the temperature in the room, 7,
is the temperature in the street, and k is the coef-
ficient characterizing the thermal conduction of
the wall and the contiguous layers of air.

This flux Q is the only source of the losses re-
plenished by the energy spent by the heating
device. The longer the time Q is small, the less
the energy consumed.

All other details are irrelevant, the only factor
is the mean temperature difference during 24
hours. The lower this difference, and hence, the
lower the mean room temperature during this
time, the more the energy economized (this exam-
ple was given by Albert Allen Bartlett in his
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lecture when he received the Millikan Medal in
1981. This prize is awarded to teachers in the
USA).

The Law of the Conservation of Energy

Caloric must be conserved; work is done due to a
“downflow” of caloric from a higher to a lower lev-
el. This idea was generally accepted at the be-
ginning of the last century and Carnot certainly
shared it when he was writing his memoir. The
role of potential energy in this theory was attrib-
uted to temperature and had the physicists had
better understanding of mechanics they would
have been worried that the caloric had nothing
resembling kinetic energy.

The situation with heat was even more compli-
cated since physicists had no proper understand-
ing of energy. The term “energy” appeared at the
beginning of the 19th century having been intro-
duced into mechanics by Thomas Young. It is
probably not surprising that conversion and con-
servation of energy were not discovered by a phys-
icist but by a physician, Mayer.

In 1840 Mayer went to the island of Java as a
ship’s doctor. Two notes from his diary, which
was written very regularly, have survived. One
of them is a record of his talk with a navigator
who told him that during a storm the water in
the ocean get warmer and was probably the first
step to his discovery. The other concerns a fact
he had noticed while he was letting blood from
sailors with pneumonia (this method was often
practiced in medicine at that time). Mayer's at-
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tention was drawn to a fact that had been known
to the local doctors for a long time though it had
never surprised them. The venous blood of sail-
ors was not dark, the colour European physicians
were used to. It was bright-red. Mayer found an
unexpected explanation. A human being resem-
bles a heat engine. The heat released in his body is
a result of combustion, that is, oxidation pro-
cesses in human blood. The animal heat described
and discussed by scientists does not differ in es-
sence from any other heat. It requires fuel to be
produced and the combustion waste, namely, car-
bon dioxide, is transported by blood back to the
lungs. The blood filled with a “smoke”, i.e. the
combustion products, becomes dark. In a hot
climate a small amount of heat is needed, the
consumption of the fuel is lower, the combustion
is not so intensive, and so the blood remains
quite bright.

The principal assumption in this picture was
that the heat released occurred as a result of a
chemical reaction. The idea was simple but al-
most unacceptable in Europe at that time. Even
Mayer’s note concerning the water warmed during
a storm was not accepted by the learned professors
in Tiibingen to whom he turned for sup-
port.

The paper he sent to Poggendorff’s journal (we
have already mentioned it) in July 1841 was ig-
nored by the editor and its receipt was not even
acknowledged. True, theideasexpressed there were
presented not very clearly: it was written by a
physician who had never dealt with physics. The
paper was described as: “On Quantitative and
Qualitative Evaluation of Force. A work by
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J.R.Mayer, doctor of medicine and surgery, prac-
ticing physician in Heilbronn”

A year later Mayer published a new work in a
chemical journal, supported by calculations. This
time the help came from a famous physiologist
Baron Justus von Liebig.

It was only in 1845 that Mayer managed to pub-
lish a detailed work, “Organic Motion and Its
Relation to Metabolism” (obvioulsy the title was
again not very attractive to physicists).

In the meantime Mayer had not only come to
understand that energy is converted from one
state into another, but using Gay-Lussac’s exper-
iments, he also found the mechanical equivalent
of heat, his estimate being 365 kgf-m per large
calorie (3.7 ergs per calorie).

Mayer’'s results seemed equally strange to bi-
ologists. Many biologists (called vitalists) be-
lieved some special vital force was the source of
the activity of a living organism, although our
current understanding of the close relationship
between biology and physics was initiated by May-
er's discovery. Mayer's fate was tragic. He was
hounded by his learned colleagues and was not
even appreciated by his relatives. He spent ten
years in a lunatic asylum and recognition only
came to him in 1878, several years before his death.

At the same time that Mayer was trying in vain
to persuade the learned societies of the validity
of his ideas concerning the conversion of energy
into heat, similar ideas were being developed by
James Prescott Joule in England.

Joule’s first work dates from 18441. It dealt with
a study of the heat released from conductors when
current was passed through them. It is of interest
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that it was the same year in which Mayer lirst
calculated the thermal equivalent of work. He
had written to his friend Karl Josef von Bauer
about it, but published his results later.

From tlie experiments Joule concluded that the
release of heat occurred due to the battery’s work
and as a result of the chemical reactions taking
place init. Havingstarted from this, Joule discov-
ered what we call Joule's law.

Joule strengthened his confidence in the nature
of heat by other experiments and, like Mayer, he
found the mechanical equivalent of heat. Such
experiments had been carried out by Joule for
many years aud they all proved that heat ap-
peared asaresult of work. Thus it was finally shown
that the theory of nondestructible caloric was
incorrect and should be forgotten.

Joule, too, was not immediately recognized by
his contemporaries. The influence of the old theo-
ries based upon the belief in authorities was too
strong and hindered the acceptance of new con-
cepts about the equivalence of heat and work.

But numerous new experiments carried out un-
der various conditions confirmed these ideas. Lie-
big did not forget what he had learnt from Mayer,
and in his work “On Animal Heat” he resolutely
supported the conclusion that all the heat in a
living organism appears due tothe combustion of
food.

Hermann Ludwig Ferdinand von Helmholtz
developed his ideas about “conservation of
force” (i.e. energy) in 1847 (but he failed to recog-
nize Mayer's contribution in time).

Thus, in the 1840’s the efiorts of manynatural-
ists led to a formulation of, probably, the most
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important law of nature: the law of the conserva-
tion of energy. 1t is also called the first law of ther-
modynamics.

It is interesting that one more difficulty was
encountered on the way to accepting this law.
It was possible to concede eventually that energy
could not appear out of nothing and that it was
impossible to construct a perpetual motion ma-
chine, but it was difficult to realize that energy
could not vanish. The work of a horse is wasted
through the friction in cart wheels, the heat of a
furnace is dissipated irrevocably throughout the
room. At every step we can see how energy disap-
pears and how work is wasted to no purpose, but
state, nevertheless, that energy is conserved. The
paradox was solved only when it was realized
that heat was related to molecular motion and
that the “vanished energy” was converted into
the energy of this motion.

At this point let us return to Carnot. Neither
Mayer nor Joule had thought of him. The expla-
nation of the law of the conservation of energy
and Carnot’s principle was completed by Clau-
sius. His work was published in 1850 by Poggen-
dorff. Clausius was the first to speak of the equiv-
alence of heat and work as of the first law of a
theory of heat. He also arrived at the equation
which Carnot had failed to derive. It called for a
simple thing to have been mentioned: every body
possesses internal energy which can be increased
by work being done on the body and by heat be-
ing supplied to it. The significance of this state-
ment lies in the conjunction “and”. What it says
can be written as a formula:

AU = AQ + AA
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This simple formula has a profound meaning.
In mechanics the energy of a body increases when
some external forces do some work on this body.
This statement can be written as follows: AU =
= AA, implying, for example, that AA is the
work of compression of a spring, and AU is the
increase in its potential energy. But compression
is not the only way of increasing the energy of a
spring, it will be increased by heating, too. By
supplying heat to a system, we also increase its
energy.

It is very important to understand that the final
state of a system cannot reveal which factor made
the system increase its energy, heat or work. Clau-
sius himself called U “the heat contained in a
body” contrasting it to Q, “the heat supplied to a
body” Now U is called internal energy (or simp-
ly energy), and AU is its increment.

As we said earlier, the energy U of a body can
be changed both by supplying heat to it and by
doing work on it, but these contributions, so to
say, become depersonalized by turning into a
unified physical quantity which is the energy U.
Clausius established the concept of energy (to be
more exact, internal energy) in the science of
thermal phenomena. He borrowed the term from
mechanics: “As for  terms, I regard as the most
suitable the word “energy” used by Thomson, be-
cause the quantity, which is referred to here fully
corresponds to the quantity denoted by this term
in mathematics... .” Other physicists suggested
the terms “internal heat”, “internal work”, or “the
action function” No quantity can be called the
heat Q of a body, as there is no quantity inside a
body which can be called the work A. A state with
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an energy U caun be obtained in different ways,
each time choosing different quantities of the heat
supplied and the work done, whilst maintain-
ing the constancy of their sum. It was this prin-
cipal “stratagem” of nature which made its under-
standing so long and hard.

Now we can finish the story about the Carnot
cycle and obtain the formula for the efficiency of a
heat engine. But to do this, we need to know a
formula for the work done by a gas (it will suf-
fice to use the formulas for an ideal gas because
Carnot cycle calculations are independent of the
choice of a working substance).

The work required to compress one mole of an
ideal gas from a volume V, to a volume V at a con-
stant temperature is

14

(In is the natural logarithm. If y = In z, then
z=2¢%, and logz = ln z-loge = 0.23 In z).

If Vo<<V (the gas expands), then 4 >0
and the gas has done some work.

This formula is derived as follows.

The state of an ideal gas, as we know, satisfies
the Clapeyron-Mendeleev equation of state

pV = RT

(we shall always assume that we are operating
with exactly one mole of a gas).

Let the gas be in a container with a piston and
let us apply a pressure p to the piston. The pis-
ton will compress the gas and do some work. If
the piston’s area is o, the force applied to the pis-
ton is po. If this force is constant and the displace-

5%
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ad=pav =RTAL

AV Vv
Fig. 9. Isothermal compression of gas.

ment of the piston is Al, the force does the work
AA = po Al. It is easy to see that the product
o Al is simply a decrease in the gas's volume,
—AV We used the negative sign to make AA
positive. Hence, the expression for the work done
on the gas is (Fig. 9)

AA = —p AV (AA >0if AV < 0)

Using the equation of an ideal gas, we can elimi-
nate p:

RT
Ad=—2T Ay
or

|4
AV = —2 A4

This is the equation we have to solve.
Let the gas be compressed from a volume V

to a volume, for example, %V (i.e. AV:%V).
Repeat this operation 10 times. After each succes-

sive stage the volume becomes %V, %V, %V,

% V. By virtue of the derived equation we see

that to decrease the volume from V to %V the work
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should be approximately equal to

2 . 1

AA=? RT (stage 1: V- TV)

Instead of taking into account the exact change
in the volume on the right-hand side, we substitute

V by the average -;— (V + %V) =-Z’—V of the val-
ues of volume at the beginning and end of the
stage. It is clear that reducing the stages and there-
by decreasing the change in the volumes, we
can make the error of this approximation arbit-
rarily small.

Let us calculate the work done on the gas at the
second stage in the same way. Here we again sub-

stitute the volume by the average -;- (%V—l—% V) =
—3 V. To decrease the volume again by a factor

of 2, we should set AV = % V and obtain
2 1 1
AA=§-RT (stage 2: -2—V—>—,;—V)

Now it is not difficult to deduce that at each
stage the reduction of the volume by a factor of
2 results in the same work

2
Ad = ?RT

The work done will thus increase in an arithmetic
progression while the volume will decrease in a
geometric progression.

We can write now similar formulas for the case
when an initial volume V, is reduced at each stage

by a very small fraction % V,n>> 1. In this case



70 Temperature

after N stages (N> 1) the ratio of volumes is

F-(-4)"

and the work done is
A=NL1RT
n

Eliminating the N from these formulas, we ob-
tain the relation between the change in the vol-
ume V/V, and the work A:

Lelayp

If now n tends to infinity, n — oo, the expression

in the brackets is known to tend to 1

T T2t

lim (1_i)"=——1—=i

n . 1\» e
n-oo lim (1+—~)

n—+00 n
Therefore,
|4 A
. —e—A/RT
v, = ¢
or
14

A= —RT ll’lTO'

It is useful to give a geometric illustration of
the obtained formula. Let us plot the function
p (V, T) at constant T (Fig. 10); it is a hyperbola

RT
pP=-

When a volume V changes by AV, the work 4
is given by the area of the hatched band, and the
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p

Work Fig. 10. Work done dur-
ing isothermal compres-
sion.
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total work needed to compress the gas from a vol-
ume V, to a volume V is obviously equal to the
area under the segment of the hyperbola traced by
the double curve.

Adiabats

Now we should study in more detail the behav-
ior of the gas in the thermos, when no heat is
supplied to or removed from the gas. The tem-
perature of the gas then changes only at the ex-
pense of its internal energy.

If the gas-filled container is thermally insulat-
ed, the work done on the gas or the work done by
the gas is the only factor changing its internal
energy:

AU=A0A= —pav= -2y

If the gas were heated at constant volume, the
change in the energy would only depend on the
heat supplied to the body. Then the following
formula would hold for the energy:

AU = ¢4 AT
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where ¢y isthe heat capacity of the gas (per mole)
at constant volume. This formula is simply the
definition of ¢y. The two formulas above reflect
the fact that a change in the internal energy can
happen in two ways: owing to heat or owing to
work. Consequently, AU can be calculated by re-
placing the adiabatic process by another consist-
ing of two stages. First we change temperature at
constant volume, then U is incremented by
¢y AT After this the gas is allowed to expand at
constant 7. Then the value of U remains constant,
and the work done by the gas exactly compensates
for the amount of heat spent at the first stage. By
equating the AU calculated by the two methods,
we obtain
AV | oy AT 0
v ' R T

If ¢y is independent of both 7' and V (this is
true when the temperature of an ideal gas under-
goes only moderate changes), this equation can
be resolved. It is very easily verified that

vTV'® — const

satisfies the eqnation. This statement can be test-
ed by substituting V and T by the slightly in-
cremented values V 4+ AV and T -|-AT We find
that the constant remains unaltered if we neglect
the (AV)?, (AT)?%, and AV AT terms. If pressure
p is introduced instead of 7', the formula becomes

pV?¥ = const
(a different constant, of course), where

_tv+R
V=0
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Note also that R is numerically equal to the
work done by an ideal gas if its temperature is
increased one degree at constant pressure:

—AA = p AV = R AT

If the gas is heated not at constant volume but
at constant pressure, additional R calories per
mole have to be supplied in order to compensate
for the loss of energy spent on the expansion of
the gas (this was already clear to Carnot).

The quantity ¢y, + R is called the heat capac-
ity at constant pressure and denoted by c,.
Hence,

p=

cy

and the relation between the pressure of an ideal
gas and its volume in the adiabatic process is

/
pV PV — const

This formula is called the adiabat equation.
Processes in real gases are approximately de-
scribed by the formula

pV® = const

where n is a real number. The curve is then called
a polytropic compression curve.

Carnot Function

We already know that Carnot proved that the effi-
ciency of a heat engine depends only on the hot-
body and heat-sink temperatures, but he was un-
able to derive this formula analytically because
he did not know the relations derived above. The
formula was obtained by Clausius.
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Let us return to the Carnot cycle. In this cycle
the isotherms for the temperatures 7, and T,
are joined by adiabats; the following two equa-
tions can be written for the two adiabats:

cv /R R
v —a,, VIV =g,
where a, and a, are two different constants. One
property of the adiabat is that, if it joins two
points corresponding to temperatures T, and T,,
the ratio of volumes V| and V, at these’ points is

Vi ( T{\Fev
v (Té)

and depends only on the ratio of temperatures.
By using this property for the pairs of points
(a, d) and (b, ¢) in the Carnot cycle, we conclude
that

Vo _ Va
Ve - Va
or that the volumes at the end points of two iso-
therms of the cycle satisfy an important propor-
tion
Vo _ Ve
Vo = Vg
This is the relation that Carnot lacked.
Now we can calculate the work done in an iso-

thermal process. For the first isotherm ab the
work done by the gas is

[Ad,, | =RT In 32

Obviously, this work equals the amount of heat
Q, supplied by the hot body. The work done by
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the gas on the second isotherm is
| Adea| = RT,In 7&
[4

In its turn, this work is equal to the amount of
heat @, transferred to the heat sink.

Now, taking into account the ratio of the vol-
umes, we can write

Adap | _ Ty

Aeq | T,
or finally,

T _ 0
T2 Qﬁ

The Carnot function defining the efficiency is
usually given by the ratio of the “utilized” heat
Q; — Q, to the heat Q, supplied by the heater.
We can thus write

0—0Q; _ Th—T,

01 Tl
This is the famous formula for the efficiency of
a heat engine, namely

— Tl'—TI
n=—t—t

Expressed in this form, Carnot’s formula is of
fundamental importance. I remind the reader that
Carnot’s memoir had had no such formula, it
was derived by Clausius. It shows that the fraction
of heat that can be converted into work depends
on two temperatures: that of the hot body and
that of the heat sink. In mechanics we are used
to the idea that the kinetic energy of a body can
be converted totally into work. This 100% ef-
ficiency is impossible for heat. The possible use-
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ful work (“driving force of fire”, in Carnot’s words)
is a function of the initial (hot-body) and final
(heat-sink) states of the working gas. One has to
get used to this notion of work and the concept
resulted in the appearance of a new science: ther-
modynamics.

Absolute Temperature Scale

There are moments which can be singled out in
the progress of physics when a new idea changes
all subsequent history. These moments are re-
ferred to as Great Discoveries. Each discovery has
its predecessors, but a discovery begins an
independent life, often independent of the cre-
ator, only after the physical idea has been givena
precise mathematical embodiment.

Three great] ideas which predetermined and
made the birth of new physics at the start of the
next century unavoidable stand out in the first
half of the 19th century. These are the Faraday-
Maxwell concept of the field, Mayer’s idea of the
conversion and conservation of energy, and Car-
not’s idea of thermodynamics. These ideas came
into the world in different degrees of perfection.
The brilliance of the mathematical techniques of
Maxwell gave birth to an electrodynamics already
largely complete. Mayer's idea conquered the
world almost without formulas. Carnot proved on-
ly one theorem which yielded a simple formula,
n = (T, — T,)/T,, but this formula signified a
whole new science.

Like the creator of the wave theory (Augustin
Jean Fresnel) who used the ether model to derive
the formulas of wave optics and obtained laws
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independent of the model, Carnot succeeded in
extracting from the caloric model results so gen-
eral that all future developments in physics
could not refute them. Born of Carnot’s short
memoir, thermodynamics even now appears as a
spectacular achievement of the human mind. Af-
ter Carnot—and this was one of the most im-
portant results of his idea—the notion of tem-
perature at last acquired a precise meaning.

Galileo in his time discovered that all bodies
fall at the same acceleration regardless of their
nature. Newton discovered that the attractive
force between bodies is independent of their na-
ture and is only a function of their masses. Car-
not’s discovery is equally general.

The Carnot theorem was the first rigorous re-
sult in the theory of thermal phenomena. All
known about heat before that was mostly descrip-
tive. Physicists (and engineers) knew how to de-
scribe different thermal processes, how much heat
must be spent to heat up different bodies, and how
much heat is released by burning fuel. In short,
they were able to compare different amounts of
heat and measure temperatures by thermometers,
but they were completely in the dark about the
meaning of these notions.

Mayer and Joule discovered therelation between
heat and energy, and Carnot understood how heat
was converted into work. The time has come then
to understand what temperature is. Temperature
and energy looked alike: adding heat increased
the temperature of a body, work done by the body
decreased its temperature. But this simple rela-
tionship exists only when a single body is in-
volved.
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A difficulty arises when one compares the ther-
mal behavior of two bodies. We can easily find by
comparison which of two bodies is warmer and
which is colder, but we cannot “subtract” one
degree from one body and heat another body by
the same one degree. The heat capacity of differ-
ent bodies, that is, the amount of heat required
to raise the temperature of the body by one de-
gree, is different in different bodies, and further-
more, changes with temperature. It was clear
that if two bodies are at the same temperature,
it by no means signifies that they contain identi-
cal energy.

Temperature was measured by thermometers,
by the length of a mercury or alcohol column, or
by the volume of a gas in a sealed instrument.
Obviously, the two techniques are far from impec-
cable.

Mercury and alcohol thermometers are com-
pletely unsuitable for accurate measurements since
both are based on the assumption that the expan-
sion of mercury and alcohol is proportional to the
change in temperature; the assumption is evi-
dently approximate. Moreover, testing this ap-
proximation again requires that temperature be
measured by some other method.

Actually, physicists were very lucky. Measur-
ing temperature by a gas thermometer is a very
good method because fortunately gases at low den-
sities behave almost identically. The reader
knows from the school textbooks that gases are
adequately described by a universal equation of
state.

The secret of this luck lies in the fact that al-
most all the gases encountered in nature become
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liquid at very low temperatures. In Carnot’s time
it was generally believed that such gases as
oxygen and nitrogen always remained gaseous
(they were even called permanent gases). And at
temperatures far above the liquefaction stage
gases behave like ideal gases.

Consequently, the gas thermometer still serves
as the main instrument for the most precise
temperature measurements. These measurements
are sufficiently complicated in actual conditions,
but the main principle is simple and quite clear.

However, even the gas thermometer leaves
much to be desired. One is inclined to envy the
physicists of the 19th century who worked neither
with very low nor with very high temperatures.
Nowadays the temperatures achieved in labora-
tories go as low as below —273 °C, and as high as
millions of degrees in thermonuclear fusion fa-
cilities.

Obviously, temperature must be defined, at
least theoretically, without invoking any of the
properties of specific substances, even ideal gases.

But before going on to new ideas, let us spend
some time on how the unit of temperature arose.

We already know that it first appeared spuri-
ously: the boiling point of water was assigned the
number 100. This choice has had important conse-
quences: a new gas constant R = 8.3157 joules/
/degree appeared in the Clapeyron-Mendeleev law.
This numerical value appeared only because the
degree had been introduced very long ago, and
every change in gases was habitually referred to
the accidentally chosen temperature scale. Now it
would be more convenient to redefine one degree
and to “anchor” it in the equation of the ideal
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gas. This would only require diminishing the
degree by a factor of 8.3157 and assuining that in
this “ideal-gas” scale the temperature is

0 = 8.3157T

The Clapeyron-Mendeleev equation then would
take the form

pV =0

with the right-hand side containing no constant
factor. But this redefinition is not yet accepted,
the constant R survives in science, the degree be-
ing determined as before by the conventional Cel-
sius thermometer.

The dimensionality of the constant R is joule/
/degree. By choosing a different unit for the de-
gree we could achieve R= 1, as shown above. This
means that temperature can be measured in
joules, that is, in units of energy. Degrees and
calories have something in common: both are mea-
sured in ergs. Nevertheless, they are different
physical quantities.

Lord Kelvin's Discovery

The meaning of temperature attracted the atten-
tion of William Thomson (later, Lord Kelvin)
who found in 1848 that the Carnot theorem yields
a simple but very important corollary. Kelvin
noticed that if the work done in a Carnot cycle
depends only on the hot-body and heat-sink tem-
peratures, it is possible to establish a new temper-
ature scale independent of the properties of the
working substance. The Carnot cycle can be re-
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garded as a device which makes it possible to mea-
sure the ratio of two temperatures T, and T,.
To achieve this, one has to use the equality

T, _ 0
T, ~ 0

By measuring the ratio of the amount of heat re-
moved from the hot body to that transferred to
the heat sink (or, which is the same, by measuring
the ratio of; work done during the two isothermal
stages of a Carnot cycle), we obtain the ratio of
the hot-body and heat-sink temperatures.

Thus, if a Carnot cycle can be organized for two
bodies (using one as the hot body and another as
the heat sink), we can determine the ratio of tem-
peratures of the two bodies. A temperature scale
thus defined iscalled an absolute temperature scale.
For an absolute temperature (as opposed to the
ratio of two temperatures) to have a definite num-
ber, the magnitude of the temperature at one
point on the new absolute scale must be changed,
i.e. one numerical value of temperature must be
arbitrarily assigned. After this, every other value
is determined, in principle, by using Carnot cy-
cles.

Unfortunately, despite the theoretical elegance
of a Kelvin scale, the Carnot cycle is hardly fea-
sible in practice. It is difficult to realize a rever-
sible cycle and to suppress all the losses. It is nec-
essary to find another method of measuring tem-
perature.
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Real Temperature Scale

The problem of temperature from the theoretical
viewpoint became quite clear after Kelvin’s work.
However, the practical problem remained, for
what principle must be used to construct the scale
of a reference thermometer so that actual mea-
surements can be made?

For many years the reference points of the tem-
perature scale were the melting point of ice and
the boiling point of water, and the distance be-
tween them wasdivided into 100, each of which was
assumed to be one degree. This scale with two ref-
erence points was accepted throughout the world.

From the point of view of accuracy of measure-
ment, the scale had a very serious shortcoming.
It was necessary to be able to reproduce very ac-
curately all the conditions as the ice melted and
the water boiled.

It would be simpler to use a single reference
point, for instance, the melting point of ice, and
measure temperature by a ratio of pressures which
are related to that of temperatures by the equa-
tion of state (or by organizing a Carnot cycle, al-
though this possibility is almost always purely
theoretical).

The melting point of ice is, of course, not quite
suitable as a reference point because it is a func-
tion of pressure and in general is not reliably re-
producible. As a result, the single reference point
used nowadays is the triple point of water. This
is the temperature at which all three phases of
water (vapor, water, and ice) are in equilibrium.
At every temperature there is a definite pressure
of water vapor over ice. If the temperature is
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gradually increased, all three phases will be in
equilibrium at the moment the ice starts to melt.
This state corresponds to the temperature
0.01 °C. The point 0.01 °C is rather easily repro-
ducible in a laboratory and has been chosen as the
reference point for the thermodynamic scale, be-
ing set exactly equal to 273.16 K. The conven-
tional zero of the Celsius scale is at 273.15 K.

This number was chosen in order to make tem-
peratures on the new scale practically indistin-
guishable from the older two-reference-point Cel-
sius scale.

The transition to the new scale with the triple
point of water as the only reference point went al-
most unnoticed. This reform was carried out in
1954, so that now if we areasked: “What is the tem-
perature at which ice melts at normal pressure?”
we must answer: “Roughly 273.15 K” or “Roughly
0 °C”. But if asked: “What is the temperature of
the triple point of water?” we must answer: “Exact-
ly 273.16 K” or “Exactly 0.01 °C” Scientists
are now discussing whether to replace the triple
point of water by that of gallium (29.7740 °C),
since it is more easy and accurately reproducible.

It is interesting to recall that the idea of a scale
with a' single reference, point was suggested as
early as 1873 by D. I. Mendeleev who proposed to
define one degree as that increment in tempera-
ture which causes the pressure of a gas (Mendeleev
suggested hydrogen) to increase by 1 kgf/cm?.
He chose the melting point of ice to be at a pres-
sure of 100 gf/cm?. This new degree (called the met-
ric degree at the time) was equal to 0.2728 °C.

Mendeleev's idea was realized (in a somewhat
modified form) only after lapse of 70 years and so

(1]
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Mendeleev's name is thus related to the modern
thermometer scale as well.

International Temperature Scale

A scale with a single reference point is readily
put in agreement with the Kelvin-Mendeleev
scale that is based on Carnot’s theorem. We have
already mentioned that a thermodynamic scale
(this is the name of the Kelvin-Mendeleev scale)
does not change if every value of the temperature
is multiplied by the same number. The choice of
a reference point removes this uncertainty. If,
for example, we assume that water boils at T}, =
= 373.15 degrees, all arbitrariness is removed
since the values of temperature cannot be multi-
plied by arbitrary factors because 7T}, must re-
main constant. As usual, theoretically impeccable
methods prove unfeasible for everyday use in
conventional, nonmetrological laboratories. A
thermodynamic scale only can be used in special,
perfectly equipped laboratories. Otherwise the
so-called IPTS-68 scale (International Practical
Temperature Scale enacted in 1968) is used. In
this scale the boiling point of water is exactly
100 °C and there are also other reference points,
which are rather difficult to reproduce, that are
also assigned specific temperatures. Of course,
this scale does not completely coincide with a
thermodynamic scale because the temperature of
these reference points is not absolutely accurate.
In the region of the boiling point of water the
IPTS-68 and thermodynamic scales diverge by
about 0.004-0.005 K. Therefore, the accuracy of
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measuring temperature in conventional laborato-
ries is several tenths of one percent. Temperature
is presumably the least accurate quantity among
those encountered daily. Even the most accurate
measurements contain an error of 5:10-3%. The
universal gas constant is known to the same ac-
curacy: R = 8.340 + 0.0022. The same is true
for the mechanical equivalent of heat, to only
three decimal places known precisely at present,
thus 1 calorie = 4.184 + 0.0026 joules.

Even now high-precision thermal measure-
ments remain among the most difficult to obtain
in a physics laboratory.

Kinetic Theory of Gases

It would be a hopeless, as well as an absolutely
unnecessary, task to try and describe the motion
of each individual atom in a gas: no instrument
could follow all atoms simultaneously. It was
already clear by the middle of the 19th century
that systems consisting of a very large number of
particles must be described in terms of probabili-
ty theory, averaging the properties of individual
atoms over a large number of constituent atoms,
instead of determining the properties of separate
atoms.

The second half of the 19th century gave birth
to a new science, statistical physics, which cul-
minated in the work of Ludwig Eduard Boltz-
mann and Josiah Willard Gibbs.

However, its first ideas had been conceived ear-
lier. In this connection, we should mention a re-
markable story of the British scientist Waterston,
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In 1845 Waterston submitted a paper to the
Royal Society of London. The paper showed that
the pressure exerted by a gas on the container
walls could be explained by the impacts of atoms.

Although the very idea of a gas consisting of
atoms was not new at the time, few people seri-
ously believed that atoms could move freely be-
tween the walls of a container and that the elastic
properties of gases can simply be reduced to the
classical mechanics of atoms. The Fellows of the
Royal Society did not like Waterston’s paper and
rejected it. Many years later Rayleigh, one of the
founding fathers of the theory of vibrations and
the theory of sound, in particular, discovered this
paper in the archives of the Royal Society and
published it in 1892 in Philosophical Transactions
of the Royal Society.

Among other things Rayleigh noticed that
Waterston had been unwise in not mentioning
his predecessors in the first paragraphs of the
paper. Daniel Bernoulli had discussed the rela-
tionship between the pressure of a gas and the
square of the velocity at which its particles moved
as early as 1727. Had Waterston mentioned his
great predecessor, then, as Rayleigh’s pointed
out, the referee of the Royal Society would not
have dared to declare the paper meaningless and
unfit even to be read to the Fellows of the Royal
Society.

This was a sad event for physics. What had been
accomplished by a single man and went un-
noticed was rediscovered later through the work
of several people, and the final formula was made
by Maxwell in 1859.

This story is very instructive. So much effort
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went into deriving a formula that now appears to
be so simple:

1
p=-gnm O

Here p is the pressure of a gas, n is the number of
molecules per 1 cm® (the density of the gas), m
is the mass of one molecule, and (v?),, is the arith-

metic mean of the squares of velocity of mole-
cules.

Collisions in an Ideal Gas

The above formula shows that the pressure of a
gas is directly proportional to the number of mol-
ecules per unit volume and hence inversely pro-
portional to the volume of the gas:

1
p o=
This is Boyle’s law. But since this law describes
the behavior of an ideal gas, the formula also
holds for an ideal gas.

And what is an ideal gas from the standpoint
of the atomic theory? Sometimes it is said that it
is a gas consisting of atoms whose diameters are
negligibly small, that is, an ideal gas is assumed
to consist of material points. But points have zero
size and hence do notl collide with one another.
If this were so, their velocities would not change
over time unless changed in collisions with the
walls. Let us assume that a cubic container was
filled with a gas, and the gas was let in as a jet so
that all the molecules were moving perpendicular-
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ly to one of the walls, bouncing back in the oppo-
site direction as if from a mirror. The mole-
cules of the gas then would flow back and forth be-
tween the two walls without affecting the motion
of one another.

The real picture is obviously quite different.
There are many molecules in the container and
they frequently collide, changing their velocities
each time. The velocities of different molecules
will become diverse very rapidly (the diversifica-
tion being the faster, the larger the number of mole-
cules), and thermal equilibrium will be achieved
in the container. Thermal equilibrium means
that the pressure and temperature will be equal-
ized throughout the container. Of course, we as-
sume that the walls of the container are at the
same temperature all the time and that the con-
tainer is sufficiently small for the change in gravity
with height to be negligible within it. The same
“distribution of velocities” will be reached in all
parts of the container in the state of thermal equi-
librium.

The molecules in such a container will fly in
complete disorder, with total chaos existing at
all points inside the container.

The ultimate arrival off thermal equilibrium
is a very important fact but it is difficult to
prove it rigorously. Experiments have confirmed
that despite the never-ending collisions of ran-
domly moving molecules in the gas, our instru-
ments can only detect a constant pressure and con-
stant temperature.

The most impressive feature is that the state
of thermal equilibrium is totally independent of
how the molecules collide. If the collisions are
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infrequent, the equilibrium will be slow to build
up, if collisions are frequent, it will be attained
quickly. In monatomic gases equilibrium sets
in so quickly that in most cases we can ignore how
the build-up proceeded. The important fact is
that collisions do take place and that the equilib-
rium is ultimately reached. The type of collision
is absolutely immaterial. The gas may be so rar-
efied that particles do not collide with one anoth-
er at all, but only with the walls of the contain-
er; regardless of this, thermal equilibrium sets
in all the same.

But once thermal equilibrium has been reached
in the container, further collisions cannot
change anything and whether they take place or
not, no appreciable eflect is produced on the pres-
sure or the temperature of the gas. For this reason,
a model in which molecules are infinitesimally
small and do not collide ‘'with one another is
quite adequate to explain thermal equilibrium.

Nevertheless, it is this model of pointlike mole-
cules that do not collide but are in thermal equi-
librium that one usually chooses as a model of an
ideal gas.

What Is the Velocity of Molecules?

Different molecules certainly have different ve-
locities. In order to calculate the pressure of a
gas, a special assumption has to be made about
the velocity distribution of the molecules, that is,
the fraction of molecules that have a given veloc-
ity has to be defined.
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August Karl Krénig believed (1856) that all
molecules move at an identical velocity and that
each molecule movesin one of three possible direc-
tions parallel to the coordinate axes. The same
problem had been taken upby Joule before Kronig
(but after Waterston) (1851). Joule correctly in-
terpreted the relation between the molecular im-
pacts against the walls and the gas pressure, but
failed to derive the required formula. Finally,

Fig. 11. Three compo-
nents of velocity.

Clausius obtained (1857) a new formula without
dropping the assumption of equal velocities. Max-
well came to the correct conclusion only two
years later.

When a molecule collides with a container wall,
the wall receives a certain momentum. Let us be-
gin by assuming that the collision with the wall
is elastic. Let the z-axis be perpendicular to
the wall, and the z- and y-axes lic in its plane. We
decompose the velocity of a molecule into the
components along the three axes (Fig. 11). If
the impact is elastic, the angle of incidence equals
the angle of reflection, so that the velocity compo-
nents vy and v, arc unchanged. The component
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v, thereby changes sign. It is thus obvious that
the momentum of the molecule is changed by
2mv,. Now we have to calculate the number of
molecules striking the wall. If the distance be-
tween the walls intersecting the z-axis is [, a par-
ticle that hits the wall will arrive at this wall
again in a time interval equal to 2!/v,, regardless
of the other components of its velocity. The num-
ber of impacts of this molecule per unit time is
then v,/2[.

Each impact transfers a momentum of 2mv,
to the wall, so that the momentum transferred
per unit time is mv2/L.

In order to find the pressure this expression
must be summed up over all particles (each parti-
cle has its own v,) and divided by the area of the
wall, that is, by I%

1 Nm
p=— Z mvﬁ:l—a(vﬁ)m

We assume for the sake of simplicity that the
container is a cube and its volume is thus 3.
Arguments given below show that the pressure
must be independent of the container’s shape
because a gas does not “memorize” the shape.

In this formula we used the definition of the
arithmetic mean:

NvEi=N (v

where / is the total number of particles.
The last manipulation is the replacement of

(Ug)m by %(lﬂ)m. Since

(V¥ = AT U?/ Y+ (Vm
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and the terms on the right-hand side are equal
(our initial assumption was that the motion is
random and no one of the directions in the con-
tainer is singled out as compared with the other
two), we find

(V®m=3 (3

Replacing now the ratio N/I* by the density of
particles n, we arrive at Waterston’s formula for
pressure.

The problem is evidently not difficult and was
correctly solved by Waterston. But Kroénig as-
sumed that a molecule hitting the wall transferred
all its momentum, and his result was thus twice
as small. This would be the case if the molecule
did not rebound but adhered to the wall; in the
middle of the last century mechanics was still
a very complicated science and such mistakes
were possible.

The reader might object that the derivation is
based on one very important simplification: the
impact was assumed elastic. However surprising
it might sound, this assumption is unimportant.
A molecule may be reflected arbitrarily without
affecting theresult. The elastic-impact assumption
does not change the result, it only makes the
derivation much simpler.

The spectacular property of the independence
of the final result on the law of reflection follows
from the thermal equilibrium between the gas and
container walls kept at constant temperature. The
ultimate state, that is, thermal equilibrium, does
not depend upon how molecules are reflected at
the walls,
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We shall illustrate this important property
of thermal equilibrium by one example. Assume
that a light, movable partition is put into the
container, separating the gas into two compart-
ments, with the density and temperature of the
gas being identical in the two compartments of
the container. Assume now that one side of the
partition is polished while the other is adhesive,
so that the laws of reflection of molecules against
the partition are delinitely different on both sides.
If the pressures exerted on the partition on the
two sides proved to be different, the partition
would be shifted in order to equalize the pressures.
This would mean that the equilibrium densi-
ty of the gas were different on the two sides of the
partition although the pressure and temperature
in the two compartments are identical. But this
conclusion contradicts the equation of state: pres-
sure and temperature unambiguously determine
the density of the gas. Hence, pressure cannot
depend on the law of reflection of gas molecules
at the walls. These are very general conclusions
that are draw from the thermal-equilibrium as-
sumption.

Kinetic Energy of Molecules
and Temperature

Now we have to make the next step and relate mo-
lecular impacts and temperature. First we for-
mulate two assumptions which yield Waterston’s
formula. Following him, we assume that in a gas
at thermal equilibrium (i) the molecules of the
gas collide only with the walls but not with one
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another and (ii) the impacts with the walls are
elastic. The first assumption signifies that we
deal with an ideal gas, and the second, as we have
mentioned above, does not change the result
while simplifying the derivation.

Now everything is quite simple. If the formula
for pressure is rewritten in the form

2 m (v?)
P=gn—3g —

and we use the Clapeyron-Mendeleev equation
p= % RT
we find

2 m(»®)
RT = +-200m N,

We have replaced the product nV by the Avogadro

number N, because, as is inherent in the Cla-

peyron-Mendeleev equation, V is the molar vol-

ume, and » is the number of particles per cubic cm.
Denoting R/N, by k, we find

m{v)y _ 3

The constant & is called Boltzmann’s constant
and it was introduced by Max Planck in 1899.

The last formula shows that temperature is a
measure of the kinetic energy of molecules. If the
gas is monatomic, all its energy is the energy of
translational motion (the formulas prove to be
somewhat more complicated for a gas whose mol-
ecules consist of more than one atom).
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We can write for one of. the components of
velocity (c.g. v,)

m(vi)m _ 1,
__.2—__71‘,T

Identical formulas can be written for the other
two components. The atom is said to have three
degrees of freedom, which means that its motion
is completely described by the three components
of its velocity.

The formulas are such that it appears that each
of the three possible perpendicular directions of
motion takes up energy equal (on the average)

to %kT per each molecule. This statement is a

particular case of the general law of equipartition
which generated many contradictions in the last
century.

It is quite surprising that when Waterston ad-
dressed the British Association Jn 1851, he said:
“Two gases are in equilibrium in pressure and
temperature when each unit of volume contains
the same number of atoms and the live force of
each atom is also the same.” If we note that “live
force” was the term for kinetic energy (in contrast
to “inanimate force” for what we now call simply
force)*, we recognize in this statement a corollary

* 1t has already been mentioned that in the 18th century
the difference between force and energy was not clearly un-
derstood. The “force” contained in a bullet in flight was
confused with the force of a wound-up spring. Leibniz
introduced the term “live force” to denote kinetic energy
and “inanimate force” to denote, for instance, the pres-
sure of a weight on a support. This confusion is noticeable
in the term “horsepower”, an obsolete unit of power.
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of the equipartition law. But again nobody paid
attention to Waterston’s words.

Waterston’s formula related two quantities
which his learned opponents considered incompar-
able since they had absolute different natures.
The formula related the energy of the particles
with temperature and finally he was reading a
physical meaning into the notion of temperature,
or at least the temperature of an ideal monatomic
gas. Although the author of the formula could
not perceive how much it contained, it proved to
be the first formula of the incipient kinetic theory
of gases.

Distribution of Energy
over Degrees of Freedom

We already know that the energy per each degree
of freedom in a monatomic gas is % kT.In the SI

system of units we can choose the degree of the
temperature scale so that the energy per degree
of freedom changes by half a joule. In this system
of units one division of the thermometer scale
would correspond to 7-10%2K. This quantity is
obviously too large for practical purposes so
Kelvin (or Celsius) degrees still reign in physics.
Later we shall learn that in nuclear physics and
especially in astrophysics the energy temperature
scale becomes very convenient. A more practical
scale would be obtained by defining a one-degree
change in temperature as the change in energy of
one degree of freedom of an atom, calculated not
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per atom but per NV, atoms, that is, by%R. We

have already mentioned this scale and denoted
one degree in it by ©, the energy of one mole of a

monatomic gas being given by —g—@. However, this

scale was never introduced.

If a gas is not monatomic, part of the energy is
taken by the vibrations of the atoms inside the
molecules and by the rotations of the molecules.

rd

—30

Fig. 12. Rotation of a
diatomic mole:ule,

x
For example, let us take a two-atom molecule
like O,. If oxygen were monatomic, the two atoms
would have six degrees of freedom. The number of
degrees of freedom could not change when the
atoms are joined together to form an O, molecule
because atoms continue to move inside the mole-
cule as well. Such a molecule has three transla-
tional and two rotational degrees of freedom (the
molecule can rotate around two axes, see Fig.

12)*.

*For a reason not quite comprehensible in classical phys-
ics this molecule does not rotate around its axis, or
rather, this degree of freedom has zero energy. We could
say that atoms are pointlike and cannot be made to ro-
tate. The situation becomes clear only in quantum me-
chanics. If a molecule consists of three or more atoms, it
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The remaining degree of freedom deals with the
vibrations of two atoms with respect to each other.
These vibrations are what interests us now.

While translational motion and (it can be
proved) eachrotational motion are associated with

% kT of energy, vibrations take k7. This is clear

if the reader notices that a molecule, like an elas-
tic spring, possesses, in addition to kinetic ener-
gy, potential energy which takes exactly one half
of the whole. A stringent proof of this statement
follows readily from an analysis of the motion of
an elastic spring.

The energy of an O, molecule is thus

3 2 7
kT + = kT kT = o-kT

that is, the heat capacity of oxygen is —Z- k per
molecule, or i R per mole.

can rotate around any axis, and it is said thatithe molecule
in this case has three rotational degrees of freedom (Fig.
13).

/ Fig. 13. Rotation of a
X, multiatomic molecule.
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The situation is different in a crystal. Particles
in solids cannot move freely in space, and
can only rotate in specific, complicated crystal
structures. Hence, practically all the degrees
of freedom belong to vibrations. This means
that the molar heat capacity is 3R cal/deg, or 1R
per each vibration (each atom can move in three
directions). As R is approximately equal to
2 cal/deg-mol, the heat capacity of all sub-
stances in solid state could be expected to be
6 cal/deg, precisely the contention of the
Dulong-Petit law. However, experimentsshow that
actual heat capacities diverge from six, and
furthermore, depend on temperature. The
deviation from the Dulong-Petit value isespecially
pronounced in the case of carbon.

In the last century this conclusion seemed very
strange because it contradicted the equipartition
law. The corollaries of the departures from the
Dulong-Petit law later proved more serious than
would have been expected. They were precursors
of the catastrophes that befell classical physics
at the end of the century. We shall tell this story
later.

Heat Capacity

We have already noticed that the calorie and the
degree have dimensions of energy. The logical
conclusion would be that heal capacity is a di-
mensionless quantity, that is, a quantity inde-
pendent of whatunit is chosen for energy: erg, cal-
orie, or something else. The fact that heat capac-
ity is measured in cal/deg or joule/deg is only

Te
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due to our habit which prevents degrees being
dropped altogether.

What then is measured by heat capacity? In-
deed, it has a specific value for each substance,
and in addition, depends on temperature.

Let us repeat something already familiar,

The heat capacity of a monatomic ideal gas is
simply understood. Each degree of freedom is as-

signed the energy % kT.1f the heat capacity is re-
ferred to an atom rather than to a mole, then (in
ergs per degree) itis %k and shows the number of

degrees of freedom of one atom, that is, the num-
ber of dimensions in our three-dimensional space.
In the system of units in which pV = © the heat

capacity of a monatomic gas would be —3—, i.e. one

half of the number of degrees of freedom of one
atom; this is the meaning hidden in the thermal
properties of gases.

But if we deal with the heat capacities of gases
with more complex structures or the heat capaci-
ties of liquids and crystals, then in the ideal case
the heat capacity would define the number of de-
grees of freedom, with each vibration assigned
two degrees of freedom. Actually, the situation is
more intriguing. For instance, the electrons pro-
ducing the electric current in metals take practi-
cally no part in thermal motion: their degrees of
freedom are “frozen out”., Hence, the heat capac-
ity of a solid can be calculated with these elec-
trons completely neglected and with only the
vibrations of the heavy nuclei taken into account.
This strange phenomenon was understood only
with the advent of quantum mechanics.
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Maxwell Distribution

All that was said in the preceding section follows
from the fact that a gas, when left undisturbed
and under constant conditions (e.g. a gas in a con-
tainer whose walls are kept at constant tempera-
ture), reaches an equilibrium state.

In macroscopic terms, equilibrium means the
same temperature, the same pressure, and, if the
gas comprises several components (as air does),
the same composition of the gas at different
points within the container.

Even at equilibrium the molecules in a gas
move at random, undergoing collisions among
themselves and with the container walls, all the
time changing their velocity. However, some char-
acteristics do not vary so randomly. Whatever
the change in velocity, the mean square velocity
remains constant. This. means that if we could
follow the motion of one molecule for a sufficient-
ly long period, we would find that periods of
acceleration alternate with periods of decelera-
tion, but the square velocity stays the same if
averaged over time. The result would be the same
if, instead of following one chosen molecule,
we measured the velocities of a number of differ-
ent molecules at one instant of time: thie mean
value would again be the same (averaged over the
ensemble of the molecules). An attentive reader
may ask why the result must be the same with
these two approaches to measuring the mean ve-
locity. The time average was introduced into phys-
ics by Albert Einstein, but it has not yet been
rigorously proved even now that the time aver-
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age is equal to the average over the ensemble of
the molecules.

What is the fraction of molecules that move at
a given moment of time with a given velocity?
This problem was solved by Maxwell, the general
theory of statistical properties of physical sys-
tems being developed by Boltzmann and Gibbs.

We shall not derive the formula for the Max-
well distribution. What is important for us now
is that according to this formula the velocity dis-
tribution of molecules is determined by an ex-
ponential factor, namely,

1) o< oxp (— )

where mv?/2 = ¢ is the kinetic energy of a mole-
cule.

Maxwell published his formula in 1860 at
which time the derivation appeared very dubi-
ous to his contemporaries. Maxwell was not solv-
ing detailed equations for each of the colliding
atoms but arrived directly at the conditions of
equilibrium in a system consisting of a large num-
ber of atoms. But these conditions were not corol-
laries of mechanies. So it is no surprise that even
Thomson tried to verify the distribution formula
by analyzing the mechanics of bhilliard balls.
By the way, billiards proved a very popular
model for studying the behavior of atoms. The
theory of colliding spheres on billiard tables of
various shapes grew into an interesting field of
mathematics. In 1867 Maxwell returned to the
derivation of his formula. In his new paper he
proved that the distribution he obtained is indeed
not altered by the collisions of molecules. A rigor-
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ous derivation of the Maxwell distribution
proved far from easy, and some subtle aspects re-
main to be clarified.

What Is a Distribution?

At first glance the phrase “The velocity of so
many molecules in a gas is, for example, 200 m/s”
may not seem strange. But the value 200 cannot
be absolutely exact. The number of exact values
is infinite; the number of molecules is finite how-
ever large it may be. Therefore at each partic-
ular’ moment' the molecules cannot have all
possible velocities, though this is not needed.
Each velocity is measured within a certain accu-
racy, which actually means that we do not imply
the exact velocity 200 m/s but imply a range of
velocities from 200 — &8 to 200 + §, where §
is a small value corresponding to experimental
conditions.

Without referring to the absolute value of ve-
locity but taking, say, a velocity component
Vx, one could ask how many molecules (better,
what fraction of molecules) have a velocity com-
ponent that lies in the range v, to v, + Av,.
This quantity can be expressed as An (v,)=
= f (v,) Av,. The function f (v,) iscalled the dis-
tribution function.

In Fig. 14 two graphs are plotted: the stepped
curve is an approximate distribution of mole-
cules, and the area of each (nth) rectangle (equal
to f, Av,) is the fraction of molecules whose ve-
locities lie in the corresponding range. The in-
terval Av, is chosen to equal unity. Such graphs
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are called histograms. If the number of steps of a
histogram is very large, then the stepped curve
can be replaced with the smooth curve (also traced
in Fig.14). This curve is the distribution func-
tion. Since f (v,) indicates the fraction of mole-

Uy

Fig. 14. Histogram and distribution curve (for vy).

cules, the area under the whole curve must equal
unity.

Similar graphs, that is, histograms, can be
traced for the distribution functions of the other
two velocity components, v, and v,.

Now let us write the expression for the fraction
of molecules whose velocity components are v,,
vy, and v, (within certain intervals around these
values). This can be done as follows. The fraction
of molecules with the velocity component v,
is f (vy) Av,. A certain fraction of these mole-
cules have the second component, v,. This fraction
is, obviously,

An (v, v) = 1 (0,) 1 (v2) vy Ao,



Various Mean Values 105

Fraction f (v,) of these molecules will have the
third velocity component, v,. Then, the fraction
of the total number of molecules whose velocity
components are v, vy, and v, is

An (v,, Uy, v) =f(v,)f (vy) f (vx) Av, AVy Av,

The function

f(v:xv Uy, vz) = .f (vz)f (Uy) f (vx)

can be called the velocity distribution function.
These three distribution functions of velocity
components are supposed to be identical because
in thermal equilibrium all three space orienta-
tions are equivalent.

Various Mean Values

Assuming that the law for the distribution of the
velocities for the molecules is known, we can cal-
culate various characteristics of this distribu-
tion. The mean velocity equals zero because the
negative and positive values of components are
equivalent. The calculation of mean values is re-
duced to the calculation of integrals and cannot
be done in asimple way. The mean square veloc-
ity is expressed by the already familiar formula:

3kT
or, in case of the mean kinetic energy,

(Eym= S kT




106 Temperature

One can also obtain the mean absolute value
of velocity:

(|v|)m=(8k:)”2=1.772 ("m—T)"z

14

Finally, velocity of the “most frequently en-
countered” molecules (the most probable veloci-
ty) is

B=(2—IZT-)“2=1.414 (i”f—)“z

One should not be surprised that molecules with
the mean velocity are not the most frequent. The
absolute value of velocity is positive, and the
number of molecules whose velocity is less than
the mean velocity always exceeds the number of
molecules whose velocity is higher than the mean
velocity. To “compensate” for the molecules hav-
ing higher velocities, a larger number of mole-
culeshaving lower velocities is needed. This fact
is well known to statisticians. The number of
persons whose salary is higher than average is
always less than the number of persons whose
salary is less than average.

If all the molecules had equal velocities, the
three mean values would, certainly, be equal.
The difference indicates the spread of velocities.

To characterize the spread of velocities it is
convenient to calculate, in addition, the mean
square kinetic energy

1
(Bt =2 (0 = 22 2T
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Now the difference called the variance o can be
calculated:

02 = (E%p — (EYn =5 2T

We find that temperature reveals another qual-
ity: it characterizes the “width”, or spread, of the
distribution of the velocities (or energies) of
the molecules, that is, the natural spread of the
kinetic energy of the molecules with respect to
the mean.

Thus, the combination of normal distribution
and Waterston's formula led to the further devel-
opment of the concept of temperature as a param-
eter that determines the spread of energy in
the translational motion of gas particles.

Maxwell Distribution and Chaos

Let us dwell on the Maxwell distribution a little
bit more. First of all, when describing a gas, we
shall use velocity space instead of coordinate
space. This means that we “represent” each mole-
cule by a point whose coordinates are equal to its
velocity components. Thus, the origin corresponds
to a molecule at rest while the points on the z-
axis correspond to the molecules moving along
this axis with various velocities, etc. This space
is illustrated in Fig. 15.

Let us imagine a cube, one of whose vertices
is at (z, y, z) and whose edges are parallel to the
coordinate axes. Points inside this cube corre-
spond to molecules whose velocity components
lie in the ranges bounded by the coordinates of
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the vertices of the cube. In reality the number of
these molecules is continuously changing because
the molecules collide, thereby changing their ve-
locities. This will result in the points in the cube
“flickering” The disappearance of a point from
one cube would mean, then, the appearance
of one in another cube (we can easily imagine
“velocity space” divided into such cubes).

It is clear that the total number of points, be-
ing equal to the total number of gas molecules,

z}

F | SO —— o
/
Avy /
Avy g,
7
// y
J/
Ve Fig. 15. Cubic unit
s o v cell in velocity
x space.

remains constant. If we were to describe in detail
what happens in each cube, we would not be
able to cope with this task. But we are not inter-
ested in those details; in fact, they are not need-
ed for we would not know what to do with them.
What we are interested in is the mean number of
molecules in this cube, and this question is an-
swered by the Maxwell distribution.

It can easily be understood that the distribu-
tion function can only depend on the square ve-
locities because it must clearly be independent of
their orientation. Otherwise a larger number of
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molecules would move in one direction than in
another and the gas would move as a whole.

But we know that this function should decom-
pose into three identical factors, each of which
being dependent on only one velocity component
(to be more exact, on its square).

Square of velocity equals the sum of squares
of components: v® = v} 4+ v} + vi. Thus, it is
necessary to find the function of v* which would
decompose into the product of three identical
functions of v,, v,, and v,, respectively.

It can be shown that the only function which
satisfies this condition is:

f (v%) o< exp (—ar?)
= exp (—auk) exp (—owf) exp (—aw?)

Further calculations involve integrals and so are
omitted. Note only that we calculate the coeffi-

cient

m

*=5kT

assuming that the mean value, e.g. {(v,)? should
satisfy the earlier condition (v,)y, = kT/m.

We can also write the function which describes
the distribution of the kinetic energy of the
molecules: it determines the fraction of mole-
cules whose kinetic energy lies in therange ¢, & 4
-+ Ae. This function is

f () = 2akT) *Zexp ( —%) el/2

and it is also called the Maxwell distribution func-
tion.
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The fact that the distribution function decom-
poses into three factors means that the distribu-
tions along all three axes are independent and
obey the same law. It can be said that the proba-
bility of a molecule appearing in any selected
cube (i.e. the probability of a molecule obtaining,
as a result of collisions, the velocity correspond-
ing to the coordinates within this cube) decom-
poses into three factors, that is, into the proba-
bilities for each velocity component to be in the
range of values fixed by the corresponding edge of
the cube.

This point can be illustrated by the game of
dice. Let us throw three dice, each painted a dif-
ferent color. The probability of obtaining a 5,

say, on the red die is%which is also the proba-

bility of throwing a 3 with the green die (or a 4
with the yellow one).

It is fairly obvious that if we cast all three
dice simultaneously, the probability of each com-
bination, e.g. 3 (red) 4+ 4 (green) + 1 (yellow)
will be equal to the producti--i—-i= 1

The reason for this answer lies in the intuitive
certainty that each throw of each die is complete-
ly independent of the others and all the triple
combinations from 1, 1, 1 to 6, 6, 6 must occur
with equal frequency, that is, they all have an
equal probability. Of course, the process
through which the distribution of the velocities
of the molecules is reached as a result of collisions
is in no way similar to throwing dice. The lat-
ter was only meant to illustrate how a function
can decompose into three factors.
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The derivation of the Maxwell distribution,
although it is not simple, looks so logical that
this distribution seems to be the only one possi-
ble.

To emphasize how wrong the “obvious” con-
clusions may be, it is necessary to note that the
Maxwell distribution cannot describe a gas in
which quantum properties prevail (e.g. electrons
in metal, or a photon gas). Quite different assump-
tions are needed to derive the distribution func-
tion for these systems.

A gas in which the molecules obey the Maxwell
distribution has a remarkable property, its dis-
tribution is time-independent. The velocity of
each molecule changes very often (as a result of
collisions with other molecules), but the mole-
cule which left a particular cube is replaced with
another. If molecules are indistinguishable to us
(and this is truel), the distribution of molecules
will remain the same all the time.

If we fill a container with a gas, after some time
the gas will be in equilibrium, that is, the
Maxwell distribution of velocities among the
molecules will be reached. This must be indepen-
dent of the original distribution in the gas be-
cause even though its molecules could have had
equal velocities or move in some other way,
within a certain period the equilibrium distribu-
tion is bound to be reached.

On second thought this statement may seem
strange and even not quite plausible. We know
(and are used to) that in mechanics one has to fix
original coordinates and velocities and, using
Newton’s equations, find the positions and veloc-
ities of particles at later (or earlier) moments of
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time. Here different original data will result in
different states of the system. In mechanics,
they say, the system “remembers” its original
state, that is, in principle, the history of the
system can always be reconstructed.

In gases everything occurs in a different way.
Whatever the original distribution of velocities,
it must finally become the same Maxwell distri-
bution. In this case the system “forgets” its histo-
ry, and by studying the distribution of a gas in
equilibrium one can deduce nothing about its
previous state.

The history of a gas filling the container sepa-
rates into two periods. During the first period
the molecules collide with one another and with
the walls, and their distribution tends to equilib-
rium. This period is studied by the special science
of nonequilibrium systems. After some hun-
dreds or thousands of collisions of each molecule
the system practically reaches the equilibrium
state. Subsequent collisions do not affect this
state.

If collisions are ignored, that is, if a gas is suf-
ficiently rarefied, we obtain the model of an ideal
gas in which collisions are necessary only to at-
tain equilibrium. Even if there are almost no col-
lisions between the molecules, the equilibrium
would still be attained through collisions with
the walls.

As a result of collisions between molecules the
equation of an ideal gas and the Clapeyron-Men-
deleev equation are different.

The equilibrium state of the gas discussed
above can be described as follows: there is molecu-
lar “chaos” in the gas at equilibrium. The term
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“chaos” implies that the system has not pre-
served any information about its past.

The concept of “chaos” permits us to simplify
the derivation of some formulas. For example,
while deriving the formula for the pressure exert-
ed by the gas on the walls of a container, we as-
sumed that the molecules were reflected against
the wall. Actually, after colliding with the wall,
the molecule, as a rule, sticks to it and remains
there for some time; afterwards it breaks away
and moves in some direction, having completely
“forgotten” the one from which it came. Hence,
there is no point in discussing the process of re-
flection, and it is much simpler to reason as fol-
lows: since the properties of the gas are indepen-
dent of orientation, the momentum transferred
by the gas to the wall must be equal to the momen-
tum carried by gas molecules away from the
wall.

This must be independent of the peculiari-
ties of the gas interaction with the walls; it relates
only to the chaotic motion of the molecules.
Should both fluxes (the one towards the wall and
the other away from it) be different, that is, should
they transfer different momenta, the effect could
be detectable at some distance from the wall for
the gas would “remember” that it had been re-
flected from the wall. But this contradicts the
hypothesis that the gas is chaotic and has no
“memory”

And since the gas does not “remember” about
the wall, the result should not depend on the
properties of the wall and on the way the atoms
are reflected from it. Thus, atoms do not “re-
member” the shape of a container, and the distri-
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bution formula is the same for any container (as
has already been mentioned).

Another example of “forgetfulness” is found if
a gas is put in a container divided by a partition,
If the latter is removed, the gas from both sec-
tions mixes, and it is clear that there is no way to
distinguish which atom was in which section of
the container at the beginning of the experiment.

When a hot teapot is cooling down, it warms
the air in the room, but later it is impossible to
find what warmed the air. Everybody would
agree that one cannot determine the shape of this
teapot by measuring temperalure in various parts
of the room (far from the teapot). Thisis very
much unlike the electromagnetic field: the light
reflected from a surface carries information about
this surface. A glowing lamp illuminates itself
and is clearly visible. We can “see” the teapot
using a detector sensitive to infrared waves. But
infrared radiation propagates in the form of direc-
tional fluxes of electromagnetic waves that warm
the detector. The waves emitted by a teapot are
not in thermal equilibrium with the air, they are
not scattered by its atoms, and therefore they
“remember” and can transfer the image of the tea-
pot. By contrast, the chaotic motion of mole-
cules cannot transfer this information.

Absolute Temperature
and Quantum Mechanics

The reference point of the temperature scale is
—273.15 °C. This point is called absolute zero.
Its meaning became clear only after the kinetic
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theory of gases related the pressure of a gas to
the kinetic energy of its atoms. This theory
seemed to indicate that at absolute zero the motion
of atoms completely dies out and that the abso-
lute temperature T is merely a measure of the ki-
netic energy of atoms.

But this explanation, though simple and al-
most obvious, was incorrect. The electrons in
metals move with very high velocities even at
T = 0. Quantum mechanics has forced on us a
completely different approach to the motion of
electrons and atoms though it has not complicated
the picture. On the contrary, quantum mechanics
provides a natural explanation of many concepts,
including the concepts of absolute temperature
and absolute zero.

However, to follow the story of temperature in
terms of quantum mechanics it is necessary to
have at least some information about quantum
mechanics. Unfortunately, this science cannot be
explained in a few words. On the other hand, right
now we do not need much. Hence, there is what we
shall do: we shall cite some facts without proof
but minimize the amount of this information.

If we want to know the behavior of an electron
in a magnetic field, quantum mechanics gives
the following description.

An electron can be compared to a rotating top
(though this comparison is not quite adequate).
It is better to say that the electron, like a rotat-
ingtop, has an intrinsic angular momentum called
its spin, without going into the details of ro-
tation. The spin of the electron is related to its
intrinsic magnetic moment: an electron in a mag-
netic field behaves like a magnet.

8*
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If an electron is in a tonstaht magnetic field,
then, according to the laws of quantum mechan-
ics, its spin can be directed either along the field

(and then the projection of the spin on the field
direction is +%h) or against it (and then the

projection is — %h); % is Planck’s constant.

The direction of the electron’s magnetic moment
is opposite to that of the spin; hence, like the spin,
it can have two projections on the direction of a
magnetic field: the projection is —p, if the spin
and the field have the same direction (po > 0),
and -+, if the directions are opposite. The quan-
tity po is called the Bohr magneton and equals

__eh
Po = 2nc

If the strength of a magnetic field is H, the
potential energy of an electron in this field is
either uoH (the spin is directed along the field) or
—uoH (the opposite direction of the spin). These
arguments finally mean that in a magnetic field
an electron can be in one of two states, the ener-
gies of these states being 4+ poH. We assume here
that the electron has no translational motion,
for example, it is bound in an atom.

Using this simple model, many properties re-
lated to heat can easily be illustrated.

Let us consider a system consisting of a large
number of electrons fixed at various points of
space: as an example, we shall take a large number
of atoms, each containing electrons. In a
magnetic field the energy of this system is deter-
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mined by the numbers of electrons with djﬁere_nt
spin directions: along the field and against it.

If we represent the two possible spin directions
by two horizontal lines marked with energy val-
ues (Fig. 16), the electron spin distribution can
be shown by circles, that is, electrons, on these
lines (of course, we shall draw only a few m_rcles).

A system of electrons possessing magnetic mo-
ments can be compared to an ideal gas, and the

Spin along field +p 2l =p H
2mc 0
Spin against field —h eH =
2mc 0
Fig. 16. Energy ol an clectron in a field.

energy of an electron in a magnetic field plays the
role of thevelocity (kinetic energy) of atoms. How-
ever, kinetic energy can assume any positive
value whereas the energy in a magnetic field is
allowed to assume only two values.

It is remarkable that this constraint does not
change the basic law of statistics, and in a ther-
mal equilibrium the probability of finding a par-
ticle in a state with energy ¢ is proportional to
exp (—e/kT).

As in a gas, it is also necessary that the ther-
mal equilibrium of the atoms be really achieva-
ble. Therefore, the magnetic moments must inter-
act (like the atoms in an ideal gas collide). If
this condition is satisfied, the law of statistics
will be obeyed regardless of the specific mechan-
ism bringing the system to thermal equilibrium.
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In this respect our picture of electrons “perched”
on two levels illustrates the equilibrium state
only, but tells us nothing of how the equilibrium
had been reached.

Considering the foregoing discussion, one can
conclude that in thermal equilibrium the number

of electrons, n (——;—), whose energy is —p,H

exceeds the number of electrons, n ( +%) , whose

energy is poH.

The ratio of these two numbers (referred to as
the populations of the levels) is given by the ra-
tio of exponents:

(=) (45 momn () exp (1)

This simple formula has a remarkable property:
it is valid for systems consisting of a very large
number of particles, and it is almost independent
of the detailed structure of the system. The only
requirement is that the system has states with
only certain energies and that there is a way to
reach thermal equilibrium. Then the final equi-
librium state of the system will be determined
by a single parameter, 7, that is, its absolute
temperature. This property of systems was proved
by the American physicist Gibbs at the very
beginning of the 20th century.

Until quite recently physicists had not even
suspected that there were systems with finite
numbers of allowed states. And they never imag-
ined the vast number of wonderful efiects that are
possible in these simple systems.
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Magnetic Needles

Let us assume that instead of electrons possessing
magnetic moments we have a number of randomly
scattered compass needles'(Fig. 17). Since magnet-
icneedles must point northward, they start swing-
ing with equal amplitude around the south-
north direction. Were there no friction in the pi-
vots and no attraction between the needles, the

é 9 Fig. 17. A syslem of mag-
netic needles.

l's

swinging would continue indefinitely. Actually
the swinging willultimately stop because the ener-
gy will be dissipated through the friction in the
pivots, and all the needles will point northward.
Besides, magnetic needles influence one another:
their movements are “coupled”, that is, they can
transfer energy to other needles. One can easily
recognize in the behavior of the needles a model
of how equilibrium is reached in a system of
spins.

The pivots play the role of a heat sink to which
the needles transfer their kinetic energy. Needles
at rest resemble the system of spins at 7 = 0.
“Zero” temperature appears because the energy is
always transferred from the needles to the pivots,
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and the equilibrium can be reached only after all
energy has been transferred.

If we were to study the system of magnetic
needles more thoroughly, we would find that the
needles do not stop completely but swing with
very small amplitudes because of their constant
bombardment by air molecules and the minute
swaying of the pivots. Thus the energy does not
fall off to zero, it stays equal to 4T (on the aver-
age). This motion is called Brownian movement

Wn=

—?—?—?— —hw, o= 2me

Fig. 18. Equal probabilities of populating energy levels
(T = o).

and theoretical grounds for it were derived by Ein-
stein in 1905.

The model of electrons in a magnetic field (or
the model of magnetic needles) is very useful
when we try to understand what the absolute ze-
ro is.

At any temperaturc the two possible spin di-
rections will occur with different probabilities.
At very low temperatures almost all electrons
will populate the lower level, that is, their spins
will be directed against thefield. The higher lev-
el will be almost empty, that is, “depopulated”.
The higher the temperature, the more “popvlated”
the higher level, and, for example, at very high
temperatures (k7 >> €) both spin projections will
have nearly equal probability (Fig. 18).
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If the temperature drops, the increasingly large
fraction of electrons will have spins directed
against the field. If T = 0, the spins of all elec-
trons will be directed against the field (Fig. 19).

This state of the system corresponds to the ab-
solute zero of temperature.

In quantum theory the concept of absolute ze-
ro is given a very clear-cut meaning. Among all
the energy levels of any quantum system there is

+ﬁ&)0

Fig. 19. All the electrons
-hw, are at the ground level
(T =0).

one level which corresponds to the lowest energy.
In the example being considered this state is the
state in which the spins of all electrons are direct-
ed against the field. At absolute zero the system
is in the ground state, hence it cannot transfer
energy to any other system merely because there
is no lower level to which it could transfer af-
ter losing energy.

We have already mentioned that the somewhat
ohscure concept of absolute zero existed long ago
because it stemmed from the Gay-Lussac law,
But even at the beginning of our century the con-
cept of absolute zero was not completely clear.
In Children’s Encyclopaedia, published in 1914
in Moscow, the following was written: “Thus, in
the process of cooling the gas contracts and its
volume, consequently, decreases. The question
is: Could the volume vanish when the gas is in
the state of absolute cold?” These speculations




122 Temperature

look very naive now, but it is very surprising

how much lies hidden in the simple fraction ;ﬁ

in the original formula obtained by Gay-Lussac.

Unattainability of Absolute Zero

Everybody knows that the temperature of a body
cannot be lowered to exactly absolute zero, al-
though we can approach arbitrarily close to it.
This statement reminds us of the well-known
paradox about Achilles and a tortoise {called Ze-
no’s paradox). The paradox is asfollows: Achilles
who runs ten times faster than the tortoise
wants to overtake it. Whilst Achilles was run-
ning over the distance that initially separated
him from the tortoise, the tortoise covered an

additional 1—10— of this distance. Of course, Achilles
will quickly cover this distance too, but now the

tortoise will have moved %) farther. And when-

ever Achilles approached the tortoise, it had
invariably moved further forward. Naturally,
another approach resolves the problem. The sum

1+ 1—10— + %0 ... equals 1-;— and the paradox is

nothing but a statement that an infinitely recur-
ring decimal 1.11... has a finite value.

For Zeno the paradox was that Achilles had to
pass an infinite number of segmentis in a finite
time. Zeno did not doubt that Achilles would
overtake the tortoise, but he concluded that the
segment could not contain an infinite number of
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parts. The message of Zeno's paradox is much
more profound than a mere perplexity at the finite
sum of an infinite geometric progression. But even
this almost trivial simplicity will be of use in this
context.

Let us not argue with Zeno, but modify the
problem a little. Assume that the tortoise, being
very pedantic, asked that Achilles should make
some marks or simply count aloud after covering
each stage (each term in the infinite sequence).
Since the number of such marks must be infinite,
the tire of the contest immediately becomes
infinitely long.

However fast Achilles marks the stages, he is
incapable of making the infinite number of marks.
Thus, an innocuous bureaucratic improvement
renders a simple task infeasible. In this form Achil-
les’ problem resembles the problem of absolute
zero.

In order to cool a body to absolute zero it is
necessary to withdraw a finite amount of heat
from it. This amount can be easily calculated if
we know the relation between the heat capacity
of a body and its temperature. But is it possible
to drain all the heat a body contains in a single
step?

This is where the difficulty lies. Any method of
cooling will reduce the temperature by a set fac-
tor, but not by aset quantity. When we described
the thermodynamic scale, we found that it
has a remarkable symmetry. If all temperature
values are multiplied by the same factor, the for-
mulas will stay unaltered. This means that to re-
duce the temperature of a given body from
100 °C 10 99 °C and from 200 °C to 198 °C one has
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to do the same amount of work because
100 : 99 = 200 198.

But if all the calculations in thermodynamics
contain only the ratios of temperatures,
volumes, and so on, then each process used for
the purpose of cooling will result in the final
(low) temperature being a proportion of the
initial (high) temperature, that is, each pro-
cedure of temperature reduction can only change
the scale, namely, it can decrease the tempera-
ture by a certain factor.

Thus, we found in the Carnot cycle that
T,:T, = 0Q; @Q,. Obviously, it does not work
with either the amount of heat or temperature
as such; only their ratio matters.

Now it is easy to understand why an infinite
number of steps is needed to reduce the tempera-
ture of a body to the absolute zero. Each step is
either a closed cycle or a single process, for ex-
ample, the adiabatic expansion of a cooling gas.

During each step a certain finite amount of work
is done and the temperature decreases by some
finite factor. Since each step takes a finite time,
the total time needed to cool the body to absolute
zero is necessarily infinite. In th's respect the
road to absolute zero resembles the Achilles-and-
tortoise stalemate.

One can ask whether the situation is different
in thekinetic theory of gases. Could one, say, low-
er all the spins in the system of electrons to
the ground state (for example, by waiting until
they radiate away all their excess energy)? But
nothing will come of this. Were the system in an
infinite, empty space, and the radiated energy
gone forever, the spins would certainly lose all
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their energy and the system would reach a state
corresponding to absolute zero. But if the system
is enclosed in some volume by walls kept at a
constant temperature, then this system will have
the temperature of the walls, and it is impos-
sible to lower this temperaturc without doing
some work.

Entropy

Using a thermomeler one can measure the temper-
ature of any body. In fact, the thermometer shows
its own temperature, and it is not always
easy to find the relation between the readings and
the temperature of a body. In everyday life we
often refer to the temperature, but usually forget
about the complex processes associated with it.
Having learnt many years ago how to measure tem-
perature, physicists took a very long time to un-
derstand the relationship between temperature
and the amount of heat of a body. It was very dif-
ficult to guess that there exists a quantity relat-
ed to temperature, namely, entropy, and that
the increment of entropy multiplied by the tem-
perature determines the amount of heat obtained
by a body. Entropy was theoretically discovered
by Clausius and is one of the most brilliant dis-
coveries among the many for which the 19th cen-
tury is so famous.

Entropy was introduced into physics theoreti-
cally because there is no instrument to measure
it. Moreover, there is no method available for
comparing the entropies of two different systems,
in contrast to what we can do with the tempera-
tures of two bodies.
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For example, one cannot take two containers,
each filled with a different gas, and say which of
them has a higher entropy. The entropy of gases
can be found from tables, but there is no instru-
ment, like a barometer or a thermometer, to
measure the amount of entropy.

Clausius discovered the concept of entropy while
trying to understand the profound meaning of
Carnot’s investigations. As we already know, Car-
not demonstrated that if a reversible thermody-
namic process takes place between two “bodies”,
namely, between a hot body and a heat sink, they
form a heat engine which works by withdrawing
an amount of heat | Q, | from the hot body and
transferring part of this heat | @, | to the heat
sink. The amounts of heat |Q, |and |@Q, ]
are related to the temperatures 7; and T,, the
hot-body and heat-sink temperatures, respec-
tively, thus:

IQll |Qz|=T1 Tz

This relation is valid for any heat engine provid-
ed the engine is ideal, that is, it can work “in
reverse” and by doing the same work would with-
draw | Q, | from the heat sink and transfer
| Q; | to the hot body.

A more convenient form of the proportion is
QJT; = —Q,/T,. The minus sign is the evidence
that the heat is withdrawn from the working
gas. The result is

O L QG _
T, t7, =0

This expression resembles a conservation law.
In a Carnot cycle the quantity | Q, |/T, “lost”
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by the hot body equals the quantity | Q, |/T,
“gained” by the heat sink.

We know that Carnot worked in terms of the
caloric model. This model was to yield a conser-
vation-type relation for a hypothetical heat lig-
uid. The model would be acceptable if a rela-
tion like | Q, | = | Q, | held in it, for this would
mean that heat was conserved and that work was
done owing to a heat flow from a higher to a low-
er level.

If temperature were the analogue of hydraulic
head, then the work done by an engine would be
proportional to the temperature difference. How-
ever, in areversible process it is not the amount
of heat (or caloric) that is considered but another
quantity, and the change in this quantity equals
the increment of supplied heat divided by the
temperature of a body.

The heat participating in the process must be
divided by temperature and only then do we ob-
tain the quantity which is conserved in a re-
versible process.

Let us change our notation and use AQ, instead
of @, and AQ, instead of Q,, emphasizing that
we imply the amount of heat AQ, obtained by the
working gas, and the amount of heat AQ, lost by
it. For the Carnot cycle this gives us

Aol + A02 =

Clausius postulated that there was a quantity S
which, like energy, pressure, and temperature,
characterizes the state of a gas. When a small
amount of heat AQ is supplied to the gas, S is
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incremented by

—Le
AS==5

Clausius gave the quantity S the name “en-
tropy”.

After the Clausius’ discovery it at-last became
clear why it had been so difficult to understand
the relationship between heat and temperature.
It turned out that speaking about the amount of
heat contained in a body is meaningless. Heat can
be converted into work, can be generated by fric-
tion, but in general there is no tendency to con-
serve heat.

At the same time, the concept of the amount of
heat supplied to a body or withdrawn from it has
an exact meaning. Heat can be transferred, but
is not necessarily conserved. A quantity whose
existence had never been suspected turned out to
be conserved in a reversible process: it was Clau-
sius’ entropy.

Let us see what happens to the entropy of a
gas in the Carnot cycle.

The above relation for the Carnot cycle means
that in a Carnot reversible cycle the increase in
the entropy of the working gas at the first stage
exactly equals the decrease in entropy at the third
stage. At the second stage, when the gas is isolat-
ed and cannot receive heat, entropy is constant;
it is also constant during the fourth stage.

Thus, in a reversible Carnot cycle the entropy
of the working gas remains unchanged. It is un-
changed in adiabatic processes too.

The concept of entropy can be obtained in a
different way, by defining it as a quantity that
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remains constant in an adiabatic process which is
like defining a zero temperature change for an
isothermal process. It is very convenient to use
entropy for a graphical representation of Carnot
cycles since the graph is then a rectangle. The
graph illustrates clearly that entropy first
“flows” from the hot body to the heat sink, then
back from the heat sink to the hot body; at the
end of areversible cycle the entropy of the working
gas returns to the initial value.

Carnot Cycle on T vs S Diagrams

Let us plot the Carnot cycle in the (7, S) plane
(Fig. 20). The first stage is isothermal represented
in the graph by a straight line parallel to the S-

T Isotherm

T, |- a N b
Adiabat
% >
/ A'= area (abcd)
P c Q.= area (abfe)
el f Q,=area (cdef)
S, S, S

Fig. 20. Carnot cycle on T vs S diagram.

axis. The second stage is adiabatic; it is a
straight line parallel to the 7-axis. The remaining
two stages are the second isothermal and second
adiabatic lines; they form two other sides of the
rectangle.

It will be easy to find work graphically. The
amount of heat obtained from the hot body is de-
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termined by the product 7' AS. Since the heat is
withdrawn from the hot body at constant temper-
ature, the total amount of heat withdrawn in the
cycle is 7,(S, — S;). In the graph this value
is represented by the area of the rectangle abfe.

Likewise we can calculate the amount of heat
transferred to the heat sink. It is 7'y (S5 — S,). This
value is represented on the diagram by the area
cdef. Thus, the total amount of heat trans-
ferred from the hot body to the heat sink (and
hence, the equivalent amount of work) equals
the area of the hatched rectangle abcd, which
represents the Carnot cycle. The efficiency equals
the ratio of the areas of the two rectangles.

‘The area of the rectangle is (T, — T,) X
X (83 — 8y).

Now it is easy to correct Carnot’s arguments.
If the difference I'; — T, is the difference between
levels, then the role of a falling liquid, that is, of
caloric, is played by the difference S — S; be-
tween the entropy values at the beginning and the
end of the process and not by a substance trans-
ported by the working gas from the hot body to
the heat sink.

Besides the Carnot cycle which is convenient
for theoretical analysis, but is unwieldy for prac-
tical applications, there are many other cycles in
which a gas is liquefied (as in steam engines),
explodes (as in car engines), and so forth. A cycle
may consist of isochors and adiabats (the Stirl-
ing cycle) or of isobars and adiabats (the p
vs T cycle). Cycles can be traced both in p vs
V and in T vs S coordinates. These cycles are the
concern of engineering thermodynamics.

While drawing diagrams it is useful to remember
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that the areas in both a pV- and a TS-dia-
gram for the same cycle are equal, the area in
the pV-diagram being the work done, and the area
in the TS-diagram the amount of transferred heat.
We know that these quantities are equal.

Conjugate Quantities

Let us write once again the formula for the amount

of heat supplied to a system in a reversible
Process;

AQ = T AS

This formula resembles the formula for the
amount of work done on a body:

AA = —p AV

The left-hand sides of both formulas include the
quantities (heat and work, respectively) which are
meaningful only so long as we operate with their
increments. Both AQ and A4 have clear physical
meanings, but. there are no quantities which could
be called the heat Q or the work A of a body.
The quantities 7 and p are similar in that the
equality of temperatures and the equality of
pressures are the two conditions of equilibrium,
and both can be measured directly, by a ther-
mometer and manometer, respectively.

It would be expected, therefore, that there
should be something in common between the other
two quantities, that is, entropy and volume.
One such common property is obvious. The
volume of any system equals the sum of the vol-
umes of its parts. Likewise, the entropy of the
9
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system equals the sum of the entropies of its com-
ponents. Volume and entropy are additive quan-
tities (they are also said to be extensive in con-
trast to I and p, which are intensive quantities
because the 7 and p of a system equal the T
and p of any part of the system).

The quantities p and V are called conjugate
quantities as are the entropy S and temperature 7'

Entropy of an Ideal Gas

Though entropy cannot be measured directly,
by some kind of “entropy-meter”, it can be calcu-
lated theoretically. This task is the simplest for
an ideal gas.

Let us take one mole of a gas at a temperature
T, and let the gas occupy a volume V,. Then sup-
pose we change this state by a two-stage process
to one with temperature I and volume V. First,
we expand the gas isothermally so that the vol-
ume becomes V and, second, we heat the gas to
temperature I' at constant volume.

During the first stage the gas does some work
(we have calculated it already), namely,
RT,1n (V/V,). At thisstage the gas hasobtained an
amount of heat equal to this work from the hot
body. This means that the entropy of the gas has
increased by

1 14 \4
Sl—S0=W (RToln ’To') =RID-V—0

During the second stage heating the gas by AT
requires an amount of heat equal to cy AT. The
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corresponding increment in entropy is thus

AS = Cy 'ATT’
Now to calculate the increment in entropy when
temperature changes from T, to T one must add
up all the AS contributions, taking into account
that T increases. This is not difficult to do if we
assume that heat capacity ¢y is constant through-
out the process.

The calculation procedure in this case is the
same as for the calculation of work in an isother-

mal process. For a small increment in volume we
had

AA=—pAV=—RT 5V
[
which led us to the formula (at 7 = const)

\4

By analogy, the increment in entropy caused by
temperature changing from T, to T is

r
S— Sl =Cy In -7,;
From this we directly obtain the formula of final
change in entropy:

S—SO=CV lnT—10'+R1nV_Vo

The values of V, and T, are arbitrary; hence the
formula allows us to calculate only the change in
entropy but not its absolute value,
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Real, Irreversible World

Speaking about the Carnot cycles we always
stressed the reversibility of all processes, but this is
not the case in the real world. Take, for example,
a container with a gas divided into two compart-
ments by a thermally insulating partition. Assume
that the gas in each compartment is at its own
temperature and pressure. Then we remove the
partition, and the temperatures and pressures
start to level off. Nothing useful can be obtained
from this process: the temperature difference van-
ishes and no apparent work is done. It is not
difficult to see the reason for this “waste”. The
process of heat conduction, that is, the process
of temperature levelling off, is irreversible: one
cannot return the system to the initial state
without doing some work.

This “vanishing” of the potential work is encoun-
tered everywhere. While describing an isother-
mal process in which heat passes from the hot body
to the working gas, we observed that this pro-
cess will become irreversible if there is a temper-
ature difference, no matter how small, between
the gas and the hot body. Irreversible processes
will occur inside the expanding gas if the temper-
ature of the gas is not exactly uniform through-
out the volume. This is why the Carnot cycle
cannot be realized, for we would have to elimi-
nate all temperature gradients. But were this pos-
sible, heat would cease to flow from the hot body
and the engine would not work.

But what happens to a gas in which an irrevers-
ible process goes on? Let us again take the con-
tainer divided by a partition and calculate the
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change in the entropy of the gas when the tem-
peratures level off.

The process of mixing in the gas can be described
as follows: each parcel of the gas expands, in-
creasing in volume by a factor of 2. For the sake
of simplicity, we assume that each compartment
of the container has half a mole of the gas in it
and that the pressure is the same in both compart-
ments. Since the temperature after mixing obvi-

ously tends to —;— (T,+ T,), the change in entropy
is

a (cv1n leJ;lTﬂ +RIn2)
1

+5 (evIn T‘;T',:“+Rln 2)

AS=

= It Ts
=cy In 2T T, +RIn2

Note that this is a positive quantity because
(T, + T,)2> 4T, T,. Entropy has increased. It is
only in reversible processes that the entropy of a
system remains constant during which a loss of
entropy in one compartment is compensated for
by a gain in the other. The entropy of the hot
body decreases by the value which exactly equals
the increase in the entropy of the heat sink, the
value of change being AQ/T The caloric model
works well when one tries to describe the heat
transfer from the hot body to the working gas.
But when the working gas transfers the heat Q,
to the' heat sink, this heat is less than that ob-
tained from'the hot body. The entropy AQ/T trans-
ferred to the heat sink exactly equals the entropy
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withdrawn from the hot body and in a reversible
process it is the entropy and not the amount of
heat that is transferred unchanged from the hot
body to the heat sink.

Had Carnot known this, he would have used
the following line of arguments. If a cycle trans-
fers some amount of caloric (suppose that Car-
not gave this name to entropy) and this amount
equals Q,/T,, then, multiplying this quantity by
the temperature difference, we obtain that the
work done by the engine is

T
P (T —T) =05

The reader certainly recognizes in this formula
the expression for the work in an ideal cycle with
efficiency n = (T, — T,)/T,, this is the expres-
sion Clausius obtained many years after Carnot’s
death. Carnot knew that the “driving force of
fire” depends only on 7, and T,, but he did not
arrive at the mathematical relation.

Nevertheless, the caloric model cannot be
saved. In irreversible processes entropy is not con-
served and thus cannot be identified with caloric
which, by virtue of its definition, must neither
be created nor destroyed. The caloric model thus
has to be dismissed.

Price of Work

We have already said that if we tried to realize
an ideal cycle, we would encounter some unsolv-
able problems. The main thing would be to see
that the working gas’s temperature is exactly
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equal to that of the heat sink and that the expansion
and compression of the gas are very slow other-
wise the temperature and pressure of the gas will
not have enough time to level ofi. This cycle would
be ideal but “good for nothing” and its power
would be exactly zero, that is, any work would
require an infinitely long time. In order to produce
some work one has to violate the strict condi-
tions of an ideal cycle. But as soon as these
conditions are violated, heat conduction sets in,
heat fluxes developing between the sections of
different temperature and, as stated above, the
entropy increases.

During the isothermal expansion (the first
stage of the Carnot cycle) the entropy increases
not by AQ,/T, but by a larger amount. Likewise,
as heat is transferred to the heat sink, the en-
tropy decreases not by AQ,/T, but by a smaller
amount. As a result, once the cycle has been com-
pleted the entropy of the working gas will have
increased.

This results in a very important theorem which
states that a change in the entropy of a body (or
system) is always greater than the ratio between
the amount of heat supplied to the body (or sys-
tem) and the absolute temperature of the body:

AQ
AS > —-

The equality sign corresponds to a reversible
(i.e. practically unfeasible) process.

A rise in entropy is the price of the real work
done by a heat engine, that is, of the nonzero
power of the engine,
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If we want an engine to do some work, we must
pay for it not only with energy consumed but
also with an increase in the entropy of the system.
The energy can be restored returning the work
done previously. The rise in entropy cannot be
brought down (without additional work), because
in the reverse process it will grow still more.

It would probably be reasonable to change the
sign in the definition of entropy because if some-
thing is lost it is only logical to speak about
decrease. Indeed, in information theory the term
used is “negentropy”, that is, entropy with the
sign reversed.

Entropy is not only the price of the work done,
every measurement must be paid for.

A thermometer is given to a patient. At first
the mercury column is very short. Then a thermal
flux flowing from the patient's body to the ther-
mometer raises the mercury column. The entropy
of the thermometer increases accordingly and that
of the patient decreases (although slightly). But
the entropy of the patient 4+ thermometer sys-
tem increases irreversibly. It is impossible to
use a thermometer in such a way that no ther-
mal flux occurs, for this would require prior
information about the patient’s temperature. But
this is precisely the information we lack, otherwise
we would not need the thermometer.

Every measurement has its price and is paid for
by entropy. In our world every gain in work and
every measurement inevitably increase entropy,
and this process is ubiquitous. Friction, heat
conduction, diffusion, viscosity, Jole heat are
some of the basic mechanisms which in¢rease the
amount of entropy.
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The entropy of an isolated system increases
until the system reaches the state of thermody-
namic equilibrium in which all irreversible pro-
cesses die out.

In the state of thermal equilibrium the entropy
is at amaximum value. The reason why a gas “for-
gets” about the walls and collisions is that in a
state of maximum entropy the gas has no curren-
cy with which to “pay” for information about the

type of collisions: its entropy cannot increase any
further.

One More Formula for Entropy

We had the following formula for the entropy of
one mole of an ideal gas:

T
S_So=chn—7,o—+R anLo

If we use the equation of state pV = RT in order
to eliminate V, we obtain

S—8y=(cy+R)In-—+R In-E-
° Po
or
S—Sosc,,ln——T——l-Rln—p
T, Po

where ¢;,, = ¢y + R is the heat capacity at con-
stant pressure. One can conclude now that the lev-
elling off of pressure at constant temperature al-
so leads to an increase in entropy. The mechanism
of pressure equalization is such that gas particles
collide and transfer momentum to each other.
Particles that on the average have higher veloci-
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ties transfer part of their momentum to other
particles, i.e. faster particles are decelerated.
This is the mechanism that causes the viscosity
of gases. Viscosity becomes important when there
is a pressure difference in a gas (or in a liquid)*.
When pressure reaches the equilibrium value,
we can forget about the collisions of particles
again. The equilibrium state retains no memory
of collisions.

Two Laws of Thermodynamics

Having come more than half-way through the
book we can pause awhile. We already know how
some rather vague ideas about heat and caloric
were transformed into the concepts of entropy,
temperature, and internal energy. The history
of the theory of heat is like an intricate detective
story since the two main quantities could neither,
be observed nor directly measured.

We cannot even say that the new concepts re-
sulted from new experiments. Only Joule's ex-
periments on the mechanical equivalent of heat
may in some way be considered fundamental in
this field, though Carnot and Mayer had calculat-
ed this value much earlier and needed no spe-
cial experiments to do this. The elegant structure
of thermodynamics is the result of a profound
analysis of the unity of physical laws and of the

*Viscosity is also a characteristic of solids, though it
is more difficult to observe. Sound propagating in a sol-
id is damped because’ of viscosity, and the damping in
lead is stronger than in copper, and there are no acoustic
vibrations in cheese,
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close relationship which must exist between var-
ious natural phenomena. The success of thermo-
dynamics proves the validity of our belief that
nature obeys simple laws and that these laws can
be discovered and understood. The most surpris-
ing fact about our world is its intelligibility.

The laws controlling heat phenomena turned
out to be simple, Practically everything in ther-
modynamics is based upon two postulates which
are called laws. They were formulated by Clau-
sius and Thomson.

The first law of thermodynamics is the law of
the conservation of energy. It incorporates the
principle of the equivalence of heat and mechan-
ical work (differing in this respect from the law
of the conservation of energy in mechanics) and
can be formulated as follows: a change in the in-
ternal energy of a system equals the sum of the
heat supplied to and the work done on the sys-
tem.

The second law of thermodynamics stems from
the law of increasing entropy: the entropy of a
closed system cannot decrease. A different formu-
lation is possible: no process exists which results
in only the cooling of one body and the doing of
mechanical work. It is impossible to convert all
heat into work, for the fraction of heat converted
into work cannot exceed what is given by the Car-
not function.

This set of postulates is supplemented with a
third law which is also called the Nernst heat the-
orem, viz. a body cannot be cooled down to ab-
solute zero by a finite number of steps. The Nernst
heat theorem in fact follows from quantum
mechanics. Nernst could not know it, but he
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could clearly see what this theorem meant for the
theory of heat.

The two laws of thermodynamics forbid, or
state as impossible, a perpetual motion machine.

The first law forbids a perpetual motion machine
of the first kind, that is, a machine doing work
without dn expenditure of the heat or internal
energy of a system. Nowadays this statement
seems trivial because we are used to the law of
the conservation of energy in mechanics.

The second law states that it is impossible to
construct a perpetual motion machine of the sec-
ond kind, i.e. the one that draws energy from a
single heater, that is, it is not driven by a tem-
perature difference but by the heat of only one
body. Such a machine would be like a freezer not
connected to the mains but warming the room by
withdrawing heat from frozen items. There is no
similar law in mechanics and it is very difficult
to explain why one cannot construct a perpetual
motion machine of the second kind. The law of
increasing entropy is a property of our macroscop-
ic world which, probably, cannot be reduced to
other, simpler laws.

The increase in entropy also determines the di-
rection of the flow of time. Radioactive decay, the
deceleration of a parachute jumper, the energy
consumption of a wound-up clock spring (or the
energy of an electric battery), and finally, our
own ageing are all “one-directional” processes by
which we can distinguish the future from the past.
It is remarkable that throughout the observable
Universe time flows in one direction only. For
every observer, creation precedes destruction and
a cause never and nowhere occurs after the effect.
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Entropy increases everywhere and always,
fixing the so-called “arrow of time” and making
“yesterday” different from “tomorrow”.

Refrigerator

Although cycle reversibility in a heat engine was
used in numerous arguments and theories, for a
long time nobody thought of the possible practi-
cal applications of a heat engine working “in

P a

Fig. 21. A refrigerator’s
v cycle,

reverse”. For some reason the idea of a household
refrigerator only emerged fairly recently. Ice-
boxes, i.e. refrigerators filled with ice, appeared
in homes only in the middle of the last century
and the electric refrigerators which now can be
found in every kitchen appeared on the market
only in the first decades of our century.

Putting aside the problems of design, note on-
ly that a refrigerator operates according to the
same law as a heat engine, only all the steps fol-
low in a reverse order. Cycle C is replaced with
cycle C-' (Fig. 21.

In the process of isothermal expansion at the
stage cd an amount of heat AQ, passes from the
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heat sink to the gas which is cooled. Then the gas
is adiabatically compressed to the pressure cor-
responding to point b; at this point the gas con-
tacts the hot body (the air in the room) and trans-
fers an amount of heat AQ; to it in the process of
isothermal compression ending at point a. This
consumes some work. At the last stage the gas ex-
pands adiabatically and “returns” to point c.
In the cooling cycle the stage cba is the compres-
sor stage (in a direct cycle a cylinder with a pis-
ton does some work at this stage). In some refrig-
erators, which are now obsolete, the pressure
was raised by heating and the heated gas was let
out into a practically empty container and ex-
panded. The expansion reduced the temperature
of the gas.

A household refrigerator cools the stored food
and warms up the room. When refrigerators were
still a novelty around a house, an electric oven
was advertized which could be turned into a re-
frigerator by a turn of a handle. It is unknown
whether this oven was convenient and efficient,
but it gave an excellent demonstration of the ba-
sic idea of a reversible thermodynamic cycle.

It is not a simple procedure to determine a
quantity similar to the efficiency of a heat engine
for a refrigerator. The 7I'S-diagram in Fig. 22
shows that the amount of heat AQ, is withdrawn
from the heat sink and the hot body receives the
amount of heat AQ,; the excess is replenished by
the work done by the compressor. It may seem
that this work could be made arbitrarily small
provided the temperature difference between the
hot body and the heat sink were also sufficiently
small. But, in fact, the hot-body temperature
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cannot be controlled, for it is the temperature of
a room. It is clear that in a very cold room the
cooling of stored food will be easier than in a hot
room. Depending on the conditions, the work done

T a b
A= area (abcd)
Removed heat=
=area (cdef)
d c Fig. 22. Working cycle
I of a refrigerator (not
1 I necessarily a Carnot cy-
e f S clel).
T
T a b
1 ¢ = area (cde!)<1
area (abcd)
1} L. d c
2 f Fig. 23. Efficiency of a
S2 5 S refrigerator.

can arbitrarily exceed the amount of heat
withdrawn. This is clearly shown in Fig. 23.
The ratio of the work done to, the amount of
heat withdrawn from the heat sink, which is what
characterizes the efficiency of a refrigerator, can
be very small if a refrigerator reduces the temper-
ature only slightly. However, this ratio can be
arbitrarily large if the required température differ-
ence is large. This quantity can take on arbitrary
values from zero to infinity and is also called
efficiency (not to be confused with the direct-
process efficiency that varies from zero to unity).
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Nowadays nobody is surprised by the fact that a
refrigerator warms the room. The second law of
thermodynamics states that it is impossible to
construct a machine which would cool some vol-
ume without an expenditure of work.

It would be desirable to have a kitchen machine
which could freeze the food and use the gained
heat to cook meals without any power consump-
tion. Alas, this is forbidden by the second law of
thermodynamics.

However, if we do not demand that the refrig-
erator should do the impossible, but instead set
it a simpler task, for example, warming the kit-
chen in which it is installed, the refrigerator can,
or so it seems, do this almost “free of charge”.
Such seemingly strange device was invented by
Sir William Thomson (Kelvin). He named it a
heat pump.

If there is a balcony in the kitchen, the refrig-
erator can be put into the door opening with its
door to the street and its back wall to the kitchen.
Now let us open the refrigerator door and switch
the refrigerator on. The refrigerator will pump
the heat cooling the street and warming the room.
It can transfer a lot of heat doing little work and
it only requires that the temperature difference
be small. Then the area of the curve representing
the cycle will be small (Fig. 24) and the amount of
heat transferred will be large. There is no mistake
in this explanation: we simply used a high-
efficiency mode of refrigerator operation, as de-
scribed earlier. The heat pump is not a very use-
ful machine, but it is an excellent illustration of
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the difierence between the first and second laws
of thermodynamics. The first law states the equiv-
alence of heat and work, and the second indicates
the difference between them: to obtain the
work we have to create a heat flow. This flow nec-
essarily entails an increase in entropy, but not

T
Tt a b
I3 3
< % Fig. 24. Thomson’s heat
e>1 pump.

necessarily a large change in the energy of a
system.

The apparent paradox of the heat pump is that
it produces a temperature difference almost with-
out doing work, while in the normal process of
heat conduction the temperature difference van-
ishes without work being done. If now we construct
heat engine which will use the almost gra-
tuitous temperature difference produced by the
heat pump, the amount of work done by the en-
gine will not exceed the amount of work done to
produce the temperature difference (though owing
to irreversible losses the amount of work done b
the engine will be even smaller). The inequality
in the entropy law works honestly in one direction:
it is easy to spend energy and get nothing for
it, though it is impossible to obtain energy but
pay nothing for it.

10*



Boltzmann’s Formula

Thomson and Nernst virtually completed the con-
struction of classical thermodynamics. Thermo-
dynamics seemed to be so complete that David
Gilbert’s student, Constantin Carathéodory,
worked out a rigorous axiomatic description of
thermodynamics (by analogy with mathematics).
But by the time when the “finishing touches”
to thermodynamics had come to an end, a new
approach to physical phenomena was developed,
namely, an approach based on the kinetic theory
of gases. It was necessary to combine Maxwell's
results and what Thomson and Nernst had ob-
tained. Maxwell considered the gas to be an ensem-
ble of particles, the behavior of each particle
being subject to the equations of Newtonian me-
chanics.

A great achievement of the kinetic theory of
gases was the explanation of pressure and inter-
nal energy. The bridge between mechanics and
thermodynamics looked quite safe, but it had a
weak point: mechanics had no room for entropy.

Finding this room proved o be esiremely diffi-
cult. When finally the problem was solved by
Boltzmann in 1872, the familiar old story repeat-
ed itself: Boltzmann s, work was not accepted
by the majority of his colleagues. The older gen-
eration failed to see the reasons justifying the
revision of what seemed to be a quite good theory
of heat.

Boltzmann was able to show that entropy ap-
pears in the kinetic theory as a result of the appli-
cation of probability theory to systems that pre-
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viously had only been regarded from the point of
view of mechanics.

The formula Boltzmann derived is very sim-
ple, viz,

S=khhw

It relates a thermodynamic quantity, that is,
entropy, to a statistical quantity w which is the
probability of a state. The factor k& was introduced
into the formula later by Planck who called
it Boltzmann's constant. In physics the short for-
mulas are charged with profound meanings. They
relate the quantities which previously have been
considered to be of different nature. Thus, New-
ton’s formula f = G (m;m,)/R? related mass to
gravitation; Finstein’s formula E = mc? com-
bined two completely different concepts of clas-
sical mechanics, namely, mass and energy;
Planck’s formula %5® = & revealed the relation
between the frequency and energy of a quantum;
and Hubble’s formula v = HR related the reces-
sion velocities of galaxies to the distances to
them. These are great formulas, and Boltzmann’s
formula occupies a place of honor among them.
Boltzmann himself is known in the history of
phvsics as the major founder of statistical physics.

To understand the meaning behind Boltzmann’s
formula, let us consider a container of volume
V, filled with an ideal gas. The atoms of the gas
are in chaotic motion inside the container and in
the course of time each atom will have “visited”
every part of the container with an equal frequen-
cy (equal probability). We would be only slight-
ly in error if we were to assume that each atom
spends half of its life in the right-hand part and
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the second half in the left-hand part of the contain-
er. We can also state that if the container is
imagined to be divided into four equal parts,
then each atom will stay in each compartment one
fourth of the total time. Continuing with these
arguments we can conclude that the fraction of
time an atom stays in any selected volume V
(regardless of its shape) is equal to V/V, if V,
is the volume of the container. This fact can
be described as follows: the probability of finding
an atom in a volume V is
we—d—
Vo

Now let us collect all time intervals when our
atom (we shall designate it as atom 7) is in volume
V and start monitoring another atom (atom 2).
This atom is absolutely indifferent to the behav-
ior and location of atom I. Therefore, regardless
of the location of atom 1, atom 2 will also stay
in volume V the fraction of time V/V,. This means
that during a long interval T atom I will stay
in volume V for a time T, = (V/Vy) T During
interval T, atom 2 will stay in the same volume
V for a time

|4 V \2

T2 :-70- T‘ = (—W) T
Hence we can conclude that the probability of
finding atoms / and 2 together within volume V
is w, = (V/V,)%. This line of argument can be
extended to other atoms as well.

Thus, the probability of finding all N, atoms
(the whole mole of the gas) in volume V is

vV \Na

Ny = (T.,)
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This probability refers to an exotic state in which
the gas in the container suddenly contracts and
fills volume V. The Avogadro number is stagger-
ingly large and therefore wy, is very small. Thus
it never happens that the gas, if left to itself, will
empty even a very small fraction of the volume
and that V will differ from V, by any perceptible
value.

If now we compare the formula for the proba-
bility to that for the entropy of an ideal gas
(at T =T,

14

S—‘ So= R ]n —I—’_o—

or, for one molecule,
14

we shall see that
S—Sy=khw

This is Boltzmann's formula for an ideal gas at
T = const. In fact, we do not actually calculate
entropy, we rather calculate its increment as we
pass from volume V, to volume V The entropy of
.he initial state of the gas (temperature 7', and
volume V,) remains an indeterminate constant.
This is also true for all our later formulas.

§ as a Function of Temperature

The derivation of Boltzmann's formula for a gas,
in which temperature changes, is much more com-
plicated. In what follows we do not use a very
rigorous argumentation.
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Let us recall what was said in sections dealing
with the Maxwell distribution of velocities. Let
us monitor the motion of atoms in velocity space,
that is, record the changes of atoms’ velocities in
time. In contrast to our conventional space, that
is, the coordinate space where there is an equal
probability for an atom to be at any point in the
space, in velocity space an atom’s “coordinates”
v are found only in the vicinity of the mean
velocity:

vm = af/ kT

We shall not specify whether the mean velocity is
the mean square, the most probable velocity or
some other velocity, nor shall we bother about the
coefficient a. As follows from the Maxwell distri-
bution, the velocities of atoms are not exactly
equal to vy, but we can say that the majority of
atoms have velocities that differ from v, by not

more than BV kT, where B is another constant
whose exact meaning is now immaterial.

This statement can be justified if we turn to
the variance, that is, the spread of v* (or energy)
values about the mean value (a rigorous deriva-
tion of this is complicated). We can say that in
velocity space the vast majority of molecules are
in the volume all points of which are at the dis-

tance not more than approximately B}/ kT from
the point corresponding to the components of the
mean velocity.

Consequently, almost all atoms in velocity space
are located in a volume of about f® (kT)%2. If
the temperature of a gas has changed to 7, in
velocity space nearly all atoms of the gas “crowd-
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ed” in a smaller volume if T < T,, or “expand-
ed” to a larger volume if 7> T,.

To calculate the probatility of such a rare event
is a simple task. The course of action is the same
as in the colculation of the probability that the
gas “gather<” in a smaller volume of conventional
space. The probability of this event is

3

o=(7)’

Ny

Note that the coefficients have disappeared from
the formula: this was the reason why we could
neglect them,

Entropy equals the logarithm of this expression
times R. Therefore,

S—8Sy=cvy InTL (at V=TV,
[}

since % N, = ¢y is the heat capacity of one mole

of a gas at constant volume.

The formula we have derived coincides with that
obtained in thermodynamics. But if we compare
this derivation to the earlier one where the amount
of heat and work were calculated without ever
mentioning the probability aspect, it is surpris-
ing that such different starting points in physics
should lead finally to the same formulas. Indeed,
it is a characteristic feature of the present-day
science that physical phenomena are considered
from most diverse aspects. And to develop this
ability is the very first goal of a scientist.
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Density of States

In systems governed by the quantum-mechanical
laws, entropy and temperature reveal themselves
in a quite different way. In a system such as, for
example, the atomic nucleus, the coordinates and
velocities of its constituents (nucleons) cannot
be measured. Moreover, this is completely unnec-
essary. An atomic nucleus is characterized by
allowed energy levels; these levels constitute the
so-called energy spectrum of the nucleus. Each
state, other than its energy, of a nucleus can be
described by a number of other characteristics
such as spin, parity, etc. We shall not discuss these
characteristics, but they are important, for there
can be many states with the same energy but
differing in other characteristics.

If an atomic nucleus obtained a high energy from
the outside, for example, by canturing a neutron,
then after the caoture the nucleus can be found
in one of many “final” states with roughly the
same probability. The volume of the nucleus does
not change significantly, therefore the choice
between final states reduces to the choice of ener-
gyv. The problem then resembles the one of prob-
ability calculations in velocity space. But with
a nucleus we have no information about nucleons’
velocities. On the other hand, we know that a nu-
cleus has a rich spectrum of energy levels. In
every narrow energy interval (if the energv
is not very low) there are many energy levels,
and we can use the notion of a number of
levels Ar per unit energy interval AE. The quan-
tity An/AE is called the density of energy levels
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and is designated by p (£). A nucleus capturing
a neutron emits one or several gamma quanta,
thereby spending a part of its own energy. The re-
maining energy can be different in different spe-
cific cases, and we can formulate the following
hypothesis: the probability of finding an energy
E in an excited nucleus is proportional to the
density of the levels in the neighborhood of this
energy value. The greater the number of levels
within an interval, the “easier” it is for the nu-
cleus to stay in the interval. Such is roughly the
gist of this hypothesis.

If we arbitrarily choose a standard, that is,
a reference density for the levels, e.g. p,, and
refer the densities of the other energy levels to it,
then Boltzmann’s formula gives the following for-
mula for entropy:

— L
S=kln o

This crude formula can be used for an approximate
description of systems with a sufficiently large
number of degrees of freedom. For example, there
is an elegant application of it in the field of
nuclear reactions.

Temperature of Atomic Nuclei

In 1937 Bohr suggested describing nuclear reac-
tions by means of the “compound nucleus” model.
The idea was to give a two-stage description of
the neutron-nucleus collision. The first stage is
the capture of the neutron by the nucleus. If
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the energy of the neutron is not high, the neutron
will soon lose it. The neutron is attracted by the
nucleus, and the attraction energy (or rather,
a_ fraction of it) is “squandered” on other
nucleons. As a result, a statistical distribution is
established inside the nucleus. The higher the
energy brought into the nucleus, the more excited
the nucleus and the higher the density of the lev-
els in the interval into which the nucleus is
excited (we know that this density is a very steep
function of the excitation energy).

The nucleus cannot stay long in this state. Like
a heated droplet of a liquid, the nurleus must get
rid of the excess energy and cool down. The excess
energy will be taken away by “evaporating”
particles.

This process can be described in a way similar
to the evaporation of a hot droplet from a surface.
The evaporating molecules are Maxwell-distribut-
ed, with the only difference here heing that the
distribution does not represent the stationary gas
(as a whole) but the flux of the molecules escaping
from the liquid. An additional factor v, in this
distribution (z is perpendicular to the surface)
takes into account that the flux of particles is
proportional to the product of their density by
the relevant component velocity. To describe the
process of evaporation from a nucleus we must
know the temperature of the nucleus. But we only
know the excitation cnergies and densities of the
energy levels and cannot measure the temperature
of the nucleus. No instrument known to thermom-
etrists can be used to perform this task (even
if only in principle). But the temperature of a
nucleus can be calculated.
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If we excite the nucleus, just a bit, incrementing
its energy by AL, the increment of its entropy
will be

AE
AS=——

since an increase in the energy of a nucleus and an
increase in the heat supplied to it are equivalent
things. Substituting AS by its formula (py can be
neglected as a constant), we obtain

— Alnp
T k—=m Y

that is, the reciprocal of the temperature equals
the change in the logarithm of the level density
per unit change in excitation energy. The higher
the excitation, the higher the density of energy lev-
els and the higher the temperature of the nucleus.
Rewriting the last formula, we get

AE = kT Alnp

and recalling what was said about the energy of
the vibrational degrees of freedom, we can inter-
pret A In p as a measure of the number of vibra-
tions that contribute to the thermal energy of the
nuclei at temperature 71'.

It is natural to measure the temperature of
a nucleus in energy units, that is, in joules, rather
than in degrees Kelvin. Doing this we at last
get rid of Boltzmann's constant . But the joule
is a very large unit and so the temperature is
measured in millions of electron volts (the same as
the excitation energy of a nucleus): 1 MeV =
= 1.6.10-% erg = 1.6-1071® joule, or 1 MeV =
= 101 K.
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Of course, the logical foundation for applying
the concept of temperature to a nucleus is some-
what shaky. The number of the particles in a nu-
cleus is not large and the nucleus never complete-
ly forgets its history. Nevertheless, in many cases
the spectrum of the velocities of neutrons escap-
ing from an excited nucleus is quite similar to the
spectrum of the molecules that would evaporate
from a hot droplet. But the distribution of parti-
cles corresponds to a very high temperature. It
can be shown that the temperature of a nucleus
grows according to the square root of the excita-
tion energy and is, in energy units, between 1 and
1.5 MeV at an excitation energy of 10 MeV for
nuclei with 4 =~ 100. This corresponds approxi-
mately to 10!° K, so that the neutron “vapor” over
the nucleus is indeed very hot.

The velocity distribution of the particles and
quanta that evaporate from a “heated” nucleus
give us an experimental means for measuring the
temperature of the “emitter”.

Another interesting aspect of the example of
nuclear temperature is that here two quantities
are measured in terms of energy, namely, the
excitation energy and the temperature which
shows how the density of levels changes with the
increase in the excitation energy. It was precisely
this difference between the amount of heat and
temperature which our predecessors could not

grasp.
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Spins in Crystal Lattices

Imagine a crystal lattice with identical atoms
fixed at its sites. Let each atom have an angular
momentum, i.e. spin, and a magnetic moment
associated with the spin. We have already dis-
cussed a similar system, namely, the system of
electrons.

All we need to know about the atoms is that if
the absolute value of the spin is s#, then its pro-
jection on the direction of the magnetic field can
assume only 2s + 1 values, viz.

—sh, —(s — 1) &, —1)%, sh

The magnetic moment of an atom aligns along
its spin and hence its projection on the magnetic
field also takes on only 2s 4+ 1 values.

If we denote the maximum projection of a mag-
netic moment by gus, then its allowable projec-
tions will be

—gus, —gun (s —1), ., gp(s+ 1), gus

A three-lettered notation of magnetic moment
is not accidental. Indeed, p is a unit of measure-
ment. If the magnetic moment originates with
electrons (as in the model discussed earlier), then
B = Wg, that is, p is the size of the Bohr mag-
neton, and the magnetic moment, gs, is measured
in Bohr magnetons. If the magnetic moment
originates with the nucleus, then p = p,, that
is, p is the size of the nuclear magneton:

by = eh
I’N_ZMpc
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where M), is the proton mass, and the magnetic
moment is measured in nuclear magnetons.
The exact values of these quantities are

po = 0.578839-10-8 eV/Oe
and
py = 3.1525-10712 eV/Qe

The units have been chosen in such a way that
after the multiplication by the magnitude of
magnetic field the energy will be in electron volts.

Finally, g is the ratio of the magnetic moment
to the angular momentum and this is called the
gyromagnetic ratio. It can be positive or negative.
For a proton g = 2.8, for a neutron g = —1.9.
Some nuclei have g << 0 (like the Earth itselfl)
and others have g > 0.

In an external magnetic field the energy of the
atom’s magnetic moment is —mguol, where m
assumes one out of 2s + 1 values, viz.

m=—s, —s+1,...,8—1,s

This can be formulated in a different way. A nu-
cleus in a magnetic field has 2s + 1 energy levels
and the spacing of the energy levels is constant
and proportional to the magnitude of the magnetic
field. The reader can take this statement for grant-
ed without going into the details of its deriva-
tion.

Now that the energy of each spin is known, we
can calculate the energy of the whole system.
Assuming for simplicity that the magnetic mo-
ments of different atoms do not interact with one
auother, we can calculate the energy of the system
(and il is this energy and not the energy of one
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particle that is important for the determination
of temperature) as the sum of the energies of
individual constituent atoms. After this we can
find the level density which is a steeply increas-
ing function of energy. But we shall pursue a more
illustrative approach and, by keeping an eye on
only the energy of individual particles, we will
forego a more detailed analysis.

Spin Equilibria and Temperature

Let us start with a zero magnetic field. Then spin
orientations do not affect the energy and each of
the 2s + 1 projections of the spin can occur with

Fig. 25. Distribution of atoms in the absence of a mag-
netic field.

equal probability. Graphically this can be repre-
sented by drawing equal number of circles on
each of the 2s 4+ 1 energy levels (Fig. 25). When
a magnetic field is switched on, the number of
atoms on each energy level remains unaltered at
first although the energies of the atoms change
according to the formula e,, = —mgp H.

Were the atoms completely isolated, their
spins, like free magnetic needles, would not stop
since stopping calls for friction in the pivots. In
the case under discussion a friction-like process is

11-0140
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represented by interatomic interactions resulting
in energy exchange between atoms. This is the
process through which thermal equilibrium is
attained. As a result, after some time the spin
distribution will fit the formula resembling that
of the Maxwell distribution, i.e. the number of
atoms on the mth energy level (energy ¢,) is
proportional to the already familiar exponent:

w(m)=A4 exp( ) Aexp('"'gk#;,’y)

The constant A is found becausej we know the
total number of nuclei, N, say, and we must get:

A 2 w(m)=N

The sum (which is a geometric progression with
the common ratio exp (guoH/kT)) is easy to calcu-

Ey *—o H#0
E, —o—o—o—— Equilibrium

E —_——0—0—0—0—
Ey>Ey>E,>E,

Fig. 26. Spins in a magnetic field at thermal equilibrium.

late, but just now we are not interested in de-
tails.

The spin distribution of atoms for a thermal
equilibrium is illustrated in Fig. 26.

We thus see that it is possible to speak about
the spin temperature of atoms. This is a quantlty
which determines the distribution law of spin
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projections in a magnetic field. If the temperature
is very high (7 — oo), the exponent is unity and
all the w (m) are equal.

The use of the energy distribution of spins in
a magnetic field immediately leads to a paradox.

Negative Temperatures

Though it is always stated (and this statement is
correct) that absolute zero is the lowest tempera-
ture possible, physicists often speak about nega-
tive temperatures.

Suppose an atom has a spin of %, it then has

two states in a magnetic field, withm = + %

If the atom’s magnetic moment is positive
(g > 0), then the spins of the majority of the
atoms align with the field, and only at 7 = oo do
the probabilities for both directions become equal.
This means that no matter how much heat is
supplied to a system, it is impossible to make the
higher-energy state occur more often, that is,
make it more “populated”, than the lower-energy
state. Nevertheless, such a population inversion
can be achieved by a little trick, i.e. by reversing
the magnetic field rapidly. To describe the new
situation we have to substitute —H for H in all
our formulas. But this is the same as substituting
—T for T The spin distribution after the “rever-
sal” of the field looks as if the temperature of the
spins has become negative. The higher-energy
level has a larger population (Fig. 27).

11+
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What could not be done by withdrawing heat
has proved to be a relatively simple task by con-
trolling the magnetic field. The system has only
a few levels, and it is possible to make them
“swap places”

What will happen in the system after the rever-
sal? It is clear that the system of spins will return
to thermal equilibrium. Spins will reverse owing

E, —o—o0—0—0—0—

E, *—o—o <0
E; *—o
E, —

E\> Ey>Es> E,
Fig. 27. Distribution for a “negative” temperature.

to the electromagnetic interactions of atoms. The
energy excess will dissipate to other parts of the
system, and the spin distribution will tend to an
equilibrium at 7. This process closely resembles
heat transfer in which the excess energy is trans-
ferred tothe parts at lower temperatures. Evident-
ly, the excess appeared when the system of spins
acquired some additional energy by the field
reversal.

This result can be described in a more formal
way. Let us write the ratio of “populations” for
the two levels:

o= w (g,) — ex (_ A )

T ow(ey) P kT
where A &, — g, is the energy difference be-
tween the levels. The formula shows that in
a‘“normal” situation, when 7' changes from 0 to oo,
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a changes from O to 1, and the interval of o from 1
to oo (the upper level is more populated) can
be compared with the values of T from —oo to 0.
The population is described by a discontinuous
function of T'; an equal population of two levels
has two values of temperature corresponding to
it: T = 400, since a (doo0) = 1.

The relative population of the upper level (a) is
thus described in terms of temperature in a para-
doxical way. The population grows when temper-
ature increases from zero to infinity. However,
T = oo does not correspond to the largest value
of @. The population can grow further (from 1 to
oo) if temperature increases from —oo to 0. In
this respect we can say that negative tempera-
tures lie “higher” than 7 = oco. It would be more
convenient to describe the behavior of o by using
a quantity reciprocal to temperature, namely
p = 1/T It is clear that when & changes from 0
to oo, p monotonically decreases from oo to —oo
without discontinuity. “Reciprocal temperature”
1/T is in many cases a preferable characteristic.

Population inversion is used in lasers.

When there are only two energy levels, temper-
ature is readily given by the logarithm of the
population ratio. However, if there are many en-
ergy levels, the situation is more complicated.
And the “wrong” population of levels cannot be
described by a single parameter, that is, temper-
ature.

When the energy of all the levels, &,,, can be
switched to —e,,, the concept of negative temper-
atures has a clear-cut meaning. And this is the
case of spins in a magnetic field. We know that if
the spin of an atom is s, the system has2s 4 {
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states and its energy values constitute an arithme-
tic progression. The levels are equally spaced and
the replacement of H with —H changes only the
order of the levels without changing their spac-
ing; as a result the pattern of the level is not
distorted. This was the reason why we used the
magnetic moment as the study case.

But if the pattern of energy levels is not that
simple and the levels are not uniformly spaced,
we cannot organize the population inversion in
a simple manner and, strictly speaking, the notion
of negative temperature has no meaning. However,
here we can speak about temperature being
different in various parts of the energy spectrum
and choose the parts in such a manner that the
levels inside them can be assumed to be equidis-
tant. Equilibrium is again reached through
changes in level population tending to the “correct”
equilibrium distribution. As before, the second
law of thermodynamics determines the direc-
tion of the thermal fluxes and thus shows which
parts of the spectrum lose and which gain
energy.

Unequal spacing is characteristic of atoms with
complex magnetic-moment systems produced by
the motion of many electrons and their spins. The
concept of negative temperatures has become im-
portant in optics, especially in laser physics.

In all our considerations it was indispensable
that the energy spectrum of the system was bound-
ed. Only then has a system a ground level and
a highest energy level, and thus can be “inverted”,
that is, we can replace I with —T and obtain
the picture described formally by a negative
temperature,
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The concept of negative temperatures is inappli-
cable to translational motion whose energy can
vary from O to oo, so it is impossible to produce
a distribution which would correspond to nega-
tive temperatures.

Maximum Temperature

Is it meaningful to ask which temperature is the
highest possible? We know the lowest tempera-
ture possible (absolute zero), although the subject
proved fairly complicated. The behavior of phys-
ical systems in the vicinity of absolute zero is
understood only in terms of quantum mechanics
operating with energy levels. But it appears at
first glance that a maximum temperature is
nonsense. Evidently, the more heat is supplied
to a system and the longer the system is heated,
the higher its temperature climbs. Indeed, tem-
perature is different in different systems, and it
is difficult to imagine a body with an infinitely
large heat capacity such that no amount of heat
would be sufficient to heat the body up a single
degree. Our everyday experience makes us believe
such bodies are impossible.

But one has to learn that quantum mechanics
often produces paradoxes that seem ridiculous
from the unsophisticated, conventional stand-
point. A hero who can dive into boiling water and
then jump out intact occurs only in fairy tales.
In the real world we learnt that the temperature of
a body subjected to heating increases. But even
here quantum mechanics gives an unexpected ans-
wer, It does prove possible to think up a system
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that does not warm up, whatever the amount of
heat supplied to it. True, we can no more than
imagine it, for nature does not seem to have such
a system. Nevertheless, it would not contradict
physics.

We saw that the temperatures of atomic nuclei
are determined by the arrangement of their ener-
gy levels, namely, by the dependence of the level
density, p, on the energy, E. The temperature of
nuclei depends on the supplied heat referred to as
the excitation energy and is given by the formula

4 Almp
kT AE

This formula immediately shows that if the
level density increases with energy in such a man-
ner that In p is proportional to energy, that is,
Inp = AE (A is a constant), an increment AE in
energy increases the logarithm of the level den-
sity by 4 AE, and temperature T remains con-
stant and equal to 1/kA. Therefore, if we want to
have a system with the maximum temperature,
that is, a system in which at all times 7 =
= T ax, this system must have the level of densi-
ty at high excitation energy described by the
formula

p oc exp (AE)

or p oc QAE; with an arbitrary base a, p oc a4E
and the maximum temperature 7T,y equals
(1/k) (4 In a)™.

It will be useful to analyze in more detail what
could bring about such a strange result.

Let us take an elementary system: a ball fixed
to a spring. This system is an oscillator vibrating
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at a frequency o (in this example we need an
unbounded energy spectrum and thus have to reject
a system of spins).

It can be proved in quantum mechanics (at
first it was a daring hypothesis made by Planck)
that an oscillator’s energy can only be an integer
multiple of the “energy quantum” Aw, that is,
E = nho (n =0,1, 2, ..). Hence, the arrange-
ment of the levels is such that the energy levels
are equidistant and all spaced by %w. Hence, the
level density (obviously, an interval AE contains
AE/ho levels) is independent of the energy, and,
according to our formula, A In p/AE is zero, that
is, the “temperature” in this system is always infi-
nite (1/kT = 0). This result is simply meaning-
less because we cannot speak of the temperature of
a single vibrating sphere. Let us take many such
oscillators, with vibration frequencies slightly
differing from one another. The cnergy of all
such oscillators is given by the sum

E == h (nl(ﬂl + n20)2 + -)

where n;, n,, .. are integers, and o;, 0,,
are somewhat different frequencies.

Clearly, by specially varying the integers r,,
r,, .., wecan obtain a system of energy values
in which the spacing of neighbor values of E
will be the smaller, the larger is E. The density of
levels will increase with increasing £, and the
rate of increase will be the steeper, the greater
the number of oscillators (spheres).

The degrees of freedom in quantum systems can
be “frozen out”, and the number of degrees of
freedom may grow with increasing temperature.
In our model of oscillating spheres we can assume



170 Temperature

that the number of the oscillators participating
in the thermal motion increases very steeply as
the energy of the system increases. Then we can
imagine that beginning with some temperature
all the heat added to the system goes into “de-
freezing” additional oscillators, thus introducing
new degrees of freedom, so that the energy per
oscillator remains constant. This will mean that
the temperature of the system of oscillators does
not change. The temperature is related to the en-
ergy per degree of freedom, and the number of
degrees of freedom multiplied by this mean energy
gives the total energy of the system.

We will soon show that it is the freezing of the
degrees of freedom that saved physics from the
nltraviolet catastrophe and led to Planck’s for-
mula for radiation.

The system discussed in this section is rather
artificial but it gives a clear illustration of the
relationship between energy and temperature and
shows how these quantities describe different
properties of the system. It was not an easy task
for physicists to digest these notions. Indeed,
paradoxes are encountered even nowadays.

Masses of Elementary Particles

In our story about temperature we pass from one
field of physics into another. Now that we have
discussed maximum temperature, we again turn
to a new field, that of elementary-particle physics.
There we shall find real manifestations of the
paradoxical properties we described above. Qur
subject concerns some theories which strive to
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explain (or rather, to describe) the masses of
elementary particles. The existence of a large
number of elementary particles with very differ-
ent masses has been a long standing puzzle for
physicists. It is natural to hypothesize that the
masses of mesons (particles with zero spin) can
be calculated as the values of energy of systems
composed of a quark and an antiquark, and the

masses of baryons (spin-% particles, including

protons and neutrons) as systems composed of
three quarks. At any rate, this approach was
used to find the energy levels in atoms and the
masses of nuclei (although only very crude approx-
imations of them since the theory of nuclear
forces is still in pretty bad shape).

Unfortunately, very little is known at present
about the interactions between quarks, and still
less about the gluons which are the particles
(quanta of field) mediating interactions between
quarks. Consequently, at the present physicists
operate with only much simplified theories, or
models of the quark-gluon interactions, and try
to discern some general features of the complete
future theory.

These models have revealed a quite general
property, namely, the mass spectrum of particles
is exponential. This means that the number of
states in these models, that is, the energy levels
that we interpret as elementary particles, is very
high and grows steeply as energy increases (i.e. as
mass increases).

The number of elementary particles in these
models is such that the number in the interval
between m and m + Am is proportional to
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exp (m/m,), where m, is a constant approximate-
ly equal to 200 MeV.

We leave aside the question as to whether such
a description is meaningful; it is definitely very
schematic, but for now it is merely an example of
a system with a maximum temperature. Recall-
ing the formula used in the preceding section we
notice that the limiting temperature I, equals
m,. Since one electron volt corresponds to 10* K
(this is readily verified if you remember that
Boltzmann's constant, k& = 1.4-10-1% erg/deg,
corresponds to the cnergy in ergs equivalent to
1 K), then

T, = 200-10%-10* = 2.102 K

This is by far the highest temperature we have
ever met.

This time we are dealing with a concrete model
and so can ask what physical process takes place
at 102 K, i.e. when the mass of an elementary
particle reaches 200 MeV (this occurs in the mod-
el; what takes place in reality is an altogether
different thing). At this energy the particle
starts to “melt”, and a system of baryons, a nu-
cleus, for instance, transforms into a drop con-
sisting of quarks and gluons; this boiling con-
sumes all the energy fed into the system, and for
this reason its temperature ceases to increase.
This is the outcome of conclusions that at first
glance looked implausible.
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Unexpected Paradox

After this acquaintance with an instructive sys-
tem whose temperature cannot be increased, let
us pose another question. What should happen
if the level density of a system rises even more
steeply? There seem to be no factors in physics
to limit the rate of growth of this density.
Clearly, we must be prepared for something
unexpected to happen with such a system; this
justifies spending some more time on this topic.
Assume that the density of levels increases
exponentially but with the exponent BE? instead
of AE. What should happen in a system if the
level density is the following function of energy:

p (E) oc exp (BE?)
By diflerentiating we obtain

Alnp(E)
AE

(actually, In p (E + AE) — In p (F) = 2E AE)

and so

r

=2BE

-1
= 2BE

We see that this imaginary system possesses truly
paradoxical properties. When the energy of the
system increases, its temperature decreases. Of
course, even this can be explained away in the
sense already discussed, by referring to the very
steep rate of growth of the number of degrees of
freedom, but the paradox remains all the same.
If this system gives away its energy, if it emits
light, for instance, its temperature increases. The
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more this “oven” heats up the ambient medium,
the more it is heated up itself. We cannot deny
that this is a paradox. The way out of the quan-
dary may lie in the possible instability of this
system which, having heated up to a sufficient
degree, will explode (or at least burn up). The
very notion of temperature becomes somewhat
uncertain in such systems, as it is uncertain in
a camp-fire.

In this last example everything is quite clear:
the fire temperature changes unpredictably from
point to point and from time to time. Neverthe-
less, our system possesses most unusual prop-
erties. Furthermore, a system with such anoma-
lous temperature behavior may indeed exist in
our Universe. I mean the awesome by-product of
gravitational fields: black holes. We will discuss
black holes later in the book.

Low Temperatures

The interest in low temperatures and their pro-
duction has existed independently of their pos-
sible applications. ’hysicists had been interested
for a long time in finding out whether it was pos-
sible to liquefy gases, such as air, oxygen, and
hydrogen. The story begins at the end of the 18th
century.

In 1783 Antoine Laurent Lavoisier wrote:
“...provided we could submerge the Earth into
a very cold region, for example, into the atmo-
sphere of Jupiter or Saturn, then all our rivers
and oceans would turn into mountains. The air
(or, at least, some of its components) would cease
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to be invisible and would turn into liquid.
A transformation of this kind would lead to
a possibility of obtaining new kind of liquids
about which we are completely in the dark.”

Lavoisier could not see other ways to liquefy
the air except by transporting it to a cold planet.

It was a routine procedure to produce heat, but
even imagination failed to “create” cold. (Remem-
ber the “Snow Queen” by H. C. Andersen. Even
she could not produce cold and had to live in the
North.)

Lavoisier himself had made no attempt to
liquefy any known gas, but shortly afterwards
Gaspard Monge and Jean-Frangois Clouet suc-
ceeded in liquefying sulphur dioxide by cooling
it with a mixture of ice and salt.

In 1790 van Marum and Paets van Troostwyk,
compressing ammonia to see whether it obeyed
Boyle’s law, obtained some drops of liquid. In
1799 Guyton de Morveau liquefied ammonia by
cooling the gas to the temperature of a mixture
of ice and calcium chloride. In 1805 Northmore
obtained chlorine under the pressure of 15 atmo-
spheres.

In 1823 Davy and his assistant Michael Faraday
read their report on the liquefaction of chlorine
hydrate to the Royal Society. Carbon dioxide
was obtained in the liquid phase ten years later
by Thilorier.

At the same time (1822) Charles Cagniard de la
Tour made the very important discovery of crit-
ical points and described the continuous transi-
tion between the gas and liquid phases. But all
this work stood isolated for almost half a century.

In 1877 the mining engineer Louis Paul Cail-
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letet found some drops of liquid acetylene in
a laboratory container in which a leakage had
suddenly occurred and abrupt decreases in
pressure caused fog condensation. Nearly at the
same time Raoul Pierre Pictet from Geneva
reported a step-by-step (cascade) liquefaction of
various gases by evaporating them in a vacuum;
the process resulted in the isolation of liquid oxy-
gen at —140 °C and 320 atmospheres of pressure.
The temperature in Cailletet’s experiments was
estimated to be —200 °C. Engineers started to
design refrigerators and in 1879 the first refrig-
erator ship loaded with meat was sent from Aus-
tralia to England. Apparently, the first patent for
a refrigerator, dated 1887, was granted to Sir
William Siemens. All these installations produced
little cold. Air was liquefied by Georges Claude
in 1902. All of these methods of liquefaction
were based upon the cooling of a gas as it expands
and does work (in a piston or turbine engine), or
as it expands into a vacuum when the work is
done against the forces of molecular attraction in-
side the gas.

In this story we must also mention Sir James
Dewar who liquefied hydrogen in 1898 and so
lowered temperature to about 129 K. Finally, in
1908, liquid helium was obtained by Heike
Kamerlingh Onnes in Holland and the tempera-
ture he obtained was a mere one degree above
absolute zero.

In 1939 Petr Leonidovich Kapitsa proved high
efficiency of liquefying machines in which a gas
does work on a turbine. Since then turboexpanders
have come into wide use. Kapitsa also designed
an effective machine to liquefy helium.
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Magnetic Cooling

The diagram of atomic energy levels in crystals
will help us to understand the principle ol an
interesting cooling technique that could be
devised only after quantum mechanics had been
maslered.

Al low temperatures almost all motion stops
and both the translational and rotational motion
die out. llowever, the spins of atoms continue
to behave as the atoms of an ideal gas even at
temperatures below 1 K, they exchange energy
(although the exchange is weak) and they are
almosl free to change their position in space
(their projection on the direction of a magnetic
field). In elements such as the rare earlhs, elec-
trons lill the inner shells of aloms, and their spins
are almost insensitive to other electrons. Ience,
magnetic moments are also nearly free.

This properly of eleclrons underlies a method,
magnetic cooling, of producing ultralow temper-
atures.

1f we put a crystal including the atoms of a rare
earth into a magnelic field and arrange thal the
crystalremains at the same temperature (i.e. the
lield is switched on isothermally), after some short
interval all the magnetic moments (if they are
positive, i.e. if g > 0), as we have already ex-
plained, will point in the direction of the field or,
so to speak, point southward. If the field is now
rapidly switched off, a very unusual situation
will arise. There is no magnetic field, but all the
spins are pointing in the same direction and not
randomly as would be Lhe case for thermal equi-
librium. Actually, we assumed that the only
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process in the system is the motion of the spins,
and the motion of the atoms is negligibly small.
Now we have to refine the picture. In reality the
atoms in a crystal laltice vibrate because the
lattice is at a nonzero temperature 7. The inten-
sity of the vibrations is determined by the value
of T. The motion of the atoms is transferred to
the spins because the motion of charges generates
a weak variable magnetic field. The spins are
thus not in complete isolation but in a thermostat
at a temperature T.

When an external magnetic field aligns all the
spins into a single direction, the ordering this
produces cannot be sustained without a field. The
orientations of the spins must change (as a result
of interaction with vibrating atoms) and tend to
become random so that any of the spin projec-
tions would have equal probability. This process
must be accompanied by an energy exchange
between the spins and the atomic vibrations.

However, it is not easy to conclude at first
glance the direction of energy transfer, whether
atomic vibrations will be enhanced or attenuated.

In order to answer this question we have to
resort to the concept of entropy. The entropy of
spins must increase and hence a heat flux from
the lattice (the atomic vibrations), which is at
thermal equilibrium, to the spins must set in so
that the spins will return to the chaotic state and
the atomic vibrations will slow down slightly.

This means that the crystal cools down, this
being what the theory predicts. Figure 28 shows
schematically how temperature and entropy
change in such a system. The upper curve de-
scribes the entropy of a crystal as a function of
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temperature for a zero external field and the lower
curve gives the same function with the external
field switched on. When the field is rapidly switched
off, without changing entropy (this is what
we call the adiabatic demagnetization), the tem-
perature drops because points with the same § lie
on different curves for different 77 Experiments

Adiabatic
demagnetization

————— I Magnetic
e | ficld is switched
“1 { on isothermally
] 1
T; T; T

Fig. 28. Adiabatic demagnetization. Entropy as a func-
tion of temperalure in a zero magnetic field (// =0) and
in a nonzero magnetic field (I = Iy).

confirmed these predictions. Could it be possible
to invent such a cooling technique without
knowing the subtleties of the theory?

The magnetic cooling technique was suggested
in 1926 by William Francis Giauque in the USA
and independently (or even a few weeks before)
by Peter Debye in Germany. This method has
lowered the temperatures achievable to approxi-
mately 0.003 K. Lower temperatures cannot be
obtained this way because spins stop moving
freely and the ordering produced in them by spin-
spin coupling (an effect like the one that occurs
between compass needles over short distances) is
not disrupted by the weak thermal motion of
atoms.,

12»
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It is possible to go even lower down the tem-
perature scale if very high magnetic fields (using
tens of thousands of an oersted) are used. Such
fields orient the magnetic moments of the nuclei,
and all the operations are performed with the
nuclei of the crystal.

In 1956 F. E. Simon used this technique to re-
cord a temperature of 0.000016 K. Unfortunately
this record is not quite realistic. Atomic nuclei
do interact with electrons but only very weakly
(in spectroscopy this interaction is called hyper-
fine) and can withdraw practically no entropy
from the lattice. The nuclei slowly do in fact
heat up, but the lattice temperature does not
decrease because the lattice manages to replenish
the lost heat from the ambient despite the inge-
nious efforts of experimenters. The road through to
the millikelvin range (thousandths of one degree)
seemed blocked. How could a piece of matter,
rather than an illusory system of spins, be cooled
down to 0.001 K or below?

Even this has proved to be possible.

When a salt is dissolved in a solvent, the tem-
perature of the solution drops and this simple and
well-known effect has helped physicists. It was
found that if helium—atomic weight 3 (He?®) —is
dissolved in ordinary liquid helium, the tempera-
ture of the solution decreases. This process can
produce temperatures down to 0.001 K.

But an even cleverer method was invented by
Isaac Pomeranchuk. His invention also in-
volves He3.

In order to clarify how his method works we
have plotted the entropy curves of two phases
of He?, one solid and one liquid, in the vicinity
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of absolute zero (Fig. 29). According to quantum
mechanics, all systems are at their lowest state
at absolute zero and the entropy of this state is
zero whilst the energy is at a minimum. To be
precise, the entropy is constant and the same for
both phases. A comparison of the absolute values
of entropy for different substances that do not

S Solid He3
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Fig. 29. Entropies of He3
in the liquid and solid

| [ S— phases.
1 3 10 30 100 T

Millikelvin

transform into each other is meaningless. It is
very important that at 7' = 0 both phases have
the same entropy and that the transition from one
phase into another does not change either the
entropy or the energy. This property was postu-
lated by Nernst and represents one of the forinu-
lations of the third law of thermodynamics.
What is important for Pomeranchuk’s technique
is that the curves are arranged in such a man-
ner that the entropy of the solid phase is greater
than that of the liquid phase. Were the arrange-
ment different, the method would not exist.
The gist of the method is clear from Fig. 29.
The plot shows that if the helium is cooled by
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the adiabatic compression of the liquid, convert-
ing it into a solid, then the temperature of He?
will be reduced. A temperature of about 1 mK
has now been achieved with this technique. At
2 mK liquid He? becomes superfluid like He*
and an extremely complex and interesting world
of physical phenomena is now being unveiled in
this field. Unfortunately, a description of these
phenomena goes far beyond the scope of this
short book.

Pomeranchuk’s technique even at first glance
resembles cooling by adiabatic demagnetization.
In fact the analogy is even more profound. The
cause of the effect is due to the fact that the nuclei
of He® have nonzero spins (ordinary He* has
spin-0 nuclei). At very low temperatures the
spins of neighboring atoms in liquid He?® tend to
align themselves parallel to each other, like
magnetic needles. Of course, this ordering is not
a long-range effect but nevertheless there is some
spin ordering in liquid helium, while in solid
the spins are “scattered” randomly down to
a temperature of around 0.003 K. Consequently,
a transition from the liquid to the solid phase
resembles the adiabatic switching-off of magnetic
field (when the spin directions become random-
ized), and a reversed transition resembles mag-
netization. The entropy of the solid phase is greater
(at the same temperature) than that of the liquid
because of spins. Actually the pattern of spin
alignment in solid He3 is more complex, but the
above crude description is sufficient to explain
the effect.

Low-temperature physics is now entering a new
era and many surprises are in store for us in the
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millikelvin range. But is there any limit to the
technical achievement beyond this range? In fact,
physicists have gone even lower down the temper-
ature scale, the most recent record being set by
the Finnish physicist O.V. Lounasmaa. His rec-
ord mark is 50 nanokelvins, or 50-10-? K.

What sort of physics will open up to our eyes
in the nanokelvin range where, according to
classical mechanics, all types of motion must be
completely absent? Nature's secrets are much
more interesting than that.

The realm of the deep, extremely deep cold is
a kingdom in which effects of quantum mechanics
are all-powerful. This is the land of the Snow
Queen, of quantum laws that are grotesque and
bizarre from our “warm-blooded” viewpoint.

Problem for Fun

We have related quite a lot above about tempera-
ture and thermal processes. The reader should re-
alize how difficult it was to discover entropy in
heat-transfer processes and how the appearance of
entropy in physics has transformed the whole
science. It will probably be useful to demonstrate
with a simple example how temperature and
entropy work together.

We shall illustrate the notion of entropy with
an example from hydrodynamics.

Imagine two reservoirs with unequal levels of
water. Water can flow from one reservoir to anoth-
er. Let us install a turbine in the conduit connect-
ing the reservoirs and use the turbine to “accu-
mulate” energy, like a battery, by lifting a weight
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up some way. We also install a pump which,
when necessary, pumps water hack. The result is
a primitive model of a hydroelectric power station.
If friction losses are absent (which is certainlv
unrealistic), you can easily see that water will
flow from one reservoir to another until the levels
hecome equal. The potential energy of water is
converted into the potential energy of the weight.
By letting the weight go down, we can pump all
the drained water back with our pump. Obvious-
ly, we cannot return all of it because some losses
are unavoidable, but we can neglect this and
rezard our setup to be reversible.

Were™ there no 'turbine, the levels would ulti-
mately hecome equal with energy converted to
heat, so that none of it would be available for
pumping the water hack. By accumulating the
energy we can use it for different purposes. Thus,
we can pump water up from a third reservoir
located still lower into the uppermost reservoir.
To be brief, we can do anything allowed by the
law of the conservation of energy.

Now let us design a heat engine as similar to
that described ahove as possible.

Let us take three cubes of identical size and
made of the same material. Two of the cubes are
at 300 K and the third at 100 K. In addition, we
have a heat engine which can work with an arbi-
trary temperature difference. What is the maxi-
mum temperature to which one of the cubes can
be heated?

First we take the 100-K cubes and a 300-K cube
and press them together. The temperatures of the
cubes will level off. Assuming for simplicity
that the specific heat of the material of the cubes
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is unity and does not depend on temperature, we
immediately find that the final temperature will
be 200 K but part of the energy will be irreversi-
bly lost. At least this part of the energy can be
converted into work by connecting our heat engine.

In order to find what work can be retrieved, we
have to wse the second law of thermodynamics.
Work will be maximized if the process is reversi-
ble, i.e. if the entropy of the whole system is not
increased and hence

10! _ 10,1
T, T,

We remind the reader that Q, is the heat with-
drawn from the hot hody at a temperature T,,
and Q, is the heat transferred to the cold body at
a temperature T,. When the heat Q, was removed
from the hot body, its temperature was reduced by

AT, = — %= —0,

becanse the specific heat ¢ —= 1. Likewise, the
amount of heat Q, supplied to the cold body
increascd its temperature by

AT, 0,

Now we recall the condition of reversibility given
earlier. Subslituting the expressions for Q; and
Q, into it, we rewrite this condition in the form
T,AT,+ T, AT, =0

This condition can also be written in a different
form:

(T, -I- AT)) (T, + ATy) = T T,
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if we neglect a small term AT,-AT,. This equali-
ty signifies that when a reversible process changes
the temperatures 7', and T, by A7, and AT,
(obviously, the signs of AT, and AT, are oppo-
site, viz. when T, increases, T, decreases), the area
of the 7'y T, rectangle remains unchanged, viz.

T,T, = const

This is the relation that must be satisfied by the
temperatures of two cubes at the beginning and
end of the process, provided the process is rever-
sible.

Now we have everything necessary for the cal-
culations. We start by constructing a heat engine
out of the cubes with 7 = 3C0 K and 100 K.
When the temperatures are equalized in a rever-
sible process, the final temperature 7' will be
found from the relation

T,T, = T*

Therefore, T = (300-100)/? ~ 173 K.

The simplest suggestion is to convert the work
obtained al the first stage into heat and transfer
this heat Lo the third cube. Its temperature will
thereby rise to 354 K.

This follows from the law of the conservation of
energy, i.c. the first law of thermodynamics. The
cnergy of our cubes is numerically equal to their
temperature so that the work stored at the first
slage is

4 = 300 4- 100 — 2-173 = 54

ITowever, this solution is not correct! The correct
sequence is to use the stored work in a refrigerator
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cycle, cooling the system of two cubes at T =
= 173 K and heating the cube at 7 = 300 K.

The new stage is described not by the condition
T,T, = const but by another one:

T,T? = const

Squared I' appears because the cooling of a sys-
tem of cubes is described by the condition Q =
—2AT, i.e.

AS=—

T

and by the Carnot equation which now turns
into

2T AT, 4+ T, AT =0

Using alnost the same arguments as before, we
arrive at the condition we had before, i.e. T';T?% =

= const. By denoting the final temperatures by x
and y we find that

T2T3 Ead .’L’2y

One equation for two temperatures is insufficient.
The second equation follows from the first law:
A+2T 4+ Ty,=2x+y

Substitution of the values of A, T, and T, yields
the system

z%y  3002.-100
z + 2y = 700

The solution can be found after several trials and
the ultimate result is

z = 150, y = 400
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The temperature of the hot cube can thus be in-
creased to 400 K, the other two cubes being
cooled to 150 K.

A Different Solution

The arguments in the preceding section can be
minimized and wmade almost automatic if we
introduce entropy. For a cube whose heat capaci-
ty is constant, the entropy is

=kInT+ C

where the constant C is temperature-independent.
This expression can be derived for an ideal gas
and the derivation used only one property of the
gas, i.e. the independence of its heat capacity on
temperature. Hence, it holds in the present case
as well.

The condition of reversibility indicates that the
entropy of a system consisting of three cubes re-
mains constant. Maximum heating of one cube is
obviously achieved when the temperatures of the
other two become equal (otherwise more work
could be obtained by using them). Recalling that
the entropies of the cubes add up, we find that

Inz -+ Inz 4+ Iny = In 300 4+ 1n 300 + In 100

or
z?y = 300%-100

i.e. the first equation that took much longer to
derive in the preceding section. Naturally, the
second equation remains the same.
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If we try again to compare the three-cube prob-
lem with that about the three reservoirs, we
notice that the part of potential energy is played
by the logarithm of temperature, i.e. by entropy,
and that the law of the conservation of energy is
replaced with two laws of thermodynamics, the
first determining the sum of temperatures, and
the second the sum of their logarithms. The con-
dition that the cubes have equal masses corre-
sponds to the condition that the reservoirs have
equal areas in the second problem. The main fea-
ture of the three-cube problem is that the second
law of thermodynamics forbids lowering the tem-
perature of a cold cube by any means. In the
three-reservoir problem the work obtained from
one turbine can be used to lower the level of
water in the third, lowest reservoir.

A comparison of the two problems is very
useful.

In addition, we can also recall what we said
about low temperatures. The formula S =k In T
cannot be correct if temperature is low. Entropy
cannot tend to —oo close to I = 0 but must tend
to zero "~ e at T = 0 any system is completely

aured and its entropy must vanish. One must
be careful, therefore, about what temperature is
discussed. For the temperatures chosen for the
above problem everything is correct.

Blackbody Radiation

When the caloric theory was still popular, a great
deal of discussion centered on the fate of the
caloric if heat was lost by radiation.
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In the Carnot cycle heat was withdrawn from
the hot body by the expanding gas. In the gas
the heat was spent on increasing the kinetic ener-
gy of molecule so that the physical process of
heat transfer, i.e. how and where the heat was
transferred to, was simple and clear (of course,
only after the kinetic theory of gases had won
the battle). But heat is not only transferred from
one body to another when they are in contact. The
Sun transfers heat to the Earth via the vacuum
of space and even Archimedes knew that thermal
rays could be focused by means of large mirrors.
Many physicists experimented on the focusing of
thermal rays in the 18th century*. Finally they
concluded that light and heat are the same type of
phenomena and thus heat, like light, is a mani-
festation of vibrations in ether. The misconception
took a long time to die.

Sometimes nature tricked physicists into comi-
cal situations. When everyone was sure that light
propagation required ether, the ether proved to be
superfluous. When physicists were certain that
heat was a caloric substance which existed inde-
pendently and required no carrier, it was proved
that no caloric exists and that heat is transport-
ed by electromagnetic waves.

*The term “radiant heat” first appeared in 1778 in a book
called On Light and Fire by Carl Wilhelm Scheelc. Scheele
had noticed that in addition to the heat that rises above
the fire with the air, there is another sort of heat that is
felt when facing the flame. But heat could not be trans-
mitted through glass, while light could, and this puz-
zled scientists for a long time: “Undoubtedly, light and
heat are different things” was their conclusion.
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But if light transfers heat, then in principle it
can be the working substance in a heat engine.
Then light must carry energy (this is easily com-
prehensible), entropy, and temperature. More-
over, thermal equilibrium must also be mean-
ingful for light.

If Newton were right and light consisted of
particles, its description as an ideal gas would
stand a chance of success. But although light
consists of photons, we cannot say how many
photons there are in a given volume because the
photons are absorbed and reradiated by the walls
of their container and their number cannot be
determined. We shall see that even the mean
number of photons is a function of temperature.

A heated body emits light, thus we get: infra-
red radiation at low temperatures*, visible
light at high temperatures, and galaxies in space
emit in the X-ray and even y-ray bands. The
radiation emitted by any source is described by
the properties of its spectrum, i.e. by indicating
the energy it emits in each segment of its spec-
trum. A distribution function for radiation has
a similar meaning to a velocity distribution
function of atoms. If we start with a histogram,
i.e. a diagram showing how much energy is
contained within a Av-wide interval of the spec-
trum around v, this histogram can later be

*It should be recalled that the radiation emitted by a
heated body contains, in the general case, all frequencies,
but energy is mostly concentrated in a relatively narrow
band of the spectrum. The problem that occupied physi-
cists at the end of the 19th century was to find where this
spectrum band (the maximum of the spectrum) lies and
what its shape is.
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replaced with a continuous function and we can
speak of the energy density of the radiation.

The notion of the temperature of radiation and
of the distribution function for the spectrum of
the radiation emitted by a heated body was the
first success of the new physics. A great deal of
work went into making the idea of thermal equi-
librium useful for describing radiation. First it
was necessary to consider a closed volume in
which electromagnetic waves exist. Waves can
be emitted and absorbed by the walls of the
container, kept at a constant and known tempera-
ture T.

Now we usually call such a container a reso-
nator, or cavity. As a rule, the electromagnetic
field within the resonator has a very narrow spec-
trum, almost monochromatic, but the resonator
can be “detuned” so that it can contain waves
with very differing frequencies.

The radiant heat, using the 19th century term,
continuously drains from the walls into the reso-
nator; however, the walls cannot let off their
energy indefinitely and a thermodynamic equi-
librium, determined by a single quantity T, is
finally reached. The energy emitted by the walls
into the thermal equilibrium must be exactly
compensated for by the energy absorbed by the
walls. This compensation must be true for every
interval of radiation frequency. It is only natu-
ral to assume that equilibrium radiation has the
same temperature as the walls.

Very general arguments enable us to state that
the electromagnetic field inside the resonator is,
as a system, indistinguishable from an ideal gas,
in the sense that the field exchanges energy with
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the walls (radiation is absorbed and emitted) and
that this process leads to the thermal (thermody-
namic) equilibrium.

When this problem was formulated, the solu-
tion first seemed too difficult to obtain. It was at
this junclure that a debacle occurred, that has
gone down in the history of physics as the ultra-
violet catastrophe.

Ultraviolet Catastrophe

The initial attempt was to treat the atoms of the
container walls as a gas, or rather, as a set of vi-
brating charges (oscillators) each of which has, by
virlue of Maxwell’s theorem, an average energy
kT (one half of this amount is kinetic energy and
the other half is potential energy). After this it
was possible to calculate thermodynamically the
density of radiation in energy units. Lord Ray-
leigh (the first to derive the formula) assumed
that the number of oscillators was proportional
to vZ Av for each frequency interval. Rayleigh’s
formula is obtained by counting the number of
possible different vibrations of atoms. But
difficulties appear in connection with the equipar-
tition theorem. By assigning an energy kT to
each oscillator, Rayleigh derived the so-called
Rayleigh-Jeans formula for the density of energy
in equilibrium with the walls:
f(v)Av= i@—’;—"— Av

It is worth noting that nowadays we use a new
Planck constant # (read h bar), A = h/2n, in
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order to compensate for the factor 2t in the fre-
quency formula 2nv. In this section we
follow the old :ustom of using v and A.

This formula lils experimental data at low
frequencies but, as frequency increases, the num-
ber of oscillators increases indefinitely and, if
each oscillator is assigned an energy AT, the
energy of radiation becomes infinite. If the elec-
tromagnetic field is Lreated in terms of the kinetic
theory of gases, it proves insatiable, for however
large the energy released by the walls, the energy
is converted inlo oscillations at ever higher
frequencies. The conclusion obtained in the frame-
work of classical physics is that a thermody-
namic equilibrium cannot exist between the walls
and the clectromagnetic field.

An attempt to remedy the situation was made
by Wilhelm Wien. His attention was attracled
to a formula for energy distribution in the ultra-
violet frequency range and he found that Lhe
amount of energy it contains in the frequency
interval from v to v + Av fits the following for-
mula quite well:

av’ exp ( —-l;.l) Avy

where @ and b are some constants. The physical
meaning of this formula was unclear, for it had
no relation to the kinetic theory and failed at low
frequencies. A strange situation had developed.
One formula was theoretically sound but led to
absurd results; another formula handled the
catastrophe well at high frequencies but was
patently incorrect at low frequencies. There must
have been a flaw in the argument. This flaw was
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in the foundations of Lhe theory and so logic was
powerless to expose it. The logic had to be shat-
tered and this is what Max Planck did.

A New Fundamental Constant

The key to the mystery was hidden in Wien's dis-
tribution formula. It is immediately noticeable
that a new constant appears in the exponent: b. At
the time nobody multiplied temperature by Boltz-
mann’'s constant (we have mentioned that it was
introduced only by Planck). But if the exponent
is writlen in the form
bv __ bkv
T T kT
then the formula for distribution will have a new
coefficient, i.e. bk instead of b. The dimensional-
ity of the coefficient bk is energy  time. By
looking al Wien’'s formula it was possible to
realize at last that there was no way to derive it
by any arguments based on equations of classical
physics. One had to give up classical physics as
hopeless, dump the logic, and invent a new hypoth-
esis without bothering too much at the beginning
about what it meant. The hypothesis thatl served
this purpose was the quantum hypothesis.
Planck clearly understood how unusual his
hypothesis was. But it was saving physics and
that alone gave him sufficient grounds for defend-
ing it. The hypothesis assumed that the atoms
in the walls of the container with radiation (we
called them oscillators) can emit and absorb
electromagnetic waves only by discrete portions,

13+
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that is, by quanta with energy Av. This assump-
tion proved sufficient for eliminating the ultra-
violet catastrophe.

Much later Planck wrote Lo Wood from Berlin:
“Dear colleague! In the course of our pleasant
dinner at Trinity Hall you uxpressed a wish that
I write to you in more det.il on the psychologi-
cal state that had led me some time ago to postu-
lating the quantum-energy hypothesis. In what
follows I shall try to do my best and salisfy
your curiosity. Very briefly, I can describe the
whole chain of actions as an outcome of a com-
plete despair. By nature I am a friendly soul, by
no means inclined to ambiguous adventures. But
for six long years (ever since 1894) I waged a war
with the problem of equilibrium between radia-
tion and matter, with no success; I was aware that
this problem was of fundamental importance for
physics; I knew the formula which gave the
distribution of energy in the blackbody spectrum;
a theoretical interpretation was to be obtained
by all means, whatever the price. Classical phys-
ics was of no use here: this was clear because il
implied that the energy of matter was converted
totally into radiation. To prevent this, it was
necessary to introduce a new constant that would
take care of the vanishing of energy.

I was prepared to sacrifice my well-estab-
lished physical concepts. Boltzmann had explained
how thermodynamic equilibrium grows from the
statistical one; by applying his arguments to the
matter-radiation equilibrium it was possible to
eliminate the conversion of energy into radiation,
by postulating that from the very beginning
energy was to be in the form of quanta. This
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was a purely formal assumption, and actually
I did not ponder over it too much, being sure
that I must obtain the positive result regardless
of consequences or of the price to be paid.”

Planck’s words call for an explanation. Imag-
ine a container, or a box filled with an electro-
magnetic field. Let the walls contain electrons
which are not free but oscillate as if held by an
elastic spring. Do not think that this picture is
too crude because the laws of thermal equilibri-
um are independent of the concrete design of the
system, and our model with its electrons must
give the same results as any other. But two condi-
tions must be satisfied: first, the oscillation fre-
quencies of electrons must be very different in
order that they can emit and absorb any frequen-
cy of electromagnetic radiation and, second, the
electrons must be in thermal equilibrium with
the walls in order that their motion can be de-
scribed by a definite temperature.

Unfortunately, the derivation of Planck’s dis-
tribution formula is not an easy matter as it is
necessary to calculate the distribution of the oscil-
lators’ energies. We choose to give the final re-
sult. The formula derived by Planck is

8rhv3 1
fv)= c:’v hv
exp (W) —1
The principal feature of Planck’'s formula
manifests itself in the high-frequency range.
Having assumed that energy can be emitted and

absorbed only in discrete amounts, that is, in
quanta related to the frequency by the formula:

¢=hv (= ho)
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Planck observed that the ultraviolet catastrophe
dissolved, and he arrived at an acceptable for-
mula for the distribution. At each temperature
the spectrum can be divided into two parts:
one comprising of frequencies above kT, the
other of frequencies below AT Roughly speaking,
the quantity k7 characterizes that part of the
spectrum in which most of the energy is concen-
trated. When hAv is much greater than AT, the
exponential function in the denominator becomes
large and the unit constant can be neglected.
We thus obtain

fv) =" exp (— )

and so Planck’s formula reproduces the hehavior
of Wien’s distribution. The spectrum of the ener-
gy falls oft very rapidly as the energy increases so
that no “catastrophe” occurs at high frequencies.

The behavior of radiation in the box is such that
the oscillations of the electromagnetic field cor-
responding to high frequencies have praclically
no energy. This is a corollary of Planck’s quan-
tum hypothesis. The classical theory holds that
each vibration must have the mean energy AT If
kT > hv, this energy corre ponds to several quan-
ta. But if kT <« hv, even one quantum is too
much. Atomic oscillators cannot emit one fourth
or one half of a quantum since these quantities
do not exist in nature. And since “large” quanta
(quanta with high frequency) are not emitted,
they are absent in the electromagnetic field.
These degrees of freedom are “frozen out” The
frequencies that are “frozen out” are those whose
quanta are too large compared with ¥T, As the
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temperature diminishes, gradually more and more
oscillations get “frozen” At absolute zero all
degrees of freedom vanish and the energy and
entropy of radiation tend to zero.

The effects arising from “freezing out” the
degrees of freedom had been actually discovered
by Nernst long before quantum mechanics was
born, when he tried to deduce how entropy must
behave in the vicinity of absolute zero.

As for the low-frequency range (hv < kT), at
these frequencies the exponential function in
Planck’s formula can be replaced by the approx-
imation e* ~ 1 + a if a <1, and we obtain
the Rayleigh-Jeans formula:

f () =25 kT

This is a remarkable formula, for it has lost
Planck’s constant. Hence at low frequencies, when
quanta are “small”, the formula gives the classical
number of the degrees of freedom for the electro-
magnetic field, viz. 8nv?/c? per frequency inter-
val Awv since there is one kT of energy per degree
of freedom.

Planck’s intuition about the quantum is quite
outstanding. Indeed, there is no logical sequence
that could have led him to the discovery.

Actually Planck did not think in terms of
real quanta, the quanta of an electromagnetic
field. Quanta for him were merely the portions of
energy given away by oscillators. It was five
years later that Einstein noticed that if a quantum
has an energy,. special relativity requires it to
have a momentum as well. Quanta must theq
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have an independent existence as particles with
energy &£ and zero rest mass.

Exact calculations using Planck’s formula give
the following expression (the Stefan-Boltzmann
law) for the density of radiation energy (energy
per unit volume), viz.

E, = aT*

where
=T £.917.107%5 erg/(cm®- degh
= T5isa = g/(cm®-degH)

This formula simultaneously includes the three
fundamental constants, %, %, and ¢. Boltzmann's
constant is contributed by the kinetic theory,
Planck’s constant by quantum mechanics, and
the speed of light by Maxwell’s theory about the
electromagnetic field.

Usually the Stefan-Boltzmann law is written
for the energy emitted per second into vacuum by
a unit surface of a body heated to a temperature T
rather than for energy density. Its usual power
is thus:
energy flux = ogT*

where
= 5.67-10-% g/(cm3-deg*)

The constants ¢ and a are related to each other
by the formula

0 =—ac
_4a

By dividing the energy density E; by the energy
of ope oscillation, i.e. kT, we can obtain a quan-
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tity that can be interpreted as the number of
quanta per unit volume. It is approximately
equal to 1472, Hence, the number of quanta
does not remain constant but increases with tem-
perature. This is the principal difference between
a gas of photons and an ideal gas containing
a constant number of particles.

Planck’s discovery was given a physical sub-
stance when Einstein realized that an electro-
magnetic field consists of quanta (photons) and
that the oscillators emit and absorb the photons,
which are particles moving at the speed of light
and having zero rest mass.

Photons entered physics so unexpectedly, and
the recognition of their existence was so difficult,
that it was only in"1924 that photons were treat-
ed as a gas' and theorists began to apply the laws
of statistical physics to them.

Photon Gas

In 1924 a young Indian physicist Jagadis Chan-
dra Bose discovered that Planck’s distribution can
beobtained in almost the same manner as the
Maxwell distribution if one assumes that the
electromagnetic field is a system of a large number
of photons, that is, if it is treated as an ideal
photon gas. Tt must not be ignored, of course,
that photons are not ordinary atoms because their
rest mass is zero. Bose did keep these in mind
and found that Planck’s distribution formula is
the equilibrium distribution of a photon gas which
was later christened “Bose gas”, )
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Bose’s derivation pleased Einstein immensely;
he translated the paper from English into German
and sent it to Zeitschrift fiir Physik. After this
the electromagnetic field (field of photons) became
an example of a new ideal gas whose equation of
state obviously had nothing in common with the
Clapeyron-Mendeleev equation.

The derivation of the equation of state for
a photon gas is no more complicated than that for
an ordinary ideal gas. But it is worth the time
to look at it closer.

Right now we only have a formula for the radi-
ation density E,. If the energy density is multi-
plied by the volume, the result is the internal
energy of the radiation:

U= aT'V

In order to increment the internal energy by AU,
the temperature must be increased by a certain
amount AT, hence

U+ AU =a (T + ATV YV

But

(T+AT)S =T+ (1 +AT7')"zT4(1 +_“¢_T)
whence

U+ AU = U + 4aT3V AT

This means that an increase in energy by AU is

related with the increment in temperature AT by
the formula

AT = 4aT3V AT
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But the increment in energy when AT = 1 is
the heat capacity of the system at constant vol-
ume, i.e.

AU = ¢y AT
hence
cy = 4aT3V

Now we can calculate the change in entropy. We
know that

AS AQ :cVAT

T T

because the heal supplied to a photon gas is
added to its internal energy. We thus find that

AS = 4aT?V AT

Now it is necessary to make a guess about the
formula relating entropy to temperature such
that the increment in entropy is given by the
above expression.

Assume that the formula for entropy is

S =ATS

where the coefficients A and B are the quantities
we have to find. We increment S by AS and T
by AT:

S+ AS=A(T +AT)8 = ATB + ABTR-1AT
that is

AS = ABTB' AT
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A comparison with the formula for AS we de-
rived earlier immediately gives us

B=3, A=-—§—aV

We have thus determined the relation between
the entropy of the radiation and its temperature,
i.e.

§=4al*v

Note that at T = O the entropy vanishes in ac-
cordance with Nernst's results.

It can be shown that radiation behaves as a gas,
that it can be compressed by doing work on it,
and that on expansion it does work as an ordi-
nary gas. For instance, let the volume, enclosing
the radiation, increase from V; to V,. If the
process is reversible and takes place at constant
temperature, the entropy of the radiation in-
creases with the volume

S;— 8= 4aT*(V,— V)

An increase in entropy is associated with addi-
tional heat, AS = AQ/T, hence,

AQ= g aT*(V,— V)
Expansion increases the energy of the radiation by
Uy—U,=al*(V,—V))

The increase in energy is evidently less than the
amount of heat supplied. This is to be expected
because part of the heat went into doing the work.
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The last two formulas yield the expression for
this work:

1
A= al(V,—V)

But we know that this work is equal to the prod-
uct of the gas pressure by the increment in vol-
ume, that is,

A=p(V,—V)

Hence, the pressure of the radiation is

p=tar=t

This is the equation of state for a photon gas.
We notice immediately a drastic difference be-
tween it and the equation of state for an ideal gas.
The most remarkable fact is that the pressure is
independent of the volume, that is, the photon
gas can be compressed isothermally without in-
creasing its pressure. This behavior may seem to
defy common sense but in fact there is nothing
strange in it because the number of photons, as
we remember, is not conserved. As the gas is
compressed, part of the photons disappear being
absorbed by the container’s walls and new pho-
tons are emitted as the gas expands.

If the entropy of a photon gas is maintained
constant, that is, if the process is adiabatic
(isentropic), the volume and temperature of the
gas are related by the adiabatic equation:

T3V = const
Knowing the equations of isotherm and adiabat,

the reader can verify Carnot's theorem with
a photon gas chosen as the working substance.
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A photon gas has another peculiar feature: it is
almost always ideal. Photons practically never
interact (never collide), so that their thermal
equilibrium can only be established through
absorption and emission by the walls of the
container.

If we could create conditions for maintaining
an equilibrium photon gas and could measure its
pressure, we would have an ideal thermometer
that measures absolute temperature and requires
no corrections. This would be the most accurate
thermometer in the world. Unfortunately, it is
very difficult to reproduce Lebedev's experiments
(to measure light pressure), and it is even more
difficult to maintain such a thermal equilibrium.
For these reasons it is not yet feasible to develop
a photon thermometer in this pure form, although
the principle of the photon thermometer has
been used for quite a long time to estimate the
temperatures of stars. If the radiation emitted
by a star were described by the Stefan-Boltzmann
formula, the star would be a thermometer measur-
ing its own temperature. But then it would have
to be a blackbody.

Blackbody

Not every heated body emits a spectrum described
by Planck’s formula and spectra may be very
different. Sometimes they consist of lines, some-
times of bands. For the spectrum of a body to be
Planckian, the radiation must be in thermal equi-
librium with the emitting body, it must “forget”
completely how it was born.
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Various models were devised in the last century
for this process and the most popular of them was
represented by a closed cavity with a tiny hole in
the wall. This cavity was called a “blackbody”
The radiation was repeatedly reflected by the
walls until, like a gas, it gradually attained ther-
mal equilibrium.

In reality it is extremely difficult to formulate
which conditions a blackbody must satisfy. To
find out whether radiation is thermal, i.e. equilib-
rium radiation, we have to measure its spectrum:
all the conditions are met if the spectrum is
Planckian. (“Suflicient unto a blackbody is the
spectrum thereof.”)

The reader will now appreciate the astonishment
of physicists when it was discovered that the
whole Universe is filled with a photon gas having
a Planckian spectrum. The photons are carrying
information about the very distant past of the
Universe and give the most impressive proof of
its expansion. It had all attributes of a miracle,
but the miracle needed deciphering.

Primordial Background Radiation

This was the problem that arose when Robert
Wilson and Arno Pensias discovered weak radio-
waves in 1965 that were coming to us from deep
space. These signals were observed at a wave-
length of 7.35 ¢cm (in the microwave band of the
spectrum). If one assumed that this radiation was
ohserved at the maximum of Planck’s distribu-
tion, the situation looked as if the space was filled
with a blackbody radiation at about 3 K. It
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was immediately suggested that this radiation
manifested a remnant of the violent processes
that had taken place in the Universe when it
had been very hot. Furthermore, it was recalled
that George Gamov had predicled the existence
of such primordial radiation as early as 1948 but
the prediction had been forgotten by 1965.

If we move back in time, the density of matter
in the Universe increases and energy increases
alongside density. The photons in such hot Uni-
verse are created and then disappear, being trans-
formed into electron-positron pairs and all the
particles are in thermal equilibrium.

But the Universe expands, and the energies
of the particles diminish. This effect can be
observed even now. Very distant objects, such
as quasars, galaxies, and clusters of galaxies,
send us radiation whose wavelengths are shifted
to longer wavelengths compared to the same
lines in the spectra of the same elements on the
Earth (the “red shift”). We conclude, therefore,
that the distant objects are receding from us and
that the shift of the spectral lines is a result of
the Doppler effect. The velocity of recession is
proportional to the distance separating us from
the luminous object according to the formula
v = HR, where H is Hubble’s constant, which is
wamed after the astronomer who discovered the
connection in 1929. The red shift was discovered
in 1922 by Vesto Melvin Slipher, whereas Edwin
Powell [Tubble derived the relalion between the
velocity of recession and the distance. Hubble's

. . 1
constant is approximately T8 1010 years -
the Universe expands, the mean energy of

As
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particles decreases and the temperature of
the whole heated mixtlure falls. According to
Hubble’s law, the radiation wavelength is a lin~
ear function of distance, so that wavelengths
become longer as the Universe ages. The energy
of photons decreases as wavelength increases, and
temperature correspondingly diminishes.
Roughly speaking, the temperature of all parts
of the system remains the same as long as the
energy exchange between quanta and other ele-
ments of the world proceeds intensively. But as
the Universe cools down and so the matter cools,
a moment comes when the photons cannot easily
“get rid” of their energy by forming electron-
positron pairs. The pair forming requires an
energy above 0.5 MeV, or a temperature of
5-10* K. Nevertheless, photons can dissipate some
energy in collisions with free electrons. How-
ever, at still lower temperatures the electrons
can join the protons to form hydrogen atoms.
Then the large mass of these atoms precludes them
from withdrawing any more energy from the
photons. The photons then bounce away from the
atoms like a tennis ball bounces away from a wall.
The Universe has neither walls nor a sufficient
number of oscillators to assist the photons in
bringing their temperature down to the one corre-
sponding to the temperature of the matter in the
Universe. The photons thus find themselves iso-
lated, like nuclei in a lattice. The transformation
of the photons into an isolated photon gastakes
place at a temperature around 3000 K. During
the subsequent cooling the photons lose practi-
cally no energy in their interactions but their
wavelengths continue to grow in accordance with
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the expansion of the Universe. This wavelength
increases to exactly the same degree as the dis-
tance between galaxies increases.

The speed of light remains constant over time
and so the frequency of radiation gradually de-
creases. Hence, the energy of photons, Av, dimin-
ishes with time.

Let us again look at Planck’s formula: it in-
cludes v in the combination Av/kT. Consequently,
a decrease in v gives the same result as a decrease
in 7. Indeed, if v and T are reduced by the same
factor, the argument in Planck’s formula will
not change, and Planck’s distribution, although
unaltered, will refer to a lower temperature.
The photon gas is cooling and its temperature
diminishes in inverse proportion to the radius of
the Universe (or the distance between galaxies),
hence

1
Toex
The volume V of the Universe grows proportional-
ly to R® or to T3, and thus we arrive at a re-

markable formula:
VT* = const

This is an already familiar formula since it de-
scribes the adiabatic expansion of a photon gas.
The photon gas that fills the Universe expands as
if it were in a vast cylinder-and-piston.

First observations did not give enough data to
verify the theory because the measurements were
only carried out at one wavelength in the range of
the maximum. But new measurements confirmed
that the spectrum of microwave background in-
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deed fits the Planckian curve quite well on both
sides of the maximum.

The temperature corresponding to this curve
is 2.75 K and there is no longer any doubt that
the cosmic background of microwave radiation
is indeed the remnant of the photons that once
played their partin the evolution of the Universe.

But even the primordial photon gas is not in
an ideal thermal equilibrium. Careful measure-
ments have revealed that Planck’s formula de-
scribes its spectrum only to within two decimal
places. This is caused by the interactions between
photons and molecules, the motion of the Earth
with respect to the microwave background radia-
tion and some other factors. From the standpoint
of thermodynamics the microwave background
radiation is thus less ideal than an ideal gas in
a laboratory.

It is thus clear that our Universe is a thermo-
stat in which a temperature of 2.75 K is main-
tained. Measurements of the temperature of the
microwave background radiation coming from
different areas of the sky show that the velocity
of the solar system with respect to the microwave
background radiation is approximately 300 km/s.
We remind you for comparison that the orbital
velocity of the Earth around the Sun is 30 km/s.

The microwave background radiation proved to
be very similar to the absolute frame of reference
against which the velocity of space bodies can
be measured.

It follows from the theory of the evolution of
the Universe that there must exist, in addition to
the photon background, a neutrino background
whose temperature must be slightly lower than

14
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that of the pholons, around 2 K. So far nobody
knows how to detect such “primordial” neutrinos.
This is a difficult challenge for future observers.

Baryonic Asymmetry of the Universe

The number of problems yielding to scientific
scrutiny is steadily growing as science progresses.
Aspects which have lain unnoticed until
now recently have become the subjects of active
discussion and “hot” controversy. Among such
“hot” issues is the discussion about why the Uni-
verse has come to have no (or almost no) anti-
particles. All atomic nuclei are built of protons
and neutrons, but a huge accelerator had to be
built in order to discover (after many years of
search) the existence of antiprotons and anti-
neutrons.

Nowadays general agreement exists on what the
Universe was like some twenty billion years ago:
a tiny system with a fantastically high density
and a fantastically high temperature. Everything
that we can now observe in the Universe—gal-
axies, stars, planets, and ultimately Man him-
self—evolved from this hot and presumably
uniform blob. The state of this matter was such
that very high energy was concentrated in each
degree of freedom, and hence, any sort of particle
or antiparticle could be created and then annihil-
ated because neither their masses nor charges
were obstacles to their creation. The current opin-
ion of physicists is that at such high energies
any type of particle can turn into any other type
of particle, and hence we conclude that in this
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chaos (sometimes called the Ylem) every sort of
particle was represented almost equally.

The Ylem was very nearly in a state of thermal
equilibrium. This means that it could be assigned
some (even if not too accurate) temperature,
and we can assume that its entropy was very near-
ly maximum. It is this last assumption that leads
us to the conclusion that the numbers of particles
of each different species were (approximately)
equal because in maximum entropy conditions
every possible state of the system must be mixed.
But the example of the radiation has already
taught us that such an equilibrium is not always
realized. Thus, as the Universe expands, photons
break away from matter and, in the sense of
their thermal properties, lead an independent life.
We recall that this happens when atoms are
formed and the energy of each photon hecomes so
small that the photons are unable to ionize the
atorns and thus are unable to exchange further
energy with matter.

But having explained the lack of equilibrium
between photons and baryons (protons and neu-
trons), physics was faced with a more formidable
problem, that of explaining the excess of haryons
over antibaryons. By convention, baryons are
assigned a number, similar to electric charge,
called the baryon number. A baryon’s baryon
number is +1, that of an antibaryon is —1, and
photons, electrons, and the other sorts of particle
are assigned a baryon number of zero. This bary-
on number is introduced in order to ensure the
conservation of the total baryonic “charge” of
a system, that is, both protons and neutrons can
be created or annihilated only as a pair with their
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antibaryons. There exist still heavier baryons
(denoted by A, £, A, E) but their number must
be vanishingly small at low temperatures since
the “population” of high-energy levels, as we know,
decreases with decreasing temperature. But what
happened to the antibaryons that were as abun-
dant as baryons in the original thermal equilib-
rium?

Indeed, the masses of particles and anti-
particles should be exactly equal, and thermal
processes should never shift the equilibrium be-
tween them. But if the equilibrium did shift, it
means that some nonequilibrium process must
have been at work.

The characteristics of the process that was re-
quired to eliminate antibaryons were formulated
fairly long ago and already at that time a serious
discussion had begun about the processes which
took place during the early stages of the evolu-
tion of the Universe.

The main effect that should have been realized
was the nonconservation of the baryons number,
i.e. antibaryons had to disappear by being
converted, for instance, into electrons and
neutrinos (and possibly, a host of other particles).
This was hardly an acceptable explanation.

Moreover, in order that antibaryons could
disappear more often than they were created im-
plied that there were some important processes
that are asymmetric over time. In quantum me-
chanics this property is called the violation of
time parity (or simply 7-parity violation).

And finally, in order to prevent thermal equi-
librium forever, it is necessary that the relevant
interaction weakens over time or as the Universe
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expands so that the products of the decay of
antibaryons could never “reassemble” into anti-
baryons. We shall recall here what has been said
about the independence of the Maxwell distribu-
tion on the properties of walls (i.e. on the law of
the interaction between the atoms of a gas and
the wall). We have seen that the law governing
the reflection of atoms against the walls of the
container does not affect the distribution, the
law only determines the time over which thermal
equilibrium is attained. Similarly, even with
T-parity violated, antibaryons could not leave
the scene if their interaction with other particles
was not somehow switched off.

It is most remarkable that all these properties
were indeed found in the world of elementary par-
ticles. The most important factor was the reconcil-
iation of the theory with the idea of the non-
conservation of the baryon number and, in partic-
ular, with the idea of proton decay. This effect,
which probably has already been observed (though
the experiments are still too few for certainty),
is predicted by our current theories which postu-
late that during the early stages of the Universe
every interaction was equally probable, the pro-
ton being able, for example, to transform itself
into light particles without any difficulty. At the
present time, however, this interaction is very
feeble and proton decay became a very rare event:
theoretical estimates give a proton a lifetime of
more than 10%0 years.

This property of the proton can be described as
follows: the probability of proton decay depends
on the proton radius, which constantly fluctuates
around its mean value, 10~ ¢cm. When (very
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infrequently) a proton con racts to about 10-3% cm,
the probability of decay becomes large and it
decays. Evidently, this process is very rare, and
for this reason it has not yet been detected. For-
tunately, the number of protons is very large, so
that the duration of the experiments need only
be several months. The detection of a proton’s
decay is therefore extremely difficult but never-
theless may prove to be feasible. The first experi-
mental indications that it is a real event have
been found recently.

Another possibility of proton decay was suggest-
ed by V. A. Rubakov. He concluded that a pro-
ton should decay if it collides with the hypothe-
tical Polyakov-'t [Hooft monopole; monopoles, if
they exist, are now distributed throughout the
Universe with very low density but during the
early stages of the Universe their density was
large. Correspondingly, the decays of baryons
were frequent in the young world and are almost
nonexistent in our time.

If proton decay is confirmed, all the rest of
the theory will go smoothly. The violation of
T-parity was found a long time ago (in the decays
of K-mesons), and the weakening of the interac-
tion over time or distance is an important link in
the modern theory that must unite all the inter-
actions in the Universe (the so-called Grand Uni-
fication Theory, or GUT).

The story rccounted above is certainly only
tenuously related to temperature but nevertheless
it is conclusive evidence of the unified picture
into which science knits the most remote elements
of our world and shows how familiar physical
concepts cross into new areas about which, as we
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mentioned on other occasions, former generations
of physicists could not even guess.

Black Holes

The temperature of the primordial microwave
background radiation is not the most striking
exhibit in our exhibition of temperatures. The
story of the temperature of black holes is an even
more fantastic case.

Our next story began very unexpectedly in the
18th century. In 1783 a young British physicist,
John Michell, noticed that if a star had a very
large radius (500 times the solar radius) and
a density equal to that of the Sun, then “...the
light emitted by this body would be returned back
owing to its weight.” Somewhat later Marquis
Pierre Simon Laplace repeated this conclusion
(in 1799). The prediction, which is based on some
almost correct (though incorrectly derived) for-
mulas, was borne out by Einstein’s general rela-
tivity.

The formula that gives the radius of the star
for which the escape velocily equals the speed of
light (so that no body, or even light, can leave
its surface) is

8 G
Ree="3
where G is Newton’s gravitational constant,
and p is the density of the star. If we introduce
the mass of the body (the star)

M =% nR%
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the formula for Rg, can be rewritten as a mass-
radius relation:

2GM
Rgr = 2

This quantity is called the gravitational radius
of the body. It is proportional to its mass, and
for the Sun is equal to 3 km.

Strange events take place around a cosmic ob-
ject whose radius R does not exceed its gravita-
tional radius Ry,;. Every object in the immediate
vicinity of such a celestial body (a distance less
than 3R, if the body's velocity is not large)
falls onto its surface and can never break loose be-
cause of its tremendous gravitational field. A ma-
cabre name was chosen for such an object, “black
hole”, because neither signals nor particles can
escape from the surface of a black hole.

The strong gravitational field of a black hole
affects the frequency of photons. At a distance
R, from the center of a black hole the frequency
(and the energy) of a photon drops to zero. It
is as if a photon in trying to escape from the
gravitational pull of the black hole must spend
all its energy and “emerges” at zero energy, that
is, it simply vanishes. Strange things happen to
bodies falling on the black hole. Their fall itself
releases vast energy, and this fact makes the
black-hole hypothesis extremely attractive to
astrophysics.

Black holes may be at work in those regions
of the Universe where very much energy is being
liberated, i.e. quasars and the nuclei of galaxies.
So far nobody knows where this energy comes
from. These objects may draw most of their
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energy from black holes which may have masses
that are millions and billions of the solar mass and
which “burn”, as atom bombs do, the rest energy
of an object falling into them in accordance
with the formula £ = Mc2. This picture of ener-
gy balance looks quite impressive. There are rea-
sons to believe that the binary star X-1 in the
Cygnus has a black hole as an invisible compani-
on. All these assertions, however, are not vet
sufficiently reliable to deserve a more detailed
discussion.

Black-Hole Paradox

The very existence of a black hole is a paradox
itself. A black hole behaves like a body at abso-
lute zero because the black hole can completely
convert heat into work.

When a body falls into a black hole, it can do
work at the expense of the gravitational attrac-
tion to the black hole. The energy of a body fall-
ing into a black hole, together with its “rest ener-
gy” My (M, being the rest mass of the body),
can be converted into work (this work is real-
ized as a powerful emission of electromagnetic
and gravitational waves).

At the boundary of a black hole the total energy
of the body is therefore zero. It can be said that
the rest mass of the body is cancelled out by the
negative potential energy of this body in the
gravitational field of the black hole. In ordinary
terrestrial conditions the potential energy is
very small in comparison with the rest energyso
that the mass of a falling stone remains practical-
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ly unaltered; but a fall onto a black hole reduces
an object's mass to zero.

The law of gravitation is such that the attrac-
tive force is proportional to the mass of the at-
tracted body regardless of what creates this
mass. A hot kettle is slightly heavier than a cold
one and so a hot kettle falling onto a black hole
will release slightly more energy (U/c* more,
where U is the internal energy) than a cold one.
A black hole acts as an ideal heat sink at 7 =0 K,
and no energy can be extracted from it by any
means. This means that the efficiency of a cycle
using a black hole as a heat sink is, according
to Carnot, equal to unity. This creates a situa-
tion that very much resembles a perpetual mo-
tion machine of the second kind, with the Nernst
heat theorem definitely violated. This paradox
inevitably points to the impossibility for a black
hole to be at absolute zero.

The resolution of this paradox must be sought
in the thermodynamics of black holes. The first
guess was as follows.

If the temperature of a black hole is not ab-
solute zero, the black hole must possess entropy
as well. If the black hole is spherically symmetri-
cal, does not rotate, and is not charged, its en-
tropy can only depend on the hole’s mass. But
entropy is a dimensionless quantity, it is not
affected by the choice of units of measurement,
whilst the numerical value of mass is obviously
determined by some sort of unit, whether we
measure it in grams or millions of tons. The en-
tropy of an ideal gas was determined by the
ratio of volumes and the ratio of temperatures.
Presumably, the entropy of a black hole could
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also be determined by the ratio of its mass to
some reference mass. But which reference mass?
And what should the expression for a black
hole’s entropy be?

A qualitative solution of the problem was
found by J. D. Bekenstein. His attention was
drawn to one of the theorems arising out of
general relativity. The theorem stated that
regardless of the particulars of processes taking
place in a system containing black holes, the
total surface area of the black holes can only
increase. This very general theorem is reminis-
cent of the theorem about the increase in entropy.
Both area and entropy are additive quantities,
and both depend on the mass of the black hole.
There was a temptation, therefore, to postulate
that the entropy of a black hole is simply propor-
tional to its surface area 4: S oc A. But how to
make entropy dimensionless if area A has the
dimensionality of length squared?

Planck’s Units

The world of elementary particles has no scale
of lengths. The two constants # and ¢ cannot be
combined to form a quantity with the dimension-
ality of length or time. One has to add mass.
Then, for instance, i/me gives length.

General relativity also has no length scale
because it cannot be composed out of G and c.
But length can be obtained with the help of mass:
Gm/c?.

Now let us combine both lengths 7/mc and
Gm/c* into their geometric mean: (hG/c®)'/2.
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This eliminates mass. This is the unit of length
that was proposed by Planck.

After Planck had introduced the two funda-
mental constants # and k, he noticed that it was
possible to construct a new system of units not
tied to any artificial references. They are:

length Ip — (%)”2: 5.110- 1073 cm
Gh \1/2

time tp = =1,7016-10"%3 s

(=)
mass mp = ( )“2 —6.189.10 g
frequency  wp = ()" =0.5863-10% 5t
energy gp = (

)”2 — 0.5563-10' ergs

temperature 7p= 4 ( th )”2 =4.029-103t K
Planck’s units are convenient for calculations
of systems in which both quantum and gravita-
tional effects -are important.

But Planck’s units are not only convenient,
they possess at the same time a distinct advant-
age. Their existence signifies that nature, that
is, the Universe, works with natural scales
related simultaneously both to the quantum and
to the relativistic properties of the world. Planck’s
constant established the relation between energy
and frequency (the quantum scale), and the
speed of light established the relation between
mass and energy (the energy scale). It seems
natural to assume that Planck’s units also define
scales for the parameters of certain events or
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objects. A black hole (and its entropy) appears
to be an excellent candidate for the applica-
tion of Planck’s units.

Let us assume that the entropy scale is relat-
ed to a constant length [p, that is, that the sur-
face area of a black hole can be divided by I3
to yield a coefficient that cannot be guessed
beforehand. Such were the arguments, and frank-
ly they are not too stringent, that were the basis
for a hypothesis that the entropy of a black hole
must be

ad
S—T

where the coefficient o must be calculated by
applying some special arguments. This conjec-
ture proved correct. The coefficient o was later

calculated by Steven Hawking and he proved

1
that o = Z

Knowing the entropy, we can calculate the
temperature. Replace the area 4 with its expres-
sion via the gravitational radius,

16nGM?2
A=4ﬂR?;r:—T
The formula for entropy in Planck’s units then
takes the form
. 2
S =16na (—M—)
m

p
The expression for temperature is

_ 1 m])
= Bne MY
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By eliminating the mass from these formulas, we
find
ST2= 1—:;“—-T'i‘;=-= const

This equation of state is not like anything
we know. It states that entropy is lower the
greater the temperature and that entropy be-
comes infinite at absolute zero.

We conclude, therefore, that either our line
of reasoning includes a blatant mistake or that
something tragic happens to the black hole and
that it cannot “live up” to absolute zero. How-
ever, this paradox could not be resolved in the
framework of classical physics.

Emission of Radiation
from a Black Hole

The paradox disappeared when Hawking proved
theoretically that particles are created in the
neighborhood of a black hole. It was discovered
unexpectedly that the theorem about the in-
«crease in the surface area of a black hole is in-
validated by quantum mechanics and that the
entropy of a black hole can be reduced by a flux
of photons which are created around a black hole
and carry its entropy away.

A very high potential of the gravitational
ffield around a black hole results in the creation
of photon pairs (and pairs of other particles)
on its surface. The energy of these photons
{(like that of all particles close to a black hole)
is zero, so that they can be created “out of noth-
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ing” without violating the law of the conserva-
tion of energy. After a pair of photons has been
created, one of them sinks into the black hole
(without being too rigorous, we can say that the
photons that sink into a black hole acquire neg-
ative (potential) energy), and the second photon
flies away to infinity at the expense of the released
energy. The system works like a pulley, one
weight is lowered while another one is hoisted
at its expense. As a result of this process the
black hole’s mass is reduced (as well as its sur-
face area) in relation to the energy of emitted
photons.

The theory of this effect is extremely compli-
cated but the result is very interesting. A black
hole emits photons whose spectrum coincides
with the P’lanckian spectrum corresponding to
a temper. 're (in Planck’s units, i.e. mp =1
and Tp 1)

1 1
=%
This formula gives o = L.

4
A black hole thus emits radiation like an
ideal blackbody.

Death of a Black Hole

Now the source of the paradox becomes clear.
A black hole is not in equilibrium, it is an un-
stable system and therefore the notion of its
temperature is not strictly correct. As the mass
of a black hole diminishes, its temperature in-
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creases; the creation of the pairs reduces the
mass and thus increases the temperature. As
the temperature rises, the intensity of radiation
is intensified, thereby increasing the temperature
still more. In the long run a black hole must burn
out, and in a finite time.

The duration of the burning is readily calcula-
ble. By making the scheme somewhat cruder,
we can use the Stefan-Boltzmann formula for the
emission from a unit surface area of a black hole
and multiply the result by the total surface
area.

The result is as follows. The lifetime (in sec-
onds) of a black hole with mass M (in grams)

is
T = 2.10"*M3

This formula shows that for M = 10 g the
lifetime © = 2.10'® s, roughly equal to the age
of the Universe. The lifetime increases for the
more massive black holes.

Black holes with masses of about one solar
mass (10 g) can be said to live indefinitely.
The temperature of such black holes must be
very low. Rewriting the formula for temperature
in the form

1036
T Mg

we find that for M = 103 g the temperature is
10-7 K.

The temperature is practically equal to ab-
solute zero for all surviving black holes, and
especially for the hypothetical gigantic black
holes that allegedly supply energy to the whole
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Universe. These objects emit nothing, and they
constitute ideal heat sinks that permit the realiza-
tion of the ideal Carnot cycle with an efficiency
very close to unity.

The story of the black hole is very instructive.
The purely theoretical behavior of the black hole
contradicted the laws of thermodynamics and
the solution was provided by quantum mechan-
ics. The same happened to the third law postulat-
ed by Nernst. Only after Boltzmann’s formula
and quantum mechanics had appeared, did it
become clear how the third law was related to
the fundamental laws of physics.

The laws reigning in the microscopic world
were found to be mandatory for the explanation
of phenomena that seemed to belong to the realm
of the macroscopic world. The interrelations
between different fields of physics are so strong
that it is almost impossible to change something
in one of them without violating the harmony of
the whole physical picture of the world. This
is why the attempts to correct general relativity
or supplement quantum mechanics have invari-
ably failed. All that we know about physics in
our world demonstrates the inevitability of
these theories.

A New Paradox

Blackj holes less massive than 10'® g should have
burnt out long ago and we do not yet know wheth-
er more massive black holes in fact exist.

The theoretical properties of black holes are
so unexpected that it is interesting to trace the
fate of a small-mass black hole,

15%
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The emission of photons carries away both
mass and entropy, the temperature of a black
hole thereby increasing. Consider a black hole
with a mass of 10'® g. This mass corresponds to
a temperature of 10! K. At this temperature
the energy of the photons is of the order of
kT == 10 MeV Such photons can create electron-
positron pairs (the mass of one such pair corre-
sponds to an energy of about 1 MeV). When the
mass of the black hole diminishes a thousand-
fold and the energy of the photons correspond-
ingly increases a thousandfold, the creation of
heavy particles will start. With a mass of about
10'2 g, the radius of the black hole will be approx-
imately 3.10-'* cm, that is, roughly equal to
the radius of elementary parti¢cles. But this is an
insidious trap. When the black hole was still
big, it mostly consisted of nucleons, that is,
protons and neutrons. But the number of nucleons
must be conserved (as must the number of elec-
trons) and in counting particles the particle-
antiparticle pairs are dropped. Nucleons are said
to have a nucleon number of unity, and anti-
nucleons a nuclear number of minus unity. Then
the conservation of the number of nucleons is
formulated as the conservation of the baryon
number:

N (nucleons)—AN (antinucleons)
= baryon number

As a black hole burns out, reducing in size,
it cannot affect the number of nucleons. The
system 104 c¢cm in size must have room for
the same number of nucleons that were con-
tained in the 10® g star.
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This appears unacceptable but the disappear-
ance of nucleons is even less acceptable. Were
the baryon number not conserved, there would
be no problem. Should a black hole burn out,
thereby reducing the baryon number of the Uni-
verse, the black hole would be a mechanism that
“converts” heavy particles into radiation. This
solution seems strange.

But if the baryon number is conserved, we
cannot understand what the fate of the remainder
of a black hole with its gigantic baryon number
and small mass should be. The properties of
this system will not become clear without some
radically new ideas.

The key problem is thus the conservation of
the baryon number and, hence, the stability of
the proton, which we discussed in earlier sec-
tions.

Thermodynamics, when  applied to black
holes, thus led us to new, very profound prob-
lems.

Cooling of Antiproton Beams

The concept of temperature was used unexpect-
edly and brilliantly in an idea of how to produce
proton and antiproton beams that was suggested
by Gersh Itskovich Budker.

A long time ago Fermi, when discussing the
origin of cosmic rays, considered the probability
that charged particles might be accelerated by
irregular magnetic fields in cosmic space. This
is what Fermi wrote in the relevant paper: “We
now consider a fast particle moving among such



230 Temperature

wandering magnetic fields. If the particle is
a proton having a few GeV energy, it will spiral
around the lines of force with a radius of the
order of 1012 cm until it “collides” against an
irregularity in a cosmic field and so is reflected,
undergoing some kind of irregular motion. On
a collision both a gain or a loss of energy may
take place. A gain of energy, however, will be
more probable than a loss. This can be under-
stood most easily by observing that ultimately
statistical equilibrium should be established
between the degrees of freedom of the wandering
fields and the degrees of freedom of the particle.
Equipartition evidently corresponds to an un-
believably high energy. The essential limita-
tion, therefore, is not the ceiling of energy that
can be attained but rather the rate at which
energy is acquired... .” In the ideal case, the
energy of a proton would have to reach the energy
of the whole enormously large magnetic cloud.
This is clearly impossible.

Further on in the paper, Fermi discusses rea-
sons for which statistical thermal equilibrium
cannot be attained. It can be said that heat
transfer from the random fields to the protons
must be extremely slow, but the direction of
the energy flux from the fields to the protons is
established beyond doubt. A beautiful argument,
based on an analogy with the levelling-off of
temperature, enabled Fermi to obtain rather
simply a qualitative solution of a difficult prob-
lem.

Similar arguments led Budker to the idea
that has been confirmed by experiment. A beam
of antiprotons generated by an accelerator con-
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sists of particles whose momenta have a certain
spread of directions. This points to some randomly
distributed transverse momentum, the width of
this distribution being rather large. This spread
must be reduced. The momentum along the
beam direction (longitudinal momentum) is
also somewhat variable but right now this aspect
is of no interest because the longitudinal spread
is masked by the highly ordered momentum
of the particles in the beam.

The distribution of the transverse momenta
can be characterized by a parameter similar to
temperature. The greater the spread, the higher
the “transverse” temperature of the beam.

The idea was to send an electron beam along
with an antiproton beam, to mix these beams.
It is possible to produce electron beams with
a very narrow spread of transverse momenta,
that is, with a low “transverse” temperature.
But if the electrons have a narrow spread of
momenta, they are in a better ordered state
(this is equivalent to saying that they have a
low transverse temperature, while the heavy
particles have a greater spread and correspond-
ingly higher temperaturc) and a heat flux from
the antiprotons to the electrons will appear.
The antiproton beam will then “cool down”, while
the electron beam will “warm up” The spread in
the transverse velocities of the antiprotons will
be reduced. This conclusion could be drawn with-
out considering at all the details of the inter-
actions between the antiprotons and the elec-
trons.

This method of collimating antiproton heams
looks quite promising. In the case of proton beams
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this method of cooling may considerably simpli-
fy the collimation of “good” beams, and in the
case of antiproton beams cooling seems to be the
only way to forming a beam suitable for exper-
iments.

Budker’s “refrigerator” is the most remarkable
refrigerator we know of.

Temperature and Variance

The application of the concept of temperature
to such unusual systems as particles in cosmic
rays or beams of particles emerging from accel-
erators is obviously a very elegant idea, but it
suffers from one defect. The systems actually
have no temperature, as we cannot speak of a
temperature in a crowd emerging from a stadium
after a football match. Temperature is a charac-
teristic of a system in thermal equilibrium. We
know that not all the particles (not all the de-
grees of freedom) have identical energy in ther-
mal equilibrium. Quite the opposite, the values
of the energy of particles are spread around
a mean value. This spread has already been men-
tioned and is characterized by a special quantity,
called the variance or § (g). The variance is pro-
portional to the system’s temperature. We can
even say that the variance can serve as a mea-
sure of temperature. However, what is true for
a system in thermal equilibrium is not necessar-
ily true in nonequilibrium cases.

The spread of particle energies in the beam can
indeed be described by its variance, but strictly
speaking this variance is not equivalent to a
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temperature. Nevertheless, the statement that
energy is transferred from a system with a large
energy spread (large variance) to a system with
a smaller variance is correct in most cases. It
can be shown that this process increases entropy,
and entropy is the only factor controlling the
direction of thermal processes in nature. For
this reason we can use the term “temperature”
instead of “variance” and not be afraid of mak-
ing a mistake. But this is by no means a universal
recipe. If two systems have equal variances but
are not in thermal equilibrium (or at least one
of them is not), a heat flux between them is still
possible. This could not happen if their tempera-
tures were equal. What about the direction in
which energy will flow? This question can be
answered only after the change in entropy is
calculated. Energy will be transferred so as to
increase entropy. Processes are controlled by
entropy and in this sense the concept of tempera-
ture is not as general as that of entropy. It should
also be noted that similar remarks should have
been made when discussing negative tempera-
tures and the nonequilibrium populations of
energy levels.

Brownian Movement

The reader should not be surprised any more by
different temperatures coexisting in the same
volume. Heat (or entropy) flows from spins to
the lattice, from magnetic clouds to a proton,
and numerous other examples illustrate the pro-
cesses of thermal equilibrium when heat is
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transferred from a more disordered system
(higher T) to a less disordered system (lower T).
The first example, historically, of this process
was Brownian movement. It was discovered in
1827 by the Scottish botanist Robert Brown who
described the chaotic movements of tiny dust
particles in a liquid that could be observed
through a high-power microscope in a paper in
1828.

It is interesting to recall that almost immedi-
ately these movements were associated with the
motions of the molecules of liquids, but later
this viewpoint was for some obscure reason re-
jected, and even at the beginning of this century
Brownian movement was attributed to flows in
the liquid.

The following words can be found in the Rus-
sian Brockhaus and Efron Encyclopaedic Dictio-
nary printed in 1905: “For a long time it was be-
lieved that the phenomenon was caused by actual
molecular movements in the liquid. Mr. Wiener
supported this interpretation as early as 1863,
but contradicting explanations of the causes
of this phenomenon were proposed immediately
after the discovery....” People thus preferred
to ignore the problem of Brownian movement.
Consequently, when Einstein published in 1905
his paper “On the Movement of Particles Sus-
pended in a Nonmoving Liquid”, he did not even
refer to Brownian movement. The theory of
Brownian movement as such was only presented
in a paper published the following year.

The essence of Brownian movement is that
in thermal equilibrium (in the framework of the
:lassical kinetic theory of gases) every degree of
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freedom is equally subject to the law of equi-
partition.

Dust particles in a liquid form a system, name-
ly, an ideal gas of particles which, though they
do not interact among themselves, do interact
git}tl the particles of the liquid in which they

oat.

Imagine that all these particles are at rest.
This would mean that the temperature of the
“gas” of dust particles were zero. This would
inevitably result in a heat flux from the liquid
to the dust which would continue until each of
the dust particles’ degrees of freedom had ac-

cumulated energy -;—kT. The dust particles

will therefore be in thermal motion together
with the particles of the liquid.

By considering a dust particle to be a sphere
with radius r, moving in a liquid with viscosity
coefficient n, Einstein derived a formula for the
mean square of the particle’s displacement,
viz.
kT
(A% = Bmrs

t

where ¢ is time. Even before his work on the
theory of Brownian movement, Einstein had
noticed that it is possible Lo determine the Avo-
gadro number by observing the motion of dis-
solved molecules in the liquid (i.e. by measuring
the diffusion coefficient). This means that one
has to find & from an experiment and use the
known value of the gas constant, Nx = R/k.
Einstein did precisely this and the estimate he
obtained, Ny = 3,3-10%, was very close to the
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value accepted at that time. Einstein’s calcula-
tion was conclusive evidence of the reality of
molecules; this reality was very much in doubt
in 1905 for many scientists. It will be useful
to remark that the mean displacement of a
dust particle is the mean over time calculated
for one particle. As we already know, Einstein
used the mean over time for one particle and
not the mean for an ensemble of particles, as
was typical for the kinetic theory of gases at
the time. By using this stratagem, Einstein
was able to solve the problem.

The formula for the mean square displacement
shows that by measuring the displacement of a
dust particle it is possible to determine the tem-
perature of the liquid. In principle, this is a
very promising method. Dust particles form an
ideal gas, and the thermal equilibrium is estab-
lished quite rapidly. The difficulty lies in mea-
suring A% with the requisite accuracy.

Other examples, of Brownian movement can
be mentioned. For instance, instead of a dust
particle, we can consider a sphere with radius r,
that cannot only move translationally but can
also rotate. It is possible to calculate the mean
square angle of rotation of the sphere around its
axis, (0%),. Einstein derived the following
formula:

kT
2y
(9 Im dnnrd ¢

The sphere can serve as a thermometer, and we
do not even need to know the value of & to mea-
sure the ratio of temperatures,
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A similar formula is readily obtained for a
sphere fixed to a weightless spring with elastic-
ity coefficient . By equating the mean poten-
tial energy of the sphere, as was done for a par-

ticle of a gas, to the familiar quantity —1— kT,

5 (m = % kT
we obtain for the mean square displacement
(x*);y = kT/a. Fix a scale alongside the sphere,
and you have a thermometer.

Fluctuations

In our discussion of temperature and entropy
we have kept to the outlook of the thermodynam-
ics of the last century. It was assumed that these
quantities have strictly fixed values at each point
and that the temperature and pressure in a ther-
mal equilibrium are absolutely constant through-
out the volume. These assumptions were at the
foundation of the first and second laws of ther-
modynamics.

In reality all the quantities vary with time
and coordinates. When deriving the formula for
the pressure exerted by a gas on a wall, we meant
the mean pressure. If we could monitor the
pressure better, i.e. by measuring it every 7
seconds (with T so small that the number of
impacts against the wall during T is not large),
the instrument would show that the pressure
constantly fluctuates. Pressure is proportional
to energy density, so that energy will also change.
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Fluctuations of energy (as well as of other
quantities) would be best characterized by de-
viations from the mean value, i.e. (¢ — gg)m.
But taken on average this difference vanishes
(the deviations to the lower values cancel out
the deviations to the higher values). It is there-
fore natural to characlerize fluctuations by the
mean square of this quantity:

6 (%) = (¢ — em)®m = (&%) — (&)

This quantity is called the mean-square fluctua-
tion. It is the quantity usually meant when fluc-
tuations are discussed. It is never easy to calculate
fluctuations and we shall give only a few final
results.

The formula for pressure fluctuations is

1) 2
6([)2) =—c£‘l—’— 4

N

or
) _ep 1
P2 ey N

where NV is the number of particles in the sys-
tem. This is also an estimate of the accuracy
of the concept of pressure as such. Usually N
is very iarge so that pressure fluctuations are
extremely small. A similar formula for tempera-
ture fluctuations in a monatomic gas is
8(T?) 3 1
717 T 2N

Such formulas show tlie accuracy of thermody-
namic concepts in ordinary conditions. These
two formulas for the fluctuations of pressure and
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temperature are almost identical. Both state
that the accuracy improves as the number of
particles increases, being inversely proportional
to the square root of NV:

8(p) o 0(T?) 1

p? 77 N

Thus, in 1 mm?® of a gas (at a pressure of 1020
hectopascals) N &~ 10, the relative fluctuations
are approximately equal to 10-2¢, Consequently,
pressure and temperature are sufficiently exact
concepts for this amount of gas.

But this discussion of fluctuations was started
not only in order to confirm our habitual con-
cepts but also to find a method for measuring
temperature. In this sense the formulas given
above add nothing because it is very difficult
to measure fluctuations in thermodynamic quan-
tities. The problem is somewhat simplified if
we consider electrical quantities.

There is no current in an electric circuit which
has no e.m.f. At any rate, this is what Ohm’s
law states. In reality this is not quite true, or
rather, it is true only at absolute zero when
fluctuations vanish. At other temperatures an
electric current can appear accidentally when
the thermal motion of electrons becomes acci-
dentally ordered.

Electric-current fluctuations were calculated
in 1927 by Harry Nyquist. Obviously, the current
that appears cannot be a direct current, and
different frequencies of ac current appear with
different probability. Instead of speaking of
current, we can consider it in terms of e.m.f.
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fluctuations. At a frequency o such that Ao < kT,
this e.m.f. is given by the formula

(Ebm = — R (o)

where R () is the resistance of the circuit at
a frequency ®. The e.m.f. fluctuation can also
be interpreted as evidence of thermal oscilla-
tions in an electromagnetic system. The above
formula can already serve as a basis for measur-
ing temperature. However, physicists who are
occupied developing a temperature scale devised
a still better way.

In order to understand what is to follow, an
explanation of noise, or rather white noise, is
necessary.

Let us return to a conductor at a temperature
T Assume now that a current passes through it
and feeds, for instance, the magnetizing coils
of an acoustic device; this is the simplest cir-
cuit in a telephone line. Thermal effects will
superpose some spurious ac currents onto the
current carrying the useful information. These
currents, passing through the transducer, will
produce a noise background. This noise can be
represented by a spectrum of signal intensity as
a function of frequency. If this spectrum corre-
sponds to random signals, the noise is called white
noise; white noise carries no information except
that about temperature. Noise accompanies all
electromagnetic phenomena. It is not mandatory
to transform noise through an acoustic trans-
ducer and perceive it as sound. Fluctuations of
any physical quantity are referred to as noise,
and white noise is just one in particular. By
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choosing among different phenomena we can
finally select an ideal (from the standpoint of
theory, at any rate) method of measuring tem-
perature.

Unfortunately, the noise measuring technique,
like several other modern precision techniques,
is described by a complicated theory, and I
shall mention only as an example that by mea-
suring the noise at Josephson junctions (two su-
perconductors separated by a thin layer of
insulator) it has proved possible to measure the
melting point of helium to five decimal places
on the absolute scale.

Maxwell's Imp

We shall add to this story one more paradox
which was the subject of numerous discussions
for many years and which tests the “strength”
of statistical physics and its relation to the
second law of thermodynamics. In thermodynam--
ics everything was clear: the direetion of pro-
cesses is such that entropy inevitably increases,
and there is no way to violate this law. But
if the atoms and molecules of matter are regard-
ed as material points governed by the laws of
mechanics, then the validity of the law of in-
creasing entropy becomes, to say the least, doubt-
ful. If it is possible to mix some atoms moving
at high velocities (high temperature) with a
number of atoms moving slowly (low tempera-
ture) and obtain a system of atoms whose mo-
tion can be described by the Maxwell distribu-
tion of some medium temperature, why then is
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it impossible to invent the procedure, that is,
somehow separate the slow and fast atoms? This
venture would in no way contradict mechanics.
Can mechanics provide the means for bypassing
the second law of thermodynamics?

The problem is best clarified by inviting the
help of Maxwell's imp.

Imagine a minute being that is able to see
atoms. Let us put this imp into a gas-filled box
and, having arranged on one wall of the box
a tiny hole with a door, train this imp to be the
doorman so that he opens the door when a fast
atom approaches it and let it escape, and closes
the door to a slow atom. The decision as to
which atoms are fast and which are slow is left
to the imp. We only endow it with the ability
of measuring very rapidly the velocity of the
approaching atoms. After some time we find that
the mean velocity of the atoms in the box has
been diminished, that is, the gas has cooled down.
The imp’s work has given the required re-
sult.

However, this result does not really disagree
with thermodynamics either. Were we to open
the door without the help of the doorman, the
fast-moving atoms would escape in greater num-
bers anyway because they come to the opening
‘more often whilst the atoms moving at very low
velocities would not reach the door at all. A
gas expanding into a vacuum ‘cools down; we
know this from thermodynamics.

A new result will be obtained if we change the
instructions given to the doorman. The door is
to be opened for the slow atoms and closed to
the fast atoms, Then the gas will start heating
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up. The first set of instructions seemed admissi-
ble; why not the second?

By employing an imp we thus can devise a
simple heating device that consumes no energy.
This device would separate a gas into two parts
at different temperatures, with the same total
energy. This perpetual motion machine of the
second kind is just as good as a “conventional”
perpetual motion machine. It has the same short-
coming, unfortunately: it cannot be constructed.

The difficulty obviously lies with the imp, and
some of its gifts contradict the laws of physics.
The paradox was resolved by Leo Szilard in
1928.

First we want to find out what the size of the
imp should be compared with the size of mole-
cules (or atoms).

If the imp consisted of a single or a few mole-
cules, it would be subject to Brownian move-
ment itself, and in that sort of frame of reference
(whose velocity would change chaotically) it
would be unable to measure the velocities of
the approaching molecules and unable to stay
by the door all the time to open and close it at
the right moments. Hence, the imp must be
small and heavy, practically immovable from
his post. But then we are in for another compli-
cation, for the impacts of the molecules will not
be able to shift the imp, and it will have to oper-
ate with a very light device capable of sensing
these impacts, and of measuring velocities; for
instance, a light plate suspended with a thread
would do. But what should the size of the plate
be? A very small one would not stay fixed, and....
The chain of arguments repeats itself all over.

16*
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For the imp to carry out its functions, we
would have to keep it or its measuring device at
a very low temperature, for instance, by cool-
ing it with liguid hydrogen. Then its own ther-
mal movements would stop and it would be able
to measure the molecules’ velocities. However,
counting individual molecules would not be
necessary, the imp could monitor fluctuations
in the heat fluxes, opening the door when fluctua-
tions slightly raised the temperature.

In this way the imp could, in principle, extract
energy from the random motion of molecules,
but we would gain exactly nothing. The energy
spent on cooling the imp itself, on suppressing
its fluctuations (its Brownian movement) would
be at least equal to the energy “earned” by the
doorman. In serious terms, this means that the
instrument for extracting energy from fluctuations
cannot be either molecular or macroscopic in
size. In both cases it could yield no practical gain.

In our world information is obtained only by
spending some energy.

The second law of thermodynamics cannot be
violated. This is one of the most powerful laws
in our world. It cannot be bypassed in electric
circuits either. How attractive it would be to
obtain energy by harnessing in a closed circuit
the current arising out of chaos. Here a simple
electric stove, heating proportionally to the
square of electric current (in accordance with
the Joule-Lenz law), would operate like the
imp does. Since no current could result from
cooling the stove, the net effect would always
be positive: the stove will warm up infrequently
and slightly, but heat up it will!
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This new reasoning is almost correct. In fact
we are on the threshold of the idea of the perpet-
ual motion machine of the second kind. Unfor-
tunately, the fluctuations in the temperature of
the stove itself will block our efforts as they
were blocked before. The stove's temperature
will fluctuate up and down randomly, indepen-
dently of the magnitude of the current.

But if the fluctuations in the stove are sup-
pressed by putting it into a refrigerator, the
idea will work, and heat will flow from the elec-
tric circuit into the refrigerator, but this will
be a familiar heat engine with the room as the
hot bhody.

But there is a moral to every story. Our story
has one as well. Since no imp can violate the
second law of thermodynamics, even if the most
ingenious stratagems are used, this can only
mean that the laws governing fluctuations are
independent of the instruments and are deter-
mined solely by temperature, pressure, and other
macroscopic parameters. It is for this reason
that fluctuation measurement gives the best
solution to the old problem of how to measure
temperature.

The moral of the story is that no mechanical
gadget can help to overcome the restrictions
imposed by the all-encompassing law of entropy
increase.

Up the Temperature Scale

Let us turn back to the ideal gas. Spheres
that do not collide with one another proved to
be a good model for describing many of the prop-
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erties of a gas in thermal equilibrium. This
was the model used by physicists in the last
century. It was unknown at the time that atoms
are not spheres, but that they are complex sys-
tems consisting of many subparticles. It is time,
therefore, to ask what the limit is up to which
we can ignore the fact that atoms are composed
of electrons and nuclei, and can treat them as
mere material points with only three degrees
of freedom. The answer is given by quantum
mechanics. Electrons in an atom are not free,
and their energy cannot be augmented by knock-
ing them slightly which is in contrast to atoms
which can augment their energy by colliding
with other atoms or with a wall. In order to
change the motion of electrons in an atom, that
is, in order to change their state, the energy that
must be transferred cannot be arbitrarily small
but must correspond to the excitation energy of
the atom. An atom, like a spin in a magnetic
field, can only be in states that have strictly
prescribed energies. In most atoms the excita-
tion energy is several tenths of an electron volt
and an atom simply cannot accept less. One
tenth of an electron volt is approximately 1000 K.
At temperatures of this order many materials
begin to emit light, thus confirming the fact of
the excitation of electrons.

At slightly higher temperatures (3000 K and
higher) electrons can be knocked out of atomic
electron shells by collisions between atoms, and
become constituents of the gas together with
the ions. This “exhausts” the ideal gas in the
container, and the resultant mixture of electrons
and ions manifests properties far removed from
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those of gases to which we are used at mormal
temperatures. The mixture of ions and electrons
{of course, with a measure of neutral atoms) is
called a plasma. Some time ago plasmas were
a rarity as an object of study; they were encoun-
tered in gas discharge but very little was known
about their properties. Nowadays a plasma is
called the fourth state of matter and is the grist
to the mill of those who study accelerators,
astrophysics, and especially those trying to
harness thermonuclear energy.

Thermonuclear plasmas are even hotter still,
consisting of neutrons knocked out of light nu-
clei, and it is for the sake of these neutrons that
the equipment used to obtain the plasmas is
built. The energies of neutrons come into thou-
sands of electron volts, that is, millions of
degrees.

Of course, these are “degrees-by-convention”
because these plasmas are not in thermal equi-
librium and what is usually meant is the mean
energy.

But ouclear fusion is not our topic, we only
want to attract your attention to how the in-
crease in plasma temperature draws new-degrees
of freedom into the picture. The higher the tem-
perature, the greater the number of particles
involved in thermal equilibrium. As the tem-
perature falls, neutrons “return” to being in
nuclei, and electrons again occupy their orbits.
The degrees of freedom are frozen out plecisely
Nernst had predicted even though he could not
have guessed by any stretch of his imagination
the mechanism of “freezing out of degrees of
freedom”. At still higher temperatures electrons
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and positrons are created in the vacuum as a
result of collisions; this occurs at temperatures
of about 10%-10¢ K. At temperatures of the order
of 10 K nucleons are created. Such violent
processes were predominant during the early
stages of the evolution of our Universe.

The temperatures mentioned above cannot be
measured directly. No thermometer can be
“inserted” into a plasma. Instead it is estimated
from the plasma’s radiation and from the energy
of its particles. Millions of degrees are becoming
a reality in physics laboratories.

The reader could ask, of course, where a neu-
tron gas at one million degrees could be stored.
Difficulties of this type have proved to be man-
ageable and the gas is “suspended” in a vacuum
in an intricate system of magnetic fields (called
“bottles”, “plugs’, etc.).

In conclusion we ask another question: What
is the largest temperature whose discussion (and
not measurement, of course) is still meaningful?
This temperature is in the list of Planck’s units:
Ty = 4-10 K or 4-10%" eV = 4.1018 GeV.

The current opinion is that a plasma at this
temperature existed at the very beginning of
the evolution of the Universe. The cooling of
this superrelativistic plasma, accompanied by
phase transitions, created the Universe as we
know it today. This is the field where science
and fantasy are intertwined and is left for other
books*

*The reader is advised to read this exciting story in the
book The First Three Minutes. A Modern View of the Ori-
gin of the Universe by Steven Weinberg, Basic Books
Inc., N.Y., 1977.
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How Is Memory Lost?

Now we should make another stop, the last in
this book, and ponder about the strength of the
foundation on which rests the multistoried edi-
fice of the kinetic theory of matter, or, in more
modern terms, the edifice of statistical physics.

When Maxwell introduced his velocity dis-
tribution function, he well understood that
none of the derivations of this function (and he
devised several of them) was sufficiently rig-
orous. Despite all the efforts of mathematicians
and physicists it was not possible to avoid a
logical discontinuity in going from mechanics
with its equations of motion to the Maxwell-
Boltzmann theory operating with probabilities
and entropy.

To solve a problem concerning the motion of
a system of particles the positions and veloci-
ties of all the particles have to be fixed at some
instant of time. Newton’s equations then unam-
biguously determine the position and velocity
of each particle at any other instant of time.
The solution methods for Newton's equations
are extremely powerful, and nowadays problems
can be solved even when many particles are
involved. For instance, celestial mechanics is
capable of predicting the positions and veloci-
ties of the hundreds of objecls comprising the
solar system.

Nevertheless, among the problenis encountered
in the solar system Maxwell discovered some
where conventional mechanics failed and statis-
tical methods were inevitable.

Maxwell took part in a contest sponsored by



250 Temperature

the Royal Society for the best work on the nature
of Saturn’s rings. It was necessary to discover
the properties of the rings that make them stable
and prevent them from falling onto the surface
of the planet or from breaking into pieces. Max-
well was able to show that a thin continuous
ring revolving at a constant angular velocity
would be torn apart by gravitational forces
because equilibrium requires that its velocity
be equal to the escape velocity at each point,
and hence, that the linear velocity decreases

with the radius proportional to 1/} R, or equiv-
alently that the angular velocity decreases
proportional to R-%* By proving in this manner
that the rings cannot be continuous but must
instead consist of a large number of relatively
small bodies interacting gravitationally, Max-
well had to introduce probabilistic concepts into
the description of the rings’ behavior.

When Maxwell began the study of the behav-
ior of gases, it was immediately clear to him that
their description must be based not on mechanics,
in which we monitor each individual particle,
but on statistics where we are only interested in
quantities averaged over a large number of
particles or over a large time interval. In de-
scribing a system kinetically, coordinates and
velocities are represented by distribution func-
tions and this has proved to be a very powerful
approach. An equation can be written for the
distribution function, and its solution shows how
this function varies in time. In the simplest
case the equation is called the Boltzmann kinetic
equation. Newton’s equations disappeared from
statistics completely.
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This also cleared the theory of the coordinates
and momenta of individual particles and of
all the quantities usual in mechanics. When
the coordinates and velocities of particles still
appear such as in Brownian movement, they
are essentially probabilistic quantities and are
randomized by the thermal motion of the mol-
ecules.

Physical systems described by using statistical
methods are called stochastic systems. If we tried
to single out the most typical property in which
such systems differ from ordinary systems, we
should find that stochastic systems had no memory
of their past.

When solving a problem in mechanics, we fix
the initial conditions (e.g. coordinates of a gun
and the velocity vector of the emerging projec-
tile), and solve Newton’s equations to find how
they vary in time. The initial conditions thus
determine the behavior of the system. By chang-
ing the initial conditions we change the fate of
the system. In principle, we can solve also the
“inverse” problem, i.e. reconstruct the initial
data if coordinates and velocities were measured
at some other time. We can say that such a
system possesses memory if the initial condi-
tions somehow survive among its other proper-
ties and can in principle be extracted at any time
they become necessary. In stochastic systems the
situation is quite different. The behavior of a
stochastic system, such as a gas, is practically
independent of its state at the initial moment of
time and of the size and shape of the container
enclosing the gas. Of course, some general char-
acteristics of the system remain constant. If

17+
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losses are absent, the gas’s energy and momentum
are conserved, but the memory of the initial
energy vanishes even if friction is small. Indeed,
the velocity at which a parachutist lands tells
us nothing about the velocity at which he left
the plane. This property of stochastic systems
can be very useful in practical calculations.
Thus, by postulating the loss of memory (the
principle of chaos), we were able to simplify
the derivation of the formulas describing the
properties of a stochastic system. Thus, a gas
jet filling a container quickly forgets its direc-
tion when it strikes the wall and overcomes the
resistance of the gas already in the container.
On the other hand, it would seem that nothing
can erase the memory if the gas is regarded as
a collection of elastic spheres colliding only with
the walls since the motion of the spheres is com-
pletely determined by their previous collisions.

It was far from easy to answer the question
about how stochasticity (i.e. chaos) evolves in a
system.

For a long time it was believed that the root
of stochastization was a very large (ideally,
infinitely large) number of particles in the sys-
tem, as well as a very complex law of interparti-
cle interaction. The example of Saturn’s rings
indeed points to this explanation. Thus memory
must be erased in such systems because of the
very complicated character of motion. But the
logic of this hypothesis is not very lucid. No
simple connection is discernible between the
complexity of the motion and the impossibility
of extracting the initial conditions.

And it was indeed established that the con-
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ditions of many particles and long elapsed time
of motion were not sufficient and were not even
the principal factors required to erase the memory
of the past. It proved possible to think up systems
with small numbers of degrees of freedom in
which memory nevertheless is lost, and this
over a fairly short time.

Lorentz’s Gas

Even at the very beginning of this century
Hendrik Antoon Lorentz considered a very
simple model, as he was analyzing the kinetic
theory of gases, which later was nearly forgotten
although its properties are very instructive.

Having found that motion in three-dimension-
al space is unmanageably complicated, Lorentz
studied the motion particles on an unbounded
plane would have. The particles of his two-dimen-
sional gas did not collide with one another, but
could only collide with obstacles, namely, circles
(disks) of identical radii scattered over the plane
either randomly or in some regular order. He
regarded each collision as elastic, so that the
particles were reflected by the disks in accor-
dance with the optical law that the angles of
incidence and reflection are equal.

Calculations revealed that this simple system
had some unexpected properties. Elastic im-
pacts do not change the energy of the particles
so that their velocity always remains constant
and in this respect Lorentz’s model differs from
real gases. Though it retains the same magni-
tudes, the velocity of a particle changes direction
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after each collision so that after a large number
of collisions it will move with practically equal
probability (i.e. equal number of times) in each
direction (for the sake of simplicity, we need
speak of only two, i.e. “up-and-down” or “left-
and-right” rather than every or all directions).

Of course, if everything is ideal, then the
whole history of a particle’s motion can be re-
constructed after measuring the velocity’s di-
rection and the coordinates of the last point of
impact, hence, memory does persist in the ideal
case. But here a new property comes to the fore,
viz. the instability of motion. If impacts are
slightly inelastic, or the disks are not absolutely
circular, or other perturbations creep in some-
where else, the error accumulates with each col-
lision and the trajectories become even more
stochastic.

This effect in Lorentz’s gas can be de-
scribed in terms that are far less vague. Assume
that a narrow beam of particles is ejected
from some point on the plane so that the particles
are movinge almost parallel to one another and
the angle o between the velocities of any two
particles is very small.

After the collisions with the fixed disks, the
angle o will grow and quite soon all the direc-
tions will be represented equally well in the
“smeared” beam. This means that the particles
which were moving parallel to one another at
equal velocities at the beginning, marching, so
to say, in step, soon become independent, trac-
ing very different independent trajectories and
with very different velocity directions. In many
cases the angle o between two trajectories grows
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exponentially with time, viz.
a = a, exp 7‘

where a, is a small initial value of a at ¢t = 0,
and 1 determines the rate of growth of a and is
called the “relaxation time”. We can say that
the velocities in the beam “mix up”, and the
beam becomes stochastic after a time equal to
T by the order of magnitude.

Mixing

The importance of mixing in statistical physics
was discovered towards the end of the nineteen
forties by Nikolai S. Krylov. The idea proved
extremely fruitful for the explanation of the
processes leading to statistical equilibrium, and
in recent years the study of physical systems,
which are quite diverse, as they become stochas-
tic has turned into one of the fastest growing
branches of science.

The behavior we have just discussed —the mix-
ing of trajectories over time—is the main reason
for the loss of a system’s memory and thus the
onset of its stochasticity after the relaxation
time. In real systems, however, impacts also
change a particle’s speed (magnitude of velocity)
and hence the system’s memory for this param-
eter is also lost.

A major concept in the study of systems that
are becoming stochastic is played by the hypothe-
sis that their stochastic properties result from
instability.
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The notion of instability is usually connected
with unstable equilibria. A stick balanced on
its end falls down as a result of an arbitrarily
small deviation from the vertical position. Sup-
pose we stand a stick in the center of a circle
drawn on the floor many times and mark the
points the top of the stick strikes when it falls,
then these points will lie on a different part of
the circle’s circumference every time we do the
experiment, and after numerous repetitions the
points will cover the whole circle uniformly. If
the stick stood on end very accurately, the de-
viation from the vertical will be unnoticed to the
eye. If the stick, by contrast, is balanced on the
tip of your finger, fast movements by the hand
or finger can stabilize the stick. The small de-
viations are now balanced out by the movements
of the support.

Stability means that the system makes a
negligible response to small perturbations of the
initial conditions. A system is unstable when
small changes in the initial data result in large
changes in the state of the system that grow rap-
idly with time. Hence, the concept of instabil-
ity need not only be applied to equilibria, and
Lorentz’s gas is an example of unstable motion.
The trajectories of Lorentz’s particles, which were
identical in the ideal case, were mixed in a bi-
zarre manner if the scatterers had slight “defects”
and the beam relaxed and forgot the conditions
at which it emerged. The circumstances required
to produce chaos are not so obvious. For exam-
ple, the motion of the particles can be stabi-
lized by replacing the circular scatterers with
polygons and chaos vanishes from such a system.
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Other systems can be considered, in addition
to Lorentz’s gas, in which chaos arises with time.
Yakov G. Sinai introduced another system, now
referred to as Sinai’s billiards.

If we surround a rectangular area on a plane
by an elastic barrier, and monitor, as in Lorentz’s
gas, the ideal motion of the particles reflected
without friction or losses from these walls, we
shall see the trajectories formed of segments
of straight lines. However, the directions of
these trajectories will not be too entangled: If,
for example, a particle was once reflected perpen-
dicularly to the wall, it stays on this perpendic-
ular indefinitely. However, if the boundary
is not rectilinear, the situation changes drasti-
cally. By replacing the two shorter sides of the
billiard table by concave circular arcs (this
field is called a stadium), we change the paths
of particles and stochasticize their motion. But
if these sides are made convex, not concave, no
chaos will be produced. The stability is related
in a complex manner with the curvature of the
scattering surfaces.

A large number of unstable dynamic systems
were discovered when the bulky numerical cal-
culations were made possible by large computers.

Instability in flows of gases and liquids re-
sults in turbulence.

We see that the solution to the stochasticity
puzzle lies in instability, but this is not yet the
final solution.

Thus, we can ask how we can determine the
temperature of Lorentz's gas or of Sinai's bil-
liards and how we can determine the number of
levels and the energy in these systems. These
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problems are more complex and we shall not
touch on them, especially since scientists them-
selves are not yet clear about them.

What Is the Number
of Degrees of Freedom?

The reader must have noticed that while dis-
cussing temperature in dissimilar physical sit-
uations we often modified our viewpoint on the
particles of which the system was composed.
First we regarded atoms as pointlike particles
with three degrees of freedom corresponding to
the three possible directions of motion. In other
cases, atoms proved to be complex systems con-
sist'ng of a nucleus and electrons, with a corre-
spondingly enlarged number of degrees of freedom.
In gas discharges, the electrons participate in
the thermal equilibrium and have their own
temperature which sometimes differs from that
of ions (the residues of the atoms that lost the
electrons). By the way, an ion which still has
electrons in its outer shells is usually regarded
as a pointlike particle (having, at best, only a
few energy levels).

In another section we discussed the tempera-
ture of atomic nuclei the existence of whose
nucleons was not even suspected by the creators
of the kinetic theory. In recent years nucleons
have also ceased to be regarded as elementary
particles, and their constituents (quarks and
gluons) are important. Many physicists are still
dissatisfied with the number of elementary par-
ticles which they consider to be excessive, and
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they suspect that there are still more elementary
particles called praquarks... The world is a
very complicated system, and a simple question
about the number of degrees of freedom of a
particle is not so much difficult as meaningless.
The old adage “a hen is but a means for one egg
to produce another” becomes nearly true in the
microscopic world. The classical theory of the
19th century would find itself at an impasse if
it tried to determine how many degrees of free-
dom should one partition the thermal energy
into.

However, we know that the ultraviolet catas-
trophe did not erupt, the day being saved by
quantum mechanics which implies that all
degrees of freedom enjoy equal rights in thermal
motion but step into the act only at appropriate
temperatures. Any degree of freedom (except
translational motion) can be characterized, giv-
en one condition, by the frequency or energy
of the motion. We gave you this condition for
radiation when we were discussing the relation-
ship between Planck’s formula and the formulas
of classical physics. It is very general: only the
degrees of freedom whose energy of quantum is
such that Zw < kT can effectively participate in
thermal motion. The classical condition of
Maxwell that the energy per vibration in thermal
equilibrium is k7 only holds if this energy is
sufficient to produce at least one quantum. Note
that this condition involves 7%, whereas in clas-
sical physics the number of degrees of freedom
cannot change.

The energy of the nucleons in nuclei is much
higher than that corresponding to conventional
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temperatures. The energy of quarks is much
greater still which is why they do not participate
in the partitioning of thermal energy. It is also
why we can ignore the profound problems of
quark structure in the theory of thermal phenom-
ena until we reach the temperatures at which
stars and galaxies are born.

The lesson that quantum mechanics taught us
is that not every question is meaningful, and al-
though some questions seem to have a meaning,
science needs no answers to them. This reflects
the remarkable beauty and inevitability of
quantum mechanics.

Conclusion

Why is temperature still measured in degrees,
whilst the amount of heat is measured in calories
and not in energy units (joules)?

Physicists do not part too readily with older
units of measurement, and not only because of
the habit of long standing.

Although many years have elapsed since Mayer
and Joule determined how many joules corre-
spond to one calorie, it is still very difficult to
measure the amount of work equivalent to a
given amount of heat, especially if high accu-
racy is required. In principle, the ideal processes
we described in this book would allow physi-
cists to reach this objective but they are still
unable to imitate a reversible process with suf-
ficient accuracy. Therefore, the amount of heat
is better measured by thermal methods, using
a good calorimeter, and not by a mechanical
instrument doing work.



Conclusion 261

The same is true for temperature. Even if we
were able to measure the velocities of all the
molecules with necessary accuracy, the calcula-
tion of temperature from the experimentally
determined velocity distribution would be very
complicated, and it would not be reliable. The
problem becomes simple only if the gas is ideal
and the velocity distribution in it is described
by Maxwell's formula. But if the gas is ideal,
it becomes simpler to employ the equation of
state and measure temperature by a gas ther-
mometer.

Thermal units are still very much unlike the
units in mechanics. Their relation to mechanics
rests in two constants: the mechanical equivalent
of heat relating the calorie to the joule and Boltz-
mann's constant relating the degree to the joule.

A natural thermal scale will finally be estab-
lished when physicists succeed in reliably mea-
suring the work done in a thermal cycle (using
the first law of thermodynamics) and organize
a Carnot cycle for measuring theratio of tempera-
tures (using the second law of thermodynamics).

However, these two problems can be overcome
by using fluctuation measurements. The prob-
ability of finding a system in some nonequilib-
rium state is directly related to absolute tem-
perature. But precise measurements of fluctua-
tions are far from easy, and the formulas relating
experimentally measured quantities to tempera-
ture are considerably more complicated than
the equation of state for an ideal gas.

Consequently, physicists go on living with
the conventional unit, the calorie, and with
agreed reference points that make it possible to
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calibrate thermometers identically in the same
way, in all the countries of the globe.

It has already been mentioned that by conven-
tion the main reference point is the triple point
of water. In addition, the calibration of master
thermometers involves a number of other ref-
erence points whose temperatures are postulated
to be exact. Remember, we remarked that once
a reference point (and absolute zero) is established
by means of a Carnot cycle, all the other points
can be measured, and not assigned arbitrarily.

The values assigned to the reference points
certainly agree with the most reliable measure-
ments but by convention further improvement
in measuring techniques will not affect these
agreed values. Hence, the practical temperature
scale will differ from the strict thermodynamic
scale until the problem of measuring the amount
of heat in joules is successfully resolved.

It is expedient to list in conclusion some of
the reference points agreed on in 1968 and those
suggested in 1976.

Triple points: water 273.16 ]
argon 83.798 1968
oxygen 54.361 l
neon 24.559 1976

Temperatures of
transition into

superconducting

state: lead 7.1999
indium 3.1416
aluminum  1.1795 1976
zinc 0.851

cadmium 0.519
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This table gives an idea of the accuracy
achieved by our current temperature scale.

We are concluding our story of temperature
at a point where the life of science is most ap-
parent. As scientists move forward in their
study of nature, they constantly face new and
more difficult problems.

Medieval cartographers sometimes put the
Latin inscription Hic sunt leones (And here are
wild beasts) on their maps. It indicated regions
that had not then yet been investigated. Such
inscriptions seem to loom almost everywhere on
physicists’ maps.

In contrast to gases, science as a whole pos-
sesses memory. Everything recognized and com-
prehended in former periods is incorporated into
the new image of the world. This book has re-
counted for you some of the events in the evolu-
tion of our present picture.
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FOREVERYONE

This book starts with a historical background on the
notion of temperature and the development of the
temperature scale. Then Ya. A. Smorodinsky covers
the fundamentals of thermodynamics and statistical
physics, only using concepts that will be familiar to
high-school students. Having built a solid foundation,
he exposes the reader to a number of phenomena that
are essentially quantum-mechanical, but for which the
concept of temperature “works”, and works very well.
These include the spins in crystal lattices, inverse
population of energy levels, microwave background
radiation, black holes, and cooling antiproton beams.
Although it has been written for high-school students,
the book contains a minimum amount of
mathematics. Nevertheless, Ya. A. Smorodinsky
compensates for this severe restriction by the lucid
manner in which he discusses complicated effects.
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