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I I I  lroduction 

What is the Subject 
(,I' This Book? 

'I'llr t i t le of the book represents fairly well the 
k1111ject of this book. We shall attempt to explain 
1 1 1 0  nature of magnetism. 

One of the large branches of physics is the phys- 
~c.s of electromagnetic phenomena. By the begin- 
1 1  ing of the 20th century i t  has seemed that  the 
work of Faraday and Maxwell successfully com- 
111cted this field of science: completed i t  in the 
qmse that  the main laws governing the behavior 
of electromagnetic fields were understood, t ha t  
is, the necessary equations were written, and 
Ilia task of subsequent generations of physicists 
was to search for more and more exotic solutions 
of these equations. But gradually i t  became clear 
chat research in the field was far  from complete. 
Owing to the injection of quantum ideas, the 
Iheory of electromagnetic phenomena has under- 
rrone essential changes, no less serious than those 
i n  mechanics. Nowadays we are much more care- 
ful in evaluating whether a part of physics has 
1)orn completed or not. Any sufficiently devel- 
oped science formulates not only its fundamental 
1)rinciples but also the boundaries beyond which 
ll~cse principles are not valid. Unless we go into 
s1111a tomic structures, quantum mechanics and 
Ihn t,heory of electromagnetism, that are basic 
for Qur upderstanding of the structure and prop- 



erties of the surrounding world, can be success- 
fully applied to study an enormously broad field 
of phenomena. There is no reason to doubt the 
validity of the laws a t  present: we are within 
the l imits  of their application. 

The fundamental notion of the physics of 
electromagnetic phenomena is the electromagnet- 
ic field. A constant electromagnetic field, inde- 
pendent of time, separates into an electric and 
a magnetic fields. The two are very dissimilar. 
Nevertheless, the time-dependent electromagnetic 
field i s  a unified blend of the electric and magnet- 
ic fields. The energy of an electromagnetic wave 
concentrates alternately in the electric and mag- 
netic fields, in similarity with the potential and 
kinetic energies of an oscillating pendulum. 

Electromagnetic fields are detected by the 
senses of the human organism only if the electric 
and magnetic fields oscillate a t  extremely high 
frequencies. If this frequency is in the range 
from 4.1014 to 7.5-1014 Hz, the oscillations are 
perceived as visible light. The range of visible 
frequencies of an electromagnetic field occupies only 
a minor part of the frequency scale. But  it would 
be frightening if this range did not exist because 
vision supplies us with most of the information 
about the surrounding world. "A picture is worth 
a thousand words": the t ruth of this maxim can 
be supported by quite modern calculations of 
illformation theory. 

Static fields (both electric and magnetic) are 
not perceived by the human organism because it 
lacks appropriate receptors. Migratory birds seem 
to sense i t ,  but even if i t  were so, we humans have 
no possibility to imagine wl18\h the birds feql,., 

I I is obvious, however, tha t  the lack of organs 
.,chl~sitive to electric and magnetic fields does not 
(,l.rcl~tde us from finding out whether there is 
: I  licld a t  a given point of space. The field can be 
11o1, only detected but measured as well. The 
~l(blcction and measurement of electric and magnet- 
ic .  fields are implemented by means of instru- 
~ncnts. There is a tremendous variety of such 

I:ic. 1.  Corcntz force F ,  acting on a chargc q < 0 ut 
, I  [)uint A of the  trajectory, v is  the particlc velocity, 
II is the mag rletic fiold 

~l~struments ,  but most of them* are based on the 
Iollowing physical fact: if the electric field a t  
; I  given point is nonzero and equals E ,  then an 
calcctric charge q placed a t  this point "feels" a 
I'or.ce Fel equal to qE, and if there is a nonzero 
111;1gnetic field H,  a charge q moving a t  a velocity 

v "leelb' a force F, equal to $ lv x HI, where 

(. is the speed of light in the vacuum, equal to 
:l.lOIO cmls (Fig. 1). And finally, if both the 
~llr~c*l,ric, and magnetic fields are nonzero, the force 

* We write "most", but not "all", because some methods 
oI' 111oi1suring magnetic fields are known to be based on the 
~l~to~.uclion of a magnetic field with atomic and subatomic, 
llltrgnetic moments (see below), not with charges. 



I acting on an electric charge q is 

I 
I This force is called the Lorentz force. 

The letters E, H, F, v are set in boldface. This 
signifies t ha t  the quantities they denote are 
vectors. 

I t  will be worth repeating: the electric and 
magnetic fields are vectors. This is inherent to 

I Fig. 2. Lines of force of the electric field between the 
plates of a plane capacitor 

them. This fact was understood and used as a 
basis for the description of the electromagnetic 
field that  finally reached the form of the famous 
Maxwell equations. These equations are so fa- 
mous, or rather, so important, that their crea- 
tion is justly regarded as one of the most impor- 
tant  historic events. 

There is no difficulty in producing an electric 
or  magnetic field. The electric field fills the space 
between the plates of a charged capacitor (Fig. 2), 
and the magnetic field surrounds a wire through 
which electric current flows (Fig. 3). 

Vector fields are shown in drawings by lines 
of force whose density is the greater, the higher 
is the field, and whose direction coincides with 
that  of the vector (Fig. 4). 

We have copied from a high-school physics 
~ ( l ~ b b o o k  a drawing (see Fig. 4a) which shows 
l l1 ;11 ,  lhe charge (a small-radius ball in the figure) 
i 9  il  source of an electric field. If the charge is 
~ursilive, the lines of force of the electric field 

I* IC. :I. Mugr~olic Lieltl around a. straight con Irrvtor with 
I , I I I . I ' ( ~ I I I  1. Milg~~eli(; lines 01 force arc show11 i r k  a plane 

I I ~ I I V U  l l ru ball and go to infinity, becoming 
grntl ~ ~ r r l  l y I U H R  dense. If the charge is negative 
(rcnn PIg. Ah) ,  llie lines of force go toward and 
ctlrl(!r Ilru cl~nrge. These drawings are very impor- 
t r ~ t r l , .  Ijy combining them we can understand the 
rl  l-~tc:I\~re of the static electric field in all practi- 
I ~ I I I  l y important cases. 

'I'liu fili~tic electric field, its distributioll ill 
il~i~(:o, nnd its penetratio~l illto different kinds of 
111r11lor is tlie subject of a special branch of the 
I l~oory of electromagnetism, eiectrostatics. Elec- 
t ro3t,ntics is based on the fact graphically expressed 
i l l  Fig. 4a, b: the sources of an electric field are 
o loclric charges. 

Usually the distribution of an electric field 
, ~ ~ . o u n d  a charge is demonstrated by using a tiny 
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b~r l  perfectly macroscopic (i.e. consisting of bil- 
liorrs of atoms) sphere. Calculations and numer- 
ous experimental tests show that  the strength 
of an electric field decreases with the distance 

Fig. 4. Lincs of force of the electric field of a fixed point 
charge q: 

(a )  Y > 0; ( b )  Y < 0 

from the charge q in inverse proportion to the 
squared distance (Coulomb's law): 

You are quite probably more familiar with a 
somewhat different iorrni~lat io~l  of Coulomb's 
law: the force acting on two charges ql and q,, 
FcOul, is inversely proportional to the squared 
distance between them: 

The charges are repulsed if they are of like sign, 
and are attracted if they are of unlike signs. 

I'llc surprising fact is that this law holds both 
I I I  [,he mucroscopic and in tlle microscopic world. 
SI  I. Ernest Rutherford established by experiments 
\I 1 1  I1 a particles scattered by matter that an 
1 1  I ~)rrlic nucleus (a single nucleus!) produccs around 
llself an electric field governed by Coulomb's 
I , I W  (2). I t  is usual, in retelling Rutherford's 
I , \  l)rrirnents, to emphasize that  these experiments 
~ , l~ovrd  thc existence of the nucleus, that  is, 
, I  positively charged blob of matter smaller than 
11111 atom by a iactor of one hnrldred thousand. 
( )I course, this was the main result. But  the veri- 
lication of Coulomb's law for distances to about 
10-l3 cm is no less important. Just think: a 
5ilnple law of inverse proportionality to squared 
c l  islance holds both a t  distances commensurate to 
Iluman scales (centimeters, meters) and a t  dis- 
Iilnces of the order of 10-l3 cm. And if we add 
Il~ilt there are no reasons to doubt the validity 
(, I '  the law (2) a t  distances increased, say, tu 
i~llcrstellar spacings, the universality of Cou- 
Iornb's law becomes really staggering. 

Coulomb's law can be recast in a slightly 
clilierent form, by stating that  the potential 
ctliergy U of a charge 9, is distinct from zero arid 
c*cluals qlq,lr if a charge 9, is placed a t  the origin 
OI coordinates. The energy can be determined to 
within a constant addend. Here we choose this  
r~ddend so that  U = 0 a t  the infinite distance 
I [.om 9, (for r + 00). Then the sign of the poten- 
lial energy U indicates whether we deal with 
;I l,lraction (U < 0) or with repulsion (U  > 0). 

The "energy" form of Coulomb's law is used 
i l l  i~ tomic  physics more often than thc "force" 
Iorrn. 
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The study of the atomic strlicture of matter 
reveals microscopic sources of electric fields in 
nature. These are electrons and protons. Their 
charges are equal in magnitude but opposite in 
sign. By convention, the cliarge of the proton, 
e,, is assumed positive, and that  of the electron, 
e, is assumed negative: 
e, = 4.8.10-10 g1/2.~n13/2.s-1 = -e (3) 

I t  should be emphasized tha t  the electron and 
the proton have riot rnercly microscopic (i.e. 
very small) charges but the smallest, or elemen- 
tary, charges. No particles with fractional charges 
(in units of e) have been found in nature.* 

Is  the electron (or proto11) charge large or small? 
Physics does not accept this abstract formulation 
of a question. We always have to add "in com- 
parison with...". If the charge is regarded as a 
measure of interaction between particles, then 
it is tremendously large. Indeed, le t  us c~omparc 
the replilsive force between two protons due to 
Coulomb's law, 

with the attractive force between them due to 
the law of gravitation, 

* I n  recent years much has been said and written about 
quarks of which nucleons-protons and neutrons-are 
composed. Several kinds (flavors) of quarks exist, with 
charges &(I13 e and &(213)e. But i t  appears that some- 
how i t  is  for I! idden to quarks to exist in  a free state 
(outside of nucleons). 

' I ' l~e comparison is not difficult because both 
I'c~~~ccs diminish in an identical manner, that  is, 
I I I  inverse proportion to the squared distance be- 
I \\wen the protons. The proton mass is m,= 1.7 x 
.: g,  and the constant G in the law of gravi- 

I;I (.ion is 6.7.10-8 cm3 .g-l. s-=. (See Problem I*.) 
'I ' l~c ratio of forces is Fc,,llll',r ~ 4 . 1 0 " .  Elec- 
1 , l . i ~  forces exceed gravitational forces by a factor 
o r  rnore than 10421 This is why gravitational forces 
: I I T  simply ignored when problems in atomic 
11l1ysics are considered. 

And if electric forces are so strong, why are 
wc able to disregard them in everyday situations 
; I  I I ~  in technological processes? 

'She fact is that the ambient medium always 
~,ontains numerous free charges (electrons and 
iotis). Once a charge appears anywhere, free 
c:l~;lrges of the opposite sign are attracted and 
~~c!utralize that  charge. We mostly deal with 
11c:utra1 (noncharged) bodies. But  gravitational 
Io14ces cannot be neutralized. They increase with 
 creasing mass, and are essential and predomi- 
11i1nt for macroscopic bodies, especially bodies in 
1 . 1 1 ~  outer space. 

I3ut the role played by an electric charge is 
1101 limited to the description of the interaction 
11c:Lween charged particles. Presumably, everyone 
I\rrows tha t  under certain conditions a charged 
~ ~ i ~ r t i c l e  emits electromagnetic waves (neutral 
~) ;~r l ic les  do not have this property). The measure 

bl~c ability of emitting radiation is the charge, 
01. ~aather a dimensionless ratio e21fic (you will 

" I'l~olleuns are placed a t  the end of t.he book (see pp. 279- 
,':+:I). 
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have to take i t  for granted)*. Hereh is the farr~ous 
Pla i~ck ' s  corislau t without which ilo forinul;~ 01 
quantum physics is possible; h FZ g - ~ m ' . , ~ ,  
so that  e2/hc FZ 11137. The fact that  e2/he << 1 
shows that in a certain sense the electron olrdrge 
i s  small. I t  is thus large in one sense and small 
in  another sense. This cannot be helped: 1l1e 
world is what i t  is. 

Let us turn now to the maguetic field. 
Magnetic charges are not found in n a l ~ ~ r c .  
In 1931 one of the founders of quantum mecha- 

nics, Paul Dirac, suggested that magnetic charges 
must exist; he gave them the name monopoles. 
If monopoles existed, the world would be rnore 
symmetric and the theory of electromaguelis~lz 
more beautiful. Much effort was spent in search- 
ing for the monopole. Several times sensa t io~~al  
announcements claimed the discovery of llle 
monopole, but later they were disproved. l'he 
monopole remains undiscovered. 

But  microscopic sources of a magnetic l~cld 
do exist in nature. One of the first chapters de- 
scribes them in detail. 

NOW i t  is time to outline briefly the subject of 
this book. 
* We will ask the reader to take what we say for grauled 
as l i t t le  as possible. But to be quite candid, this cannot 
he entirely avoided. Those who have read some physics- 
popularizing books on quantum mechanics may poss~bly 
be satisfied with the following "decoding" of this quotient. 
One over one hundred thirty-seven is the ratio of the 
electron "radius" ezlmecz to the Compton wavelength 
t i /n~ ,c  ( m e  is  the electron mass, 2510-27 g). I t  is hart) to 
say whether this is  an explanation; a t  any rate, this 
helps to operate wlth quantities important i n  a t o ~ l ~ i c  
physics, but primarily i t  shows how to compose di~llcn- 
sionless c o ~ n b i n a t i o ~ ~ s  of world constants. 

First, as we have just mentioned, i t  deals with 
microscopic sources of a magnetic field. 

Second, having explained that  microscopic 
sources of a magnetic (and electric) field are 
electrons and protons, as well as neutrons (al- 
t,hough, as  :allows from the name itself, they are 
not surrounded by an electric field), we explain 
why not each macroscopic body represents a 
macroscopic source of a magnetic field. 

Third, we try to explain why different bodies 
behave differently when placed in a magnetic 
lield. 

Fourth, we speak in detail about bodies called 
magnetic materials. An important plhce among 
lhem is occupied by magnets, or ferromagnetic 
materials. They constitute macroscopic sources 
of a magnetic field. 

This list does not exhaust the contents of the 
book. But  we say nothing or nearly nothing 
about nuclear magnetism, do not cover the origin 
of the magnetic field of the Earth and other plan- 
ets, and ignore exciting problems involved in the 
study of magnetic fields in outer space. 

We feel certain compunctions in not speaking 
about the magnetic field of the Earth: indeed, 
the use of terrestrial magnetism for navigation 
(the compass) was the first application of magnet- 
ic properties in recorded history. Although, un- 
fortunately, no rigorous criteria exist for evaluat- 
ing the relative importance of inventions, every- 
one will probably agree that  the compass, tha t  
is, a freely rotating magnetic needle, is one of 
(he most important inventions of man. 

We find consolation in the wise maxim of 
Kozma Prutkov (the collective pen name of 
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three Russian writers of 1850's, famous for their 
aphorisms) who wrote: "You cannot think of 
everything." And indeed you cannot. Magnetism 
is just as boundless as nature itself. 

Readers are often scared away by mathemat- 
ical complexities. We did take this factor into 
account but could not avoid using vectors and 
operations with them, the notions of function, 
and of its derivative and integral; however, we 
never go beyond this level. Some mathematical 
operations are intentionally shifted to Problems. 
A reader who solves the problems will understand 
the book much more profoundly than one who 
puts off solving them for some time in the future. 
But what worries us most about the reader's 
response does not concern mathematical dif- 
ficulties. We expect that the main obstacle for 
the reader will be many new physical concepts. 

We have tried to explain most of them in the 
text or in the footnotes; i f  some concepts still 
lack clarification, we ask forgiveness and request 
the reader to address comments or suggestions to 
us, C/O MIR Publishers. We shall be equally 
thankful for any other critical comments on the 
contents of the book. 

We are deeply grateful to A. S. Borovik-Roma- 
nov and L. A. Prozorova, whose suggestions we 
followed where possible and whose kindness was 
a constant source of support during the difficult 
task of writing this book. 

We also wish to thank Inna Kaganova for her 
help in preparing the manuscript for publication 
and Shevkhi Mevlyut for helping with the figures. 

Chapter 1 
Klementary Magnets 

1 .l. Electric and Magnetic Dipoles 
'I'lle structure of the electric field produced by 
I I  point charge and that of the magnetic field 
rlround a thin wire through which electric cur- 
rant flows are so unlike that an idea of looking 
lor an analogy between the two seems hardly 
justified. But let us avoid hasty conclusions. 

Consider a system of two electric charges of 
identical magnitude and unlike signs, placed a t  
11 distance d from each other (Fig. 5). The strength 
o l  the electric field produced by this system at  
I I  point on the line drawn through the two 
charges is 

We have simply added the strengths of fields 
~~roduced by each charge because both vectors 
 joint along the same line. This is the advantage 
or symmetrically arranged points, that is, points 
o i i  the line drawn through the charges. Let the 
point be far removed from the system of charges, 
r >> d. Then 

At large distances from the charges q and -q 
1.110 electric field strength decreases faster than 
llro field strength due to a single charge. The 
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quantity p = qd is called the electric dipole 
moment, and a system of two charges of identical 
magnitude and unlike signs is called the electric 
dipole. The dipole moment is a vector, and by 
convention its direction is from the positive 
to the negative charge: 

P = qd (1.3) 

The dipole moment determines the electric 
field of a neutral system of two charges (the 

Fig. 5. Lines of force of the field of the electric dipole 

dipole) a t  distances large in comparison with 
the spacing between the charges. 

Adding the field strengths of two charges in 
accordance with the rules for addition of vectors 
a t  an arbitrary point again sufficiently far removed 
from! the charges! (i.e. in the case r >d) ,  we 
can obtain 

3 ( p . 4  n-P E (r) = 
r 

l-3 
, n = -  (1.4) 

(See Problem 2.) 

1 .I. Electric and Magnetic Dipoles 21 

Let us make use of formula (1.4) and trace the 
l i ~ ~ e s  of force representing the field of a dipole 
(sre Fig. 5). If we ignore the structure of the 
lield a t  distances of the order of, or less than, the 
tlipole size d, the dipole can be represented by 
;I point (or rather, by a little arrow, because the 
tlipole is a vector). From the viewpoint of an 
observer placed sufficiently far from the dipole, 
llie origins and end points of the lines of force 
coincide. 

Imagine now for a second that  charges cannot 
I,e separated, that is, nature has only bound 
charges and no free charges. I t  is then natural 
lo regard the dipoles, and not the charges, as 
cblementary (simplest) sources of an electric field. 

For dipoles to define completely the electric 
licld under discussion, we should demand that  
Ihe dipoles be microscopically small, say, as 
.;mall as atoms, or even smaller. Then any 
~nacroscopic distance will be large (compared 
with the dipole size), and formulas (1.2)-(1.4) 
will be absolutely exact. 

The neutrality of a system of charges, that  is, 
l l ~ e  equality of the positive to the negative 
c-l~arge, can be established by the behavior of the 
cllcctric field far from the system. The electric 
Iicld around an electrically neutral system dimin- 
ishes with distance r steeper than l l r2.  We can 
;~lso speak of systems with dipolar neutrality, 
t11;lt is, systems whose dipole moment is zero. 
'I'lie decrease of the electric field with distance 
t ' r~r  from such systems is steeper than l/r3. Fig- 
11ro 6 shows several systems of charges with zero 
tli1)nle moment. (See Problem 3.)  

Nonzero dipole moment of a system of charges 
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points to an asymmetry in  the distribution of 
charges. 

Obviously, i t  is not mandatory in this argn- 
ment to assume that  free charges cannot exist, 

Fig. 6. Systems of charges with zero electric dipole 
moment: 
(a)  negative charges -9 are at the vertices of the square, 
and a positive charge 4-49 is at its center; (b)  similar 
arrangement for the cube, the central charge is 4-89; 
(c) a positive charge Q is at the center of the sphere. 
and a negative charge -0 is uniformly distributed over 
the sphere 

- 

but we know definitely that  there are no magnetic 
charges in nature. 

To look for elementary sources of a magnetic 
field, let us consider a circular current, that  is, 
simply a ring made of wire, with area S and 
electric current flowing in i t  (we assume the cur- 
rent to be I ) .  To simplify the analysis by sym- 
metry arguments, we calculate the magnetic 
field a t  a point on a straight line perpendicular 
to the plane of the contour (ring) and passing 
through i ts  center (Fig. 7). We divide the contour 
into small segments with length A1 each. Accord- 

1.1. Electric and Magnetic Dipoles 23 

ing to the Biot-Savart law, one such segment 
produces a magnetic field with strength 

A 1 AH=I- cra 

The definition of r is clear fromEFig. 7. 

Pig. 7. Magnetic field of the closed current I flowing in 
n flat ring. Magnetic lines of force are shown in a plane 
perpendicular to the ring 

Adding the fields produced by individual seg- 
ments of the ring, we find 

This formula much resembles formula (1.2). 
On the basis of this analogy we can refer to the 
combination 
IS - - - - M ,  (1.6) 

:IS to the magnetic dipole moment of a circular 
current. But  if the magnetic dipole moment is 
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assigned a direction along the perpendicular 
to the pIane of the circular current (with the sign 
dictated by the Ampere rule), the magnetic field 
of the circular current is expressed in terms of 
the vector M, (magnetic dipole) by a formula 
quite analogous to (1.4): 

H (r) = 
3 (M,.n) n-Mc 

9 

To derive this formula, we must be able to add 
the magnetic fields AH produced by individual 
segments AZ of the contour, taking into account 
that  the added fields are vectors. 

The fact tha t  formulas (1.4) and (1.7) coincide 
(to within the selected notations) shows that  
the electric field produced by two charges of 
unlike signs and the magnetic field produced by 
a circular current have an absolutely identical 
structure, provided we ignore the field close to 
the charges or to the circular current. And in the 
limiting cases of infinitely proximate charges or  
of infinitesimal radius of the current ring the 
dependence of the fields on coordinates is perfect- 
ly identical. 

The magnetic dipole can thus exist, and i t  is 
not necessary to "invent" any magnetic charges. 
A magnetic dipole is produced by the motion of 
ordinary electric charges. 

In order not to be fascinated excessively by 
the similarity of the electric and magnetic di- 
poles, let us pay attention to a profound difference 
between these two vectors. 

First, let us conduct an "imaginary experiment" 
shown in Fig. 8, namely, let us reflect both dipoles 
n a mirror. As a result, the direction of an electric 
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dipole will be reversed, while that  of a magnetic 
dipole will be retained. Second, let us switch 
[,he flow of time ("time arrow") to reverse (this 
operation, possible only "on paper1', is called 

Iiig. 8. Mirror reflection: 
(a) of an electric dipole; ( b )  of a magnetic dipole 

"lime reversal"). This operation does not affect 
lhe electric dipole but reverses the sign of the 
magnetic dipole: indeed, under time reversal all  
 articles move in reverse directions and the cur- 
rent thus changes sign. 

1.2. Gyromagnetic Ratio 

'J'here is a simple relation between the magnetic 
~rloment M ,  and the mechanical angular mo- 
mentum L of a system of charged particles. In  
order to find this relation, let us transform expres- 
sion (1.6) for the magnetic moment M,. By the 
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definition of an electric current, I = (q/2nR) v. 
Indeed, q/2nR is the electric charge per unit 
length of the conductor, and the velocity v is 
the path covered by the charge per unit time. 
Since S = nRa, we find 

On the other hand, the angular momentum L 
of the system in question is 

L = m,vR (1.9) 

where m, is the mass of the moving charges. 
Comparing (1.8) and (1.9), we find 

Put  in this form, the relation is not improved 
in comparison with formula (1.6) relating magnet- 
ic moment with the current I. However, if we 
recall that  the current in a conductor is a flux 
of electrons, we immediately see that  q = Ne 
and-m, = m,N, where N is the number of mov- 
ing electrons in the conductor (conduction elec- 
trons). Then (1.10) yields 

The ratio of two macroscopic quantities (the 
magnetic moment of a circular current and the 
angular momentum of electrons making up this 
current) is found to he equal to a combination 
of the quantities characterizinw microscopic charge 
carriers in the conductor. The ratio y = M,/L 
was given the name gyromagnetic ratio. 
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Expression (1.11) obtained for the circular 
motion of electrons remains valid regardless of 
lhe type of motion of the electrons. If the mechan- 
ical angular momentum of this motion is L, then 
i ts  magnetic moment is M = (e/2mec) L. 

Later we shall have to elaborate this state- 
ment. It was found that  electrons per se, even when 
at  rest, are sources of a magnetic field, being 
microscopic magnetic dipoles. But  for some 
time we shall pretend that  we are not aware of 
this fact. 

The gyromagnetic ratio is often measured in 
units of e/2m,c. In the case under co.nsideration 
i t  must be assumed equal to unity. The gyro- 
magnetic ratio would be thousands of times 
smaller if the current in the conductor were car- 
ried by ions instead of electrons. It is difficult 
to imagine that  the gyromagnetic ratio can be 
greater than unity: indeed, electrons are the 
lightest of charged particles. 

2.3. Elementary Sources of Magnetic Field: 
Do They Exist? AmpBre's Hypothesis 

The circular current, also called the current 
loop, is thus a magnetic dipole, the source of 
a magnetic field. But do such current loops exist 
in nature? And if they do, what are they? 

At school we learn the molecular currents 
hypothesis advanced by Ampare. According to 
this hypothesis, a very daring one a t  the time 
(Andr6 Marie Ampere lived from 1775 to 1836), 
electric currents flow inside molecules and atoms, 
ishat is, atoms and molecules are current loops, 
and therefore magnetic dipoles. In fact, Ampare's 
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hypothesis was confirmed superbly when the 
electron structure of the atom had been under- 
stood. I t  was confirmed in the sense that,  indeed, 
electrons moving around atomic nuclei produce 
electric currents, and current loops produce the 
magnetic field .* 

However, if these words are interpreted literally, 
in terms of classical (nonquantum) concepts (and 
only classical concepts were known in AmpBre's 
time), the inescapable conclusion is: nature has 
no e l e m e n t a r y  magnets, that  is, no smallest 

I sources of a magnetic field. Consider the simplest 
atom: the hydrogen atom. In this atom a single 
electron revolves around a proton, moving, ac- 
cording to the classical laws of motion, in an 
elliptic orbit (its particular case is a circle; for 
the sake of simplicity, here we consider only 
this case). 

The equality of the centrifugal to the Coulomb 
force gives the relation between the radius a of 
the electron orbit and its velocity v: 
ea meva -- 
a2 -7 
* Here is a short excerpt from A. Einstein's paper of 
1915. This quotation will show how daring the hypothesis 
was in  i ts  time, and furthermore, i t  will help to under- 
stand that ,  as a rule, a hypothesis that  seems to explain 
experimental facts poses, if i t  is  sufficiently serious, 
now profound questions. 

"AmpBre's theory in  its current (at the time of writing, 
of couree-M. K. and V. Ts . )  electron form faces a dif- 
ficulty: according to Maxwell's equations, electrons 
moving in circular orbits must lose their kinetic energy 
through radiation, so that  with time atoms and mole- 
cules must lose, or have already lost, their magnetic 
moments; evidently, nothing of the sort occurs in reality" 
(our italics-M. K .  and V. Ts.). 
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or 

ez -- - m,v2 (1.12) 

The total energy E of the electron is the sum of 
its potential and kinetic energies: 

The energy c of the electron thus determines 
unambiguously the radius of i t s  orbit (do not be 
surprised with the minus sign: indeed, the elec- 
tron energy in the atom is negative, and the arbi- 
trary constant term in the potential energy is 
chosen so as  to make energy vanish a t  the infinite 
distance from the nucleus, see p. 13). The angular 
momentum L of the electron equals m e v a .  From 
this and from (1.12) we find 

and the magnetic moment of the hydrogen atom is 

In classical mechanics an electron is allowed to 
have any energy, no matter how large its magni- 
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tude (it is a negative energy!), and hence the 
radius of its revolution around the nucleus can 
be arbitrarily small. Although the orbital veloci- 
t y  is large at  small radii, the angular momentum 
diminishes with diminishing radius. When a -t 0 
(i.e. when I r I -t oo) the orbital angular mo- 
mentum L and with i t  the magnetic moment Ma 
tend to zero. We have to conclude therefore that  
magnetic moments can be arbitrarily small and 
there are no fixed elementary magnets (in con- 
trast to elementary charges). 

But this conclusion is in contradiction with 
the reality. Our argument has a flaw. I t  is incor- 
rect because i t  ignores the quantum nature of 
the motion of microscopic particles. 

Frankly speaking, the laws of motion of atomic 
and subatomic particles were reconsidered not 
because of our microscopic magnets. Classical 
physics had to be revised under the pressure of 
the whole ensemble of facts discovered about the 
properties of atoms. The foremost of these was 
the fact of the very existence of stable identical 
atoms. Actually, formulas (1.12)-(1.14) constitute 
the classical theory of the hydrogen atom. But 
since classical physics imposes no constraints 
on the choice of the distance a a t  which the 
electron revolves around the nucleus, different 
hydrogen atoms could obviously be expected to 
differ from one another, that  is, electrons could be 
closer to the nucleus in some atoms and farther 
away from i t  in other atoms. Besides, atomic size 
(orbit's radius) would be affected by collisions 
between atoms. Furthermore, when an electron, 
with i ts  electric charge, moves with acceleration 
(note that  in the motion along an elliptic orbit 
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l l~e  electron velocity changes both in magnitude 
i111d in direction, and in the motion along a circu- 
lar orbit only in direction), electrodynamics 
rcquires i t  to emit electromagnetic waves, that  
is, to lose energy (see the quotation from Ein- 
slein's article on p. 28). As the electron energy 
decreases, the electron moves closer to the nucleus 
(see formula (1.13)) and finally has to fall on 
lhe nucleus. On the human time scale, the time 
during which it falls is negligibly small, about 
10-lo s.* This is a conclusive evidence against 
lhe applicability of classical laws of motion to 
lhe motion of microscopic particles. I t  is impos- 
sible to save classical mechanics by assuming 
lhat the force acting between an electron and 
a proton is some unknown, non-Coulomb force: 
we have already mentioned tha t  Rutherford's 
cxperiments on scattering of a particles gave 
a direct demonstration of a Coulomb field pro- 
duced by nuclei. 

Below we shall give certain information on 
quantum mechanics, without which i t  will be 
virtually impossible to understand the nature of 
magnetic phenomena; but for the time being we 
pursue the following line. 

Since the existence of elementary magnets 
requires tha t  the radius of the electron trajectory 
in an atom have a definite value, let us borrow 
it from quantum mechanics. In particular, the 

See M. I. Kaganov, Electrons, Phonons, Magnons. Mir 
Publishers, Moscow, 1981, p. 34. The computation as- 
sumos that the "fall" begins at a distance of ,--10-8 cm. 
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radius of the hydrogen atom is* 

(See Problem 4.) Now we substitute al for a into 
formula (1.14). As a result, we obtain the follow- 
ing expression for the magnetic moment of the 
hydrogen atom: 

As a rule, this ratio is denoted by the letter PB 
and called the Bohr magneton. 

The Bohr magneton is the elementary electron 
magnetic moment we are seeking. I t  is elementary 
in the sense that no electron can have a magnetic 
moment below PB. 

The quantities on the right-hand side of (1.15) 
are known (they were given above). Substituting 
the values of e, A, me, and c, we find 

I t  must be clearly understood that we did not 
derive formula (1.15). Indeed, we took the size 
of the hydrogen atom "out of thin air". Moreover, 
we shall have a chance to see that the magnetic 

* As we said, the laws of classical physics do not make 
i t  possible to find the radius of the electron trajectory 
around the nucleus. The radius can be arbitrary. This is 
readily understood if you note that no expressions with 
the dimensionality ol length can be constructed out of 
the two quantities, e and me,  that enter into the equation 
of motion of the electron. Quantum mechanics introduces 
a supplementary quantity, Planck's constant fi. Out of 
the three quantities a combination with the dimensional- 
i t y  of length can be constructed. 
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~nornent due to the revolution of the electron 
around the proton in the ground state of the 
hydrogen a tom (i.e. a t  the least possible energy) 
is zero. 

We should like the reader to remember for 
[,he time being two facts: 

(i) elementary magnets exist, and 
(ii) by the order of magnitude the electron 

magnetic moments equal the Bohr magneton 
(1.15). 

1.4. A Brief Overview 
of Quantum Mechanics 

Classical mechanics, often referred to as Newton- 
ian mechanics to emphasize the role of i ts  
creator, provides a perfect description of the 
motion of macroscopic bodies, that is, bodies 
consisting of an enormous number of atoms and 
molecules.* But the motion of electrons in atoms 
is governed by quantum, not classical, mechanics. 
This radically changes all properties of the atom, 
including its magnetic properties. Or, to put 
it more accurately, only quantum mechanics 
enables us to describe correctly (i.e. in agreement 
with experimental data) the properties of the 
atom, including the stability of atoms. 

What are the distinctive features of the quan- 
lum laws of motion in comparison with the clas- 

* No attributes help to evaluate the tremendous number 
01 atoms in a macroscopic body. We cannot comprehend 
h ~ c h  numbers. One cubic centimeter of a solid contains 
l o z 2  atoms. If placed in a chain side by side (an atom's 
hize is 10-8 cm), they will cover more than a billion 
Itilometers. 
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sical laws? The complete answer to  this question 
comes only from studying quantum mechanics 
which is the part of modern physics studying the 
motion of microscopic objects, such as atoms, 
molecules, and particles of which they are 
composed. Any more or  less serious acquaintance 
with quantum mechanics calls for a substantial 
mathematical foundation since the mathematics 
of quantum mechanics is sufficiently complicated. 
In addition, an understanding of the laws of 
quantum mechanics requires that certain habit- 
ual notion rooted in everyday experience be 
dropped. The overcoming of the inertia of person- 
al  experience may even prove a greater obstacle 
than mastering the mathematics of quantum 
mechanics. At  any rate, the physicists who reject- 
ed or resisted quantum mechanics (and the great 
Einstein was one of them!) could not accept i ts  
fundamental physical postulates. 

The presentation that follows is restricted to 
the corollaries of quantum mechanics, directly 
relevant to magnetic properties of electrons, 
atoms, molecules, and macroscopic bodies. A 
warning: the "corollaries" might appear strange. 
There is no use in doubting them. I t  is by resort- 
ing to these "corollaries" that  we shall explain 
the nature of magnetism. 

Uncertainly Relations. Particle-Waves 

One of the main features distinguishing quantum 
particles (i.e. particles whose motion is described 
by quantum mechanics) from classical particles 
(whose motion is described by Newtonian me- 
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chanics*) is that  they do not move along trajecto- 
ries. As we are used in daily life to dealing with 
~nacroscopic bodies, our desire to transfer the 
casily visualizable notions of the motion of such 
bodies along a trajectory to microscopic objects 
whose motion cannot be directly observed is only 
r~atural.  The properties of microscopic particles 
must be deduced from the results of experiments 
or observations, without forcing upon these 
particles the properties of macroscopic bodies. 
And the experimental data (e.g. spectral char- 
acteristics of atoms and molecules) are such 
Lhat the notion of the electron trajectory in the 
atom has to be dropped. At any moment of time 
the trajectory is determined by the position of 
a particle and its velocity. The absence of a tra- 
jectory means that a quantum particle cannot 
have simultaneously definite coordinates (definite 
position) and definite velocity. The state of a 
quantum particle cannot be described in as much 
detail as that  of a classical particle. The state- 
ment that  a particle cannot have simultaneously 
a definite coordinate and a definite velocity is called 
Idhe uncertainty principle. 

The uncertainty principle signifies that a phys- 
ical quantity which depends on the position 
(coordinate) and the velocity of a particle does 
not have, in the general case, a definite value. 
(It must be mentioned here that the angular 
momentum (1.9) is just such a quantity, because 
I, is a function of coordinate R and velocity v.) 

* Quantum mechanics is capable of describing the mo- 
lion of any body, but this is  not necessary for the motion 
of macroscopic bodies: the error introduced by using 
equations of classical mechanics is negligible. 
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Quantitatively the uncertainty principle is 
written in the form of inequalities called the 
uncertainty relations, or Heisenberg relations: 

where Ax, Ay, Az and Ap,, Ap,, Ap, are uncert- 
ainties in coordinates x, y, z and in projections 
of momentum p = mv onto the axes x, y, z, 
respectively. A formal transition from quar~tum 
to classical mechanics occurs when Plarlck's 
constant f i  tends to zero. Inequalilies (1.17) mean 
the following: the smaller the error in one of the 
quantities, ior instance, x, the greater the error 
in the other, namely, p,. Note that the accuracy 
of defining x does not affect the accuracy of 
defining p,. Physical quantities separate into 
peculiar pairs coupled by the uncertainty rela- 
tion. 

The main feature of quantum mechanics is 
obviously not the rejection of the classical descrip- 
tion of motion but the formulation of methods 
with which to describe the behavior of microsco- 
pic particles. The nature of this description is 
essentially different from the one employed in 
classical physics. Since there are physical quanti- 
ties which by virtue of the uncertainty relation 
do not have a definite value, quantum mechanics 
cannot do better than give the probabilities 
of specific values of the physical quantity in 
question. Note that the probabilistic nature of 
quantum mechanics is not caused by the incom- 
pleteness of our knowledge about a quantum sys- 
t e m  This nature follows from the properties of 
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microscopic particles. This is how nature operates. 
'Po some extent, i t  is better to say that there 
is only a limited possibility of describing a 
quantum system in terms of classical quantities: 
coordinates and momenta. The measure of limita- 
tion is given by the uncertainty relations (1.17). 

In optics there are relations similar to uncer- 
tainty relations. A plane electromagnetic wave 
with wave vector* k is known to fill up the whole 
space. However, an electromagnetic field can be 
concentrated within a finite, and even very small, 
element of space. This is achieved if a large num- 
ber of waves is used. Such a combination of waves 
is called the wave packet. A wave packet is char- 
acterized by intervals Ak,, Ak,, Ak, of the 
projections of wave vectors, required to concen- 
trate the field in a region of space Ax Ay Az. The 
set of wave vectors is the greater, the smaller is 
the region of space occupied by the wave packet: 

A comparison of inequalities (1.18) and (1.17) 
shows that  they are equivalent if we assume 

This spectacalar equality, relating the momen- 
tum charactel.izing the motion of a particle to 
the wave vector characterizing the wave, was 
first written by the French physicist de BI-oglie 
in 1925. De Broglie also found the relationship 

* The wave vector is a vector k pointing along the wave 
propagation direction and equal iri magnitude to k = 
= 2nIh (h is the wavelength). 
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between the energy E of the particle and the 
frequency o of the wave: 

Both equalities (1.19) and (1.20) are called 
the de Broglie relations. They signify recognition 
of wave properties of particles. For this reason 
quantum mechanics is often called wave me- 
chanics. 

The uncertainty relations and the de Broglie 
relations follow strictly from quantum mechan- 
ics. Quantum mechanics demonstrates just as 
rigorously that  waves possess corpuscular prop- 
erties (i.e. the properties of particles). Relations 
(1.19) and (1.20) can therefore be read from left 
to right (thereby putting the motion of a particle 
in correspondence with a wave process) as well as 
from right to left (thereby emphasizing the cor- 
puscular properties of waves). 

Stationary States 

Among the states of a physical system (such as 
a particle, atom, or molecule) there are such 
states in which one or several physical quantities 
simultaneously have strictly defined values. Such 
states are of fundamental importance in quantum 
mechanics, forming the basis for the description 
of any (arbitrary) state of physical systems. For 
instance, there exist states with definite values 
of the momentum of a particle. The uncertainty 
relations then dictate tliat the position of the 
particle is completely indetermined in these 
states. The same follows from the de Broglie 
relations: the motion of a particle with momen- 
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Lllm p is put  in correspondence with a plane wave 
wliose wave vector is k = plh and which fills 
I he whole space. 

A special role is played here by definite-energy 
states, called stationary states. A quantum system 

Pig. 9. Discrete energy levels: 
(a) of an electron in a hydrogen atom En = -Eolna, 
n = 1, 2, . . .; Eo % 13.6 eV; ( b )  of a harmonic oscll- 
lalor at frequency o (En = (n + 112) h a ,  n = 0,1, 2, . ..) 
(e.g. an atom), when left alone, is in one of its 
stationary states. 

The property that is probably the most char- 
acteristic for quantum systems is the discreteness 
of some physical quantities that  can take on 
a continuous spectrum of values if treated in 
terms of classical physics. Thus, the energy of an 
electron in the atom can assume only certain 
discrete values (Fig. 9) that  can be enumerated. 
They are called energy levels. Each value of 
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energy corresponds to one or several stationary 
states. If there are more than one such state, 
they differ in other physical quantities that are 
allowed to have definite values simultaneously 
with energy. 

The oscillator is a very important, though 
simple, object in mechanics (both classical and 
quantum mechanics). Imagine a particle with 
mass m oscillating because a forc,e F acts on it; 
F is proportional to the distance x between the 
particle and its equilibrium position (F = -kx). 
This particle oscillates a t  a quite definite fre- - 
quency o = l/k/m. A classical particle can have 
an arbitrary vibrational energy cVlb (it is deter- 
mined by the amplitude of vibrations), but a 
quantum particle can have only one vibrational 
energy from the set of discrete values (see Fig. 9b)  

- (n + 112) h o ,  n = 0, 1,  2, . . . 'vlb - 
I t  is natural to single out among the stationary 

states the one with the lowest energy. I t  is called 
the ground state. I t  is the truly stationary state 
because a physical system (say, an atom) can 
exist in the ground state indefinitely. Higher- 
energy states are excited states. They are only 
approximately stationary. An atom in an excited 
state can emit an electromagnetic wave and slide 
down to a lower-energy state. This "sliding down 
an energy-level staircase" finally brings the atom 
to its ground state. What is then a justification 
of regarding excited states of atoms as stationary? 
The justification is that  the lifetime in the excited 
state is relatively long (on the atomic scale, of 
course). I t  is interesting to note that this fact is 
a corollary of the small charge of the electron. 
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110 you remember that e2/hc = 1/137? Here is 
why: the lifetime of an atom in an excited state 
i s  approximately T, ( h ~ l e ~ ) ~  z T, (137)3, where 
ra is the time of revolution of the electron around 
its "orbit". The electron makes around the nucleus 
hix million "revolutions" before coming down 
I'rom the excited to the ground state! This is suf- 
licient reason to regard the excited state as a sta- 
l ionary state. 

I t  must certainly be clear to the reader that 
the words "orbit" and "revolutions" are in quota- 
tion marks becau~e in fact an electron moving 
in an atom has no orbit. What then is meant by 
Ihe time T ~ ?  Let us recall the de Broglie relation 
(1.20) and apply i t  to the difference between the 
onergies of the excited and the ground state: 

The frequency w and the oscillation period T are 
in inverse pro~or t ion  to each other, that is, 
-c = 2nlo .  If instead of the frequency o we 
substitute the expression given above, the cor- 
r~esponding period will be that  very "period of 
r~evolution" 7,: 

T;, = 
2nJi 

Fexc-Bgr 

I I I  some cases the motion of an electron in an 
alom can be described with high accuracy by 
c.lassical mechanics. Then T, ca lciil ated by the 
qunntum formula indeed coincides with the clas- 
>ical period of revolution (with no quotation 
~r~arks!).  

We have formulated above some results ob- 
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tained in quantum mechanics, having said noth- 
ing about the mathematics by which they were 
derived. The description of the mathematical 
equipment is not one of our objectives. One re- 
mark is needed: there are several mathematical 
apparatuses of quan tum mechanics, very different 
in form but essentially equivalent. One of them 
is based on an analysis of the solutions of the 
differential equation that  the wave function of 
a quantum svstem must satisfy (E. Schriidinger's 
approach). Strictly prescribed operations with 
this function make i t  possible to extract all 
relevant physical consequences: the values of 
physical quantities that  can be directly compared 
with experimental data. 

The wave function is most often denoted by 
the letter 9. Here we also use this notation. 
Take into account (it is important for what is 
to follow) that 9 is a complex function defined 
to within a complex factor. In other words, two 
wave functions 11, and a$ describe the same state 
if a is a constant. 

The physical meaning of the wave function is 
especially clear if I# is a function of coordinate r 
and time t. Then the quantity I .ll, (r, t )  Is is 
proportional to the probability of finding the 
particle a t  a point r a t  a time moment t (M. Born). 

More on Hydrogen Atom 

The simplest quantum system is the hydrogen 
atom: an electron revolving around a proton. 
The energy levels are given by a simple formula: 

mee4 1 
2hm mm 

n = l ,  2, 3, ... E n =  --- (1.21) 
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What does this formula mean? I t  means that  
l l~r hydrogen atom can be in different states, 
I flat is, in states with different energy. One state 
:tmong them has the lowest energy; we have 
11lready mentioned that i t  is called the ground 
.;late. The electron energy in the ground state is 

m ea 2ka w 13.6 eV m 2.18.10-11 erg 1.1 - -- 
'I'his means that  13.6 eV of energy has to be 
1,upended in order to separate the electron from 
l l ~ e  proton. If the atom is in the excited, rather 
Illan the ground, state, i t  has aIready been said 
lo be able to emit the extra energy in the form of 
I  ight. The frequency of the emitted light is given 
I)v Bohr's formula which constitutes the law of 
c~onservation of energy in the creation of the 
pl~oton by the hydrogen atom: 

All said above is strictly derivable in quantum 
~~~cchan ics .  And now let us make an inconsistent 
\tep. Although we have assured thc reader that  
clnantum mechanics had done away with the 
concept of trajectory, wc shall make use of the 
c~lnssical formula (1.13) together with the qaan- 
l i ~ m  formula (1.21). We shall see that the quanti- 
~nt ion  of energy results in the a~lantization of 
llrc electron orbits." T l ~ e  e1ectr;n can revolve 

* Such an eclectic mechanics that  retained the features 
classical mechanics but  was supplemented with qnan- 

l i7ntion conditions was constructed bv Niels Bohr at 
Illr beginning of the 20th century to interpret atomic 
.prctra. A successful explanation of hydroqen spectrum 
(formulas (1.21) and (1.22)) was a sign that physics is  
on the right track. 



44 Ch. 1. Elementary Magnets I 
only along allowed orbits of radii a,= 
= (A2/m,e2) n2. The ground state corresponds to 
the smallest radius of the orbit, equal to a, = 
= h2/m,e2. We have already used this fact to 
calculate the value of the elementary magnet 

Fig. 10. Distrib~~tion of probability W (r) of finding 
an electron at a distance r from the nucleus of a hydrogen 
atom in the ground state. The area under the curve 
equals unity 

(see p. 32). Unfortunately, a simple scheme that  
an attentive reader could devise 

quantization of orbits -+ stable current loops 
-t elementary (atomic) magnets 

fails precisely because electrons do not move 
along trajectories. For instance, we cannot speak 
of any trajectory in the ground state. The quanti- 
ty a, fixes the radius of the sphere within which 
the electron can be fourid at  the probability close 
to rillity (Fig. 10). I t  would be absolutely impos- 
sible to try to define the position of the electron 
more accurately because i t  would contradict the 
lincertai~lty principle. And since there can be 
no current loop, we come to a strange result: 
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111 lhough the electron moves around the nucleus, 
I!..; motion does not produce a magnetic moment. 

I3ut we know that elementary magnets are a 
~ .~> i~ l i ty .  In order to sort out this confusion, i t  
will be necessary to understand how the law of 
~,or~servation of angular momentum is modified 
I 11 quantum mechanics. 

1.5. Angular Momentum. 
Space Quantization 

'I'lre story of angular momentum logically belongs 
I I I  llle prec,eding section. We decided to make i t  
i I  special section because i t  is especially impor- 
Iimt for understanding the nature of magnetism. 

Conservation laws play an outstanding role in 
~ ~ l ~ y s i c s .  In this respect atomic physics and the 
~~liysics of magnetic phenomena are no excep- 
lions. Electrons in the atom move in a force 
licld with spherical symmetry; in other words, 
\lie force acting on the electron in the field 
i~round the nucleus depends on the distance 
heparating the electron from the nucleus but is 
ll~dependent of the direction. Classical mechanics 
I~iis "foreseen" for this case a special conservation 
law: the law of conservation of angular momentum: 

I, = [p x rl is  independent of t ime 

(See Problem 5.) And what has quantum mechan- 
~ c s  to say i11 this respect? Naturally, quantum 
lrlechanics also holds that angular momentum is 
(,onserved (this is a general rule: each "classical" 
conservation law has a quantum analogue; the 
converse is not correct: some quantum conserva- 
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tion laws have no analogues in classical 
physics). 

The validity of the law of conservation of 
angular momentum signifies that an electron in 
a definite stationary state (i.e. in a state with 
a definite energy) can have a definite angular 
momentum. But ... is a particle allowed to have a 
definite angular momentum? Let us have a close 
look a t  the formula L = [p X rl. I t  contains 
simultaneously both p and r. But the uncertainty 
relations (1.17) forbid a particle lo have a definite 
coordinate r and a definite momentum p a t  the 
same lime. What does i t  lead to? 

A rigorous quantum-mechanical analysis of 
the motion of a particle in a force field with 
a center of symmetry shows that the conserved 
angular momentum of the particle can be char- 
acterized by the length L and by its projection 
L, onto some axis (here we denote i t  by z). 

A question that arises immediately is: "What 
axis?" The answer is: "Any axisl" This equiva- 
lence of axes emphasizes the isotropy of the force 
acting on the particle. Of course, it there is a rea- 
son that singles out a specific axis, the projection 
must be taken onto this very axis. 

Quantum mechanicsnot only restricts the defi- 
nition of angular momentum to two quantities 
(L and L,) instead of three (a classical vector is 
characterized by three projections) but in addi- 
tion imposes strict constraints on the values of 
these quantities. The projection of angular mo- 
mentum onto the z-axis can assume only the 
values 

L, = mfi, m = 0, f l ,  f 2 ,  . . ., f l  (1.23) 
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I I I I ~  the length of the angular momentum vector 
can assume only the values 

Angular momentum is thus one of the physical 
quantities which are quantized, that is, are allow- 
cd to take on only certain discrete values (see 
I'roblem 6) proportional to l'lanck's constanl A. 

When i t  is necessary to specify the magnitude 
ol angular momentum, i t  is normal to give just 
Lhe value of 1. Hereafter we shall invariably 
llldicate the dimensionless quantity 1 instead of 
the magnitude of angular momentum and drop 
lhe factor A. 

Note that a particle may have zero angular 
lnomentuml 

As a rule, when we say that a particle has 
a definite angular momentum, this means that  
Llle particle is in a state with a given value of 1. 
'I'he projection of L onto an axis can then take 
on one of 21 + 1 values. Let us clarify: angular 
momentum is allowed to have only discrete 
directions in space (actually, do not forget that 
the z-axis, the axis of quantization, has an arbi- 
trary direction). This quantum property of angular 
momentum is called space quantization (Fig. 11). 

With L and L, fixed, the projections L, and 
L, do not have definite values; we can only 
determine the probabilities of specific values of 
lhese projections. Resorting to a classical image, 
we can represent the vector of angular momentum 
by a vector precessing around the z-axis. The 
angle belween L and the z-axis is determined by 



48 Ch. 1. Elementary Magnets 

the value of L,, that is, by m (see (1.23) and 
Fig. 11). 

The easily visualized model of the "precessing" 
angular momentum explains why the maximum 
magnitude of the projectiori L ,  is less than L 
(see (1.23) and (1.24)). If L were equal to til, 
the other two projections L, and L, would equal 

Fig. 11. Descriptive clas- 
L , = - l  sical picture illustrating 

space quantization 

zero in this state, that is, would have definite 
values simultaneously with L and L,; but this 
is forbidden. 

The classical and quantum angular momen- 
ta are not separated by an insurmountable 
wall. When 1 >> 1, space quantization is not 
very important, and the quantity L,  equal to 
ti l f 1  (I + 1) w A1 [ I  + 1/(21)1, very nearly coin- 
cides with the classical value hl. 

To be more rigorous: the properties of classical 
angular momentum can be obtained by a limit 
transition to large values of 1. This is an example 
of the general principle which states that quan- 
tum mechanics contains classical mechanics as 
a limiting case. 
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We are so interested here in  angular momentum 
hecause i t  is related to magnetic moment. Quan- 
I.~lm mechanics does not reject the relationship 
slated by (1.11), that is, i t  confirms that  the 
gyromagnetic ratio for the electron is y = e/2mec. 
llence, if an electron is in a state with the pro- 
jection of i ts  angular momentum equal to m 
(m=O, f l ,  *2, . .., f l ) ,  then the projec- 
lion of i ts  magnetic moment is 

eli M --m, m=O, f I, f 2 ,  ..., f 1 
- 2mec 

(1.25) 

The conclusion that suggests itself is: a moving 
electron can "claim" to constitute an elementary 
magnet, provided it  is in a state with nonzero 
angular momentum, thdt is, in a state with 
1 # O .  On the other hand, i t  is important to 
emphasize that  an electron revolving around the 
nucleus may be in the state with zero angular 
momentum. Obviously, this is a corollary of the 
absence of trajectory. Indeed, we have indicated 
that the electron in the hydrogen atom in the 
ground state has zero angular momentum. For 
this reason we shall not discuss here whether 
the quantum-mechanical results given above are 
a proof of the existence of elementary magnets. 
We shall recur to this aspect a t  the end of the 
chapter. Here we underline that  by explaining 
the stability of atoms, quantum mechanics has 
a t  the same time demonstrated that  the mot ion of 
electrons in atoms is such that the projections of 
their angular momenta are, in units of fi, inte- 
gers; the fact that  there is a relation between 
magnetic moment and angular momentum indi- 
4-01378 
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cates that an electron moving around the nucleus 
can be regarded as a stable magnetic moment, 
but with quantum properties. The most important 
of these properties is space quantization. 

The stability of the magnetic moment of the 
electron revolving around the nucleus is of such 
a paramount importance for the understanding 
of the atomic nature of magnetism that we find 
i t  necessary to add a short summary to this 
section. 

Electrons in atoms are in specific states. Each 
state is stable, in the sense that i t  can be changed 
only by imparting to electrons a finite amount of 
energy Ae (a portion which is large on atomic 
scale). 

Each state is characterized by a definite angular 
momentum, and hence, a definite magnetic mo- 
ment. The magnetic moment of an atom is there- 
fore stable (in the same degree as the state of an 
electron in the atom). 

1.6. Magnetic Moment in Magnetic Field 

Until this section, magnetic moment has been 
treated only as a source of a magnetic field. 
This role of a magnetic moment will again be 
discussed later. But now that we established the 
existence of stable magnets in nature, we should 
discuss their behavior in an external magnetic 
field, that is, a field produced by other sources. 
In our treatment we consider the magnets to be 
so stable that their magnitudes are independent 
of the magnitude of the magnetic field. In the 
case of atomic magnets this is not a serious re- 
striction. Quite the opposite is true: mostly i t  is 
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very difficult to create a magnetic field so strong 
as to change the values of atomic magnetic mo- 
ments, provided these are distinct from zero (the 
appropriate estimate of the required magnetic 
lield will be given in Ch. 2). Consequently, by 
the behavior of magnetic moments in magnetic 
fields, we always mean their rotation and transla- 
lion as a whole. 

We begin with a constant and uniform magnet- 
ic field. 

You well know the property of a magnetic 
needle to assume a certain orientation in a mag- 
netic field. I t  is known just as well that i t  is 
this very property that makes a magnetic needle 
so useful in orientation devices. There were times 
when the property of "spontaneous" orientation 
of the needle in space was interpreted as a miracle. 
But let us recall Einstein's words (written in 
connection with this very magnetic needle): 
"...the development of the thought world is in 
a certain sense a continuous flight from 'won- 
der'."* The compass needle keeps to a certain 
orientation because this is energetically favored. 
The energy E M  of a magnetic moment M  in 
a magnetic field H  is 

r M  = -M-H = -MH cos 8 (1.26) 

where 8 is the angle between the magnetic mo- 
ment and the magnetic field. Clearly, the energy 
is minimum when 0 = 0. 

If a magnetic moment deflects by an angle 8 
from a magnetic field, the magnetic field applies 

* The Library of Living Philosophers. Albert Einstein: 
Philosopher-Scientist. Ed. by P .  A. Schillp, Tudor Pub- 
lishing Company, 1949. 
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to i t  a force moment perpendicular to the plane 
drawn through the magnetic field vector H and 
the magnetic moment at  the given moment of 
time. As a result, the magnetic moment rotates, 
tracing a cone around the magnetic field vector. 
Since magnetic moment differs from angular 
momentum by the factor e/2mec, the rotation 
frequency is 

We thus find that the gyromagnetic ratio 
(denoted here, as before, by y) plays a new role, 
relating the magnetic field H to the frequency of 
precession, OH, of magnetic moment. (See Prob- 
lem 7.) I t  will be encountered in this role consider- 
ably more often than in the role in which i t  first 
appeared on the scene (see (1.11)). 

Formulas (1.26) and (1.27) hold for the classical 
magnetic moment. In the case of a quantum 
magnetic moment, space quantization must be 
taken into account. As we have mentioned earlier, 
magnetic moment can be in 21 + 1 states. Each 
state corresponds to the respective magnetic 
energy level equal to 

e AH &= -- 
2rneC m,  m=O, f l y  312, ..., + l  

Such a system of levels is called equidistant 
(Fig. 12): the spacing between neighboring levels 
is independent of m and is equal to 
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If an electron "decides" to jump from one level 
to another, i t  has to absorb or emit a quan- 
tum of electromagnetic energy equal to FLU = 

- m=-2 

( a )  (6) 

Fig. 12. Equidistant energy levels of magnetic moment 
in a permanent magnetic field: 
(a) 1 = l; ( b )  1 = 2 

= etiH/2mec. The frequency of the electromagnet- 
ic field absorbed or emitted in a transition from 

Fig. 13. In the vicinity of 
the axis of a magnet the 
magnetic field is directed 
along the z-axis and in- 
creases as we a proach 
the tip, that is, t i e  field 

is a function of z 

one magnetic level to another is yH. I t  coincides 
with the frequency of the classical rotation of 
magnetic moment around magnetic field vector. 
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Now let the magnetic field H, aligned as before 
along the z-axis, be itself a function of the z- 
coordinate (Fig. 13). Consequently, the energy 
of a level is also a function of z:  E M  = E M  (2). 
Energy being a function of coordinate signifies 
that there is a force acting on the magnetic mo- 
ment; i t  is equal to 

dH FH - MZ- 
dn (1.30) 

In the case of a classical magnetic moment, M, 
must be replaced with M cos 0, and in the case 
of a quantum magnetic moment, with one of 
the 21 + 1 values of the projection of the mag- 
netic moment onto the z-axis (see (1.25)). 

1.7. Spin and Intrinsic Magnetic Moment 
of the Electron 

The historical sequence of discoveries in phys- 
ics, as well as in any other science, does not 
comply, unfortunately, with the logic of a story 
about science. I t  would be convenient to open 
this section as follows. 

The force (1.30) acting on the magnetic mo- 
ment makes i t  possible to measure the magnetic 
moment of atomic particles from their deflection 
in a nonuniform magnetic field through which 
they travel; furthermore, i t  is possible to confirm 
the validity of quantum-mechanical conclusions 
on space quantization. Indeed, after a beam of 
particles having a magnetic moment (e12mec)L 
passes through a nonuniform magnetic field, 
21 + 1 spatially separated beams must form 
(Fig. 14). This experiment was carried out by 
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the German physicists 0. Stern and' W. Gerlach 
in 1922. They were sending a beam of silver 
atoms through a nonuniform magnetic. field. The 
result proved quite unexpected although i t  con- 
firmed the reality of space quantization: the 
beam was split in two. I t  might seem that the 
beam need not split a t  all because the electrons 

Fig, 14. Schematic diagram of the Stern-Gerlach experi- 
ment: 
A-source of silver atoms, C-collimator, M-ma et 
(D-distance travelled by a beam in s magnetic E l d  
with nonzero dHldz ) ,  S-screen (d-distance between 
the beam traces, L-distance from the magnet to the 
screen) 

in a silver atom have zero angular momentum. 
Let us imagine that somehow an atom passing 
through the instrument is excited, that is, is 
lifted to a state with a higher energy and nonzero 
angular momentum. In  this case the number of 
beams a t  the exit from the instrument must be 
odd: 21 + 1. But the experiment demonstrated 
that the beam was definitely split in two1 The 
beam was split as if 1 = 112, in blatant contradic- 
tion with the predictions of quantum mechanics. 
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This would be a convenient opening paragraph. 
I t  could be followed with a description of the 
Stern-Gerlach experiment the surprising result 
of which can be explained by the fact that  the 
electron possesses a spin.  (See Problem 8.) 

Or we could begin the section in a different way. 
We could describe the experiment performed in 
1915 by Einstein and de Haas* who measured 
the gyromagnetic ratio directly and found that  
i t  was twice the value predicted theoretically. 
After this we could explain that  the discrepancy 
between the theory and the experiment was 
caused by the spin of the electron. 

Unfortunately, events did not follow a logic- 
ally neat sequence. Because of a miscalculation, 
Einstein and de Haas obtained for the gyromagnet- 
ic ratio the value equal to e/2mec, that  is, did 
not find a discrepancy with the theory a t  the 
time. Their article, moreover, was even entitled 
"Experimental Proof of Amp6re's Molecular Cur- 
rents". I t  should be emphasized that  Einstein 

The articles by Einstein and Einstein-de Haas can be 
found in Einstein's Collected Works. Einstein and de Haas 
measured the amplitude of torsional vibrations of a rod 
caused by successive magnetizations. To increase the 
sensitivity of the technique, they used the resonance of 
the remagnetizing field and of the natural vibrations of 
the rod. Many readers may be surprised to learn that 
Einstein not only conducted theoretical research but 
also "worked with his hands". He actively participated 
in the experiment and even wrote a manual on the 
demonstration of the gyromagnetic effect. The interesting 
story of the discovery and subsequent application of the 
gyromagnetic effect can be found in an article by 
V. Ya. Frenkel (Advances in Science and Technology in 
the U S S R ,  Physics Series, 1979, Vol. 128, Issug 2, 
p. 545 (in Russian)). 
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perfectly understood that  AmpBre's hypothesis 
contradicted classical physics (see the footnote 
to p. 28). I t  was for this reason that  the  experi- 
ment on determining the gyromagnetic effect 
was devised. I t  was meant to confirm (and i ts  
authors believed that  i t  had confirmed) the exist- 
ence of molecular currents. Quite a few exper- 
iments were carried out later to measure the gy- 
tomagnetic ratio. I t  proved to be twice the value 
given by formula (1.11). 

Stern and Gerlach conducted their experiment 
in 1922 when i t  had already been suspected that  
the electron has a spin. The suspicion was borne 
from an analysis of atomic spectra (the main 
source of information about the structure of atoms 
a t  the time). 

But  what is the spin? And what is i ts  relation- 
ship to the physics of magnetic phenomena? 

In addition to the angular momentum caused 
by the motion of a particle in space ( i t  is also 
called the orbital angular momentum, although the 
reader keeps in mind that  quantum mechanics 
does not operate with orbits), a quantum particle* 
may possess an angular momentum inherent to 
this particle. This momentum is called the inher- 
ent (intrinsic) momentum, or  spin. Despite the 
obvious meaning of this English word, the notion 
of a particle with nonzero spin as a sphere or 
top of finite radius rotating around its axis does 

* Of course, all particles are quantum particles. The 
combination "quantum particle" emphasizes that we deal 
with phenomena whose analysis must take into account 
quantum laws. Specifically, here a quantum particle 
means a particle whose orbital angular momentum is 
small compared w!th f i ,  
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not represent the actual situation, not even as a 
rough approximation. The main reason for this 
is the impossibility to assign a finite radius to an 
elementary particle (e.g. the electron). Numer- 
ous such attempts failed because they were found 
to contradict the requirements of special relativ- 
ity. The following argument clearly demonstrates 
that the spin is not a result of the spatial ro- 
tation of a particle: the projection of the intrinsic 
momentum of a particle can assume not only in- 
tegral values (see (1.23) and (1.24)) but half-in- 
tegral values as well. 

We shall denote the value of spin by s (an anal- 
ogue of l ) ,  and its projection by s with subscript 
z, i.e. s, (an analogue of m). 
For the electron: s = 1/2;, 
s, = + 112; 2s + 1 = 2 

The proton, neutron, and neutrino also are spin- 
112 particles. The spin of the photon is 1, and 
that of all pions (there are three of them: one neu- 
tral pion, no, and two charged pions, n+ and 
n-, with charges +e) is zero. 

The existence of the intrinsic momentum thus 
extends the set of possible values of angular mo- 
mentum: the spin can be integral (s = 0, 1, 2, 
etc.) or half-integral (s = 112, 312, 512, etc.). 
The zero spin is considered integral. 

Particles with zero and integral spin are called 
bosons (named after the Indian physicist Ja- 
gadis Bose), while particles with half-integral spin 
are called fermions (after Enrico Fermi). I t  will 
become clear later in the book why particles are 
divided into two classes. 

The spin of an elementary particle is its in- 
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lrinsic property in the same way as its charge and 
rnass are. Neither the proton nor the electron can 
lrart with their spin, just as they cannot get rid 
of a part of their charge or mass. This is clear evi- 
dence of the elementariness of the electron, pro- 
Lon, neutron, and other particles that are regard- 
cd as elementary. Their elementariness does not 
preclude mutual transformations. But this is a 
quite different topic. 

Dirac constructed the theory of the electron, 
that is, formulated an equation that the wave 
function of the electron must satisfy. This equa- 
lion (called the Dirac equation) takes into ac- 
count not only the wave properties of the electron 
but also the constraints imposed by relativity 
lheory. Quantum mechanics satisfying these con- 
straints is called relativistic quantum mechanics. 
When this theory appeared, particles with spin 
tlifferent from 112 had yet been unknown. Dirac 
~)resnmed that the equality of spin to 112 was a 
logical corollary of relativistic quantum theory. 
Ilater, after a number of particles with non-112 
spin had been discovered, i t  became clear that 
I he Dirac equation was not the only allowed equa- 
l ion. The wave functions of particles with s # 
f= 112 are governed by equations differing from 
llic Dirac equation that gives an impeccably ac- 
curate description of the electron, that is, a spin- 
112 particle. 

Relativistic quantum mechanics predicted that  
:I charged particle with charge e, mass me, 
and spin 112 must have a magnetic moment with 
I,WO projections equal to f eA/2mec. Compare 
I his expression with formula (1.25). You notice 

, lllat the gyromagnetic ratio for the intrinsic 
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spin angular momentum is equal to elmec, that 
is, to twice that for the orbital angular momen- 
tum. The classical (orbital) gyromagnetic ratio 
measured in units of e/2mec will be denoted by 
g,, and the spin gyromagnetic ratio by g,. 

I t  must be emphasized that g, = 2 in units of 
e/2mec no matter what the value of s is (even if 
i t  is integral). The letter g will be used as a sym- 
bol of the total qyromagnetic ratio taking into 
account both thenorbital and spin angular momen- 
ta. I t  is referred to as the g factor, or Land6 
actor. 

Table I 

We have already mentioned that the existence 
of the electron spin indeed explains the results 
of both the' Stern-Gerlach and the Einstein-de 
Haas experiments. ItPwas'not the orbital but the 
intrinsic angular momentum of electrons that 
the two experiments revealed. 

A short table (Table 1) list the values of the 
spin and magnetic moments of the three most im- 

Magnetic moment, 
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Electron 

Proton 

Nei~tron 

portant particles of which all objects surrounding 
IJS, and we ourselves, are built. 

The fact that the neutron, even though i t  
is neutral, possesses a magnetic moment while 
the magnetic moment of the proton is greater by 
a factor of 2.8 than that predicted by the Dirac 
equation has been explained bg the modern theo- 
ry of elementary particles. 

The number of electrons in a body is equal to 
that of protons, and the intrinsic magnetic mo- 
ment of the electron is much greater than that of 
the proton. It  is thus clear that the main role in 
magnetic properties of materials is played by elec- 
trons. True, it proved possible not only to detect 
and measure the magnetic moments of atom- 
ic nuclei (magnetic moments of practically all 
atomic nuclei have been detnrmined) but also 
to study the magnetic properties of materials 
due to the magnetic moments of nuclei. The sub- 
division of the physics of magnetic phenomena 
dealing with the magnetic properties of nuclear 
particles is called the nuclear magnetism. Unfor- 
tunately, the nuclear magnetism has to be left 
out of this book. 

We have a t  last unraveled the elementary mag- 
net. In  most cases the intrinsic magnetic moment 
of the electron can be regarded as the elementary 
magnet. I ts  projection onto the axis is equal (to 
within the sign) to the Bohr magneton p~ = 
= eti/2mec. If the electron mores in such a man- 
ner that its orbital angular momentum is dis- 
tinct from zero, the orbital and spin angular 

e 

p 

n 

e f r  me= 9.1 .10-28 112 -=0.9.10-20 
2mec 

e fr  mp=1.7.10-2e 112 2.8-=1.3.10-2a 
2mpc 

etr =0.9.10-" mn=l.O1.mp 112 1.9-  
2mnc 
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momenta add. But how should we add "quan- 
tum" vectors, that is, vectors with discrete val- 
ues of projection onto a selected axis? "Clas- 
sical" vectors are added according to the par- 
allelogram law. One thus has to know the length 
of each vector and the angle between them. When 
"quantum" vectors are added, the following proce- 
dure must be followed. 

Let L, and L, be two vectors such that L: = 
= (I, + 1) 4, Li = (1, + 1) I,, and I,, I, are 
integral or half-integral numbers. Let us ask 
what can the vector J be if it is equal to the sum 
of L, and L,? In order to find the answer, let us 
project these vectors onto a common axis. Obvi- 
ously, the maximum and minimum projections 
of the sum of two vectors are I, + I, and I 1, - 
- 1, 1. This means that the maximum projec- 
tion of the vector J, that is J ,  can assume the 
values from 1 1, - 1, 1 to I, + 1,. If we recall 
the expression for the square of a vector (see p. 
47), we can operate with "quantum" vectors al- 
most exactly as with classical vectors. For the 
sake of practice, let us calculate the possible dis- 
crete values of the scalar product L,.L, through 
I,, I,, and J. Finding the square of the equality 
J = L, + L, 
according to standard rules, we then use for 
Li, L:, and J2 the "quantum" expression (1.24): 

J (J + 1) = 11 (11 + 1) + 12 (12 + 1) + 2Ll*L, 
that is, 
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Substituting for J its possible values from I 1, - 
- I, I to I, + l,, we find the set of possible dis- 
crete values of the scalar product Ll.L2. 

The vectors L, and L, may refer to the same 
particle (say, one vector is the orbital momentum, 
and the other is the spin momentum) or to differ- 
ent particles (e.g. we can ask what the angular 
momentum of two particles is if the momentum 
of one is L,, and that of the other is L,). 

The rule of addition of vectors will help us to 
find out what the spin of a system consisting of 
several electrons can be. 

We begin with two electrons. Since each o 
Lhe spins can align either along or against the 
axis, only the following situations are possible: 
(i) the spins are "antiparallel", with zero total 
spin (S = O), and (ii) the spins are "parallel", 
with unity total spin (S  = 1). 

The words "parallel" and "antiparallel" are 
put in quotation marks because the two projec- 
tions of the electron spin, (s,, s,), as of any other 
angular momentum, do not have definite values. 

There is an essential difference between the 
states with S = 0 and S = 1. The state with zero 
spin, which is singular, is called a singlet. The 
state with unity spin can exist in three forms: 
with S, = -1, 0, and 1. This state is called a 
triplet. 

To get a better feeling of the difference between 
classical and quantum momenta, let us calculate 
Lhe value of sl.s2 for S = 0 and S = I (s, 
and s, are the vectors of the spins of the first and 
second electrons, sl = s, = 112). Note that the 
spin equal to 112 is the smallest momentum in 
nature, except, of course, zero momentum. This 
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is the case where the departure of quantum prop- 
erties from classical properties reaches a maxi- 
mum. * 

According to formula (1.31), 

-314 for S=  0 
si-S2= 

114 for S = I 

If the momenta were classical, the products 
s,.s, for "parallel" and "antiparallel" spins would 
differ only in sign and would equal f sa = 
= f 114. 

Table 2 

Table 2 shows the projections of the spins of 
each electron in the singlet and triplet states (an 
arrow pointing down represents the state of an 
electron with s, = -112, and an arrow pointing 
up represents sz = 112). 

The reader should note specially that a spin 
configuration can be antisymmetric (S  = 0) or  

* When s = 112, the square of the length of the vector 
s (s + 1) = 314 is three times the square of the projec- 
tion s: = sa = 114. 

. - 
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5ymmetric (S ==;I). Look a t  the table and you 
will immediately realize that what is involved 
15  an exchange of electrons. An understanding of 
~ l ~ c  symmetry of spiri coiiliguratio~is will be help- 
lul in analyzing a concept, very important in 
tlre theory of magnetism, of the exchange energy. 

Obviously, three electrons have a spin of 112 
or 312. In the general case, an even number of 
electrons produces integral spin configurations 
(including zero spin), and an odd number of elec- 
Irons produces half-integral spin configurations. 

Consider now a system of several electrons. 
Let the orbital angular momentum of the elec- 
trons be L, and the spin momen'tum be S. 
We remind the reader that  specifying momenta 
means specifying their lengths L and S and their 
projections onto a chosen z-axis, L, (ope of the 
irumbers --L, . . ., 4 - L )  and S, ( j S ,  . . ., 

I - 1 -  S).  What will the magnetic moment of this elec- 
tron system be? 

If we go into finer detail of the questioh, the an- 
swer will appear almost automatically. The ro- 
tational properties of the system are character- 
ized by the total angular momentum J = L + S 
wliose maximum projection J can assume, ac- 
cording to the foregoing arguments, the values 
I'rom I L - S I to L + S. The magnetic Ino- 
rnelit M is proportional to J, with the proportion- 
ality factor that we called the gyromagnetic 
ratio. Hence, 

and the problem reduces to finding the g factor 
as a function of L, S. and J. Recall that the prob- 
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lem grew out of the differences between the gy- 
romagnetic ratios for the orbital arid intrinsic 
angular momenta (g, = 1 and g, = 2). 

Taking into account the difference between g 
factors, we can write the following expression 
for the magnetic moment: 

M:;/AB (L+ 2% =/A, (J i- S) (1.33') 
The bar over the vectors L and S indicates that  

their average (mean) values are taken. There is 

Pig. 15. Classical picture 
of the "precession" of the 
orbital L and the spin S 
angular momenta arountl 
the total angular Inomeu- 
turn J 

no bar over J because only the total angular mo- 
mentum J is conserved (has a definite stationary 
value), while the vectors L and S precess around 
J (Fig. 15). According to (1.33'), we are interest- 
ed in the vector 3 which, quite naturally, is 
aligned along J *  (this is clearly seen in Fig, 
15), that  is, = a J .  The constant a is easily 
determined by using the following chain of equal- 

* Forget for a time that the vector S is quantized and 
decompose i t  into two vectors: one pointing along the 
vector J, and the other, SI, perpendicular to it, rotating 

around J. Hence, gL = 0. 

i ties: 

Note that we have resorted again to the quan- 
1 um formula for J2 .  Tlie value of J . S is calculat- 
ed in complete analogy to the derivation of for- 
mula (1.31): 

Hence, 

By comparing formulas (1.33) and (1.33'), 
we arrive a t  the sought formula for the g factor: 

If the spin is zero (S = 0), then obviously J = - L and g = 1; but if L = 0 and J = S ,  then 
g = 2. If J = 0, which is possible if L = S ,  
then expression (1.33) is not defined, but, of 
course, there is no magnetic moment because all 
projections of the vector M are zero. 

The Land6 g factor can also be zero if J # 0, 
Ior instance, when L = 2, S = 312, and J = 

== 412. This example shows that the g factor 
does not necessarily "lie" between 1 and 2. 

To summarize: if a system of electrons has a 
specific total angular momentum J formed by the 
sum of the orbital L and spin S momenta, the mag- 
netic moment of this electron system is equal to 
the "quantum" vector M (see (1.33)) whose 
projections onto a chosen axis are p ~ g r n ~ ,  



where m ,  takes on one of the following values: 
-J, -J + 1, . . ., J - 1, J, and the g factor 
is given by formula (1.34). 

1.9. Structure of Atoms 

All atoms, with the exception of the simplest of 
them, the Ilydrogen atom, contain more than one 
electron. The atoms of substances with well-pro- 
nounced magnetic properties (e.g. atoms of tran- 
sition elements) are complex multiparticle sys- 
tems. I t  is impossible to extract exact informa- 
tion on the motion of a system consisting of a 
large number of particles. Even in classical me- 
chanics the exact solution is obtainable only for 
the problem of motion of two bodies. I t  is found, 
however, that  a satisfactory explanation of atom- 
ic properties (at any rate, a t  a qualitative level) 
is obtained if certain very general features of mo- 
tion of electrons in the atom are understood. We 
begin with describing these features. 

The reader should keep in mind Mendeleev's 
periodic table in which the elements are arranged 
in the order of atomic number 2, that is, in the 
order of the number of electror~s in the electror~ 
shell or lhe number of protons in the ~iucleus. 
Our nearest task is to understand why elements 
with different atomic numbers % havc different 
properties and, vice versa, why atoms located in 
similar squares of the periodic table (of course, 
they have differelit Z )  possess similar properties. 
Naturally, we shall pay special attention to mag- 
netic properties of atoms. 

Let us use a system of coordinates in which the 
nucleus is a t  rest. Now imagine an atom: i ts  nu- 
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c,leus is an immobile "cluster" of protons and neu- 
Ikons, a source of a force field in which electrons 
move. Whv does the addition of one electron to 
cbighteen already present convert an atom of the 
inert gas argon into an atom of the mctal potas- 
sium? 

We begin with specifying the forccs acting on 
clectrons. 

I t  might seem that this aspect is clear: electro- 
~ t a t i c  Coulomb forces of attraction to the nucleus 
,111d repulsive forces acting between electrons (these 
I~tive already been mentioned). But now that 
wc attempted to persuade the reader (and hope 
[hat  the attempt was successful) that  each elec- 
1 rorl not only carries electric charge but a t  the 
Y,lrne time is a small magnet (magnetic dipole), 
Ihc question about forces must' he seen in a new 
light: Is i t  necessary, whcn analyzing the motion 
oC electrons, to take into account their magnetic 
i~~terac t ion  with other electrons and with the nu-  
(' I cus? 

And first of all: What is the "magnetic interac- 
1 ion"? I t s  result is familiar to everybody: like 
11oles of magnets are  rcpillscd, and unlike poles 
,\re attracted. To answer lhe qu~s t ion ,  we should 
~lerive the dependence ol  force or1 the distance 
I)etwcen magnets (magnrtic dipoles). In contrast 
lo electrostatic forces which arc fu~ictions o111y of 
I llc distance betwecrl charges, magr~etic forces 
tlepend not only on the separation between dipoles 
1,111 also on the orientation of "magnetic nee- 
clles" with respect to each other and to the line 
c,onnecting them (Fig. 16). We shall not derive 
I lie expression for the force of interaction be- 
Iweell magnetic dipoles that  is valid a t  distances 
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large in comparison with the size of a dipole. 
This formula is exact in the case of electrons be- 
cause electrons must be regarded as pointlike 
particles. We shall give the expression not for 
the force but for the energy of interaction, 
U,: 

uM: ( M i . M , ) - 3  ( M I . ~ I Z )  ( M z . ~ I , )  , R1, 
R:Z R12 

Here M, and M, are magnetic moments of two 
particles, and Rlz is the vector didance between 

Fig. I f ; .  The force of interactioll betwoeri magi~ct lc  
dipoles is a functioll not only of the distance between 
them but also of their mutual orientation: 
(a )  the magnetic dipoles are attracted ( U M  < 0 ) ;  ( b ,  C )  the 
magnetic dipoles are repulsed (L;M > 0 ) ;  ( d )  the sign 
of UM is given by (1.35) 

Ihe~ii.  Tlie reference point lor rneasuril~g ener-gy 
is cliosen in such a way that  tllis ciiergy is zero 
when rnagnetic dipoles are illfir~itely removcrl 
from each other (for R,,  + m). 

I t  is clear from (1.35) that  the attraction be- 
tween unlike poles (i.e. between magnetic dipoles 
parallel to each other and to the line connectirig 
them) and the repulsion betwee11 like poles (i.c. 
between antiparallel magnets aligned along the 
line connecting them) are described correctly. 
(See I'rqblem 9.) 
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When eleclrons in an atom are considered, by 
l l ~ e  order of magnitude, the energy of magnetic 
interaction between two particles is 

where y, is the Bohr magneton, and a is the 
mean distance between electrons, approximately 
equal to the diameter of the atom (this formula 
is identical to (1.35); we have replaced M,,,  
with pg and R1, with a ,  and neglected the angu- 
lar dependence in the numerator). 

I t  wolild be meaningless to evaluate the ener- 
qv of magnetic interaction between an electron 
and the niicleiis since i t  is definitely much small- 
cr than U,; indeed, the magnetic moment of 
the nucleus is less than that  of the electron by a 
factor of several thousand, being a superposition 
of the magnetic moments of the protons and 
~lriit,rons which are thousands of times smaller 
Ihan that  of the electron (see Table 1). 

The energy of electrostatic interaction between 
Lwo electrons under the same conditions is 

ea 
~ ~ c o u l  = 7 

Dividing the expression for U,,  by that  for 
lJc,,l,l and neglecting the factors of the order of 
unity, we find 

This is a formula with far-reaching consequences. 
'l'he denomirlator is the electron rest energy m,ca, 
nrld the ~iumerat~or is an unusual 
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with the dimensionality of energy (verify this 
statement). Two approaches help to interpret 
this combination. First, let us turn to formula 
(1.21) for the energy of the electron in a hydrogen 
atom, expressing this energy in terms of the radi- 
US of the "orbit" a, = (tiVmee2) na (see p. 44). 
We notice that  by the order of magnitude 
h2/a2me equals I E, 1, that is, the electron energy in 
the atom. Second, let us use the uncertainty rela- 
tion (see Sec. 1.4) stating that  a particle cannot 
be restricted to a region of space of the order of a 
unless the particle is in motion. The m i n i ~ n r ~ m  
momentum of a particle within a region of the or- 
der of a is p --, Ala. Therefore, 

t i 2  p2 
N -  N 

aame me 

is the kinetic energy Ek of motion of the electro~l 
within the atom (of course, this is an order-of- 
magnitude estimate, since we omitted even the fac- 
tor of 2). The second approach may seem less 
conclusive but i t  demonstrates that h2/a2m, 
characterizes the energy of motion of any elec- 
tron in any atom, not only in a hydrogen atom. 
In order to evaluate the size of an atom. we can 
use with satisfactory accuracy the quantity 
a z 3 -  cm that will also he useful herealter. 
In other words, 

- ~~ 

Electrons in atoms move a t  velocities small 
compared with the speed of light.* Indeed, di- 

* Actl~ally, heavy multielectron atoms contain electrons 
(the latter moving deep within the atom, close to the 
nucleus) whose velocity approaches the speed of light.  
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\riding the mean momentum hla = 10-27/3 x 
x 10-8 by the electron mass me --, 1047 g, we 
lind v --, 3.107 cm/s, which is much less than the 
speed of light. 

The ratio UM/Uc,,,l is thus much less than uni- 
ty, that is, the energy of magnetic interaction 
U,, is much less than the energy of electrostat- 
ic interaction UcnL,l: UM << U,,,,,. This conclu- 
sion is so important for the analysis that follows 
that  we shall recast the ratio UnIIUCnul in a more 
"impressive" form, by replacing a with the expres- 
sion for the "radins" of the hydrogen atom in its 
ground state, a, = A2/mee2 (see p. 44).. This yields 

Unexpectedly, the inequality U,, << UCoul is 
I'ound to follow from the smallness (sic) of the 
rlectric charge (see p. 16). 

I t  must be mentioned that  the dimensionless 
combinations of world constants (e, h,  and c 
;TI this particular case) are tremendously signif- 
icant. I t  is even possible to suggest the following 
I-~alf-joking statement: our world is what i t  is pre- 
cisely because several dimensior~less romhii~a-  
lions of world constants have tlie values they do: 

and so forth. What is the meaning of these num- 
bers? Why these values and not some others? 
So far scientists have been unable to apswer 
lhese questions. 
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We have thus established that the decisive 
factor is the electrostatic interaction between elec- 
trons. In other words, in "constructing" an atom 
by adding electrons we can neglect the fact, 
important for the topic of this book, that  elec- 
trons are tiny magnets. But  this statement calls 
for a qualification: i t  is not possible to ignore the 
spin of the electron, as we shall have a chance to 
see quite soon. 

In order to clarify the general picture of the 
motion of electrons in an atom, i t  can be assumed 
that the mean force applied to each electron by 
the nucleus and all other electrons (except the 
one under consideration) has a central symmetry 
(the cenler of symmetry coinciding with the nu- 
cleus). The stationary state of each electron in 
such a field can bc characterized by a certain an- 
gular momentum specified by quantum numbers 
I ( 1  = 0, 1 ,  2, ...) and m ( m  = -1, - 1 f 1 ,  ..., 
I - 1,  I; see above). But these two numbers prove 
insufficient for completely describing the state 
of the electron. One more number, called the prin- 
cipal quantum number and denoted by n, has 
to be introduced; the values i t  assumes are 
1,  2, 3, . . . . A triad (n, I, and m) defines the state 
of the orbital motion of an electron in an atom. 
Recall that  the free motion of an electron is al- 
so described by three numbers, namely, the three 
projections of its momentum. The numbers 1 
and n are not completely independent: there is 
a constraint 1 < n - 1.  

The spin state of an electron is determined by 
the projection of its spin onto some axis. We 
shall denote the value of the spin projection by 
the letter o; o takes on two values: +1/2 and 
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-112. To recapitulate, 

the state of an  electron in an  atom is determined 
Oy four numbers n, I, m, and o: 

The energy of an electron is only weakly depen- 
dent on two of the four quantum numbers, name- 
ly, m and o. This dependence can be neglected in 
(,he first approximation. This considerably facil- 
itales the description of the structure of atoms. 
Neglecting the dependence of the electron ener- 
gy on m and o stems from neglecting the magnetic 
interaction (see (1.35)) and also (and primarily) 
from the isotropy of the space surrounding the 
electron shell of the atom. Indeed, what does i t  
matter where the angular momentum is directed 
if all directions are equivalent? And i t  is the pro- 
jection m of the momentum that  is responsible 
for the direction of the momentum. This state- 
~nen t  has i1 classical analogy: the energy of a par- 
licle movii~g in a field wit11 centrill symirlctry is 
iudependent of thc orientation of its trajeclory in 
space. 

Small n and I correspond to low energy e (n, I); 
as a rule, energy increases as n and 1 
increase. The dependence of E on n,  t: = e (n), 
Sor t,he Iiytirogeo atom has already been givcrl 
(see (1.21)). For reasons that are to some extent 
accidental the energy for the hydrogen atom is 
independent of I !  
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Owing to a tradition, the states with different 
values of 1 are denoted, regardless of the value of 
n ,  by lower-case Roman letters, following the cor- 
~~espondence 

s p d f g . . . and so on in alphabetical 
order 

1 - 0 1 2 3 4  . . .  

The state of a single electron in an atom (with- 
out indicating the values of m and o) is denoted 
by a symbol consisting of a numeral giving the 
value of the principal quantum number n and 
a letter corresponding to the value of 1. For in- 
stance, the symbol 3 p  stands for the state of an 
electron with n - 3 and 1 = 1. If several electrons 
are in a state with identical n and 1, the number of 
electroris is indicated by the exponent (no expo- 
nent i n  the case of a single electron). Thus, 3p2 
stands for two electrons in the state 3 p  (n = 3 
and 1 = 1). 

The distribution of electrons in an atom deter- 
mines the electron configuration of the atom, that 
is, describes its electron shell. Are all configura- 
tions allowed? In particular, how marly eleclrons 
can coexist in a slate wit11 tlie sarrle rz artd l'r' 
What is the rrlaximurrl "exponent" in sylnbols 
sucll as 3 p  or 4d? 

In classical physics this question would reduce 
to asking how many identical palaticles are al- 
lowed to have identical energy and momentum. 
An immediate and natural answer would be: 
an infinite number. In quantum physics the situ- 
?tion is quite different. And here is why. 

I'auli Exclus ion Principle 

ltlerltical particles manifest absolutely unlike he- 
l~avior i a  classical arid quantum physics. Classi- 
cal particles, even absolutely identical, move 
c1;lcll along its own trajectory. If the position of 
c ~ l c h  of the particles is iixed a t  the initial instant 
oC lime, then by fixing tlie positions of the parti- 
c.les on their trajectories a t  a later instant, i t  is 
possible to point to the location of each particle, 
Lliat is, possible to distinguish one particle from 
i~nother. The situation in quantum mechanics is 
quite different because particles do not move along 
trajectories. Having fixed a particle a t  the initi- 
a1 instant of time, we cannot in principle pin- 
point the same particle among its ilk at  the later 
iristarlts. 

I n  quantum mechanics identical particles are 
absolutely indistinguishable. 

This statement formulates the principle of in- 
clistinguishability of identical particles.* As fol- 
lows from this principle, a quantum state of a 
system remains unaltered if identical particles 
.Ire interchanged. 

Consider a wave lunctior~ Y ( 1 ,  2) ol two parti- 
1.1~s.  Tlie numerals 1 and 2 symbolically denote 
1 l ~ e  coordinates ol tlle lirst and second particles 
(ilnd lake in to accour~ t the variable indicating tlie 
clir.ection of the spins). Interchanging two parti- 
( les (the first particle is placed where the second 
was, and the second takes tlle place of the first) 

This greatly facilitates the constructior~ of the picture 
ol' the world. By constrlicting the theory of one electron, 
we have constructed the theory of any electron. 



is described by interchangir~g the arguments of 
the function Y (1, 2): 
\if ( I ,  2) + Y (2, 1) 

This operation must leave the state of the system 
unaltered. But this mealls that,  as a result of in- 
terchanging, the wave function can only acquire 
a constant multiplier (see p. 42). Let 11s denote i t  
by the letter a. Tliei~ Yr (2, 1) == a Y  (1, 2). 
Having performed the interchanging twice, that 
is, having returned to the original situation, we 
find that a2 = 1, and hence, that either a = 1 
or a- -1. The value of the factor a is determined 
not by the state of the system but by the sort 
of particles of which it is composed. 

Since a equals either + 1 or - 1, there exist 
two types of particles: 

for the first type, interchanging does not 
change the wave function: 

(B) Y (2, 1) = Y (I ,  2) (1.37) 

for the second type, interchanging reverses 
the sign of the wave function: 

(F) Y ( 2 , 1 ) = - Y ( 1 , 2 )  (1 .38) 

The property of particles we have just described 
has no classical analogue. Quantum mechanics 
led to the discovery of properties that are not as- 
sociated with the force interaction between par- 
ticles; even when particles do not interact with 
each other, the above-given permutation laws 
must be satisfied. Nature (quantum mechanics) 
imposes on a particle the rules of behavior in a 
collective of particles; indeed, by generalizing 
relations (1.37) and (1.38). we can deal with en- 
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sembles consisting of an arbitrary number of par- 
licles. The part of pl~ysics studying the behavior 
ot' large (macroscopic) ensembles of particles is 
called statistical physics. Particles for which 
(1.37) is valid are said to be governed by the 
/:use-Einstein statistics, and those for which (1.38) 
is valid are said to be governed by tlie Permi- 
Dirac statistics. For this reason we put the letters 
(0) and (F) on the left of f o r m ~ ~ l a s  (1.37) and 
(2.38). 

Does a particle possess some "personal" prop- 
orty that  determines to which of the two statis- 
1,ics the particle belongs? Yes, such a property 
cxists. Pauli was able to show that ' 

particles with zero and integral spin are governed 
by the Bose-Einstein statistics, while particles 
with half-integral spin are governed by the Fer- 
mi-Dirac statistics. 

I t  is clear, therefore, why particles with zero 
or integral spin were called bosons, and those 
with half-integral spin were called fermions (see 
1). 58). 

Let us return now to the question about the 
 umber of electrons that are allowed to coexist 
in one state. First, we should remind the reader 
Illat the eleclron spin is 112, which makes elec- 
/~,orzs become fermiorzs. Second, we formulate one 
of the fuildamental principles of atomic physics, 
!I:) r n ~ l  y, tlle Pauli  exclusion principle: 

n sta,te crrn be occupied by no more than one elec- 
tron. 

We shall prove the Pauli exclusion principle 
I ) ! :  using the property of antisymmetry of the 
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wave funclion of two eleclrons, We also have to 
supplement our knowledge of the wave furlction 
(see p. 42): the wave function of two rioninter- 
acting particles is construcled as a bilinear combi- 
nation of the wave functions of the individual 
particles. Therefore, let one electron be in a state 
{n, 1, m, o )  = {i),  and the other in a s tate  
{n', l', m', o f )  E {if). Then, according to rule 
(1.3% 

(19 2) = (1) '!f"(i#) (2) 
- Y{i,) (1) Y(i) (2) 

Hence, if the states {i) and { i f )  are identical 
({i) = {if)) ,  the wave function is identically 
zero; in other words, no such state exists. 

We see tha t  fermions are extremely indi- 
vidualistic and avoid like particles. 

Each physical system tends to reach a state 
with minimum energy (we shall recur to this state- 
ment in the next chapter). This tendency plus 
the Pauli principle enable us to understand the 
structure of atoms and, as a result, the nature of 
Mendeleev's periodic law. The problem essential- 
ly reduces to distributing the Z electrons of an 
atom with the atomic number Z over energy 
states, taking into account that 

(i) states with different m and o but identical 
n and 1 correspond to the same energy, and 

(ii) only one electron is allowed to have a given 
total set of quantum numbers {n, 1, m, 0 ) .  

Tlie number of states with a specific valiie of 
1 equals 2 (21 + 1). Since 1 cannot exceed 
n - 1, each value of n corresponds to only 
a few values of 1: only 1 = 0  (s state) for 
n = 1;  1 = 0 and 1 - 1 (s and p states) for n = 
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-- 2, and so on. I t  is now easy lo calculate how 
Inally electrons can have ider11icaI n and 1 in a 
general case (electrons with identical n and 1 
lorrn a "shell") and compile a table. 

Table 3 

Table 3 shows the distribution of the number 
of states over groups with specified n and 1. 
A comparison of this table with Mendeleev's pe- 
riodic table sliows that the periods of Mendele- 
ev's table are the corollary of tlle consecutiveiill- 
irlg of states with different 11 and 1, arranged 
in groups, by electrons. The Grsl group is filled 
in 13 and I i e  atoms. In  I-Ie the first shell is filled 
up. The filling of the second and third shells cor- 
responds to the first lwo (short) periods of the pe- 
riodic table comprising eight elemerils each (they 
rud with Ne and Ar, respectively). Then follow 
two long periods with 18 elements each (ending 
with Kr and Xe, respectively) and a long period 
wit11 32 elements (ending with Rn);  t l ~ e  filling 
of the last group of states only begins in the ex- 
izt ing elements. 

State 

Is 
2s, 2p 
3s, 3p 
4s,  3d, 4p 
5s, 4d, 5p 
6s, 4f, 5 4  6~ 

Nunlber of 
electrons 

2 
8 
8 

18 
18 
32 
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Chemical properties repeat themselves in 
going from one period to the next because the 
most important electrons for chemical properties 
are those in the outermost shells, beyond the com- 
pletely filled shell (unfortunately, we cannot 
devote more space to this aspect here). 

Obviously, the order in which the states are 
arranged in Table 3, corresponding to the order in 
which they are filled with electrons, stems from 
the dependence of the energy of electrons on n 
and I. By looking a t  the first rows of the table, 
we can formulate a simple rule: the first to be filled 
are the states with the lowest n and all  admis- 
sible I, followed by the states with the next val- 
ue of n. However, the situation is found to be 
not so simple in the fourth and all subsequent 
rows. For instance, according to the table, the fil- 
ling of 3d states must be preceded by the filling 
of 4s states. But actually, if we look a t  the elec- 
tron configurations of the group of iron (from 
Sc to Ni), we discover that there is  competition 
between the 4s and 3d shells: for example, V 
has three electrons in the 3d state  and two in 4s; 
i t  is followed by Cr with five electrons in 3d 
and one in 4s, and Mn which has five electrons 
in 3d and two in 4s. 

In order to come closer to our topic of magnetic 
properties, let us note that  any set of electrons 
that completely fills a group of states with given 
n and I has zero total angular momentum, both 
orbital and spin ones. This occurs because filling 
requires that electrons with opposite projections 
of momenta be employed (see p. 49). 

As examples, Table 4 shows the electron con- 
figurations of several elements. 
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Table 4 

I I I 
11:lernent I I Configuration I Term 

The last column of the table gives the symbol 
(term) that  summarizes the necessary information 
on the properties of the electron configuration 
of each atom in i ts  ground state. The structure 
of the symbol is as follows: the capital Roman let- 
ter denotes the total orbital angular momentum 
of the electron configuration, the correspondence 
Icing (cf. p. 76): 

. . .  S P D P and so on in alphabetical 
order 

1 , - 0 1 2 3  . . .  
The subscript denotes the total angular momen- 
lum J, and the superscript denotes the multipli- 
city, that  is, the value of 2S f I, where S is 
the total spin of the electrons in the atom. For 
Ire the term is IS,, that is, L-0, J=O, S = 0, 
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and for A1 the term is 2P,l, ,  that is, L - 1, 
./ = 112, S = 112. 

Looking a t  the atomic term written according 
to the rule formulated above, i t  is easy to calcu- 
late the g fac,tor and find the magnetic moment of 
the atom. 

Sufficiently accurate computational methods 
have been developed, and there exist relatively 
simple rules (the Hund rules) for determining the 
terms of any atom. Thereby quantum mechanics 
solved the problem of the magnetic moments of the 
smallest structural units of matter, that is, atoms. 
Although some atoms have terms with zero sub- 
script on the right, that is, with J = 0 (e.g. all  
inert gas atoms), most atoms have a nonzero 
total angular momentum, and hence, thcy re- 
present microscopic magnets. 

To conclude this section, we give the electron 
structure of the "most magnetic" of atoms, that 
of iron (Fe) (this atom gave the name to the 
"most magnetic" of properties: ferromagnetism): 

Fe: ls22s22p63s23p63d64s2 term 2Dq ----_- 
arcon s h e l l  

1.10. Exchange Energy 

Let us consider atomic, terms. For instance, the 
electron configuration of Mn (2 = 25) is: Ar 
shell + 3d54s2, and its term is VS,/,. Why is the 
spin of manganese electrons equal to 5/21 Ob- 
viously, the Pauli principle does not forbid the 
electrons to have other projections of spin as well. 
What makes all Gve electrons align parallel to 
one another? 
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Another example comes no1 from the theory of 
atoms but from the theory of molecules. The sim- 
plest molecule is the hydrogen molecule H z .  
Two electrons move around two protons, forming 
a stable configuration. Two electrons can have 
;I spin equal to 1 or to 0. Electrons in H, have ze- 
ro total spin. Why? These questions require an 
answer, and the answer is not trivial. The point 
is that the reason for the realization of a specific 
spin configuration is not connected with the magnet- 
ic interaction between electrons, although i t  is 
clear that the choice of a spin configuration is de- 
termined by energy efficiency: the configuration 
that is realized is that with the lowest energy. 

We have show11 a t  the beginning of the preced- 
iug section that  the magnetic interaction is weak 
and can be neglected without significant error. 
I311t then we are left with only the electrostatic 
interaction which is insensitive to the spin state 
oC electrons. Indeed, electrons with "parallel" 
spins and those with "antiparallel" spins are re- 
pulsed by one another with the identical force 
inversely proportional to the square of the distance 
,\eparating them. Why then is tlic spin of elec- 
trons in manganese 512, while in the liydrogeri 
[nolccule i t  is zero? See~ningly, there cannot be 
any conrieclion between the energy of an electron 
qystem and its spin, a t  any rate, as lorlg as we 
i~eglect the magnetic interaction. 13ut in reality 
the two are interrelated. The relation results from 
tho antisgmriletric properties of the wave func- 
lion of electrons. 

For t l ~ e  sake of simplificntion, we shall ronsid- 
cr  a system consisting of two electrons inter- 
-~ct ing only via electrostatic forces. Since we ne- 
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glect the magnetic interaction, we can completely 
ignore the spins of electrons while solving the 
problemof the energy of the system. Let 11, (r,, r,) 
be the wave function describing the orbital 
motion of electrons. This fact is emphasized by 
the presence of only the coordinates of the elec- 
trons, r, and r,, as explicit arguments of the wave 
function; spin variables are omitted. We can- 
not completely forget about spin variables be- 
cause the total wave function Y (1, 2) must be an- 
tisymmetric (see (1.38)). We cannot do better 
than to state that the total wave function 
Y (1, 2) is a product of the spin wave function 
S  (IS,, IS,) describing thespin state of the electrons 
(IS, and IS, are spin variables) and the orbital 
wave fuilctior~ ~p (r,, r,) describing their orbital 
motion: 

'Ir (1, 2) = s (IS11 0,) 47 (r11 l.2) 

We have seen (see Table 2 on p. 64) that a spin 
configuration can be symmetric (if S  - 1) or 
antisymmetric (if S  = 0 ) .  But the function 
Y (1, 2) as a whole is antisymmetric. Hence, a 
symmetric spin function corresponds to an anti- 
symmetric orbital function, and vice versa. Tliis 
leads to the following conclusion: 

when S  - 0. 9 (r,, r,) =- 1 1 1 ~  i s  a syvln2et7.l~ ~ L L I I C  

tion 
when S  = 1, I/. (r,, r,) - q, is an u n l i s y n ~ r n e i ~ . ~ ~  
function 

The ~ymmcl r i c  and antisyrnmelric, functions, 
$, and $,, describe difj'crcnt orbital rnotions ol 
electroris and thus correspond to differer~l ener- 
gies. Specific circnmstances determine which of 
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these energies is lower. In hydrogen molecules the 
minimum energy corresponds to the symmetric 
wave function describing the orbital motion. 
And this is the reason for the electron spin of H, 
to be zero. 

The result obtained above, namely, the 
dependence of the energy of a system of electrons 
on the symmetry of the wave function, and hence 
on spin, can be recast in a form tha t  makes i t  
possible to speak of the so-called exchange inter- 
action between electrons. 

Let us denote by E, the energy of electrons cor- 
responding to the wave function $,, and by E, 
lhe energy corresponding to 9,. From what we 
qaid above, there is  a correspondence between the 
energy of a system and its spin: 

E s C + S = O  
I:', ++ S  = I 

We want to compose an expression of the spins 
of electrons (it  is called the spin Hamiltonian 
and is denoted by ,%, *) that  assumes the value 
E, for S  = 0  and E, for S  = 1. 

To do this, we resort to formula (1.32): 
1 

:yes = 7 (E, + 3E,) + (E, - E,) S, .s, 

The values taken on by the spin Hamiltonian 
?gs are the possible values of the energy of the 

* The Hamiltonian is the quantum analogue of the 
Hamiltonian function. The Hamiltonian function is the 
cnergy expressed in terms of momenta and coordinates. 
The energy of motion of a free particle is (1/2)mu2, anrl 
ils Hamiltonian function is p2/2m (p = m v  i s  the mo- 
1nent11m: aqd v is the v~loc i ty l .  
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system consisting of two electrons (the very E,  
and E, mentioned above). The first term, 
(114) (E, + 3E,) = 2. is independent of the spin of 
the system and, as can readily be ascertained, re- 
presents the value of energy averaged over all 
possible spin states (three states with S = I 
and one state with S = 0); the second term is a 
function of the spin of the system. The difference 
E, - E ,  is usually written as a parameter A 
with minus sign. The spin Hamiltonia~i of two 
electrons then taltes the form 

This notation makes i t  possible to relate tlie eller- 
gy efficiency of states with S = 0 a r ~ d  S - 1 
to the sign of the parameter A.  If A < 0,  the 
"antiparallel" arrangement is preferable, and if 
A > 0, the "parallel" arrangement is preferable. 
The parameter A is called the exchange integral, 
and the second term in (1.39) is called the ex- 
change energy, or the exchange interaction. 

The origin of these terms must be explained. 
Tlie attribute "exchange" appeared because the 
symmetric and antisymmetric wave functions de- 
scribe the state of electrons that  are interchanged. 
Furthermore, the parameter A is a measure of tlic 
frequency of this interchange. I t  is called the ex- 
change integral because the calculation of A 
requires that  certain expressions comprisirig wave 
functions be integrated. The term exchange 
interaction emphasizes tliat tlie structure of the 
spin Ilamiltonian is wcl-1 that  tlie electrons are 
as if coupled througli zome specific interaction 
whose strengtli is a function of the relative orieu- 

1.10. Exchange Energy 89 

tation of the spins of electrons. In this sense the 
exchange interaction reminds us of the magnetic 
interaction. The exchange integral A is a measure 
of interaction intensity. 

Several features, very important for further 
discnssion, must be underlined. 

(i) The exchange interaction is isotropic. A ro- 
tation of all spins by the same angle does not 
change the value of the exchange energy. This is 
clear, for example, from the fact that  expression 
(1.39) includes the scalar product of spins, and 
this product is not altered when both spins ro- 
tate by the same angle. 

(ii) The intensity of the exchange interaction 
il is determined by the electrostatic energy of 
electrons and thus is not small, although I A I 
is, as a rule, somewhat less than the mean energy 
of electrostatic interaction (in our notation, 

(iii) According to the arguments given above, 
the exchange integral can be either positive or 
negative. As far as the interaction within one 
atom is concerned, A is mostly positive (this 
constitutes one of the I-Iund rules); in the case 
of interatomic interaction A is predominantly 
11 c.gative, although cases of A > 0 not merely hap- 
pclr hut even explain the most spectacular mag- 
netic property, namely, ferromagnetism. 

In the case of interatomic eschange interaction 
(when the interacting ~ l e c l  rons 1)elorig to difler- 
e r ~ t  atoms) thc evclinng~ irltcgral il esser~tially 
depends on thc distance hetween alorns. sharply 
ctecreasing (exponentially) wlicn atoms are re- 
moved .a!, distances greater tharl the a t ~ m i c  size, Of 
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course, this can be proved only by substituting 
specific wave functions into a concrete exchange 
integral, although i t  should not be difficult to 
form a qualitative picture if the reader recalls 
that the exchange interaction is a result of inter- 
changing of electrons. * 

In conclusion of the chapter we give a brief di- 
agram outlining the logic of the last two sections: 

Principle of indistinguishability of particles 

I 
I 

I Fermions (electrons) 

I 

the energy of a system 
periodic law on its spin 

* Such stntcrr~eiits tend t o  creale CIII il111slu11 ot under- 
standing. In Iact, n e  wanted to sti~nulatc thc rcader's 
irrtercst. All aror~sed interest will encourage a more 
thorough ;rr~aly~ls, which will lead to  understanding, 

(:hap ter 2 

Paramagnetism and Diamagnetism 

Now we more from the tiniest building blocks 
of matter to macroscopic bodies and will try 
to describe their magnetic properties. Even 
special monographs cannot enumerate the 
properties of all substances. This simply can- 
riot be done: substances are too numerous. Bu t  
even in antiquity scientists were aware that sci- 
cnce begins with systematization. One has to re- 
~rlember that any systematization is approximate, 
calls for qualifications, supplements, explana- 
tions, and exclusions. The Soviet physicist 
Ya. G. Dorfman had a favored example of an il- 
logical but convenient systematization: "A shoe 
store is divided into the sections of men's, wom- 
en's, and seasonal footwear." 

The magnetic properties of malter make i t  pos- 
4ble to suggest a simple and logical systematiza- 
tion. Substances are eitlrcr diamagnetic or para- 
magnetic. The phrase "snl~stances are either 
paramagnetic or diamagnetic" hecornes impcc- 
cable if we qualify i t  with "at high tempera- 
tirres". 

Th114, 

(11 high lernpei ntu!.es a su bstance i s  either diurnug- 
netic or. parantagnetic. 
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I t  remains for us to define paramagnetism and 
diamagnetism, as well as to describe the magnet- 
ic properties of materials a t  low temperatures. 

2.1. Magnetic Susceptibility 

If a piece of some material is placed between the 
poles of a magnet, or inside a ~olenoid through 
which electric current is run, the magnetic lines 
of force are somewhat redistributed as compared 

Fig. 17. Magnetic lirics o l  force uildergo rerlistributior~ 
if a body is introduced between the poles of a lnagrlot 

with their distribuliorl when Illere is nothing bc- 
tween the poles or inside the solenoid (Fig. 17). 
When placed in a magnetic field, all  substarices 
arc magnetized. This means that  each element 
in llic volume of a body beliaves as a small mag- 
net,  and tlie magnetic mornenl of the bod>- as a 
whole is a vector sum of the magnetic momenta 
of al l  snch elements. A measure of magnetiza- 

2.1. Magnetic Susceptibility h3 

lion of tlie body is the magnetic moment density 
&. Tlie dimensionality of ,& follows from tlie 
I'ncl tllat ,&V, wljere T7 is the volume of the body, 
is the magnetic moment M. I t  is readily ascer- 
lained that the dimensionality of the magnetic 
moment density did is identical to that of mag- 
netic field: 

(See I'roblem 10.) 
A nonzero magnetization ,& appears only in 

response to a magnetic field and is a linearfunc- 
lion of the field when the field is 11ot too strong: 

At any rate, this is the case a t  lligll temperatures. 
The dimerlsionless factor x is called Ihe mag- 

rlelic susceptibility. 
Paramagnetics are substances with x > 0,  while 

diamagnetics have x < 0.  The middle is ex- 
cluded: there are no substances in nature with - O.* As a rule, tlie paramagnetic susceptibil- 
i ly xpara is substantially greater than the dia- 
maglietic susceptibility x,,,, that is, 

irltliough there are some very important excrp- 
lions (see later, Sec. 2.6). Tlie magnelic suscepti- 
hility of diamagnetics is practically indepen- 
dent of temperature, wliile that of paramagnetics 
depends on temperature very substantially. 

* The discovery of para- and diamagr~ctisin was made 
I)y Michael Faraday. 
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Pierre Curie established in 1895 that 

the paramagnetic susceptibility decreases in in- 
verse proportion to temperature T.* 

This inverse proportionality holds quite well 
a t  sufficiently high temperatures in all  paramag- 
netic materials. The statement given above is 
called Curie's law. **  As temperature is lowered, 
a systematic departure from this law is clearly 
observed, especially when solid and liquid para- 
magnetic substances are studied. The tempera- 
ture dependence of the paramagnetic susceptibili- 
t y  is conveniently illustrated by 1 1 ~  plotted as a 
function of T. Figure 18 shows that the experi- 
mental values of 11% linearly depend on tempera- 
ture (at high T) for all materials shown in the 
figure, but for some materials the extrapolated 
experimental line intersects the abscissa axis a t  
a positive temperature O,, while for other mate- 
rials the intercept is negative. The behavior 
x = x (T) can be described by a formula that  
generalizes Curie's law: 

x=- , C aiid Op are constants, T >>lOpl 
T - O p  

(2.2) 
* \Ve shall use the absolute temperature scale, called 
the Kelvin scale. The zero of this scale corresponds to 
the ground state of a body, when all  thermal motion of 
its particles dies out. Although temperature is a habitual 
notion, the true h ~ s i c a l  meaning of temperature is  not 
so easily compre%eisible. Here we recommend a book 
in the same series, Temperature by Ya. A. Smorodinsky, 
published in English by Mir Publishers in  1984. 
* *  The independence of the diamagnetic susceptibility 
of temperature was also discovered by P. Curie. I t  was 
also Curie who discoveretl that  ferromagnetism can be 
clestroye,l by increasing temperature (see below). 

2.1. Magnetic Susceptibility 95 

This formula is called the Curie-Weiss law. The 
quantity O, (even when Op < 0) is called the 
l~aramagnetic Curie point. The attribute "para- 
magnetic" must not be left out. The concept of 
the "Curie point" as such has a different meaning 
that we shall discuss later. There is no contradic- 
tion between the impossibility of negative ab- 
solute temperatures and the cases in which OP 

Fig. 18. 1/x as a function of T in  paramagnetics: 
curve I-CuSO,; curve 2-Nd,(SO,), .8H,O; curve 3- 
Pr,(SO,), .8H,O; curve 4- Ni 

is below zero. If Op < 0, this merely indicates 
Illat x (T) < CIT a t  T >> I 0, I , while if 

(-), > 0, x (T) > CIT. 

The constants C and 0, in the Curie-Weiss 
law are dif4erent in different materials. Our prob- 
lem is to establish how these constants are relat- 
cd to the characteristics of atoms and molecules 
of which substances are constructed. 

The behavior of paramagnetic materials a t  
lcmperatures close to the paramagnetic Curie 
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point, T x ( O, ( , is of substantial interest 
and will be discussed specially in this book after 
we explain why Curie's law holds a t  T >  1 0, I 
and why departures from this law are observed 
a t  T x I @ ,  I .  

The magnetic properties of materials are some- 
times described by the magnetic susceptibil- 
i ty  X ,  and sometimes in terms of the magnetic 
permeability 

x  = 1 $- 4xx (2.3) 

Clearly, 

x  > 1 for paramagnetics 
x  < 1 for diamagnetics 

As follows from relations (2.1) and (2.3), tlle 
magnetic permeability is the proportionality fac- 
tor between the vectors H and B introduced by 
the equality 

B = H +4xM (2.4) 

This immediately gives B = x H  and x  = 1 + + 43%. 
Althougli the vector B is called the vector of 

magnetic induction, and H the vector of magnet- 
ic field, the true meaning of B is that B (and not 
H) is the mean magnetic field in a medium. Each 
atom is a microscopic source of a magnetic field, 
and over interatomic spacings the field in a me- 
dium varies from point to point. Besides, atoms 
and electroris in the aloms always move. Con- 
sequently, the microscopic (true) field constant- 
ly varies. The value of the field measured by 
macroscopic instruments is the result of averag- 
ing over time and space of the microscopic field. 

2.1. Magnetic Susceptibility 

I I is necessary to repeat: B is the mean magnetic 
lield, 

When a magnetic field permeates a region oc- 
cupied by matter, the absence of magnetic charges 
(see Sec. 1.1) is seen in that  the magnetic 
lines of force never discontinue: the normal (per- 
~'c?ndicular to the surface of a body) component 

I'is. 19. Magnetic lines of force never discontinue e he11 
I t 'c~~sing a vacuum-medium boundary 

of the vector B is equal to the normal component 
0I' tlie vector H outside the body (Fig. 19). Never- 
~lleless, by convention i t  is the vector H, and not 
I), that we call t,he magnetic field. We hope that 
l his discrepancy between the term and its mean- 
ing will not lead to confusion. As long as the 
111ilgnetic permeability x  does not differ too 
~ n ~ i r h  from unity, the difference between B and 
I I  is fairly insignificant. 

We conclude this review section, that mostly 
offered statements about magnetism, with a defi- 
~ ~ i l i o n  of an ideal diamagnetic substance for which 
x - 1 1 4 ~  arid x  = 0. Since the magnetic per- 
111eability and, with i t ,  the induction B of this 
511bstance are zero, an ideal diamagnetic materi- 
. , I  has zero mean magnetic field. If such a materi- 



98 Ch. 2. Paramagnetism and Diamagnetism 

a1 exists, i t  must repel magnetic lines of force. 
We shall see later (see Sec. 2.6) that 

superconductors are ideal diamagnetic materials. 

2.2. Magnetic Field Aligns 
Magnetic Moments 

A comparison of diamagnetic and paramagnetic 
materials immediately reveals the difference be- 
tween them: paramagnetic materials are composed 
of atoms or molecules possessing magnetic mo- 
ments, while diamagnetic materials consist of 
atoms or molecules whose magnetic moments are 
zero. Now we can show that this observation for- 
mulates a significant feature: bodies composed of 
atoms (molecules) hzving a magnetic moment must 
be paramagnetic, and those composed of atoms (mol- 
ecules) with zero moment must be diamagnetic. 

In Ch. 1 we discussed the magnetic momellts of 
individual atoms and found out that the number 
of atoms with nonzero magnetic momenl is much 
greater than that of atoms with zero moment. 
But bodies mostly consist not of atoms hut of 
molecules. The theory that describes in detail 
how atoms combine into molecules is quantum 
mechanics that  makes i t  possible to calculate 
(at any rate, in principle) the forces acting he- 
tween submolecular particles and to determine 
the electron structure of the resulting molecules. 
Here we cannot go into these aspects and only 
mention in passing that when two or more atoms 
with nonzero magnetic moments (we shall refer 
to such atoms as paramagnetic) combine to form 
a molecule, this molecule is often devoid of mag- 
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lietic moment (it  is diamagnetic) (we remind the 
reader that we only speak of the electron magnet- 
ic moment). In addition to the case of hydrogen 
~nolecule H, already analyzed in Sec. 1.10 (a 
diamagnetic molecule formed of two paramag- 
netic atoms), we shall discuss the molecule of 
c,ornmon salt,  NaCl. The electron configurations 
i~ncl terms of sodilim and chlorine atoms are: 

llotli the sodium and chlorine atoms are paramag- 
r~elic. This clearly follows from their terms. 

The formation of a NaCl molecule goes through 
lllc formation of a Na' ion whose electron 
illell is analogous to that of an atom of tlie inert 
gas Ne, and of a C1- ion whose electron shell is 
;~oalogous to that of Ar. Therefore, both ions 
!lave zero magnetic moments. They form, by vir- 
Lne of the electrostatic (Coulomb) attraction, a 
clitimagnetic molecule. We wanted to emphasize 
(hat  there exist more diamagnetic materials than 
one could guess by looking a t  the electron config- 
 rations of individual atoms. On the contrary, 
paramagnetic molecules are a rarity. Tlie most 
I'amilinr example is that of oxygen: tlie 0, 
~nolecule is paramagnetic. 

Molecules ill a gas constal~tly move, colliding 
with one another and the walls, and the free path 
lcr~gth of a molecule is much greater than its size. 
111 increase in temperature means that the mean 
\elocity of the chaotic motion of molecules in- 
c'reases. In a solid, that is, in a crystal, mole- 
c,ules are arranged i11 n strictly defined order: and 
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the llirrmnl motion manifests itself in an increased 
amplitude of vibrations around equilibrium 
positions. A liquid represents an intermediate 
phase. Molecules vibrate around random equilib- 
rium positions which are not fixed but move, 
ensuring the fluidity of a liquid. An increase in a 
liquid's temperature means that  the chaotic mo- 
tion of molecules is intensified. 

We ignored in this brief description of the 
states of aggregation whether molecules have mag- 
netic moments or not. The reason for this was not 
only a desire to simplify a picture that is quite 
complex even without this complication but also 
that the presence or absence of magnetic moment 
in a molecule is not important as long as we are 
not interested in the magnetic properties of a ma- 
terial. The properties of liquid oxygen (paramag- 
netic molecules) do not differ qualitatively from 
the properties of liquid nitrogen (diamagnetic 
molecules). A different aspect is now important 
to us. In studying the macroscopic magnetic prop- 
erties of paramagnetic materials, we can, a t  the 
iirst steps, ignore the positions and thermal mo- 
tion of the centers of mass of the molecules and 
analyze only the position in space of the magnetic 
moments of these molecules. In order to clarify 
the magnetic properties of materials, we can visu- 
alize the paramagnetic molecules as microscopic 
needles, that is, tiny magnets that can be orient- 
ed in sDace in 2 J  -+- 1 wavs. 

An  ciisemble of particlis whose behavior de- 
pends only on the directions of their magnetic mo- 
ments is called the gas of magnetic needles. 

A gas of magnetic needles is a convenie~it model 
for describi~ig the properties of paramagnetic ma- 
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terials a t  high temperatures. The word "gas" 
only underlines the fact that  the interaction be- 
tween magnetic moments is neglected. 

In order to go further, we shall have to resort to 
some results of statistical physics." But  what is 
the thermal motion in a gas of magnetic needles 
placed in a magnetic field H? Statistical physics 
states: 

the number of particles N (m,) wi th  a definite 
projection of the magnetic moment M onto the 
magnetic field H is  proportional to exp (--.sM/kT), 

\vliore, accordi~ig to (1.28) and (1.331, 

c,, = ---M.H = --gyBHmJ 

is the energy of the magnetic moment M in Lhe 
magnetic field H,  and k is the Boltzma~ln con- 
stant,  k == 1.4.10-l6 ergldeg. The proportional- 
i ty  factor is chosen so as to satisfy a natural re- 
c~nirement: the sum of the number of particles 
(pcr unit volume) with different projections of a 
magnetic moment must be equal to the total 
rll~mber of particles N (per unit volnme): 

* Statislical physics is a special branch of physics that 
.l~idies tho laws governing the behavior and propel-ties 
01 macroscopic bodies, that is, bodies consisting of 
a colossal number of constituent particles: atoms, mole- 
cules, electrons, ions, etc. 



Therefore, 

Y mJ=-j 
where J is the lotal momen:nnl of an atom or a 
molecule. R e  remind the reader that the value 
of tlie g factor is determined by the values of 
L, S, and J (see (1.34)). 

This formula sllows that the words "tliermal nio- 
tion" in the case of a gas of magnetic needles mean 
a certain, temperature-dependen t distribution 
of particles over magnetic levels. This "deli- 
nition" of thermal motion is very likely to surprise 
tlie reader. But tliis cannot be helped: in this 
particular case temperature mearis precisely what 
is stated by formula (2.5). 

At absolute zero of temperature (as T -+ 0 )  all 
parlirles "assemble" at  a magnetic level with 
m J =  J :  

NnIJ=~=A7 ,  NmJiJ=C) 

that  is, the magnetic moments of all particles are 
"parallel" to the magnetic field. Of course, they 
are parallel only in the sense allowed by quantum 
mechanics. For tliis reason we retained the quo- 
tation marks (see p. 63). 

When temperature tends formally to iriliriity 
(we shall discuss later what we understand by 
high and low temperatures), the quantity 
N (m,) becomes independent of m,: 
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Illat is, particles are distributed uniformly over 
irll levels: the (2J  + 1)th part of the total num- 
1)er of particles is found a t  each level. 

1 Negative Absolute Temperatures 

I t  is intuitively clear that temperature deter- 
mines the energy of a gas (or is i t  determined by the 
cnergy of the gas?). Indeed, let us assume that  
we are able to produce a gas of magnetic needles 
with a specified energy, that is, we can fix the 
total energy of the magnetic-needles gas. We 
shall denote i t  by 8. Then, by virtue of (2.5)", 

and we can calculate the energy of the gas for each 
value of temperature. Let us analyze in detail 
tlie simplest case, namely, J = 112 and g = 2. 
Energy as a function of temperature then takes 
the form 

PBH $ = - Np13H tanh - kT (2.6) 

When T tends (formally) to infinity, the energy 
F tends to zero: $, = 0. The limit is zero as a 

* The formula for '6 is derived on the basis of the follow- 
ing arguments: the energy of a gas is the sum of the ener- 
qics of the particles occupying al l  the allowed levels. The 
energy of a particle at  a given level with a given mJ) 6 is the energy of the level multiplied y the number of 
particles occupying this level. 
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result of our choice of a reference point for mag- 
netic levels. The energy of the lower level is 
- ~ B H ,  and that of the upper level is + pBH. 
At all finite temperatures energy is negative be- 
cause there are more particles 011 the lower than 
on the upper level. 

Now we want to pose an "improper1' question. 
What will happen if we make the energy of a two- 
level gas greater than g,? This requires that  we 

Fig. 20. Temperature as 
a function of the total 
energy of a system of 
magnets (J = 112) in a 
magnetic field H; E ,  = 
= - N p B H  < 0 

"arrange" the distribution of particles in such a 
way that  their number on the upper level exceeds 
that on the lower level (this distribution is said 
to be inverse). What temperature corresponds to 
such states? The answer is absolutely unexpected: 
"Negative temperature!" Figure 20 shows that  
the negative temperature is "found" to the right 
of the infinitely large positive temperature and 
corresponds to a higher energy. 

Note that  the possibility of introducing a 
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negative temperature follows from a finite num- 
ber of levels in a system (in this particular case, 
in the gas of magnetic needles). Actual tempera- 
ture is always positive. The concept of negative 
temperature is a convenient method of de- 
scribing nonequilibrium states of systems possess- 
ing a finite number of levels; i t  is used in laser 
physics and its applications. i 

Our treatment of temperature was rather care- 
less: i t  tended either to zero or to infinity. To 
compensate for this, we emphasized the formality 
of these procedures. There are no abstract high 
or low quantities in physics (we had an opportuni- 
ty to find that  out). The value of a parameter of 
interest must always be compared with some- 
lhing else. What is the quantity with which the 
temperature T must be compared? In all the 
formulas of this subsection temperature appears 
in the ratio pBH/kT (we have omitted the g factor 
because i t  is of the order of unity). Temperature 
must be regarded as low or high depending on 
whether pBHlkT >> 1 or pBH/kT << 1. Let us 
find the relation (in standard units) between T 
and H when pBH = kT:  
2' K = 0.5. 10-4H Oe (2.7) 

This relation is so important that i t  deserves 1 1 n special analysis. In  ordinary fields and a t  
ordinary room temperatures (z 300 K) k T  > 
> pnH. Only a t  veryIlow temperatures (in the 
vicinity of absolute zero) the inequality can be 
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reversed (the equality is reached a t  T = 0.5 K 
in a magnetic field of If = lo4 Oe). 

Tlie physical meaning of the quantity pBH 
is clear from formula (1.29); pBH is the spacing 
be twsn  magnetic levels. And i t  was found that 
\ 

E n , ~ , m  

Pig. 21. hf agnetic levels 
+ 1 with different rt and 1 are 

' n ,  1, m separated by a large "dis- 
- 1 tance" 

usually this spacing is small in comparison with 
k T ,  that  is, with temperature expressed in 
energy units. Other (nonmagnetic) energy levels 
of atoms or molecules are separated from the 
lowest, ground level by distances of the order of 
several electron volts, 1 eV z lo4 K (Fig. 21). 
In normal conditions these levels are not ex i t ed* ,  
and we can safely forget about their esistence 
and regard an atom (or a molecule) as a magnetic 

* The number of atoms in an excited state is proportional 
to exp (-A&,/kT), where Ae, = en - E,, E, is the 
energy of the excited state, and 6 ,  is the energy of the 
ground state (at room temperature, i.e. a t  T = 300 K) ,  
and if A E ~  s 1 eV = 104 K,  we find exp (-A&,/kT) s 
NN exp (-300)i 
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IIL- .t: aiicl use t l ~ e  rnodel of the magnetic-needles 
gas for calculations of magnetic properties. 

Now we pass to the main statement of this 
section. We want to prove that  the gas of magnetic 
needles is paramagnetic. To achieve this, we 
make use of distribution (2.5) and calculate the 
magnetic moment of the unit volume of this 
gas, ,& (or rather, the projection of ,& onto the 
magnetic field H)*: 

Now we recall that psgH << 1iT. The expoiientials 
111 the denominator of (2.8) can be replaced with 
~lnities, and in the numerator we retain only the 
first (linear in H )  terms of the expansion of Ll1e 
csponential: 

m J = - J  

Rut 
J 

1 2 n ~ $ = -  J ( J  , - 1 ) ( 2 J +  1) 
3 

I l l ,  ;- J  

(tlic derivation of this formula is a useful exercise 
i r i  algebra). Therefore, 

* See the footnote to p. 103. 
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and the magnetic susceptibility 

is positive and governed by Curie's law, that is, 
indeed, 

the gas of magnetic needles is paramagnetic. 

Not only were we able to prove above this state- 
ment but we also succeeded in calculating as a 
"by-product" the constant in Curie's law. As we 
see from formula (2.7), i t  is possible to determine 
the value of the magnetic moment of the mol- 
ecules in the gas, or rather, the quantity 
( P B ~ ) ~ / J  ( J  + I), by measuring the proportion- 
ality factor between 1/T  and %. 

As we already know, departures from Curie's 
law become appreciable when temperature is 
lowered (especially in solid and liquid para- 
magnetic materials). This is only natural because 
in deriving formula (2.9) we neglected the in- 
teraction between atomic moments: the magnetic- 
dipole interaction and especially the exchange 
interaction. This is quite justified a t  high tem- 
peratures*, so that we have met the goal of this 

* We can ignore the interaction of the particles of an 
ordinary classical gas a t  high temperatures becausc 
(3/2)kT is the mean kinetic energy of a molecule, so 
that the mean energy of interaction per one particle can 
of course be neglected if i t  is small compared with 
(312)kT. In  a gas of magnetic needlcs temperature deter- 
mines only the occupancy of magnetic levels. IIas this 
anything in comnion with the interparticle interactioll? 
Nevertheless we will be able to show (see Cli. 3) that  
the interaction can indeed be neglected a t  high tempera- 
tures, that  is, the model of the gas is valid. 
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1 subsection. Later we shall describe the effects 
of this interaction. 

Electron Paramagnetic Resonance 

We have found enough by now about atomic 
rnagnets and about the distribution of magnetic 
particles over energy levels, and are able now to 
tliscuss an interesting and important effect that  
is called the electro~z paramagnetic resonance 
( E P R ) .  * 

When considering an individual magnetic mo- 
ment in a constant uniform magnetic field (see 
Sec. 1.6), we were able to establish that a moment 
lilted with respect to the field direction precesses 
a t  a frequency y H ,  where y is the gyromagnetic 
ratio. When seen "sideways", the moment appears 
to be oscillating harmonically. But i t  is well 
ILnown that if a body vibrating a t  its natural 
l'requency is subjected to an alterilatir~g force a t  
the same frequency, the resorlance arises: the 
vibrating body removes energy from the source 
of the force. 

1s i t  possible to create a periodic force acting 
on the magnetic moment3 Yes, i t  is. All one 
has to do is to rotate the magnetic field, that is, 
lo add to the constant component of the field 
 nothe her, alternating component acting on the 
rnagnetic moment and directed a t  right angles 
lo the constant component; this alternating 
c~omponent nllist rotate around the former a t  

I'he electrori pardlnagnetic resoriaricc was discovered 
E. I i .  Zavoisky in 195% in experiments with iron- 

y o u p  salts. Argurr~er~ts ~ I I  favor of the possibility of 
I P1t were suggested as e,lrly as 1922. 
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a frequency o.* If o = yH, the electron para- 
magnetic resonance sets in; it is manifested by 
an abrupt increase in the losses of the magnetic 
energy of the alternating magnetic field. This 
is the explanation of EPR in "classical" terms. 

The quantum explanation is even simpler. Let 
11s specify "the most quantum" of the gases: the 
gas of electron spins. Then, g = 2, and, as always, 
p~ is the Bohr magneton. In the electromagnetic 
wave field particles can jump from the lower to 
the upper level if the energy of the electromagnetic 
qnantum. that is, one photon, equals the differ- 
ence between the energies of the levels: when 
tio - 2pBH. Note that  the classical and quantum 
conditions for EPR coincide because the spin 
gyromagnetic ratio is y - elm,c. 

Electromagnetic waves can interact not only 
with electron magnetic moments but also with 
nuclear magnelic moments. The energy of nuclear 
particles in a magnetic field depends on the 
value of the projection of its magnetic moment 
onto the magnetic field. As in the case of electron 
magnetic moments, a system of equidistant 
levels is produced so tha t  transitions between 
these levels car] be induced by electromagnetic 
radiation. This phenomenon is called the nuclear 
magnetic resonance (NMR). ** Q~ialitatively EPR 

* A longish sentence inay hove given the impressioll 
that implementation sho111d be difficult. lIsually a spec- 
imen is placed in a resonator in which a periodic high- 
frequency electromagnetic field is produced, and t h ~  
resonator (with the specimen) is placed either between 
the pole$ of a magnet or inside a solenoid. 
* *  This nuclear magnetic resonance was discovered and 
explained by P. Bloch ant1 E F'urcell in 1946 (Nobel 
Prize in physics, 1952). 
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and NMR are very similar, b i ~ t  quaiititatively 
they differ very co~isiderably because of the 
difference between the electron and nuclear 
magnetic moments. (See Problem 11 .) 

EPR and NMR have grown into important 
research tools, and their use is not restricted to 
physics; these techniques were employed in a 
r~iimber of instruments in chemistry, geology, 
biology, and other fields where one has to "peer 
into" a body without destroyirlg it .  

2.3. Diamagnetism 

If we wanted the briefest ~ o s s i b l e  definition of the 
riature of paramagnetism, i t  would he: a magnetic, 
jicld orients the magnetic moments of atoms or 
molecules. 

Diamagnetism arises because in any atom and 
i n  any molecule a magnetic field produces a mag- 
netic moment prorortional to this magnetic field. 
The magnetic moment appears because moving 
electrons are subjected to the Lorentz force F: 

The expression for the diamagnetic susceptibility 
can be rigoroubly derived only in terms of quan- 
trim mechanics. But  we can choose an incon- 
,.istent approach: use classical mechariics to 
illustrate the cause leading to the diamagnetic 
clffect, evaluate the value of the diamagnetic 
.;usceptibility, then give the exact formula, and 
o i ~ l y  then indicate a t  what step the derivation 
\\-as not rigorous. This is tlie approacli we are to 
I'ollow. Tliis will teach us how to use the results 
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of quantum mechanics while operating in classical 
terms. 

We shall see later that the diamagnetic sus- 
ceptibility is quite small. If an atom already 
has a magnetic moment, i t s  change due to dia- 
magnetism is so small that  can simply be neg- 
lected. Therefore diamagnetism is of interest 
only in such atoms (or molecules) that have no 
intrinsic (paramagnetic) moment. 

We  must s tar t  with constructing a "classical 
model" of a diamagnetic atom. Presumably, the 
simplest classical model without a magnetic 
moment is as follows*: two electrons revolving 
around a nucleus in opposite directions along the 
same orbit (one clockwise and one counterclock- 
wise). Obviously, each electron has an angular 
momenlum (and hence, a magnetic moment), 
but the sum of the two momenta is zero. 

Now let us place our "atom" in a magnetic 
f~eld H in such a manner lhat the orbits of elec- 
trons are in a plane perpendicular to the magnetic 
field. Before calculations, we shall make one more 
reservation: the magnetic field is so small that 
the Lorentz force (2.10) can be considered a small 
perturbation in comparison with the force acting 
on electrons in the field of the nucleus. Let v, 
be the velocity of the electron moving along a 
circle of radius R when the magnetic field H = 

= 0,  and v its velocity when H + 0. Then, by 
equating the centripetal force to the radial 
projection of the force acting on the eleclron, 

* We remind the reader that  one "ql~antnrn" clectror~ 
can rotate and have zero magnetic moment, provided 
i t  is in  the s state ( ~ e e  p. 47). 
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we can determine the change Av induced by the 
~uagnetic field in the velocity of the particle. 

When H - 0,  

and when H Z 0, 

Subtracting one equation from the other and 
retaining only the term linear in H ,  we obtain 

Note lhat the sign of Au is independent of the 
direction of rotation while H = 0. One electron 
in our two-electron atom rotates slightly faster, 
and the other slightly slower. The quantity 
AulR = -eH/2mec has the dimensionality of 
Irequency. I t  is called the Larmor frequency oL 
(named afler the British physicist Joseph Lar- 
mor). We see that the Lorentz force (2.10) makes 
the electron revolve around the magnetic Geld. 
This motion is superposed on the motion o i  the 
electron a t  H = 0. 

We have analyzed above a very particular 
case, that  of the magnetic field perpendicular to 
the plane of the orbit. A more general theorem 
can be proved (the Larmor theorem): 

let the motion of electrons i n  the absenceof magnet- 
ic field be known; the motion i n  a weak magnetic 
field H will be the same as the motion without 
field with a n  additional rotation around H at  
an  angular velocity equal to the frequency oL. 

e -01378 
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The motion around H is often called the Larmor 
precession (Fig. 22). 

In fact, we have already met the Larmor pre- 
cession in Sec. 1.6 when considering the rotation 
of magnetic moment in a magnetic field. This 
was essentially an example of application of the 
Larmor theorem: the motion of an electron +- Fig. 22. The normal to  

the plane of trajectory 
precesses around the field 
H a t  the Larmor fre- 

x y e n c y  OL; R-radius of t e trajectory 
- ,, 

(at H = 0) produces a magnetic moment that  
precesses when placed in a magnetic field (natural- 
ly, a t  a Larmor frequency). 

Let us go back to our "classical" atom. At  
II # 0 both electrons gain an additional angular 
momentum equal to me AvR and aligned along 
the magnetic field. Consequently, the atom 
acquires a nonzero angular momentum equal to 
the sum of the momenta of the electrons. But  
with the angular momentum being distinct 
from zero, the atom must possess a magnetic 
moment Ma.  Since the angular momentum is 
aligned along the field and the gyromagnetic ratio 
is negative (see (1.10), e < 0), the magnetic 
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moment is  aliglied against the field*: 

Let us rewrite this expression in a form that will 
rnake i t  possible to get rid of the classical features 
of the model. A true "quantum" electron moves 
over a sphere of radius r ,  not along a circle 
.I? + y2 = R2. Since r2 = z2 + y2 + z2 and since 
a11 directions in a spherical atom are equivalent, 
1i2 = (2/3)r2. We give r a subscript i indicating 
the number of the electron in the atom and write 
a correct quantum-mechanical expression for 
lhe diamagnetic moment of any atom containing 
% electrons (in the atom discussed above, Z = 2): 

z 

IS a unit volume of a body contains N atoms, i ts  
diamagnetic susceptibility is  

This expression is strictly accurate if r? is inter- 
preted as the quantum-mechanical mean. The 
I,rue meaning of these words can be grasped only 
alter going into the details of the mathematical 
equipment of quantum mechanics (see p. 42). 
When evaluations are needed, r5 car1 be replaced 
with aa, where a is the size of the atom. 

* If charges are positive, both the angular momentum 
i ~ n d  magnetic moment induced by the magnetic field H 
are aligned against the field. 
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But what was the "trick" used in the derivation? 
The derivation is based on assuming the exist- 
ence of stable atomic orbits (the radius R was 
assumed constant) and this can be justified only 
by quantum mechanics that states that there are 
discrete stable energy levels of atomic electrons. * 

All materials consist of atoms and molecules 
in which electrons move. Obviously, diamagnet- 
ism is a general property. Of course, diamagnet- 
ism exists also when atoms (or molecules) have 
magnetic moments (this has already been men- 
tioned before). In the general case the magnetic 
susceptibility x must be written in the form 

The second term is negative, and i t  depends on 
the ratio between the diamagnetic and para- 
magnetic susceptibilities whether the substance 
is paramagnetic or diamagnetic. We shall pres- 
ently demonstrate that  I xdla I << xpara, that  
is, if a substance is composed of atoms with 
magnetic moments, this substance is paramag- 
netic. Indeed, 

Xdia kTmeaa -- 

Xpara fi a 

but h2/m,a2 is, by an order of magnitude, the ener- 
gy of an electron in the atom, (see Sec. 1.4); 
i t  is approximately equal to one or several 
electron volts and 1 eV x lo4 K. Obviously, in 
normal conditions k T  << ti2/mea2, and hence, 
I Xdla I << Xpara-  

By way of "justification", we can say that formula (2.13) 
was derived i n  1905 by P. Langevin who did not go 
beyond classical physics. 

The following arguments show with special 
clarity that the diamagnetic moment is small 
compared with the paramagnetic moment: the 
magnetic field that  magnetizes the gas of magnetic 
needles must exceed kT/pB (it  was evaluated on 
p. 105), while the magnetic field necessary to 
induce the magnetic moment of an atom of the 
order of p~ = etilmec must be tremendously large: 
of the order of w 108 Oe. In this field 
the magnetic energy is of the order of the Coulomb 
energy; obviously this will result in a complete 
restructuring of the atom (in particular, formulas 
(2.12) and (2.13) cease to be valid). (See Prob- 
lem 12.) ' 

A magnetic field H x lo8 Oe could not be 
produced so far in terrestrial conditions, but 
fields on this scale or even stronger seem to be 
routine in space. 

In contrast to the paramagnetic susceptibility, 
the diamagnetic susceptibility is independent 
of temperature. This is caused by the already 
discussed wide energy "gaps" between the ground 
state of the atom and its excited states (only the 
ground state contributes to the mean value, and 
the contribution of the excited states is expo- 
ncntially small; see the footnote to p. 106). 

The diamagnetic susceptibility is so much 
smaller than the paramagnetic susceptibility 
that even minute doping of a diamagnetic sub- 
stance with paramagnetic atoms makes this sub- 
stance paramagnetic. 

There is another point: so far we have dis- 
cussed only the electron magnetism (in fact, we 
listed on p. 60 the values of the magnetic moments 
of the proton and neutron). We are justified 
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by the smallness of nuclear magnetic moments 
(the proton magnetic moment is less by a factor 
of 700 than the Bohr magneton, that  is, than the 
intrinsic magnetic moment of the electron). If, 
however, the object of study is diamagnetic and 
the nuclei of its atoms have magnetic moments, 
the nuclear paramagnetism may become appreci- 
able. The expression for the nuclear paramagnetic 
susceptibility is readily written by analogy to 
the electron paramagnetic susceptibility (see 
formula (2.9)): 

Here N,,, is the number of paramagnetic nuclei 
per unit volume, P, , , ,~  is the magnetic moment of 
the nucleus, and I is its spin. 

Even if x,,, << I xdla I, i t  is possible to detect 
the nuclear paramagnetism by the temperature 
behavior of the magnetic susceptibility. I t  was 
in this way that  B.G. Lazarev and L.V. Shubni- 
kov discovered in 1936 the nuclear paramagnetism 
by measuring the magnetic susceptibility of 
crystalline hydrogen a t  temperatures very close 
to absolute zero and measured the magnetic 
moment of the proton. 

Magnetism Is a Quantzrm Phenomenon 

We were emphasizing throughout the book that 
magnetic properties cannot be studied without 
using quantum mechanics. Nowadays any text- 
book on the physics of magnetic phenomena is 
totally based on quantum mechanics. Neverthe- 
less, when we look a t  a huge electromagnet hoist- 
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ing up a car (such pictures are often shown in 
textbooks and science-popularizing books on 
magnetism), i t  is difficult to imagine that  mag- 
netism is a quantum phenomenon. Of course, any 
classification of macroscopic phenomena into 
quantum and classical phenomena is arbitrary, 
although we understand intuitively which of 
these phenomena must be regarded as classical. 
For example, the properties of gases are very 
well described by classical statistical physics. 
The characteristics of atoms or molecules of 
which gases are composed serve as the "initial 
conditions of the problem" and are taken as 
initial data, and calculations are carried out in 
accordance with the laws of classical physics. 
When we deal with a paramagnetic gas, we can 
assume that  atoms possess microscopic magnetic 
moments Ma, neglect space quantization, and 
calculate the magnetic moment per unit volume 
1)y using the formulas of classical statistical 
physics. This gives us for the classical value of 
the paramagnetic susceptibility 

N M ~  
XCI = 3 k ~  (2.15) 

(See Problem 13.) 
One must keep in mind tha t  the atomic mag- 

netic momellt has a quantum origin. This is seen, 
in particular, in the fact that  Ma E ehlm,c is 
proportional to Planck's constant A .  The formal 
transition to classical physics occurs when h 
tends to zero.* As a result of this operation both 

* The diamagnetic moment also tends to zero as ti -+ 0 
because the size of the atom vanishes together with f i  
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the paramagnetic moment and magnetic sus- 
ceptibility x,, also tend to zero. 

A rigorous and consistent use of the formulas 
ol classical statistical physics makes i t  possible 
to establish that whatever the interactions be- 
tween particles, their total magnetic moment in 
the state of thermal equilibrium vanishes even 
if the particles are charged and placed in an 
external magnetic field.* This astonishing fact 
occurs because the Lorentz force (2.10) produces 
no work (see Problem 14) and thus leaves the 
energy of a particle unaltered, while the equilib- 
rium properties of particles are determined by 
their distribution over energy. 

The general result of classical statistical phys- 
ics, formulated above, emphasizes once again 
the l i~nitat ions involved in deriving formula 
(2.13). If we acted consistently, the result would 
be zero. -. 

To conclude this subsection, we want to write 
again the formula for the diamagnetic susceptibil- 
i ty  (2.13), replacing ,z rq with the square of the 
Bohr radius a2 = (K2/m,e2)2, and the number of 
atoms per unit volume, N, with the quantity 
l la3 = (m,e2/K2)3. This last substitution signifies 
that we consider a body in a state of condensation, 
with the distance between atoms being of t,he 
order of the atomic size. 

The result of the substitution is 

* Of course, we cannot assume here that  the particles 
have an intrinsic (spin) magnetic moment. We have 
already emphasized that the existence of spin and spin 
magnetic moment constitutes a purely quantum effect. 
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[hat is, the smallness of the diamagnetic sus- 
c-eptibility is a corollary of the smallness of the 
charge. We remind the reader that e2/Kc is the 
(linlensionless squared charge (see pp. 15-16). 

2.4. Melals. Pauli Paramagnetism 

Our starting point in studying paramagnetism 
and diamagnetism was that  materials consist of 
aLoms (or ions) and molecules. But there exist 
a very wide and very important class of sub- 
stances, namely metals, consisting of ions and 
clectrons. A metal is an ionic lattice embedded in 
a "sea" of electron gas. This notion, that a t  first 
?lance seems extremely primitive, proves quite 
correct under a serious analysis. Furthermore, 
[his notion can be simplified. We can forget the 
ions that don't let the electrons leave the metal* 
and assume that electrons are in a metal sample 
'1s if in a box, one or several electrons per atom; 
Ihe interaction between electrons can be neglected 
l~ecause on the average the repulsive forces are 
cancelled out  by the forces of attraction to ions. 
'The electrons that broke away from ions are called 
free electrons, or conduction electrons. 

Of course, this is a simplified model. I t  is called 
the Drude-Lorentz model. Despite its ultimate 
\implicity, this model proved possible, after 
Sommerfeld had introduced the ideas of quan- 
lum statistics into i t ,  to explain many properties 
o r  metals, and the results obtained in this frame- 

* To ask who restrains whom would, of course, be mean- 
i~~gless .  Electrostatic repulsive forces would push ions 
xway unless electrons compensated for these forces. 
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work are often in a good agreement with experi- 
mental data. 

At  the first glance, a metal must always be para- 
magnetic. Indeed, electrons represent a typical 
gas of magnetic needles. The number of electrons 
N, per unit volume is tremendous: N, E 

--, 1022-102s ~ m - ~ .  On the atomic scale the magnet- 
ic moment of each electron is also very large, 
that is, equal to the Bohr magneton. True, the 
ions of the metal (they cannot be completely 
ignored) must be diamagnetic because after 
the separation of valence electrons their electron 
shells are much like the electron shells of the 
atoms of inert gases (the metals of transition 
elements, and the metals of the iron group among 
them, constitute an exception; we shall discuss 
them later). I t  seems that  the diamagnetism of 
ions cannot overpower the paramagnetism of 
conduction electrons. Nevertheless, diamagnetic 
metals exist as well. 

There is another fact that  does not allow us 
to extend directly the conclusions obtained in 
analyzing the gas of magnetic needles to con- 
duction electrons: the magnetic susceptibility 
of metals is practically independent of temper- 
ature. 

What  is the reason then? What causes the special 
properties of the electroll gas in comparison with 
the classical gas of magnetic .needles? The point 
is that  the electron gas in a metal is a quantum 
gas. Quantum gases represent such an important 
object in the modern physics of liquid and solid 
states that  they deserve a special subsection. 
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Fermi and Bose Gases 

We have mentioned earlier (see p. 58) that par- 
licles are divided into two classes: fermions and 
bosons. The difference between fermions and 
bosons lies in a specific quantum property due to 
a different behavior of the wave function under 
the interchange of particles. Let us try to find 
out when the "specific quantum properties" must 
manifest themselves in a gas of particles with 
mass ma each. The value of the particle mass is 
quite important for the analysis to follow, so that  
we began our characterization of the gas by 
fixing the mass of its particles. Let the number of 
gas particles per unit volume be N,  and the gas 
temperature be T .  I t  should not be difficult to 
deduce that  the mean distance between the par- 
ticles in a gas, d, is N-l13; i t  is obviously inde- 
pendent of temperature. According to classical 
pl~ysics, the mean energy of gas particles is - 
E = (312)kT. Hence, the mean momentum is 
p = 1 / 3 k ~ m , .  Now let us recall the uncertainty 
relations (1.17). As long. as the uncertaintv in 
a physical quint i ty (coordinate and momenYtum 
in the present case) is small in comparison with 
its mean value, we can forget about the quantum 
properties of the system: i t  behaves as a classical 
system. But  if this condition is not met, we have 
to analyze the system by using quantum laws. 

The mean distance between particles indicates 
the accuracy with which the coordinate of an 
individual particle can be indicated, that  is, i t  
defines the uncertainty Az: Ax z d = N-l13. 
Therefore, by virtue of the uncertainty relations 
(1.17) the momentum of each particle has an 
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uncertainty Ap no less than Ald = AN1I3. As 
temperature decreases, 5 also decreases and 
drops to about Ap a t  a temperature T, such that 
kTq = A2N2/3/ma. Therefore, 

at  T >> T, a gas can be considered classical, 
and at  T < Tq the laws of quantum mechanics 
must be taken into account; 

At T < Tq the gas is said to be degenerate 
(degenerate Fermi gas if the particles of the gas 
are fermions, and degenerate Bose gas if they 
are bosons). 

Let us calculate Tq for a gas of magnetic 
needles, for example, oxygen. Taking ma = 
= 0.5-10-22 g (for the 0, molecule) and N = 

= 2.7-1018 ~ m - ~ ,  we obtain T, M K. Be- 
fore i ts  quantum properties manifest themselves, 
oxygen will turn into a liquid (at -183 "C M 

M 90 K)  and then into a solid (at -219 "C w 
w 54 K). But  in liquid and solid (nonmetallic) 
paramagnetic bodies the interaction between 
magnets becomes appreciable a t  low tempera- 
tures, and the model of the gas of noninteracting 
magnetic needles has to be dropped. 

The picture is quite different if we turn to the 
electron gas in metals. At  Ne M loz3 ~ m - ~  and 
me w g, Tq M lo6 K (sic), that is, metals 
always (at any temperature) contain the quan- 
tum electron gas. 

The properties of Bose gases a t  T < T, will 
be discussed in Ch. 3. Here we are going to speak 
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only about the properties of Fermi gases; indeed, 
electroiis are fermions. 

Since in norma1 coriditions the temperature T 
is much less than T,, we first have to analyze 
the limiting case, namely, the behavior of the 
electron gas a t  T = 0. 

The state of a free electron is characterized by 
its momentum p and the projection of its spin s, 

Fig. 23. Momentum space. 
Marked on the coordinate 
axes are the projections of 
a particle momentum 

(s, = t 112) .  In zero magnetic field the electron 
energy E is independent of the spin direction 
and is determined only by momentum: 

Let us take a Cartesian system of coordinates, 
with the projections of momentum marked on 
its axes (Fig. 23). We have "created" the momen- 
tum space. In this space, momentum as a function 
of energy (2.18) is represented by a sphere of 
radius 1/ 2m,&. Imagine now that the whole 
momentum space is divided into infinitely small 
cells. Each cell corresponds to a specific value of 
momentum p. The number of states (cells) dN, 
with electron momenta between p and p + dp 
is proportional to the volume of the spherical 
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layer of thickness dp*: 

4np2 dp a 1 / E d ~  

(see (2.18)). 
The  function g (E) = d N , l d ~  is called the 

density of states. A more consistent analysis makes 

it possible to e s t a b l i G t  only that g (E) a 1/; 
but also lo calculate the proportionality factor: 

( V  is the volume of the metallic specimen). The 
area under the curve (2.19) (Fig. 24) determines 
the number of states with energy less than e .  
Since the Pauli exclusion principle requires 
that each state be occupied with only one elec- 
tron, a t  T = 0 the electrons fill up all states up 
to those with some maximum energy called the 
Fernti energy, EF. 

The Fermi energy is found from the condition 
that all  N, electrons of the metal be less than i t .  
This means that in order to determine the Fermi 

* Recause a t  this juncture we are interested in  the number 
of states with a certain value of momentum, whatever 
i ts  direction. 
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energy we have to integrate the density of states 
from 0 to EF and equate i t  to Ne: 

r 
2 1/ 3 1 2  312  N ,  = g (r) de = - 3n2IL3 'F 

Note that to within a numerical factor (3n2)2/3/2 
the Fermi energy EF coirlcides with the quantity 
IzT,. 

A graphic illustration of the filling of states 
with free electrons is obtained in the momentum 

Fig. 25. At T = 0 electrons fill 
up the states with energy less 
than EF. In  the momentum 
space these states lie within a 
sphere of radius pF 

space: a t  T = 0 the electrons fill in this space 
the sphere (the Fcrmi sphcre) of radius 

(Fig. 25). The radius of thc Fcrmi spherc is p~ = 
z hld, where d is thc average distance between 
I,wo electrons (by the order of magnitude, this 
tlistance equals the size of the crystal unit 
ccll, a). 
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We see that the motion of particles does not 
stop a t  absolute zero of temperature. The Panli 
principle is "stronger" than the tendency of the I 

Fig. 26. Energy distribution of Fermi-gas particles a t  
T  = 0  (a); the area under the curve g = g ( E )  
< E ~ )  is equal to the number of electrons. At 
i t  departs only slightly from the distribution a t  

system to drop to the least-energy state at  T = 0. 
(See Problem 15.) 

Figure 26a shows the distribution of gas par- 
ticles over energies at  T = 0. This distribution 
changes only slightly a t  a nonzero low tempera- 
ture (T << T,) (Fig. 26b). 

Now we can return to describing the magnetic 
properties of conduction electrons. When the 
magnetic field H # 0, the energy of electrons 
with spin oriented along the field is not equal to 
that of electrons with spin oriented against the 
field. By marking the direction of spin by an 
arrow (pointing up for the former and pointing 

' down for the latter), we find (see (1.28)): 

, As before, here p~ = eR/2mec. 
1 How do the Ne electrons fill up their states 

(cells) in this case? Figure 27 shows the dis- 
tribution of electrons over energy when the 

Fig. 27. Energy distribution of Fermi-gas particles in 
Lhe presence of a magnetic field ( T  = 0 ) :  g+ -density 
ol slates of electrons with magnetic moment oriented 
along the field; g2 :that of electrons with magnetic 
moment oriented against the field. The area under each 
ol the curves equals the number of the respective electrons 

magnetic field is switched on. Note that the 
levels of filling are identical for the electrons 
with spin along the field and for the electrons 
with spin against the field (both E +  and r4 are 
smaller than the Fermi energy in the field H, r:). 
If these levels were different, some electrons 
would "climb" to states with a different direction 
of spin, and the energy of the system would be 
lowered. 
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The number of electrons with spin along the 
magnetic field is somewhat greater than tha t  of 
electrons with oppositely oriented spins, Nt  > 
> N+,  because r t  < E + .  As a result the electron 
gas is magnetized along the field, that is, i t  is  
paramagnetic. In order to calculate the magnetic 
moment of the electron gas, we have to find the 
difference between the numbers of oppositely 
oriented electrons: 

We thus have to calculate :N+ and N+.  This 
is not difficult if we note that  the density of states 
with a spin in a give11 direction, g+ (E) (or g+ (E)),  
differs from g (E) only in a factor 112 and in the 
reference point for energy. A simple calculation 
based on tha t  the energy pBH is small in com- 
parison with the Fermi energy EF a t  practically 
any achievable magnetic field H (see Problem 16) 
shows tha t  

and the magnetic susceptibility is 

Here we have used expression (2.19). 
The paramagnetism of the degenerate electron 

gas is  called the Pauli paramagnetism, or free- 
electron paramagnetism. 

In order to refer the magnetic susceptibility, 
as  before, to unit volume, assume tha t  N, is  the 
number of conduction electrons per 1 cm3. 
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Comparing (2.22) with classical formula (2.15), 
we notice tha t  the main difference lies in k T  
being replaced with ~ p .  Since always EF >> kT, 
it is clear tha t  taking into account the quantum 
effects (the Pauli principle) has significantly 
diminished the value of the paramagnetic sus- 
ceptibility as  compared with i t s  classical value. 
Owing to degeneracy of the properties of electron 
gas, temperature is not as important a factor 
as in classical gases. In particular, the Pauli  
paramagnetic susceptibility is practically in- 
dependent of temperature. The paramagnetic 
susceptibilit of the Fermi gas is of. the same 
order of m 9 gnitude as the diamagnetic suscepti- 
bility of a liquid or a solid. (See Problem 17.) 

2.5. Metals. Landau Diamagnetism 

In describing diamagnetism, we attempted to 
persuade the reader that diamagnetism i s  a 
general phenomenon in nature. Is  then the 
clectron gas an exception? This suspicion i s  based 
on the following "arguments". We have empha- 
sized tha t  the derivation of the formula for the 
diamagnetic susceptibility (2.13) was based on 
Lwo starting points: the Larmor theorem and the 
stability of orbits. Free electrons have no stable 
orbits and are not subject to the Larmor theorem. 
Nevertheless, the electron gas possesses both the 
paramagnetic and diamagnetic susceptibility, the 
so-called Landau diamagnetism. I t  is fairly diffi- 
c ~ l t  to derive the formula for the diamagnetic 
s~lsceptibility of the electron gas, so that we 
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simply give i t  here: 
1 

XL- - - XP (2.23) 

How does i t  happen that  the electron gas has 
diamagnetism? Free electrons have no discrete 

Fig. 28. An electron in the 
magnetic field H moves along 
a helix of radius R = 
= mcu i e IH, the pitch of 

1. ' 
the helix (along the mag- 
netic field) being equal to  

d = uz/wc = rncuzll e J Ii 

u, = fu; +- u;: 

stationary states a t  H = 0,  but they appear a t  
H + 0. I t  is said that 

thegmot ion  of  electrons i n  a magnetic field i s  
quantized. 

The nature of the quantized motion of electrons 
in a magnetic field is simple. The Lorentz force 
(1.20) makes the electron revolve around H a t  a 
vibration frequency o, = eHlm,ch (Fig. 28). 

* This is the frequency a t  which electrons revolve in 
a cyclotron, hence, the name of the cyclotron frequency. 
Note that  a, = 2aL, where o~ is the Larmor precession 
frequency. The Larmor theorem (see p. 113) does not hold 
for the motion of free electrons because in  this case the 
Lorentz force cannot be treated as a small perturbation. 
There is no other (strong) force in  comparison with 
which the Lorentz force is weak. 
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Moreover, the electron obviously has to move 
along the field. This last motion is not affected a t  
;ill by the Lorentz force. The energy of the electron 
is the sum of the energies of motion along the 
licld and in a plane perpendicular to the field. Let 
11s look a t  the motion of the electron in a plane 
perpendicular to the magnetic field. The word 
"look" must be treated here literally rather than 
in i ts  metaphorical meaning. Namely, if we look 
at the rotating electron sideways, we notice that  
it vibrates a t  the cyclotron frequency o, (see 
Fig. 28). This is not merely a verbal analogy. The 
formulas describing the motion of the electron 
in a plane perpendicular to the magnetic field 
reduce to the formulas describing the vibrations 
of a particle. And you already know that a 
particle vibrating a t  a frequency w is allowed to 
have only discrete energy levels en = tio (n + 112) 
(n  = 0 ,  1, 2, . . . are integers) (see p. 40). 

Please reread the last paragraph. We think that  
rrow you are not going to be very surprised to 
find that 

the  energy o f  motion of a n  electron i n  a magnetic 
field can assume only  the  following values: 

where p H  is the projection of momentum p onto H. 
If the intrinsic magnetic moment of the electron 

is taken into account, the levels (2.24) split into 
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two systems of levels: 

We already know the result of this splitting, 
and this is the Pauli paramagnetism. Hence, for 
the time being, we are going to ignore i t .  

When the energy levels of electrons (2.24) are 
known, i t  is possible to calculate their magnetic 
moment and then the magnetic susceptibility of 
the electron gas. If the magnetic moments of 
electrons are not taken into account, the electron 
gas is diamagnetic, with 

But  if we consider both the diamagnetism and 
the paramagnetism of the electron gas, we arrive 
a t  the formula for the net magnetic susceptibility 
(see formula (2.22)) : 

I t  is positive, that  is, the paramagnetism is 
predominant. How can we explain the fact that  
certain metals are diamagnetic? Of course, the 
ion skeleton of the metal is also there, and i t  is 
diamagnetic (see above); its susceptibility must 
be subtracted from 2,. And since X, is nnmeri- 
cally small, the sign of the magnetic susceptibility 
of a metal can be either positive or negative. 
However, this argument (though i t  is quite 

2.5. Metals. Landau Diamagnetism 135 

correct) cannot explain why a number of metals 
(such as bismuth) are highly diamagnetic. 

The magnetic properties of the electron gas 
find their complete explanation if we take into 
account another fact not included in the Drude- 
Lorentz-Sommerfeld model. Conduction electrons 
move not in "vacuum" but  in a field of forces 
created by the ions of the crystal lattice. The 
study of the motion of electrons in a periodic 
field of the lattice is the subject of a special chap- 
ter of quantum physics of solid state: the band 
theory. One of the conclusions of this theory 
states: in certain cases the motion of an electron 
through a lattice can be considered' quasifree* 
and the ordinary electron mass me must be 
replaced in expression (2.18) with the effective 
mass m*, that  is, we assume that  

The difference between the effective and the 
ordinary mass takes into account the interaction 
between an electron and lattice ions. 

What is the effect of the replacement me -t m* 
on the formulas given above? The Bohr magneton 
pn is not affected by this replacement (the in- 
trinsic magnetic moment of the electron is a 
characteristic as "private" as the electron charge e, 
and neither of them is related to the motion of 

* Adding the prefix "quasi" (from the Latin quasi for 
as if, almost) sometimes is a method of "and none will 
be the wisor". The best interpretation of the prefix "quasi" 
would be: "All is not as simple as the authors make you 
believe in  the text" (see M. I. Kaganov, Electrons, Pho- 
nons, Magnons, Mir Publishers, Moscow, 1981; see also 
Sec. 3.8). 
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the electron through a lattice*), so that we readily 
obtain from (2.22) andy(2.25) that 

The effective electron mass can be less than 
the "true" electron mass and sometimes, however 
paradoxical i t  may sound, much less. Such metals 
can only be diamagnetic. This explains why 
bismuth is highly diamagnetic. 

2.6. Superconductors: Ideal Diamagnetics 

If we try to put the gist of our story of the Landau 
diamagnetism in a "nutshell" and formulate the 
causes of this phenomenon, then we obtain the 
following residue: diamagnetism arises because 
electrons rotate around magnetic lines of force. 
And i t  is obvious that  calculations must be 
carried out in the framework of quantum me- 
chanics: indeed, we deal with the motion of 
microscopic particles, namely, electrons. 

Each conduction electron moves independently 
of others. In a certain sense, i t  is a spurious coin- 

* This statement is rather too strong: the interaction 
of the intrinsic magnetic moment of electrons with the 
orbital magnetic moment 01 electrons and ions (the so- 
called spin-orbit interaction, or coupling) is important 
in some conductors. The spin-orbit interaction changes 
the intrinsic magnetic moment of the electron. Moreover, 
the electron magnetic moment feels the interaction with 
other electrons. This can also change the value of pw 
The essential thing is that p~ # eti/2rn*c, so that in al l  
cases x # ( 2 1 3 ) ~ ~ .  

cidence that  the cyclotron frequency o, = 
= eHlm,c is identical for all  electrons. In a 
more rigorous theory that  takes into account the 
field of ions this property is not preserved: the 
rate of rotation of an electron depends on its 
energy and on the projection of i ts  momentum 
onto the magnetic field. This somewhat changes 
the quantization formulas, thereby changing the 
value of the diamagnetic susceptibility. 

But is i t  possible for electrons to rotate around 
the magnetic field as a whole, say, to flow as 
water in a rotating vessel? Of course, i t  is im- 
possible in normal conditions. A coherent rotation 
of electrons means that a macroscopic current 

I flows through a conductor. However, the con- 
ductor must-thereby get warmer, and the current 
must damp'out. The magnetic field that  induced 
this motion when i t  was switched on cannot 
sustain the current because i t  does no work. There- 
fore, the motion of electrons cannot be coherent. 

But ... there always exist exceptions to rules. 
And these exceptions invariably only confirm 
the rules, provided we find out what made the 
exceptions possible. Most of the metals transform, 
a t  very low temperatures (in the vicinity of 
absolute zero), into a peculiar superconducting 
state* characterized bv zero resistance. Metals i n  
superconducting state" are called superconductors. 

* To date the material with the highest temperature O F  
superconducting transition is tlie alloy Nb,Ge. It  equals 
23 K .  When preparing the book for pi~blication, we left 
blank spaces for the name of the material and for the 
rclcord-high transition temperature. The search for 
high-temperature superconductors never ends. The above- 
mentioned alloy was discovered in 1973, 
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They have already been mentioned in the first 
section of the present chapter. 

The current that flows through a supercoiiductor 
is indeed not  damped out. Superconductivity 
was discovered in 1911 by Heike Kamerlingh 
Onnes in the course of measuring the conductivity 
of mercury; and for many years the factors causing 
the creation of the superconducting state remained 
a puzzle. Only 46 years later (in 1957) John 

Normal state h 
Fig. 29. Phase diagram of 
a superconductor. The curve 
H = H ,  (T) separates the 

state normal state from the su- 
T,  T perconducting state 

Bardeen, Leon Cooper, and John Schrieffer were 
able to construct the microscopic theory of this 
unique phenomenon. Unfortunately, here i t  would 
be impossible to speak about superconductivity 
in detail. The reader will have to accept a state- 
ment: a current flowing through a supercondl~cting 
circuit is  not damped out. What then are the 
consequences for the magnetic properties of these 
materials? 

Electrons become capable of completely push- 
ing out the magnetic lines of force from the bulk 
of the metal. For this to happen, a current must 
flow on the surface of a superconductor, producing 
a magnetic moment &V directed oppositely to 
the magnetic field and equal to -(1/4)nHV. 
Hence, in a superconductor B = H + 4n& . - = 0, 
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Fig. 30. Magnetic clishion. A m a g ~ ~ e t  hovers over a super- 
conductirrg plate 
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so that  
a superconductor is an  ideal diamagnetic material. 

We chose to write "electrons are capable of", 
"current must flow along the surface". These are 
rhetorical expressions. But  the situation in 
superconductors placed in a magnetic field is 
precisely this: a surface current appears, and the 
magnetic lines of force are thereby pushed out  of 
the bulk of the superconductor. This is the so- 
called Meissner effect. The magnetic field is 
repelled because this is energetically favorable: 
the energy of a metal is lower a t  B = 0 than a t  
B # 0. (Strictly speaking, the current in a super- 
conductor flows not along the surface but in the 
subsurface layer with thickness 6 w cm.) 

One more remark must be made: the behavior 
of superconductors described above is observed 
in relatively weak magnetic fields. A strong 
magnetic field destroys superconductivity: i t  
causes the metal to switch to the normal (non- 
superconducting) 3tate. Figure 21) shows the 
diagram of state of a superconductor. You see 
the boundary for the existence of the super- 
conducting state. 

The repulsion of the magnetic field from a super- 
conductor is clearly demonstrated by hovering of 
a magnet over the superconductor (Fig. 30). 
(See Problem 18.) 

Chapter d 

1 Ferromagnetism 

Some of the solids are such that  they are 
magnetized spontaneously, by virtue of internal 
forces, and thus can serve as  macroscopic sources 
of a magnetic field. These are ferromagnetic 
materials, or simply ferromagnetics. Ferromagnet- 
ism exists not a t  all  temperahres. As tempera- 
ture increases, the intrinsic spontaneous magnetic 
moment of a body decreases and vanishes a t  a 
certain temperature Tc ,  called the Curie tem- 
perature (of course, if the external magnetic 
field is zero, that is, H = 0). Above the Curie 
temperature ferromagnetic materials; become 
paramagnetic. 

A t  high temperatures al l  ferromagnetic mate- 
rials are paramagnetic, but not al l  paramagnetic 
materials are ferromagnetic a t  low temperatures. 

Different materials have different values of the 
Curie temperature T, and of the spontaneous 
magnetic moment density &,La (at T -+ 0) (see 
Table 5). 

Table 5 

I I I 
Material I Pc I To I Ni 
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Fig. 31. Spontaneous magnetic moment density of Ni 
as a function of temperature 

Figure 31 plots the temperature dependence of 
the spontaneous magnetic moment density d, (T) 
of nickel. 

3.1. Self-ordering of Atomic Magnets 

The analysis of physical systems consisting of 
a macroscopic number of interacting particles 
is one of the most complicated problems in quan- 
tum physics. Although sufficiently general ap- 
proaches to solving such problems are available, 
no single recipe is known. In each concrete case 
i t  is necessary to develop a more or less adequate 
model by simplifying the problem so that  i t  
allows for a consistent mathematical solution. 

A comparison with experimental data and 
evaluation of neglected terms make i t  possible to 
establish the range of validity of the model. 
Quite often the model describes the situation 
"in general", while departing from the truth in 
finer details. 

This brief introduction is meant as a warning 
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to the reader: what we present in this section is 
a simplified model of ferromagnetism, a model 
reflecting the behavior of the system but not 
aspiring to give a detailed description. I t  is called 
the self-consistent field model. This term took 
root after the model had been found fruitful in 
various domains of the physics of condensed 

Fig. 32. A crystal composed of paramagnetic atoms: 
(a) temperature T above the Curie temperature T,; 
(6) T = 0, all moments point in the same direction 

matter. When applied to  ferromagnetism, i t  is 
called the Curie-Weiss model because i t  explained 
the origin of the Curie-Weiss law (see pp. 94-95, 
formula (2.2)). 

Let us start with postulating the existence of 
a gas of magnetic needles; indeed, as we have 
said above, all  ferromagnetic materials are 
paramagnetic a t  high temperatures. We suggest 
that the reader imagine a crystal in each of whose 
lattice sites there is an  atom equipped with an 
arrow representing the magnetic moment (Fig. 32). 

In  order to avoid cumbersome calculations, we 
assume that  J = 112, g = 2, and m,  assumes 
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two values: f 112 and -112; the magnetic moment 
of each individual atom equals the Bohr magneton 
pB. This is not the simplification mentioned above. 
This simplification is easily replaced with thb 
model of a magnetic-needles gas with an arbitrary 
angular momentum J of each individual magnet. 

In most cases i t  is assumed that the magnetic 
moments of the atoms tha t  comprise a ferro- 
magnetic body are of spin, not of orbital, origin. 
But why? What makes a theorist ignore the 
orbital magnetic moment? 

Electrons in an atom move in  a field with 
central symmetry; consequently, their angular 
momentum is conserved and can be used as a 
characteristic of the stationary state of the atom. 
The field of forces in a solid in which electrons 
move is not centrally symmetric, so that  the 
angular momentum is not  conserved, and other 
physical quantities have to be used to characterize 
this motion (we cannot go into details here). The 
spin of an atom is only weakly related to the 
orbital motion of electrons. Thus i t  can be re- 
garded as a "good" quantum number. The spin- 
spin interaction as well as the interaction be- 
tween spins and the orbital motion of electrons 
only orient the atomic spins in space, withou 
changing the quantity of each atomic spin. Th  
change would involve a large loss of energy and 
its probability is therefore very low (see p. 106). 
These are the arguments that  make i t  possible to 
operate in terms of the gas of magnetic needles, 
with the magnetic needle interpreted as the spin 
magnetic moment of a n  atom. 

The Curie-Weiss model consists in a simplifying 
assumption that  magnetic moments are ordered -4 

d 

[lot, only by an external magnetic field H but also 
I)y the cumulative action of all magnetic mo- 
ments; this assumption reduces to replacing the 
magnetic field H with an effective self-consistent 
lield*: 

We shall do our best to substantiate this expres- 
sion in the next section, but for the Curie-Weiss 
model formula (3.1) is fundamental. The constant 
u. must be related to the observed quantities and 
thus must be found experimentally. 

Using formulas (2.8) and (3.1), we find a 
lranscendental equation for determining the mag- 
~ ~ e t i c  moment density dL of the ferromagnetic 
(the Curie-Weiss equation): 

li - NpB tanh PB ( H  -k ad) 
kT 

where N is the number of atoms per unit volume. 
The rest of this section is devoted to analyzing 

this equation and i ts  solutions. 
We begin with the principal point: finding out 

whether the Curie-Weiss equation describes ferro- 
magnetism, that  is, the appearance of sponta- 
neous (in zero external magnetic field) magnetiza- 
tion dd,. To achieve this, let us analyze the 
solution of equation (3.2) a t  H = 0: 

dLs - NpB tanh a 
kT 

We denote 

. L, 

* This is indeed a fundamental simplification. We s l ~ a l l  
tliscuss it later. 
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3.1. Self-ordering of Atomic Magncts 

I t  is readily seen that in these notations equa- 
tion (3 .3)  can be rewritten in the form 
bx = tanh (2) (3.3') 

convenient for graphical analysis. Look at Fig. 33. 
You notice that in the case b > 1 the equation 
has a single solution, x = 0, and in the case 

n ion Fig. 33. Graphical solutiorl of the Curie-Weiss eqil 1' 
(3  :3) : 
1-straight line with slope b greater than unity; 2- 
straight line with slope b less than unity. The points 
on the abscissa axis are the roots of equation (3.3) 

b < l there are three solutions. The inequality 
b > 1 means that T > a(pkNl1c). If a > 0, 
then, by virtue of equation (3 .3 ) ,  the spontaneous 
magnetization is zero (d, = 0) a t  high tem- 
peratures. I t  is natural to regard the quantity 
a(p&Nlk)  as equal to the Curie temperature T, 
because the spontaneous magnetization vanishes 
precisely a t  T = T,. Thus 

Actually, we have yet to check whether equation 
(3 .2)  describes the paramagnetism of the magnetic- 

ueedles gas a t  T > T ,. So far we keep in mind 
lhat a > 0. 

But what does i t  mean that there are three 
solutions a t  T < T,? Obviously, we have to 
choose one of them. What should our criterion 
be? The answer is: the solution &d8 = 0 is un- 
stable and thus cannot be realized, while the 

Fig. 34. Potential energy of a particle: the force acting 
on the particle becomes zero a t  points XI, I,, and I,; 
at points xl and I, the particle is in a stable equilib- 
rium, and at x, it  is in an unstable equilibrium 

nonzero solutions (~d, # 0) are stable. Only one 
of them is realized. So far we need not worry 
which one of the two: they differ only in the 
direction of the vector A,, and we are interested 
in the magnitude of this vector. 

If we dealt with a single particle, the stable and 
unstable states could be illustrated with the 
curve of potential energy U as a function of the 
x-coordinate. Let the potential energy have the 
form shown in Fig. 34. The force acting on the 
particle equals zero a t  three points, where U ( x )  
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reaches extrema: 

But the position of the particle is stable only a t  
x, and x, (at which U (x) reaches minima). From 
the point x2 = 0 (where U (x) reaches the maxi- 
mum) the particle slides down after any arbitrari- 
ly small perturbation. 

Statistical physics formulates a strict rule that 
makes i t  possible to distinguish between the 
stable and unstable solutions of the Curie-Weiss 
equation. This rule is very similar to that given 
above. We have to find the value of dids a t  which 
a certain quantity called the free energy reaches 
a minimum. The free energy differs from the 
conventional energy in that i t  takes into account 
the number of ways in which a given macroscopic 
state with a given energy can be created. The 
state that can be realized in the maximum num- 
ber of ways is stable. And the free energy is shown 
to reach the maximum a t  d6, = 0 if T < T,. 

Now let us clarify the dependence of uhS on 
temperature a t  T < T,. We begin with the 
range of temperatures in close vicinity of the 
Curie temperature (T & T,). At T = T, the 
magnetic moment density d d s  = 0. Obviously, 
a t  T x T, the magnetic moment is very small. 
We can therefore use an approximation for tanh x: 

1 t a n h x x x  --23, x < I  
3 

Substituting this expression for tanh x into 
(3.3'), we find that x factors out and can be 
reduced (we are not interested in the zero solu- 
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tion), and the nonzero solution I x I is: 

1 x 1  = v 3 ( 1 - b )  
Now we have to restore the physical variables: 

Note that when writing the factor in front of the 
radical we have replaced T with T ,. This replace- 
ment is dictated by the approximation for tanh x. 

At temperatures much lower than the Curie 
temperature (T << T,) we have to use an ap- 
proximation for tanh x a t  large values of x: 

tanh x E 1 - 2e-=", x >> 1 

and obtain 

The approximation used above required that we 
replaced the quantity &, in the exponential with 
its value a t  T = 0 ( d s  I T = O  = NpB). 

We find that the Curie-Weiss equation de- 
scribes the total magnetization of a ferromagnetic 
material a t  T = 0: all magnetic moments align 
parallel to one another and d, = NpB. As the 
temperature increases, the magnetic moment 
density diminishes, and a t  the moment when i t  
vanishes, a t  T = Tc, the derivative dM,ldT 
tends to infinity. 

A comparison of formulas (3.4) and (3.5) with 
Fig. 31 shows that in general features they give 
a faithful description of the temperature depen- 
dence dBs (T). The standard expression used in 
scientific publications for such situations is: 



150 Ch. 3. Ferromagnetism 

"The theory and experiment are in qualitative 
agreement." The word "qualitative" underlines 
that  the author does not guarantee quantitative 
agreement. In our particular case the quantitative 
disagreement between experimental results and 
the theory is especially well pronounced a t  low 
temperatures: a t  T << T,  the spontaneous mag- 
netic moment tends to saturation d2',IT=, = 
= NpB much slower than is predicted by formula 
(3.5). 

~ e ~ s h a l l  discuss a more careful comparison 
later, and now want to calculate the magnetic 
susceptibility of a ferromagnetic material above 
and below the Curie temperature. When cal- 
culating the magnetic susceptibility, we have to 
assume tha t  the magnetic field H is infinitely 
small.* At  T > T, the infinitely small magnetic 
field corresponds to infinitesimal magnetic mo- 
ment density. Therefore, 

in equation (3.2) can be replaced with i ts  argu- 
ment, that  is, 

* The formal definition of the magnetic susceptibility x 
is the derivative dd/L/lildH at  H + 0. This definition of x 
coincides with the one used above when magnetization 
is  a linear function of EI. 
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whence 

and we find tha t  the Curie-Weiss law indeed follows 
from the Curie-Weiss equation, tha t  is, the self- 
consistent field model correctly describes the 
paramagnetic state of ferromagnetic materials a t  
T > Tc. 

The situation is somewhat more complicated a t  
T < T, because a t  temperatures below the Curie 
temperature we have both the spontaneous mag- 
netic moment dls (T) = (T,  H = 0) and the 
induced moment proportional to H: 

lJ/li (T, H)  = d, (T) + xH, ~ B H  << kT 

Both terms are very small in the direct vicinity 
of the Curie temperature and when H tends to 
zero, so tha t  we can use an approximate value of 
the hyperbolic tangent. Simple algebraic manip- 
ulations yield the following expression: 

Figure 35 plots x as a function of temperature. 
Note tha t  if temperature is counted off the Curie 
temperature, then x on the left (at T < T,) is 
twic,e as small as a t  the same distance from T ,  
on the right (at T 3 T ,). (See Problem 19.) 

Let us enumerate the conclusions that  can be 
drawn (and that  we have already drawn) from an 
analysis of the solution to  the Curie-Weiss 
equation. 
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1. The assumption on the existence of an 
internal field proportional to magnetization 
( a  > 0) enabled us to explain the appearance of 
intrinsic magnetization a t  T < T,. 

Fig. 35. Temperature de- 
pendence of the magnet- 
ic susceptibility of a fer- 
romagnetic material, X, 
in the vicinitv of the CU- 

I 

Tc 
rie temperatire T, 

2. The parameter a introduced into the theory 
makes i t  possible to determine the Curie tem- 
perature: k T ,  = aukN.  Since 

p,N=&,IT=,,=&sO 

we find a = k T  ,/pBd#sO. The parameter a >> 1. 
This can be verified by using Table 5 (see p. 141) 
and the value of the Bohr magneton pg. 

3. The magnetic moment diminishes as the 
temperature increases and 

4. The magnetic susceptibility increases as the 
temperature approaches the Curie temperature 
and tends to infinity a t  T = T,. At T -t 0,  the 
magnetic susceptibility y, becomes exponentially 
small (see Problem 20); a t  T > T ,  the Curie- 
Weiss equation yields the Curie-Weiss law, 
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3.2. Ferromagnetism as n Result 
of Exchange Forces 

Let us analyze again the Curie-Weiss model. 
Obviously, its quintessence lies in the relation- 
ship between the effective field Heft and the 
magnetic moment density. By virtue of our 
assumption, this relationship covers the inter- 
action between atomic magnetic moments. But 
where did we take expression (3.1)? Of course, 
we could avoid posing this question. We could 
take this formula "out of the head", analyze i ts  
corollaries (and this we have already done), 
show the constants ( a ,  NpB) in the equation can 
be related to the quantities found experimentally 
(T,, di?,,), make sure that  the predicted tem- 
perature dependence of dds agrees with experi- 
mental data, and leave i t  a t  that.  But then we 
I~ave to understand clearly that the theory thus 
constructed is not microscopic but phenomenologi- 
ro l ,  tha t  is, a descriptive theory: one describing 
;I phenomenon but not explaining it .  We have to 
realize that  we are ignorant of the origin of the 
principal expression (in the present case (3.1)) 
, ~ n d  do not know the nature (the physical mean- 
ing) of the factor a and how i t  is related to rnicro- 
scopic atomic magnets and to the interaction 
I~etween them. 

The purpose of the present section is to clarify 
llle physical meaning of the Curie-Weiss model. 

Let us go back top .  143. The arrows representing 
,~ tomic  magnetic moments are aligned parallel 
l o  one another owing to the interaction between 
Ilrem, while the thermal motion tends to disrupt 
I he ordering. What are the forces acting between 
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atomic magnets? Much was said about i t  in the 
first chapter (see Sec. 1.10), and we have estab- 
lished that  

at atomic distances the exchange forces are much 
stronger t h m  the magnetic-dipole forces. 

For this reason the forces responsible for ferro- 
magnetism are precisely the exchange forces. Tn 
order to demonstrate this, let us make use of the 
spin Hamiltonian (1.39) tha t  we can generalize 
by assuming that the exchange interaction acts 
between any two atoms of a crystal: 

Summation is  carried out over all atoms of the 
crystal, with the subscripts i and k enumerating 
i t s  atoms. Now let us recall what we have said 
about the dependence of A on interatomic dis- 
tance: exchange integrals A,, rapidly diminish 
with distance. Therefore, although formally each 
atom of the crystal is coupled by the exchange 
interaction to all atoms, only the coupling be- 
tween neighbor atoms is significant. This argument 
enables us to rewrite expression (3.8) as follows: 

i k 

The second summation symbol is primed to indi- 
cate that  the summation over k takes into account 
only the neighbors closest to the ith atom. 

F i g u r ~  36 illustrates tha t  the number of nearest 
neighbors is six in a primitive cubic lattice, and 
eight in a body-centered lattice (we shall discus9 
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only cubic lattices). The exchange integral is 
lactored out of the sum because the sample is 
uniform, so that  al l  exchange integrals are iden- 
tical; the  factor 112 appears because each atom 
is counted twice in this summation. 

Of course, the vectors si and s k  are "quantum" 
vectors. Each of them can orient in  space in 

12ig. 36. Nearest neighbors of a lattice atom: 
(a) six ncighbors in a primitive cubic lattice; (b) eight 
ncighbors in a body-centcrcd cubic lattice 

2s + 1 ways. If s = 112, the vectors can orient 
either along or against.. . . The choice of quanti- 
zation axis, tha t  is, the direction relative to which 
the spins are oriented, will be made later. At 
absolute zero of temperature all magnetic mo- 
ments, and hence, all spins, are parallel to one 
another. At any rate, this was the corollary of the 
solution to the Curie-Weiss equation: &Ls, = 
-= N p g .  By virtue of (3.8'), when all spins are 
r~arallel to one another, the energy dependent gn 
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the orientation of spins is 3 1 

where z is  the number of nearest neighbors. A t  
T - 0 the energy of the crystal must take the 
lowest of al l  possible values. Of course, this is 
also true for i ts  spin component. I t  is apparent 
tha t  for the  parallel arrangement of spins to  
correspond to the least energy, i t  is necessary for 
the exchange integral A to  be positive: 

the condition of ferromagnetism: A > 0 1 
When temperature is above absolute zero, 

magnetic moments are not so strictly disciplined: 
a t  very low temperatures only rare spins deviate 
from the  common "correct" direction, but with 
increasing temperature the  number of "unruly" 
spins increases and the  net magnetic moment 
decreases. And finally, a t  a certain temperature, 
which is  the Curie temperature T,, all  allowed 
directions become equally probable and the mag- 
netic moment of a ferromagnetic material van- 
ishes. At T > T,  this material behaves as para- 
magnetic material. 

should not think tha t  the picture outlined 
above is static. Average numbers of "obedient" and 
"disobedient" spins are indeed time-independent, 
but if we could monitor the spin of an individual 
atom, we would observe that  i t s  direction con- 
stantly changes: i t  "points" now in one direction 
and then in another. This is the random (chaotic) 
thermal motion of spins. 

At  temperatures close to absolute zero the 
thermal motion of spins can be analyzed in 
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;~dditionaI detail. We shall do that  in Sec. 3.10. 
Tlie qualitative picture of breaking of the 

magnetic order, as outlined above under the 
;~ssumption tha t  the exchange interaction makes 
a11 spins align parallel to  one another a t  absolute 
zero, does not enable us to derive from the spin 
[Iamiltonian an expression for the effective field 
(3.1). Furthermore, this even cannot be done. In 
order to clarify this sad statement, we do as 
lollows. 

Let us find a relation between Heif = a d ,  
(we set H = 0) and the energy* of the  system. 
To achieve this, let us generalize formula (1.26) 
for the energy of a magnetic moment in an 
external field. According to this formula, Ii = 
- - -dEMldM when the vectors H and M are 
parallel. In order for this formula to hold also 
for the effective field, we have to assume tha t  

where V is the volume of a specimen. We remind 
llle reader tha t  the net moment of a ferromagnetic 
specimen is M = &V. 

We see tha t  in the Curie-Weiss model the free 
energy of a system is uniquely determined by 
magnetization. But  formulas (3.8) and (3.8') 
show tha t  in fact i t  essentially depends on the  
microscopic distribution of the spins of individ- 
ual atoms. I t  is the neglection of just this factor 
that constitutes the main  simplification of the Curie- 
1Veiss mo&Z, or rather, of the self-consistent field 
model. 

* Specifically, the free energy if T # 0 (see p. 148). 
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However, formula (3.10) is necessary to us not 
only for negative statements that  point to our 
helplessness. I t  helps to "anchor" the Curie- 
Weiss model to real exchange forces that  make 
ferromagnetism possible. For this "anchoring", 
let us compare formula (3.9) with (3.10) by 
substituting into i t  the value NpB for the mag- 
netic moment density &, a t  T = 0, and unity 
for V (then N denotes the number of atoms per 
unit volume). The two formulas coincide if we 
assume 

Of course, i t  is this last formula that  con- 
stitutes the main positive result of this section. 
The exchange integral A i s  a microscopic param- 
eter whose value is determined by the structure' 
of the atom and by interatomic spacings, t ha t  
is, by the size of the unit cell of the crystal. I t s  
calculation is the problem of atomic physics. And 
what we find out is that  the exchange integral A 
determines one of the fundamental characteristics 
of ferromagnetic materials, their Curie tem- 
perature. 

Furthermore, formula (3.11) makes possible a 
numerical evaluation of the parameter a z 
= A l p ~ d d , ~ .  Recall what we said about tlie 
exchange integral in Sec. 1.10: its origin i s  
electrostatic. Now let us evaluate the quantity 
p B d s o  = pbN. AS A ,  i t  has the dimensionality of 
energy. And since N is the number of atoms per 
unit volume, N = 11a3, where, as always, a 
stands for interatomic distance. Consequently, 
p%N = p i l a3  is the energy of the magnetic dipole- 

dipole interaction. As we have shown on p. 73, 
Illis energy is much less than the energy of 
clectrostatic interaction, Ucoul, and hence, than 
A . By virtue of these arguments (and on the basis 
ol' a comparison with experimental data),  we find 
illat a >> 1. 

P'cr.romagnetic Metals 

The section above is central to this chapter because 
i t  explains the nature of ferromagnetism. But  
i t  may have baffled the reader. Indeed, the best- 
known ferromagnetic materials (iron, cobalt, 
nickel) are metals. Why then was nothing said 
about free electrons, which we treated as di- 
clectrics? One possible justification is that  there 
cxist numerous ferromagnetic dielectrics, and 
our analysis is directly applicable to them. But  
actually, i t  also works with ferromagnetic metals. 
In fact, either d or f shells of the atoms of al l  
ferromagnetic metals are only partly filled (see 
Sec. 1.9). The electrons on these shells are close 
to the nucleus (they lie in the atom) and are prac- 
tically insensitive to the fact that  atoms assemble 
to form a crystal. The main role in the formation 
of the ferromagnetic moment is played precisely 
l ~ y  d and f electrons of magnetic metals. The 
lollowing picture will be helpful: the electron 
magnetic moments, interacting via the exchange 
interaction, are localized in the sites of crystal 
lattice. But  in contrast to dielectrics, they are 
immersed in a gas of free electrons, with electrons 
also participating in the formation of a magnetic 
moment. However, the Pauli principle does not 
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allow the spirls of all  conduction electrons to 
completely align parallel to  one another: they are - g 
only slightly magnetized by d or f electrons. The 
magnetization is realized through the exchange 
interaction. 

This simplified picture of the "organization" of 
ferromagnetic metals is called the s-d(f) exchange 
model because conduction electrons are the s 
electrons of the atoms making up the metal. 

The main simplification of the s-d(f) ex- 
change model is that  i t  neglects the role of con- 
duction electrons in the exchange interaction 

I 
between d or f electrons. 

Although the utilization of ferromagnetic met- 
als had begun long before the nature of magnet- 
ism was understood, i t  was the magnetism of 
metals that  proved especially dilficult for com- 

+ 
plete clarification. This field of the physics of 
magnetic phenomena is being actively developed 
a t  the present moment. 

3.3. The "Para-Ferro" Transition: 
One ol the Second-Order Phase Transitions 

A change in external conditions changes the prop- 
erties of bodies. By heating up a semiconductor 
we increase its conductivity, and by heating up 
a ferromagnetic material we decrease its magneti- 
zation. By compressing a solid we diminish i ts  
volume, and so forth. The list of such examples 
can be indefinitely long. 

As a rule, a small change in external conditions 
(temperature or pressure) results in a small change 
of properties. Therefore the "properties-external 

.I.:{. Thc "Para-Ferro" Transition 161 

vonditions" dependence can be plotted by a 
c.ontinuous curve. We have already seen an 
,>sample of such curves: magnetization or magnet- 
ic susceptibility as a function of temperature. 
13ut sometimes a slight change in external con- 
ditions results in "catastrophic" consequences: 
citlier one of the characteristics of a body changes 
jumpwise or a property appears that  was absent 
before. Figure 37 shows the specific volume of gas 
as a function of pressure. You see that a t  a certain 
pressure the specific volume changed jumpwise. 
The gas turned into a liquid. An example of the 

Fig. 37. Specific volume 
V as a function of the 
pressure p in the gas-liq- 
uid phase transition 
(two isotherms are shown) 

appearance (disappearance) of a property has 
been described above: the magnetization of a body 
appears (disappears) a t  the Curie temperature T  ,. 
At T > T ,  magnetization is absent, as i t  is 
absent a t  exactly the Curie temperature (of 
course, in zero magnetic field). The jumpwise 
change in volume is an example of a first-order 
phase transition, and the appearance (disappear- 
ance) of magnetization, or the "para-ferro" tran- 
sition, is an example of a second-order phase 
[ransition, Obviously, examples do not constitute 
ii rigorous definition. I t  would be difficult to 
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define the first- and second-order phase transitions 
strictly without deviating fro111 the gist of our 
story. And we decline to digress. Note only that  
the presence of a jump is a sign of a first-order 
phase transition, while the absence of a jump 
is a sign of a second-order phase transition. 

Naturally, similar characteristics must be used 
to establish the presence or absence of a jump. 
For instance, in some substances magnetization 
changes jumpwise under certain conditions: a 
magnetic first-order phase transition takes place. 
We shall encounter this situation later (see Ch. 4). 
On the other hand, specific heat undergoes a 
jumpwise change in the "para-ferro" transition. 
But in a first-order transition heat is released 
or absorbed both in melting and in boiling (recall 
the Clapeyron-Clausius equation). Unfortunately, 
space does not allow us to go into the details of 
al l  these extremely interesting aspects. 

We already know that  the equilibrium value of 
magnetic moment minimizes the energy (or 
rather, free energy F )  of a body. Quite a few 
characteristics of physical systems possess this 
property of minimizing the free energy. In order 
not to limit the discussion to only magnetic 
properties, we denote by the letter q a parameter 
cL:racterizing some property of a body. The 
free energy F is a function of this parameter: 
F = F (q). In a first-order phase transition q 
undergoes a jump at  a certain critical temperature 
T,,, and in a second-order phase transition 
q ( T ) - O a t  T >  T,, a n d q  ( T ) # O a t  T <  T,,; 
T,, is the temperature of a second-order phase 
transition if q (T,,) = 0. The equilibrium value 
q = q (T) is found from the condition of a 
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F A  minimum: 

'I' \ I /  
We want to show how 

the function F (7) is de- 
'1 formed when tempera- w ture changes (this is in fact 

the cause of the phase 
transition). Figure 38 
shows a case of a first-or- 
der phase transition, and 
Fig. 39 shows a case of 
a second-order phase 
transition. You notice 
that  in the former case 
a new minimum is 
formed on the curve F = 

I I = F ( q ) ,  and that  a t  
' l o  T > T,, this minimum 

becomes deeper than the / first minimum. However, 

i l c r  
I 
I Fig. 38. Temperature-in- 
' lo duced transformation of the 

dependence of the free en- 
ergy F on the arameter q 
in a first-order piase transi- 
tion. A new minimum ap- 
pears at T = T1 (when q # 
#O). At T1 < T < Tcr, the 
state with q = q, # 0 is 

q,, 1) metastable, and at T > T,,, 
it becomes stable 

I I A  
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to get into the "new" minimum from the "original" 
minimum, the system has to overcome a certain 
potential barrier, that  is, climb over the "hump" 
of height AF separating the minima. A t  low tem- 
peratures such a process is, as  a rule, quite dif- 
ficult (its probability is proportional to 
exp (-AFIkT)), and the system may stay in a. 
supercooled or a superheated state. Such states 
are said to be metastable. Sometimes geological 
eons are not enough for a transition from a meta- 
stable to a stable state, and a body stably exists 
in a metastable state (a good example of an 
extremely stable metastable state is diamond 
whose spontaneous transition into graphite has 
never been observed). 

The appearance of a new minimum (below T,,) 
in a second-order phase transition transforms the 
original minimum into a maximum (see Fig. 39). 
Obviously, neither supercooling nor superheating 
is then possible. (See Problem 21.) 

Of course, this picture is extremely schematic 
and approximate, but i t  gives a correct qualita-. 
tive characterization of the difference between 
the phase transitions of the second and first orders. 
The discrepancy between a true and a simplified 
picture is especially significant in the case of 
second-order phase transitions ( i t  will be clear 
somewhat later what causes the extreme com- 
plexity of the problem in analyzing second-order 
phase transitions). We have already had a chance 
to point out that  Figs. 38 and 39 plotting F (r)) 
much resemble the dependence of the potential 
energy U on the x-coordinate that  makes i t  
possible to study the conditions of stability of a 
body moving along the x-axis. For the sake of 
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retaining this analogy, we refer to the parameter 
11 as a "generalized coordinate" and to the state 
of the system described by the parameter r) 

, ;IS to a "body". Thus, a "body" is in a stabIe or in 
I 

forms (at T > T c r )  in- 
to an unstable state, and 
stable states with q = 

T<cr = &qo # 0 appear (at 
< Tcr) 

a metastable state a t  a point with a "generalized 
coordinate" a t  which F (q) has a minimum. 

What do we mean when we say that a body is 
in a particular state? This means that thermal 
rnotion makes the "body" vibrate a t  low ampli- 
lude around just this point. (To make i t  perfectly 
clear, imagine a pendulum a t  rest; i t  only oscil- 
lates because of molecular impacts from the sur- 
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rounding air. Even if the pendulum is enclosed 
in a housing and the air  is evacuated, the pen- 
dulum will slightly oscillate because the chaotic 
thermal motion of the atoms composing the 
pendulum will shift its center of gravity.) The 
amplitude of vibrations of the "body" depends on 
the steepness of the curve F (q) a t  the point of 
equilibrium.* And now look a t  Fig. 39. The 
curve F = F (q) in this figure (at T = T,,) is 
very flattened because i t  must turn into a curve 
with a maximum and two minima in response to 
a small change in temperature.** Clearly, the 
amplitude of vibrations a t  T = T,, is large. 

Taking these vibrations into account proved 
to be a very complicated problem. Only in recent 
years physicists gained assurance that  they are 
able to describe the properties of physical systems 
in close vicinity of the point of a second-order 
phase transition with a high degree of accuracy. 
However strange i t  may seem, this required that  
the properties of physical systems be considered 
in spaces (that exist on paper only) with fractional 
dimensions (our world is three-dimensional, a 
plane is a two-dimensional space, a line is one- 
dimensional.. .). 

When a change in the parameter q describes 
a second-order phase transition, i t  is also called 
the order parameter. I n  the case of the "para- 
ferro" transition the reason for this term is obvi- 
ous: the magnetic moment density &ds is a mea- 
sure of ordering of atomic spins. 

* The hcight to which the "body" is liftcd above the 
equilibrium point is dctcrmined by tcmperature T. 
** Tracc this transformation using Problem 21. 
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Let us give another example of a second-order 
phase transition: the ordering of an  alloy CuZn. 
Figure 40 shows the crystal lattice of this alloy. 
At high temperatures the atoms of copper and 
zinc are randomly distributed: they occupy arbi- 
trary sites of the lattice with equal probability 
(which is, naturally, equal to 112). Beginning 
with a certain temperature (also called the Curie 

I Fig. 40. Arrangement of zinc atorns (crosses) and copper 
i~ to~l i s  (circles) in  an ordercd alloy: 
(a) a t  T > T,,; ( b )  at  T = 0 

temperature) the probabilities start to deviate 
from 112, first slightly, but as temperature tends 

( to zero the probabilities tend to zero and unity, 
respectively, that  is, a complete ordering sets in. 

! One last remark to conclude this section. As 
I a rule, a second-order phase transition changes 

the symmetry of a body." (The first to notice 
this fact was L. D. Landau who used i t  to con- 
struct a phenomenological theory of such transi- 
tions.) Indeed, the appearance of ferromagnetism 
singles out a certain direction in the system of 

* As additional reading on symmetry, we recommend 
H.  Weyl, Symmetry ,  1952. 
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atomic magnetic moments, and the ordering 
of an alloy changes the period of crystal lattice. 
Another interesting feature is that  in immediate 
vicinity of T,, the order parameter is still  in- 
finitely small, while the symmetry has already 
changed: symmetry changes jumpwise because 
a body can have either one or some other sym- 
metry. A continuous transition from one sym- 
metry to another is impossible. 

3.4. What Is  the Direction 
of the Magnetic Moment of Ferromagnetics? 
Energy of Magnetic Anisotropy 

As a result of the isotropy of the exchange inter- 
action discussed in Sec. 1.10 the direction of the 
magnetic moment of a ferromagnetic material 
is not specified. Of course, if a ferromagnetic 
material is placed in a magnetic field H, i t  is 
energetically favorable for the magnetic moment 
to align along H. But do there exist some internal 
causes, inherent in  the body itself, that  force 
the magnetic moment density &, orient in 
a crystal in a definite way? Of course, they exist. 

First, these are dipole-dipole forces acting 
between atomic magnetic moments. Since the 
energy of the dipole-dipole interaction (1.35) 
is a function of orientation of magnetic moments 
relative to  the straight line joining them, the 
energy of this interaction in a ferromagnetic 
crystal in which such lines are fixed to the crystal 
lattice must be a function of orientation of the 
vector &,, 

Second, the spin magnetic moments of atoms 
creating the total magnetic moment of a ferro- 
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magnetic material interact with electron cur- 
rents. These last are caused by the orbital motion 
and are oriented in space in a definite manner. As 
a result, some spin orientations are more ener- 
getically favorable than others. 

Each of the two above-described interactions 
can be put in correspondence with the energy 
dependent on the spatial orientation of the mag- 
netic moment density &,. I t  is called the aniso- 
tropy energy. 

The anisotropy energy is determined by the 
magnetic dipole-dipole and spin-orbit interac- 
tions. 

The anisotropy energy is often divided into 
the intraionic and interionic energies. The intra- 
ionic energy results from the anisotropic dis- 
tribution of electrons within an ion owing to the 
effect of the electric field produced by surrounding 
ions. And i t  can be said that  in general the aniso- 
lropy energy is ultimately a consequence of 
rronisotropic distribution of electrons in the 
crystal lattice. 

But  why could we neglect the anisotropy energy 
when discussing the formation of spontaneous 
magnetic moment in ferromagnetic materials? 
Hecause this energy is much smaller than the 
exchange energy. In order to emphasize this fact, 
the exchange energy is said to  be of electrostatic 
origin, while the anisotropy energy to be of 
lelativistic origin. If the speed of light c were 
infinite, the anisotropy energy would be zero. 
'I'his is easily found by considering the magnetic 
dipole-dipole energy. I t  has already been eval- 
~jated earlier (see p. 72), and we found that  i t  is 
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less than the electrostatic energy by a factor 
of c2/v2, while the exchange energy differs from 
the electrostatic energy only slightly, if a t  all. 
Since the anisotropy energy is much less than 
the exchange energy, it leaves the formation 
of the magnetization &, practically unaffected 
and is responsible only for the orientation of the 
vector &,. 

The expression for the anisotropy energy -%'an 
cannot be derived here. This is a difficult prob- 
lem, not yet completely solved. We shall make 
use of a phenomenological description (the defi- 
nition of the concept "phenomenological theory" 
was given on p. 153) based on an analogy between 
the anisotropy energy and the energy of a mag- 
netic moment in a uniform external magnetic 
field. Indeed, i t  is the magnetic field tha t  orients 
the magnetic moment. Let a crystal contain 
a certain direction defined by a unit vector n 
along which i t  is advantageous for the magnetic 
moment to be oriented. This direction is called 
the singled-out axis, or the anisotropy axis. 

Then i t  would be desirable to follow this 
analogy and write 

$an=  --P&-nV, P > O  

We have dropped the subscript s from &. 
We would like to do i t ,  but  ... cannot. And 

" 

here is why. Magnetization & is a vector sum 
of atomic magnetic dipoles. And magnetic di- 
poles reverse their directions under time reversal, 
tha t  is, under the operation t +- -t (this was 
mentioned on p. 25). Hence, the direction of & 
is also reversed. The energy cannot change sign 
under time reversal (in these cases energy is 
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said to be invariant under time reversal*) ... . 
Hence, the expression written above cannot be 
correct. The expression for energy must include 
the vector & to an even power. Only then the 
replacement of t with -t leaves energy invar- 
iant. The simplest expression satisfying this 
condition is 

This is the expression we are to use. The prob- 
lem of a microscopic theory is to calculate the 
factor $, called the anisotropy constant. Note 
(this will prove useful later) that  the' anisotropy 
constant is dimensionless. The value of P is 
different in different ferromagnetic materials, 
but i t  is practically always much less than the 
exchange parameter a (see formulas (3.10) and 
(3.11)). The reason for this has already been 
mentioned: the smallness of the relativistic 
interaction in comparison with the electrostatic 
interaction. Expression (3.13) is valid for some 
but not for any crystals. I t  is valid for uniaxial 
crystals (e.g. for crystals with hexagonal unit 
cell, Fig. 41), but for cubic ferromagnetic materi- 
als a more complicated dependence of gan on 
the direction of the vector & must be used. 

Formula (3.13) shows that  there are two most 
advantageous directions for the vector &: paral- 
lel and antiparallel to n. This uncertainty cannot 
be eliminated by the internal forces in a ferro- 

* This is es ecially clear from the expression for the P ellergy of a Tee particle, 'E = mu2/2. Under the reversal 
t -+ -t the slgn of the velocity u is reversed, while that 
of va is not. 
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magnetic material and leads to important con 
sequences (see Sec. 3.5). At  the moment le 
us place a ferromagnetic material in an externa 

Fig. 41. Uni t  cell of 
hexagonal crystal 

magnetic field H and try to determine the direc 
tion of & in this case. 

Fig. 42. At H # 0 the 
magnetic moment is ln 
the plane a stretched on 
the vectors n and H. At 
H = 0 the magnetic mo- 
ment aligns parallel or 
antiparallel to n 

As always, we must s tar t  with minimizing 
the energy gan. In the case under consideration, 

1 
gan= [ - 2 ~ ( d - n ) z - ~ - ~ ] ~  

The vectors n and H define a plane o (Fig. 42). 
I t  is not advantageous for & to t i l t  out of this 
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plane because energy would then be increased. 
Therefore we have to find a single angle 0 be- 
tween ,,& and n. Expression (3.14) gives the follow- 
ing detailed dependence of @,, on 0: 

I 
I,, = - v (f cosa o -b H,& sin o 

+ Hz& cos 9 )  (3.14') 

We have directed the z-axis along n, and the 
x-axis perpendicularly to n in the plane o. 

The condition of the minimum .of Ean is 
written as follows: 

-- - V& ( ; PYX sin 20 - H ,  cos 0 
a0 - 

-1- H ,  sin 0 )  = o 
I 

"'8" = V ~ L  (p J cos 20 + H ,  sin 9 
a02 

The conditior~ of positiveness of the second 
derivative singles out among the solutions of 
equations (3.15) those that  correspond to a min- 
imum, not to a maximum. A replacement 
sin 9 = E transforms equation (3.15) into an 
algebraic equation of the fourth degree in E :  

As we know from algebra, an equation with 
real coefficients may have both real and complex 
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pairwise-conjugate roots.* The total number of 
roots is equal to the degree of the equation, i.e. 
to four in this case. I t  is then clear that  equation 
(3.16) has either two real roots or four. We are 
obviously interested only in real roots. Since the 
right-hand side of the equation is positive, the 
absolute value of the real roots does not exceed 
unity. Hence, each of them defines an angle 0. 

The sign of the second derivative determines 
whether an extremal point is a maximum or a min- 
imum. However, direct testing is quite difficult. 
Indeed, each root has to be substituted into the 
expression of the second derivative, but i t  is 
practically impossible to find a manageable 
explicit expression of the roots of equation 
(3.16) (look a t  i t  carefully: i t  is a general, not 
biquadratic, equation of the fourth degree). We 
shall resort to qualitative arguments. They make 
i t  possible to outline the situation. 

When equation (3.16) has four real roots, two 
of them correspond to a minimum of the function 
Ean = gan (8) (see (3.14')) and two to a maxi- 
mum. Clearly minima and maxima alternate. 
The deepest minimum corresponds to the stable 
state, and the shallower minimum to a meta- 
stable state (similar arguments were given in 
Sec. 3.3). When equation (3.16) has two real 
roots, the function Yan = Yan (0) has one 
minimum and one maximum. The transition 
from one case to another is caused by changing 
the magnitude and direction of a magnetic field H 

* This means that if = El + iE2 is a root of the equa- 
tion, then = El - iE, is  also a root of the same equa- 
tion (El and E, are real numbers). 
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(i.e. the values of the projections H, and I - , )  
and is realized by a merging of one maximum 
with the neighbor minimum. Obviously, the 
rerromagnetic material then loses the possibility 
of being in a metastable state. 

Let us find the range of projections H, and H z  
of a magnetic field, in which a ferromagnetic 
material has a metastable state. We shall be 
:~hle  to show now that  this region is bounded 
by a curve in the plane H,, Hz whose equation 
i s  easily obtained by resorting to the following 
arguments: since the points of this curve are 
tllose a t  which a minimum and a maximum of 
the function 8,, = ran (8) merge, the second 
derivative d2Zan/602 on this curve must vanish. 
In other words, the inequality sign in (3.15) 
must be replaced with the equality sign. 

We thus have two equations conveniently 
written in the form 

I I ,  
H z  -pa&  

sin 0 cos 0 

Hz H ~ : / 3  ~ : / 3  
+ L = O  or =+-=O sin3 0 ~ 0 ~ 3 8  cos 0 

Eliminating 0 from these equations*, we arrive 
a t  the equation of the sought curve: 

?1E/3 -t H;I3 = ( P ~ / L ) ~ / ~  (3.17) 
This curve is the so-called astroid because its 

shape resembles that  of a four-ray star (from 
the Greek astron for star). The astroid (Fig. 43) 

* For elimination, we have to find sin 0 and cos 0 from 
[ h e  above equations and to substitute them into the 
(((entity sin2 0 + cos2 0 = 1. 



176 Ch. 3. Ferromagnetism 

divides the plane H,, II, into two parts. Which 
of these parts contains metastable states, and 
which does not? This question is easily answered 
after considering very strong magnetic fields 
(formally, a t  H- t  co) when the anisotropy 

HZ A 

-P 

Fig. 43. The region of metastable states 01 a ferromagnetiq 
material. If the t ip  of the vector H falls inside the astroid, 
the material has a stable and also a metastable state 

energy can simply be neglected. In this case 
ran = gan (8) has a single minimum a t  which 
the vector ,& is parallel to H,  that is, a t  tan 8 = 
= HxIHz; hence, no metastable states are pos- 
sible. Therefore, 

if H ,  and H z  "lie" outside the astroid, then 
there are no metastable states, and if they "lie" 
inside, then there are metastable states. 
I t  is clear from symmetry-based arguments 

that a t  H = 0, as well as at  I$, = 0 and H ,  < 
< PPA', the curve ga, = Fan (8) has two equally 
deep minima. (See Problem 22.) A ferromagnetic 
material selects one of the two states, 
"guided" by arguments that  will be explaine 
in the next section. 
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3.5. Domains 

Let us repeat the conclusion arrived a t  in the 
preceding section: in a "symmetrically" applied 
weak magnetic field (i.e. in a field perpendicular 
to the anisotropy axis and not exceeding pd) 
the stable and metastable states become indis- 
tinguishable, and the corresponding to them 
directions of the magnetization vector become 
equally advantageous. Thus, if H = 0, the mag- 
netic moment can be directed with equal "gain" 
in any direction along the anisotropy axis as 
long as i t  does not deviate from this axis. But 
which of these two directions will be actually 
selected? Clearly, the selection involves some- 
thing that  we did not take into account. 

Let a magnetic field, no matter how weak, 
be applied along the anisotropy axis. Of course, 
the direction along the field is more advantageous 
than the opposite direction, and this is the 
direction chosen by the magnetic moment. And 
now let us remove the field gradually (infinitely 
slowly in  order not to "shake up" the magnetic 
specimen, or i t  might demagnetize (see below)). 
The states with oppositely oriented magnetic 
moments do have identical energy but are sepa- 
rated with an energy barrier whose height is 
determined by the anisotropy energy. When 
the field vanishes, magnetization may not over- 
come this barrier. Then the magnetic moment 
of the specimen retains the direction imposed 
by the magnetic field. This produces a state in 
which a ferromagnetic material possesses spon- 
taneous magnetization (of course, a t  a tempera- 
ture below the Curie temperature). 
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Nevertheless, this "froz 
ization is metastable, 
its obvious advantage in 
state with a lower energy. In 
is bound. When magnetized, 
of a magnetic field i 
But  the magnetic fie 
whose density (i.e. energy 

HZ 8 H  = 

This expression was not taken "out of 
air". I t  follows from 
energy of the magnetic fi 
in our calculations of t 
material, although the tota 
netic field can be very high. For instance, 
infinite in the case 
plate (Fig. 44a) becaus 
all space, with the strengt 
minishing with distance 
(see p. 96).* We have to c 
of magnetization analyzed 
as the most energetically 
a very high energy. How 
and diminish the total energy? At  the first glance, 
i t  is necessary to reject the orientation of the 
magnetic moment along the anisotropy axis and 
arrange the moment perpendicularly to the axis. 
Then we would "lose" in anisotropy energy but 

* In  fact, when saying that the plate is "infinite", we 
only mean that  two of its dimensions are much greater 
than the third. When the plate dimensions are finite, i t s  
magnetic field in fact diminishes a t  distances large in. 
comparison with the plate size. 
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would seemingly diminish the magnetic field 
energy. This is a poor solution. Each plate is 
bounded on all sides. Magnetic lines of force 
always "stream" out of i t  to fill the space around 
the plate. The magnetic field energy will be, 
as before, very high, and the "loss" in anisotropy 

Fig. 44. Magnetic field around a ferromagnetic plate: 
(a) the plate is uniformly magnetized; (b) the plate sepa- 
rates into domains 

energy cannot be compensated for. An analysis 
shows that  the advantages related to the mini- 
mum in anisotropy energy should not be discarded 
(at any rate, discarded completely). But we can 
make use of the equivalence of the two directions 
of magnetization along the anisotropy axis. Let 
us divide the plate into alternating identical 
segments. Let the vector of magnetization have 
the same direction relative to the axis within 
each segment, and alternate in neighbor seg- 
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ments, making the plate effectively demagnet- 
ized. These segments are called the regions of 
spontaneous magnetization, or domains (Fig. 44b). 
The figure shows that having left one domain, 
the lines of force enter the neighbor domain. 
Therefore, the "spreading" of the lines of force 
is relatively insignificant, that is, the magnetic 
field diminishes sufficiently rapidly as we move 
away from the surface (the field is significant a t  
distances of the order of domain size). 

Of course, the energy of the magnetic field, 
$,, around a plate divided into domains is 
much less than the energy of a magnetized plate. 
By the order of magnitude, 

where d is the thickness of a domain, and S is the 
area of the plate equal to L2. Of course, this is 
not an exact expression because we have omitted 
all numerical factors, although they may con- 
siderably depart from unity (thus, the numerical 
factor in (3.18) equals (8rc)-l z 1/25). All for- 
mulas of this section are thus of qualitative 
nature. 

A demagnetized plate has the same energy of 
magnetic anisotropy as a magnetized plate. In- 
deed, i t  seems that the formation of domains 
is favorable for a ferromagnetic specimen. But 
a question immediately arises: how many do- 
mains should form in a ferromagnetic plate? From 
the standpoint of magnetic field energy, the 
greater the number of domains, the better. This 
is true because as the number of domains in- 
creases, their size diminishes, and magnetic lines 
of force "crowd" closer to the plate, the field falls 
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off more steeply with distance from the plate, 
and the energy of magnetic field decreases (see 
(3.19)). But what stands in the way of "fragmen- 
tation" of domains? I t  would seem that the mag- 
netic anisotropy energy should remain the same 
at  any fractionation into domains. On the other 
hand, experiments unequivocally demonstrate 
that domains have quite definite macroscopic 
sizes determined by the shape and size of the 
specimen. 

In order to make ends meet, we must pay atten- 
tion to the boundary between adjacent domains. 
We did not hesitate to arrange the magnetic 
moments in adjacent domains so that they pointed 
in opposite directions, having forgotten that 
from the standpoint of exchange interaction 
(3.8') this is a "crime", because the exchange 
energy is a t  minimum when neighbor spins are 
parallel, and a t  maximum (sic) when they are 
antiparallel. And the exchange interaction is 
the most important interaction of all ... . 

I t  is thus clear that antiparallel spins must 
not be placed alongside. An analysis shows that 

I the transition from one direction of a magnetic, 
moment to the opposite direction is gradual*: 
i t  occurs over a distance of the order of 

where a is the interatomic spacing, so that the 
vector of magnetization rotates by 180" in a plane 

, * The analysis is based on calculating such a distribu- 
tion of magnetization that has the least energy, provided 
the magnetic moments far from the boundary point in 
opposite directions. 
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parallel to the boundary between domains 
(Fig. 45). This results in a finite-thickness tran- 
sition layer, resembling a wall, instead of an 
abrupt (geometric) boundary between the do- 
mains. I t  is indeed said to be a domain wall. 
Its structure is such that the transition from one 
domain to another consumes the least energy (the 
thicker the domain wall, the higher the exchange 
energy, and the thinner the wall, the higher the 

Fig. 45. Domain wall. The magnetic moment & rotates, 
remaining always parallel to the plane separating two 
domains. Far from the domain wall the magnetic moments 
align along the anisotropy axis, in opposite directions 
on the two sides 

anisotropy energy). With the distribution of the 
magnetic moment known, i t  is possible to cal- 
culate the energy related to the formation of 
one domain wall. I t  is roughly equal to A = 
= dh26 per 1 cm2 of the wall (here again the 
numerical factor was omitted). Having calculat- 
ed this energy, we can forget about the structure 
of domain walls and again consider them to be 
abrupt boundaries but such that they carry addi- 
tional energy A .  We shall discuss later the con- 
ditions of validity of this approach. 
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Now we see what prevents the fractionation 
sf a ferromagnetic specimen into excessively 
small domains: the formation of new domains 
increases the energy of domain walls and limits 
Sractionation. In order to calculate the size d 
of an individual domain, let us write an expres- 
sion for the energy of a demagnetized ferromag- 
netic plate. Since the number of domain walls 
is Lld, the surface area of a boundary between 
domains is lL, 1 being the plate thickness (see 
Fig. 44b), the energy (obviously with the exchange 
energy as a reference point) is 

As always, the domain size is found from the 
condition of a minimum, in this particular case 
the minimum of expression (3.21). The energy 8 
is minimum if d = 1/a. I 

This important result was obtained by 
Ya. I. Frenkel, L. D. Landau, and E. M. Lifshitz. 
The notion of domains is essential for under- 
standing the nature of ferromagnetism: in accord 
with experimental data, 

in its ground state a ferromagnetic material of 
finite size is demagnetized because it separates 
into domains. 

The domain size depends on the characteristics 
of the ferromagnetic material (they enter into 
the parameter 6). The size grows with the in- 
creasing size of the specimen, proportionally 
to the square root of the smallest size of the plate. 

An attentive reader should regard our line 
of reasoning as totally illogical. At the begin- 
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ning of the section we tried to determine the 
direction of a magnetic moment and thus assumed 
that a ferromagnetic specimen is uniform, that 
is, its magnetization is independent of coordi- 
nates; then we found that the magnetic moment is 
nonuniform around the boundary between do- 
mains. Several lines later we again "forgotn 
about i t ,  having correspondingly written for- 
mula (3.20). Furthermore, in deriving the Curie  
Weiss equation (see Sec. 3.2), we deliberately 
neglected the possibility of nonuniform magnet- 
ization. Have we any right to take and then 
not to take into account this inhomogeneity? 
Is not i t  an arbitrariness that seems to be unaccept- 
able in science? Of course not! Let us start with 
proving that a domain wall can be replaced with 
a geometric boundary. In all likelihood everyone 
will agree that this can be done if the domain 
wall thickness 6 is much less than the domain 
size d, that is, when d >> 6, so that our discus- 
sion holds for sufficiently thick plates (1 >> 6). 
Indeed, the formation of domains is not advanta- 
geous a t  all for ferromagnetic specimens of suf- 
ficiently small size (if all dimensions of the spec- 
imen are of the order of 6). Such ferromagnetic 
particles do exist and are not demagnetized, con- 
stituting a single domain. 

Now let us find out what gives us the right to 
operate with the results obtained by solving the 
Curie-Weiss equation. The most nonuniform re- 
gions in a demagnetized ferromagnetic specimen 
are domain walls. The degree of nonuniformity ir~ 
characterized by the thickness 6 of domain 
walls. But 6 >> a,  that is, on the atomic scale 
ferromagnetic samples are uniform even in the  
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vicinity of domain walls.* The approach used 
above is thus justified. It has a right to exist, 
provided the following strong inequalities hold: 

1 > > 6 > > a  (3.22) 

I t  must be emphasized that the second inequality 
holds because the exchange energy is much greater 
than the anisotropy energy; this fact has already 
been discussed above. 

The formation of a periodic domain structure 
can be regarded as an example of a fairly general 
phenomenon, namely, spontaneous breaking of 
symmetry: i t  is energetically favorable for a ho- 
mogeneous highly symmetric ferromagnetic ma- 
terial to lower its symmetry and transform into 
a periodic structure. 

We have already seen examples of spontaneous 
symmetry breaking: a transition from the para- 
magnetic to the ferromagnetic state violates 
the isotropy inherent in each point of a para- 
magnetic material, owing to the formation of a 
macroscopic magnetic moment (indeed, i t  has 
to point in some direction). 

The above-discussed example of a domain 
structure (in a plate cut perpendicularly to the 
anisotropy axis) is certainly a particular case. 
Sometimes domain walls are arranged in a differ- 
ent way. It happens (as a rule) that domain shapes 
are not as simple as we have described (e.g. 
Fig. 46a shows a domain structure in an iron 

* We remind the reader that the exchange interaction 
decreases very quickly with distance; in fact, it binds 
only neighbor atoms, thus linking all the atoms of a fer- 
romagnetic, specimen in a "relay" manner (see fomulh 
(3.8')). 
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film; you see that i t  is far from simple). Cylin- 
drical domains, called magnetic bubbles 
(Fig. 46b), are formed in some ferromagnetic 
films; these were found useful in computer tech- 
nology, as computer memory elements. 

But whatever the domain structure, the main 
conclusion always holds: i t  is energetically ad- 

Fig. 46. "Complex" domain structures: 
(a) the domain structure in an iron film; (b) magnetic 
bubbles. Arrows indicate the direction of magnetization 
far  from domain walls 

vantageous for the total magnetic moment of a 
finite sufficiently large ferromagnetic specimen 
to be zero. 

Why then permanent magnets exist? In order 
to answer this question, i t  is necessary to under- 
stand the processes of magnetization and demag- 
netization of ferromagnetic materials. 

3.6. Technical Magnetization Curve 

By definition, the magnetization curve is the 
dependence of the magnetic moment of a body 
on the applied (external) magnetic field. As for 
the attribute "technical", i t  will be explained 
later. 
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The dependence of the magnetic moment oi 
a paramagnetic material (or of a ferromagnetic 
material a t  a temperature above the Curie tem- 
perature) on the magnetic field is linear up to 
very high fields. Saturation, that is, approach 
to a maximum possible magnetization, occurs 

H 
l'ig. 47. Virgin curve of magnetization 

either a t  very low temperatures or a t  very high 
magnetic fields, in accord with the condition 
llnH >> kT (see Sec. 2.2). 

The magnetization curve of a ferromagnetic 
material looks absolutely different. I t  is illus- 
trated in Fig. 47. You notice from this figure 
that a t  H = 0 the magnetization is also zero. 
This is in agreement with what we said in the 
preceding section: a ferromagnetic is demagnet- 
ized when in zero external magnetic field. The 
magnetization curve starting a t  the origin of 
coordinates is called the virgin curve. As the 
magnetic field increases, magnetization grows 
first slowly but then much more steeply: magnet- 
ization increases several tenfold over a relatively 
narrow interval of the field. Then the rate of 
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growth of magnetization slows down again, anc 
the so-called technical saturation sets in. Mag 
netization up to technical saturation is called 
technical magnetization, and the corresponding 
segment of the curve is called the technical mag 
netization curve. * 

If we continue increasing the magnetic field 
after technical saturation has been reached, mag- 
netization changes slowly, increasing almost as 
a linear function of the field. This linear increasc 
in magnetization with the field is called the 
paraprocess, which underlines the similarity with 
the linear dependence of the magnetization field 
of paramagnetic materials. 

The difference between the technical magnet- 
ization curve of ferromagnetic materials and 
the corresponding curve of paramagnetic mate- 
rials obviously stems from the presence of mag- 
netized macroscopic regions (domains) in ferro- 
magnetic specimens even a t  H = 0, and the role 
of the external magnetic field reduces to aligning 
their magnetic moments.** As we have mentioned, 
in paramagnetic materials the magnetic field 
aligns microscopic atomic magnetic moments. 

In order to find a qualitative explanation of 
technical magnetization, let us again consider 
a plate of a uniaxial ferromagnetic material (see 
Fig. 44). However, now we apply the external 

* Note that numerical characteristics of the virgin curve 
not only vary among different ferromagnetics but also 
somewhat vary among specimens of the same material. 
As a rule, the behavior of the curve is preserved. 
** Of course, the alignment of the magnetic moments of 
the domains means the destruction (elimination) of th 
domain structure because the domains differ only in tbee 
direction of the magnetic moments. 
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~~ragnetic field to this plate a t  a certain angle 
lo the anisotropy axis. The field disturbs the 
equivalence of the two directions along the axis 
and makes that direction which is a t  an acute 
angle to the field more favorable. In other words, 

I it is advantageous for the domains with the mag- 
~ ~ e t i c  moment along the field to grow, and for 
lhose with the moments against the field to 
shrink. But how do some domains grow and 
others shrink? 

Since the direction of magnetization in a do- 
main wall changes continuously from point to 
point (see Fig. 45), the magnetic moment within 
Lhe wall can rotate even a t  an arbitratily weak 
magnetic field, the rotation being a t  a small 
angle in a weak field. As a result, magnetization 
distribution changes and thereby the domain 
wall shifts (Fig. 48), and the body will manifest 
nonzero magnetization. 

Further growth of a magnetic field results in 
an additional displacement of domain boundaries 
and in a continuous growth of magnetization. 
Let us emphasize that the linear segment on the 
virgin curve (at H + 0) follows from the exist- 
ence of finite-thickness domain walls. If the 
boundary between domains were infinitely thin, 
a finite magnetization could be produced only 
by reversing the direction of the magnetic mo- 
ments simultaneously in all "unfavorable'' do- 
mains, and this would call for a considerably 
strong field. 

At a certain strength of the magnetic field, 
"unfavorable" domains almost disappear, and the 
rate of increase of magnetization diminishes. 
Therefore, the range of the magnetic field in 
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which magnetization grows a t  the maximum r 
corresponds to the motion of domain wa 
Further increase in magnetization is caused 
the rotation of the total magnetic moment towar 

d z  1 

--------- & 

- -  ------------ 
Fig. 48. Shift in  the position of a domain wall in  t 
magnetic field: 
curve I-projection of the magnetic moment onto t 
anisotropy axis as a function of coordinate; x = 0 
the domain wall a t  H = 0; curve 2-same a t  H # 
the domain wall is shifted by x, 
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which the magnetic field is an ally of the exchange 
interaction, and their common opponent is the 
tendency to chaos, present a t  any finite temper- 
ature. 

Now consider a process inverted with respect 
to magnetization: demagnetization. Let the mag- 
netic field that has magnetized a ferromagnetic 
specimen to technical saturation gradually di- 
minish. Obviously, magnetization will also di- 
minish with the field. But must the decrease in 
magnetization trace the same curve as that repre- 
senting magnetization (see Fig. 47)? Not neces- 
sarily. In an ideal ferromagnetic specimen (con- 
taining no impurities, lattice defects, disloca- 
tions, etc.; here we deal only with such objects) 
everything depends on whether the point repre- 
senting the magnetic field falls inside or outside 
the astroid in Fig. 43. If the point is outside the 
astroid (where no metastable states exist), the 
point in the plane H, d b  will move (at least a t  
the beginning) along the virgin magnetization 
curve. And if the point representing the satura- 
tion magnetic field falls inside the astroid (where 
there are metastable states), then magnetization 
will diminish together with the field along the 
curve of metastable states. Each point on this 
curve corresponds to a magnetization greater 
than that on the virgin curve. When the magnetic 
field vanishes, magnetization does not become 
zero because an energy barrier must be overcome 
for demagnetization, that is, for dividing a spec- 
imen into domains (see Secs. 3.4 and 3.5). We 
have already explained that a state of magneti- 
zation of a ferromagnetic material in the absence 
of an external field is metastable but frequently 
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i t  may be sustained indefinitely long. This fact 
is familiar from childhood to anybody who 
played with a permanent magnet. 

The magnetization of a ferromagnetic material 
in the absence of an external magnetic field is 
called the residual magnetization. In order to 
"remove" the residual magnetization, tha t  i 
forcefully demagnetize the specimen, i t  is nece 
sary to apply a sufficiently strong magnet 
field directed against the field of magnetization 
The strength of this demagnetizing field is c 
the coercive force. Ferromagnetic materials gr 
differ in coercive force: from tenth of one oe 
to thousands of oersteds. Materials with a 
coercive force are said to  be magnetically 
and those with a low coercive force are said to b 
magnetically soft. Both hard and soft material 
find applications in modern technology. 

By continuing the increase in the field in t h  
direction opposite to the initial magnetizing 
field, we can again magnetize the specimen to its 
technical saturation. The decrease in the oppo- ~i 
sitely directed field will lead, in the case of 
metastable states, to magnetization varying along 
a curve below the virgin curve. The residual mag- 
netization will be formed again, and again a field , 
equal to the coercive force will have to be applied 
to remove this magnetization, but now this 
field will be along the initial field.. . . The words 
"and so on" would be in place here because further 
intensification of the field will bring magnetiza- 
tion to technical saturation. 

The a bove-described processes of magnetiza- ( 
tion and remagnetization are shown in Fig. 49. 'r 
The salient feature of this curve is the irrever- 
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sible variation of magiietization with field: the 
magnetization and demagnetization of a ferro- 
magnetic material follow different curves. This 
irreversibility is called the magnetic hysteresis, 
and the closed curve shown in the figure is called 
the hysteresis loop. Let us emphasize that  

the hysteresis is one of the manifestations of 
metastable states. 

The attribute "technical" (technical saturation, 
technical magnetization curve) marks not only 

the fact of technical importance of the magneti- 
zation curves of real magnetic materials but also 
the dependence of the magnetization process 
on the technology of manufacturing a specimen. 
The point is that  numerical characteristics of 
a technical magnetization curve, hysteresis loop, 
and coercive force essentially depend on the 
state of the specimen and the technological pro- 
cedures involved. This is employed in industry 
to produce magnets with desired properties. The 
physical reason for the sensitivity of the tech- 
nical magnetization curve to the state of a sample 
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lies in the dependence of the anisotropy constant 
$ on the structure of crystal lattice. As a result 
of an increase in within regions with defects, 
the magnetic moment "clings" to them, and a 
relatively strong field is required to "force" i ts  
reorientation. The study of the technical mag- 
netization curve and the development of mag- 
netic materials with required magnetic proper- 
ties form an important chapter in the application- 
oriented physics of magnetic phenomena. 

3.7. Spin Waves 

Strictly speaking, the two preceding sections are 
a digression from our main topic because they 
describe not the nature of ferromagnetism but 
the properties of real finite-size specimens. In 
this section we return to the description of the 
nature of the ferromagnetic state. We shall find 
out how the spontaneous magnetic moment of 
a ferromagnetic specimen depends on temperature 
a t  low temperatures, that is, close to absolute 
zero. As we have mentioned, formula (3.5) con- 
tradicts the experimentally measured tempera- 
ture dependence of a magnetic moment. 

In order to find out the temperature dependence 
of a physical quantity, we have to know the 
motion of atomic particles of which a body is 
composed. We already had an opportunity to 
see the truth of this statement when the magnetic 
properties of metals were discussed (see Secs. 2.4 
and 2.5). Statistical physics relates the motion 
of individual atomic particles to macroscopic 
properties of bodies. As long as a gas is concerned, 

:{.7. Spin Waves 195 

the meaning of the words "individual atomic 
particle" is clear. But are they meaningful 
in a solid which differs from a gas precisely in 
that i t  has no individual atomic particles because 
all particles interact with one another? We shall 
see that  the role of individual atomic particles 
is played in crystals by quasiparticles that we 
shall discuss later. 

Too many incomprehensible terms have been 
used above: spin waves in the title of the section, 
and quasiparticles in its text; now let us add 
another hardly comprehensible word combina- 
lion: the energy spectrum of a physical system. 
In this section we describe the energy'spectrum 
of ferromagnetic materials. Hopefully, the mean- 
ing of these words will be clear to the reader 
a little later. 

Let us recall the remark made about the Curie- 
Weiss model (see p. 143): in the general case the 
energy of a ferromagnetic specimen is not de- 
termined unambiguously by its magnetization. 
The energy is expressed via the total magnetic 
moment of a body only when all atomic magnetic 
moments are parallel to one another. This is 
why we were able to relate the constant a of the 
phenomenological theory to the exchange inte- 
gral A (see formula (3.11)). This unambiguous 
relationship is possible because the complete 
ordering can be produced in only one man- 
ner. 

In what follows i t  will be more convenient 
l o  operate not with the magnetic moment but 
with the spin of a ferromagnetic material. 

In the ground state of a ferromagnetic mate- 
rial the spins of all atoms are thus "parallel" 
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to one another. Their common "directionn* is 
fixed, for instance, by the anisotropy axis along 
which the magnetic field is applied. Any devi- 
ation of the spin from this direction involves 

Fig. 50. Spin of the ith atom is deflected 
tion" common for other spins 

from the "direc- 

an increase in energy. Assume that  the ato 
with the deviating spin is in the i th  lattice si 
(Fig. 50). I t  would seem then that the energ 
of the ferromagnetic material must differ fro 
the ground state energy (3.9) because of t h  
change in the energy of interaction of the i 
atom and i t s  nearest neighbors. But  this intuiti  
interpretation proves incorrect: i t  ignores t 
quantum nature of the spin. Of course, the s tat  
in which the spin of the i th atom deviates f r  
the others is allowed to exist. But  we cannot 
satisfied with this: we want this s tate  to be s 

* We want to emphasize again that the "direction" o f  
spin (and generally, of any quantum-mechanical moment) 
is a convenient way to describe states with a given value 
of spin projection. 

I 
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tionary, to have a dejinite energy. But this is an 
excessive demand. We have already mentioned 
(see Sec. 1.4) that  not any two physical quantities 
are allowed by quantum mechanics to have 
simultaneously definite values. Thus, for a ferro- 
magnetic material, that  is, for a system of the 
spins whose behavior is described by the Hamil- 
tonian (3.8'), the energy of the system and the 
projection of the spin of the i th  atom (if i t  differs 
from the projections of the spins of the other 
atoms) cannot have definite values simultaneous- 
ly. This statement is so important for under- 
standing further explanations that we shall 
illustrate i t  with an example of the simplest 
spin system composed of two electrons (spin-112 
particles) coupled by the exchange interaction 
(see formula (1.39)). 

I t  is clear from Table 2 on p. 64 that  the value 
of the scalar product s1.s2 (and hence, of energy) 
is determined by the total spin of the system of 
two electrons, and only in two of the four sta- 
tionary states the projection of each spin is 
defined. These are the states with S = I but 
S, = +I and S, = -1. In these states each 
of the electrons has a definite spin projection: 
if S, = 1,  both electrons have s, = $.1/2, and 
if S, = -1, both have s, = -112. In the other 
two states (S = 0, and S = 1 with S, = 0) the 
projections s, = 112 and s, = -112 for each 
electron are "mixed", that  is, in these states 
none of the electrons has a definite spin pro- 
jection. 

Analogues of the states with S = 1 and S, = 
= +I for a ferromagnetic material are the states 
with $ = Ns and ST = f Ns, that is, the states 



Ch. 3. Ferromagnetism 

with the lowest exchange energy (of course, for 
A > O), and, a t  the same time, the states with 
definite values of spin projections for each atom 
(for any i,  siz = +S if S, = Ns, and s i z  = -S 
if S, = -Ns). In other stationary states (as 
in the case of two electrons) the projections of 
the spins of individual atoms do not have def- 
inite values. Table 2 also hints how to character- 
ize the stationary states of a system of the spins 
related by the exchange interaction (note that  
the Hamiltonian (3.8'), whose properties we are 
now studying, is a generalization of the Hamil- 
tonian (1.39)). According to the table, the pro- 
jection of the total spin has a definite value in 
all four stationary states. This property of sta- 
tionary states is also preserved in the case of 
interest to us now: that of a system of the atomic 
spins described by the Hamiltonian (3.8'). Con- 
sequently, although there are no stationary states 
with a "deflected" spin in a given lattice site, 

there exist stationary states with a definite value 
of the S, projection of the total spin of the whole 
ferromagnetic specimen onto the anisotropy axis. 

I t  is intuitively clear that  a t  low temperatures 
that  are of interest to us now, the important 
states are those close to the ground state. Let us 
consider a stationary state  with S, = Ns - 1 ,  
that is, with a minimum decrease in the projec- 
tion of the total spin. One would like to realize 
this state by changing the spin projection of 
one atom by unity: s + s  - I. But we have 
seen that  this is forbidden by quantum mechan- 
ics. Hence, the deflected spin (the spin with 
the projection s - 1)  must belong to the whole 
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crystal. I t  is often said to be "spread" over the 
whole crystal lattice. By way of illustration, 
this situation can be pictured as the hopping 
of the deflected spin from one atom to another 
owing to exchange interaction. In  quantum terms 
this means that  the Y function of the stationary 
state with S, = Ns - 1 has a periodic wave- 
form and describes a consecutive deflection 
of the atomic spins in crystal lattice sites. I t  
very much reminds us of the de Broglie wave 
mentioned in relation to the properties of free 
particles (see Sec. 1.4). I t  is referred to as  the 
spin wave (hence the title of the section). 

As the de Broglie wave, the spin wave is char- 
acterized by a wave vector k to which, by anal- 
ogy to free particles, we can relate the momen- 
tum: 

p = hk (3.23) 

As any stationary state, the spin wave is char- 
acterized by i t s  energy. Traditionally, i t  is 
measured off the ground state energy. The energy 
of a free particle is 

p2 fi2k2 &=---- 
2m 2m 

where m is the particle mass. The spin wave ener- 
gy E is also a function of wave vector. If a ferro- 
magnetic material has a primitive cubic lattice, 
then 

E (k) = 2A (3 - cos k,a - cos k,a - cos k,a) 

1 (3.24) 
where a (the lattice parameter) is the distance 
between the nearest neighbor atoms, and k,, 



200 Ch. 3. Ferromagnetism 

k,, k, are the projections of the wave vector k 
onto the edges of the cubic unit cell of the lat- 
tice. 

This comparison of a spin wave with a particle 
was dictated not only by pedagogical arguments. 
The resemblance is indeed striking: both the 
particle and the spin wave have identical dynam- 
ic characteristics; namely, momentum p and 
energy E as a function of momentum. I t  should 
be emphasized tha t  the latter feat'ure is a corollary 
of quantum mechanics." The energy of a classi- 
cal wave is a function of amplitude and thus can 
assume no matter how small values. The resem- 
blance between a quantum spin wave and a par- 
ticle is so strong that  a special particle with 
momentum p = hk and energy E = E (p) is 
"introduced"; this particle is governed by for- 
mula (3.24). This particle is called the magnon. 
We request tha t  the reader reread all that  was 
said about the de  Broglie relations (see pp. 37-38). 
The "introduction" of the magnon signifies that  
formulas (1.19) and (1.20) are read from right 
to left, thereby recognizing the corpuscular prop- 
erties of the spin wave. 

The magnon is not quite an ordinary particle. 
Do not forget that  i t  is nothing less than an 
elementary excitation of ordered magnetic mo- 
ments of a ferromagnetic material, or the wave 
of spin deflections. Once a ferromagnetic drops 
to its ground state, the magnon disappears. Con- 
trary to this behavior, ordinary particles (elec- 

In fact, this is a result of the spatial quantization of 
the spin whose projection can or~ly  change in a discrete 
manner (see Sec. 1.5, formula (1.23)). 
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trons, protons, atoms, etc.) neither vanish nor 
are born from nothing. 

In order t o  emphasize the specificity of parti- 
cles introduced for the description of elementary 
excitations in macroscopic bodies, they are re- 
ferred to as  quasiparticles. 

I t  has been underlined several times in this 
section that a spin wave is an elementary exci- 
tation. Bu t  in what sense is the wave of deflec- 
tions of spins elementary if i t  "involves" all the 
atoms of a ferromagnetic specimen? In the sense, 
and only in this sense, that  this excitation cannot 
be decomposed into more elementary ones: there 
cannot exist simpler stationary states'of a ferro- 
magnetic with the spin projection equal to 
NS - 1. 

We have thus explained two of the three un- 
familiar terms introduced a t  the beginning of 
this section (the spin wave and the quasiparticle). 
The third was the energy spectrum. Now we shall 
discuss the energy spectrum of ferromagnetics. 

We have thus found that  a minimum possible 
change in the spin of a ferromagnetic, and hence, 
of i ts  magnetic moment, results in an increment 
of the energy of the ferromagnetic by E (k) 
which is a function of the wave vector k. I t  has 
been already mentioned that  with the magnetic 
moment of a crystal fixed, i ts  energy is not de- 
termined unambiguously. There is a whole band 
of possible (allowed) values of energy correspond- 
ing to the magnetic moment equal to (Ns - 1) 2pB 
(g = 2 for J = s, and gp, is the smallest pos- 
sible change in the projection of the magnetic 
moment of an individual atom). According to 
(3.24), the width of this band is 12A because 
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E (k) = 0 a t  a k ,  = a k ,  = a k ,  = 0 and E (k) 
= 12A a t  a k ,  = a k ,  = a k ,  = &x (Fig. 5 
Note that  the band of allowed values of energy 
is not separated by a gap from the ground state  
energy E s  given by (3.9). The band appears as  
a result of exchange energy. This is clear because 
the width of the gap vanishes when A + 0 (see 
formula (3.24)). 

Forget for a moment the exchange interaction. 
Let the crystal consist of N identical noninteract 

Fig. 51. Magnon energy E as a function of the projectio~i 
kd of the wave vector k onto the body diagonal of the 
cube 
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which of the atoms is excited. A level corre- 
sponding to more than one state  is said to be 
degenerate.* In this particular case the energy 
level is N-fold degenerate, with N being a fan- 
tastically large number (-loz3 per 1 cm3). The 
exchange interaction "cancels" degeneracy, that  
is, one degenerate level is replaced with N levels 
located within a 12A-wide band. If N formally 
tends to infinity, the distances between levels 
tend to zero, and the allowed energy levels fill 
the whole band. This creates an energy band,  
that is, the band of allowed values of energy. 
Let us repeat and remember: 

the exchange interaction cancels degeneracy and 
turns  a level into a n  energy band. 

The absence of a gap between the ground state  
of a ferromagnetic and the states with one mag- 
non, or, which is the same, the equality of the 
energy of a spin wave with k = 0 to zero, has 
n profound physical meaning. The excitation 
with zero momentum (or with infinite wave- 
length) corresponds to a rotation of the magnetic 
moment of the ferromagnetic specimgn as a whole 
(this changes the projection of the total spin 
onto an axis by unity). Energy cannot be changed 
by this rotation because the exchange interaction is  
isotropic. A spin wave with a nonzero wave vector 
describes the nonuniform excitation of the ferro- 
magnetic. I t  is not surprising that  the energy 
of such a wave is not zero. The following picture 
is convenient when the concept of the magnon 

- 

.VTnfortl~nately. the terni "degeneracy" has several 
~neanings in physics (cl. the terni "degenerate gas" (see 
11. 124)). 

I 
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is used: the energy E (p) is the energy of the 
motion of the magnon, or its kinetic energy. I t  
is then natural that  E (p) = 0 a t  p = 0. 

The magnon-particle resemblance becomes es- 
pecially clear for magnons with very small mo- 
menta. Since a t  zkj << 1 ( j  = x, y, z )  

1 cos ak j  m 1 - - (akj)a 2 

formulas (3.24) and (3.23) yield 

a2p= 
e(p)=A7 a t  a p < h  

p" h= (1~2,  + k; + k:) 
In this form the magnon energy depends 

on momentum in the same way as the energy 
of ja free particle with the mass m* = h2/2Aa2. 
The quantity m* is called the effective magnon 
mass, The inverse proportionality of the effective 
mass to the exchange integral is natural: lighter 
particles move easier, and the motion of a mag- 
non is caused by the exchange interaction. 

If a ferromagnetic specimen is placed in a 
external magnetic field along which the ma 
netic moments of atoms align, then the c 
in the spin projection of a single atom by 
is accompanied by an increase in energ 
2pBH. AS a result, the energy of the spin wa 
(3.24) is augmented by the same amount: 

E (k) = 2A (3 - cos ak, - cos ak, 

- cos ak,) + 2pBH 

This formula resembles expression (2.20) fo 
the electron energy in a magnetic field. Th 
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exchange-interactiori component of the energy, 
depending on momentum p = hk, is an analogue 
of the electron kinetic energy, while the term 
2pBH is an analogue of the energy of the electron 
spin in a magnetic field. Therefore i t  can be 
interpreted as the energy of the magnon spin 
in the magnetic field H. The factor 2 signifies 
Lliat the magnon must be assigned a spin twice 
that of the electron, that  is, magnons are spin-I 
quasiparticles. On the other hand, the increment 
to energy due to the electron spin is seen to 
assume two values: +pIjH and -p13H, in cor- 
respondence with the spin orientation along the 
field or against i t  (since e < 0,  the directions 
of the spin and magnetic moment of the electron 
are opposite). A unity spin has three projections: 
+I ,  0, -1. Seemingly, the increment to the 
magnon energy must also assume three values: 
-2pBH, 0, and +2psH. The fact that  formula 
(3.26) contains a single value of the spin term 
signifies tha t  only one of the three possible states 
with different spin projections is realized: that  
with the projection equal to -1. The physical 
cause of this result is clear: a magnon (spin wave) 
is born in order to diminish the spin projection 
of a ferromagnetic specimen; this is only possible 
if the magnon has a negative spin projection. 
This last remark on the implementation of only 
one of the three spin states of a magnon does not 
cancel the statement that  

a magnon is a spin-1 quasiparticle. 

The expression (3.24) for the magnon energy 
E (k) is periodic in each of three variables: in  
k,, in k,, and in k, (the cosine is a periodic 
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function). All three periods are identical and 
equal to 2nla. Periodicity i11 energy is a direct 
consequence of periodicity of the crystal. Not only 
the energy of a magnon but its wave function as 
well has this property. This means that  two 
states with wave vectors k  and k t  are physically 
indistinguishable if 

and n,, n,, n, are integers. These last equalities 
can be recast in a compact form by introducing 
a vector K  with "integer" components: 

Two states are thus physically indistinguish- 
able if the wave vectors k and k' differ by a 
vector K: 
k ' = k + K  

Consequently, all distinct states of a magnon are 
determined by the wave vectors in a cubic cell 
with edges equal to 2nla. A crystal lattice can be 
constructed of the vectors K  (constructed on 
paper, that  is). I t  is called the reciprocal lattice. 
All distinct states of a magnon have wave vectors 
belonging to one unit cell of the reciprocal lat- 
tice. If we multiply the length of the edges of the 
unit cell of the reciprocal lattice by h,  we obtain 
a unit cell containing those values of momentum 
that correspond to distinct states of the magnon. 

The situation with ordinary particles is quite 
different. The states with different "true" mo- 
menta always differ from one another, and mo- 
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rnentum can take on arbitrary, even no matter 
tiow large, values." This distinguishes the free- 
particle momentum from the momentum we 
assigned to a quasiparticle (magnon in this 
particular case). This difference is emphasized 
by calling the momentum of quasiparticles the 
quasimomentum. Note that  the prefix "quasi" 
in the word quasimomentum is used not because 
we are concerned with a quasiparticle. Examples 
can be given when the state of a true particle 
in a stationary state is characterized by a quasi- 
momentum, and conversely, when a quasiparticle 
is characterized by a momentum. An example of 
the former is an electron (a particle) in a crystal 
lattice*", and an example of the latter is a photon 
(a quasiparticle, a quantum of an electromagnetic 
tield) in vacuum. 

The replacement of momentum with quasi- 
momentum is a consequence of the geometric 
properties of the world "inhabited" by magnons. 
I t  is quasimomentum and not momentum that  
describes the states of any quasiparticles that  
are quantum analogues of elementary excitations 
in crystals. This aspect will reappear later in 
I he book. 

By way of digression, let us clarify the meaning 
of the phrase "geometric properties of the world". 
If a crystal lattice is translated by a vector con- 

* But in  this case energy must be expressed not by the 
habitual formula e = p2/2m but b y  the relativistic 
lormula E = f m 2 c 4  +- c"2. 

+ *  When analyzing the properties of conduction electrons 
111 metals, we simplified the situation by  "throwing out" 
oC the metal its lattice constructed of positive ions (see 
Sec. 2.4). 
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necting two equivalent lattice sites, the lattice 
coincides with itself. The smallest displacement 
superposing a cubic lattice on itself equals a 
and must be carried out along one of its axes: 
x, y,  or z (see Fig. 50). On the contrary, an  
empty space is uniform and thus coincides with 
itself for any displacement, even an infinitesimal 
displacement. The length of the edge of a recip- 
rocal lattice unit cell, inversely proportional 
to a, defines the range of quasimomenta. In the" 
case of an empty space the lattice parameter can' 
be assumed equal to zero. Consequently, the un 
cell of the reciprocal lattice is infinitely larg 
In this sense the momentum is a quasimomentu 
with infinitely large unit cell of the reciproc 
lattice. 

Spin Complexes 

An elementary (minimum) excitation of t 
4 

magnetic system of ferromagnetics thus can (an 
must) be pictured as the creation of a quasi 
particle, that  is, of a magnon, characterized 
its quasimomentum p = hk and energy E =  E 

given by formula (3.24) or (3.26). I t  is then na 
ral to ask whether an arbitrary excited state 
ferromagnetic specimen can be described as 
state with a specific number of magnons. T 
affirmative answer to this question would me 
that formulas (3.24) and (3.26) completely defin 
the energy spectrum of the ferromagnetic. Unfor 
tunately, the answer is negative. Or rather 
negative in the general case. In other words 
sometimes i t  is possible and sometimes i t  is not 

In order to clarify this behavior, let us ana I 
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lyze the simplest case in which the excitation 
of a magnetic system is the minimum deflection 
of two spins or a double deflection of one spin.* 
I t  would be very tempting to associate one mag- 
non to each deflection. Then the excitation 
energy would be the sum of the energies of these 
two magnons. However, the actual situation is 

Fig. 52. Among nonstationary states of a crystal some 
states are such that  the spins of two atoms are "deflected" 
from the common direction. These two atoms can be 
located far  from each other (a)  or be adjacent ( b )  

more intricate. The thing is that  some of non- 
stationary (sic) states with two deflected spins 
are such that the deflected spins happen to be 
adjacent (Fig. 52). But then formula (3.8') dic- 
tates that the exchange interaction between them 
should be appreciable. Consequently, two mag- 
nons interact with each other. 

An interaction between any particles either 

* We mean here the states with spin projection S, = 
= Ns - 2. If the spin of an individual atom is s = 1/2, 
a double deflection of the spin of this atom is impossible: 
once the spin projection of the atom diminished from 
S, = i /2  to s, = -1/2, i t  cannot diminish any more. 

14-01318 
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leads to the scattering of these particles on each 
other or to the formation of a bound system 
of these two particles (obviously, only if the 
particles are attracted to each other). In the 
first of these cases, that of scattering, the particles 
approach and then part, so that most of the 
time they are so far from each other that the 
interaction between them can be simply ignored, 
and the energy and momentum of the two particles 
equal, to a high accuracy, to the sum of their 
energies and momenta, respectively. 

In the second case the formation of a bound 
state signifies that the particles do not "part" 
(there is a maximum distance by which the 
particles can be separated). A good example 
of such a "two-particle system" is the Earth 
and the Moon moving around the Earth along 
a nearly circular orbit. The energy of the Moon, 
equal to the sum of its kinetic and potential 
energies, is negative (the negative component 
is the potential energy in the case of attraction 
if we assume that the interaction energy tends 
to zero when the bodies recede to infinity). If 
the energy of a moving "particle" is positive 
(as i t  is for comets), then no bound state can be 
formed despite the attraction: a comet leaves 
the Earth and sometimes the solar system as 
well. 

A quantum analogue of the Earth-Moon system 
is the hydrogen atom. The states with negative 
energy are bound states (with energy given by 
formula (1.21)). Zero energy separates the bound 
states of the electron in an atom from the free 
states in which the electron is scattered by the 
nucleus. The two examples (one cosmic and one 

3 

3.7. Spin Waves 211 

atomic) are illustrations of the following state- 
ment: 

depending on  the value of energy i n  a system 
of two attracting particles, the particles may  be 
either bound or free. 

Let us return to the system of two magnons. 
Let us single out the motion of the two magnons 
AS an entity (with a quasimomentum equal to 
the sum of their individual quasimomenta) and 
their relative motion. I t  is found that the mag- 
nons are attracted to each other, with the mag- 
nitude of attraction depending on the total 
quasimomentum. This situation would be impos- 
sible for particles in vacuum. There i t  is always 
possible to change for an inertial frame of refer- 
ence in which the center of mass of the particles 
is a t  rest, that is, their total momentum is zero. 
Note that nothing depends, and cannot depend, 
on the velocity with which the chosen inertial 
reference frame moves (this is the essence of the 
Galileo relativity principle). No such transition 
is possible in a crystal: quasiparticles move 
relative to the lattice which constitutes a unique 
Frame of reference. The dependence of the inter- 
action between magnons on their total quasi- 
momentum is another manifestation of the funda- 
mental difference between quasimomentum and 
momentum. 

If the total quasimomentum exceeds a certain 
1,hreshold value, then attraction is sufficiently 
strong and there exists in addition to states in 
which magnons are scattered, a certain state (with 
Ihe same total quasimomentum) in which the 
magnons form a bound system. The energy of such 
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(3.28) 

Compare this expression with formula (1.26) 
describing the interaction between a magnetic 
moment and a magnetic field H. You observe 
that the vector 

A ' qg- 2 PB. k 
k 

plays the role of the magnetic field. And i t  is 
indeed called the effective magnetic field and is 
denoted by 

A ' 
Hecf -- 7 2 PB, lt (3.29) 

,I 

A magnetic moment deflected from the magnetic 
field H rotates around the field a t  a frequency yH 
(see Sec. 1.6). One could think that  a magnetic 
moment deflected from the equilibrium position 
rotates a t  a frequency easily calculable from for- 
mula (3.29), recalling that  a t  equilibrium all 
magnetic moments are parallel. However, the 
reality is again more complicated. Expression 
(3.28) describes the interaction of any of N 
magnetic moments (N  is the number of magnetic 
atoms in a crystal) with i ts  surrounding. This 
means that  there are N expressions such as (3.28). 
The motions (rotations) of all  magnetic moments 
are interrelated. I t  is not possible to find the 
motion of one magnetic moment without analyz- 
ing the motion of all magnets. We have indicated 
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that already when describing the quantum states 
of a system of spins. 

An analysis of rotation of the system of mag- 
nets shows that  the simplest form of their motion 
is the propagation of waves of nonuniform pre- 
cession. A look a t  Fig. 53 is sufficient to under- 
stand what nonuniform precession is. Each wave 
is characterized by its wave vector k. We can 

Fig. 53. Nonuniform precession of atomic spins: 
(a) the lateral view of a string of spins; ( b )  the top view, 
iziving a wave plotted by a curve connecting the tips of 
spin vectors 

calculate the wave frequency w. I t  proves to  be 
a function of the wave vector, and this function 
can be found only by analyzing the equations 
of motion of all  atomic magnetic moments. The 
equations are derived by means of (3.28). Un- 
fortunately, here we are unable to carry out this 
analysis and have to give only the conclusions. 
The quantum and classical approaches yield 
identical results; the dependence of the frequency 
of a nonuniform precession wave, w, on the wave 
vector k coincides with that  of magnon energy 
(3.24) if i t  is divided by Planck's constant f i  
(recall the de Broglie relation). 
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In  other words, 

a magnon is a wave of the nonuniform precession 
of atomic magnetic moments. 

WB have often stressed that  the exchange inter- 
action is isotropic. I t  aligns magnetic moments 
but does not single out the direction along which 
the magnetic moment & must be directed. This 
direction is fixed either by a magnetic field or by 
anisotropic forces described in Sec. 3.4. 

As a result of the isotropy of exchange interac- 
tidn the frequency of precession waves (or magnon 
energy) tends to zero as the wave vector k tends 
to zero. If k = 0, this is the wave of uniform 
precession ( A  = 2nlk = oo!), that  is, merely 
a rotation of all  magnetic moments by the same 
angle, and we already know that  the exchange 
interaction does not "notice" this operation. But 
if nonexchange interactions are "switched on" 
(anisotropy energy, magnetic field), then the 
uniform precession of all  magnetic moments will 
proceed a t  a quite definite frequency. We denote 
i t  by a,. In the simplest cases i t  is added to the 
frequency of nonuniform precession. 

The wave of precession of atomic magnetic 
moments takes into account the discrete struc- 
ture of the crystal: the rotating magnets are 
precisely atomic magnets. Limiting the picture 
to waves with small wave vectors (ak << 1)  (and 
i t  will be shown in Sec. 3.10 that  this range is 
the most interesting to us), we can be satisfied 
with a macroscopic description of the motion of 
magnetic moments, by introducing the mean 
density of the magnetic moment in a ferromag- 
netic material, & = ,& (r, t), tha t  is, the vector 
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sum of the atomic magnetic moments in unit 
volume. 

The oscillating quantity in a nonuniform pre- 
cession wave with a small wave vector is the 
magnetic moment density of the ferromagnetic.* 
In particular, uniform precession is the rotation 
of the magnetic moment of the specimen as a 
whole, and a small-momentum magnon (we re- 
mind the reader that  momentum p = fik) is a 
wave of the nonuniform precession of magnetiza- 
tion (magnetic moment density). 

The advantage of the classical approach lies 
in i ts  simplicity and descriptiveness. But i t  
must be borne in mind that  i t  is not as exact as 
the quantum approach. Consequently, i t  is neces- 
sary to know the limits of applicability of the 
classical description in order to  avoid errors. 

3.9. Gas of Magnons 

Now let us consider the case of a ferromagnetic 
material a t  a temperature low in comparison with 
the Curie temperature T, when the material is 
in a state of maximum ordering, i.e. in the 
ground state. 

At low temperatures magnons in ferromagnetics 
are few, and therefore their "collisions" are infre- 
quent and the interaction between them can be 
ignored. We have already mentioned that this 
ir~teraction can be neglected completely and the 

* The word "oscillates" must not be interpreted literally. 
It means precisely the nonuniform precession. Although 
:I wave propagates throuqh the ferromagnetic, d 2  (r, t) = 
I l / l i $  (do is the magnetic moment density at satura- 

l ion),  arld the magnetic moment only rotates. 
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system of magnons can be treated as an ideal gas. 

Of course, spin complexes are allowed to 
form, but a t  low temperatures their number is 
extremely small* and we can neglect them as - 
well. , 

At low temperatures magnons thus form an 1 
ideal gas of quasiparticles. But in the range of $ 
low temperatures not only quasiparticles but 
ordinary "true" particles as well manifest the 
quantum properties of systems especially well 
(see Sec. 2.4). The question that naturally arises 
then is: Do magnons become bosons or fermions? 
Are their collective properties described by the 
Bose-Einstein or Fermi-Dirac statistics? 

You remember that particles with zero and 
integral spins are bosons, while particles with 
half-integral spin are fermions. This theorem 
can be generalized to quasiparticles as well. The 
spin of a magnon is unity, so that magnons are 
bosons, and the magnon gas is a Bose gas. 

- 
Bose Gas 

It is high time we recall our promise and describe 
the properties of a degenerate Bose gas, that is, 
a Bose gas a t  temperatures much lower than 

* We shall see (although we expect i t  to be intuitively 
clear) that  a t  T << T, magnons predominantly have 
energy E < kT, that is, enerqy much less than the magnon 
band width 12A (according to (3.1l),'kTc = zA/4). 
Such magnons have a low quasimomentum and they can- 
not form a spin complex, while tbr  nr~mber of magnons 
with high momenta is very small.  

I 
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(see formula (2.17)). No degenerate Bose gases 
of "true" particles exist a t  such temperatures: 
all of them turn into liquids a t  T >> T,, and so- 
lidify (helium is the only exception). We shall 
describe the properties of a Bose gas, dictated by 
the laws of quantum statistics, if such gas existed 
(attempts are being made nowadays to produce 
a degenerate Bose gas artificially). 

Let a volume V be filled with N Bose particles 
at T << T,. Each particle moves according to the 
laws of quantum mechanics, and its energy is 
determined by its momentum: E = p2/2m. We 
remind the reader that inevitably the coordinate 
of the particle has no definite value. As in the 
case of a Fermi gas (see p. 125), we begin a t  abso- 
lute zero of temperature when the system must 
be in its ground state, that is, the state with 
the lowest energy. Bosons are not governed by 
the Pauli principle, and so nothing precludes 
them from transferring to the state with zero 
momentum. This macroscopic accumulation of 
particles in a state with p = 0 is called the con- 
densate. Hence, 

the ground state of a boson gas is the condensate. 

An elementary excitation of the gas of bosons 
is equivalent to one particle leaving the conden- 
sate, that is, to the creation of a moving particle 
with p -# 0. Since most methods of detecting 
a particle are based on detecting its motion, the 
particles of the condensate "do not exist" but 
are "born" when motion starts. Quantum sta- 
tistics makes i t  possible to determine the mean 
number of particles with momentum p + 0, 
that is, the equilibrium distribution function 
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If we are interested in the mean density ii (e) 
of particles in  an infinitesimal interval of energy 
from e to E +de, this last expression must be 
multiplied by the density of states* g (E) equal to 

4 T = T o  where 

the condensate disappears; a t  T  > T o  all the 
particles move. The behavior of Bose gases is 
psually studied by gradually lowering the tem- 
uerature, so that the point T o  is called the tem- 
perature of the Bose-Einstein condensation. At 

(2s+l) V m 3 / 2 1 / ;  

f2 nZhs 

where s is  the particle spin (s = 0, 1, 2, . . .): 
(2s+ I )  Vrnsls fe 

3 8 )  = ) /Znar  e - 
e R T  - I  

The total number of moving Bose particles a t  
A r & a temperature T  is found by integrating over 

energy: Pig.F54! Energy distribution of Bose-gas articles with 
OJ 

pl+,O,lin arbitrary units. The area un&r the curve - - 
(2s+ 1) mslz f, d~ n = n (8) equals the total number Np of gas particles 

Np  = 
n V S  L moving i n  a container 

0 . kT-1  

Although a t  E = 0 the integrand tends to in- T < T o  a finite number of particles is a t  rest, 

finity, the integral has a quite definite value and being a part of the condensate. The specific 

is proportional to P I 2 .  The number of particles behavior of Bose gases must be revealed in all 

in the condensate, No, equals the total number its thermodynamic properties. Thus, a t  T  < T o  
of particles N minus N,. At a temperature the heat capacity of a Bose gas is proportional 

to Tsl2 (the heat capacity of a classical gas is 
independent of temperature, while that of a Fer- 

* We described the density of states and explained wh mi gas linearly tends to zero). 
i t  is proportional to fz on p. 126. The formula give 
here differs from (2.19) in  that i t  is written for an arb 

To conclude this subsection, let us have a look 
trary spin. I n  the case of the electron we have to subst at  the energy distribution of particles a t  T  < T o .  
tute  s = 112, arriving, of course, a t  formula (2 .19) .  And we literally mean "look". Figure 54 plots 

I 
I 



222 Ch. 3. Ferromagnetis~ll 

the mean particle density n (E). You observe 
that  practically all the particles concentrate 
on the interval from 0 to kT, and as energy in- 
creases, the density exponentially tends to zero. 

Let us return to the gas of magnons. We shall 
use the approach developed in the preceding 
section and described in italics on p. 216. We 
shall begin with a wave of nonuniform precession. 
I t  is characterized by a wave vector k and fre- 
quency o. If we can speak about frequency (in 
this particular case o (k)), we can speak of an 
"oscillator" whose frequency i s  o (k). I t  is not  
so important what oscillates as long as i t  oscillates. 
According to quantum mechanics, the oscillator 
energy is known to assume the values equal to 

1 
Erik = (k) + nkfio (k) 

We intentionally chose this form instead of 
a more familiar formula (n + 112) fio in order 
to emphasize that  the energy nkfio (k) is the 
energy of the excited state. The state of a ferro- 
magnetic is fixed by prescribing the numbers nk, 
that  is, the degrees of excitation of each oscillator. 
Since a wave of nonuniform precession can be put  
in correspondence with a magnon with qu si- 
momentum p = fik and energy f io (k), the degree 
of excitation of an oscillator (the number nk) 
can be regarded as the number of magnons* with. 

* Tlie introduction of magnons is justified precisely by 
the fact that in units of tio (k) the excitation energy 
can assume only integral values. Evidently, the deriva- 
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wave vector k or momentum p = hk. This can 
be illustrated by the following diagram: 

spin wave a s  a wave of nonuniform precession 

.1 
oscillator 

J. 
magnon 

When defining the state of a ferromagnetic, we 
need not know the exact (corresponding to each 
instant) values of the numbers n, of magnons (we 
have switched completely to corpuscular terms, 
having replaced k with p). In order to derive 
(he temperature dependence of the quantities 
characterizing the gas of magnons, i t  is sufficient 
Lo know the mean number of magnons with 
momentum p,, that  is, the distribution function 
of the magnons, n,. Our nearest problem is to 
lind this function. 

But first another digression. 

Quant urn Oscillator 

Let us turn to formula (2.5) on p. 102. On the 
left-hand side of the equality we see the ratio 
of the number of particles with energy E, to  
Ihe total number of particles. This ratio can 
I)c regarded as the probability W M  for a particle 

1 ion given here is far from being rigorous. The formulas 
$:iven above are strictly proved in ferromagnetism theory. 
\~iiong other things, i t  is proved that formula (3 .34)  
I~olds, and this formula is of paramount importance of 
Illis part of our story about the magnon gas. 



to have a given 
side we find 

energy 

that  is, 
M -- 

W M  = 
e kT 

e~ -- 
x e  

kl' 

M 

with summation in the denominator carried ou 
over all possible quantum states. This si 
relation (simple until we try to specify E&*)  

the basis of physical statistics. We want to appl 
i t  to an oscillator with frequency o. Then 

h o  
-n - 

W n  = 
e kT 

t1O 
W -n- 

2 kT 

n=O 

is the probability that the oscillator is in t 
nth quantum state. The mean value (often call 
the expectation value in probability theory) 
any physical quantity which depends on t 
degree of excitation of the oscillator, that is 
dependent on n, is found by multiplying 
quantity by Wn and summing over all n. 
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we find the mean value of the degree of excitation: 

The infinite sum in the denominator is the 
sum of terms of a geometric progression with 
the first term equal to unity and the common 
ratio exp (-FLolkT). Consequently, 

The sum in the numerator is obtained from the 
sum in the denominator if the latter is differen- 
liated with respect to x = FLolkT and taken 
with reverse sign: 

Finally we obtain 

Before discussing this important formula, let 
us find the mean value of the oscillation energy: 
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This expression immediately shows how to trans- 
form to classical statistics: if h o  << k T ,  

and we have to conclude that 
?r 

in conditions where the classical description is q 
valid the mean oscillation energy is equal to 
temperature in energy units: = kT.  

The mean degree of excitation of an oscillator 
under the same conditions is 2 ,- k T / o .  For- 
mally, the proportionality factor includes Planck's 
constant but this is unimportant because it 
cancels out in the calculation of mean values. 

The derivation of formulas (3.36) and ( 
reproduced above was first carried out by 
Planck in 1900 when he studied the radi 
emitted by a blackbody, that is, a body that ' 
emits but does not reflect electromagnetic waves 
(a small hole in the wall of a large cavity is 
a good model of a blackbody). In order to explain 
experimental facts, Planck had to make an 
assumption that signified the rejection of clas- 
sical physics: he had to recognize that an oscilla- 
tor can occupy only those states in which 
energy is a multiple of h o  (see (3.34)). Plan 
chose the value of the constant (Planck's con 
stant) that provided the best fit of the experi 
mental and theoretical curves." 

* Even today, after more tharl 80 years elapsed since : 
Planck's consta~i t  has been introduced, we see no pos- 
sibility of calculat ir~g i t .  I t  is  not calculated, just as'" 
other fundamental constants in  physics are not: the 
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I t  is clear from the diagram given on p. 223 
that the equilibrium distribution function for 
magnons 

is identical to the distribution function in a Bose 
gas a t  a temperature below that of the Bose- 
Einstein condensation. An ensemble of magnons 
is indeed a Bose gas. 

Formulas (3.38) and (3.30) differ in that 
formula (3.38) describes the distribution of all 
Inagnons. There is no magnon condensate. 

If the temperature of a ferromagnetic material 
is much less than its Curie temperature, the 
main role in its properties is played, as we know 
from the analysis of a degenerate Bose gas, by 
particles (by quasiparticles, namely, magnons, 
in this particular case) with energy less than kT .  
We can thus make use of approximate formula 
(3.25) and also of formulas (3.31) and (3.32) in 
which, however, 2s + 1 must be replaced with 
1 because (as you remember) only one spin state 
of the three possible spin states of the magnon is 
realized, namely, that with s, = -1. The par- 
ticle mass m must be replaced with the effective 
magnon mass m* = tza/2Aa2 (see p. 204). 

speed of light c and electron charge e.  They must be 
measured. I t  is interesting to note that the most accurate 
values of Plal~ck 's  constant ti were obtained by means 
of a superconducting device, tha t  is, by the methods of 
solid-state quantum physics. 
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When the equilibrium distribution function 
- 

6 is known, i t  is possible to calculate a number 
of macroscopic quantities that characterize the 
magnon gas, and hence, the ferromagnetic mate- 
rial. The quantity that is of maximum interest 
for us is the magnetic moment of the gas of 
magnons in unit volume, that  is, its magnetiza- 
tion. This important aspect calls for a separate 
section. 

3.10. Magnetization and Heat Capacity 
01 Ferromagnetics at Low Temperatures 

When considering the behavior of magnons in 
a ferromagnetic specimen placed in a magnetic 
field, we observed that each magnon "carries" 
a magnetic moment equal to twice the Bohr 
magneton and pointing against the magnetization 
of the ferromagnetic. Consequently, the magnet- 
ization of unit volume of the material, mk(T), 
is the difference between the magnetic moment 
at  absolute zero, d o  = N P ~ s ,  and the magnetic 
moment of the magnon gas. This last is simply 
equal to the number of magnons N,,,,, times 
2pB. Therefore, 

If the magnetic field H is low (pBH << kT) (see "f 
p. 105), we can set i t  to zero and resort to for- $ 
mula (3.32), without forgetting to replace m 
with the magnon effective mass and 2s + 1 
with 1. As a result, we obtain 
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(that the integration in formula (3.32) is carried 
out to infinity need not bother us: the contribu- 
tion of states with energy higher than kT is  
absolutely negligible). We have taken into 
account that each unit cell of the crvstal contains 
one atom with the magnetic moment p ~ s ,  that  
is, lla3 = N. 

This relation first derived by Felix Bloch in  
1930 is often called Bloch's law, or the law of 
312, thus indicating the exponent with temper- 
ature. 

We now see how wrong the result obtained 
in the Curie-Weiss model was. Both formulas (3.5) 
and (3.40) were derived under the assumption 
that only exchange forces act among atomic 
magnetic moments. However, the Curie-Weiss 
model assumes that the energy of a spin system 
is unambiguously determined by the total magnet- 
ization, while the correct quantum-mechanical 
theory reveals the existence of magnons whose 
excitation leads to demagnetization of a ferro- 
magnetic specimen with increasing temperature. 
Obviously, the power and not the exponential 
character of magnetization dependence occurs 
because the number of magnons Nmagn increases 
according to a power law. But why does N,,,,, 
increase by a power law and not otherwise? 
In order to explain this (this follows formally 
from (3.32)), let us consider a more complicated 
case of a strong magnetic field or of a very low 
temperature (pgH >> kT). To make the analysis 
rnore general, we denote the quantity 2pBH in 
formula (3.26) by E, ,  thereby emphasizing that  
this is the energy of a magnon "at rest", the 
magnon with p = 0, and realizing that i t  i s  
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determined by all nonexchange interactions. 
In this case the number of magnons is given 

by a formula very similar to (3.32), but with 
integration carried out not from zero but from E,,: 

(3.41) 

€0 , k T - I  

of a macroscopic body is a very frequent phenom- 
enon. Naturally, it always entails the exponen- 
t,ial temperature dependence of those xqacroscop- 
ic characteristics of a body that are determined 
by the excited states. This demonstrates the 
applicability of the formula that we called the 
basis of physical statistics (see the formula on 
D. 224'1. 

(See Problem 23.) 1 when the energy distribution function of 
1f k~ << E , ,  the unity in the denominator can $ magnons is known, we can find the internal 

be dropped and the number of magnons Proves energy of the magnon gas, that is, the sum of the 
to be exponentially small: energies of individual magnons: 

0 
Now compare the energy distributions of 

magnons when E,, = 0 and when # 0. If. where ii (E) = g (~)/ee/kT - 1. 
E,, # 0, the distribution has a maximum a% Acting by analogy to our earlier calculations 
E kT, that is, most of the magnons have aQ. and assuming that c0 = 0, we readily establish 
energy roughly equal to temperature (in enera ,  that Em,, 0~ T5JB. Obviously, the magnon ener- 
units), but if E ,  >> kT, the total number gy tends to zero as temperature tends to zero, 
particles is exponentially small. If E ,  = 0, mo but a t  a rate that will be shown presently to 
of the magnons have energies less than kT bu be relatively low. (See Problem 25.) In fact, our 
the total number of magnons is proportional interest in the temperature dependence of mag- 
(kT)3/2. The root of the matter is thus whet non energy stems from just this feature. 
the band of allowed energy values is separa BY definition, the heat capacity of a body is 

from the ground state by a gap or not. The ex1 the amount of heat consumed by the body upon 
ence of a gap leads to the exponential depende its heating by one degree. If the volume of 
of the number of magnons, and hence, of m the body remains unchanged, the supplied heat 

ization, on temperature. Note that in goes to increase its internal energy, that is, the 
magnetics the gap is not of exchange-inter obtained heat equals the increment in the internal 
origin, and for this reason the correct res energy of the body, Eth. Consequently, if the 
is so drastically different from that obtai volume is fixed (and the volume of a solid can 
in the Curie-Weiss model. (See Problem 24.) !.p 

' be regarded as fixed practically always), the heat 
A gap in the energy spectrum of excited statgl capacity C equals dEthldT. Beyond any doubt, 
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magnons contribute to the internal energy of 
ferromagnetics. Consequently, we can speak of - 
the magnon part of ferromagnetics' heat capacity: I 

By now i t  is clear that the magnon heat ca- 
pacity of ferromagnetics, just like their magneti- 
zation, is a linear function of Tala. The exact 
formula for C,,,, (per 1 cm3) will not be out 
of place: c 

(we have again replaced l la3 with N). Here is 
why the exact formula is needed. When we deal 
with magnetization, only magnons are respon- 
sible for i ts  temperature dependence a t  T << T ,. 
This is not so when we deal with heat capacity. 
We have hinted already a t  the explanation when 
introducing a distinction between the internal 
energy and the magnon energy of a body. The 
motion of atomic particles in a solid is not 
limited to the excitation of its spin system. 
There are excited states in which the positions 
of atomic spins are not altered a t  all. The most 
important among such motions are vibrations of 
atoms (or ions) around their equilibrium posi- 
tions. This is described in the next subsection. 

Phonons 

Atoms vibrate in all solids, not only in ferro- 
maenetics. For this reason the contents of this '* 
subosection mfer to arbitlrary solids. 

3.10. Low-Temperature Magnetization 233 

The atoms of solids, of course, interact: by 
attractive forces a t  large distances and by repul- 
sive forces a t  short distances. Otherwise nothing 
could hold the atoms in the elegant structure 
that is a crystal with the periodically repeated 
arrangement of atoms in space. Should an atom 
be displaced from its equilibrium position, the 
forces mentioned above force i t  to return to that 
position; however, its neighbor atoms cannot 
remain "indifferent", and a wave of atomic 
displacements from the equilibrium positions 
will travel through the crystal. The simplest 
(elementary) form of such waves is a wave with a 
certain wave vector k and frequency o dependent 
on k. And now we follow the familiar path 
outlined by the diagram on p. 223: 
wave of atomic displacements 

I 
4' 

oscillator 
1 

phonon 

The last line gives the name of the quasiparticle 
put in correspondence (by the de Broglie rela- 
tions) with the wave of displacements. I t  was 
called the phonon because the waves of displace- 
ments are the familiar sound waves (acoustic 
waves) propagating through crystals (from the 
Greek ph6nT for sound),iat least when the wave- 
length h = 2nlk is of macroscopic dimensions, 
much greater than the lattice parameter a ,  
that is, when ak << 1. To recapitulate, 

the phonon momentum (quasimomentum) is Ak, 
the phonon energy is E = A o (k). 
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As with any other quasiparticle existing in . - 
a periodic crystal lattice, the phonon energy 
is a periodic function of quasimomentum 
(Fig. 55a). However, since we'are mostly inter- 

h w 

Fig. 55. (a) Phonon energy as a function of projection 
kd of the wave vector onto the body diagonal of the 
cube (cf. Fig. 51) for longitudinal (1) and transverse (t) 
waves. When k -+ 0, fio is a linear function of k (see 
inset). The range of allowed values of the phonon energy 
is shaded. ( b )  The displacement of atoms in the longitu- 
dinal (1) wave is parallel to  k, and i n  transverse waves 
(t; two waves) i t  is perpendicular to  k; u-vector of 
atomic displacement 

ested in the lowest excited states of bodies, we 
can l imit  the analysis t o  the relation between 
the frequency o and the wave vector k tha t  
holds for long-wavelength sound, with h much 
greater than the lattice parameter a: 

6) = ~soundkr Or ho = Csoundp 

where Csound is the sound velocity independent 
(to a high accuracy) of sound frequency.* Sound 

I velocity differs for different types of solids. 
"On the average" i t  is between 104 and 106 cm/s. 

Three types of acoustic waves propagate in 
solids: two of them are transverse waves and one 
is longitudinal (Fig. 55b clearly shows the 
directions of atomic vibrations in each of these 
waves). The velocities of the transverse and 
longitudinal waves somewhat differ, but we shall 

I neglect this, keeping in mind that  there exist 
three species of phonons. 

The same Fig. 55 shows the region of allowed 
! values of phonon energies. Note that  i t  starts 
, from zero: no gap separates i t  from the ground 

I state of the crystal! 
A perusal of the subsection "Quantum Oscilla- 

tor" immediately shows: the number of phonons 
with momentum p is given by (3.36) or (3.38), 
only the phonon energy (3.46) must be substitut- 
ed for ho or E (p). Unfortunately, we cannot 
make use of formula (3.31) (as we did in the 
case of magnons) because the density of states 
gPl, (E) of phonons does not coincide with the 
density of states of ordinary particles and mag- 
nons. Taking up again the derivation of the 
formula for the density of states (2.19) of elec- 
trons (see p. 126), we readily find that  gph (E) - - e2 when E -+ 0. The exact formula for three 

* A more conventional form of relation (3.46) is v = 
= csound/h, where v is the cyclic frequency, and A is the 
wavelength; since o = 2nv and k = 2n/h, we oblain 
the relations given i n  the text. 
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species of phonons is Figure 56 shows the phonon distribution 

3v&= function a t  low temperatures. You notice that  

gph (4 = 2rr2r50una the energy of most phonons is of the order of k ~ .  
We shall give the exact expression for the 

and hence, phonon heat capacity of unit volume of the - 3v &a 
n ~ h  (') = 2 d P ~ 0 u n d  d , E << Emax (3.47) 

e k T  -1 

We have also indicated the conditions under 
which the formulas are valid. Indeed, we used 
the relation (3.46) valid only for low-energy 
phonons; emax i s  the maximum energy allowed kT h o 

to a phonon. The quantity e,,,lk = @ is called 
the Debye temperature. As a rule, it  does not Fig. 56. Eeergy dlstrlbutlon ol phonons. The area under 

exceed several hundred Kelvins. Thus, i t  equals the curve n = n ( E r n )  equals the total number of phonons 
at a temperature kT <( fiw,,, 

90 K for Pb, 210 K for Ag, 180 K for KBr, 
and 280 K for NaCI. Diamond has an exception- crystal containing a single atom per unit cell: 
ally high Debye temperature: about 2000 K. 

C*h 5z - T 
The Debye temperature is an important char- (3.48) 

acteristic of crystals. If the temperature of 
a body is much greater than the Debye tempera- (See Problem 26.) We remind the reader that 
ture, there is no need to turn to quantum mechan- we chose not to distinguish between the veloci- 
its in treating atomic vibrations (see the state- ties of transverse and longitudinal acoustic 
merit in italics on p.r226). But if T G 0, the waves. 
quantum treatment is mandatory. As you remem- Phonons constitute one of the basic heat reser- 
be*, we are interested in the low-temperature voirs of solids. The decrease in heat capacity 
behavior. To be precise: we limit the analysis with decreasing temperature is probably the 
to the temperature range 2' << @. In this case first macroscopic phenomenon that  was explained 
we can forget about the limitation in formu- in terms of quantum mechanics (A. Einstein 
la (3.47) and can show, in complete analogy to and P. Debye), or in modern terms, by intro- 
the earlier analysis, that the phonon energy is ducing phonons. 
proportional to the fourth power of temperature Now look carefully a t  formulasX(3.45) and 
( E ~ ~  T4), and the phonon heat capacity to (3.48). They are very similar. Bo txs ta te  that  
the third power of T (Cph T3)-  the heat capacities -that of magnons and that 
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of phonons-tend to zero as  temperature tends to 
zero. But  the magnon component tends to zero 
slower than the phonon component: 

C ~ h  - , ~ ~ / ~ - t 0  as T - t O  

At sufficiently low temperatures the heat capac- 
i ty of a body is determined by magnons if the 
Curie temperature T c  is greater than the Debye 
temperature 8. Phonons "have the upper hand" 
a t  very low temperatures (kT << E , ) :  the heat 
capacity of ferromagnetics is determined by 
phonons as  T -t 0 because the number of magnons 
is exponentially small (see (3.42)) (a lit t le earlier 
it was possible to ignore e ,  completely). What 
was described in this subsection holds for non- 
metallic ferromagnetics. In metals conduction 
electrons play an important role a t  low temper- 
atures, and their heat capacity is proportional 
to temperature (this is also a quantum property; 
i t  follows from the degeneracy of the electron 
gas, see Sec. 2.4). Since the electron heat capacit 
diminishes with temperature slower than bot 
the phonon and magnon components, i t  is t h  
electron component that  determines the beha 
ior of heat capacity in metals when temperatu 
tends to  zero. 

Chapter 4 

Antif errornagnetism 

We have mentioned, when describing the 
properties of paramagnetics (see Sec. 2.1), that  
the paramagnetic Curie temperature Op in the 
Curie-Weiss law is negative in a number of 
materials, and in the third chapter, when deriv- 
ing the Curie-Weiss law for  ferromagnetics a t  
temperatures above the Curie temperature T,, 
we found that  O, (coinciding with T, in the 
Curie-Weiss model) is determined by the exchange 
integral (see formula (3.11)). I t  is natural to 
assume tha t  the negative sign of Op in these 
materials stems from the negative sign of the 
exchange integral. I t  would be natural to pose 
a general question: What should be the behav- 
ior, a t  decreasing temperatures, of paramagnet- 
ics if the exchange interaction between their 
atoms is high but the exchange integral is nega- 
tive? L. D. Landau was probably the first to 
formulate this question (in 1933); he was able 
to show that  such materials must undergo a pecu- 
liar magnetic phase transition of the second 
order, not  accompanied by the creation of a macro- 
scopic spontaneous magnetic moment. Later such 
materials were called antiferromagnetics. Soon 
after Landau's work the antiferromagnetic s tate  
was discovered experimentally by L. V. Shub- 
nikov and his co-workers (in 1935). Table 6 lists 
some antiferromagnetics and gives their phase 
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transition temperatures TN. The temperature of 
the phase transition into the antifenomagnetic 
state is called the NQel temperature in honor 
of the French physicist Louis NQel who was 
awarded in 1970 the Nobel Prize in physics for 
his work on antiferromagnetism. 
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Table 6 

Antiferrornag- I T N . ~  netic 

4.1. Antiferromagnetic Ordering 

It  has already been mentioned that both in 
antiferromagnetics and in ferromagnetics the 
main role is played by the exchange interaction. 
I t  is then natural to turn to the Hamiltonian 
(3.8'), in which we set A < 0 .  Let us forget 
for a time about the quantum nature of exchange 
interaction and even about spins and assume 
that sr, sh are ordinary classical vectors of 
a prescribed length, and formula (3.8') deter- 
mines how the energy of a body depends on their 
mutual arrangement (it will be demonstrated 
later, in Sec. 4.3, that the classical model is 
a necessity because there is no rigorous quantum 
theory of antiferromagnetism). The word "mu- 

NiSO, 
FeSO, 
NiO 
FeO 
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37 
2.1 

520 
188 

tual" is essential here because the exchange 
interaction is isotropic with respect to the joint 
rotation of all spins. We find that the minimum 
value of energy in the case of negative A is 
reached for the spin configuration in which the 
spins pointing along some direction and against 

.-, 
Fig. 57. Antiferromagnetic ordering of magnetic moments: 
(a) in a bpdy-centered cubic lattice; ( b )  in a primitive 
cubic l a t t~ce  

i t  alternate (Fig. 57). Indeed, with this configura- 
tion each of the scalar products for the nearest 
neighbor spins will be maximum in magnitude 
and negative in sign. Energy will thereby be 
rnin imized. 

A configuration with alternating spins can be 
regarded as two ferromagnetic lattices embedded 
in each other (usually called magnetic sublattices), 
interacting via the negative exchange interac- 
tion. Figure 57 shows the simplest antiferro- 
magnetic structure. More complicated structures 
are possible. One of them is the structure of 
UO, as shown in Fig. 58. If i t  is described in 
terms of sublattices, four sublattices must be 
introduced. Although in what follows we do not 
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go beyond antiferrornagnetics with two sublat- 
tices, i t  should be mentioned that various and 
sometimes very sophisticated magnetic structures 
have been discovered and are studied nowadays. 
For instance, in rare-earth metals the spins in 

Fig. 58. Magnetic structure of 
the compound UO, described 
by four magnetic sublat- 
tices. The spins of magnetic 
atoms align along the cube 
diagonals 

adjacent atomic planes are rotated relative to 
each other by a certain angle. The magnetic 
structure is then a helix (Fig. 59a). 

Furthermore, there exists a large class of 
materials which as if combine the properties 
of ferromagnetics and antiferromagnetics. They 
are called ferrimagnetics, or ferrites. These are 
materials whose magnetic system can be pictured 
as a system of several sublattices which do not 
add up to zero magnetic moment (e.g. because 
the magnetization of one sublattice is several 
times greater than that of the other; Fig. 59b). 
One important particular case of ferrites is that 
of weak ferromagnetics: antiferromagnetics in 
which the angle between the magnetic moments 
of sublattices slightly deviates from 180" 
(Fig. 5%). 

I t  is clear from Fig. 57 that  the macroscopic 
magnetic moment of antiferromagnetics is zero. 
But this means that the antiferromagnetic state 
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cannot manifest itself by a magnetic field sur- 
rounding this specimen, as the ferromagnetic 
state can. But is i t  then possible to "recognize" 

Fig. 59. Complex magnetic structures: 
(a) helical structures; (b) the magnetic structure of a fer- 
rite: the magnetic moment at  the vertex of the cubic 
unit cell is less than the atomic magnetic moment at  the 
center of the cell; (c) the magnetic structure of a wcak 
I'crromagnetic material 

an antiferromagnetic structure? To answer this 
question, we need to recall how crystal strllctures 
are "recognized" in the general case. 

Not only can a regular arrangement of atoms 
be detected but the distances between the atoms 
can also be measured by using x-rays. The x-ray 
structure analysis is based on the interference 
which in this case makes the amplitude of the 
electromagnetic waves reflected by identical atorn- 
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ic planes large when the difference between 
the optical path of the corresponding rays is 
equal to, or is a multiple of, the wavelength 
of the x-ray radiation. If a crystal is modelled 
by stacked parallel planes (Fig. 60), we can 
readily derive the condition that  shows in what 

( a )  (b)  

Fig. 60. The Bragg-Wulff condition of interference. The 
difference between the optical path length of the rays 
reflected by two adjacent equivalent atomic planes 
(hatched on the drawing) must equal an integral number 
of light wavelengths: 
(a) an ordinary crystal; (b) an antiferromagnetic crystal 
(the distance between the equivalent atomic planes is 2a) 

directions the interference conditions are met. 
This is the so-called Bragg-Wulff condition: 

where n are integers, h is the x-ray wavelength, 
a is the separation between atomic planes, and 8 
is the incidence angle of the rays, equal to the 1 ,  

reflection angle. If the wavelength h is longer fi 
than twice the interatomic distance a ,  inter- * 

ference is impossible (and this is why we have 
to use x-rays with wavelength of several ang- 

I 
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stroms). If h < 2a, several maxima can be 
observed, their number being found from the 
condition cos 8 < 1. Figure 60b in which the 
alternating planes are marked with arrows 
pointing to opposite directions shows the same 
"crystal" as in Fig. 60a but in its antiferromag- 
netic state. It might seem that  in this case the 
interference pattern should be that of a crystal 
with doubled interatomic spacing: additional 
maxima should appear for the same wavelength. 
Yes, we might expect them but we would be 
wrong. X-rays "feel" only the distribution of 
electric charge. They cannot distinguish between 
iltoms with different orientation of a magnetic 
moment. Hence, 

the x-ray structure analysis does not reveal the 
magnetic structure of crystals. 

Should we use electrons? Owing to their 
quantum wave properties, they also interfere 
and can be used to find crystal structures (accord- 
ing to the de Broglie relation, their wavelength 
is 2nh/p, where p stands for momentum). More- 
over, electrons have a magnetic moment and 
thus interact differently with atoms whose magnet- 
ic moments are different. Nonetheless, if we 
carried out an experiment with an antiferro- 
inagnetic material scattering electrons, we would 
in  all likelihood miss the desired effect. The 
thing is that  electric interaction forces are 
greater by a factor of 1372 than the forces of 
interaction between magnetic moments. This 
has already been mentioned in Ch. 1 when the 
atomic structure was described (see Sec. 1.9). 
Therefore, identical atoms with oppositely orient- 
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ed magnetic moments will scatter almost iden- c e ~ t i b i l i t ~  i t  is applied perpendicularly to them. 
tically, and the slight difference is practically When temperature passes through the NQel 
immeasurable. We wish there were microscopic point, the heat capacity of an antiferromagnetic 
particles having a magnetic moment but no 
charge. 

But such particles exist. These are neutrons. 
True, their magnetic moment is small (see 

- 

Fig. 61. Transverse 
Table 1 on p. 60), but they are not charged. and longitudinal x,, SUS- 

Since the interaction of neutrons with atomic I ceptibilities of antiferro- 
magnetic moments leads to their scattering, we X~~ I magnetics as functions of 
can indeed find out by using neutron beams how temperature ( T N  is the 

T~ T Ne'el point) 
magnetic moments are arranged in antiferro- 
magnetic crystals. (See Problem 27.) Therefore, undergoes a jumpwise change (Fig. 62); this 

the elastic scattering of neutrons is a method effect is typical of the phase transitions of the 
for analyzing magnetic structures. second order. 

We have emphasized that we mean elastic scat- 
As always (see Sec. 3.3), a second-order phase 

tering, that is, such scattering in which a neutron 
transition is a "disorder-to-order" transition. 

is scattered but its energy remains unaltered (see C9 

below). 2 o 
Although the magnetic moment of a body is 

zero both in the paramagnetic and in antiferro- 
magnetic states, their magnetic characteristics 
are obviously quite different. At high tempera- 
tures the magnetic susceptibility is governed 5 
by the Curie-Weiss law, and a t  the NBel point 
i t  reaches a maximum; as temperature is lowered T~ 100 200 300 
further, the magnetic susceptibility diminishes. 
If measurements are carried out with single T ,  K 

crystals, i t  is possible to reveal the difference Fig. 62. Temperature dependence of the heat capacity 
in the behavior of the longitudinal x 11 and trans- of the antiferromagnetic MnP, 

verse XI susceptibilities (Fig. 61). In measuring 
the longitudinal susceptibility the magnetic In this particular case the "disorder" is  found 
field is applied along the aligned magnetic in the absolute identity of all lattice sites (of 
moments, and in measuring the transverse sus- 

i 
course, those sites in which magnetic. atoms are 
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located), so that  the mean magnetic moment is transitions. This is the subject of the present 
zero a t  each site. Beginning with the NQel point section. 
(at T < TN), an "order" appears and lattice Let us assume that  the magnetic field changes 
sites grow to  be different: in some of them the the orientation of the magnetic moments of the 
mean magnetic moment "points" in one direction, sublattices, but leaves their length unaltered. 
and in the others i t  points in the opposite direc- This assumption which is observed to  hold well 
tion. The transition is smooth (and i t  must be in wide ranges of parameters (temperature, 
for any phase transition of the second order) anisotropy and exchange constants, etc.) is 
because a t  the NQel point the mean magnetic the theoretical foundation for studying the 
moment in a lattice site is zero, then increases orientational transitions in magnetic materials. 
with decreasing temperature, and reaches its On the other hand, this assumption simplifies 
maximum possible value a t  T = 0. This behav- the problem to  such an extent that  i t  can be 
ior imparts more physical meaning to  the state- solved almost completely even on the pages of 
merit made on p. 241 tha t  an  antiferromagnetic this booklet. 
is composed of two ferromagnetic sublattices We have thus to ' f ind  out how a magnetic 
inserted into each other.* field H affects the magnetic structure of an anti- 

ferromagnetic in which the magnetic moments 

4.2. Magnelic Field Changes the Structure of soblattices, A, and A , ,  are antiparallel in 

of Antiferromagnetics the absence of an external magnetic field: 

For a ferromagnetic material a t  a temperature 
Ai- --&=A (4.2) 

low compared with the Curie temperature the and align along the anisotropy axis n. Such 
role of a permanent uniform magnetic field is antiferromagnetics are called the "easy-axisv-type 
rather minor: i t  deflects the magnetic moment antiferromagnetics (Fig. 63a). For the sake of 
and partially suppresses magnetic disorder, realiz- further simplification, we assume that  the mag- 
ing what we termed the paraprocess (see p. 188). netic field is also applied along the anisotropy 
For antiferromagnetics the magnetic field plays axis, tha t  is, along the "easy axis" (the case of 
a more interesting role. A stronger magrletic a longitudinal field). 
field may change the magnetic s t r u c t ~ ~ r e  of an To identify a structure means to determine the 
antiferromagnetic: i t  may induce magnetic phase directions of magnetic moments a t  which their 

energy is minimum. When writing expressions 
* We described ill Sec. 3.3 how orclering sets ill the for the energy of an antiferromagnetic, we start 
CuZn alloy. The ai~tiferromagnetic ordering thus strongly 
resembles tlie ordering of alloys. The role of "alloy com- 

with arguments similar to those that  we used 
ponents" is played by  atoms with differently oriented in analyzing the Curie-Weiss model (see formu- 
maglietic mornents, las (3.10) and (3.14)), assuming energy to be 
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completely defined by the magnitude and direc- 
tion of the magnetic moments of sublattices 
(calculated per unit volume). Omitting the terms 
independent of the direction of the vectors 
and d2, we obtain 

Tlle three terms describe "different" energies: 
the first represents the exchange energy (the 

i 

( a ) H < H A  ( b )  H A < H < H i  (c) H a H E  Cd) H=O 

Fie. G3. 13qnilibrium orientation ol the m a g ~ ~ e t j c  molneiits 
in antiferromagnetics: 
(a-r) an "easy-axisw-type antiferromagnetic; (d) an "easy- 
plane"-t ype antiferromagnetic 

constant of exchange interaction, proportional 
to the exchange integral, is denoted by the 
letter 6; obviously, i t  is advantageous for the 
magnetic moments to be antiparallel if 6 > 0); 
the second term represents the anisotropy energy 
(p is the anisotropy constant; fi > 0 for "easy- 
axisv-type antiferromagnetics, and the magnetic 
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moments align along the anisotropy axis n*); 
the third term represents the magnetic energy, 
that is, the energy of interaction between the 
magnetic moments and the magnetic field H 
(the magnetic energy equals zero when the 
magnetic moments &, and &, are antiparallel). 

The isotropic exchange interaction has a prior- 
ity over the anisotropic interaction because 
6 >> p. The two constants have zero dimensional- 
i ty because ,% is the energy density. By the 
order of magnitude, 6 = I A I/pBdlo; p = 1; 
pn is, as always, the Bohr magneton; and &Lo 
here stands for the magnetization of the sublat- 
tice far from the NQel point TN which, as in 
ferromagnetic materials, is determined by the 
exchange integral (kTN z I A 1). The estimates 
of the parameters 6 and 0 coincide with the esti- 
mates of the parameters a and p for ferromagnet- 
ics csee pp. 158 and 171). We want to empha- 
size that the direction of the magnetic moments 
in antiferromagnetics is determined not only 
by the relativistic anisotropic interaction but 
also by the isotropic exchange interaction that 
"strives" for an antiparallel alignment of the 
magnetic moments of the sublattices. 

I t  can be shown that an asymmetric arrange- 
ment of magnetic moments relative to the aniso- 
tropy axis n is energetically disadvantageous. 

* Antiferromagnetics with fi < 0 arc said to be "easy- 
planew-type antiferromagnetics because at H = 0 the mo- 
ments &, ant1 &2 lie in a plane perpendicular to the 
vector n (Fig. 63d). We have slightly simplified the 
expression for the anisotropy energy by omitting the term 
P' (&an) (&,.n). This term makes the results less 

1 tlescriptive, while changing them rather insignificantly, 
I 
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(See Problem 28.) For this reason we consider 
here only the three configurations shown in 
Fig. 63a, b,  c and compare them. First we write 
the expressions for the energies of these configura- 
tions: 

U++ = - (6 + p) " 1 ~ ~  (4.4) 
- 6okzcos 28-pdPcos2 8-2ddH cos 8 (4.5) 8 7 7 -  

The correspondence between these formulas and 
the configurations in Fig. 63 is clear from the 
introduced notations. Formulas (4.4) and (4.6) 
are "final", and formula (4.5) must be used to 
find the angle 0 minimizing the energy $'7/. 
This is a problem for finding a minimum: 

-+ 2di: H cos 8 > 0 

According to expressions (4.7), the energy reaches 
an extremum either a t  

or a t  
sin 0 = 0 

Since cos 8 < 1, the first solution is meaningful 
if f l  ( H,. In  strong fields only solution (4.9) 
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works, when both magnetic moments are parallel 
to each other. We see from the expression for 
the second derivative tha t  the structure .f.f 
corresponds to a minimum in energy when 
H > H E :  the magnetic field has "defeated" the 
exchange interaction and forced both magnetic 
moments to "lie" along the field. Solution (4.8) 
minimizes energy (4.5) if the magnetic field is 
weaker than H E .  The energy g7 then takes 
on the following value: 

By comparing the energy g7 with the energy 
of the antiparallel configuration 8++, we find 
that  a t  

H - H A - &  l/p(26-P) 

they become equal, a t  H < H A  the configuration 
tl, has a lower energy, and a t  H > H A  the 
configuration 7 7 is energetically more advanta- 
geous, with magnetic moments nearly perpendic- 
ular to the anisotropyaxis*, tha t  is, Eq <8+$.  

\ / 

Knowing the dependence of energy on the mag- 
netic field, we can calculate the magnetic mo- 
ment of the antiferromagnetic material that,  in 
this particular case, we denote by In. As the 
magnetic field, i t  is also directed along the 
anisotropy axis. In the 7 7 - p h a s e  3q = 

\ I  

* Since f3 (( 6, we notice t,hat 0 c 1x12 at  H  = H A .  
Indeed, 

cos 0 = 
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= - d g 2 7  ldH, and therefore, 

Figure 64 shows how the magnetic moment 
depends on the magnetic field. You notice that  

Fig. 64. Magnetic moment of an "easy-axis"-type anti- 
erromagnetic specimen as a function of the magnetic 
field applied along the chosen axis. The hysteresis loop 
(thin lines with arrows) manifest the presence of meta- 
stable states in the range If, < H < H,) 

antiferromagnetics undergo transitions twice: a t  
H = HA a jumpwise reorientation of magnetic 
moments occurs via a first-order phase transition 
(the field HA is therefore called the reorientation 
field). The reorientation is completed a t  H = 
=HE because then the angle between the magnet- 
ic moments of sublattices dwindles to zero, and 
these magnetic moments "flop together". This 
is a second-order phase transition: the magnetic 
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moment is continuous but the magnetic suscep- 
tibility changes jumpwise. If H < H A ,  the 
\ 7-phase  is metastable, and a t  H > HA the 
metastable phase is ti. The existence of meta- 
stable states results in a hysteresis. The width 
of the hysteresis loop (shown by thin lines with 
arrows in Fig. 64) is determined by the values of 
the fields a t  which the phases become unstable 
(instability fields): the #-phase is stable until  
the field reaches the value 

~ ~ = 1 / ~ ( 2 6 + ~ ) &  

and the 7 7 - p h a s e  is stable until 

I t  can be readily ascertained tha t  

Since j3 +g 6, the hysteresis loop is very narrow 
compared with the reorientation field: 

Unfortunately, the instability fields H, and 
11, cannot be calculated if only symmetric 
configurations are considered. We would have 
to find the dependence of energy on the direc- 
tions of rriaynetic moments and d t2  when 
these are arranged asymmetrically. 

The "flop-together" field HE is very high for 
most antiferromagnetic materials ( i t  is propor- 
tional to the exchange-interaction constant 6, 
see (4.8)). However, some materials have an 
anomalously weak exchange interaction (e.g. 
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MnBr2.4H20, MnCl2.4H20). These materials he- t h a t  is, if the energy spectruin of the antiferro- 
come antiferromagnetic a t  temperatures of about 
2 K. In these materials i t  was possible to observe 
not only the reorientation of magnetic moments 

magnetic material is knowa. 
The excited states of an antiferromagnetic can 

be treated similarly to what we did in the case 
(a first-order phase transition a t  H = HA) hut of a ferromagnetic: begin with a state in which 
also the "flopping-together" (a second-order pllilsc the spin of an individual atom is deflected from 
transition a t  FI = FIE) a t  which an antiferro- its "correct" orientation, conclude that  this 
magnetic material "converts" into a ferromagnet- state is nonstationary, "construct" a spin wave, 
ic material. I and so forth (see Sec. 3.7). But on the other 

Of course, Fig. 64 is merely schematic because hand, we know that  excitations of maximum 
i t  does not reflect the "struggle" between the 1 interest a t  low temperatures are spin waves 
magnetic field and the thermal disorder (the with wavelengths large compared with the 
effect of the magnetic field that  we call the interatomic distance. And we saw that  such 
paraprocess). This "struggle" is especially well waves can be treated as the nonuniform preces- 
pronounced a t  high magnetic fields (H 3 HE). sion of magnetization (see Sec. 3.8). In two- 
If  the paraprocess is taken into account, a t  sublattice antiferromagnetics we have to deal 
H > H E  the magnetic moment slightly increases with two magnetizations: dl and d2. Each 
with increasing magnetic field, and a t  H < H A  , magnetic moment precesses around its equilib- 
the magnetic moment is small but still does 
not vanish (at any rate, a t  T # 0). 

4.3. Spin Waves: Magnons 
in Antiferromagnetics 

The temperature dependence of the magnclic 
moments of the sublattices in the neighborllootl 
of the NBel point TN can be found by means o f  
the self-consistent field model (see p. 145) wliicll 
generalizes the Curie-Weiss model to the casp 
of two sublattices. However, we already know 
that  this model "does not work" a t  low temper- 
atures (at T << TN),  leading to I 
errors. The correct result can be obtained only 
if we know how atomic magnetic moments move, 

I 
1 
I 

rium position but these precessions are not 
independent because of the exchange interaction. 

As in the case of ferromagnetics, we begin 
with discussing the uniform precession and 
describe i t  for three configurations given above: 
4, \ 7, and .r f. Unfortunately, all  we can give 

is just a description. The derivation of relevant 
formulas requires a slightly higher level of 
knowledge in mathematics than the one we take 
for granted. But the physics is simple: each 
magnetic moment is subjected to an effective 
field tha t  depends on the "other" moment. This 
is why the precessions are not independent. 

Configuration !, (H < HA). The motion of two 
magnetic moments is decomposed into the sum 
of two independent periodic motions. Both 
moments participate in each of them. The fre- 

17-01378 
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quencies of these motions (precessions) will 
be denoted by o+ and o-. An analysis shows 
tha t  

where y is  the gyromagnetic ratio (see p. 52). 
Figure 65a shows how the magnetic moments 

of each sublattice precess in ?ach of the two 

Fig. 65. Precession of the magnetic momenrs of the sub- 
lattices i n  an "easy-axisn-type antiferromagnetic material 
(the magnetic field points along the anisotropy axis): 
(a) H < HA; ( b )  HA < H < H E  I 
motions. In the [motion a t  frequency o+ the 
moment along the  field ( A 1  in the figure) is 
deflected from the  axis slightly more than the 
other ( d z  in the figure) pointing against the 
field; the situation is reversed in the motion a t  
frequency o-. Note tha t  a t  H = Hz the preces- 
sion frequency drops to zero; this is a sign of 
instability. 
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Configuration 7 7 (HA < H < H E ) .  A rota- 
tion of the magnetic moments, preserving the 
angle between them, around the magnetic field 
parallel to  the chosen axis does not affect the 
state of the antiferromagnetic material: i t  is 
degenerate relative to the position of the plane 
in which the magnetic moments lie. Consequent- 
ly, tllc frequency relatcd to  this motion is zero. 
This may baffle the reader. Indeed, such a system 
of magnetic moments could be expected to rotate 
a t  any frequency, but somehow this frequency 
occurs to be zero. 

This statement becomes more comprehensible 
when quantum-mechanical concepts are applied. 
Assume tha t  the frequency of oscillations of 
a system of the magnetic moments that  preserve 
the angle between them is S2 + 0. Then this 
motion is related to energy levels hi2 (n + 1/2). 
13ut the rotation of the plane in which the mag- 
netic moments lie does not change the energy 
of the system. Hence, i2 = 0. We hope that  
now the reader is pacified. 

The precession of magnetic moments in the 
motion with nonzero frequency is shown in 
Fig. 65b. The figure also shows the precession 
of the total magnetic moment J J ~  = &,+&,. 
The frequency of this motion increases with 
increasing magnetic field If. I t  equals zero a t  
If: H I ,  indicating that  the 7 /'-configuration is 
unstable, and a t  H - HE i t  coincides with the 
precession frequency of a ferromagnetic material 
with the magnetic moment equal to 2@/6, the 
situation indeed expected for the ferromagnetic 
configuration .f t .  

Figure 66 plots the frequencies of uniform 
17" 
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precession as functions of the magne t i~~f i e ld  H .  
Obviously, the ensuing arguments coincide 

with those tha t  were "rehearsed" in Sec. 3.8. ' 

The transition from uniform precession to non- 
uniform precession makes the precession frequency 

1/. Pig. 66. Precession fre- 
quencies in an "easy-planev- 
type antiferromagnet- 
ic material as a function 
of the magnetic field par- 

I 
0- I allel to the anisotropy 

HlH2 HE H 
axis i 

depend on the wave vector k. Then follows the 
familiar scheme: 

wave -t oscillator + quasiparticle 

As in ferromagnetics, the quasiparticles are 
called magnons (or, infrequently, antiferromag- 
nons). Of course, the wave-quasiparticle transi- 
tion involves the use of the de Broglie relations: 
the magnon momentum is hk, and its energy is 
ha. When H < H A  (here we consider only this 
case), there are two types ol magnons in anti- 
ferromagnetics with two sublattices. Their energy 
depends on momentum in a slightly more compli- 
cated manner than for ferromagnetics7 magnons. 
When the momentum is small, then 

E' (p) = 2pn [Hi + ( ~ i a k ) ~ ]  ' I 2  _C 2pBH (4 .12)  
where 2pB = hv, and a is the crystal lattice 
parameter. The coefficient in front of k2 is writ- 
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ten in the form demonstrating i ts  order of magni- 
tude (Hk = H E  >> H,) and showing that  i t  
originates in the exchange interaction. Note 
that  the presence of the terms +2pRH in expres- 
sions (4.12) is not the basis for interpreting ei 
and e-  as the energies of two out of the threb 
states of one spin-1 particle (cf. p. 205). These 
terms refer to distinct magnons. Each of the 
magnons of an  antiferromagnetic material is 
n spin-1 quasiparticle, but for each magnon only 
one of the three possible spin states is realized 
(s, = -1 for one and s, = +1 for the other). 
Just as in ferromagnetic materials, 

magnons in antiferromagnetics are bosons. 

Formula (4.12) shows the structure of the 
energy spectrum in antiferromagnetics. The first 
excited states are separated by a gap from the 
ground state. When H = 0, the gap is wide (at 
any rate, as  compared with ferromagnetic mate- 
rials) because i t  depends not only on the aniso- 
{ropy constant fl but also on a large exchange- 
interaction constant 6 (see (4.11)). True, the gap 
vanishes a t  H = H,, but an "easy-axisw-type 
antiferromagnetic specimen will be restructured 
"in advance" (at H < Hz; see the preceding 
section). 

Knowing the dependence of the magnon energy 
on the momenta and statistical properties of 
rriagnons (knowing them to  be bosons), one can 
calculate the temperature dependence of the 
total magnetic moment and heat capacity. 
Clearly, as temperature tends to absolute zero, 
the numbers of magnons will tend to zero expo- 
nentially (the gap) and this will affect the tem- 
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= 
perature dependence of characteristics of anti- f 
ferromagnetic materials. We cannot go into the q 
details of this because, among other reasons, ; 
the theoretical predictions made on the basis = 

of magnon concepts are not confirmed experi- 
mentally for antiferromagnetics as successfully 
as they are for ferromagnetics. The cause is the 
wide energy gap: the contribution of magnons 
is too small to be reliably detected. 

A comparison of magnons in ferro- and anti- 
ferromagnetics reveals one peculiar feature. If 
we neglect anisotropic forces and the magnon- 
magnetic field interaction, magnons in ferro- 
magnetic materials become very similar t o  ordi- 
nary particles with the mass m* = h212Aa2 (see 
formula (3.25)). Let us apply the same operation 
to magnons in antiferromagnetics. We set H = 0 
in (4.12) and "switch off" the anisotropic forces 
(i.e. H ,  tends to zero). This greatly simplifies 
the dependence of the magnon energy on mo- 
mentum: 

2p~fzba 
E* (p) = c*p ,  c* = 

fl 

The result is very similar to the dependence of 
the phonon energy on momen tum. The velocity 
of a magnon c* is determined by the exchange 
interaction. Formula (4.13) holds not for all 
values of momentum: it is valid if 

However, i f  IT, << H E ,  there is n temperature 
range ( ~ ~ L B H ~  << kT << 2yBHb) in which the 
"quasiphonon" formula (4.13) is acceptable. At 
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these temperatures the contribution of magnons 
to thermodynamic characteristics of antiferro- 
magnetics much resembles the contribution of 
phonons. For instance, under these conditions 
the magnon heat capacity is proportional, as 
the phonon heat capacity, t o  TS (see p. 236). 

We tried to describe antiferromagnetics and 
their properties with only a minimum help from 
quantum mechanics. And on p. 240 we clearly 
stated tha t  a rigorous quantum-mechanical theory 
does not exist. 

The thing is that  in reality the state with 
antiparallel spins in distinct sublattices does not 
constitute a stationary state of an antiferromag- 
netic material described by the Heisenberg 
Hamiltonian (3.8) or (3.8'). This is best nnder- 
stood by considering a system of spins with 
s = 112. Let the spin a t  an arbitrary lattice site 
be directed upward. Then the spins in the neigh- 
bor sites belonging to the other sublattice are 
directed downward, that is, are in the state we 
are now discussing. The very meaning of exchange 
interaction is such that  in the case s = 112 i t  
reduces to interchanging the electrons occupying 
neighbor lattice sites. This interchanging disturbs 
the alternation of upward- and downward-point- 
ing spins: the state will change because the 
pairs of neighbor atoms will appear with identi- 
cally directed (spins, but the wave function of 
the stationary state cannot be altered by this 
interchanging and can only be multiplied by  
a certain quantity, namely, the value of energy 
in the stationary state. Hence, if the state we 
consider is not stationary, the true ground state 
must be something different. This is an absolute- 



ly correct statement (it is as correct as i t  is 
trivial). But the basic questions are: What is 
the basic state? What is its wave function? What 
is its energy? So far we do not know the answers. 
Nobody succeeded in finding the ground state 
of three-dimensional antiferromagnetics. Hans 
Bethe calculated the ground-stato energy of 
a one-dimensional antiferromagnetic with interac- 
tions only along the line as early as 1931 (at the 
presont time one- and two-dimensional systems 
again attract the attention of physicists). Of 
course, his result differs from the "classical" 
energy of two sublattices with oppositely directed 
spins. Nevertheless, attempts to generalize this 
result to the two- and three-dimensional cases 
have so far failed. 

Bethe's result was obtained for a system of 
atoms with spins s = 112. The greater s is, the 
smaller must the difference be between the 
results of classical calculation (or rather, semi- 
classical because the interaction itself is a quan- 
tum effect) and the exact quantum-mechanical 
calculation. When s >> 1, the space quantization 
of spins becomes unimportant, the spin becomes 
a classical moment that varies only in direction. 
Strictly speaking, the results outlined above 
hold precisely for systems consisting of "classical" 
spins. But in order not to conclude a t  this gloomy 
note, we should indicate that  the eclecticism of 
the theory of antiferromagnetics a t  low temper- 
atures (viz. the semiclassical nature of the 
ground state and the quantum-mechanical ap- 
proach to analyzing the energy spectrum) does 
not stand in the way of attempts (which are 
often quite successful) to explain and interpret 
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a wide scope of experimental facts: thermody- 
namic, kinetic, and high-frequency, including opti- 
cal, data. The true "internal structure" of anti- 
ferromagnetic materials is probably not very 
different from that described above. This remark 
in no way diminishes the importance of construct- 
ing a rigorous theory. 

4.4. Wow to "See" an Individual Magnon? 

We hope that, haviiig read our exposition of 
magnons in ferro- and antiferromagnetics, you 
feel respect to these quasiparticles. The knowl- 
edge of their properties (e.g. the magnon energy 
as a function of quasimomentum) will make i t  
possible to calculate the properties of magnetic 
materials and to  compare our theoretical con- 
structions with experimental data. But a different 
approach is possible: to use the experimental 
data and certain general notions of energy 
spectrum and try to find out the properties of 
magnons. Let us compose the following logical 
sequence. Experiments show that the deviation 
A&# of the spontaneous magnetic moment of 
ferromagnetic materials from its value a t  T = 0 
is proportional to T3I2 (cf. with (3.40)). The 
deviation Ad/ of the magnetic moment from 
saturation is caused by magnons. Magnons are 
bosons. Consequently, the laws of statistics 1 dictate that the magnon energy be proportional 
to the square of momentum. Moreover, the pro- 
portionalitp factor between A?X and T3I2 enables 
11s to calculate the effective magnon mass. (See 
Problem 29.) 

I The method of studying quasiparticles (not 
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only magnons) by analyzing the temperature 
dependence of thermodynamic quantities is very 
frequently used. Even a mathematical technique 
was developed to reconstruct, from the tempera- 
ture dependence of the heat capacity of a body, 
the density of the number of quasiparticles, 
namely, bosons, in a wide range of energy. But  
a physicist invariably dreams of isolating the 
object he studies. When studying electrons, i t  is 
preferable to deal with a single electron, and 
while studying magnons, to deal with a single 
magn on. 

Let us estimate to within an order of magni- 
tude how many magnons are "required" for the 
magnetic moment to depart by 1% from i ts  
saturation value. According to formula (3.39), 

that  is, N ,,,, IN = 10-1. Hence, N ,,,, = 
That is, N m 1O2O (sic) in each cubic centimeter. 
In a certain sense this is not much, in comparison 
with the number of magnetic atoms, but in the 
absolute sense (as compared with unity) their 
number is macroscopically enormous. Of course, 
we can lower temperature (we remind the reader 
that N,,,&n cc T31a). The number of magnons 
will decrease but still remain large, macroscopi- , 
cally largo. This is a good thing, otherwise we 1 

could not make use of the formulas derived for 
Bose gases, that  is, for systems consisting of 
a macroscopic number of Rose particles. Although 
this is a good thing in this sense, i t  leaves us 
no hope of isolating a single magnon by decreas- 
ing temperature. Quite different techniques based 
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on tlle resonant interaction of penetrating radia- 
tion with magnons are used to study the behavior 
of individual magnons. 

The term "penetrating radiation" is not an 
exact one: i t  is "something" that can penetrate 
the analyzed object to a sufficient depth (e.g. 
electromagnetic or acoustic waves or neutrons). 
The principal features will be better understood 
after we give several examples. 

Ferromagnetic Resonance 

When describing the electron paramagnetic reso- 
nance (EPR, see p. l o g ) ,  we discussed the possibi- 
lity of resonant interaction between electromag- 
netic waves arid a precessing magnetic moment. 
But if the magnetic moment of an atom can 
precess, so can the mean magnetic moment of 
a body, provided i t  is not zero. A ferromagnetic 
sample has the magnetic moment, and so i t  can 
precess (see Sec. 3.8). Hence, if the frequency of 
electromagnetic waves coincides with that of 
precession, resonance must set in. which can be 
detected by a sharply enhanced absorption of 
the electromagnetic energy in a ferromagnetic 
~pecimen (Fig. 67). As a rule, tlle experiment 
is performed in such a way that  the frequency of 
electromagnetic radiation (we mean the radio- 
frequency band of radiation) is not varied in 
measurements but the magnetic field applied to 
the specimen is changed. We know that the 
precession frequency o, is a function of the 
magnetic field H. If the electromagnetic radia- 
tion frequency o is chosen correctly, then the 
frequencies coincide a t  a c e r t a i ~  strength of the 
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magnetic field and resonance occurs: o = - 
= w o  (H). 

But, on the other hand, the frequency of the 
uniform precession of a magnetic moment, o,, 
equals, to within Planck's constant, the energy 
of a magnon at  rest, c0. We can therefore "regard" 
the ferromagnetic resonance from the quantum 

Fig. 67. Energy absorbed by a ferromagnetic speci~ncll 
as a fu~lctiorl of tho permanent magnctlc field has a rcs- 
onancc n:itrire; AH is the width of the resonance curve 

standpoint. After multiplying by Planck's con- 
stant, the resonance condition takes the form 
of equality of the photon energv fio to the energy 
of a magnon at  rest: 
hw -= c0 (4.14) 

and indicates that in resonance conditions a pho- 
ton is transformed illto a magnon: 

Obviously, this transformation must obey the 
energy and momentum conservation laws. The 
law of energy conservation has already been 
written (see (4.14)). And how about momentum 
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conservation? Indeed, a photon has a momentum 
equal to fiw/c.* Do we have to take i t  into ac- 
count? Since the resonance corresponds to a pho- 
ton transformed into a magnon, that is, to the 
disappearance of one quasiparticle and the crea- 
tion of another, the two conservation laws reduce 
to the equality of the energies of a magnon and 
a photon with equal momenta: e, + p2/2m* = 
= cp, where m* is the effective magnon mass. 
Since cp = 210, we find 

What we obtain here is more complicated than 
(4.14). Bul  before drawing co~~clusions,  i t  is 
necessary to evaluate the newly appeared addi- 
tional term (ho)V2m*c2 as compared with e,. 
Let us assume i t  to be very small (this assumption 1 
will be immediately verified). Then h o  w e,. 
Let us estimate the seco~ld term on the left-hand 
side of equation (4.15): (ho)z/2m*c2eo --, eo/2m*c2. 
We notice that  the value of the ratio of interest 
depends on the parameter u, - ( ~ , / 2 m * ) l / ~  with 
the dimensionality of velocity (we know the 

vo, we have to evaluate the effective magnon 
value of the speed of light). In order to evaluate 1 
mass m* (see p. 204). Assuming a s 3. cm. 1 
and A = kT, (k w 1.4.10-l6 ergldeg), we find 1 

* The dependence of the photo11 energy L = trw on 
momentum is E = cp,  whcrc c is thc speetl of light. 
Indeed, o == 2ncJh (h is the wavelength). Multiplying 
by fi we oblain the formula given above b e r a ~ ~ s e  2~cfi/h = p 
accortii~~g to lhe de Broglic relations. 
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The electron mass me 10-27 has been intro- 
duced into this formula to facilitate evalua- 
tions. You find that  if T ,  z 102 K ,  the effec- 
tive magno11 mass is close to the electron 
mass. 

The velocity v, essentially depends on e,. 
Let a ferromagnetic specimen be placed in 
a strong fleld II - 10-e; then E~ -- 2pRH 
(as a rule, in this strong iield the ailisotropy 
energy plays only a minor role). But  according 
to estimate (2.7), this field corresponds to an 
energy 1cT at  T  = 1 K .  Therefore, a t  T ,  --, 
--, lo2 K we have E ,  10-l6 erg and v, = 
--, 3 . 1 0 h m / s .  A seemirlgly high velocity, but 
still negligible in comparisorl with that  of light: 
v,L/c2 s 10-lU. Clearly, the second term in (4.15) 
can be o ~ ~ l i t t e d :  the photon momentum need not 
be taker1 into account. But we hear the attentive 
reader to ask: "What about the secorld root of 
equation (4.15)?" I t  can be ignored because the 
expression for the magilon energy, used above, 
holds only a t  small momenta (the situation is 
clarified in Fig. 68). 

We devote so much space to the magnon- 
photon interaction in order t o  make several 
general remarks: 

-as a rule, quasiparticles in crystals move 
relatively slowly, a t  velocities much less than 
the speed of Jight; 

-the ferromagnetic resonance is not a unique 
case when a photon transforms into a quasipar- 
ticle; in antiferromagnetic materials the anti- 
ferromagnetic resonance is possible, with a pho- 
ton transforming into an antiferromagnon (see 
Problem 30); in many crystals a photon may 
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transform into an optical phonon*, and so on; 
-the velocity of quasiparticles, v, being 

smallcompared with the speed of light (v << c), 
a photon always transforms into a quasiparticle 

Fig. 68. Graphical solution of the equation E (p) = c p .  
The root is marked with a cross. There is no second root 
ill the true dependence of the magnon energy E on the 
momentum p. This root appears if the true dependeirce 
of the magnon energy on momentum is replaced with 
n quadratic equation 

"at rest" (furthermore, this transformation is 
possible if the energy of the quasiparticle is 
nonzero). 

The ferromagnetic (or antiferromagnetic) reso- 
nance thus makes i t  possible to observe an 
individual magnon but unfortunately a magnon 
a t  rest (with p = 0). In fact,  the information 
obtained by resonance techniques is not limited 

* Optical phonons are quasiparticles that corresporltL to 
such waves in nonprimitive crystals in which the atoms 
belonging to one unit cell vibrate relative to one an- 
other. 
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to fixing the tdaghan, that is, to measuring the 
energy of a zero-momentum magnon. The obser- 
vation of resorlance signifies the measurement 
of that value of the magnetic field a t  which the 
resonance sets in; hence, we can establish how 
the frequency of uniform precession depends on 
magnetic field (determine y ,  find out the role 
ol anisotropy energy, etc.). Furthermore, and 
this is possibly the most important result, an 
analysis of the resonance curve (see Fig. 67) 
enables us to evaluate the magnon lifetime T. 

Figure 67 shows that  the absorption of energy 
(the photon -+ magnon transformation) is pos- 
sible not only if the frequencies are e ~ a c t l y  equal 
but in a certain interval Ao, = y AH, as if 
the energy of a magnon is not prescribed very 
accurately; there is a spread in magnon energies 
(for the sake of simplicity we assume the photon 
energy to be exactly known). The same can be 
said in quantum terms (see pp. 34-38): the magnon 
energy has rlo definite value. Quantum mechanics 
states that  the energy of a state has a definite 
value only if the state is stationary, that is, if 
its lifetime is infinite. But if !a state is nonsta- 
tionary, i t  is subject to a relation quite similar 
to the uncertainty relation: 

where A &  is the uncertainty in the energy of the 
state, and T is its mean lifetime. 

But why is a magnon not an everlasting entity? 
What imposes limits on its lifetime? Some hints 
were given in Sec. 3.7: magnons collide with 
other magnons. Besides, they may collide with 
phonons tha t  are always present in crystals. 
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By regarding a magnon as a particle (omlt,l.in~ 
the prefix "quasi"), we can readily imagino tl~rr~, 
i t  is scattered in collisions with defects that 
are inevitably encountered in crystals: impurity 
atoms, grain boundaries, dislocations (this term 
denotes the edges of truncated atomic planes), 
and simply with specimen boundsrios. We thus 
find that the factors shortening tho mngrlon 
lifetime are numerous. In their totality thoy riro 
called the dissipative processes. To summnrlze, 

the ferromagnetic resonance is a method of 
studying dissipative processes involving magnons. 

Pcrroacoustic Hesonance 

The desire to "observe" individual magnons by 
resonance methods leads to the idea of employing 
waves that "move" slower than electromagnetic 
waves. Such waves are available: these are 
sound waves whose velocity is hundreds of thou- 
sands of times less than the speed of light. If we 
cannot "see", let us try to "listen" to magnons. 

The resonant interaction is capable of convert- 
ing a phonon into a magnon. In this transforma- 
tion the equation describing the conservation 
laws for energy and momentum will differ from 
equation (4.15) only in the replacement of the 
speed of light c with that of sound c,,,,~. Since 
c,,,,,~ % l o 5  cm/s, the situation is radically 
changed. For simplicity let us assume that 
E ,  = 2pBH (e.g. the anisotropy energy is enor- 
mously low) and let us find the value of the 
magnetic field a t  which the resonant interaction 



is possible (find the resonant field): 

The right-hand side, being a function of Ro, 
has a maximum a t  R o  = rn*~; , , , ,~  and vanishes 

I 

Fig. 69. Graphical solution ol equation (4.18); w, and o, ) 
are resonance frequencies at 2pBH < m*~:ound12 b 
a t  ho = 2m*c2,,,,d (Fig. 69) .  I t  is clear (the 
figure shows i t  with extreme lucidity) that  the 
resonance is possible if 

2pBH < 1 /2m*c:omd 

( m * ~ ~ , , , ~ / 2  is the value taken on by the right- 
hand side of (4.18) a t  the maximum) when 
k w  < 2m*c~oulld. If the acoustic frequency and 
magnetic field are such that  the resonant field 
essentially depends on the second term in (4.18), 
then we can find from the resonance condition 
the effective magnon mass m* (can "listen" to 
a moving magnon). 

Inelastic Scattering 

In both methods described above the "research 
agent" (a photon or a phonon) perishes, its 
dying being the evidence of resonance. Aren't 
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there more "peaceful" methods of extracting 
information on a quasiparticle? There are. These 
methods are based on the inelastic scattering of 
neutrons or photons. The scattering is said to be 
inelastic if the interaction with the scatterer 
changes the energy of a particle. 

Let us consider again the scattering of neutrons 
in ferro- or antiferromagnetics (see Sec. 4.1). 
There are many ways for a neutron to change i ts  
energy. Each such channel is characterized by 
its probability. There is also a nonzero proba- 
bility that  the neutron energy will not be al- 
tered. 

We know that under proper conditions the 
energy-conserving scattering (inelastic scattering) 
gives information on the magnetic structure of 
crystals. 

There is also a finite probability for a neutron, 
traversing a ferro- or antiferromagnetic specimen, 
to emit (or absorb) a spin wave or, in corpuscular 
terms, to create (or absorb) a magnon. Calcula- 
tion of the probabilities of various scattering 
processes is not an elementary problem of quan- 
tum mechanics (we shall not give the correspond- 
ing formulas, even without deriving them). But 
we can clarify the principal possibility of crea- 
tion or absorption of a magnon by a neutron, 
correctly assuming that  if the conservation laws 
allow a process, the process takes place. The 
conservation laws for energy and momentum must 
thus be obeyed in the creation or absorption of 
a magnon by a neutron. Let us denote the neutron 
momentum prior to and after the scattering by 
p,, and pk. The neutron energy is E ,  = p,2,/2mn. 
The momentum and energy of the magnon are p 
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and E (p). Then 

The two conservation laws can be written as 
a single equation but one tha t  contains vectors 
(to be specific, we chose the absorption of a mag- 
non) : 

Now we want to find out whether this equa- 
tion has a solution. If i t  has, the process is al- 

Fig. 70. Graphical solution of equation (4.19). The abscis- 
sa axis gives the magnon momentum pointing along 
a "good" direction. The roots of the equation are marked 
with crosses 

lowed. The simplest way to establish the exist- 
ence of a solution (as a rule, several solutions exist) 
is to analyze Fig. 70. But if solutions exist, the 
method gives a direct possibility of measuring 
the magnon energy as a function of the magnon 
quasimomentum. I t  is then necessary to measure 
independently the change in the neutron momen- 
tum (it is equal to the magnon quasimomentum p) 
and the change in the neutron energy (it is 
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equal to the magnon energy E (p)). Many elegant 
methods of realizing this idea were suggested. 
I t  was by analyzing the inelastic scattering of 
neutrons in ferro-, ferri-, and antiferromagnetics 
that the main properties of magnons in these 
materials were obtained. 

Optics joined the magnon research in recent 
years. Transparent magnetic materials have been 
synthesized. The application of lasers, that is, 
of sources of coherent light, to physical experi- 
ments made i t  possible to study the inelastic 
scattering of photons by such magnetic materials. 
The creation or absorption of a magnon leads 
to a change in a photon frequency (because the 
photon energy is proportional to its frequency). 
This effect can be detected by a change in the 
color of a light beam. 

The information on magnetic materials that  
can be extracted from inelastic scattering experi- 
ments is not exhausted by the dependence of the 
energy of magnons on their quasimomentum. 
As in resonance investigations, i t  proves pos- 
sible to clarify numerous interesting details of 
dissipative processes involving magnons. 

Concluding a discussion about an actively 
developing field of science is a bit like cutting 
a dialogue short in midsentenw. What reassures 
us is tha t  a t  the outset we formulated a well- 
defined task: t o  describe the nature of magnetic 
phenomena; we hope this goal was achieved. 
There i s  almost no end to  what can be said about 
magnetic phenomena. The reader now pas~ ib ly  
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realizes that the magnetic properties of materials 
are inseparably linked to their microscopic 
structure and can be understood only if the 
structure and composition of materials, the 
interatomic, intermolecular, and interionic 
forces are clearly understood. Sometimes (but 
certainly not always) magnetic properties can 
be "isolated": can be treated without resorting 
to the structure of microscopic particles. This 
is how the model of magnetic-needles gas and 
all its consequences can appear. With microscop- 
ic particles and their properties known, i t  
is far from simple to "compose" the macroscopic 
picture. On many occasions we had to turn to 
statistical physics. The pages where we had to 
operate in terms of statistical physics were 
probably the most difficult for understanding and 
the least descriptive. 

Clearly realizing this, we attempted to help 
the reader with explanations. We do not know 
whether the attempt really succeeded. 

A last remark: our discussion here has been 
somewhat confined by our limited tools. This 
approach was not always emphasized. We have 
attempted to  stimulate the reader to look for 
explanations of the facts and properties that  
require greater knowledge, tha t  is, to  stimulate 
the yearning for just this knowledge. 

Problems 

Problem 1. Calculate G by taking the value of 
acceleration due to gravity x 9.8 m/s2 and finding 
the remaining necessary information about the 
Earth in a handbook or an encyclopaedia. 

Problem 2. Derive formula (1.4). 

Problem 3. Calculate the field far from two 
identical antiparallel dipoles spaced by a distance 
1 from each other, on the perpendicular to the 
line connecting them. 

Problem 4. Show that  A21m,e2 is the only 
possible combination with the dimensionality of' 
length, constructed of e, me, and h. Explain 
why the speed of light c is omitted from the set 
of quantities from which the size of the atom 
is constructed. 

Problem 5. Those who are familiar with dif- 
ferentiation and know the meaning of vector 
product will easily derive from Newton's equa- 
tion dpldt = F (the increment of momentum p 
per unit time equals the force F) that  L = 
= [ p  x rl = const, that  is, L is independent of 
time (obviously, we assume that  F is a central 
force: F 11 r). 

Problem 6. Using the formulas of classical 
mechanics, calculate the change jn the velocity 
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of a particle with mass 1 g moving in a circular 
orbit of radius 1 cm when the orbital angular 
momentum changes because L is incremented by 
unity. Try  to  explain why quantization can be 
neglected in the motion of macroscopic bodies. 

Problem 7. Find a numerical relationship 
between the wavelength of an electromagnetic 
wave with frequency o, and magnetic field H. 

Problem 8. Find the magnet-screen distance L 
in the Stern-Gerlach experiment necessary for 
the separation of 0.0044 mm between the traces 
of the beams. In the Stern-Gerlach experiment 
dHldz = 2 . 2 ~ 1 0 ~  Oelcm. The width of the non- 
uniform field region, D = 10 cm (see Fig. 14), 
the velocity of the atomic beam was 106 cmls. 

Problem 9. Derive formula (1.35). This can be 
done by using formula (1.26) for the energy of 
a magnetic dipole in a magnetic field, assuming 
tha t  the field H is produced by another dipole 
(see formula (1.7)). 

Problem 10. Find the dimensionality of H 
and A. 

Problem 11. Rewrite the E P R  and NMR condi- 
tions as  relations between electromagnetic wave- 
length and magnetic field. Find the numerical 
value of the proportionality factor for the electron 
and the proton (see Table 1 on p. 60). 

Problem 12. Using formula (?3.42), show that  
t he  magnetic moment qf q aia~nagnetic a t o q  

if eH g eV/cla: 

Problem 13. Derive the formula 
M H  1 

= NMaL (-&) , L (x) = coth x--; (2.15') 

by taking into account tha t  the number of 
particles whose magnetic moment makes an 
angle 0 with the magnetic field H is proportional 
to exp ( M a H  cos 01kT) (see p. 107). 

Derive from (2.15') an expression for x,, (for- 
mula (2.15'), as  (2.13), was derived by Langevin). 

Problem 14. Prove that  the work of the Lorentz 
force is zero. 

Problem 15. Calculate the mean energy of 
a particle in a Fermi gas a t  T = 0 and express 
this energy via the Fermi energy EF. 

Problem 16. Show that  the equality pBH = 
= EF is reached at  H a 108 Oe. The most 
colossal magnets produce magnetic fields not 
exceeding 5.106 Oe. 

Problem 17. Show tha t  xp x (1/137)2 to 
within a factor of the order of unity (cf. the 
derivation of formula (2.16)). 

Problem 18. Explain why the magnet shown 
in Fig. 30 does not fall onto the plate. The hover- 
ing-magnet experiment was first performed by 
V. K. Arkadyev in 1945. Nowadays this phenom- 
enon has found technical applications. 

Problem 19. Derive all  the formulas of this 
section for J = I ;  i t  would be even better if 
you derived them for arbitrary J. Possibly, 
this is the m ~ s t  complicated ~f the suggested 
g r ~ b ? & ~ f s ,  
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Problem 20. Show that by virtue of the Curie- 
Weiss equation 

ddn -- 

x = ( ~ F A - o  c c e  
at T - t O  

(see the footnote to p. 150). 

Problem 21. Using the expression 

(a, b are constants), calculate and show that 
for b > 0 this function describes a second-order 
phase transition (L. D. Landau, 1937). Find 
a relation between the parameters a,  T,,, b and 
the quantities characterizing the "para-ferro" 
transition. 

Problem 22. Verify this statement. 

Problem 23. Use the arguments employed in 
deriving an expression for the density of states 
g (E) (seep. 126) and the dependence of the magnon 
energy on momentum at  p << tila to derive 
formula (3.41). 

Problem 24. Use (3.42) and calculate dk (T) 
a t  E,, = 2pBH >> kT; compare the result with 
(3.5). For a numerical evaluation take H = 
= 1000 Oe and T, = 103 K. 

Problem 25. Find the function E,,,, (T) a t  
kT << E,. 

Problem 27. Rougllly estimate the energy that 
neutrons must have in order to be used for ana- 
lyzing crystal structures. 

Problem 28. Prove (preferably without calcu- 
lations) that an asymmetric arrangement of the 
magnetic moments &, and &, at H = Hn is 
energetically unfavorable. 

Problem 29. Verify that formula (3.40) does 
not contradict the definition of the effective 
magnon mass given on p. 204. 

Problem 30. Find the condition of the anti- 
ferromagnetic resonance for a two-sublattice 
"easy-axisw-type antiferromagnetic material in 
its three configurations. Can the resonance occur 
in the antiparallel configuration? 

Problem 26. Calculate the phonon component 
of heat capacity by using formula (3.47). 




