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Introduction

What is the Subject
of This Book?

i fairly well the
The title of the book represents )
Jl‘ull(:]'eclt of this book. We shall attempt to explain
(he nature of magnetism. o _
I|(()nne of the large branches of physics is ﬁheb%hﬁ-
ics of electromagnetic phenomena. Byg ’?hatgthe
ning of the 20th century it has seemef hat 11e
work of Faraday and Maxwell successfu ty'n -
pleted this field of science: completetli1 1b lhavior
sense that the main laws governing t S g o
of electromagnetic ﬁelds_ were unders';)ton, hat
is, the necessary equations were w? }(;, éicists
the task of subsequent ge&leratlons o?cicpso}{utions
was to search for more and more ex ons
( i 1ly it became cle
f these equations. But gradua '
(l‘hat reseagch in the field was far from '((:ioglsplit}?e
Owing to the injection of quantum }11 e u}lder-
theory of electromagnetic Ilyhe;n(;g;;eélgs tﬁsan noer
gone essential changes, no les S .
in mechanics. Nowadays we are mu o care
:‘ul in evaluating whethe; a piltfﬁocfie?l}tllyymfiseveal-
heen completed or not. Any : "
n)yewed scier?ce formulates not (:11113{ 1‘csb iggggn?}lllit:h
inci he boundaries 0
principles but also t e e o into
these principles are not valid. go e
subatomic structures, quantum mechanics

A i
the theory of electromagnetism, that alr(ei 11)):(?11)-
for our understanding of the structure an A




8 Introduction

erties of the surrounding world, can be success-
fully applied to study an enormously broad field
of phenomena. There is no reason to doubt the
validity of the laws at present: we are within
the limits of their application.

The fundamental notion of the physics of
glectromagnetic phenomena is the electromagnet-
ic field. A constant electromagnetic field, inde-
pendent of time, separates into an electric and
a magnetic fields. The two are very dissimilar.
Nevertheless, the time-dependent electromagnetic
ﬁeld is a unified blend of the electric and magnet-
ic fields. The energy of an electromagnetic wave
concentrates alternately in the electric and mag-
n_etic‘ﬁelds, in similarity with the potential and
kinetic energies of an oscillating pendulum.

Electromagnetic fields are detected by the
senses of the human organism only if the electric
and magnetic fields oscillate at extremely high
frequencies. If this frequency is in the range
from .4-1014 to 7.5-101% Hz, the oscillations are
perceived as visible light. The range of visible
freq_uenmes of an electromagnetic field occupiesonly
a minor part of the frequency scale. But it would
bg frightening if this range did not exist because
vision supplies us with most of the informatiom
about the surrounding world. “A picture is worth
a thousand words™: the truth of this maxim can
be supported by quite modern calculations of
information theory.

Static ﬁelds (both electric and magnetic) are
not perceived by the human organism because it
lacks appropriate receptors. Migratory birds seem
to sense it, put even if it were so, we humans have
no possibility to imagine what the birds feel.

9

Introduction

I is obvious, however, that the lack of organs
«ensitive to electric and magnetic fields does not
preclude us from finding out whether there is
a field at a given point of space. The field can be
not only detected but measured as well. The
detection and measurement of electric and magnet-
ic fields are implemented by means of instru-
ments. There is a tremendous variety of such

ki, 1. Lorentz force Fp, acting on a charge ¢ << 0 at
2 point A of the trajectory, v is the particle velocity,
Il is the mag uetic field

instrauments, but most of them* are based on the
fnllowing physical fact: if the electric field at
4 given point is nonzero and equals E, then an
clectric charge g placed at this point “feels” a
force F,; equal to gE, and if there is a nonzero
magnetic field H, a charge ¢ moving at a velocity

v “feels” a force F, equal to % [v x HI], where

¢ is the speed of light in the vacuum, equal to
310" c¢m/s (Fig. 1). And finally, if both the
electric and magnetic fields are nonzero, the force

* We write “most”, but not “all”, because some methods
of moasuring magnetic fields are known to be based on the
intoraction of a magnetic field with atomic and subatomic
magnetic moments (see below), mot with charges.
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acting on an electric charge g is

. 1
F=Fo+Fn=q(E+[vxH]) (1)

This force is called the Loreniz force.

The letters E, H, F, v are set in boldface. This
signifies that the quantities they denote are
vectors.

It will be worth repeating: the electric and
magnetic fields are vectors. This is inherent to

| 2 @

E
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Fig. 2. Lines of force of the electric field between the
plates of a plane capacitor

them. This fact was understood and used as a
basis for the description of the electromagnetic
field that finally reached the form of the famous
Maxwell equations. These equations are so fa-
mous, or rather, so important, that their crea-
tion is justly regarded as one of the most impor-
tant historic events.

There is no difficulty in producing an electric
or magnetic field. The electric field fills the space
between the plates of a charged capacitor (Fig. 2),
and the magnetic field surrounds a wire through
which electric current flows (Fig. 3).

Vector fields are shown in drawings by lines
of force whose density is the greater, the higher
is the field, and whose direction coincides with
that of the vector (Fig. 4).

Introduction 11

We have copied from a high-school physics
toxtbook a drawing (see Fig. 4a) which shows
that the charge (a small-radius ball in the figure)
is a source of an electric field. If the charge is
positive, the lines of force of the electric field

I

Fig, 3. Magnetic field around a straight couluctor with
corrent 1. Maguetic lines of force are shown in a plane

lonve the ball and go to infinity, becoming
yradually loss dense. If the charge is negative
(now Plg. 40), the lines of force go toward and
wnlor the charge, These drawings are very impor-
taut, By combining them we can understand the
structure of the static electric field in all practi-
cally important cases.

The static electric field, its distribution in
«pace, and ils penetration into different kinds of
matler is the subject of a special branch of the
thoory of electromagnetism, electrostatics. Elec-
trostatics is based on the fact graphically expressed
in Fig. 4a, b: the sources of an electric field are
electlric charges.

Usually the distribution of an electric field
around a charge is demonstrated by using a tiny
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but perfectly macroscopic (i.e. consisting of bil-
lions of atoms) sphere. Calculations and numer-
ous experimental tests show that the strength
of an electric field decreases with the distance

AR
7

(@) (&)

Fig. 4. Lines of force of the electric field of a fixed point
charge g¢:

(@ ¢=>0; (b) ¢g< O

from the charge g in inverse proportion to the
squared distance (Coulomb’s law):

E=% 2)

You are quite probably more familiar with a
somewhat different formulation of Coulomb’s
law: the force acting on two charges ¢, and g,,
Feoul, is inversely proportional to the squared
distance between them:

The charges are repulsed if they are of like sign,
and are attracted if they are of unlike signs.

Introduction 13

I'he surprising fact is that this law holds both
in Lhe macroscopic and in the microscopic world.
Sir Ernest Rutherford established by experiments
wilh o particles scattered by matter that an
alomic nucleus (a single nucleus!) produces around
ilself an electric field governed by Coulomb’s
law (2). It is usual, in retelling Rutherford’s
experiments, to emphasize that these experiments
proved the existence of the nucleus, that is,
a positively charged blob of matter smaller than
ihe atom by a factor of one hundred thousand.
Ol course, this was the main result. But the veri-
fication of Coulomb’s law for distances to about
10-1® cm is no less important. Just think: a
simple law of inverse proportionality to squared
distance holds both at distances commensurate to
haman scales (centimeters, meters) and at dis-
lances of the order of 1071 c¢m. And if we add
that there are no reasons to doubt the validity
of the law (2) at distances increased, say, to
interstellar spacings, the universality of Cou-
lomb’s law becomes really staggering.

Coulomb’s law can be recast in a slightly
dilferent form, by stating that the potential
cnergy U of a charge g, is distinct from zero and
equals g,q./r if a charge g, is placed at the origin
of coordinates. The energy can be determined to
within a constant addend. Here we choose this
addend so that U = 0 at the infinite distance
from g, (for r - oo). Then the sign of the poten-
lial energy U indicates whether we deal with
attraction (U << 0) or with repulsion (U > 0).

The “energy” form of Coulomb’s law is used
in atomic physics more often than the “force”
form.
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The study of the atomic structure of matter
reveals microscopic sources of electric fields in
nature. These are electrons and protons. Their
charges are equal in magnitude but opposite in
sign. By convention, the charge of the proton,
ey, is assumed positive, and that of the electron,
e, is assumed negative:

ep = 4.8-10710 gl2.cm¥2.571 = —¢ (3)

It should be emphasized that the electron and
the proton have not merely microscopic (i.e.
very small) charges but the smallest, or elemen-
tary, charges. No particles with fractional charges
(in units of e) have been found in nature.*

Is the electron (or proton) charge large or small?
Physics does not accept this abstract formulation
of a question. We always have to add “in com-
parison with...”. If the charge is regarded as a
measure of interaction between particles, then
it is tremendously large. Indeed, let us compare
the repulsive force between two protons due to
Coulomb’s law,

i)
FCOul == —?

with the attractive force between them due to
the law of gravitation,

2
m

— D
FEP_G r2

* In recent years much has been said and written about
quarks of which nucleons—protons and neutrons—are
composed. Several kinds (flavors) of quarks exist, with
charges +(1/3)e and =-(2/3)e. But it appears that some-
how it is forbidden to quarks to exist in a free state
(outside of nucleons).

Introduction 15

‘I'ne comparison is not difficult because both
forces diminish in an identical manner, that is,
i inverse proportion to the squared distance be-
lween the protons. The proton mass is mp,=1.7%
-10-%% g, and the constant & in the law of gravi-
tation is 6.7-10-8 cm®.g~1.s72, (See Problem 1%*.)
The ratio of forces is Feow/Fgr & 4-10'%. Elec-
Iric forces exceed gravitational forces by a factor
of more than 10%%] This is why gravitational forces
are simply ignored when problems in atomic
physics are considered.

And if electric forces are so strong, why are
we able to disregard them in everyday situations
and in technological processes?

The fact is that the ambient medium always
contains numerous free charges (electrons and
ions). Once a charge appears anywhere, free
charges of the opposite sign are attracted and
neutralize that charge. We mostly deal with
neutral (noncharged) bodies. But gravitational
lorces cannot be neutralized. They increase with
imcreasing mass, and are essential and predomi-
nant for macroscopic bodies, especially bodies in
the outer space.

But the role played by an electric charge is
not limited to the description of the interaction
hetween charged particles. Presumably, everyone
knows that under certain conditions a charged
particle emits electromagnetic waves (neutral
particles do not have this property). The measure
ol the ability of emitting radiation is the charge,
or rather a dimensionless ratio e*/fic (you will

* P'roblems are placed at the end of the book (see pp. 279-
83).
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have to take it for granted)*. Here 7 is the f:
Planck’s constant without which no If)llixfallrio:ji
quantum physics is possible; i &~ 10~ g-cm*. 571
so that eZ/i?c ~ 1/137. The fact that e®/jc </1’
§hows that 1n a certain sense the electron chu;re
le sg:laltlk.1 It is thus rIl‘arge in one sense and sm;’ll
other sense. i ' :
Wi Oper  sense is,hls cannot be helped: the
Let us turn now to the magnetic field.
Magnetic charges are not found in nalure
In 1931 one of the founders of quantum mecha:
nics, Paql Dirac, suggested that magnetic charges
musi exist; he gave them the name monopo?es
1f monopoles existed, the world would be mor(;'
symmetric _and the theory of electromaguetism'
more beautiful. Much effort was spent in search-
ing for the monopole. Several times sensational
anuouncements claimed the discovery of the
monopole, but later they were disproved. The
monopole remains undiscovered. . 1

But microscopic sources of a magnetic iicld

Introduction 17

First, as we have just mentioned, it deals with
microscopic sources of a magnetic field.

Second, having explained that microscopic
sources of a magnetic (and electric) field are
clectrons and protons, as well as neutrons (al-
though, as follows from the name itself, they are
not surrounded by an electric field), we explain
why not each macroscopic body represents a
macroscopic source of a magnetic field.

Third, we try to explain why different bodies
behave differently when placed in a magnetic
lield.

Fourth, we speak in detail about bodies called
magnetic materials. An important place among
them is occupied by magnets, or ferromagnetic
materials. They constitute macroscopic sources
of a magnetic field.

This list does not exhaust the contents of the
book. But we say nothing or nearly nothing
about nuclear magnetism, do not cover the origin
of the magnetic field of the Earth and other plan-

do exist in nature. Qne i
. . of the fi 5 de-
scribes them in detail, st chapters de

Now it is ti . . .
i bo;k.ls time to outline briefly the subject of

* We will ask the reader to t:
V I ake what we say for
ﬁz lelrtlzliﬁef;sr ggzs;&)ég. ’?Et to bﬁ; qtlllite candid?, thisgcrgllllltli%
el . lhose who have read some physics-
popularizing books on quantum mechani bossibl;
be satisfied with the following “ ding” of this qossioly
ing “decoding” of this ient
é(})lggtrover“on(f' hgndged thirty-seven i;g the rati%u%tflelﬂé
o On "radius® e¥/mgct to the Compton wavelencth
’ Mgt éme is the electron mass, a:10-27 g). It is hard to
h?a{p:vtgt%?e:‘ﬂl: \:Vs_tgu explanation; at any rate, this
_ 5 al ith quantities important i i
physics, but primarily it shows h se dhmons
sionless combinations of world coovgsggnigmpose e

ets, and ignore exciting problems involved in the
study of magnetic fields in outer space.

We feel certain compunctions in not speaking
about the magnetic field of the Earth: indeed,
the use of terrestrial magnetism for navigation
(the compass) was the first application of magnet-
ic properties in recorded history. Although, un-
fortunately, no rigorous criteria exist for evaluat-
ing the relative importance of inventions, every-
one will probably agree that the compass, that
is, a freely rotating magnetic needle, is one of
the most important inventions of man.

We find consolation in the wise maxim of
Kozma Prutkov (the collective pen name of

2—01378



18 Introduction

three Russian writers of 1850’s, famous for their
aphorisms) who wrote: “You cannot think of
everything.” And indeed you cannot. Magnetism
is just as boundless as nature itself,

Readers are often scared away by mathemat-
ical complexities, We did take this factor into
account but could not avoid using vectors and
operations with them, the notions of function,
and of its derivative and integral; however, we
never go beyond this level. Some mathematical
operations are intentionally shifted to Problems.
A reader who solves the problems will understand
the book much more profoundly than one who
puts off solving them for some time in the future.
But what worries us most about the reader’s
response does not concern mathematical dif-
ficulties. We expect that the main obstacle for
the reader will be many new physical concepts.

We have tried to explain most of them in the
text or in the footnotes; if some concepts still
lack clarification, we ask forgiveness and request
the reader to address comments or suggestions to
us, ¢/o MIR Publishers. We shall be equally
thankful for any other critical comments on the
contents of the book.

We are deeply grateful to A.S. Borovik-Roma-
nov and L. A. Prozorova, whose suggestions we
followed where possible and whose kindness was
a constant source of support during the difficult
task of writing this book.

We also wish to thank Inna Kaganova for her
help in preparing the manuscript for publication
and Shevkhi Mevlyut for helping with the figures.

Chapter 1
lilementary Magnets

1.1. Electric and Magnetic Dipoles

The structure of the electric field produced by
o point charge and that of the magnetic field
around a thin wire through which electric cur-
rent flows are so unlike that an idea of looking
lor an analogy between the two seems hardly
justified. But let us avoid hasty conclusions.
~ Consider a system of two electric charges of
identical magnitude and unlike signs, placed at
n distance d from each other (Fig. 5). The strength
ol the electric field produced by this system at
o point on the line drawn through the two
charges is

;4 g
IA —_ 'ﬁ _("T‘l)a (1.1)
We have simply added the strengths of fields
produced by each charge because both vectors
point along the same line. This is the advantage
of symmetrically arranged points, that is, points
on the line drawn through the charges. Let the
point be far removed from the system of charges,
r>d. Then

p . o 2dr+d? __ 2qd

At large distances from the charges g and —g¢
tho electric field strength decreases faster than
the field strength due to a single charge. The

P



20 Ch. 1. Elementary Magnets

quantity p = gqd is called the electric dipole
moment, and a system of two charges of identical
magnitude and unlike signs is called the electric
dipole. The dipole moment is a vector, and by
convention its direction is from the positive
to the negative charge:

p=aqd (1.3)

The dipole moment determines the electric
field of a neutral system of two charges (the

D)

Fig. 5. Lines of force of the field of the electric dipole

dipole) at distances large in comparison with
the spacing between the charges.

Adding the field strengths of two charges in
accordance with the rules for addition of vectors
at an arbitrary point again sufficiently far removed
from) the charges) (i.e. in the case r > d), we
can obtain

E(r)=300a—p ,_I (1.4)

(See Problem 2.)

1.1. Electric and Magnetic Dipoles 21

Let us make use of formula (1.4) and trace the
lines of force representing the field of a dipole
(sce Fig. b). If we ignore the structure of the
ficld at distances of the order of, or less than, the
dipole size d, the dipole can be represented by
a point (or rather, by a little arrow, because the
dipole is a vector). From the viewpoint of an
observer placed sufficiently far from the dipole,
the origins and end points of the lines of force
coincide.

Imagine now for a second that charges cannot
be separated, that is, nature has only bound
charges and no free charges. It is then natural
lo regard the dipoles, and not the charges, as
clementary (simplest) sources of an electric field.

For dipoles to define completely the electric
field under discussion, we should demand that
the dipoles be microscopically small, say, as
small as atoms, or even smaller. Then any
macroscopic distance will be large (compared
with the dipole size), and formulas (1.2)-(1.4)
will be absolutely exact.

The neutrality of a system of charges, that is,
the equality of the positive to the negative
charge, can be established by the behavior of the
cleetric field far from the system. The electric
tield around an electrically neutral system dimin-
ishes with distance r steeper than 1/r®. We can
also speak of systems with dipolar neutrality,
that is, systems whose dipole moment is zero.
'T'he decrease of the electric field with distance
far from such systems is steeper than 1/r®. Fig-
nre 6 shows several systems of charges with zero
dipole moment. (See Problem 3.)

Nonzero dipole moment of a system of charges
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points to an asymmetry in the distribution of
charges.

Obviously, it is not mandatory in this argu-
ment to assume that free charges cannot exist,

(@)

Fig. 6. Systems of charges with zero electric dipole
moment:

(2) negative charges —¢ are at the vertices of the square,
and a positive charge 4-4q is at its center; (b) similar
arrangement for the cube, the central charge is 4-8¢;
(¢) a positive charge @ is at the center of the sphere.

and a negative charge —Q is uniformly distributed over
the sphere

but we know definitely that there are no magnetic
charges in nature.

To look for elementary sources of a magnetic
field, let us consider a circular current, that is,
simply a ring made of wire, with area S and
electric current flowing in it (we assume the cur-
rent to be I). To simplify the analysis by sym-
metry arguments, we calculate the magnetic
field at a point on a straight line perpendicular
to the plane of the contour (ring) and passing
through its center (Fig. 7). We divide the contour
into small segments with length Al each. Accord-

1.1. Electric and Magnetic Dipoles 23

ing to the Biot-Savart law, one such segment
produces a magnetic field with strength

AH=1IAL

cre

The definition of r is clear from¥Fig. 7.

Fig. 7. Magnetic field of the closed current I flowing in
alﬁat ring.grl\lllagnetic lines of force are shown in a plane
perpendicular to the ring

Adding the fields produced by individual seg-
ments of the ring, we find ,

H=— 2IS (1.5)

crd

This formula much resembles formula (1.2).
On the basis of this analogy we can refer to the
combination
IS_ M, (1.6)

[4

as to the magnetic dipole moment of a circulqr
current. But if the magnetic dipole moment 1s
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assigned a direction along the perpendicular
to the plane of the circular current (with the sign
dictated by the Ampdre rule), the magnetic field
of the circular current is expressed in terms of
the vector M, (magnetic dipole) by a formula
quite analogous to (1.4):

H (r)=3(M—°'“r),,“——M° (1.7)

To derive this formula, we must be able to add
the magnetic fields AH produced by individual
segments Al of the contour, taking into account
that the added fields are vectors.

The fact that formulas (1.4) and (1.7) coincide
(to within the selected notations) shows that
the electric field produced by two charges of
unlike signs and the magnetic field produced by
a circular current have an absolutely identical
structure, provided we ignore the field close to
the charges or to the circular current. And in the
limiting cases of infinitely proximate charges or
of infinitesimal radius of the current ring the
dependence of the fields on coordinates is perfect-
ly identical.

The magnetic dipole can thus exist, and it is
not necessary to “invent” any magnetic charges.
A magnetic dipole is produced by the motion of
ordinary electric charges.

In order not to be fascinated excessively by
the similarity of the electric and magnetic di-
poles, let us pay attention to a profound difference
between these two vectors.

First, let us conduct an “imaginary experiment”
shown in Fig. 8, namely, let us reflect both dipoles
n a mirror. As a result, the direction of an electric

1.2. Gyromagnetic Ratio 25

dipole will be reversed, while that of a magnetic
dipole will be retained. Second, let us switch
the flow of time (“time arrow”) to reverse (this
operation, possible only “on paper”, is called

(0)

Iig. 8. Mirror reflection: o
(z) of an electric dipole; (b) of a magnetic dipole

“lime reversal”’). This operation does not affect
the electric dipole but reverses the sign of the
magnetic dipole: indeed, under time reversal all
particles move in reverse directions and the cur-
rent thus changes sign.

1.2, Gyromagnetic Ratio

There is a simple relation between the magnetic
moment M, and the mechanical angular mo-
mentum L of a system of charged particles. In
order to find this relation, let us transform expres-
sion (1.6) for the magnetic moment M .. By the
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definition of an electric current, I = (q/2nR) v.
Indeed, ¢/2nR is the electric charge per unit
length of the conductor, and the velocity v is
the path covered by the charge per unit time.
Since S = nR?, we find
qvR

M.= 5e (1.8)

On the other hand, the angular momentum L
of the system in question is

L = mgR (1.9)

where m, is the mass of the moving charges.
Comparing (1,8) and (1.9), we find

M. ¢
.Lc T 2mqe (1.10)

Put in this form, the relation is not improved
in comparison with formula (1.6) relating magnet-
ic moment with the current I. However, if we
recall that the current in a conductor is a flux
of electrons, we immediately see that g = Ne
and"m, = m,N, where N is the number of mov-
ing electrons in the conductor {(conduction elec-
trons). Then (1.10) vyields

M e
Lc =_2m7 (1.11)

The ratio of two macroscopic quantities (the
magnetic moment of a circular current and the
angular momentum of electrons making up this
current) is found to be equal to a combination
of the quantities characterizine microscopic charge
carriers in the conductor. The ratio y = M /L
was given the name gyromagnetic ratio,
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Expression (1.11) obtained for the circular
motion of electrons remains valid regardless of
the type of motion of the electrons. If the mechan-
ical angular momentum of this motion is L, then
its magnetic moment is M = (e/2myc) L.

Later we shall have to elaborate this state-
ment. It was found that electrons per se, even when
at rest, are sources of a magnetic field, being
microscopic magnetic dipoles. But for some
time we shall pretend that we are not aware of
this fact.

The gyromagnetic ratio is often measured in
units of ¢/2m.c. In the case under consideration
it must be assumed equal to unity. The gyro-
magnetic ratio would be thousands of times
smaller if the current in the conductor were car-
ried by ions instead of electrons. It is difficult
to imagine that the gyromagnetic ratio can be
greater than unity: indeed, electrons are the
lightest of charged particles.

1.3. Elementary Sources of Magnetic Field:
Do They Exist? Ampére’s Hypothesis

The circular current, also called the current
loop, is thus a magnetic dipole, the source of
a magnetic field. But do such current loops exist
in nature? And if they do, what are they?

At school we learn the molecular currents
hypothesis advanced by Ampdre. According to
this hypothesis, a very daring one at the time
(André Marie Ampére lived from 1775 to 1836),
electric currents flow inside molecules and atoms,
that is, atoms and molecules are current loops,
and therefore magnetic dipoles. In fact, Ampdre’s
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hypothesis was confirmed superbly when the
electron structure of the atom had been under-
stood. It was confirmed in the sense that, indeed,
electrons moving around atomic nuclei produce
electric currents, and current loops produce the
magnetic field.*

However, if these words are interpreted literally,
in terms of classical (nonquantum) concepts (and
only classical concepts were known in Ampdre’s
time), the inescapable conclusion is: nature has
no elementary magnets, that is, no smallest
sources of a magnetic field. Consider the simplest
atom: the hydrogen atom. In this atom a single
electron revolves around a proton, moving, ac-
cording to the classical laws of motion, in an
elliptic orbit (its particular case is a circle; for
the sake of simplicity, here we consider only
this case).

The equality of the centrifugal to the Coulomb
force gives the relation bhetween the radius a of
the electron orbit and its velocity wv:

e? mev?

a2~ a

* Here is a short excerpt from A. Einstein's paper of
1915. This quotation will show how daring the hypothesis
was in its time, and furthermore, it will help to under-
stand that, as a rule, a hypothesis that seems to explain
experimental facts poses, if it is sufficiently serious,
new profound questions.

“Ampére’s theory in its current (at the time of writing,
of course—M. K. and V. Ts.) electron form faces a dif-
ficulty: according to Maxwell’s equations, electrons
moving in circular orbits must lose their kinetic energy
through radiation, so that with time atoms and mole-
cules must lose, or have already lost, their magnetic
moments; evidently, nothing of the sort occurs in reality”
(our italics—M. K. and V. Ts.).
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or
2
= =m? (1.12)

The total energy & of the elect_ron is the sum of
its potential and kinetic energies:

e | ma? &
e=—t 3 = "
or
—_ (1.13)
G= T3 :

The energy & of the electron thus determines
unambiguously the radius of its orbit (do not be
surprised with the minus sign: 1_nd_eed, the eleq-
tron energy in the atom is negatlve,-and the arb_l-
trary constant term in the potential energy is
chosen so as to make energy vanish at the infinite
distance from the nucleus, see p. 13). The angular

momentum L of the electron equals meva. From
this and from (1.12) we find

e
Vmea

and the magnetic moment of the hydrogen atom is

L=mea = ¢ (mea)l/?

2
M,= 2;ec (mea)t/? (1.14)

In classical mechanics an electron is gllowed tp
have any energy, no matter how large its magni-
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tude (it is a negative energy!), and hence the
radius of its revolution around the nucleus can
be arbitrarily small. Although the orbital veloci-
ty is large at small radii, the angular momentum
diminishes with diminishing radius. When ¢ — 0
(i.e. when |&# | > oo) the orbital angular mo-
mentum L and with it the magnetic moment M,
tend to zero. We have to conclude therefore that
magnetic moments can be arbitrarily small and
there are no fixed elementary magnets (in con-
trast to elementary charges).

But this conclusion is in contradiction with
the reality. Our argument has a flaw. It is incor-
rect because it ignores the quantum nature of
the motion of microscopic particles.

Frankly speaking, the laws of motion of atomic
and subatomic particles were reconsidered not
because of our microscopic magnets. Classical
physics had to be revised under the pressure of
the whole ensemble of facts discovered about the
properties of atoms. The foremost of these was
the fact of the very existence of stable identical
atoms. Actually, formulas (1.12)-(1.14) constitute
the classical theory of the hydrogen atom. But
since classical physics imposes no constraints
on the choice of the distance & at which the
electron revolves around the nucleus, different
hydrogen atoms could obviously be expected to
differ from one another, that is, electrons could be
closer to the nucleus in some atoms and farther
away from it in other atoms. Besides, atomic size
(orbit’s radius) would be affected by collisions
between atoms. Furthermore, when an electron,
with its electric charge, moves with acceleration
(note that in the motion along an elliptic orbit
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Lthe electron velocity changes both in magnitude
and in direction, and in the motion along a circu-
lar orbit omly in direction), electrodynamics
requires it to emit electromagnetic waves, that
is, to lose energy (see the quotation from Ein-
stein’s article on p. 28). As the electron energy
decreases, the electron moves closer to the nucleus
(see formula (1.13)) and finally has to fall on
the nucleus. On the human time scale, the time
during which it falls is negligibly small, about
10-19 5.* This is a conclusive evidence against
the applicability of classical laws of motion to
the motion of microscopic particles. It is impos-
sible to save classical mechanics by assuming
that the force acting between an electron and
a proton is some unknown, non-Coulomb force:
we have already mentioned that Rutherford’s
cxperiments on scattering of a particles gave
a direct demonstration of a Coulomb field pro-
duced by nuclei.

Below we shall give certain information on
quantum mechanics, without which it will be
virtually impossible to understand the nature of
magnetic phenomena; but for the time being we
pursue the following line.

Since the existence of elementary magnets
requires that the radius of the electron trajectory
in an atom have a definite value, let us borrow
it from quantum mechanics. In particular, the

* See M. I. Kaganov, Electrons, Phonons, Magnons. Mir
Publishers, Moscow, 1981, p. 34. The computation as-
sumes that the “fall” begins at a distance of ~10-% cm.
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radius of the hydrogen atom is*

h2

a,— ———
17 e

(See Problem 4.) Now we substitute a, for a into
formula (1.14). As a result, we obtain the follow-

ing expression for the magnetic moment of the
hydrogen atom:

eh
M 8= Gr (1.15)
As a rule, this ratio is denoted by the letter pg
and called the Bohr magneton.

The Bohr magneton is the elementary electron
magnetic moment we are seeking. It is elementary
in the sense that no electron can have a magnetic
moment below pg.

The quantities on the right-hand side of (1.15)
are known (they were given above). Substituting
the values of e, #, m,, and ¢, we find

up = 1072° erg/gauss (1.16)

It must be clearly understood that we did not
derive formula (1.15). Indeed, we took the size
of the hydrogen atom “out of thin air”. Moreover,
we shall have a chance to see that the magnetic

* As we said, the laws of classical physics do not make
it possible to find the radius of the electron trajectory
around the nucleus. The radius can be arbitrary. This is
readily understood if you note that no expressions with
the dimensionality of length can be constructed out of
the two quantities, e and m, that enter into the equation
of motion of the electron. Quantum mechanics introduces
a supplementary quantity, Planck’s constant %#. Out of
the three quantities a combination with the dimensional-
ity of length can be constructed.
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inoment due to the revolution of the electron
around the proton in the ground state of the
hydrogen atom (i.e. at the least possible energy)
is zero.

We should like the reader to remember for
the time being two facts:

(i) elementary magnets exist, and

(ii) by the order of magnitude the electron
magnetic moments equal the Bohr magneton
(1.15).

1.4, A Brief Overview
of Quantum Mechanics

Classical mechanics, often referred to as Newton-
ian mechanics to emphasize the role of its
creator, provides a perfect description of the
inotion of macroscopic bodies, that is, bodies
consisting of an enormous number of atoms and
molecules.* But the motion of electrons in atoms
is governed by quantum, not classical, mechanics.
This radically changes all properties of the atom,
including its magnetic properties. Or, to put
it more accurately, only quantum mechanics
enables us to describe correctly (i.e. in agreement
with experimental data) the properties of the
atom, including the stability of atoms.

What are the distinctive features of the quan-
tum laws of motion in comparison with the clas-

* No attributes help to evaluate the tremendous number
of atoms in a macroscopic body. We cannot comprehend
such numbers. Oune cubic centimeter of a solid contains
1022 atoms. If placed in a chain side by side (an atom's
size is 10-8 c¢m), they will cover more than a billion
kilometers.

3-—-01378
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sical laws? The complete answer to this question
comes only from studying quantum mechanics
which is the part of modern physics studying the
motion of microscopic objects, such as atoms,
molecules, and particles of which they are
composed. Any more or less serious acquaintance
with quantum mechanics calls for a substantial
mathematical foundation since the mathematics
of quantum mechanics is sufficiently complicated.
In addition, an understanding of the laws of
quantum mechanics requires that certain habit-
ual notion rooted in everyday experience be
dropped. The overcoming of the inertia of person-
al experience may even prove a greater obstacle
than mastering the mathematics of quantum
mechanics. At any rate, the physicists who reject-
ed or resisted quantum mechanics (and the great
Einstein was one of them!) could not accept its
fundamental physical postulates.

The presentation that follows is restricted to
the corollaries of quantum mechanics, directly
relevant to magnetic properties of electrons,
atoms, molecules, and macroscopic bodies. A
warning: the “corollaries” might appear strange.
There is no use in doubting them. It is by resort-
ing to these “corollaries” that we shall explain
the nature of magnetism,

Uncertainly Relations. Particle-Waves

One of the main features distinguishing quantum
particles (i.e. particles whose motion is described
by quantum mechanics) from classical particles
(whose motion is described by Newtonian me-
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chanics*) is that they do not move along trajecto-
ries. As we are used in daily life to dealing with
macroscopic bodies, our desire to transfer the
casily visualizable notions of the motion of such
bodies along a trajectory to microscopic objects
whose motion cannot be directly observed is only
natural. The properties of microscopic particles
must be deduced from the results of experiments
or observations, without forcing upon these
particles the properties of macroscopic bodies.
And the experimental data (e.g. spectral char-
acteristics. of atoms and molecules) are such
that the notion of the electron trajectory in the
atom has to be dropped. At any moment of time
the trajectory is determined by the position of
a particle and its velocity. The absence of a tra-
jectory means that a quantum particle cannot
have simultaneously definite coordinates (definite
position) and definite velocity. The state of a
quantum particle cannot be described in as much
detail as that of a classical particle. The state-
ment that a particle cannot have simultaneously
o definite coordinate and a definite velocity is called
the uncertainty principle. '

The uncertainty principle signifies that a phys-
ical quantity which depends on the position
(coordinate) and the velocity of a particle does
not have, in the general case, a definite value.
(It must be mentioned here that the angular
momentum (1.9) is just such a quantity, because
I, is a function of coordinate R and velocity v.)

* Quantum mechanics is capable of describing the mo-
tion of any body, but this is not necessary for the motion
of macroscopic bodies: the error introduced by using
cquations. of classical mechanics is negligible.

31
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Quantitatively the uncertainty principle is
written in the form of inequalities called the
uncertainty relations, or Heisenberg relations:

h -~k - R
Apr.I)T, Apy Ay%? , Apz AZ%7
(1.17)

where Az, Ay, Az and Ap,, Ap,, Ap, are uncert-
ainties in coordinates z, y, z and in projections
of momentum p = mv onto the axes z, y, z,
respectively. A formal transition from quantum
to classical mechanics occurs when Planck’s
constant 7% tends to zero. Inequalities (1.17) mean
the following: the smaller the error in one of the
quantities, for instance, z, the greater the error
in the other, namely, p,. Note that the accuracy
of defining z does not affect the accuracy of
defining p,. Physical quantities separate into
peculiar pairs coupled by the uncertainty rela-
tion.

The main feature of quantum mechanics is
obviously not the rejection of the classical descrip-
tion of motion but the formulation of methods
with which to describe the behavior of microsco-
pic particles. The nature of this description is
essentially different from the one employed in
classical physics. Since there are physical quanti-
ties which by virtue of the uncertainty relation
do not have a definite value, quantum mechanics
cannot do better than give the probabilities
of specific values of the physical quantity in
question. Note that the probabilistic nature of
quantum mechanics is not caused by the incom-
pleteness of our knowledge about a quantum sys-
tem. This nature follows from the properties of
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microscopic particles. This is how nature operates,
To some extent, it is better to say that there
is only a limited possibility of describing a
quantum system in terms of classical quantities:
coordinates and momenta. The measure of limita-
tion is given by the uncertainty relations (1.17).

In optics there are relations similar to uncer-
tainty relations. A plane electromagnetic wave
with wave vector® k is known to fill up the whole
space. However, an electromagnetic field can be
concentrated within a finite, and even very small,
element of space. This is achieved if a large num-
ber of waves is used. Such a combination of waves
is called the wave packet. A wave packet is char-
acterized by intervals Ak, Ak, Ak, of the
projections of wave vectors, required to concen-
trate the field in a region of space Az Ay Az. The
set of wave vectors is the greater, the smaller is
the region of space occupied by the wave packet:

1 1

AcAk,>2, AyAk,>=, AsAk>7 (1.18)
A comparison of inequalities (1.18) and (1.17)

shows that they are equivalent if we assume
p = kk (1.19)

This spectacular equality, relating the momen-
tum characterizing the motion of a particle to
the wave vector characterizing the wave, was
first written by the French physicist de Broglie
in 1925. De Broglie also found the relationship

* The wave vector is a vector k pointing along the wave
propagation direction and equal in magnitude to k =
= 2a/h (M is the wavelength),
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between the energy & of the particle and the
frequency © of the wave:

€ =ho C (1.20)

Both equalities (1.19) and (1.20) are called
the de Broglie relations. They signify recognition
of wave properties of particles. For this reason
quantum mechanics is often called wave me-
chanics. : :

The uncertainty relations and the de Broglie
relations follow strictly from quantum mechan-
ics. Quantum mechanics demonstrates just as
rigorously -that waves possess corpuscular prop-
erties (i.e. the properties of particles). Relations
(1.19) and (1.20) can therefore be read from left
to right (thereby putting the motion of a particle
in correspondence with a wave process) as well as
from right to left (thereby emphasizing the cor-
puscular properties of waves). :

Stationary States

Among the states of a physical system (such as
a particle, atom, or molecule) there are such
states in which one or several physical quantities
simultaneously have strictly defined values. Such
states are of fundamental importance in quantum
mechanics, forming the basis for the description
of any (arbitrary) state of physical systems. For
instance, there exist states with definite values
of the momentum of a particle. The uncertainty
relations then dictate that the position of the
particle is completely indetermined in these
states. The same follows from the de Broglie
relations: the motion of a particle with momen-
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i i i lane wave
tum p is put in correspondence with a plar
whose wave vector is k = p/A and which fills
the whole space. -
A special role is played here by definite-energy
states, called stationary states. A quantur system
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Fig. 9. Discrete energy levels:
(al)g of an electron in a hydrogen atom E, = '—Eo/r};,
n=1, 2, ...; By~ 13.6 eV; (b) of a harmonic oscil-

lator at frequency o (E, = (n + 1/2) ko, n = 0,1, 2,...)

(e.g. an atom), when left alone, is in one of its
stationary states.

The prB(T)perty that is probably the most char-
acteristic for quantum systems is the discreteness
of some physical quantities that can take on
a continuous spectrum of values if treated in
terms of classical physics. Thus, the energy of an
electron in the atom can assume only certain
discrete values (Fig. 9) that can be enumerated.
They are called energy levels. Each value of
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energy corresponds to one or several stationary
states. If there are more than one such state,
they differ in other physical quantities that are
allowed to have definite values simultaneously
with energy.

The oscillator is a very important, though
simple, object in mechanics (both classical and
quantum mechanics). Imagine a particle with
mass m oscillating because a force F acts on it;
F is proportional to the distance z between the
particle and its equilibrium position (F = —kzx).
This particle oscillates at a quite definite fre-
quency o = YV &/m. A classical particle can have
an arbitrary vibrational energy ey, (it is deter-
mined by the amplitude of vibrations), but a
quantum particle can have only one vibrational
energy from the set of discrete values (see Fig. 9b)

eyp = @ +1/2) ko, n=0,1,2, ...

It is natural to single out among the stationary
states the one with the lowest energy. It is called
the ground state. It is the truly stationary state
because a physical system (say, an atom) can
exist in the ground state indefinitely. Higher-
energy states are excited states. They are only
approximately stationary. An atom in an excited
state can emit an electromagnetic wave and slide
down to a lower-energy state. This “sliding down
an energy-level staircase” finally brings the atom
to its ground state. What is then a justification
of regarding excited states of atoms as stationary?
The justification is that the lifetime in the excited
state is relatively long (on the atomic scale, of
course). It is interesting to note that this fact is
a corollary of the small charge of the electron.

1.4, A Brief Overview of Quantum Mechanics 4

Do you remember that e?/fic = 1/137? Here is
why: the lifetime of an atom in an excited state
is approximately t, (fic/e?)® ~ v, (137)%, where
1, is the time of revolution of the electron around
its “orbit”. The electron makes around the nucleus
six million “revolutions” before coming down
from the excited to the ground state! This is suf-
licient reason to regard the excited state as a sta-
lionary state.

It must certainly be clear to the reader that
the words “orbit” and “revolutions” are in quota-
tion marks because in fact an electron moving
in an atom has no orbit. What then is meant by
the time v,? Let us recall the de Broglie relation
(1.20) and apply it to the difference between the
cnergies of the excited and the ground state:

Eexc —Egr

ho = eexe— €gr, OF = 7

"The frequency ® and the oscillation period T are
in inverse proportion to each other, that is,
1= 2n/w. If instead of the frequency o we
substitute the expression given above, the cor-
responding period will be that very “period of
revolution” Tt,:

2nk
Ty =——
€exc—égr
in some cases the motion of an electron in an
alom can be described with high accuracy by
classical mechanics. Then v, calculated by the
quantum formula indeed coincides with the clas-
#ical period of revolution (with no quotation
marks!).
We have formulated above some results ob-
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tained in quantum mechanics, having said noth-
ing about the mathematics by which they were
derived. The description of the mathematical
equipment is not one of our objectives. One re-
mark is needed: there are several mathematical
apparatuses of quantum mechanics, very different
in form but essentially equivalent. One of them
is based on an analysis of the solutions of the
differential equation that the wave“funct_ion (’)f
a quantum system must satisfy (E. Schrﬁdlnge_r S
approach). Strictly prescribed operations with
this function make it possible to extract all
relevant physical consequences: the values of
physical quantities that can be directly compared
with experimental data. :

The wave function is most often denoted by
the letter . Here we also use this notation.
Take into account (it is important for what is
to follow) that + is a complex function defined
to within a complex factor. In other words, two
wave functions { and ey describe the same state
if o is a constant. ‘

The physical meaning of the wave function is
especially clear if 1 is a function of coordinate r
and time ¢. Then the quantity [ (r, ) |? is
proportional to the probability of finding the
particle at a point r at a time moment ¢ (M. Born).

More on Hydrogen Atom

The simplest quantum system is the hydrogen
atom: an electron revolving around a proton.
The energy levels are given by a simple formula:

= — L, n=1,2,3, ... (1.21)
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What does this formula mean? It means that
the hydrogen atom can be in different states,
that is, in states with different energy. One state
among them has the lowest energy; we have
nlready mentioned that it is called the ground
sfate. The electron energy in the ground state is

meed

n= — o A 13.66V & 21810711 erg

This means that 13.6 eV of energy has to be
cxpended in order to separate the electron from
the proton. If the atom is in the excited, rather
fhan the ground, state, it has already been said
fo be able to emit the extra energy in the form of
licht. The frequency of the emitted light is given
by Bohr’s formula which constitutes the law of
conservation of energy in the creation of the
photon by the hydrogen atom:

£ — B = Fi0> (1.22)

All said above is strictly derivable in quantum
nmechanics. And now let us make an inconsistent
step. Although we have assured the reader that
qnantum mechanics had done away with the
concept of trajectory, we shall make use of the
classical formula (1.13) together with the quan-
tum formula (1.21). We shall see that the quanti-
zation of energy results in the quantization of
the electron orbits.* The electron can revolve

* Such an eclectic mechanics that retained the features
of classical mechanics but was supplemented with quan-
tization conditions was constructed by Niels Bohr at
the heginning of the 20th century to interpret atomic
spectra. A successful explanation of hydrogen spectrum
(formulas (1.21) and (1.22)) was a sign that physics is
on the right track.
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only along allowed orbits of radii a, =
= (A%/m.e®) n®. The ground state corresponds to
the smallest radius of the orbit, equal to a; =
= h*mee?. We have already used this fact to
calculate the value of the elementary magnet

Wir)

|
|
|
|
|
1l -
a; r

Fig. 10. Distribution of probability W (r) of finding
an electron at a distance r from the nucleus of a hydrogen
atom in the ground state. The area under the curve
equals unity

(see p. 32). Unfortunately, a simple scheme that
an attentive reader could devise

quantization of orbits — stable current loops
— elementary (atomic) magnets

fails precisely because electrons do not move
along trajectories. For instance, we cannot spea}{
of any trajectory in the ground state. Thg quanti-
ty a, fixes the radius of the sphere w1tl.n.n which
the electron can be found at the probablllty close
to unity (Fig. 10). It would be absolutely impos-
sible to try to define the position of the electron
more accuralely because il would contradict the
uncertainty principle. And since there can be
no current loop, we come to a strange result:
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nlthough the electron moves around the nucleus,
its motion does not produce a magnetic moment.

But we know that elementary magnets are a
reality. In order to sort out this confusion, it
will be necessary to understand how the law of
conservation of angular momentum is modified
i quantum mechanics.

1.5. Angular Momentum.
Space Quantization

The story of angular momentum logically belongs
in the preceding section. We decided to make it
a special section because it is especially impor-
lant for understanding the nature of magnetism.

Conservation laws play an outstanding role in
physics. In this respect atomic physics and the
physics of magnetic phenomena are no excep-
tions. Electrons in the atom move in a force
field with spherical symmetry; in other words,
the force acting on the electron in the field
around the nucleus depends on the distance
separating the electron from the nucleus but is
independent of the direction. Classical mechanics
has “foreseen” for this case a special conservation
law: the law of conservation of angular momentum:

L= I[p X r] is independent of time

(See Problem 5.) And what has quantum mechan-
ics to say in this respect? Naturally, gquantum
mechanics also holds that angular momentum is
conserved (this is a general rule: each “classical”
conservation law has a quantum analogue; the
converse is not correct: some quantum conserva-
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tion laws have no analogues in classical
physics).

The validity of the law of conservation of ;

angular momentum signifies that an electron in
a definite stationary state (i.e. in a state with

a definite energy) can have a definite angular |

momentum. But ... is a particle allowed to have a
definite angular momentum? Let us have a close
look at the formula L = [p X r]. It contains
simultaneously both p and r. But the uncertainty
relations (1.17) forbid a particle to have a definite
coordinate r and a definite momentum p at the
same lime. What does it lead to?

A rigorous quantum-mechanical analysis of
the motion of a particle in a force field with
a center of symmetry shows that the conserved
angular momentum of the particle can be char-
acterized by the length L and by its projection
L, onto some axis (here we denote it by z).

A question that arises immediately is: “What
axis?” The answer is: “Any axis|” This equiva-
lence of axes emphasizes the isotropy of the force
acting on the particle. Of course, if there is a rea-
son that singles out a specific axis, the projection
must be taken onto this very axis.

Quantum mechanicsnot only restricts the defi-
nition of angular momentum to two quantities
(L and L,) instead of three (a classical vector is
characterized by three projections) but in addi-

tion imposes strict constraints on the values of
these quantities. The projection of angular mo- |

mentum onto the z-axis can assume only the
values

L,=mh, m=0, £1, £2, ..., £l (1.23)
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and the length of the angular momentum vector
can assume only the values

L=V IG+1) >k, 1=0,1,2,...
(1.24)

Angular momentum is thus one of the physical
quantities which are quantized, that is, are allow-
¢d to take on only certain discrete values (see
’roblem 6) proportional to Planck’s constant #.

When it is necessary to specify the magnitude
ol angular momentum, it is normal to give just
the value of [. Hereafter we shall .invariably
indicate the dimensionless quantity [ instead of
the magnitude of angular momentum and drop
the factor 7.

Note that a particle may have zero angular
momentum]!

As a rule, when we say that a particle has
a definite angular momentum, this means that
thie particle is in a state with a given value of L.
‘The projection of L onto an axis can then take
on one of 21 -1 values. Let us clarify: angular
momentum is allowed to have only discrete
directions in space (actually, do not forget that
the z-axis, the axis of quantization, has an arbi-
(rary direction). This quantum property of angular
momentum is called space quantization (Fig. 11).

With L and L, fixed, the projections L, and
Ly do not have definite values; we can only
determine the probabilities of specific values of
Lhese projections. Resorting to a classical image,
we can represent the vector of angular momentum
by a vector precessing around the z-axis. The
angle belween L and the z-axis is determined by
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the value of L,, that is, by m (see (1.23) and
Fig. 11).

The easily visualized model of the “precessing”
angular momentum explains why the maximum
magnitude of the projectionn L, is less than L
(see (1.23) and (1.24)). If L were equal to ki,
the other two projections L, and L, would equal

= =

/! \‘&\

Fig. 11. Descriptive clas-
L,=-1 sical picture illustrating
space quantization

s

zero in this state, that is, would have definite
values simultaneously with L and L,; but this
is forbidden.

The classical and quantum angular momen-
ta are not separated by an insurmountable
wall. When !> 1, space quantization is not
very important, and the quantity L, equal to
BV 11 +1) =&l [1+41/(2))], very nearly coin-
cides with the classical value %l.

To be more rigorous: the properties of classical
angular momentum can be obtained by a limit
transition to large values of !. This is an example
of the general principle which states that quan-
tum mechanics contains classical mechanics as
a limiting case.
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We are so interested here in angular momentum
because it is related to magnetic moment. Quan-
tum mechanics does not reject the relationship
stated by (1.11), that is, it confirms that the
gyromagnetic ratio for the electron is y = ¢/2m,c.
llence, if an electron is in a state with the pro-
jection of its angular momentum equal to m
(m=0, =1, 2, ..., £I), then the projec-
tion of its magnetic moment is

Mzzze_ﬁm, m=0, +1, +2, ..., =+l

" (1.25)

The conclusion that suggests itself is: a moving
electron can “claim” to constitute an elementary
magnet, provided it is in a state with nonzero
angular momentum, that is, in a state with
L% 0. On the other hand, it is important to
emphasize that an electron revolving around the
nucleus may be in the state with zero angular
momentum. Obviously, this is a corollary of the
absence of trajectory. Indeed, we have indicated
that the electron in the hydrogen atom in the
ground state has zero angular momentum. For
this reason we shall not discuss here whether
the quantum-mechanical results given above are
a proof of the existence of elementary magnets.
We shall recur to this aspect at the end of the
chapter. Here we underline that by explaining
the stability of atoms, quantum mechanics has
at the same time demonstrated that the motion of
electrons in atoms is such that the projections of
their angular momenta are, in units of %, inte-
gers; the fact that there is a relation between
magnetic moment and angular momentum indi-

4—01378
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cates that an electron moving around the nucleus !

can be regarded as a stable magnetic moment,
but with quantum properties. The most important
of these properties is space quantization.

The stability of the magnetic moment of the
electron revolving around the nucleus is of such
a paramount importance for the understanding
of the atomic nature of magnetism that we find
it necessary to add a short summary to this
section.

Electrons in atoms are in specific states. Each
state is stable, in the sense that it can be changed
only by imparting to electrons a finite amount of
energy Ae (a portion which is large on atomic
scale).

Each state is characterized by a definite angular
momentum, and hence, a definite magnetic mo-
ment. The magnetic moment of an atom is there-
fore stable (in the same degree as the state of an
electron in the atom).

1.6. Magnetic Moment in Magnetic Field

Until this section, magnetic moment has been
treated only as a source of a magnetic field.
This role of a magnetic moment will again be
discussed later. But now that we established the
existence of stable magnets in nature, we should
discuss their behavior in an external magnetic
field, that is, a field produced by other sources.
In our treatment we consider the magnets to be
so stable that their magnitudes are independent
of the magnitude of the magnetic field. In the
case of atomic magnets this is not a serious re-
striction. Quite the opposite is true: mostly it is
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very difficult to create a magnetic field so strong
as to change the values of atomic magnetic mo-
ments, provided these are distinct from zero (the
appropriate estimate of the required magnetic
field will be given in Ch. 2). Consequently, by
the behavior of magnetic moments in magnetic
fields, we always mean their rotation and transla-
lion as a whole.

We begin with a constant and uniform magnet-
ic field.

You well know the property of a magnetic
needle to assume a certain orientation in a mag-
netic field. It is known just as well that it is
this very property that makes a magnetic needle
so useful in orientation devices. There were times
when the property of “spontaneous” orientation
of the needle in space was interpreted as a miracle.
But let us recall Einstein’s words (written in
connection with this very magnetic needle):
“...the development of the thought world is in
a certain sense a continuous flight from ¢‘won-
der’.”* The compass needle keeps to a certain
orientation because this is energetically favored.
The energy e, of a magnetic moment M in
a magnetic field H is

ey = —M-H= —MH cos 6 (1.26)

where 6 is the angle between the magnetic mo-
ment and the magnetic field. Clearly, the energy
is minimum when 8 = 0.

If a magnetic moment deflects by an angle 0
from a magnetic field, the magnetic field applies

* The Library of Living Philosophers. Albert Einstein:
Philosopher-Scientist. Ed. by P. A. Schillp, Tudor Pub-
lishing Company, 1949.

Ai
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to it a force moment perpendicular to the plane
drawn through the magnetic field vector H and
the magnetic moment at the given moment of
time. As a result, the magnetic moment rotates,
tracing a cone around the magnetic field vector.
Since magnetic moment differs from angular
momentum by the factor e/2mgc, the rotation
frequency is

o= -2 —vH (1.27)

2’77,9 [

We thus find that the gyromagnetic ratio
(denoted here, as before, by v) plays a new role,
relating the magnetic field H to the frequency of
precession, ® g, of magnetic moment. (See Prob-
lem 7.) It will be encountered in this role consider-
ably more often than in the role in which it first
appeared on the scene (see (1.11)).

Formulas (1.26) and (1.27) hold for the classical
magnetic moment. In the case of a quantum
magnetic moment, space quantization must be
taken into account. As we have mentioned earlier,
magnetic moment can be in 2] + 1 states. Each
state corresponds to the respective magnetic
energy level equal to

ep— — 2 L m—0, 41, +2, ..., +1

2mec
(1.28)

Such a system of levels is called equidistant
(Fig. 12): the spacing between neighboring levels
is independent of m and is equal to

ehH
Ae = gT __ gh+t
e=en M 2mec

(1.29)
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If an electron “decides” to jump fro.m one level
to another, it has to absorb or emit a quan-
tum of electromagnetic energy equal to Zo =

| ' m=2
ehH m=1 m=1
2mec m=0 m=0
T m=-1 m=-1
m=-2

(a) (b)
Fig. 12. Equidistant energy levels of magnetic moment
in a permanent magnetic field: .
@ 1=1; () 1=2

= ehH/2myc. The frequency of the electromagnet-
ic field absorbed or emitted in a transition from

Fig. 13. In the vicinity of

the axis of a magnet the

magnetic field is directed

along the z-axis and in-

creases as we approach

the tip, that is, the field
is a function of z

one magnetic level to another is YH It coipcides
with the frequency of the class1ga1 rotation of
magnetic moment around magnetic field vector.
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Now let the magnetic field A, aligned as before
along the z-axis, be itself a function of the 2=
coordinate (Fig. 13). Consequently, the energy
of a level is also a function of z: e, — e (2).
Energy being a function of coordinate signifies
that there is a force acting on the magnetic mo-
ment; it is equal to

"
FH:MZd—z (1.30)

In the case of a classical magnetic moment, M,
must be replaced with M cos 6, and in the case
of a quantum magnetic moment, with one of
the 21 - 1 values of the projection of the mag-
netic moment onto the z-axis (see (1.25)).

1.7. Spin and Intrinsic Magnetic Moment
of the Electron

The historical sequence of discoveries in phys-
ics, as well as in any other science, does not
comply, unfortunately, with the logic of a story
about science. It would be convenient to open
this section as follows.

The force (1.30) acting on the magnetic mo-
ment makes it possible to measure the magnetic
moment of atomic particles from their deflection
in a nonuniform magnetic field through which
they travel; furthermore, it is possible to confirm
the validity of quantum-mechanical conclusions
on space quantization. Indeed, after a beam of
particles having a magnetic moment (e/2mc)L
passes through a nonuniform magnetic field,
2l + 1 spatially separated beams must form
(Fig. 14). This experiment was carried out by
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the German physicists O. Stern and W. Gelzlach
in 1922. They were sending a beam of silver
atoms through a nonuniform magnetlcfﬁgl_d. The
result proved quite unexpected althc_)ugl} it con-
firmed the reality of space quantization: the
heam was split in two. It might seem that the
beam need not split at all because the electrons

Fig. 14. Schematic diagram of the Stern-Gerlach experi-
ment: )

A —source of silver atoms, C—co]ln-nator, M—ma e‘;
(D—distance travelled by a beam in a magnetic fiel
with nonzero dH/dz), S—screen (d—distance hetwegn
the beam traces, L—distance from the magnet to the

screen)

in a silver atom have zero angular mOmentqm.
Let us imagine that somehow an atom passing
through the instrument is excited, that is, is
lifted to a state with a higher energy and nonzero
angular momentum. In this case the number of
beams at the exit from the instrument must be
odd: 21 4 1. But the experiment d'emonstrated
that the beam was definitely split in twol T}le
beam was split as if , = 1/2, in blatant contra('hc-
tion with the predictions of quantum mechanics.
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This would be a convenient opening paragraph.
It could be followed with a description of the
Stern-Gerlach experiment the surprising result
of which can be explained by the fact that the
electron possesses a spin. (See Problem 8.)

Or we could begin the section in a different way.
We could describe the experiment performed in
1915 by Einstein and de Haas* who measured
the gyromagnetic ratio directly and found that
it was twice the value predicted theoretically.
After this we could explain that the discrepancy
between the theory and the experiment was
caused by the spin of the electron.

Unfortunately, events did not follow a logic-
ally neat sequence. Because of a miscalculation,
Einstein and de Haas obtained for the gyromagnet-
ic ratio the value equal to e/2mgc, that is, did
not find a discrepancy with the theory at the
time. Their article, moreover, was even entitled
“Experimental Proof of Ampére’s Molecular Cur-
rents”. It should be emphasized that Einstein

* The articles by Einstein and Einstein-de Haas can be
found in Einstein’s Collected Works. Einstein and de Haas
measured the amplitude of torsional vibrations of a rod
caused by successive magnetizations. To increase the
sensitivity of the technique, they used the resonance of
the remagnetizing field and of the natural vibrations of
the rod. Many readers may be surprised to learn that
Einstein not only conducted theoretical research but
also “worked with his hands”. He actively participated
in the experiment and even wrote a manual on the
demonstration of the gyromagnetic effect. The interesting
story of the discovery and subsequent application of the
gyromagnetic effect can be found in ‘an article by
V. Ya. Frenkel (Advances in Science and Technology in
the USSR, Physics Series, 1979, Vol. 128, Issue 2,
p- 545 (in Russian}), ‘
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perfectly understood that Ampére’s hypothesis
contradicted classical physics (see the footnote
to p. 28). It was for this reason that the experi-
ment on determining the gyromagnetic effect
was devised. It was meant to confirm (and its
authors believed that it had confirmed) the exist-
ence of molecular currents. Quite a few exper-
iments were carried out later to measure the gy-
romagnetic ratio. It proved to be twice the value
given by formula (1.11).

Stern and Gerlach conducted their experiment
in 1922 when it had already been suspected that
the electron has a spin. The suspicion was borne
from an analysis .of atomic spectra (the main
source of information about the structure of atoms
at the time).

But what is the spin? And what is its relation-
ship to the physics of magnetic phenomena?

In addition to the angular momentum caused
by the motion of a particle in space (it is also
called the orbital angular momentum, although t}le
reader keeps in mind that quantum mechgmcs
does not operate with orbits), a quantum particle*
may possess an angular momentum inherent to
this particle. This momentum is called the inher-
ent (intrinsic) momentum, or spin. Despite ’ghe
obvious meaning of this English word, the notion
of a particle with nonzero spin as a spbere or
top of finite radius rotating around its axis does

* Of course, all particles are quantum particles. The
combination “quantum particle” emphasizes that we deal
with phenomena whose analysis must take into account
quantum laws. Specifically, here a quantum particle
means a particle whose orbital angular momentum is
small compared with f.
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not represent the actual situation, not even as a |

rough approximation. The main reason for this
is the impossibility to assign a finite radius to an
elementary particle (e.g. the electron). Numer-
ous such attempts failed because they were found
to contradict the requirements of special relativ-
ity. The following argument clearly demonstrates
that the spin is not a result of the spatial ro-
tation of a particle: the projection of the intrinsic
momentum of a particle can assume not only in-
tegral values (see (1.23) and (1.24)) but half-in-
tegral values as well.

Woe shall denote the value of spin by s (an anal-
ogue of I}, and its projection by s with subscript
z, i.e. s, (an analogue of m).

For the electron: s = 1/2;
s, = +1/2; 2s -1 =2

The proton, neutron, and neutrino also are spin-
1/2 particles. The spin of the photon is 1, and
that of all pions (there are three of them: one neu-

tral pion, n° and two charged pions, n* and -

n~, with charges -+e) is zero.

The existence of the intrinsic momentum thus
extends the set of possible values of angular mo-
mentum: the spin can be integral (s =0, 1, 2,
etc.) or half-integral (s = 1/2, 3/2, 5/2, etc.).
The zero spin is considered integral.

Particles with zero and integral spin are called
bosons (named after the Indian physicist Ja-
gadis Bose), while particles with half-integral spin
are called fermions (after Enrico Fermi). It will
become clear later in the book why particles are
divided into two classes.

The spin of an elementary particle is its in-

1.7. Electron Spin 59

Irinsic property in the same way as its charge and
mass are. Neither the proton nor the electron can
part with their spin, just as they cannot get rid
of a part of their charge or mass. This is clear evi-
dence of the elementariness of the electron, pro-
ton, neutron, and other particles that are regard-
ed as elementary. Their elementariness does not
preclude mutual transformations. But this is a
quite different topic.

Dirac constructed the theory of the electron,
that is, formulated an equation that the wave
function of the electron must satisfy. This equa-
tlion (called the Dirac equation) takes into ac-
count not only the wave properties of the electron
but also the constraints imposed by relativity
theory. Quantum mechanics satisfying these con-
straints is called relativistic quantum mechanics.
When this theory appeared, particles with spin
(different from 1/2 had yet been unknown. Dirac
presumed that the equality of spin to 1/2 was a
logical corollary of relativistic quantum theory.
lLater, after a number of particles with non-1/2
spin had been discovered, it became clear that
the Dirac equation was not the only allowed equa-
tion. The wave functions of particles with s -~
#1/2 are governed by equations differing from
the Dirac equation that gives an impeccably ac-
curate description of the electron, that is, a spin-
1/2 particle.

Relativistic quantum mechanics predicted that
a charged particle with charge e, mass m,,
and spin 1/2 must have a magnetic moment with
\wo projections equal to oefi/2m,. Compare
this expression with formula (1.25). You notice
that the gyromagnetic ratio for the intrinsic




60 Ch. 1. Elementary Magnets "

spin angular momentum is equal to e/m,c, that §
is, to twice that for the orbital angular momen- }
tum. The classical (orbital) gyromagnetic ratio °
measured in units of e/2m.c will be denoted by |

gr, and the spin gyromagnetic ratio by g,.

It must be emphasized that g, = 2 in units of }
e/2mec no matter what the value of s is (even if |
it is integral). The letter g will be used as a sym- ]
bol of the total gyromagnetic ratio taking into }
account both the orbital and spin angular momen- §
ta, It is referred to as the g factor, or Landé i

aclor,

Table 1 ]
Particle g.g Mass, g '§; M“‘éﬁé‘,‘fz;ﬁ;’s’“mt'

Electron | e [me—%.1-10-28 | 1/2 R _0.9.10-20 §
2mec ‘
Proton p [mp=1.7-10"2¢) 1/2 (2.8 ok =1.3-10"23
2mye 1
Neutron | n [mpn=1.01-mp | 1/2 1.9L=0.9-10'23
2mqe 3

We have already mentioned that the existence

of the electron spin indeed explains the results }

of both the' Stern-Gerlach and the Einstein-de

Haas experiments. ItTwas™not the orbital but the |
intrinsic angular momentum of electrons that &

the two experiments revealed.
A short table (Table 1) list the values of the
spin and magnetic moments of the three most im-
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portant particles of which all objects surrounding
us, and we ourselves, are built.

The fact that the neutron, even though it
is neutral, possesses a magnetic moment while
the magnetic moment of the proton is greater by
a factor of 2.8 than that predicted by the Dirac
equation has been explained by the modern theo-
ry of elementary particles.

The number of electrons in a body is equal to
that of protons, and the intrinsic magnetic mo-
ment of the electron is much greater than that of
the proton. It is thus clear that the main role in
magnetic properties of materials is played by elec-
trons. True, it proved possible not only to detect
and measure the magnetic moments of atom-
ic nuclei (magnetic moments of practically all
atomic nuclei have been determined) but also
to study the magnetic properties of materials
due to the magnetic moments of nuclei. The sub-
division of the physics of magnetic phenomena
dealing with the magnetic properties of nuclear
particles is called the nuclear magnetism. Unfor-
tunately, the nuclear magnetisin has to be left
out of this book.

1.8. g Factor

We have at last unraveled the elementary mag-
net. In most cases the intrinsic magnetic moment
of the electron can be regarded us the elementary
magnet. Its projection onto the axis is equal (to
within the sign) to the Bohr magneton pg =
= efi/2mqc. 1f the electron moves in such a man-
ner that its orbital angular momentum is dis-
tinct  from zero, the orbital and spin angular
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Substituting for J its possible values from | I, —
—1, | toly +1,, we find the set of possible dis-
crete values of the scalar product L;-L,.

The vectors L, and L, may refer to the same
particle (say, one vector is the orbital momentum,
and the other is the spin momentum) or to differ-
ent particles (e.g. we can ask what the angular
momentum of two particles is if the momentum
of one is L,, and that of the other is L,).

The rule of addition of vectors will help us te
find out what the spin of a system consisting of
several electrons can be.

We begin with two electrons. Since each o
the spins can align either along or against the
axis, only the following situations are possible:
(i) the spins are “antiparallel”, with zero total
spin (§ = 0), and (ii) the spins are “parallel”,
with unity total spin (§ = 1).

The words “parallel” and “antiparallel” are
put in quotation marks because the two projec-
tions of the electron spin, (s, s,), as of any other
angular momentum, do not have definite values.

There is an essential difference between the
states with § = 0 and S = 1. The state with zero
spin, which is singular, is called a singlet. The
state with unity spin can exist in three forms:
with §, = —1, 0, and 1. This state is called a
triplet.

To get a better feeling of the difference between
classical and quantum momenta, let us calculate
the value of s;-8, for S =0 and S =1 (5
and s, are the vectors of the spins of the first and
second electrons, s; = s, = 1/2). Note that the
spin equal to 1/2 is the smallest momentum in
nature, except, of course, zero momentum. This

momenta add. But how should we add “quan- 1
tum” vectors, that is, vectors with discrete val- :
ues of projection onto a selected axis? “Clas- |
sical” vectors are added according to the par- |
allelogram law. One thus has to know the length 1
of each vector and the angle between them. When 1
“quantum” vectors are added, the following proce-
dure must be followed.

Let L, and L, be two vectors such that L?—
=0 +14L4, L= (1, +1)1,, and I, I, are
integral or half-integral numbers. Let us ask
what can the vector J be if it is equal to the sum
of L; and L,? In order to find the answer, let us
project these vectors onto a common axis. Obvi-
ously, the maximum and minimum projections
of the sum of two vectors are l; 4/, and | }; —
— Il |. This means that the maximum projec-
tion of the vector J, that is J, can assume the
values from | 5; — I, | to I, + I,. If we recall
the expression for the square of a vector (see p.
47), we can operate with “quantum” vectors al-
most exactly as with classical vectors. For the
sake of practice, let us calculate the possible dis-
crete values of the scalar product L,-L, through
I, 1y, and J. Finding the square of the equality

J=L; +L,

according to standard rules, we then use for
L}, L;, and J? the “quantum” expression (1.24):

J (J + 1) = l1 (l1 +1) + lz (12 +1) +2L1'L2

that is,

LKy =5 17 (J+ 1) — 1 (0 + 1) — Ly (L + )]
(1.31)
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is the case where the departure of quantum prop- "
erties from classical properties reaches a maxi- 3

mum.*
According to formula (1.31),

—3/4 for S=0
515 [ 1/4 for S=1
If the momenta were classical, the products
s, -8, for “parallel” and “antiparallel” spins would

differ only in sign and would equal +s® =
= +1/4.

(1.32)

Table 2
S=0 t—it
S;=—1 12
§=11 s,=0 H—H:
Sy=1 M

Table 2 shows the projections of the spins of 1

each electron in the singlet and triplet states (an
arrow pointing down represents the state of an
electron with s, = —1/2, and an arrow pointing
up represents s, = 1/2),

The reader should note specially that a spin
configuration can be antisymmetric (S = 0) or

* When s = 1/2, the square of the length of the vector
s (s + 1) = 3/4 is three times the square of the projec-
tion 2 = s? = 1/4
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symmetric (S =1). Look at the table and you
will 1mmed1ate1y realize that what is involved
is an exchange of electrons. An understanding of
the symmetry of spin counfigurations will be help-
ful in analyzing a concept, very important in
the theory of magnetism, of the exchange energy.

Obviously, three electrons have a spin of 1/2
or 3/2. In the general case, an even number of
electrons produces integral spin configurations
(including zero spin), and an odd number of elec-
lrons produces half-integral spin configurations.

Consider now a system of several electrons.
Let the orbital angular momentum of the elec-
trons be L, and the spin momentum be S.
We remind the reader that specifying momenta
means specifying their lengths L and S and their
projections onto a chosen z-axis, 1, (ope of the
numbers — L, ..., 4 L) and S, (+S .

--S5). What w1]1 the magnetic moment of. this elec-
tron system be?

If we go into finer detail of the questloh the an-
swer will appear almost automatically. The ro-
tational properties of the system are character-
ized by the total angular momentum J = L 4+ S
whose maximum projection J can assume, ac-
cording to the foregoing arguments, the values
hrom | L — S} to L 4-S. The magnetic mo-
ment M is proportional to J, with the proportion-
ality factor that we called the gyromagnetic

ratio. Hence,
eh
M=gurJ, pp=5—

ZMQC

(1.33)

and the problem reduces to finding the g factor
as a functionof I, S, and J. Recall that the prob-

5—01378
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lem grew out of the differences between the gy-
romagnetic ratios for the orbital and intrinsic
angular momenta (g, — 1 and g, = 2).

Taking into account the difference between g
factors, we can write the following expression
for the magnetic moment:

M =g (L + 28) = py (J -+ §) (1.33")

The bar over the vectors L and S indicates that
their average (mean) values are taken. There is

J

L

of the “precession” of the
orbital I, and the spin S
angular momenta around

S the total angular momen-
tumm J

1

1

1

'| Fig. 15. Classical picture
!
1

-

no bar over J because only the total angular mo-
mentum J is conserved (has a definite stationary
value), while-the vectors L and S precess around
J (Fig. 15). According to (1.33"), we are interest-
ed in the vector S which, quite naturally, is
aligned along J* (this is clearly seen in Fig.
15), that is, S = aJ. The constant a is easily
determined by using the following chain of equal-

* Forget for a time that the vector S is quantized and
decompose it inlo two vectors: one pointing along the

vector J, and the other, S , perpendicular to it, rotating
around J. Hence, §J_ = 0.
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ities:
J.S=J).8S=al2=aJ(J +1)

Note that we have resorted again to the quan-
tum formula for J2. The value of J.S is calculat-
ed in complete analogy to the derivation of for-
mula (1.31):

J-S:%[J(J+1)—L(L+1)—S(S+1)]

Hence,
1 L(L+1)—8(S--1)
a’?[iﬂ T+ J

By comparing formulas (1.33) and (1.33"),
we arrive at the sought formula for the g factor:

J+1)—L(L+-1)+S(S+1
g=1 4 LI LS (S5 (1.34)

If the spin is zero (S = 0), then obviously J =
= Land g =14, but if L =0 and / = §, then
g =2, If J =0, which is possible if L = §,
then expression (1.33) is not defined, but, of
course, there is no magnetic moment because all
projections of the vector M are zero.

The Landé g factor can also be zero if J 5= 0,
for instance, when L = 2, § = 3/2, and J =
== 1/2, This example shows that the g facler
does not necessarily “lie” between 1 and 2.

To summarize: if a system of electrons has a
specific total angular momentum J formed by the
sum of the orbital L and spin S momenta, the mag-
netic moment of this electron system is equal to
the “quantum” vector M (see (1.33)) whose
projections onto a chosen axis are pupgm;,
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where m ; takes on one of the following values:
—J, —J +1,..., J—1,J, and the g factor
is given by formula (1.34).

1.9. Structure of Atoms

All atoms, with the exception of the simplest of
them, the hydrogen atom, contain more than one
electron. The atoms of substances with well-pro-
nounced magnetic properties (e.g. atoms of tran-
sition elements) are complex multiparticle sys-
tems. It is impossible to extract exact informa-
tion on the motion of a system consisting of a
large number of particles. Even in classical me-
chanics the exact solution is obtainable only for
the problem of motion of two bodies. It is found,
however, that a satisfactory explanation of atom-
ic properties (at any rate, at a qualitative level)
is obtained if certain very general features of mo-
tion of electrons in the atom are understood. We
begin with describing these features.

The reader should keep in mind Mendeleev’s
periodic table in which the elements are arranged
in the order of atomic number Z, that is, in the
order of the number of electrons in the electron
shell or the number of protons in the nucleus.
Our nearest task is to understand why elements
with different atomic numbers Z have different
properties and, vice versa, why atoms located in
similar squares of the periodic table (of course,
they have different Z) possess similar properties.
Naturally, we shall pay special attention to mag-
netic properties of atoms.

Let us use a system of coordinates in which the
nucleus is at rest. Now imagine an atom: its nu-
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cleus is an immobile “cluster” of protons and neu-
trons, a source of a force field in which electrons
move. Why does the addition of one electron to
cighteen already present convert an atom of the
inert gas argon into an atom of the metal potas-
stum?

We begin with specifying the forces acting on
clectrons.

[t might seem that this aspect is clear: electro-
static Goulomb forces of attraction to the nucleus
and repulsive forces acting between electrons (these
have already been mentioned). But now that
we attempted to persuade the reader (and hope
that the attempt was successful) that each elec:
tron not only carries electric charge but at the
same time is a small magnet (magnetic dipole),
the question about forces must be seen in a new
light: Is it necessary, when analyzing the motion
ol electrons, to take into account their magnetic
interaction with other electrons and with the nu-
¢leus?

And first of all: What is the “magnetic interac-
lion”? Tts result is familiar to everybody: like
poles of magnets are repulsed, and unlike poles
are attracted. To answer the question, we should
derive the dependence of force on the distance
hetween magnets (magnetic dipoles). In contrast
Lo electrostatic forces which are functions only of
the distance between charges, magnetic forces
depend not only on the separation between dipoles
hut also on the orientation of “magnetic nee-
iles” with respect to each other and to the line
connecting them (Fig. 16). We shall not derive
the expression for the force of interaction be-
lween magnetic dipoles that is valid at distances
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large in comparison with the size of a dipole.
This formula is exact in the case of electrons be-
cause electrons must be regarded as pointlike
particles. We shall give the expression not for
the force but for the energy of interaction,
Uy
U., = (M;-M;)—3 (M -ny,) (My-0y,)
M R:h 1

R
M Ry
(1.35)

Here M; and M, are magnetic moments of two
particles, and R;, is the vector distance between

TaT P T (nd
(@ (® (c) (d)

Fig. 16. The force of interaction between maguetic
dipoles is a function not only of the distance between
them but also of their mutual orientation: :

(a) the magnetic dipoles are attracte;d (Unr < 0); (B, c)“ghle
maguetic dipoles are repulsed (Upr > 0); (2) the sign
of Uy is given by (1.35)

them. The reference point for measuring energy
is chosen in such a way that this energy is zero
when magnetic dipoles are infinitely removed
from each other (for R,; — o0). _

It is clear from (1.35) that the attraction be-
tween unlike poles (i.e. between magnetic dlpqles
parallel to each other and to the lipe connecting
them) and the repulsion between like poles (i.e.
between antiparallel magnets aligned along the
line connecting them) are described correctly.
(See Problem 9.)

1.9. Structure of Atoms !

When electrons in an alom are considered, by
the order of magnitude, the energy of magnetic
interaction between two particles is
Uy~ b

M ~ a3
where pp is the Bohr magneton, and « is the
mean distance between electrons, approximately
equal to the diameter of the atom (this formula
is identical to (1.35); we have replaced M, ,
with pug and R,;, with ¢, and neglected the angu-
lar dependence in the numerator).

It would be meaningless to evaluate the ener-
¢y of magnetic interaction between an electron
and the nucleus since it is definitely much small-
er than Uy; indeed, the magnetic moment of
the nucleus is Jess than that of the electron by a
factor of several thousand, being a superposition
of the magnetic moments of the protons and
neutrons which are thousands of times smaller
than that of the electron (see Table 1).

The energy of electrostatic interaction between

lwo electrons under the same conditions is
eﬂ
UCoul = a

Dividing the expression for U, by that for
Ucon and neglecting the factors of the order of
unity, we find

27,2
Uy ~ (h2/a2me)
Tgom mec?

This is a formula with far-reaching consequences.
The denominator is the electron rest energy myc?,
and the numerator is an unuswal combination
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with the dimensionality of energy (verify this
statement). Two approaches help to interpret
this combination. First, let us turn to formula
(1.21) for the energy of the electron in a hydrogen
atom, expressing this energy in terms of the radi-
us of the “orbit” a, = (B%/mee?) n? (see p. 44).
We notice that by the order of magnitude
h?/a2m, equals | g, |, that is, the electron energy in
the atom. Second, let us use the uncertainty rela-
tion (see Sec. 1.4) stating that a parficle cannot
be restricted to a region of space of the order of a
unless the particle is in motion. The minimum
momentum of a particle within a region of the or-
der of a is p =~ h/a. Therefore,

Kt p?

a?me Nﬁe
is the kinetic energy E) of motion of the electron
within the atom (of course, this is an order-of-
magnitude estimate, since weomitted even the fac-
tor of 2). The second approach may seem less
conclusive but it demonstrates that #%/a%m,
characterizes the energy of motion of any elec-
tron in any atom, not only in a hydrogen atom.
In order to evaluate the size of an atom, we can
use with satisfactory accuracy the quantity
a ~ 3-10-8 cm that will also be useful lierealter.
In other words,

Um . Ex v? k

Uoour . mec® o U ame

Electrons in atoms move at velocities small
compared with the speed of light.* Indeed, di-
* Actually, heavy multielectron atoms contain electrons

(the latter moving deep within the atom, close to the
nucleus) whose velocity approaches the speed of light.
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viding the mean momentum #%/a = 10-27/3 %
X 1078 by the clectron mass m, ~ 10727 g, we
lind v &~ 3:107 cm/s, which is much less than the
speed of light.

The ratio Uy/Uggy is thus much less than uni-
ty, that is, the energy of magnetic interaction
U,r is much less than the energy of electrostat-
ic interaction Ugyy: Uy <€ Uggu. This conclu-
sion is so important for the analysis that follows
that we shall recast the ratio U;/Ucqy in a more
“impressive” form. by replacing a with the expres-
sion for the “radius” of the hydrogen atom in its
ground state, a, = h2%/m,e? (see p. 44).. This yields

ronr = (76) = ()" (1.3)

Unexpectedly, the inequality Uy < Ugyy is
found to follow from the smallness (sic) of the
electric charge (see p. 16).

It must be mentioned that the dimensionless
combinations of world constants (e, %, and ¢
in this particular case) are tremendously signif-
icant. It is even possible to suggest the following
half-joking statement: our world is what it is pre-
cisely because several dimensionless combina-
lions of world constants have the values they do:

¢? 1 Mme e?
—_— € A _ ~ A, 42
e 137° mp 1840 * Gm% 4-10

and so forth. What is the meaning of these num-
bers? Why these values and not some others?
So far scientists have been unable to apswer
these questions.
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We have thus established that the decisive
factor is the electrostatic interaction between elec-
trons. In other words, in “constructing” an atom
by adding electrons we can neglect the fact,
important for the topic of this book, that elec-
trons are tiny magnets. But this statement calls
for a qualification: it is not possible to ignore the
spin of the electron, as we shall have a chance to
see quite soon.

In order to clarify the general picture of the
motion of electrons in an atom, it can be assumed
that the mean force applied to each electron by
the nucleus and all other electrons (except the
one under consideration) has a central symmetry
(the center of symmetry coinciding with the nu-
cleus). The stationary state of each electron in
such a field can be characterized by a certain an-
gular momentum specified by quantum numbers
=01, 2,..)and m(m = —1I, —14+1, ...,
I — 1, I; see above). But these two numbers prove
insufficient for completely describing the state
of the electron. One more number, called the prin-
cipal quantum number and denoted by r, has
to be introduced; the values it assumes are
1, 2, 3, ... . A triad (n, I, and m) defines the state
of the orbital motion of an electron in an atom.
Recall that the free motion of an electron is al-
so described by three numbers, namely, the three
projections of its momentum. The numbers !
and n are not completely independent: there is
a constraint I <{n — 1.

The spin state of an electiron is determined by
the projection of its spin onto some axis. We
shall denote the value of the spin projection by
the letter o; ¢ takeson two values: 41/2 and
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—1/2. To recapitulate,

the state of an electron in an atom is determined
by four numbers n, I, m, and o:

n=1,2, ...

{=0,1,2, .. n—1
mo=—1l, =141, .., 1—1,1
o= —1/2, 1/2

The energy of an electron is only weakly depen-
dent on two of the four quantum numbers, name-
ly, m and o. This dependence can be neglected in
the first approximation. This considerably facil-
itates the description of the structure of atoms.
Neglecting the dependence of the electron ener-
gy on m and o stems from neglecting the magnetic
interaction (see (1.35)) and also (and primarily)
from the isotropy of the space surrounding the
electron shell of the atom. Indeed, what does il
matter where the angular momentum is directed
if all directions are equivalent? And it is the pro-
jection m of the momentum that is responsible
for the direction of the momentum. This state-
inent has a classical analogy: the energy of a par-
licle moving in a field with central symmetry is
independent of the orientation of its trajeclory in
space.

Small # and I correspond to low energy € (n, I);
as a rule, energy increases as n and
increase. The dependence of € on n, € = & (n),
for the hydrogen atom has already been given
(see (1.21)). For reasons that are to some extent
accidental the energy for the hydrogen atom is
independent of I,
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Owing to a tradition, the states with different
values of | are denoted, regardless of the value of
n, by lower-case Roman letters, following the cor-
respondence

spdfg...and so on in alphabetical
order

1-=01234...

The state of a single eleciron in an atom (with-
out indicating the values of m and o) is denoted
by a symbol consisting of a numeral giving the
value of the principal quantum number n and
a letter corresponding to the value of I. For in-
stance, the symbol 3p stands for the state of an
electron with n = 3 and [ = 1. Ifseveral electrons
are in a state with identical » and [, the number of
electrons is indicated by the exponent (no expo-
nent in the case of a single electron). Thus, 3p?
stands for two electrons in the state 3p (n = 3
and I = 1).

The distribution of electrons in an atom deter-
mines the electron configuration of the atom, that
is, describes its electron shell. Are all configura-
tions allowed? In particular, how many eleclrons
can coexist in a state with the same n and I?
What is the maximum “exponent” iu symbols
such as 3p or 4d?

In classical physics this question would reduce
to asking how many identical particles are al-
lowed to have identical energy and momentum.
An immediate and natural answer would be:
an infinite number. In quantum physics the situ-
ation is quite different, And here is why.

1.9, Strueture of Atoms i

Pauli Exclusion Principle

Identical particles manifest absolutely unlike be-
havior in classical and quantum physics. Classi-
cal particles, even absolutely identical, move
cach along its own trajectory. If the position of
cach of the particles is fixed at the initial instant
of time, then by fixing the positions of the parti-
cles on their trajectories at a later instant, it is
possible to point to the location of each particle,
that is, possible to distinguish one particle from
another. The situation in quantum mechanics is
uite different because particles do not move along
lrajectories. Having fixed a particle at the initi-
al instant of time, we cannot in principle pin-
point the same particle among its ilk at the later
instants.

In quantum mechanics identical particles are
absolutely indistinguishable.

This statement formulates the principle of in-
distinguishability of identical particles.* As fol-
lows from this principle, a quantum state of a
system remains unaltered if identical particles
are interchanged.

Consider a wave [unction ¥ (1, 2) of two parti-
cles. The numerals 1 and 2 symbolically denote
the coordinates of the first and second particles
(and lake into account the variable indicating the
direction of the spins). Interchanging two parti-
cles (the first particle is placed where the second
was, and the second takes the place of the first)

* This greatly facilitates the comstruction of the picture
ol the world. By constructing the theory of one electron,
we have constructed the theory of any electron.
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is described by interchanging the arguments of
the function ¥ (1, 2):

¥, 2)~¥(2 1)

This operation must leave the state of the system
unaltered. But this means that, as a result of in-
terchanging, the wave function can only acquire

. Y -t
constant multiplier (see p. 42). Let us denote 1
E};y the letter a. Then ¥ (2, 1) = a¥ (1, 2).

Having performed the interchanging twice, that

is, having returned to the original s@tuation, we
find that o2 = 1, and hence, that either o = 1
or a.— —1. The value of the factora is determined
not by the state of the system but by the sort
of particles of which it is composed. )
Since « equals either +1 or —1, there exist
es of particles:
tw?ortyt%e ﬁrsf type, interchanging does not
change the wave function:

B) ¥ 1)=¥d,?2 (1.37)

for the second type, interchanging reverses
the sign of the wave function:

F) Y1) =—¥{2) (1.38)

The property of particles we have just descrlbgd
has no classical analogue. Quantum mechanics
led to the discovery of properties that are not as-
sociated with the force interaction between par-
ticles; even when particles do not interact with
each other, the above-given permutation lfiIWS
must be satisfied. Nature (quantum meghaglcs)
imposes on a particle the rules of hehavior in a
collective of particles; indeed, by gener:ahzmg
relations (1.37) and (1.38), we can deal with en-
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sembles consisting of an arbitrary number of par-
(icles. The part of plysics studying the behavior
ol large (macroscopic) ensembles of particles is
called statistical physics. Particles for which
(1.37) is valid are said to he governed by the
[3ose-Einstein statistics, and those for which (1.38)
is valid are said to be governed by the Fermi-
Dirac statistics. For this reason we put the letters
(B) and (F) on the left of formulas (1.37) and
(1.38).

Does a particle possess some “personal” prop-
erty that determines to which of the two statis-
lics the particle belongs? Yes, such a property
cxists. Pauli was able to show that

particles with zero and integral spin are governed
by the Bose-Einstein statistics, while particles
with half-integral spin are governed by the Fer-
mi-Dirac statistics.

It is clear, therefore, why particles with zero
or integral spin were called bosons, and those
with half-integral spin were called fermions (see
p. 08).

Let us return now to the question about the
number of electrons that are allowed to coexist
in one state. First, we should remind the reader
that the eleclron spin is 1/2, which makes elec-
{rons become fermions. Second, we formulate one
of the fundamental principles of atomic physics,
namely, the Pauli exclusion principle:

a state can be occupied by no morethan one elec-
trom.

We shall prove the Pauli exclusion principle
by using the properly of antisymmetry of the
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wave function of two electrons. We also have to
supplement our knowledge of the wave function
(see p. 42): the wave function of two mnoninter-
acting particles isconstructed as a bilinear combi-
nation of the wave functions of the individual
particles. Therefore, let one electron be in a state
{n, I, m, o} = {i}, and the other in a state
{n', ', m', 6’} = {i’}. Then, according to rule
(1.38),

V1, 2)=¥y (1) Yuy (2
— Yy (1) ¥y (2)

Hence, if the states {i} and {i'} are identical
({iy = {i'}), the wave function is identically
zero, in other words, no such state exists.

We see that fermions are extremely indi-
vidualistic and avoid like particles.

Each physical system tends to reach a state
with minimum energy (we shall recur to this state-
ment in the next chapter). This tendency plus
the Pauli principle enable us to understand the
structure of atoms and, as a result, the nature of
Mendeleev’s periodic law. The problem essential-
ly reduces to distributing the Z electrons of an
atom with the atomic number Z over energy
states, taking into account that

(i) states with different m and o but identical
rn and I correspond to the same energy, and

(ii) only one electron is allowed to have a given
total set of quantum numbers {n, !, m, o}.

The number of states with a specific value of
l equals 2 (2! 4-1). Since ! cannot exceed
n — 1, each value of n corresponds to only
a few values of I: only !=0 (s state) for
n=1;1=0and Il =1 (s and p states) for n =
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== 2, and so on. It is now easy to calculate how
many electrons can have identical » and [ in a
general case (electrons with identical r» and !
form a “shell”) and compile a table.

Table 3
State Nieetrans!
1s 2
s, 2p 8
Js, 3p 8
4s, 3d, 4p 18
5s, 4d, 5p 18
6s, 4f, 5d, 6p 32

Table 3 shows the distribution of the number
of states over groups with specified » and £
A comparison of this table with Mendeleev’s pe-
riodic table shows that the periods of Mendele-
ev’s table are the corollary of the consecutive fill-
ing of states with different n and !, arranged
in groups, by electrons. The first group is filled
in H and He atoms. In He the first shell is filled
up. The filling of the second and third shells cor-
responds to the first two (short) periods of the pe-
riodic table comprising eight elements each (they
end with Ne and Ar, respectively). Then follow
two long periods with 18 elements each (ending
with Kr and Xe, respectively) and a long period
with 32 elements (ending with Rn); the filling
of the last group of states only begins in the ex-
isting elements,

6—01378
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Chemical properties repeat themselves in
going from one period to the next because the
most important electrons for chemical properties
are those in the outermost shells, beyond the com-
pletely filled shell (unfortunately, we cannot
devote more space to this aspect here).

Obviously, the order in which the states are
arranged in Table 3, corresponding to the order in
which they are filled with electrons, stems from
the dependence of the energy of electrons on n
and I. By looking at the first rows of the table,
we can formulate a simple rule: the first to be filled
are the states with the lowest » and all admis-
sible I, followed by the states with the next val-
ue of n. However, the situation is found to be
not so simple in the fourth and all subsequent
rows. For instance, according to the table, the fil-
ling of 3d states must be preceded by the filling
of 4s states. But actually, if we look at the elec-
tron configurations of the group of iron (from
Sc to Ni), we discover that there is competition
between the 4s and 3d shells: for example, V
has three electrons in the 3d state and two in 4s;
it is followed by Cr with five electrons in 3d
and one in 4s, and Mn which has five electrons
in 3d and two in 4s.

In order to come closer to our topic of magnetic
properties, let us note that any set of electrons
that completely fills a group of states with given
n and ! has zero total angular momentum, both
orbital and spin ones. This occurs because filling
requires that electrons with opposite projections
of momenta be employed (see p. 49).

As examples, Table 4 shows the electron con-
fisurations of several elements.
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Table 4
Element Z Configuration Term
\T 1 18 251/2
He 2 1s2 ISO
Li 3 15%2s 28, /2
Be 4 152252 18,
B 5 1s22s22p 2Py
Al l 13 [ 152252283523 p 1 P1/2
Ar I 18 l 1522522 p83523 p"8 I 15,

The last column of the table gives the symbol
(term) that summarizes the necessary information
on the properties of the electron configuration
of each atom in its ground state. The structure
of the symbol is as follows: the capital Roman let-
ter denotes the total orbital angular momentum
of the electron configuration, the correspondence
heing (cf. p. 76):

SPDF.,..and so on in alphabetical
order

L=0123...

The subscript denotes the total angular momen-
tum J, and the superscript denotes the multipli-
city, that is, the value of 2§ 4-1, where S is
the total spin of the electrons in the atom. For
Be the term is 1§,, that is, L=0, J=0, § =0,

(1%
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and for Al the term is 2Py,, that is, L =1,
J =12, § =1/2.

Looking at the atomic term written according
to the rule formulated above, it is easy to calcu-
late the g factor and find the magnetic moment of
the atom.

Sufficiently accurate computational methods
have been developed, and there exist relatively
simple rules (the Hund rules) for determining the
terms of any atom. Thereby guantum mechanics
solved the problem of the magnetic moments of the
smallest structural units of matter, that is, atoms.
Although some atoms have terms with zero sub-
script on the right, that is, with J = 0 (e.g. all
inerl gas atoms), most atoms have a nonzero
total angular momentum, and hence, they re-
present microscopic magnets,

To conclude this section, we give the electron
structure of the “most magnetic” of atoms, that
of iron (Fe) (this atom gave the name to. the
“most magnetic” of properties: ferromagnetism):

Fe: 1522522p63523p%3d%4s2  term 2D,

argon shell

1.10. Exchange Energy

Let us consider atomic terms. For instance, the
electron configuration of Mn (Z = 25) is: Ar
shell - 3d%s?, and its term is ®S;,,. Why is the
spin of manganese electrons equal to 5/2? Ob-
viously, the Pauli principle does not forbid the
electrons to have other projections of spin as well.
What makes all five electrons align parallel to
one another?
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Another example comes not from the theory of
atoms but from the theory of molecules. The sim-
plest molecule is the hydrogen molecule H,.
Two electrons move around two protons, forming
a stable configuration. Two electrons can have
a spin equal to 1 or to 0. Electrons in H, have ze-
ro total spin. Why? These questions require an
answer, and the answer is not trivial. The point
is that the reason for the realization of a specific
spin configuration is not connected with the magnet-
ic interaction between electrons, although it is
clear that the choice of a spin configuration is de-
termined by energy efficiency: the configuration
that is realized is that with the lowest energy.

We have shown at the beginning of the preced-
ing section that the magnetic interaction is weak
and can be neglected without significant error.
But then we are left with only the electrostatic
interaction which is insensitive o the spin state
of electrons. Indeed, electrons with “parallel”
spins and those with “antiparallel” spins are re-
pulsed by one another with the identical force
inversely proportional to the square of the distance
separating them. Why then is the spin of elec-
trons in manganese 5/2, while in the Lhydrogen
wmolecule it is zero? Seemingly, there cannot be
any connection between the energy of an electron
system and its spin, at any rate, as long as we
ueglect the magnetic interaction. But in realily
the two are interrelated. The relation results from
the antisymmetric properties of the wave func-
tion of electrons.

For the sake of simplification, we shall consid-
er a system consisting of two electrons inter-
acting only via electrostatic forces. Since we ne-
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glect the magnetic interaction, we can completely
ignore the spins of electrons while solving the
problem of the energy of the system. Let ¢ (r;, ry)
be the wave function describing the orbital
motion of electrons. This fact is emphasized by
the presence of only the coordinates of the elec-
trons, r; and r,, as explicit arguments of the wave
function; spin variables are omitted. We can-
not completely forget about spin variables be-
cause the total wave function ¥ (1, 2) must be an-
tisymmetric (see (1.38)). We cannot do better
than to state that the total wave function
¥ (1, 2) is a’ product of the spin wave function
S (04, 0,) describing the spin state of the electrons
(0, and o0, are spin variables) and the orbital
wave function 1 (r;, ry) describing their orbital
motion:

V1, 2) = 8 (01, 09) ¥ (11, 1)

We have seen (see Table 2 on p. 64) that a spin
configuration can be symmetric (if S = 1) or
antisymmetric (if S = 0). But the function
¥ (1, 2) as a whole is antisymmetric. Hence, a
symmetric spin function corresponds to an anti-
symmetric orbital function, and vice versa. This
leads to the following conclusion:

when S = 0, P (r, ry) = s is a symmetric func-
tion
when § = 1, ¢ (r;, 1o} =, is an antisymmetric
function

The symmelric and antisymmetric functions,
Py and ,, describe different orbital motions of
electrons and thus correspond to different ener-
gies. Specific circumstances determine which of
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these energies is lower. In hydrogen molecules the
minimum energy corresponds to the symmetric
wave function describing the orbital motion.
And this is the reason for the electron spin of H,
to be zero.

The result obtained above, namely, the
dependence of the energy of a system of electrons
on the symmetry of the wave function, and hence
on spin, can be recast in a form that makes it
possible to speak of the so-called exzchange inter-
action between electrons.

Let us denote by E, the energy of electrons cor-
responding to the wave function 1,, and by E,
the energy corresponding to 1,. From what we
said above, there is a correspondence between the
energy of a system and its spin:

Es«S§=0
E,oS=1

We want to compose an expression of the spins
of electrons (it is called the spin Hamiltonian
and is denoted by #g *) that assumes the value

Es; for S =0 and E, for S = 1.
To do this, we resort to formula (1.32):

i%?S: %(Es‘l’SEa)‘l"(Ea'—ES) 88,

The values taken on by the spin Hamiltonian
S#g are the possible values of the energy of the

* The Hamiltonian is the quantum analogue of the
Hamiltonian function. The Hamiltonian function is the
energy expressed in terms of momenta and coordinates.
The energy of motion of a free particle is (1/2)mv?, and
ils Hamiltonian function is p%/2m (p = mv is the mo-
mentum, and v is the velocity),
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system consisting of two electrons (the very E,
and E, mentioned above). The first term,
(1/4) (Es+ 3E,) = E, is independent of the spin of
the system and, as can readily be ascertained, re-
presents the value of energy averaged over all
possible spin states (three states with § = 1
and one state with § = 0); the second term is a
function of the spin of the system. The difference
E, — E; is usually writlen as a parameter A
with minus sign. The spin Hamiltonian of two
electrons then takes the form

s =FE — As, s, (1.39)

This notation makes it possible to relate the euer-
gy efficiency of states with & =0 and § =1
to the sign of the parameter 4. If 4 << 0, the
“antiparallel” arrangement is preferable, and if
A > 0, the “parallel” arrangement is preferable.
The parameter A is called the exchange integral,
and the second term in (1.39) is called the ex-
change energy, or the exchange interaction.
The origin of these terms must be explained.
The attribute “exchange” appeared because the
symmetric and antisymmetric wave functions de-
scribe the state of electrons that are interchanged.
Furthermore, the parameter 4 is a measure of the
frequency of this interchange. It is called the ex-
change integral because the calculation of 4
requires that certain expressions comprising wave
functions be integrated. The term exchange
interaction emphasizes that the structure of the
spin Hamiltonian is such that the electrons are
as if coupled through some specific interaction
whose strength is a function of the relative orien-
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tation of the spins of electrons. In this sense the
exchange interaction reminds us of the magnetic
interaction. The exchange integral 4 is a measure
of interaction intensity.

Several features, very important for further
discussion, must be underlined.

(i) The exchange interaction is isotropic. A ro-
tation of all spins by the same angle does not
change the value of the exchange energy. This is
clear, for example, from the fact that expression
(1.39) includes the scalar product of spins, and
this product is not altered when both spins ro-
tate by the same angle.

(ii) The intensity of the exchange. interaction
A is determined by the electrostatic energy of
electrons and thus is not small, although | 4 |
is, as a rule, somewhat less than the mean energy
of electrostatic interaction (in our notation,

1A | << E).

(iii) According to the arguments given above,
the exchange integral can be either positive or
negative. As far as the interaction within one
atom is concerned, A is mostly positive (this
constitutes one of the Hund rules); in the case
of interatomic interaction A is predominantly
negative, although cases of 4 > 0 not merely hap-
pen but even explain the most spectacular mag-
netic property, namely, ferromagnetism.

In the case of interatomic exchange interaction
(when the interacting eleclrons belong to differ-
ent atoms) the exchange integral A essentially
depends on the distance between atoms, sharply
decreasing (exponentially) wlhen atoms are re-
moved at distances greater than the atomic size, Of
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course, this can be proved only by s ituti
specific wave functions into a gonc};etgb:;:thuat;gg
integral, although it should not be difficult to
form a qualitative picture if the reader recalls
that the exchange interaction is a result of inter-
changing of electrons. *

In conclqsi.on of the chapter we give a brief di-
agram outlining the logic of the last two sections:

l Principle of indistinguishability of particles

( l I

’ Fermions (electrons) 1

\ Pauli principle I—— Exchange interaction
Electron  configura- The dependence of

tions, Mendeleev's the
periodic law on g%eggp};;; fa system

f Sllqh statements tend to create an illusion of under-
standing. In fact, we wanted to stimulate the reader’
interest. An aroused interest will encourage a morS
thorough analysis, which will lead to nndtérstandinge

Chapter 2
Paramagnetism and Diamagnetism

Now we move from the tiniest building blocks
of matter to macroscopic bodies and will try
to describe their magnetic properties. Even
special monographs cannot enumerate the
properties of all substances. This simply can-
not be done: substances are too numerous. But
even in antiquity scientists were aware that sci-
ence begins with systematization. One has to re-
member that any systematization is approximate,
calls for qualifications, supplements, explana-
tions, and exclusions. The Soviet physicist
Ya. G. Dorfman had a favored example of an il-
logical but convenient systematization: “A shoe
store is divided into the sections of men's, wom-
en's, and seasonal footlwear.”

The magnetic properties of matter make it pos-
sible to suggest a simple and logical systematiza-
{ion. Substances are either diamaguetic or para-
magnetic. The plrase “substances are either
paramagnetic or diamagnelic” becomes impec-
cable if we qualify it with “at high tempera-
tures”.

Thus,

al high temperatures a substance is either diamag-
netic or paramagnetic,
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Tt remains for us to define paramagnetism and
fhamagnet@rﬁ, as well as to describe the magnet-
ic properties of materials at low temperatures.

2.1. Magnetic Susceptibility

If a piece of some material is placed between the
poles of a magnet, or inside a solenoid through
which electric current is run, the magnetic lines
of force are somewhat redistributed as compared

7
oo b2

Fig. 17. Magnetic lines of force undergo redistribution
if a body is introduced between the poles of a magnot

with their distribution when there is nothing be-
tween the poles or inside the solenoid (Fig. 17).
When placed in a magnetic field, all substances
are magnetized. This means that each element
in the volume of a body behaves as a small mag-
net, and the magnetic moment of the body as a
whole is a vector sum of the magnetic moments
of all such elements, A measure of magnetiza-
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tion of the body is the magnetic moment density
oM. The dimensionality of . follows from the
lact that 4V, where V is the volume of the body,
is the magnetic moment M. It is readily ascer-
tained that the dimensionality of the magnetic
moment density o# is identical to that of mag-
netic field:

[.#] = [H] = g'/%/cm!/-s

(See Problem 10.)

A nonzero magnetization #f appears only in
response to a magnetic field and is a linear func-
tion of the field when the field is not too strong:

M = xH (2.1)
At any rate, this is the case at high temperatures.

The dimensionless factor y is called the mag-
nelic susceptibility.

Paramagnetics are substances with 4 > 0, while
diamagnetics have 4 << 0. The middle is ex-
cluded: there are no substances in nature with
¥y = 0.* As a rule, the paramagnetic susceptibil-
ity %para is substantially greater than the dia-
magnetic susceptibility yxq;,, that is,

Xpara>> l Adia I

although there are some very important excep-
tions (sece later, Sec. 2.6). The magnetic suscepli-
bility of diamagnetics is practically indepen-
dent of temperature, while that of paramagnetics
depends on temperature very substantially.

* The discovery of para- and diamagnetism was made
by Michael Faraday.
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Pierre Curie established in 1895 that

the paramagnetic susceptibility decreases in in-
verse proportion to temperature T.*

This inverse proportionality holds quite well
at sufficiently high temperatures in all paramag-
netic materials. The statement given above is
called Curie’s law. ** As temperature is lowered,
a systematic departure from this law is clearly
observed, especially when solid and liquid para-
magnetic substances are studied. The tempera-
ture dependence of the paramagnetic susceptibili-
ty is conveniently illustrated by 1/y plotted as a
function of 7. Figure 18 shows that the experi-
mental values of 1/y linearly depend on tempera-
ture (at high 7) for all materials shown in the
figure, but for some materials the extrapolated
experimental line intersects the abscissa axis at
a positive temperature ©,, while for other mate-
rials the intercept is negative. The behavior
¥, = % (T) can be described by a formula that
generalizes Curie’s law:

C and O, are constants, 7 >>|0p]
(2.2)

* We shall use the absolute temperature scale, called
the Kelvin scale. The zero of this scale corresponds to
the ground state of a body, when all thermal motion of
its particles dies out. Although temperature is a habitual
notion, the true physical meaning of temperature is not
so easily comprehensible. Here we recommend a book
in the same series, Temperature by Ya. A. Smorodinsky,
published in English by Mir Publishers in 1984.

** The independence of the diamagnetic susceptibility
of temperature was also discovered by P. Curie. It was
also Curie who discovered that ferromagnetism can be
destroyed by increasing lemperature (see below).

_C
X*T_@)p’
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This formula is called the Curie-Weiss law. The
quantity ©, (even when O, <C 0) is called the
paramagnetic Curie point. The attribute “para-
magnetic” must not be left out. The concept of
the “Curie point” as such has a different meaning
that we shall discuss later. There is no contradic-
tion between the impossibility of negative ab-
solute temperatures and the cases in which 6,

1 404
410
8

=
T

I !
100 0 100 200 T,K

[ig. 18. 1/y as a function of T in paramagnetics:
curve 1—CuS0Q,; curve 2—Nd,(S0,);-8H,0; curve 4—
P1,(80,)5-8H,0; curve 4—Ni

is below zero. If ©, <0, this merely indicates
that % () <<C/T at T>|0O,]|, while if

0, >0, x(T)>CIT.

The constants C and O, in the Curie-Weiss
law are different in different materials. Qur prob-
lem is to establish how these constants are relat-
ed to the characteristics of atoms and molecules
of which substances are constructed.

The behavior of paramagnetic materials at
lemperatures close to the paramagnetic Curie




] Ch. 2. Paramagnetism and Djamagnetism

point, 7 ~ |©, |, is of substantial interest
and will be discussed specially in this book after
we explain why Curie’s law holds at 7> | 0, |
and why departures from this law are observed
at T =~ |0y |

The magnetic properties of materials are some-
times described by the magnetic susceptibil-
ity %, and sometimes in terms of the magnetic
permeability

% — 1 + 4y (2.3)
Clearly,

% > 1 for paramagnetics
n <1 for diamagnetics

As follows from relations (2.1) and (2.3), the
magnetic permeability is the proportionality fac-
tor between the vectors H and B introduced by
the equality

B — H 4 4nM (2.4)

This immediately gives B = xH and » =1 +
+ 4y

Although the vector B is called the vector of
magnetic induction, and H the vector of magnet-
ic field, the true meaning of B is that B (and not
H) is the mean magnetic field in a medium. Each
atom is a microscopic source of a magnetic field,
and over interatomic spacings the field in a me-
dium varies from point to point. Besides, atoms
and electrons in the atoms always move. Con-
sequently, the microscopic (true) field constant-
ly varies. The value of the field measured by
macroscopic instruments is the result of averag-
ing over time and space of the microscopic field.

2.1, Magnetic Susceptibility 97

Il is necessary to repeat: B is the mean magnetic
field.

When a magnetic field permeates a region oc-
cupied by matter, the absence of magnetic charges
(see Sec. 1.1) is seen in that the magnetic
lines of force never discontinue: the normal (per-
pendicular to the surface of a body) component

Vacuum H

I'ig. 19. Magnetic lines of force never discontinue when
crossing a vacuum-medium boundary

of the vector B is equal to the normal component
of the vector H outside the body (Fig. 19). Never-
iheless, by convention it is the vector H, and not
B, that we call the magnetic field. We hope that
this discrepancy between the term and its mean-
ing will not lead to confusion. As long as the
magnetic permeability » does not differ too
much from unity, the difference between B and
H is fairly insignificant.

We conclude this review section, that mostly
olfered statements about magnetism, with a defi-
nition of an ideal diamagnetic substance for which
y == —1/4n and » = 0. Since the magnetic per-
meability and, with it, the induction B of this
substance are zero, an ideal diamagnetic materi-
al has zero mean magnetic field. 1f such a materi-

701378




98 Ch. 2. Paramagnetism and Diamagnetism

al exists, it must repel magnetic lines of force.
We shall see later (see Sec. 2.6) that

superconductors are ideal diamagnetic materials.

2.2, Magnetic Field Aligns
Magnetic Moments

A comparison of diamagnetic and paramagnetic
materials immediately reveals the difference be-
tween them: paramagnetic materials are composed
of atoms or molecules possessing magnetic mo-
ments, while diamagnetic materials consist of
atoms or molecules whose magnetic moments are
zero. Now we can show that this observation for-
mulates a significant feature: bodies composed of
atoms (molecules) hwing a magnetic moment must
be paramagnetic, and those composed of atoms (mol-
ecules) with zero moment must be diamagnetic.

In Ch. 1 we discussed the magnetic moments of
individual atoms and found out that the number
of atoms with nonzero magnetic moment is much
greater than that of atoms with zero moment.
But bodies mostly consist not of atoms but of
molecules. The theory that describes in detail
how atoms combine into molecules is quantum
mechanics that makes it possible to calculate
(at any rate, in principle) the forces acting be-
tween submolecular particles and to determine
the electron structure of the resulting molecules.
Here we cannot go into these aspects and only
mention in passing that when two or more atoms
with nonzero magnetic moments (we shall refer
to such atoms as paramagnetic) combine to form
a molecule, this molecule is often devoid of mag-
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netic moment (it is diamagnetic) (we remind the
reader that we only speak of the electron magnet-
ic moment). In addition to the case of hydrogen
molecule H, already analyzed in Sec. 1.10 (a
diamagnetic molecule formed of two paramag-
netic atoms), we shall discuss the molecule of
common salt, NaCl. The electron configurations
and terms of sodium and chlorine atoms are:

Na: 1522s22p83s, 28,9
Cl: 1s22522pf3s23p°, 2P3)s

Botl the sodium and chlorine atoms are paramag-
netic. This clearly follows from their terms.

The formation of a NaCl molecule goes through
the formation of a Na* ion whose electron
shell is analogous to that of an atom of the inert
gas Ne, and of a Cl~ ion whose electron shell is
analogous to that of Ar. Therefore, both ions
llave zero magnetic moments. They form, by vir-
tue of the electrostatic (Coulomb) attraction, a
diamagnetic molecule. We wanted to emphasize
that there exist more diamagnetic materials than
one could guess by looking at the electron config-
urations of individual atoms. On the contrary,
paramagnetic molecules are a rarity. The most
familiar example is that of oxygen: the O,
molecule is paramagnetic.

Molecules in a gas constantly move, colliding
with one another and the walls, and the free path
length of a molecule is much greater than its size.
An increase in temperature means that the mean
velocity of the chaotic motion of molecules in-
creases. In a solid, that is, in a crystal, mole-
cules are arranged in a strictly defined order, and

7%
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the thermal motion manifests itself in an increased
amplitude of vibrations around equilibrium
positions. A liquid represents an intermediate
phase. Molecules vibrate around random equilib-
rium positions which are not fixed but move,
ensuring the fluidity of a liquid. An increase in a
liquid’s temperature means that the chaotic mo-
tion of molecules is intensified.

We ignored in this brief description of the
states of aggregation whether molecules have mag-
netic moments or not. The reason for this was not
only a desire to simplify a picture that is quite
complex even without this complication but also
that the presence or absence of magnetic moment
in a molecule is not important as long as we are
not interested in the magnetic properties of a ma-
terial. The properties of liquid oxygen (paramag-
netic molecules) do not differ qualitatively from
the properties of liquid nitrogen (diamagnetic
molecules). A different aspect is now important
to us. In studying the macroscopic magnetic prop-
erties of paramagnetic materials, we can, at the
first steps, ignore the positions and thermal mo-
tion of the centers of mass of the molecules and
analyze only the position in space of the magnetic
moments of these molecules. In order to clarify
the magnetic properties of materials, we can visu-
alize the paramagnetic molecules as microscopic
needles, that is, tiny magnets that can be orient-
ed in space in 2J -1 ways.

An ensemble of particles whose behavior de-
pends only on the directions of their magnetic mo-
ments is called the gas of magnetic needles.

A gas of magnetic needles is a convenient model
for describing the properties of paramagnetic ma-
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terials at high temperatures. The word “gas”
only underlines the fact that the interaction be-
tween magnetic moments is neglected.

In order to go further, we shall have to resort to
some results of statistical physics.* But what is
the thermal motion in a gas of magnetic needles
placed in a magnetic field H? Statistical physics
states:

the number of particles N (in;) with a definite
projection of the magnetic moment M onto the
magnetic field H is proportional to exp (—e&/kT),

where, according to (1.28) and (1.33),
ey = —M-H = —gugHm,

is the energy of the magnetic moment M in the
magnetic field H, and % is the Boltzmann con-
stant, k = 1.4.-107'% erg/deg. The proportional-
ity factor is chosen so as to satisfy a natural re-
quirement: the sum of the number of particles
(per unit volume) with different projections of a
magnetic moment must be equal to the total
number of particles N (per unit volume):

J
Z N(m;)=N

‘”_/= -J

* Statistical physics is a special branch of physics that
studies the laws governing the behavior and properties
of macroscopic bodies, that is, bodies consisting of
a colossal number of constituent particles: atoms, mole-
cules, electrons, ioms, etc.
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Therefore,
uggH
Ny e * 7
N - J MBgH (2'5)
—_—m
o BT
m=_J

where J is the total momentum of an atom or a
molecule. We remind the reader that the value
of the g factor is determined by the values of
L, S, and J (see (1.34)).

This formula shows that the words “thermal no-
tion” in the case of a gas of magnetic needles mean
a certain, temperature-dependent distribution
of particles over magnetic levels. This “defi-
nition” of thermal motion is very likely to surprise
the reader. But this cannot be helped: in this
particular case temperature means precisely what
is stated by formula (2.5).

At absolute zero of temperature (as T -» 0) all
parlicles “assemble” at a magnetic level with
my;=J:

NT)IJ:]:AT, NmJ:;VJ:U

thatis, the magnetic moments of all particles are
“parallel” to the magnetic field. Of course, they
are parallel only in the sense allowed by quantum
mechanics. For this reason we retained the quo-
tation marks (see p. 63).

When temperature tends formally to infinity
(we shall discuss later what we understand by
high and low temperatures), the quantity
N (m;) becomes independent of m,:

N(my) _ 1
N 271
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that is, particles are distributed uniformly over
all levels: the (2J --1)th part of the total num-
her of particles is found at each level.

Negative Absolute Temperatures

1t is intuitively clear that temperature deter-
mines the energy of agas (or is it determined by the
energy of the gas?). Indeed, let us assume that
we are able to produce a gas of magnetic needles
with a specified energy, that is, we can fix the
total energy of the magnetic-needles gas. We
shall denote it by €. Then, by virtue of (2.95)*,

7 ppeH
2 me kT J
. g==J
t = —NuBgH ; Pped
2 e T J
m=_J

and we can calculate the energy of the gas for each
value of temperature. Let us analyze in detail
the simplest case, namely, J = 1/2 and g = 2.
Energy as a function of temperature then takes .
the form

€= — NupH tanh }%3;—{ (2.6)

When 7 tends (formally) to infinity, the energy
Z tends to zero: &, = 0. The limit is zero as a

* The formula for € is derived on the basis of the follow-
ing arguments: the energy of a gas is the sum of the ener-
gics of the particles occupying all the allowed levels. The
energy of a particle at a given level with a given m;)
is the energy of the level multiplied by the number of
particles occupying this level. .
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result of our choice of a reference point for mag-
netic levels. The energy of the lower level is
—upH, and that of the upper level is +ppH.
At all finite temperatures energy is negative be-
cause there are more particles on the lower than
on the upper level.

Now we want to pose an “improper” question.
What will happen if we make the energy of a two-
level gas greater than g.? This requires that we

T

£, -£,

Fig. 20. Temperature as
a function of the total
energy of a system of
magnets (J = 1/2) in a
magnetic field H; g =
=—NugH < 0

“arrange” the distribution of particles in such a
way that their number on the upper level exceeds
that on the lower level (this distribution is said
to be inverse). What temperature corresponds to
such states? The answer is absolutely unexpected:
“Negative temperature!” Figure 20 shows that
the negative temperature is “found” to the right
of the infinitely large positive temperature and
corresponds to a higher energy.

Note that the possibility of introducing a

B
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negative temperature follows from a finite num-
ber of levels in a system (in this particular case,
in the gas of magnetic needles). Actual tempera-
ture is always positive. The concept of negative
temperature is a convenient method of de-
scribing nonequilibrium states of systems possess-
ing a finite number of levels; it is used in laser
physics and its applications.

*k k¥

Our treatment of temperature was rather care-
less: it tended either to zero or to infinity. To
compensate for this, we emphasized the formality
of these procedures. There are no abstract high
or low quantities in physics (we had an opportuni-
ty to find that out). The value of a parameter of
interest must always be compared with some-
thing else. What is the quantity with which the
temperature 7 must be compared? In all the
formulas of this subsection temperature appears
in the ratio ugH/kT (we have omitted the g factor
because it is of the order of unity). Temperature
must be regarded as low or high depending on
whether pgH/kT >1 or pgH/ET <« 1. Let us
find the relation (in standard units) between T
and H when pgH = kT:

7K = 0.5-107%H Oe (2.7)

This relation is so important that it deserves
a special analysis. In ordinary fields and at
ordinary room temperatures (=~ 300 K) AT >
> upH. Only at veryjlow temperatures (in the
vicinity of absolute zero) the inequality can be
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reversed (the equality is reached at 7 = 0.5 K
in a magnetic field of H = 10? Oe).

The physical meaning of the quantity ug#
is clear from formula (1.29); pgH is the spacing
between magnetic levels. And it was found that

mhe
2
1
"(l) En,z,m
=2
Fig. 21. Magnetic levels
+1 with different n and I are
€ separated by a large “dis-
ml,m )
-1 tance

usually this spacing is small in comparison with
kT, that is, with temperature expressed in
energy units. Other (nonmagnetic) energy levels
of atoms or molecules are separated from the
lowest, ground level by distances of the order of
several electron volts, 1 eV ~10* K (Fig. 21).
In normal conditions these levels are not excited*,
and we can safely forget about their existence
and regard an atom (or a molecule) as a magnetic

* The number of atoms in an excited state is proportional
to exp (—Ag,/kT), where Ae, = e, — &, &, is the
energy of the excited state, and g, is the epergy of the
ground state (at room temperature, i.e. at T' = 300 K),
and if Ae, ~ 1 eV = 10* K, we find exp (—Ag,/kT) =
~ exp (—300)1
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nee..e and use the model of the magnetic-needles
vas for calculations of magnetic properties.

pr we pass to the main statement of this
section. We want to prove that the gas of magnetic
needles is paramagnetic. To achieve this, we
make use of distribution (2.5) and calculate the
magnetic moment of the unit volume of this
gas, off (or rather, the projection of .4 onto the
magnetic field H)*:

J npsH
—mm
J
E mye T
. m = j
M=N J ;
hng = 28
3 ™y
20 e
my=-J

Now we recall that upgH < kT. The exponentials
i the denominator of (2.8) can be replaced with
unities, and in the numerator we retain only the
first (linear in H) terms of the expansion of the
exponential:

J

) N( )2 1

W 2”1

KT 27 +1 2 om
my=~J

e

But

J
1 ‘
Z mi = 3 J(J -1 (E2J+1)
mJ::—J
(the derivation of this formula is a useful exercise
in algebra). Therefore,

_ N (ppg)?
M*WJ(J‘FDH

* See the footnote to p. 103.
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and the magnetic susceptibility
2 +
y — N(:l;g) J(JB‘ 1) (2.9)
is positive and governed by Curie’s law, that is,
indeed,
the gas of magnetic needles is paramagnelic.

Not only were we able to prove above this state-
ment but we also succeeded in calculating as a
“by-product” the constant in Curie’s law. As we
see from formula (2.7), it is possible to determine
the value of the magnetic moment of the mol-
ecules in the gas, or rather, the quan.tity
(ugg)¥J (J 4 1), by measuring the proportion-
ality factor between 1/T and ¥. L,

As we already know, departures from Curle.s
law become appreciable when temperature 1s
lowered (especially in solid and liquid para-
magnetic materials). This is only natural becagse
in deriving formula (2.9) we neglected the in-
teraction between atomic moments: the magnetic-
dipole interaction and especially the exchange
interaction. This is quite justified at high tem-
peratures*, so that we have met the goal of this

* We can ignore the interaction of the particles of an
ordinary classical gas at high temperatures becausc
(3/2)kT is the mean kinetic energy of a molecule, so
that the mean energy of interaction per one particle can
of course be neglected if it is small compared with
(3/2)kT. In a gas of magnetic needles temperature deter-
mines only the occupancy of magnetic levels. Has this
anything in common with the interparticle interaction?
Nevertheless we will be able to show (see Ch. 3) that
the interaction can indeed be neglected at plgh tempera-
tures, that is, the model of the gas is valid.
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subsection. Later we shall describe the effects
of this interaction.

IZlectron Paramagnetic Resonance

We have found enough by now about atomic
magnets and about the distribution of magnetic
particles over energy levels, and are able now to
discuss an interesting and important effect that
is called the electron paramagnetic resonance
(EPR).*

When considering an individual magnetic mo-
ment in a constant uniform magnetic field (see
Sec. 1.6), we were able to establish that a moment
lilted with respect to the field direction precesses
at a frequency yH, where y is the gyromagnetic
ratio. When seen “sideways”, the moment appears
to be oscillating harmonically. But it is well
known that if a body vibrating at its natural
frequency is subjected to an alternating force at
the same frequency, the resonance arises: the
vibrating body removes energy from the source
of the force.

Is it possible to create a periodic force acting
on the magnetic moment? Yes, it is. All one
has to do is to rotate the magnetic field, that is,
to add to the constant component of the field
another, alternating component acting on the
magnetic moment and directed at right angles
lo the constant component; this alternating
component must rotate around the former at

* The electron paramagnetic resonance was discovered
by E. K. Zavoisky in 1944 in experiments with iron-
group salts. Arguments in favor of the possibility of
I'PR were suggested as early as 1922,
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a frequency w.* If o = yH, the electron para-
magnetic resonance sets in; it is manifested by
an abrupt increase in the losses of the magnetic
energy of the alternating magnetic field. This
is the explanation of EPR in “classical” terms.
The quantum explanation is even simpler. Let
us specify “the most quantum” of the gases: the
gas of electron spins. Then, g = 2, and, as always,
up is the Bohr magneton. In the electromagnetic
wave field particies can jump from the lower to
the upper level if the energy of the electromagnetic
quantum, that is, one photon, equals the differ-
ence between the energies of the levels: when
ho == 2pugH. Note that the classical and quantum
conditions for EPR coincide because the spin
gyromagnetic ratio is y = e/m.c.
Electromagnetic waves can interact not only
with electron magnetic moments but also with
nuclear magnetic moments. The energy of nuclear
particles in a magnetic field depends on the
value of the projection of its magnetic moment
onto the magnetic field. As in the case of electron
magnetic moments, a system of equidistant
levels is produced so that transitions between
these levels can be induced by electromagnetic
radiation. This phenomenon is called the nuclear
magnetic resonance (NMR).** Qualitatively EPR

* A longish sentence may have given the impression
that implementation should be difficult. Usually a spec-
imen is placed in a resonator in which a periodic high-
frequency electromagnetic field is produced, and the
resonator (with the specimen) is placed either between
the poles of a magnet or inside a solenoid.

** This nuclear magnetic resonance was discovered and
explained by F. Bloch and E. Purcell in 1946 (Nobel
Prize in physics, 1952).
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and NMR are very similar, but quantitatively
they differ very counsiderably because of the
difference between the eleciron and nuclear
magnetic moments. (See Problem 11.)

EPR and NMR have grown into important
research tools, and their use is not restricted to
physics; these techniques were employed in a
number of instruments in chemistry, geology,
biology, and other fields where one has to “peer
into” a body without destroying it.

2.3. Diamagnetism

If we wanted the briefest possible definition of the
nature of paramagnetism, it would be: a magnetic
field orients the magnetic moments of atoms or
molecules.

Diamagnetism arises because in any atom and
in any molecule a magnetic field produces a mag-
netic moment proportional to this magnetic field.
The magnetic moment appears because moving
electrons are subjected to the Lorentz force F:

F==[vxH] (2.10)

The expression for the diamagnetic susceptibility
can be rigorously derived only in terms of quan-
tum mechanics. But we can choose an incon-
sistent approach: use classical mechanics to
illustrate the cause leading to the diamagnetic
cffect, evaluate the value of the diamagnetic
susceptibility, then give the exact formula, and
only then indicate at what step the derivation
was not rigorous. This is the approach we are to
follow. This will teach us how to use the results




1412 Ch, 2. Paramagnetism and Diamagnetism

of quantum mechanics while operating in classical
terms.

We shall see later that the diamagnetic sus-
ceptibility is quite small. If an atom already
has a magnetic moment, its change due to dia-
magnelism is so small that can simply be neg-
lected. Therefore diamagnetism is of interest
only in such atoms (or molecules) that have no
intrinsic (paramagnetic) moment.

We must start with constructing a “classical
model” of a diamagnetic atom. Presumably, the
simplest classical model without a magnetic
moment is as follows*: two electrons revolving
around a nucleus in opposite directions along the
same orbit (one clockwise and one counterclock-
wise). Obviously, each electron has an angular
momentum (and hence, a magnetic moment),
but the sum of the two momenta is zero.

Now let us place our “atom” in a magnetic
field H in such a manner that the orbits of elec-
trons are in a plane perpendicular to the magnetic
field. Before calculations, we shall make one more
reservation: the magnetic field is so small that
the Lorentz force (2.10) can be considered a small
perturbation in comparison with the force acting
on electrons in the field of the nucleus. Let v,
be the velocity of the electron moving along a
circle of radius R when the magnetic field H =
= 0, and v its velocity when H = 0. Then, by
equating the centripetal force to the radial
projection of the force acting on the electron,

* We remind the reader thal one “quantum” electron
can rotate and have zero magnetic moment, provided
it is in the s state (see p. 47).
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we can determine the change Av induced by the
wagnetic field in the velocity of the particle.
When H = 0,

2
’_”%’0: Fp
and when H == 0,
mevt g _ el
T Fp v

Subiracting one equation from the other and

retaining only the term linear in A, we obtain

e

Av= e R (2.11)
Note that the sign of Av is independent of the
direction of rotation while H == (. One electron
in our two-electron atom rotates slightly faster,
and the other slightly slower. The quantity
Av/R = —eH/2mq has the dimensionality of
[requency. It is called the Larmor frequency ©,
(named after the British physicist Joseph Lar-
mor). We see that the Lorentz force (2.10) makes
the electron revolve around the magnetic field.
This motion is superposed on the motion of the
electron at H = 0.

We have analyzed above a very particular
case, that of the magnetic field perpendicular to
the plane of the orbit. A more general theorem
can be proved (the Larmor theorem):

let the motion of electrons in the absence of magnet-
ic field be known; the motion in a weak magnetic
field K will be the same as the motion without
field with an additional rotatior. around H at
an angular velocity equal to the frequency or,.

£ -01378
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The motion around H is often called the Larmor
precession (Fig. 22),

In fact, we have already met the Larmor pre-
cession in Sec. 1.6 when considering the rotation
of magnetic moment in a magnetic field. This
was essentially an example of application of the
Larmor theorem: the motion of an electron

zZhH, 0y

Fig. 22. The normal to
the plane of trajectory
precesses around the field
H at the Larmor fre-
uency op,; R—radius of
the trajectory

(at H = 0) produces a magnetic moment that
precesses when placed in a magnetic field (natural-
ly, at a Larmor frequency).

Let us go back to our “classical” atom. At
H 54 0 both electrons gain an additional angular
momentum equal to m, AvR and aligned along
the magnetic field. Consequently, the atom
acquires a nonzero angular momentum equal to
the sum of the momenta of the electrons. But
with the angular momentum being distinct
from zero, the atom must possess a magnetic
moment M,. Since the angular momentum is
aligned along the field and the gyromagnetic ratio
is negative (see (1.10), e << 0), the magnetic
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moment is aligned against the field*:

o =2 g mAvR= —2 Ly

et us rewrite this expression in a form that will
make it possible to get rid of the classical features
of the model. A true “quantum” electron moves
over a sphere of radius r, not along a circle
a2 - y? = R? Since r? = a? 4 y? - 22 and since
all directions in a spherical atom are equivalent,
R? = (2/3)r®. We give r a subscript i indicating
the number of the electron in the atom and write
a correct quantum-mechanical expression for
the diamagnetic moment of any atom containing
7 electrons (in the atom discussed above, Z = 2):

zZ
My= —ZHE 5 p (2.12)

6mec?
i=1
If a unit volume of a body contains ¥ atoms, its
diamagnetic susceptibility is

2N
Adla= — Z (2.13)

6Ineca

This expression is strictly accurate if r? is inter-
preted as the quantum-mechanical mean. The
(rue meaning of these words can be grasped only
alter going into the details of the mathematical
equipment of quantum mechanics (see p. 42).
When evaluations are needed, r? can be replaced
with a?, where a is the size of the atom.

* 1f charges are positive, both the angular momentum
and magnetic moment induced by the magnetic field H
are aligned against the field.

8g*
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But what was the “trick” used in the derivation?
The derivation is based on assuming the exist-
ence of stable atomic orbits (the radius R was
assumed constant) and this can be justified only
by quantum mechanics that states that there are
discrete stable energy levels of atomic electrons.*

All materials consist of atoms and molecules
in which electrons move. Obviously, diamagnet-
ism is a general property. Of course, diamagnet-
ism exists also when atoms (or molecules) have
magnetic moments (this has already been men-
tioned before). In the general case the magnetic
susceptibility y must be written in the form

X= Xpara+Xd1a

The second term is negative, and it depends on
the ratio between the diamagnetic and para-
magnetic susceptibilities whether the substance
Is paramagnetic or diamagnetic. We shall pres-
ently demonstrate that |4, | < Xpara» that
1s, if a substance is composed of atoms- with
magnetic moments, this substance is paramag-
netic. Indeed,

Ydia _ kTmea® (2‘,14)

Apara K2

but A2/mga? is, by an order of magnitude, the ener-
gy of an electron in the atom, &, (see Sec. 1.4);
it is approximately equal to one or several
electron volts and 1 eV &~ 10* K. Obviously, in
normal conditions kT <« A?m.a?, and hence,

[ Xata | € Xpara-
By way of “justification”, we can say that formula (2.13)

was derived in 1905 by P. Langevin who did not go
beyond classical physics.
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The following arguments show with special
clarity that the diamagnetic moment is small
compared with the paramagnetic moment: the
magnetic field that magnetizes the gas of magnetic
needles must exceed kT/up (it was evaluated on
p. 105), while the magnetic field necessary to
induce the magnetic moment of an atom of the
order of pg = efi/mqc must be tremendously large:
of the order of ¢,/ug ~10® Oe. In this field
the magnetic energy is of the order of the Coulomb
energy; obviously this will result in a complete
restructuring of the atom (in particular, formulas
(2.12) and (2.13) cease to be valid). (See Prob-
lem 12.) :

A magnetic field H ~ 108 Oe could not be
produced so far in terrestrial conditions, but
fields on this scale or even stronger seem to be
routine in space.

In contrast to the paramagnetic susceptibility,
the diamagnetic susceptibility is independent
of temperature. This is caused by the already
discussed wide energy “gaps” between the ground
state of the atom and its excited states (only the
ground state contributes to the mean value, and
the contribution of the excited states is expo-
nentially small; see the footnote to p. 106).

The diamagnetic susceptibility is so much
smaller than the paramagnetic susceptibility
that even minute doping of a diamagnetic sub-
stance with paramagnetic atoms makes this sub-
stance paramagnetic.

There is another point: so far we have dis-
cussed only the electron magnetism (in fact, we
listed on p. 60 the values of the magnetic moments
of the proton and neutron). We are justified
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by the smallness of nuclear magnetic moments
(the proton magnetic moment is less by a factor
pf 790 .than the Bohr magneton, that is, than the
intrinsic magnetic moment of the electron). If,
however, the object of study is diamagnetic and
the nuclei of its atoms have magnetic moments,
the nuclear paramagnetism may become appreci-
able. The expression for the nuclear paramagnetic
susceptibility is readily written by analogy to

the electron paramagnetic susceptibility (see

formula (2.9)):

_ Nnuchfue I (I+1)
Xnuc - kT 3

Here NV, is the number of paramagnetic nuclei

per unit volume, p,,. is the magnetic moment of
the nucleus, and 7 is its spin.

Even if y,4c < | ya1a |, it is possible to detect

the nuclear paramagnetism by the temperature
.behavior of the magnetic susceptibility. It was
in thi§ way that B.G. Lazarev and L.V. Shubni-
kov discovered in 1936 the nuclear paramagnetism
by measuring the magnetic susceptibility of
crystalline hydrogen at temperatures very close
to absolute zero and measured the magnetic
moment of the proton.

Magnetism Is a Quantum Phenomenon

We were emphasizing throughout the book that
magnetic properties cannot be studied without
using quantum mechanics. Nowadays any text-
book on the physics of magnetic phenomena is
totally based on quantum mechanics. Neverthe-
less, when we look at a huge electromagnet hoist-
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ing up a car (such pictures are often shown in
textbooks and science-popularizing books on
magnetism), it is difficult to imagine that mag-
netism is a quantum phenomenon. Of course, any
classification of macroscopic phenomena into
quantum and classical phenomena is arbitrary,
although we understand intuitively which of
these phenomena must be regarded as classical.
For example, the properties of gases are very
well described by classical statistical physics.
The characteristics of atoms or molecules of
which gases are composed serve as the “initial
conditions of the problem” and are taken as
initial data, and calculations are carried out in
accordance with the laws of classical physics.
When we deal with a paramagnetic gas, we can
assume that atoms possess microscopic magnetic
moments M,, neglect space quantization, and
calculate the magnetic moment per unit volume
by using the formulas of classical statistical
physics. This gives us for the classical value of
the paramagnetic susceptibility

NM3a
Xel =377

(See Problem 13.)

One must keep in mind that the atomic mag-
netic moment has a quantum origin. This is seen,
in particular, in the fact that M, = eh/mc is
proportional to Planck’s constant 7. The formal
transition to classical physics occurs when 72
tends to zero.* As a result of this operation both

(2.15)

* The diamagnetic moment also tends to zero as & — 0
because the size of the atom vanishes together with #
(a =~ R¥/mee?).




120 Ch. 2. Paramagnetism and Diamagnetism

the paramagnetic moment and magnetic sus-
ceptibility ., also tend to zero.

A rigorous and consistent use of the formulas
of classical statistical physics makes it possible
to establish that whatever the interactions be-
tween particles, their total magnetic moment in
the state of thermal equilibrium vanishes even
if the particles are charged and placed in an
external magnetic field.* This astonishing fact
occurs because the Lorentz force (2.10) produces
no work (see Problem 14) and thus leaves the
energy of a particle unaltered, while the equilib-
rium properties of particles are determined by
their distribution over energy.

The general result of classical statistical phys-
ics, formulated above, emphasizes once again
the limitations involved in deriving formula
(2.13). If we acted consistently, the result would
be zero.

To conclude this subsection, we want to write
again the formula for the diamagnetic susceptibil-
ity (2.13), replacing » r} with the square of the
Bohr radius a* = (A?/m.?)?, and the number of
atoms per unit volume, N, with the quantity
1/a® = (mqe* h*)3. This last substitution signifies
that we consider a body in a state of condensation,
with the distance between atoms being of the
order of the atomic size.

The result of the substitution is

sl = 5 (52) ~ 5 ()] (2.16)

* Of course, we cannot assume here that the particles
have an intrinsic (spin) magnetic moment. We have
already emphasized that the existence of spin and spin
magnetic moment constitutes a purely quantum effect.
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that is, the smallness of the diamagnetic sus-
ceptibility is a corollary of the smallness of the
charge. We remind the reader that ¢*/7c is the
dimensionless squared charge (see pp. 15-16).

2.4. Melals. Pauli Paramagnetism

Our starting point in studying paramagnetism
and diamagnetism was that materials consist of
atoms (or ions) and molecules. But there exist
a very wide and very important class of sub-
stances, namely metals, consisting of ions and
clectrons. A metal is an ionic lattice embedded in
a “sea” of electron gas. This notion, that at first
clance seems extremely primitive, proves quite
rorrect under a serious analysis. Furthermore,
this notion can be simplified. We can forget the
ions that don’t let the electrons leave the metal*
and assume that electrons are in a metal sample
as if in a box, one or several electrons per atom;
the interaction between electrons can be neglected
because on the average the repulsive forces are
cancelled out by the forces of attraction to ions.
The electrons that broke away from ions are called
free electrons, or conduction electrons.

Of course, this is a simplified model. It is called
the Drude-Lorentz model. Despite its ultimate
simplicity, this model proved possible, after
Sommerfeld had introduced the ideas of gquan-
(um statistics into it, to explain many properties
of metals, and the results obtained in this frame-

* To ask who restrains whom would, of course, be mean~
ingless. Electrostatic repulsive forces would push ions
away unless electrons compensated for these forces.
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work are often in a good agreement with experi- .,

mental data.

At the first glance, a metal must always be para-
magnetic. Indeed, electrons represent a typical
gas of magnetic needles. The number of electrons
N, per unit volume is tremendous: N, =

~ 10?>-10% cm 3. On the atomic scale the magnet- _'»,

ic moment of each electron is also very large,

that is, equal to the Bohr magneton. True, the j
ions of the metal (they cannot be completely }
ignored) must be diamagnetic because after §
the separation of valence electrons their electron §
shells are much like the electron shells of the
atoms of inert gases (the metals of transition %
elements, and the metals of the iron group among 3
them, constitute an exception; we shall discuss 1
them later). It seems that the diamagnetism of !
ions cannot overpower the paramagnetism of -
conduction electrons. Nevertheless, diamagnetic -

metals exist as well.

There is another fact that does not allow us .

to extend directly the conclusions obtained in
analyzing the gas of magnetic needles to con-

duction electrons: the magnetic susceptibility |
of metals is practically independent of temper-

ature.
Whatisthereason then? What causes the special

properties of the electron gas in comparison with }
the classical gas of magnetic needles? The point |
is that the electron gas in a metal is a quantum |

gas. Quantum gases represent such an important

object in the modern physics of liquid and solid :

states that they deserve a special subsection.
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Fermi and Bose Gases

We have mentioned earlier (see p. 58) that par-
licles are divided into two classes: fermions and
bosons. The difference between fermions and
bosons lies in a specific quantum property due to
a different behavior of the wave function under
the interchange of particles. Let us try to find
out when the “specific quantum properties” must
manifest themselves in a gas of particles with
mass m, each. The value of the particle mass is
quite important for the analysis to follow, so that
we began our characterization of the gas by
fixing the mass of its particles. Let the number of
gas particles per unit volume be N, and the gas
temperature be 7. It should not be difficult to
deduce that the mean distance between the par-
ticles in a gas, d, is N-1/3; it is obviously inde-
pendent of temperature. According to classical
physics, the mean energy of gas particles is

e = (3/2)kT. Hence, the mean momentum is

p = V' 3kTm,. Now let us recall the uncertainty
relations (1.17). As long as the uncertainty in
a physical quantity (coordinate and momentum
in the present case) is small in comparison with
its mean value, we can forget about the quantum
properties of the system: it behaves as a classical
system. But if this condition is not met, we have
to analyze the system by using quantum laws.
The mean distance between particles indicates
the accuracy with which the coordinate of an
individual particle can be indicated, that is, it
defines the uncertainty Axz: Az ~d = N-1/3,
Therefore, by virtue of the uncertainty relations
(1.17) the momentum of each particle has an




124 Ch. 2. Paramagnetism and Diamagnetism

uncertainty Ap no less than A/d = ANY3. As
temperature decreases, p also decreases and

drops to about Ap at a temperature 7'y such that
kTq = R*N?*3/m,. Therefore, :

at T> T, a gas can be considered classical,
and at T g Ty the laws of quantum mechanics
must be taken into account;

2/3
y i\ (2.17)

mak

At T < Ty the gas is said to be degenerate
(degenerate Fermi gas if the particles of the gas
are fermions, and degenerate Bose gas if they
are bosons). '

Let us calculate Ty for a gas of magnetic
needles, for example, oxygen. Taking m, =
= 0.5-10"*2 g (for the O, molecule) and N =
= 2.7-10" em~=3, we obtain T; ~ 1073 K. Be-
fore its quantum properties manifest themselves,
oxygen will turn into a liquid (at —183 °C =~
~ 90 K) and then into a solid (at —219 °C =~
~ 54 K). But in liquid and solid (nonmetallic)
paramagnetic bodies the interaction between
magnets becomes appreciable at low tempera-
tures, and the model of the gas of noninteracting
magnetic needles has to be dropped.

The picture is quite different if we turn to the
electron gas in metals. At ¥, ~ 10 cm= and
m, ~ 1077 g, T'qy ~10% K (sic), that is, metals
always (at any temperature) contain the guan-
tum electron gas.

The properties of Bose gases at I’ < T will
be discussed in Ch. 3. Here we are going to speak
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only about the properties of Fermi gases; indeed,
electrons are fermions.

Since in normal conditions the temperature 7'
ts much less than Ty, we first have to analyze
the limiting case, namely, the behavior of the
clectron gas at 7 = 0.

The state of a free electron is characterized by
its momentum p and the projection of its spin s,

Fig. 23. Momentum space.
Marked on the coordinate
axes are the projections of
a particle momentum

(s, = +1/2). In zero magnetic field the electron
energy & is independent of the spin direction
and is determined only by momentum:

2
s:z—pm—e, or pi-+ pp+ pi=2mee (2.18)

Let us take a Cartesian system of coordinates,
with the projections of momentum marked on
its axes (Fig. 23). We have “created” the momen-
tum space. In this space, momentum as a function
of energy (2.18) is represented by a sphere of
radius )/ 2m.e. Imagine now that the whole
momentum space is divided into infinitely small
cells. Each cell corresponds to a specific value of
momentum p. The number of states (cells) dNV,
with electron momenta between p and p 4+ dp
is proportional to the volume of the spherical
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layer of thickness dp*:
4updp o« Ve de

(see (2.18)).
The function g (¢) = dN.de is called the
density of states. A more consistent analysis makes

g(e)

Fig. 24. Density of states of
€ the system of free electrons

it possible to establish not only that g (¢) « V¢
but also to calculate the proportionality factor:

g (v) = nzﬁs 2 ym3?V s (2.19)

(V is the volume of the metallic specimen). The
area under the curve (2.19) (Fig. 24) determines
the number of states with energy less than e.
Since the Pauli exclusion principle requires
that each state be occupied with only one elec-
tron, at 7 = O the electrons fill up all states up
to those with some maximum energy called the
Fermi energy, ep.

The Fermi energy is found from the condition
that all N, electrons of the metal be less than it.
This means that in order to determine the Fermi

* Because at this juncture we are interested in the number
of states with a certain value of momentum, whatever
its direction.
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energy we have to integrate the density of states
from O to ep and equate it to NV,

p -
i 2V2 3
Nezj g(e)de:m%lfmglze}/z
i
whence
_ (3n3Ne\2%3 R
w—=(T2)" 3 (2.20)

Note that to within a numerical factor (3n2)%/3/2
the Fermi energy &p coincides with the quantity
kTq.

A graphic illustration of the ﬁlhng of states
with free electrons is obtained in the momentum

Fig. 25. At T = 0 electrons fill
up the states with energy less
than ep. In the momentum
space these states lie within a
sphere of radius pg

space: at T = 0 the electrons fill in this space
the sphere (the Fermi sphere) of radius

o=V T = (220

(Fig. 25). The radius of the Fermi sphere is pr &
= h/d, where d is the average distance between
two electrons (by the order of magnitude, this
distance equals the size of the crystal unit
cell, a).
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We see that the motion of particles does not
stop at absolute zero of temperature. The Pauli
principle is “stronger” than the tendency of the

£() =0 40 0# kT <<e,

EFE g

(9) (b)

Fig. 26. Energy distribution of Fermi-gas particles at
T = 0 (a); the area under the curve g = g (e) (0 <& <<
<< ep) is equal to the number of electrons. At k7 &
it departs only slightly from the distribution at 7 = 0 (&)

E

system to drop to the least-energy state at 77 = 0.
(See Problem 15.) ;

Figure 26a shows the distribution of gas par-
ticles over energies at 7' = (. This distribution
changes only slightly at a nonzero low tempera-
ture (7 < Tg) (Fig. 26b).

L

Now we can return to describing the magnetic
properties of conduction electrons. When the
magnetic field H == 0, the energy of electrons
with spin oriented along the field is not equal to
that of electrons with spin oriented against the
field. By marking the direction of spin by an
arrow (pointing up for the former and pointing
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down for the latter), we find (see (1.28)):

2 .
81\: P —P-BH

2me

. | (2.21)

m:ﬁ:+ npH

As before;, here pg = efi/2mc. .
How do the N, electrons fill up their states

(cells) in this case? Figure 27 shows the dis-
tribution of electrons over energy when the

my

Fig. 27. Energy distribution of Fermi-gas particles in
the presence of a magnetic field (7 = 0): £ —density

of states of electrons with magnetic moment oriented
along the field; g, —that of electrons with magnetic

moment oriented against the field. The area under each
of the curves equals the number of the respective electrons

magnetic field is switched on. Note that the
levels of filling are identical for the electrons
with spin along the field and for the electrons
with spin against the field (both e; and &, are
smaller than the Fermi energy in the field H, ¢£).
[f these levels were different, some electrons
would “climb” to states with a different direction
of spin, and the energy of the system would be
lowered.

9014378
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The number of electrons with spin along the
magnetic field is somewhat greater than that of
electrons with oppositely oriented spins, ¥y >
> N;, because &; << e,. As a result the electron
gas is magnetized along the field, that is, it is
paramagnetic. In order to calculate the magnetic
moment of the electron gas, we have to find the
difference between the numbers of oppositely
oriented electrons:

Me:},LB(Nf-—NQ

We thus have to calculateV; and N,. This
is not difficult if we note that the density of states
with a spin in a given direction, g4 (&) (or 8\ (e)),
differs from g (&) only in a factor 1/2 and in the
reference point for energy. A simple calculation
based on that the energy pupH is small in com-
parison with the Fermi energy ey at practically
any achievable magnetic field H (see Problem 16)
shows that

Me = pb ( i~ )H=0-H

oep

and the magnetic susceptibility is

_ 3ub Ne
Here we have used expression (2.19).

The paramagnetism of the degenerate electron
gas is called the Pauli paramagnetism, or free-
electron paramagnetism.

In order to refer the magnetic susceptibility,
as before, to unit volume, assume that N, is the
number of conduction electrons per 1 cm?.
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Comparing (2.22) with classical formula (2.15),
we notice that the main difference lies in kT
being replaced with ep. Since always er > kT,
it is clear that taking into account the quantum
effects (the Pauli principle) has significantly
diminished the value of the paramagnetic sus-
ceptibility as compared with its classical value.
Owing to degeneracy of the properties of electron
gas, temperature is not as important a factor
as in classical gases. In particular, the Pauli
paramagnetic susceptibility is practically in-
dependent of; temperature. The paramagnetic
susceptibili)t}/ of the Fermi gas is of. the same
order of magnitude as the diamagnetic suscepti-
bility of a liquid or a solid. (See Problem 17.)

2.5. Metals. Landau Diamagnetism

In describing diamagnetism, we attempted to
persuade the reader that diamagnetism is a
general phenomenon in nature. Is then the
electron gas an exception? This suspicion is based
on the following “arguments”. We have empha-
sized that the derivation of the formula for the
diamagnetic susceptibility (2.13) was based on
lwo starting points: the Larmor theorem and the
stability of orbits. Free electrons have no stable
orbits and are not subject to the Larmor theorem.
Nevertheless, the electron gas possesses both the
paramagnetic and diamagnetic susceptibility, the
so-called Landau diamagnetism. It is fairly diffi-
cult to derive the formula for the diamagnetic
susceptibility of the electron gas, so that we

g%
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simply give it here:
1
L= — 3¥AP (2.23)

~ How does it happen that the electron gas has
diamagnetism? Free electrons have no discrete

Fig. 28. An electron in the
magnetic field H moves along
a helix of radius R =
=mev, /| e |H, the pitch of
the helix (along the mag-
netic field) being equal to

d = vjwe = mevy /e | H

— 2 2
v, = ]/Ufc—{—vy

stationary states at H = 0, but they appear at |

H =£ 0. It is said that

thegmotion of electrons in a magnetic field is
quantized.

The nature of the quantized motion of electrons
in a magnetic field is simple. The Lorentz force
(1.20) makes the electron revolve around H at a
vibration frequency ., = eH/mec* (Fig. 28).

* This is the frequency at which electrons revolve in |

a cyclotron, hence, the name of the cyclotron frequency.
Note that w; = 2wr,, where oy, is the Larmor precession
frequency. The Larmor theorem (see p. 113) does not hold
for the motion of free electrons because in this case the
Lorentz force cannot be treated as a small perturbation.
There is no other (strong) force in comparison with
which the Lorentz force is weak.
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Moreover, the electron obviously has to move
along the field. This last motion is not affected at
all by the Lorentz force. The energy of the electron
is the sum of the energies of motion along the
ficld and in a plane perpendicular to the field. Let
us look at the motion of the electron in a plane
perpendicular to the magnetic field. The word
“look” must be treated here literally rather than
in its metaphorical meaning. Namely, if we look
at the rotating electron sideways, we notice that
it vibrates at the cyclotron frequency . (see
Fig. 28). This is not merely a verbal analogy. The
formulas describing the motion of the electron
in a plane perpendicular to the magnetic field
reduce to the formulas describing the vibrations
of a particle. And you already know that a
particle vibrating at a frequency o is allowed to
have only discrete energy levels &, = hiw (n +1/2)
(n=20,1, 2, ... are integers) (see p. 40).

Please reread the last paragraph. We think that
now you are not going to be very surprised to
find that

the energy of motion of an electron in a magnetic
field can assume only the following values:

1y ., Ph
b::nmc(nJr?)ﬂ_z_ni, n=0,1,2, ... (2.24)

where p  is the projection of momentum p onto H.
If the intrinsic magnetic moment of the electron
is taken into account, the levels (2.24) split into
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two systems of levels:
_ 1) Ph

1 m
&1=(n+5 ) i0e+ 5o+ pall

We already know the result of this splitting,
and this is the Pauli paramagnetism. Hence, for
the time being, we are going to ignore it.

When the energy levels of electrons (2.24) are
known, it is possible to calculate their magnetic
moment and then the magnetic susceptibility of
the electron gas. If the magnetic moments of
electrons are not taken into account, the electron
gas is diamagnetic, with

N 1 e2h? Ne 1
L= — 13 Wit ep 3 P

But if we consider both the diamagnetism and
the paramagnetism of the electron gas, we arrive
at the formula for the net magnetic susceptibility
(see formula (2.22)):

1, _2 5 Ne r
Xe=Xp—g Xp=FAp=Wb T~ (2.25)
It is positive, that is, the paramagnetism is
predominant. How can we explain the fact that
certain metals are diamagnetic? Of course, the
ion skeleton of the metal is also there, and it is
diamagnetic (see above); its susceptibility must
be subtracted from %,. And since %, is numeri-
cally small, the sign of the magnetic susceptibility
of a metal can be either positive or negative.
However, this argument (though it is quite
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correct) cannot explain why a number of metals
(such as bismuth) are highly diamagnetic.

The magnetic properties of the electron gas
find their complete explanation if we take into
account another fact not included in the Drude-
Lorentz-Sommerfeld model. Conduction electrons
move not in “vacuum” but in a field of forces
created by the ions of the crystal lattice. The
study of the motion of electrons in a periodic
field of the lattice is the subject of a special chap-
ter of quantum physics of solid state: the band
theory. One of the conclusions of this theory
states: in certain cases the motion of an electron
through a lattice can be considered’ quasifree*
and the ordinary electron mass m, must be
replaced in expression (2.18) with the effective
mass m*, that is, we assume that

pﬂ
e= (2.26)

The difference between the effective and the
ordinary mass takes into account the interaction
between an electron and lattice ions.

What is the effect of the replacement m, — m*
on the formulas given above? The Bohr magneton
up is not affected by this replacement (the in-
trinsic magnetic moment of the electron is a
characteristic as “private” as the electron chargee,
and neither of them is related to the motion of

* Adding the prefix “quasi” (from the Latin quasi for
as if, almost) somstimes is a method of “and none will
be the wiser”. The hest interpretation of the prefix “quasi”
would be: “All is not as simple as the authors make you
believe in the text” (see M. I. Kaganov, Electrons, Pho-
nons, Magnons, Mir Publishers, Moscow, 1981; see also
Sec. 3.8).



136 Ch. 2. Paramagnetism and Diamagnetism

the electron through a lattice*), so that we readily
obtain from (2.22) andY(2.25) that

S FIENEN R Y

m¥*

(2.27)

i 3n2Ne\2/3 A2
EF:( v ) om*

The effective electron mass can be less than
the “true” electron mass and sometimes, however
paradoxical it may sound, much less. Such metals
can only be diamagnetic. This explains why
bismuth is highly diamagnetic.

2.6. Superconductors: Ideal Diamagneties

If we try to put the gist of our story of the Landau
diamagnetism in a “nutshell” and formulate the
causes of this phenomenon, then we obtain the
following residue: diamagnetism arises because
electrons rotate around magnetic lines of force.
And it is obvious that calculations must be
carried out in the framework of quantum me-
chanics: indeed, we deal with the motion of
microscopic particles, namely, electrons.
Each conduction electron moves independently
of others. In a certain sense, it is a spurious coin-

* This statement is rather too strong: the interaction
of the intrinsic magnetic moment of electrons with the
orbital magnetic moment of electrons and ious (the so-
called spin-orbit interaction, or coupling) is important
in some conductors. The spin-orbit interaction changes
the intrinsic magnetic moment of the electron. Moreover,
the electron magnetic moment feels the interaction with
other electrons. This can also change the value of pg.
The essential thing is that up 5= eh/2m*c, so that in all
cases % #* (2/3)%p.
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cidence that the cyclotron frequency o, =
= ¢H/m.,c 1is identical for all electrons. In a
more rigorous theory that takes into account the
field of ions this property is not preserved: the
rate of rotation of an electron depends on its
energy and on the projection of its momentum
onto the magnetic field. This somewhat changes
the quantization formulas, thereby changing the
value of the diamagnetic susceptibility.

But is it possible for electrons to rotate around
the magnetic field as a whole, say, to flow as
water in a rotating vessel? Of course, it is im-
possible in normal conditions. A coherent rotation
of electrons means that a macroscopic current
flows through a conductor. However, the con-
ductor must thereby get warmer, and the current
must damp out. The magnetic field that induced
this motion when it was switched on cannot
sustain the current because it does no work. There-
fore, the motion of electrons cannot be coherent.

But ... there always exist exceptions to rules.
And these exceptions invariably only confirm
the rules, provided we find out what made the
exceptions possible. Most of the metals transform,
at very low temperatures (in the vicinity of
absolute zero), into a peculiar superconducting
state* characterized by zero resistance. Metals in
superconducting state are called superconductors.

* To date the material with the highest temperature of
superconducting transition is the alloy Nb,Ge. It equals
23 K. When preparing the book for publication, we left
blank spaces for the name of the material and for the
record-high transition temperature. The search for
high-temperature superconductors pever ends. The above-
mentioned alloy was discovered in 1973,
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They have already been mentioned in the first
section of the present chapter.

The current that flows through a superconductor
is indeed not damped out. Superconductivity
was discovered in 1911 by Heike Kamerlingh
Onnes in the course of measuring the conductivity
of mercury; and for many years the factors causing
the creation of the superconducting state remained
a puzzle. Only 46 vears later (in 1957) John

g
Normal state

H.(T) - Fig. 29. Phase diagram of
a superconductor. The curve
H = H. (T) separates the
normal state from the su-
T, T  perconducting state

Bardeen, Leon Cooper, and John Schrieffer were
able to construct the microscopic theory of this
unique phenomenon. Unfortunately, here it would
be impossible to speak about superconductivity
in detail. The reader will have to accept a state-
ment: a current flowing through a superconducting
circuit is not damped out. What then are the
consequences for the magnetic properties of these
materials?

Electrons become capable of completely push-
ing out the magnetic lines of force from the bulk
of the metal. For this to happen, a current must
flow on the surface of a superconductor, producing
a magnetic moment .fV directed oppositely to
the magnetic field and equal to —(1/4)nHV.
Hence, in a superconductor B = H + 4n.# = 0,
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ig. 30. Magnetic cushion. A ma
conducting plate

gnet hovers over a super-
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so that
a superconductor is an ideal diamagnetic material.

We chose to write “electrons are capable of”,
“current must flow along the surface”. These are
rhetorical expressions. But the situation in
superconductors placed in a magnetic field is
precisely this: a surface current appears, and the
magnetic lines of force are thereby pushed out of
the bulk of the superconductor. This is the so-
called Meissner effect. The magnetic field is
repelled because this is energetically favorable:
the energy of a metal is lower at B = 0 than at
B == 0. (Strictly speaking, the current in a super-
conductor flows not along the surface but in the
subsurface layer with thickness § ~ 10~° cm.)

One more remark must be made: the behavior
of superconductors described above is ohserved
in relatively weak magnetic fields. A strong
magnetic field destroys superconductivity: it
causes the metal to switch to the normal (non-
superconducting) state. Figure 29 shows the
diagram of state of a superconductor. You see
the boundary for the existence of the super-
conducting state.

The repulsion of the magnetic field from a super-
conductor is clearly demonstrated by hovering of
a magnet over the superconductor (Fig. 30).
(See Problem 18.)

Chapter 3
Ferromagnetism

Some of the solids are such that they are
magnetized spontaneously, by virtue of internal
forces, and thus can serve as macroscopic sources
of a magnetic field. These are ferromagnetic
materials, or simply ferromagnetics. Ferromagnet-
ism exists not at all temperatures. As tempera-
ture increases, the intrinsic spontaneous magnetic
moment of a body decreases and vanishes at a
certain temperature 7',, called the Curie tem-
perature (of course, if the external magnetic
field is zero, that is, H = 0). Above the Curie
temperature ferromagnetic wmaterials}¥ become
paramagnetic.

4 ! high temperatures all ferromagnetic mate-
rials are paramagnetic, but not all paramagnetic
materials are ferromagnetic at low temperatures.

Different materials have different values of the
Curie temperature T', and of the spontaneous
magnetic moment density o#, (at 7 —0) (see
Table 5).

Table 5§
Material Te ‘ Co J Ni
oAl g, erg/gauss 1735 1445 509
7., K 1043 1403 631
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M, gauiss
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Fig. 31. Spontaneous magnetic moment density of Ni
as a function of temperature

Figure 31 plots the temperature dependence of
the spontaneous magnetic moment density of's (T)
of nickel.

3.1. Self-Ordering of Atomic Magnets

The analysis of physical systems gonsisting of
a macroscopic number of interacting partlcles
is one of the most complicated problems in quan-
tum physics. Although sufficiently gener.al ap-
proaches to solving such problems are available,
no single recipe is known. In each concrete case
it is necessary to develop a more or less adequate
model by simplifying the problem so that it
allows for a consistent mathematical solution.
A comparison with experimental datg and
evaluation of neglected terms make it possible to
establish the range of validity of the.mod'el.
Quite often the model describes the situation
“in general”, while departing from the truth in
finer details. ‘
This brief introduction is meant as a warning
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to the reader: what we present in this section is
a simplified model of ferromagnetism, a model
reflecting the behavior of the system but not
aspiring to give a detailed description. It is called
the self-consistent field model. This term took
root after the model had been found fruitful in
various domains of the physics of condensed

(@) (®

Fig. 32. A crystal composed of paramagnetic atoms:
(¢) temperature I' above the Curie temperature T,;
(6) T = 0, all moments point in the same direction

matter. When applied to ferromagnetism, it is
called the Curie-Weiss model because it explained
the origin of the Curie-Weiss law (see pp. 94-95,
formula (2.2)).

Let us start with postulating the existence of
a gas of magnetic needles; indeed, as we have
said above, all ferromagnetic materials are
paramagnetic at high temperatures. We suggest
that the reader imagine a crystal in each of whose
lattice sites there is an atom equipped with an
arrow representing the magnetic moment (Fig. 32).

In order to avoid cumbersome calculations, we
assume that J = 1/2, g = 2, and m; assumes
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two values: ++1/2 and —1/2; the magnetic moment 3§
of each individual atom equals the Bohr magneton '
ug. Thisis not the simplification mentioned above. &
This simplification is easily replaced with the |
model of a magnetic-needles gas with an arbitrary 4
angular momentum J of each individual magnet. ¥ |
In most cases it is assumed that the magnetic &
moments of the atoms that comprise a ferro-
magnetic body are of spin, not of orbital, origin. §
But why? What makes a theorist ignore the §

orbital magnetic moment?

Electrons in an atom move in a field with §
central symmetry; consequently, their angular }
momentum is conserved and can be used as a
characteristic of the stationary state of the atom.
The field of forces in a solid in which electrons 3
move is not centrally symmetric, so that the §
angular momentum is not conserved, and other }
physical quantities have to be used to characterize §
this motion (we cannot go into details here). The 4
spin of an atom is only weakly related to the §

orbital motion of electrons. Thus it can be re-

garded as a “good” quantum number. The spin-
spin interaction as well as the interaction be-§

tween spins and the orbital motion of electrons
only orient the atomic spins in space, without i
changing the quantity of each atomic spin. The
change would involve a large loss of energy and §
its probability is therefore very low (see p. 106). 3
These are the arguments that make it possible to{
operate in terms of the gas of magnetic needles, |
with the magnetic needle interpreted as the spin'
magnetic moment of an atom. :

The Curie-Weiss model consists in a simplifying
assumption that magnetic moments are ordered 3

Ch. 3. Ferromagnetisti
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not only by an external magnetic field H but also
by the cumulative action of all magnetic mo-
ments; this assumption reduces to replacing the

;peiglietic field H with an effective self-consistent
ield *: '

Hepp = Haoff (3.1)

~ We shall do our best to substantiate this expres-
sion in the next section, but for the Curie-Weiss
model formula (3.1) is fundamental. The constant
« must be related to the observed quantities and
thus must be found experimentally.
Using formulas (2.8) and (3.1), we find a
transcendental equation for determining the mag-

netic moment density o# of the ferromagnetic
(the Curie-Weiss equation):

b v (H+oofl)
# = Nugp tanh N (3.2)
where &V is the number of atoms per unit volume.
The rest of this section is devoted to analyzing
Lh1vsv equation and its solutioms.
e begin with the principal point: findin
[ [ : g out
whether the Cur1e-_We1ss equation describes ferro-
magnetism, that is, the appearance of sponta-
neous (in zero external magnetic field) magnetiza-
tion off;. To achieve this, let us analyze the
solution of equation (3.2) at H = 0:

7 /4
oMs= Npg tanha”—%ﬂT s (3.3)
We denote
HBG%S kT
— =S —
o KT 0 LN

* This is indeed a fundamental simplification. We shall
discuss it later.

10—01387
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It is readily seen that in these notations equa-
tion (3.3) can be rewritten in the form

bz = tanh (z) (3.3")

convenient for graphical analysis. Look at Fig. 33.
You notice that in the case b > 1 the equation
has a single solution, # = 0, and in the case

tanh(x)

————

Fig. 33. Graphical solation of the Curie-Weiss equation

(3.3):
I—straight line with slope b greater than unity; 2—

straight line with slope b less than wnity. The points X

on the abscissa axis are the roots of equation (3.3)

b < 1 there are three solutions. The inequality
b>1 means that T > a(ppN/k). If o >0,
then, by virtue of equation (3.3), the spontaneous
magnetization is zero (/5 = 0) at high tem-
peratures, It is natural to regard the quantity
a(uiN/k) as equal to the Curie temperature 7',
because the spontaneous magnetization vanishes
precisely at T = T.. Thus

2N

P-JZ = T,
Actually, we have yet to check whether equation
(3.2) describes the paramagnetism of the magnetic-

3.1. Seli-Ordering of Atomic Magnets 147

needles gas at 7' > T,. So far we keep in mind
that o > 0.

But what does it mean that there are three
solutions at 7 << T',? Obviously, we have to
choose one of them. What should our criterion
be? The answer is: the solution e#; = 0 is un-
stable and thus cannot be realized, while the

U(x)

wh——

|
|
!
X X3 3 X

Fig. 34. Potential energy of a particle: the force acting
on the particle becomes zero at points z;, z,, and a;
at points z, and =z, the particle is in a stable equilib-
rium, and at z, it is in an unstable equilibrium

nonzero solutions (o# 5= 0) are stable. Only one
of them is realized. So far we need not worry
which one of the two: they differ only in the
direction of the vector ., and we are interested
in the magnitude of this vector.

If we dealt with a single particle, the stable and
unstable states could be illustrated with the
curve of potential energy U as a function of the
z-coordinate. Let the potential energy have the
form shown in Fig. 34. The force acting on the
particle equals zero at three points, where U (z)

10*
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reaches extrema:

z, = —z3%0, z,=0

But the position of the particle is stable only at
z, and zg (at which U (z) reaches minima). From
the point z, = O (where U (z) reaches the maxi-
mum) the particle slides down after any arbitrari-
ly small perturbation.

Statistical physics formulates a strict rule that
makes it possible to distinguish between the
stable and unstable solutions of the Curie-Weiss
equation. This rule is very similar to that given
above. We have to find the value of o#, at which
a certain quantity called the free energy reaches
a minimum, The free energy differs from the
conventional energy in that it takes into account
the number of ways in which a given macroscopic
state with a given energy can be created. The
state that can be realized in the maximum num-
ber of ways is stable. And the free energy is shown
to reach the mazimum at iy =0 if T < T,.

Now let us clarify the dependence of «#; on
temperature at 7 << I',., We begin with the
range of temperatures in close vicinity of the
Curie temperature (I'<<c T.). At T = T, the
magnetic moment density «#; = 0. Obviously,
at I’ ~ I, the magnetic moment is very small.
We can therefore use an approximation for tanh z:

tanhz ~ z —-%x‘*, z<1

Substituting this expression for tanh z into
(3.3"), we find that z factors out and can be
reduced (we are not interested in the zero solu-

A
e

3.4. Self-Ordering of Atomic Magnets 149

tion), and the nonzero solution |z | is:

lz | =V3{1 =)
Now we have to restore the physical variables:
T
ohly= Ny 1/ 3 (1—=) (3.4)

Note that when writing the factor in front of the
radical we have replaced I with 7 .. Thisreplace-
ment is dictated by the approximation for tanh z.
At temperatures much lower than the Curie
temperature (7 < T.) we have to use an ap-
proximation for tanh z at large values of x:

tanhz ~1 — 272, z>1
and obtain
2T,
oM ::NMB(1—2e_T)’ r<T. (3.5)

The approximation used above required that we
replaced the quantity ¢# in the exponential with
its value at 7 = 0 (o5 |[r—¢ = Nug).

We find that the Curie-Weiss equation de-
scribes the total magnetization of a ferromagnetic
material at 7 = 0: all magnetic moments align
parallel to one another and o#; = Nup. As the
temperature increases, the magnetic moment
density diminishes, and at the moment when it
vanishes, at 7 = T,., the derivative dM,/dT
tends to infinity.

A comparison of formulas (3.4) and (3.5) with
Fig. 31 shows that in general features they give
a faithful description of the temperature depen-
dence o#, (T). The standard expression used in
scientific publications for such situations is:
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“The theory and experiment are in qualitative
agreement.” The word “qualitative” underlines
that the author does not guarantee quantitative
agreement. In our particular case the quantitative
disagreement between experimental results and
the theory is especially well pronounced at low
temperatures: at T < T, the spontaneous mag-
netic moment tends to saturation of|r—, =
(? SI;T pp much slower than is predicted by formula

We shall discuss a more careful comparison
later, and now want to calculate the magnetic

susceptibility of a ferromagnetic material above:

and below the Curie temperature. When cal-
culating the magnetic susceptibility, we have to
assume that the magnetic field H is infinitely
small.*¥ At T > T the infinitely small magnetic
field corresponds to infinitesimal magnetic mo-
ment density. Therefore,

tanh [—"‘B (HI;; a,m)]

in equation (3.2) can be replaced with its argu-
ment, that is,

 Nug (I +aoft)

oA = kT

or

VL BN
“rr—r9 ' I>Te H—O0

* The formal definition of the magnetic susceptibili
. . a 1t
ig the derivative dof;/dH at H — 0. This deﬁnI}tion 03; %
coincides with the one used above when magnetization
is a linear function of H, i T
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whence

Nug
X = k—(T—-—TC) at T > TC (3.6)

and we find that the Curie-Weiss law indeed follows
from the Curie-Weiss equation, that is, the self-
consistent field model correctly describes the
paramagnetic state of ferromagnetic materials at
T>T..

The situation is somewhat more complicated at
T < T, because at temperatures below the Curie
temperature we have both the spontaneous mag-
netic moment o/ (T) = o# (T, H = 0) and the
induced moment proportional to H:

AT, Hy = oMy (T) +3H, psH < kT

Both terms are very small in the direct vicinity
of the Curie temperature and when H tends to
zero, so that we can use an approximate value of
the hyperbolic tangent. Simple algebraic manip-
ulations yield the following expression:

Npg

Figure 35 plots % as a function of temperature.
Note that if temperature is counted off the Curie
temperature, then y on the left (at 7' < T, is
twice as small as at the same distance from T,
on the right (at T > T ). (See Problem 19.)

Let us enumerate the conclusions that can be
drawn (and that we have already drawn) from an
analysis of the solution to the Curie-Weiss
equation,




152 Ch. 3. Ferromagnetism

1. The assumption on the existence of an
internal field proportional to magnetization
(o > 0) enabled us to explain the appearance of
intrinsic magnetization at 7' << T..

)

Fig. 35. Temperature de-
pendence of the magnet-
ic susceptibility of a fer-
romagnetic material, v,
in the vicinity of the Cu-
rie temperature T,

T, T

2. The parameter o introduced into the theory
makes it possible to determine the Curie tem-
perature: k7. = au}N. Since

wplV = o |10 = M5,

we find a = kT /ppfs. The parameter o >> 1.
This can be verified by using Table 5 (see p. 141)
and the value of the Bohr magneton pg.

3. The magnetic moment diminishes as the
temperature increases and

__ dofl s
aT |r—7,

4. The magnetic susceptibility increases as the
temperature approaches the Curie temperature
and tends to infinity at 7 = T',. At T — 0, the
magnetic susceptibility y becomes exponentially
small (see Problem 20); at 7’ > 7, the Curie-
Weiss equation yields the Curie-Weiss law,

;;umumﬂmmummw

E
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3.2. Terromagnetism as a Result
of Exchange Forces

Let us analyze again the Curie-Weiss model.
Obviously, its quintessence lies in the relation-
ship between the effective field H,; and the
magnetic moment density. By virtue of our
assumption, this relationship covers the inter-
action between atomic magnetic moments. But
where did we take expression (3.1)? Of course,
we could avoid posing this question. We could
take this formula “out of the head”, analyze its
corollaries (and this we have already done),
show the constants (¢, Nug) in the equation can
be related to the quantities found experimentally
(T, #), make sure that the predicted tem-
perature dependence of o#/; agrees with experi-
mental data, and leave it at that. But then we
have to understand clearly that the theory thus
constructed isnot microscopic but phenomenologi-
cal, that is, a descriptive theory: one describing
a phenomenon but not explaining it. We have to
rcalize that we are ignorant of the origin of the
principal expression (in the present case (3.1))
and do not know the nature (the physical mean-
ing) of the factor o and how it is related to micro-
scopic atomic magnets and to the interaction
hetween them.

The purpose of the present section is to clarify
he physical meaning of the Curie-Weiss model.

Let us go back top. 143. The arrows representing
atomic magnetic moments are aligned parallel
fo one another owing to the interaction between
them, while the thermal motion tends to disrupt
the ordering. What are the forces acting between




154 Ch. 3. Ferromagnetism

atomic magnets? Much was said about it in the

first chapter (see Sec. 1.10), and we have estab- 3

lished that

at atomic distances the exchange forces are much 3

stronger than the magnetic-dipole forces.

For this reason the forces responsible for ferro-
magnetism are precisely the exchange forces. In

order to demonstrate this, let us make use of the &

spin Hamiltonian (1.39) that we can generalize
by assuming that the exchange interaction acts|
between any two atoms of a crystal: ;

Ss=E —ZJ;Aiksi'Sh (3-8)?;

Summation is carried out over all atoms of the

crystal, with the subscripts i and k& enumerating
its atoms. Now let us recall what we have said
about the dependence of A4 on interatomic dis- .
tance: exchange integrals A; rapidly diminish

with distance. Therefore, although formally each
atom of the crystal is coupled by the exchange,
interaction to all atoms, only the coupling be-
tween neighboratoms is significant. This argument’
enables us to rewrite expression (3.8) as follows:.

Ss=F—ta s s (3.8)
i R ;

The second summation symbol is primed to indi-
cate that the summation over k takes into account
only the neighbors closest to the ith atom.
Figurs 36 illustrates that the number of nearest]
neighbors is six in a primitive cubic lattice, and 4
eight in a body—centgred lattice (we shall discuss]
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only cubic lattices). The exchange i i

’ . > ge integral is

[ac'tored out of the sum because the san%ple is

u_mfo.rm, so that all exchange integrals are iden-

Plcal, the facj;or 1/2 appears because each atom
is E)ofunted twice in this summation.

course, the vectors s; and s “ ?

, r are "quantum

vectors. Each of them can orient in space in

()

Iig. 36. Nearest neighbors of a latti
i i tom:
(@) Six neighbors in a primitive cubic lattice ;

ig i ic lattice; (b
neighbors in a body-centered cubic latticé (b) eight

2s 41 ways. If s = 1/2, the vectors can orient
elther along or against... . The choice of quanti-
zation axis, that is, the direction relative to which
the spins are oriented, will be made later. At
absolute zero of temperature all magnetic mo-
ments, and hence, all spins, are parallel to one
anotl_ler. At any rate, this was the corollary of the
solution to the Curie-Weiss equation: o# , =
= Nug. By virtue of (3.8’), when all spinss are
parallel to one another, the energy dependent on
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the orientation of spins is

Eg— __&4];32 (39)

where z is the number of nearest neighbors. At
T = 0 the energy of the crystal must take the

lowest of all possible values. Of course, this is
also true for its spin component. It is apparent .
that for the parallel arrangement of spins to &
correspond to the least energy, it is necessary for §

the exchange integral 4 to be positive:
the condition of ferromagnetism: A >0

When temperature is above absolute zero, !
magnetic moments are not so strictly disciplined: ]
at very low temperatures only rare spins deviate j
from the common “correct” direction, but with §
increasing temperature the number of “unruly” 3
spins increases and the net magnetic moment §
decreases. And finally, at a certain temperature,
which is the Curie temperature 7',, all allowed §
directions become equally probable and the mag- |
netic moment of a ferromagnetic material van- |
ishes. At "> 7, this material behaves as para-

magnetic material.

(One should not think that the picture outlined |
above is static. Average numbers of “obedient” and !

“disobedient” spins are indeed time-independent,

but if we could monitor the spin of an individual

atom, we would observe that its direction con-

stantly changes: it “points” now in one direction |
and then in another. This is the random (chaotic) -

thermal motion of spins.

At temperatures close to absolute zero the
thermal motion of spins can be analyzed in !
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additional detail. We shall do that in Sec. 3.10.

The qualitative picture of breaking of the
magnetic order, as outlined above under the
assumption that the exchange interaction makes
all spins align parallel to one another at absolute
zero, does not enable us to derive from the spin
[Tamiltonian an expression for the effective field
(3.1). Furthermore, this even cannot be done. In
order to clarify this sad statement, we do as
follows,

Let us find a relation between H,yy = aok
(we set H = 0) and the energy* of the system.
To achieve this, let us generalize formula (1.26)
for the energy of a magnetic momeént in an
external field. According to this formula, =
= —dEy/dM when the vectors H and M are
parallel. In order for this formula to hold also
for the effective field, we have to assume that

= — 5 CMAV (3.10)

where V is the volume of a specimen. We remind
the reader that the net moment of a ferromagnetic
specimen is M = V.

We see that in the Curie-Weiss modei the free
energy of a system is uniquely determined by
magnetization. But formulas (3.8) and (3.8')
show that in fact it essentially depends on the
microscopic distribution of the spins of individ-
ual atoms. It is the neglection of just this factor
that constitutes the main simplification of the Curie-
Weiss model, or rather, of the self-consistent field
model.

* Specifically, the free energy if 7 4 0 (see p. 148).
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However, formula (3.10) is necessary to us not 3
only for negative statements that point to our 7}
helplessness. It helps to “anchor” the Curie-
Weiss model to real exchange forces that make: §
ferromagnetism possible. For this “anchoring”, 73
let us compare formula (3.9) with (3.10) by 3
substituting into it the value Npp for the mag- §
netic moment density ef; at 77 = 0, and unity
for V (then N denotes the number of atoms per-
unit volume). The two formulas coincide if we }

assume
A z A

4
o =— -
4 pEN 4 ppefly

Of course, it is this last formula that con-: §
stitutes the main positive result of this section. ¥

The exchange integral 4 is a microscopic param-
eter whose value is determined by the structure

of the atom and by interatomic spacings, that °
is, by the size of the unit cell of the crystal. Its °§
calculation is the problem of atomic physics. And 7§
what we find out is that the exchange integral 4 J
determines one of the fundamental characteristics }
of ferromagnetic materials, their Curie tem-. -§

perature.

Furthermore, formula (3.11) makes possible a
numerical evaluation of the parameter o =
~ A/ppoflsy. Recall what we said about the

exchange integral in Sec. 1.10: its origin is

electrostatic. Now let us evaluate the quantity ;

ppe# o = PBN. As A, it has the dimensionality of
energy. And since N is the number of atoms per

unit volume, N =~ 1/a®, where, as always, a °

stands for interatomic distance. Consequently,
pEN = pp/a® is the energy of the magnetic dipole-

- or kT.= 24 (3.41) |
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dipole interaction. As we have shown on p. 73,
this energy is much less than the energy of
clectrostatic interaction, Ugcoul, and hence, than
A. By virtue of these arguments (and on the basis
ol a comparison with experimental data), we find
that a > 1.

Ferromagnetic Metals

The section above is central to this chapter because
it explains the nature of ferromagnetism. But
it may have baffled the reader. Indeed, the best-
known ferromagnetic materials (iron, cobalt,
nickel) are metals. Why then was nothing said
about free electrons, which we treated as di-
clectrics? One possible justification is that there
exist numerous ferromagnetic dielectrics, and
our analysis is directly applicable to them. But
actually, it also works with ferromagnetic metals.
In fact, either d or f shells of the atoms of all
ferromagnetic metals are only partly filled (see
Sec. 1.9). The electrons on these shells are close
to the nucleus (they lie in the atom) and are prac-
tically insensitive to the fact that atoms assemble
to form a crystal. The main role in the formation
of the ferromagnetic moment is played precisely
by d and f electrons of magnetic metals. The
following picture will be helpful: the electron
magnetic moments, interacting via the exchange
interaction, are localized in the sites of crystal
lattice. But in contrast to dielectrics, they are
immersed in a gas of free electrons, with electrons
also participating in the formation of a magnetic
moment. However, the Pauli principle does not
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allow the spins of all conduction electrons to
completely align parallel to one another: they are
only slightly magnetized by d or f electrons. The
magnetization is realized through the exchange
interaction.

This simplified picture of the “organization” of
ferromagnetic metals is called the s-d(f) exchange
model because conduction electrons are the s
electrons of the atoms making up the metal.

The main simplification of the s-d(f) ex-
change model is that it neglects the role of con-
duction electrons in the exchange interaction
between d or f electrons.

Although the utilization of ferromagnetic met-
als had begun long before the nature of magnet-
ism was understood, it was the magnetism of
metals that proved especially difficult for com-
plete clarification. This field of the physics of
magnetic phenomena is being actively developed
at the present moment.

3.3. The “Para-Ferro” Transition:
One of the Second-Order Phase Transitions

A change in external conditions changes the prop-
erties of bodies. By heating up a semiconductor
we increase its conductivity, and by heating up
a ferromagnetic material we decrease its magneti-
zation. By compressing a solid we diminish its
volume, and so forth. The list of such examples
can be indefinitely long.

As a rule, a small change in external conditions
(temperature or pressure) results in a small change
of properties. Therefore the “properties-external
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conditions” dependence can be plotted by a
vontinuous curve. We have already seen an
example of such curves: magnetization or magnet-
ic susceptibility as a function of temperature.
But sometimes a slight change in external con-
ditions results in “catastrophic” consequences:
cither one of the characteristics of a body changes
jumpwise or a property appears that was absent
before. Figure 37 shows the specific volume of gas
as a function of pressure. You see that at a certain
pressure the specific volume changed jumpwise.
The gas turned into a liquid. An example of the

14

| Fig. 37. Specific volume
Pl V as a function of the

(N pressure p in the gas-lig~
uid  phase transition
> (two isotherms are shown)

appearance (disappearance) of a property has
been described above: the magnetization of a body
appears (disappears) at the Curie temperature 7',.
At T > T, magnetization is absent, as it is
absent at exactly the Curie temperature (of
course, in zero magnetic field). The jumpwise
change in volume is an example of a first-order
phase transition, and the appearance (disappear-
ance) of magnetization, or the “para-ferro” tran-
sition, is an example of a second-order phase
transition. Obviously, examples do not constitute
a rigorous definition. It would be difficult to

11-01378
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define the first- and second-order phase transitions
strictly without deviating from the gist of our
story. And we decline to digress. Note only that
the presence of a jump is a sign of a first-order
phase transition, while the absence of a jump
is a sign of a second-order phase transition.

Naturally, similar characteristics must be used
to establish the presence or absence of a jump.
For instance, in some substances magnetization
changes jumpwise under certain conditions: a
magnetic first-order phase transition takes place.
We shall encounter this situation later (see Ch. 4).
On the other hand, specific heat undergoes a
jumpwise change in the “para-ferro” transition.
But in a first-order transition heat is released
or absorbed both in melting and in beiling (recall
the Clapeyron-Clausius equation). Unfortunately,
space does not allow us to go into the details of
all these extremely interesting aspects.

We already know that the equilibrium value of
magnetic moment minimizes the energy (or
rather, free energy F) of a body. Quite a few
characteristics of physical systems possess this
property of minimizing the free energy. In order
not to limit the discussion to only magnetic
properties, we denote by the letter 1 a parameter
ch.racterizing some property of a body. The
free energy F is a function of this parameter:
F = F (v). In a first-order phase transition 7
undergoes a jump at a certain critical temperature
T., and in a second-order phase transition
N(T)=0atT> T, andn (T) #= 0at T << T3
T, is the temperature of a second-order phase
transition if n (7,;) = 0. The equilibrium value
n =mn(T) is found from the condition of a

; -“..mmwmmmﬁlmmmw
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2.3, The “Para-Ferro” Transition 163
F m;nimum:
aF a2F
dn =0, dn? >0
(3.12)

We want to show how
the function 7 () is de-
formed when tempera-
ture changes(thisisinfact
the cause of the phase
transition). Figure 38
shows a case of a first-or-
der phase transition, and
Fig. 39 shows a case of
a second-order phase
transition. You notice
that in the former case
a new minimum is
formed on the curve F =
=F (n), and that at
> T, this minimum
becomes deeper than the
first minimum. However,

Fig. 38. Temperature-in-
duced transformation of the
dependence of the free en-
ergy F on the parameter
in a first-order phase transi-
tion. A new minimum ap-
pears at 7' = T, (when n =
# 0). At Ty << T << T¢r, the
state with n =120 is
metastable, and at T > Tgr,
it becomes stable
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toget into the “new” minimum from the “original” 3
minimum, the system has to overcome a certain 3
potential barrier, that is, climb over the “hump” |
of height AF separating the minima. At low tem- 4
peratures such a process is, as a rule, quite dif- !
ficult (its probability is proportional to }
exp (—AF/kT)), and the system may stay in a-|
supercooled or a superheated state. Such states j
are said to be metastable. Sometimes geological 4
eons are not enough for a transition from a meta-
stable to a stable state, and a body stably exists
in a metastable state (a good example of an j
extremely stable metastable state is diamond }
whose spontaneous transition into graphite has d

never been observed).

The appearance of a new minimum (below 7,,) j
in a second-order phase transition transforms the 4
original minimum into a maximum (see Fig. 39). 3
Obviously, neither supercooling nor superheating }

is then possible. (See Problem 21.)

Of course, this picture is extremely schematic
and approximate, but it gives a correct qualita-
tive characterization of the difference between
the phase transitions of the second and first orders, §
The discrepancy between a true and a simplified §
picture is especially significant in the case of ]
second-order phase transitions (it will be clear j
somewhat later what causes the extreme com- §
plexity of the problem in analyzing second-order
phase transitions). We have already had a chance }
to point out that Figs. 38 and 39 plotting F (n) ]
much resemble the dependence of the potential }
energy U on the z-coordinate that makes it 4§
possible to study the conditions of stability of a §
body moving along the z-axis. For the sake of }
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retaining this analogy, we refer to the parameter
1 as a “generalized coordinate” and to the state
of the system described by the parameter 7
as to a “body”. Thus, a “body” is in a stable or in

F
T
T>T,
N
F
%—TC‘
—5  Fig. 39. Same as in Fig.
38, but for a second-order
F Ehase transition. A sta-
le state with n=0 trans-
forms (at T > T¢r) in-
to an unstable state, and
stable states with n =
-1 M T<Ty =amy+0 appear (at
- T < Tqr)

a metastable state at a point with a “generalized
coordinate” at which' F (1) has a minimum.
What do we mean when we say that a body is
in a particular state? This means that thermal
motion makes the “body” vibrate at low ampli-
tude around just this point. (To make it perfectly
clear, imagine a pendulum at rest; it only oscil-
lates because of molecular impacts from the sur-
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rounding air. Even if the pendulum is enclosed
in a housing and the air is evacuated, the pen-
dulum will slightly oscillate because the chaotic
thermal motion of the atoms composing the
pendulum will shift its center of gravity.) The
amplitude of vibrations of the “body” depends on
the steepness of the curve F (1) at the point of
equilibrium.* And now look at Fig. 39. The
curve F = F (n) in this figure (at 7 = T,,) is
very flattened because it must turn into a curve
with a maximum and two minima in response to
a small change in temperature.** Clearly, the
amplitude of vibrations at 7 = T, is large.

Taking these vibrations into account proved

to be a very complicated problem. Only in recent 1
years physicists gained assurance that they are -

able to describe the properties of physical systems
in close vicinity of the point of a second-order
phase transition with a high degree of accuracy.
However strange it may seem, this required that
the properties of physical systems be considered
in spaces (that exist on paper only) with fractional
dimensions (our world is three-dimensional, a
plane is a two-dimensional space, a line is one-
dimensional...).

When a change in the parameter 7 describes
a second-order phase transition, it is also called
the order parameter. In the case of the “para-
ferro” transition the reason for this term is obvi-
ous: the magnetic moment density o#, is a mea-
sure of ordering of atomic spins.

* The height to which the “body” is lifted above the
equilibrium point is determined by temperature 7.
** Trace this transformation using Problem 24.
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Let us give another example of a second-order
phase transition: the ordering of an alloy CuZn.
Figure 40 shows the crystal lattice of this alloy.
At high temperatures the atoms of copper and
zinc are randomly distributed: they occupy arbi-
trary sites of the lattice with equal probability
(which is, naturally, equal to 1/2). Beginning
with a certain temperature (also called the Curie

(a) (s)

Fig. 40. Arrangement of zinc atoms (crosses) and copper
atoms (circles) in an ordered alloy:

{2) at T > Ter; () at T=0

temperature) the probabilities start to deviate
from 1/2, first slightly, but as temperature tends
to zero the probabilities tend to zero and unity,
respectively, that is, a complete ordering sets in.

One last remark to conclude this section. As
a rule, a second-order phase tramsition changes
the symmetry of a body.* (The first to notice
this fact was L. D. Landau who used it to con-
struct a phenomenological theory of such transi-
tions.) Indeed, the appearance of ferromagnetism
singles out a certain direction in the system of

* As additional reading on symmetry, we recommend
H. Weyl, Symmetry, 1952,
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atomic magnetic moments, and the ordering -
of an alloy changes the period of crystal lattice.
Another interesting feature is that in immediate

vicinity of 7, the order parameter is still in-
finitely small, while the symmetry has already
changed: symmetry changes jumpwise because

a body can have either one or some other sym-
metry. A continuous transition from one sym-

metry to another is impossible.

3.4. What Is the Direction

of the Magnetic Moment of Ferromagnetics?

Energy of Magnetic Anisotropy

As a result of the isotropy of the exchange inter-
action discussed in Sec. 1.10 the direction of the
magnetic moment of a ferromagnetic material
is not specified. Of course, if a ferromagnetic
material is placed in a magnetic field H, it is
energetically favorable for the magnetic moment
to align along H. But do there exist some internal
causes, inherent in the body itself, that force
the magnetic moment density ./ orient in
a crystal in a definite way? Of course, they exist.

First, these are dipole-dipole forces acting
between atomic magnetic moments. Since the
energy of the dipole-dipole interaction (1.35)
is a function of orientation of magnetic moments
relative to the straight line joining them, the
energy of this interaction in a ferromagnetic
crystal in which such lines are fixed to the crystal
lattice must bhe a function of orientation of the
vector ;.

Second, the spin magnetic moments of atoms
creating the total magnetic moment of a ferro-
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magnetic material interact with . electron cur-
rents. These last are caused by the orbital motion
and are oriented in space in a definite manner. As
a result, some spin orientations are more ener-
getically favorable than others.

Each of the two above-described interactions
can be put in correspondence with the energy
dependent on the spatial orientation of the mag-
netic moment density .#. It is called the aniso-

tropy energy.

The anisotropy energy is determined by the
magnetic dipole-dipole and spin-orbit interac-
tions. :

The anisotropy energy is often divided into
the intraionic and interionic energies. The intra-
ionic energy results from the anisotropic dis-
tribution of electrons within an ion owing to the
effect of the electric field produced by surrounding
ions. And it can be said that in general the aniso-
iropy energy is ultimately a consequence of
nonisotropic distribution of electrons in the
crystal lattice.

But why could we neglect the anisotropy energy
when discussing the formation of spontaneous
magnetic moment in ferromagnetic materials?
Because this energy is much smaller than the
exchange energy. In order to emphasize this fact,
the exchange energy is said to be of electrostatic
origin, while the anisotropy energy to be of
relativistic origin. If the speed of light ¢ were
infinite, the anisotropy energy would be zero.
"This is easily found by considering the magnetic
dipole-dipole energy. It has already been eval-
nated earlier (see p. 72), and we found that it is
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an the electrostatic energy by a factor
})(;Siz/tzg, while the exchange energy dlﬁers frolril 3
the electrostatic energy only .shghtly, if at all.
Since the anisotropy energy is much less t}}an 1
the exchange energy, it 1eave§ the formatlog 3
of the magnetization o/ practlc.ally qnaﬁ(afc‘:(}el 2
and is responsible only for the orientation ol the

vector offs. )
The expi'ession for the anisotropy

i i i it vector n

a certain direction defined by a uni .

along which it is advantageous ‘for t.he magnetic

moment to be oriented. This d}rectlon Is.called

the singled-out axis, or the anisotropy axis.

Then it would be desirable to follow this
analogy and write

Ean=—PoM-0V, [>0

We have dropped the subscript s from .
We would like to do it, but ...

poles reverse their directions under time re\_rersal,
that is, under the operation f— —I (thls was
mentioned on p. 25). Hence, the direction of ./

is also reversed. The energy cannot change sign #

energy ff)n
be derived here. This is a difficult prob- |
(1::111111?01‘150'5 yet completely solved: We shall mali(‘le 1
use of a phenomenological description (the de -
nition of the concept “phenomenological theory
was given on p. 153) based on an analogy between .
the anisotropy energy and the energy of a mag-
netic moment in a uniform _external magr_letlc a
field. Indeed, it is the magnetic field that orients »
the magnetic moment. Let a crystal contain

cannot. And
i izati i tor sum |

here is why. Magnetization #f is a vector sun

of atomic magnetic dipoles. And magnetic di- |

under time reversal (in these cases energy 18
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said to be invariant under time reversal*)... .
Hence, the expression written above cannot be
correct. The expression for energy must include
the vector o to an even power. Only then the
replacement of ¢ with —¢ leaves energy invar-

iant. The simplest expression satisfying this
condition is

Ean= —~B (MD)W, B0

This is the expression we are to use. The prob-
lem of a microscopic theory is to calculate the
factor B, called the anisotropy constant. Note
(this will prove useful later) that the anisotropy
constant is dimensionless. The value of f is
different in different ferromagnetic materials,
but it is practically always much less than the
exchange parameter o (see formulas (3.10) and
(3.11)). The reason for this has already been
mentioned: the smallness of the relativistic
interaction in comparison with the electrostatic
interaction. Expression (3.13) is valid for some
but not for any crystals. It is valid for uniaxial
crystals (e.g. for crystals with hexagonal unit
cell, Fig. 41), but for cubic ferromagnetic materi-
als a more complicated dependence of &,, on
the direction of the vector . must be used.

Formula (3.13) shows that there are two most
advantageous directions for the vector .: paral-
lel and antiparallel to n. This uncertainty cannot
be eliminated by the internal forces in a ferro-

(3.13)

* This is especially clear from the expression for the
energy of a free particle, ¥ = mv?/2. Under the reversal

t > —¢ the sign of the velocity v is reversed, while that
of v2 is not.

S ﬂ o
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magnetic material and leads to important con=- :
sequences (see Sec. 3.5). At the moment let 3
us place a ferromagnetic material in an external 2

hexagonal crystal

magnetic field H and try to determine the direc- L

tion of #f in this case.
n,z

Fig. 42. At H = 0 the -j
magnetic moment is 1n
the plane o stretched on g
’ the vectors n and H. At

y
A H = 0 the magpetic mo-

% ment aligns parallel or 3
' antiparallel to n 4

As always, we must start with m.inimiz‘ing i
the energy &€an. In the case under consideration,

Ban=| — 5B (M) — oM H|V (3.14) |

The vectors n and H define a plane o (Fig. 42‘).; ,f
It is not advantageous for o/ to tilt out of this"

Fig. 41. Unit cell of a ]
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plane because energy would then be increased.
Therefore we have to find a single angle 0 be-
tween off and n. Expression (3.14) gives the follow-
ing detailed dependence of &,, on 0:

Ean= —V (% Bl cos? 0 H ot sin O
+ H,oll cose) (3.14")

We have directed the z-axis along n, and the
z-axis perpendicularly to n in the plane o.

The condition of the minimum ‘of &,, is
written as follows:

Pan — Voit (- pot sin 20— H,.cos 6

- H,sin 0) -0

92€ o . (3. 15)
0z — Vel (Bt cos 20-- H, sin B

+ H,co0s0) >0

The condition of positiveness of the second
derivative singles out among the solutions of
equations (3.15) those that correspond to a min-
imum, not to a maximum. A replacement
sin © = § transforms equation (3.15) into an
algebraic equation of the fourth degree in &:

(BAE— H )* (1 —EP) = H .82 (3.16)

As we know from algebra, an equation with
real coefficients may have both real and complex
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pairwise-conjugate roots.* The total number of :
roots is equal to the degree of the equation, i.e.
to four in this case. It is then clear that equation J
(3.16) has either two real roots or four. We are §
obviously interested only in real roots. Since the
right-hand side of the equation is positive, the 3
absolute value of the real roots does not exceed 1
unity. Hence, each of them defines an angle 0. 3

The sign of the second derivative determines j
whether an extremal point is a maximum or a min- §
imum. However, direct testing is quite difficult,
Indeed, each root has to be substituted into the §
expression of the second derivative, but it is 4
practically impossible to find a manageable }
explicit expression of the roots of equation ‘3
(3.16) (look at it carefully: it is a general, not §
biquadratic, equation of the fourth degree). We 4

shall resort to qualitative arguments. They make
it possible to outline the situation.

When equation (3.16) has four real roots, two
of them correspond to a minimum of the function

Ean = Ean (0) (see (3.14")) and two to a maxi- §
mum. Clearly minima and maxima alternate. j
The deepest minimum corresponds to the stable ,
state, and the shallower minimum to a meta- 1

stable state (similar arguments were given in
Sec. 3.3). When equation (3.16) has two real
roots, the function &., = &aq (0) has one

minimum and one maximum. The transition ;5
from one case to another is caused by changing ]
the magnitude and direction of a magnetic field H §

* This means that if & = & + i, is a root of the equa- i

tion, then E = &, — iE, is also a root of the same equa-
tion (&, and &, are real numbers).
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(i.e. the values of the projections H, and H,)
and is realized by a merging of one maximum
with the neighbor minimum. Obviously, the
ferromagnetic material then loses the possibility
of being in a metastable state.

Let us find the range of projections H, and H,
of a magnetic field, in which a ferromagnetic
material has a metastable state. We shall be
able to show now that this region is bounded
by a curve in the plane H,, H, whose equation
is easily obtained by resorting to the following
arguments: since the points of this curve are
those at which a minimum and a maximum of
the function &.n = &an (0) merge, the second
derivative §%¢a,/¢0% on this curve must vanish.
In other words, the inequality sign in (3.15)
must be replaced with the equality sign.

We thus have two equations conveniently
written in the form

Hy . H, R
sin 0 cos 0 == el
1/3 1/3
Hx Hz . Hx Hz
sin3 + cos30 =0 or sin 0 + cos 6 =0

Eliminating 0 from these equations*, we arrive
at the equation of the sought curve:

H23 1 HYP = (Bon)¥? (3.17)

This curve is the so-called astroid because its
shape resembles that of a four-ray star (from
the Greek astron for star). The astroid (Fig. 43)

* Tor eliminatior}, we have to find sin 6 and cos 6 from
the above equations and to substitute them into the
identity sin?0 - cos?0 = 1.
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divides the plane Hy, H, into two parts. Which 3
of these parts contains melastable states, and §
which does not? This question is easily answered 3
after considering very strong magnetic fields
(formally, at H — oco) when the anisotropy }

HZ
- ﬁﬂ\ BeM H,

—BeM

Fig. 43. The region of metastable states ol a ferromagneti
material. If the tip of the vector H falls inside the astroid
the material has a stable and also a metastable stat

energy can simply be neglected. In this cas
Fan — &an (0) has a single minimum at which
the vector off is parallel to H, that is, at tan 0 =
= H,/H,; hence, no metastable states are pos
sible. Therefore,

if H, and H, “lie” outside the astroid, the
there are no metastable states, and if they “li¢
inside, then there are metastable states.
It is clear from symmetry-based arguments j
that at H = 0, as well as at #, = 0 and H, <}
<< Bo#, the curve &un = €an (0) has two equally 3
deep minima. (See Problem 22.) A ferromagnetic
material selects one of the two states, bein
“guided” by arguments that will be explaine
in the next section.
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3.9. Domains

Let us repeat the conclusion arrived at in the
preceding section: in a “symmetrically” applied
weak magnetic field (i.e. in a field perpendicular
to the anisotropy axis and not exceeding Po#)
the stable and metastable states become indis-
tinguishable, and the corresponding to them
directions of the magnetization vector become
equally advantageous. Thus, if H = 0, the mag-
netic moment can be directed with equal “gain”
in any direction along the anisotropy axis as
long as it does not deviate from this axis. But
which of these two directions will be actually
selected? Clearly, the selection involves some-
thing that we did not take into account.

Let a magnetic field, no matter how weak,
be applied along the anisotropy axis. Of course,
the direction along the field is more advantageous
than the opposite direction, and this is the
direction chosen by the magnetic moment. And
now let us remove the field gradually (infinitely
slowly in order not to “shake up” the magnetic
specimen, or it might demagnetize (see below)).
The states with oppositely oriented magnetic
moments do have identical energy but are sepa-
rated with an energy barrier whose height is
determined by the anisotropy energy. When
the field vanishes, magnetization may not over-
come this barrier. Then the magnetic moment
of the specimen retains the direction imposed
by the magnetic field. This produces a state in
which a ferromagnetic material possesses spon-
taneous magnetization (of course, at a tempera-
ture below the Curie temperature).

12—-01378
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Nevertheless, this “frozen-in” state of magnet
ization is metastable, and not stable, desp
its obvious advantage in energy. There is anothek
state with a lower energy. Indeed, any specim
is bound. When magnetized, it acts as a sourcé
of a magnetic field in the surrounding spaceij
But the magnetic field has a positive energy¥
whose density (i.e. energy per unit volume) i¥

H? g

This expression was not taken “out of thim
air”. It follows from Maxwell’s equations. Thd
energy of the magnetic field was totally neglected;
in our calculations of the energy of a ferromagnetic
material, although the total energy ol the mag#
netic field can be very high. For instance, it i8]
infinite in the case of an infinite magnetizedy
plate (Fig. 44a) because its magnetic field fills
all space, with the strength of the field not di#
minishing with distance and equal to 4sme#?
(see p. 96).* We have to conclude that the state;
of magnetization analyzed above (we regarded i
as the most energetically favorable) in fact hasg
a very high energy. How can we help matters?
and diminish the total energy? At the first glance,
it is necessary to reject the orientation of the
magnetic moment along the anisotropy axis and §
arrange the moment perpendicularly to the axis. §
Then we would “lose” in anisotropy energy but j

* In fact, when saying that the plate is “infinite”, we
only mean that two of its dimensions are much greater
than the third, When the plate dimensions are finite, its §
magnetic field in fact diminishes at distances large in {
comparison with the plate size.
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would seemingly diminish the magnetic field
energy. This is a poor solution. Each plate is
bounded on all sides. Magnetic lines of force
always “stream” out of it to fill the space around
the plate. The magnetic field energy will be,
as before, very high, and the “loss” in anisotropy

|

|
FEEEH]
|

(a) I

|
u

i

Fig. 44. Magnetic field around a ferromagnetic plate:
{a) the plate is uniformly magnetized; (b) the plate sepa-
rates into domains

energy cannot be compensated for. An analysis
shows that the advantages related to the mini-
mum in anisotropy energy should not be discarded
(at any rate, discarded completely). But we can
make use of the equivalence of the two directions
of magnetization along the anisotropy axis. Let
us divide the plate into alternating identical
segments. Let the vector of magnetization have
the same direction relative to the axis within
each segment, and alternate in neighbor seg-

12*
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ments, making the plate effectively demagnet-
ized. These segments are called the regions of
spontaneous magnetization, or domains (Fig. 44b).
The figure shows that having left one domain,
the lines of force enter the neighbor domain.
Therefore, the “spreading” of the lines of force
is relatively insignificant, that is, the magnetic

field diminishes sufficiently rapidly as we move §
away from the surface (the field is significant at j

distances of the order of domain size).

Of course, the energy of the magnetic field, §
€y, around a plate divided into domains is §
much less than the energy of a magnetized plate. &

By the order of magnitude,

€~ on2Sd (3.19) §

where d is the thickness of a domain, and S is the
area of the plate equal to L2. Of course, this is 3
not an exact expression because we have omitted 3

all numerical factors, although they may con-

siderably depart from unity (thus, the numerical
factor in (3.18) equals (8n)~! &~ 1/25). All for- %
mulas of this section are thus of qualitative 4

nature.

A demagnetized plate has the same energy of
magnetic anisotropy as a magnetized plate. In- }
deed, it seems that the formation of domains }
is favorable for a ferromagnetic specimen. But j
a question immediately arises: how many do- }
mains should form in a ferromagnetic plate? From |
the standpoint of magnetic field energy, the j
greater the number of domains, the better. This §
is true because as the number of domains in- |
creases, their size diminishes, and magnetic lines 7
of force “crowd” closer to the plate, the field falls
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off more steeply with distance from the plate,
and the energy of magnetic field decreases (see
(3.19)). But what stands in the way of “fragmen-
tation” of domains? It would seem that the mag-
netic anisotropy energy should remain the same
at any fractionation into domains. On the other
hand, experiments unequivocally demonstrate
that domains have quite definite macroscopic
sizes determined by the shape and size of the
specimen.

In order to make ends meet, we must pay atten-
tion to the boundary between adjacent domains.
We did not hesitate to arrange the magnetic
moments in adjacent domains so that they pointed
in opposite directions, having forgotten that
from the standpoint of exchange interaction
(3.8) this is a “crime”, because the exchange
energy is at minimum when neighbor spins are
parallel, and at maximum (sic) when they are
antiparallel. And the exchange interaction is
the most important interaction of all... .

It is thus clear that antiparallel spins must
not be placed alongside. An analysis shows that
the transition from one direction of a magnetic
moment to the opposite direction is gradual*:
it occurs over a distance of the order of

A 172
b= () 020
where a is the interatomic spacing, so that the
vector of magnetization rotates by 180° in a plane

* The analysis is based on calculating such a distribu-
tion of magnetization that has the least energy, provided
the magnetic moments far from the boundary point in
opposite directions. ‘
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parallel to the boundary between domains
(Fig. 45). This results in a finite-thickness tran-
sition layer, resembling a wall, instead of an
abrupt (geometric) boundary between the do-
mains. It is indeed said to be a domain wall.

Its structure is such that the transition from one

domain to another consumes the least energy (the |
thicker the domain wall, the higher the exchange |
energy, and the thinner the wall, the higher the }

Fig. 45. Domain wall. The magnetic moment off rotates, A
remaining always parallel to the plane separating two
domains. Far from the domain wall the magnetic moments j
align along the anisotropy axis, in opposite directions 3

on the two sides

anisotropy energy). With the distribution of the 1
magnetic moment known, it is possible to cal- i
culate the energy related to the formation of 4

one domain wall. It is roughly equal to A =
= o428 per 1 cm? of the wall (here again the

numerical factor was omitted). Having calculat- §
ed this energy, we can forget about the structure §
of domain walls and again consider them to be
abrupt boundaries but such that they carry addi- j
tional energy A. We shall discuss later the con- §

ditions of validity of this approach.
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Now we see what prevents the fractionation
of a ferromagnetic specimen into excessively
small domains: the formation of new domains
increases the energy of domain walls and limits
fractionation. In order to calculate the size d
of an individual domain, let us write an expres-
sion for the energy of a demagnetized ferromag-
metic plate. Since the number of domain walls
is L/d, the surface area of a boundary between
domains is IL, I being the plate thickness (see
Fig. 44b), the energy (obviously with the exchange
energy as a reference point) is

g=S(a+8L) o T (3.21)

As always, the domain size is found from the
condition of a minimum, in this particular case
the minimum of expression (3.21). The energy §
is minimum if d = 1/ 6l.

This important result was obtained by
Ya. I. Frenkel, L. D. Landau, and E. M. Lifshitz,
The notion of domains is essential for under-
standing the nature of ferromagnetism: in accord
with experimental data,

in its ground state a ferromagnetic material of
finite size is demagnetized because il separates
into domains.

The domain size depends on the characteristics
of the ferromagnetic material (they enter into
the parameter ). The size grows with the in-
creasing size of the specimen, proportionally
to the square root of the smallest size of the plate.

An attentive reader should regard our line
of reasoning as totally illogical. At the begin-
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ning c_)f the section we tried to determine the f
direction of a magnetic moment and thus assumed =
that a ferromagnetic specimen is uniform, that %

is, its magnetization is independent of coordi-
nates; then we found that the magnetic moment is
‘nonuniform around the boundary between do-
mains. Several lines later we again “forgot”

about it, having correspondingly written for-

mula (3.20). Furthermore, in deriving the Curie-
Weiss equation (see Sec. 3.2), we deliberately

neglected the possibility of nonuniform magnet-
ization. Have we any right to take and then 3§
not to take into account this inhomogeneity? &
Is not it an arbitrariness that seems to be unaccept- §
able in science? Of course not! Let us start with 4
proving that a domain wall can be replaced with 3§
a geometric boundary. In all likelihood everyone 3
will agree that this can be done if the domain 3§

wall thickness § is much less than the domain

size d, that is, when d > 8, so that our discus- }

sion holds for sufficiently thick plates (I > §).

Indeed, the formation of domains is not advanta- |

geous at all for ferromagnetic specimens of suf-

ficiently small size (if all dimensions of the spec-

imen are of the order of §). Such ferromagnetic

particles do exist and are not demagnetized, con- |

stituting a single domain.

Now let us find out what gives us the right to ]

operate with the results obtained by solving the

C}lrie-Weiss equation. The most nonuniform re- |
gions in a demagnetized ferromagnetic specimen §
are domain walls, The degree of nonuniformity is j

characterized by the thickness 8 of domain
walls. But 8 > a, that is, on the atomic scale
ferromagnetic samples are uniform even in the
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vicinity of domain walls.* The approach used
above is thus justified. It has a right to exist,
provided the following strong inequalities hold:

I>6>a (3.22)

It must be emphasized that the second inequality
holds because the exchange energy is much greater
than the anisotropy energy; this fact has already
been discussed above.

The formation of a periodic domain structure
can be regarded as an example of a fairly general
phenomenon, namely, spontaneous breaking of
symmetry: it is energetically favorable for a ho-
mogeneous highly symmetric ferromagnetic ma-
terial to lower its symmetry and transform into
a periodic structure.

We have already seen examples of spontaneous
symmetry breaking: a transition from the para-
magnetic to the ferromagnetic state violates
the isotropy inherent in each point of a para-
magnetic material, owing to the formation of a
macroscopic magnetic moment (indeed, ‘it has
to point in some direction).

The above-discussed example of a domain
structure (in a plate cut perpendicularly to the
anisotropy axis) is certainly a particular case.
Somstimes domain walls are arranged in a differ-
ent way. [t happens (as a rule) that domain shapes
are not as simple as we have described (e.g.
Fig. 46a shows a domain structure in an iron

* We remind the reader that the exchange interaction
decreases very quickly with distance; in fact, it "bhinds
only neighbor atoms, thus linking all the atoms of a fer-
romagnetic specimen in a “relay” manner (see formula
(3.8). e
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film; you see that it is far from simple). Cylin- }
drical domains, called magnetic bubbles #
(Fig. 46b), are formed in some ferromagnetic 3
films; these were found useful in computer tech- §

nology, as computer memory elements.

But whatever the domain structure, the main ’
conclusion always holds: it is energetically ad- ?

(a) (b)

Fig. 46. “Complex” domain structures:

(¢) the domain structure in an iron film; (b) magnetic ]
bubbles. Arrows indicate the direction of magnetization 3

far from domain walls

vantageous for the total magnetic moment of a
finite sufficiently large ferromagnetic specimen ]

to be zero.

Why then permanent magnets exist? In order
to answer this question, it is necessary to under- }
stand the processes of magnetization and demag- 3

netization of ferromagnetic materials.

3.6. Technical Magnetization Curve

By definition, the magnetization curve is the. |
dependence of the magnetic moment of a body 1
on the applied (external) magnetic field. As for §
the attribute “technical”, it will be explained §

later.
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The dependence of the magnetic moment ol
a paramagnetic material (or of a ferromagnetic
material at a temperature above the Curie tem-
perature) on the magnetic field is linear up to
very high fields. Saturation, that is, approach
to a maximum possible magnetization, occurs

M

Technical
saturation

Paraprocess

H
Fig. 47. Virgin curve of magnetization

either at very low temperatures or at very high
magnetic fields, in accord with the condition
upH > kT (see Sec. 2.2).

The magnetization curve of a ferromagnetic
material looks absolutely different. It is illus-
trated in Fig. 47. You notice from this figure
that at // = 0 the magnetization o# is also zero.
This is in agreement with what we said in the
preceding section: a ferromagnetic is demagnet-
ized when in zero external magnetic field. The
magnetization curve starting at the origin of
coordinates is called the virgin curve. As the
magnetic field increases, magnetization grows
first slowly but then much more steeply: magnet-
ization increases several tenfold over a relatively
narrow interval of the field. Then the rate of
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growth of magnetization slows down again, and3
the so-called technical saturation sets in. Mag-;
netization up to technical saturation is called]
technical magnetization, and the corresponding §
segment of the curve is called the technical mag-}
retization curve.* 1

If we continue increasing the magnetic field|
after technical saturation has been reached, mag-
netization changes slowly, increasing almost as}
a linear function of the field. This linear increase §
In magnetization with the field is called the}
paraprocess, which underlines the similarity with
the linear dependence of the magnetization field
of paramagnetic materials. 3

The difference between the technical magnet-§
ization curve of ferromagnetic materials and 1
the corresponding curve of paramagnetic mate- |
rials obviously stems from the presence of mag-
netized macroscopic regions (domains) in ferro- 1
magnetic specimens even at H = 0, and the role
of the external magnetic field reduces to aligning j
their magnetic moments.** As we have mentioned,
in paramagnetic materials the magnetic field §
aligns microscopic atomic magnetic moments. |

In order to find a qualitative explanation of }
technical magnetization, let us again consider }
a plate of a uniaxial ferromagnetic material (see |
Fig. 44). However, now we apply the external {

* Note that numerical characteristics of the virgin curve 4
not only vary among differént ferromagnetics but also
somewhat vary among specimens of the same material. |
As a rule, the behavior of the curve is preserved. 5
** Of course, the alignment of the magnetic moments of E
the domains means the destruction (elimination) of the 3
domain structure because the domains differ only in thd 1
direction of ‘the magnetic mements. . TR
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magnetic field to this plate at a certain angle
lo the anisotropy axis. The field disturbs the
equivalence of the two directions along the axis
and makes that direction which is at an acute
angle to the field more favorable. In other words,
it is advantageous for the domains with the mag-
netic moment along the field to grow, and for
those with the moments against the field to
shrink. But how do some domains grow and
others shrink?

Since the direction of magnetization in a do-
main wall changes continuously from point to
point (see Fig. 45), the magnetic moment within
the wall can rotate even at an arbitrarily weak
magnetic field, the rotation being at a sm_all
angle in a weak field. As a result, magnetization
distribution changes and thereby the domain
wall shifts (Fig. 48), and the body will manifest
nonzero magnetization.

Further growth of a magnetic field results in
an additional displacement of domain boundaries
and in a continuous growth of magnetization,
Let us emphasize that the linear segment on the
virgin curve (at H — 0) follows from the exist-
ence of finite-thickness domain walls. If the
boundary between domains were infinitely thin,
a finite magnetization could be produced only
by reversing the direction of the magnetic mo-
ments simultaneously in all “unfavorable” do-
mains, and this would call for a considerably
strong field.

At a certain strength of the magnetic field,
“unfavorable” domains almost disappear, and the
rate of increase of magnetization diminishes,
Therefore, the range of the magnetic field in
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which magnetization grows at the maximum raté
corresponds to the motion of domain wall
Further increase in magnetization is caused by3
the rotation of the total magnetic moment toward:

._..‘M ____________

Fig. 48. Shift in the position of a domain wall in thé
magnetic field: :
curve I—projection of the magnetic moment onto the
anisotropy axis as a function of coordinate; z = 0 ig
the domain wall at H = 0; curve 2—same at H 5= 0 4
the domain wall is shifted by zy

the direction of the magnetic field. This rotationg
is frustrated (as compared with the rotation of]
the magnetic moments within the domain walls),
and consequently in this range of field the curvej
oli =Ml (H) is less steep. When finally all mag-
netic moments align along the field, the ferro-§
magnetic specimen is macroscopically homogen-
eous and its spontaneous magnetic moment i8]
in the most favorable position: technical satu-}
ration has set in. Further increase in magnetiza-J
tion as the field grows (the paraprocess) is a resultj
of the struggle of the magnetic field with the4
thermal motion of individual atomic spins, inj
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which the magnetic field is an ally of the exchange
interaction, and their common opponent is the
tendency to chaos, present at any finite temper-
ature.

Now consider a process inverted with respect
to magnetization: demagnetization. Let the mag-
netic field that has magnetized a ferromagnetic
specimen to technical saturation gradually di-
minish. Obviously, magnetization will also di-
minish with the field. But must the decrease in
magnetization trace the same curve as that repre-
senting magnetization (see Fig. 47)? Not neces-
sarily. In an ideal ferromagnetic specimen (con-
taining no impurities, lattice defects, disloca-
tions, etc.; here we deal only with such objects)
everything depends on whether the point repre-
senting the magnetic field falls inside or outside
the astroid in Fig. 43. If the point is outside the
astroid (where no metastable states exist), the
point in the plane H, «% will move (at least at
the beginning) along the virgin magnetization
curve. And if the point representing the satura-
tion magnetic field falls inside the astroid (where
there are metastable states), then magnetization
will diminish together with the field along the
curve of metastable states. Each point on this
curve corresponds to a magnetization greater
than that on the virgin curve. When the magnetic
field vanishes, magnetization does not become
zero because an energy barrier must bhe overcome
for demagnetization, that is, for dividing a spec-
imen into domains (see Secs. 3.4 and 3.5). We
have already explained that a state of magneti-
zation of a ferromagnetic material in the absence
of an external field is metastable but frequently
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it may be sustained indefinitely long. This fact
is familiar from childhood to anybody who
played with a permanent magnet. :
The magnetization of a ferromagnetic material .
in the absence of an external magnetic field is
called the residual magnetization. In order to -
“remove” the residual magnetization, that is, .=
forcefully demagnetize the specimen, it is neces-
sary to apply a sufficiently strong magnetic
field directed against the field of magnetization.
The strength of this demagnetizing field is called
the coercive force. Ferromagnetic materials greatly
differ in coercive force: from tenth of one oersted J
to thousands of oersteds. Materials with a high 4
coercive force are said to be magnetically hard,
and those with a low coercive force are said to be
magnetically soft. Both hard and soft materials *'
find applications in modern technology. o
By continuing the increase in the field in the
direction opposite to the initial magnetizing
field, we can again magnetize the specimen to its |
technical saturation. The decrease in the oppo- i
sitely directed field will lead, in the case of
metastable states, to magnetization varying along
a curve below the virgin curve. The residual mag-
netization will be formed again, and again a field
equal to the coercive force will have to be applied *
to remove this magnetization, but now this j
field will be along the initial field... . The words
“and so on” would be in place here because further -
intensification of the field will bring magnetiza- |
tion to technical saturation. ¥
The above-described processes of magnetiza-
tion and remagnetization are shown in Fig. 49. .
The salient feature of this curve is the irrever-

A Ry

bt

3.6. Technical Magnetization Curve 193

sible variation of magnetization with field: the
magnetization and demagnetization of a ferro-
magnetic material follow different curves. This
irreversibility is called the magnetic hysteresis,
and the closed curve shown in the figure is called
the hysteresis loop. Let us emphasize that

the hysteresis is one of the manifestations of
metastable states.

Thq attribute “technical” (technical saturation,
technical magnetization curve) marks not only

M

/

/ H

Fig. 49. Hysteresis loop

the fact of technical importance of the magneti-
zation curves of real magnetic materials but also
the dependence of the magnetization process
on the technology of manufacturing a specimen.
The point is that numerical characteristics of
a technical magnetization curve, hysteresis loop,
and coercive force essentially depend on the
state of the specimen and the technological pro-
cedures involved. This is employed in industry
to produce magnets with desired properties. The
physical reason for the sensitivity of the tech-
nical magnetization curve to the state of a sample

13—01378
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lies in the dependence of the anisotropy constant. 1
p on the structure of crystal lattice. As a result 3
of an increase in P within regions with defects, 3
the magnetic moment “clings” to them, and a 4
relatively strong field is required to “force” its
reorientation. The study of the technical mag-
netization curve and the development of mag- 3
netic materials with required magnetic proper- |
ties form an important chapter in the application-

oriented physics of magnetic phenomena.

3.7. Spin Waves

Strictly speaking, the two preceding sections are 1
a digression from our main topic because they i
describe not the nature of ferromagnetism but §
the properties of real finite-size specimens. In §
this section we return to the description of the 3
nature of the ferromagnetic state. We shall find 4
out how the spontaneous magnetic moment of
a ferromagnetic specimen depends on temperature
at low temperatures, that is, close to absolute
zero. As we have mentioned, formula (3.5) con- }
tradicts the experimentally measured tempera-

ture dependence of a magnetic moment.

In order to find out the temperature dependence
of a physical quantity, we have to know the J
motion of atomic particles of which a body is |
composed. We already had an opportunity to §
see the truth of this statement when the magnetic }
properties of metals were discussed (see Secs. 2.4
and 2.5). Statistical physics relates the motion :
of individual atomic particles to macroscopic 3

properties of bodies. As long as a gas is concerned,
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the meaning of the words “individual atomic
particle” is clear. But are they meaningful
in a solid which differs from a gas precisely in
that it has no individual atomic particles because
all particles interact with one another? We shall
see that the role of individual atomic particles
is played in crystals by quasiparticles that we
shall discuss later.

Too many incomprehensible terms have been
used above: spin waves in the title of the section
and quasiparticles in its text; now let us ad(i
another hardly comprehensible word combina-
tion: _the energy spectrum of a physical system.
In this section we describe the energy spectrum
pf ferromagnetic materials. Hopefully, the mean-
ing of these words will be clear to the reader
a little later.

Lpt us recall the remark made about the Curie-
Weiss model {see p. 143): in the general case the
energy of a ferromagnetic specimen is not de-
termined unambiguously by its magnetization.
The energy is expressed via the total magnetic
moment of a body only when all atomic magnetic
moments are parallel to one another. This is
why we were able to relate the constant o of the
phenomenological theory to the exchange inte-
gral A (see formula (3.11)). This unambiguous
relationship is possible because the complete
ordering can be produced in only one man-
ner.

In what follows it will be more convenient
lo operate not with the magnetic moment but
with the spin of a ferromagnetic material.

' In the ground state of a ferromagnetic mate-
rial the spins of all atoms are thus “parallel”

13*
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to one another. Their common “direction”* is %
fixed, for instance, by the anisotropy axis along
which the magnetic field is applied. Any devi-
ation of the spin from this direction involves

Fig. 50. Spin of the ith atom is deflected from the “direc-
tion” common for other spins

an increase in energy. Assume that the atom 7§
with the deviating spin is in the ith lattice site &
(Pig. 50). It would seem then that t}}e energy
of the ferromagnetic material must differ from §
the ground state energy (3.9) because of t'he
change in the energy of interaction of the ith 4
atom and its nearest neighbors. But this intuitive
interpretation proves incorrect: it ignores the”
quantum nature of the spin. Of course, the state {
in which the spin of the ith atom deviates from’
the others is allowed to exist. But we cannot be
satisfied with this: we want this state to be sta- §

* We want to emphasize again that the “direction” of
spin (and generally, of any quantum-mechanical moment) 1
is a convenient way to describe states with a given value 1
of spin projection.
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tionary, to have a definite energy. But this is an
excessive demand. We have already mentioned
(see Sec. 1.4) that not any two physical quantities
are allowed by quantum mechanics to have
simultaneously definite values. Thus, for a ferro-
magnetic material, that is, for a system of the
spins whose behavior is described by the Hamil-
tonian (3.8’), the energy of the system and the
projection of the spin of the ith atom (if it differs
from the projections of the spins of the other
atoms) cannot have definite values simultaneous-
ly. This statement is so important for under-
standing further explanations that we shall
illustrate it with an example of the simplest
spin system composed of two electrons (spin-1/2
particles) coupled by the exchange interaction
(see formula (1.39)).

It is clear from Table 2 on p. 64 that the value
of the scalar product s,-s, (and hence, of energy)
is determined by the total spin of the system of
two electrons, and only in two of the four sta-
tionary states the projection of each spin is
defined. These are the states with § = 1 but
S,= 41 and §, = —1. In these states each
of the electrons has a definite spin projection:
if §; =1, both electrons have s, = +1/2, and
if §, = —1, both have s, = —1/2. In the other
two states (§ = 0, and § = 1 with S, = 0) the
projections s, = 1/2 and s, = —1/2 for each
electron are “mixed”, that is, in these states
none of the electrons has a definite spin pro-
jection.

Analogues of the states with § =1 and §, =
= =1 for a ferromagnetic material are the states
with § = Ns and §, = +Ns, that is, the states
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with the lowest exchange energy (of course, for J
A >0), and, at the same time, the states with 3
definite values of spin projections for each atom j
(for any i, s;, = +sif §, = Ns, and s;, = —s 1

if §, = —Ns). In other stationary states (as

in the case of two electrons) the projections of§
the spins of individual atoms do not have def- %
inite values. Table 2 also hints how to character-
ize the stationary states of a system of the spins }
related by the exchange interaction (note that
the Hamiltonian (3.8’), whose properties we are j
now studying, is a generalization of the Hamil- §
tonian (1.39)). According to the table, the pro- §
jection of the total spin has a definite value in j
all four stationary states. This property of sta-
tionary states is also preserved in the case of §
interest to us now: that of a system of the atomic
spins described by the Hamiltonian (3.8’). Con-%
sequently, although there are no stationary states
with a “deflected” spin in a given lattice site, §

there exist stationary states with a definite value
of the S, projection of the total spin of the whole ;
Jerromagnetic specimen onto the anisotropy axis.

It is intuitively clear that at low temperatures }
that are of interest to us now, the important j
states are those close to the ground state. Let us
consider a stationary state with S, = Ns — 1,
that is, with a minimum decrease in the projec- !
tion of the total spin. One would like to realize ;
this state by changing the spin projection of
one atom by unity: s—s — 1. But we have §
seen that this is forbidden by quantum mechan- ;
ics. Hence, the deflected spin (the spin with §

the projection s — 1) must belong to the whole §
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crystal. It is often said to be “spread” over the
whole crystal lattice. By way of illustration,
this situation can be pictured as the hopping
of the deflected spin from one atom to another
owing to exchange interaction. In quantum terms
this means that the ¥ function of the stationary
state with S, = Ns — 1 has a periodic wave-
form and describes a consecutive deflection
of the atomic spins in crystal lattice sites. It
very much reminds us of the de Broglie wave
mentioned in relation to the properties of free
particles (see Sec. 1.4). It is referred to as the
spin wave (hence the title of the section).

As the de Broglie wave, the spin wave is char-
acterized by a wave vector k to which, by anal-
ogy to free particles, we can relate the momen-
tum:

p = ik (3.23)

As any stationary state, the spin wave is char-
acterized by its energy. Traditionally, it is
measured off the ground state energy. The energy
of a free particle is

p2 _ ﬁ2k2

= om T T

where m is the particle mass. The spin wave ener-

gy € is also a function of wave vector. If a ferro-

magnetic material has a primitive cubic lattice,

then

e (k) = 24 (3 — cos k,a — cos kya — cos k.a)
(3.24)

where a (the lattice parameter) is the distance
between the nearest neighbor atoms, and #k,,




200 Ch. 3. Ferromagnetism

ky, k. are the projections of the wave vector k
onto the edges of the cubic unit cell of the lat-
tice.

This comparison of a spin wave with a particle
was dictated not only by pedagogical arguments.
The resemblance is indeed striking: both the
particle and the spin wave have identical dynam-
ic characteristics; namely,

energy € as a function of momentum. It should
be emphasized that the latter feature is a corollary §

of quantum mechanics.* The energy of a classi-
cal wave is a function of amplitude and thus can
assume no matter how small values. The resem-
blance between a quantum spin wave and a par-
ticle is so strong that a special particle with
momentum p = ik and energy & = e (p) is
“introduced”; this particle is governed by for-
mula (3.24). This particle is called the magnon.
We request that the reader reread all that was
said about the de Broglie relations (see pp. 37-38).
The “introduction” of the magnon signifies that
formulas (1.19) and (1.20) are read from right

to left, thereby recognizing the corpuscular prop-

erties of the spin wave.

The magnon is not quite an ordinary particle,
Do not forget that it is nothing less than an
elementary excitation of ordered magnetic mo-
ments of a ferromagnetic material, or the wave
of spin deflections. Once a ferromagnetic drops
to its ground state, the magnon disappears. Con-
trary to this behavior, ordinary particles (elec-

* In fact, this is a result of the spatial quantization of
the spin whose projection can only change in a discrete
manner (see Sec. 1.5, formula (1.23)).

momentum p and 3
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trons, protons, atoms, etc.) neither vanish nor
are bhorn from nothing.

In order to emphasize the specificity of parti-
cles introduced for the description of elementary
excitations in macroscopic bodies, they are re-
ferred to as quasiparticles.

It has been underlined several times in this
section that a spin wave is an elementary exci-
tation. But in what sense is the wave of deflec-
tions of spins elementary if it “involves” all the
atoms of a ferromagnetic specimen? In the sense,
and only in this sense, that this excitation cannot
be decomposed into more elementary ones: there
cannot exist simpler stationary states of a ferro-
magnetic with the spin projection equal to
Ns — 1.

We have thus explained two of the three un-
familiar terms introduced at the beginning of
this section (the spin wave and the quasiparticle).
The third was the energy spectrum. Now we shall
discuss the energy spectrum of ferromagnetics.

We have thus found that a minimum possible
change in the spin of a ferromagnetic, and hence,
of its magnetic moment, results in an increment
of the energy of the ferromagnetic by & (k)
which is a function of the wave vector k. It has
been already mentioned that with the magnetic
moment of a crystal fixed, its energy is not de-
termined unambiguously. There is a whole band
of possible (allowed) values of energy correspond-
ing to the magnetic moment equal to (Ns — 1) 2ug
(g =2 for J = s, and gugp is the smallest pos-
sible change in the projection of the magnetic
moment of an individual atom). According to
(3.24), the width of this band is 124 because
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e (k) =0 at akxzaky=ak,=0and‘a(k)=f
:( 1)2A at ak, = ak, = ak, = xn (Fig. 51). §
Note that the band of allowed values of energy §
is not separated by a gap from the ground state
energy Eg given by (3.9). The band appears as 3
a result of exchange energy. This is clear because
the width of the gap vanishes when 4 — O (see }
formula (3.24)). ' ' :

Forget for a moment the exchange interaction.
Let the crystal consist of /V identical noninteract-
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Fig. 51. Magnon energy € as a function of the projection :
kdgof the wgave vector k onto the body diagonal of thq,

cube

ing atoms, all of which occupy the ground state.'!
Each of the atoms has its own system of energy
levels, and these systems are identical. COIlSldB]:
the lowest excited state of our “crystal”. Clearly/]
it corresponds to raising one of the atoms to its$
lowest excited state. It is unimportant w?uo.
of the atoms is excited since all are 1dent1cal.
The same excitation energy corresponds to NV
different states (equal to the number pf atom
because the state is defined not only by its energ
but also, in this particular case, by specifyin
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which of the atoms is excited. A level corre-
sponding to more than one state is said to be
degenerate.* In this particular case the energy
level is N-fold degenerate, with N being a fan-
tastically large number (~10%% per 1 cm?®). The
exchange interaction “cancels” degeneracy, that
is, one degenerate level is replaced with N levels
located within a 124-wide band. If N formally
tends to infinity, the distances between levels
tend to zero, and the allowed energy levels fill
the whole band. This creates an energy band,
that is, the band of allowed values of energy.
Let us repeat and remember:

the exchange interaction cancels degeneracy and
turns a level into an energy band.

The absence of a gap between the ground state
of a ferromagnetic and the states with one mag-
non, or, which is the same, the equality of the
energy of a spin wave with k = 0 to zero, has
a profound physical meaning. The excitation
with zero momentum (or with infinite wave-
length) corresponds to a rotation of the magnetic
moment of the ferromagnetic specimen as a whole
(this changes the projection of the total spin
onto an axis by unity). Energy cannot be changed
by this rotation because the exchange interaction is
isotropic. A spin wave with a nonzero wave vector
describes the nonuniform excitation of the ferro-
magnetic. It is not surprising that the energy
of such a wave is not zero. The following picture
is convenient when the concept of the magnon

* Unfortunately, the term “degeneracy” has several

meanings in physics (cf. the term “degenerate gas” (see
p. 124)).
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is used: the energy & (p) is the energy of the
motion of the magnon, or its kinetic energy. It |

is then natural that £ (p) =0 at p = 0.

The magnon-particle resemblance becomes es- ]
pecially clear for magnons with very small mo-

menta. Since at ak; <1 (=2, ¥, 2)
cos aky & 4 — 5 (aky)?

formulas (3.24) and (3.23) yield
e(p)=A4 a;‘:g at apgh

pr=h2 (k- K+ k2)

In this form the magnon energy depends }
on momentum in the same way as the energy {
of la free particle with the mass m* = */24a>.
The quantity m* is called the effective magnon §
mass. The inverse proportionality of the efiective |
mass to the exchange integral is natural: lighter §
particles move easier, and the motion of a mag- §

non is caused by the exchange interaction.

If a ferromagnetic specimen is placed in an §
external magnetic field along which the mag-}
netic moments of atoms align, then the change i
in the spin projection of a single atom by unity |
is accompanied by an increase in energy by
2upH. As a result, the energy of the spin wave}

(3.24) is augmented by the same amount:
e (k) = 24 (3 — cos ak, — cos ak,

— cos ak,) + 2upH , (3.26)

This formula resembles expression (2.20) for
the electron energy in a magnetic field. The]

(3.25)
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exchange-interaction component of the energy,
depending on momentum p = %k, is an analogue
of the electron kinetic energy, while the term
2upH is an analogue of the energy of the electron
spin in a magnetic field. Therefore it can be
interpreted as the energy of the magnon spin
in the magnetic field H. The factor 2 signifies
that the magnon must be assigned a spin twice
that of the electron, that is, magnons are spin-1
quasiparticles. On the other hand, the increment
to energy due to the electron spin is seen to
assume two values: -+upH and —ppH, in cor-
respondence with the spin orientation along the
field or against it (since e << 0, the directions
of the spin and magnetic moment of the electron
are opposite). A unity spin has three projections:
+1, 0, —1. Seemingly, the increment to the
magnon energy must also assume three values:
—2ppH, 0, and 4-2ugH. The fact that formula
(3.26) contains a single value of the spin term
signifies that only one of the three possible states
with different spin projections is realized: that
with the projection equal to —1. The physical
cause of this result is clear: a magnon (spin wave)
is born in order to diminish the spin projection
of a ferromagnetic specimen; this is only possible
if the magnon has a negative spin projection.
This last remark on the implementation of only
one of the three spin states of a magnon does not
cancel the statement that

a magnon is a spin-1 quasiparticle.
The expression (3.24) for the magnon energy

e (k) is periodic in each of three variables: in
kyy in ky, and in k, (the cosine is a periodic
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function). All three periods are identical and 3%
equal to 2n/a. Periodicity in energy is a direct §
consequence of periodicity of the crystal. Not only
the energy of a magnon but its wave function as 3
well has this property. This means that two j
states with wave vectors k and k' are physically §

indistinguishable if
2m 2m

’ ’ 25 1
k;——ka—a—ni, ky_ky:Tnzv kz——kZ:7 3 4

and ny, ng, ng are integers. These last equalities 4
can be recast in a compact form by introducing 3

a vector K with “integer” components:

2n 2n _2n
Kx:—a—ni, Ky:Tnz, Kz——a n,

Two states are thus physically indi'stinguish-' ,
able if the wave vectors k and k' differ by a 38

vector K:
k" =k +K

Consequently, all distinct states of a magnon are -
determined by the wave vectors in a §ub1c cell
with edges equal to 2m/a. A crystal lattice can be 4
constructed of the vectors K (constructed on 3
paper, that is). It is called the reciprocal lattice.
All distinct states of a magnon have wave vectors ;
belonging to one unit cell of the reciprocal lat- .
tice. If we multiply the length of the edges of the
unit cell of the reciprocal lattice by %, we obtain 3
a unit cell containing those values of momentum j
that correspond to distinct states of the magnon.

The situation with ordinary particles is quite 3
different. The states with different “true” mo-- 4
menta always differ from one another, and mo- j
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mentum can take on arbitrary, even no matter
how large, values.* This distinguishes the free-
particle momentum from the momentum we
assigned to a quasiparticle (magnon in this
particular case). This difference is emphasized
by calling the momentum of quasiparticles the
quasimomentum. Note that the prefix “quasi”
in the word quasimomentum is used not because
we are concerned with a quasiparticle. Examples
can be given when the state of a true particle
in a stationary state is characterized by a quasi-
momentum, and conversely, when a quasiparticle
is characterized by a momentum. An example of
the former is an electron (a particle) in a crystal
lattice**, and an example of the latter is a photon
(a quasiparticle, a quantum of an electromagnetic
field) in vacuum.

The replacement of momentum with quasi-
momentum is a consequence of the geometric
properties of the world “inhabited” by magnons.
[t is quasimomentum and not momentum that
describes the states of any quasiparticles that
are quantum analogues of elementary excitations
in crystals. This aspect will reappear later in
the book.

By way of digression, let us clarify the meaning
of the phrase “geometric properties of the world”.
If a crystal lattice is translated by a vector con-

* But in this case energy must be expressed not by the

habitual formula e = p22m but by the relativistic
formula e = V m%t + ¢%po.

** When analyzing the properties of conduction electrons
in metals, we simplified the situation by “throwing out”
ol the metal its lattice constructed of positive ions (see
sec. 2.4).
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necting two equivalent lattice sites, the lattice 3§
coincides with itself. The smallest displacement J
superposing a cubic lattice on itself equals & 3
and must be carried out along one of its axes:’
z, y, or z (see Fig. 50). On the contrary, a
empty space is uniform and thus coincides wit
itself for any displacement, even an infinitesimal’
displacement. The length of the edge of a recip
rocal lattice unit cell, inversely proportional 3
to a, defines the range of quasimomenta. In the’}
case of an empty space the lattice parameter can'’}
be assumed equal to zero. Consequently, the uni
cell of the reciprocal lattice is infinitely large
In this sense the momentum is a quasimomentunﬁ;
with infinitely large unit cell of the reciprocalj
lattice. 4
IR
Spin Complexes

An elementary (minimum) excitation of the
magnetic system of ferromagnetics thus can- (and &
must) be pictured as the creation of a quasi-@
particle, that is, of a magnon, characterized by*j
its quasimomentum p = Ak and energy ¢= ¢ (p)'d
given by formula (3.24) or (3.26). It is then natu-~
ral to ask whether an arbitrary excited state of a i
ferromagnetic specimen can be described as aj
state with a specific number of magnons. The}
affirmative answer to this question would meant
that formulas (3.24) and (3.26) completely definej

I

the energy spectrum of the ferromagnetic. Unfor-

tunately, the answer is negative. Or ratherg
negative in the general case. In other words,§
sometimes it is possible and sometimes it is notu

In order to clarify this behavior, let us ana~%
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lyze the simplest case in which the excitation
of a magnetic system is the minimum deflection
of two spins or a double deflection of one spin.*
It would be very tempting to associate one mag-
non to each deflection. Then the excitation
energy would be the sum of the energies of these
two magnons. However, the actual situation is

(®

Fig. 52. Among nonstationary states of a crystal some
states are such that the spins of two atoms are “deflected”
from the common direction. These two atoms can be
located far from each other (z) or be adjacent (b)

more intricate. The thing is that some of non-
stationary (sic) states with two deflected spins
are such that the deflected spins happen to be
adjacent (Fig. 52). But then formula (3.8') dic-
tates that the exchange interaction between them
should be appreciable. Consequently, two mag-
nons interact with each other.

An interaction between any particles either

* We mean here the states with spin projection S, =
= Ns — 2. If the spin of an individual atom is s = 1/2,
a double deflection of the spin of this atom is impossible:
once the spin projection of the atom diminished from
s, = 1/2 to s, = —1/2, it cannot diminish any more,

15—-01378
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leads to the scattering of these particles on each
other or to the formation of a bound system
of these two particles (obviously, only if the
particles are attracted to each other). In the
first of these cases, that of scattering, the particles
approach and then part, so that most of the
time they are so far from each other that the
interaction between them can be simply ignored,
and the energy and momentum of the two particles
equal, to a high accuracy, to the sum of their
energies and momenta, respectively.

In the second case the formation of a bound
state signifies that the particles do not “part”
(there is a maximum distance by which the
particles can be separated). A good example

of such a “two-particle system” is the Earth

and the Moon moving around the Earth along
a nearly circular orbit. The energy of the Moon,
equal to the sum of its kinetic and potential
energies, is negative (the negative component
is the potential energy in the case of attraction
if we assume that the interaction energy tends
to zero when the bodies recede to infinity). If
the energy of a moving “particle” is positive
(as it is for comets), then no bound state can be
formed despite the attraction: a comet leaves
the Earth and sometimes the solar system as
well.,

A quantum analogue of the Earth-Moon system
is the hydrogen atom. The states with negative
energy are bound states (with energy given by
formula (1.21)). Zero energy separates the bound
states of the electron in an atom from the free
states in which the electron is scattered by the
nucleus. The two examples (one cosmic and one
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atomic) are illustrations of the following state-
ment:

depending on the value of energy in a system
of two attracting particles, the particles may be
either bound or free,

Let us return to the system of two magnons.
Let us single out the motion of the two magnons
as an entity (with a quasimomentum equal to
the sum of their individual quasimomenta) and
their relative motion. It is found that the mag-
nons are atiracted to each other, with the mag-
nitude of attraction depending on the total
quasimomentum. This situation would be impos-
sible for particles in vacuum. There it is always
possible to change for an inertial frame of refer-
ence in which the center of mass of the particles
is at rest, that is, their total momentum is zero.
Note that nothing depends, and cannot depend,
on the velocity with which the chosen inertial
reference frame moves (this is the essence of the
Galileo relativity principle). No such transition
is possible in a ecrystal: quasiparticles move
relative to the lattice which constitutes a unique
frame of reference. The dependence of the inter-
action between magnons on their total quasi-
momentum is another manifestation of the funda-
mental difference between quasimomentum and
momentum,

If the total quasimomentum exceeds a certain
tireshold value, then attraction is sufficiently
strong and there exists in addition to states in
which magnons are scattered, a certain state (with
the same total quasimomentum) in which the
magnons form a bound system. The energy of such

t4*
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a state is less than the sum of the energies of free
magnons. This situation is descriptively illus-
trated by the motion of two adjacent deflected
spins through the crystal lattice (see Fig. 520).

A bound state of two magnons is called the spin §°

complezx.

Consequently, under certain conditions there |

exists, in addition to states composed of two free

magnons, a state with lower energy in which two
magnons form a spin complex. In the case of |
three spin deflections there exist three types of §
state: three free magnons, a spin complex con- j
sisting of two magnons and one free magnon, and |

finally, a complex consisting of three magnons.
The generalization to a larger number of spin
deflections is obvious... .

Clearly the energy spectrum of ferromagnetics j
is quite complex. In principle, with the energy
spectrum of a body known we can calculate all
its thermodynamic characteristics: specific heat, 4
magnetic moment, and so on. However, if the ;
spectrum is too complicated, the corresponding §
formulas become unwieldy and, therefore, use- §
less. The calculation of the thermodynamic char- §
acteristics of ferromagnetics is considerably sim-"§
plified if the temperature is much lower than the j

Curie temperature 7'.. We shall see that in this;

case the main contribution to thermodynamic char-§
acleristics is made by states with a small number:
of magnons when the interaction between the}
magnons is a negligible factor. We are justified
then in completely neglecting the interactions}

between the magnons. Consequently,

at low temperatures a system of magnons can be

treated as an ideal gas.
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We shall have an opportunity to recur to this
fantastically fruitful model, but now want to
take up a tempting possibility of treating spin
waves in terms of a classical, and therefore very
illustrative, description.

3.8. Spin Waves as Waves
of Nonuniform Precession

Let us forget for a while the quantum nature of
spins and consider them as magnetic needles
(small magnets) which, as we well know, strongly
interact among themselves in ferromagnetics. The
forces responsible for the interaction are exchange
forces that try to align all magnets parallel to
one another. They are indeed so aligned in the
ground state, and the magnetic moment per unit
volume of a ferromagnetic material, £ (or mag-
netic moment density, or magnetization; these
are different names for the same quantity), is
simply the arithmetic sum of the magnetic
moments of individual atoms located within
this volume.

Now let us fix our attention on one of these mag-
netic needles and write an expression for its
energy of interaction with all other magnets.
This is achieved simply by dropping the summa-
tion over one of the subscripts in (3.8"). Also, we
multiply and divide the whole expression by p}
in order to switch from the spins of atoms to
their magnetic moments. Hence, the interaction
cnergy between the ith magnetic moment and
all other magnetic needles has the following
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form:
A ! .
Ei:_”B,i(WZ P»B,h) , i=1, ..., N
R

(3.28)

Compare this expression with formula (1.26)

describing the interaction between a magnetic
moment and a magnetic field H. You observe 4

that the vector

A !

plays the role of the magnetic field. And it is
indeed called the effective magnetic field and is

denoted by

Her = Tﬁg 2 UB, n (3.29)

k

A magnetic moment deflected from the magnetic %
field H rotates around the field at a frequency yH §
(see Sec. 1.6). One could think that a magnetic }
moment deflected from the equilibrium position
rotates at a frequency easily calculable from for- i
mula (3.29), recalling that at equilibrium all /g
magnetic moments are parallel. However, the §
reality is again more complicated. Expression j
(3.28) describes the interaction of any of N §
magnetic moments (V is the number of magnetic
atoms in a crystal) with its surrounding. This}
means that there are V expressions such as (3.28). §
The motions (rotations) of all magnetic moments §
are interrelated. It is not possible to find the |
motion of one magnetic moment without analyz- }
ing the motion of all magnets. We have indicated
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that already when describing the quantum states
of a system of spins.

An analysis of rotation of the system of mag-
nets shows that the simplest form of their motion
is the propagation of waves of nonuniform pre-
cession. A look at Fig. 53 is sufficient to under-
stand what nonuniform precession is, Each wave
is characterized by its wave vector k. We can

"TITTEPPTT
» GRAOOTOOTS

Fig. 53. Nonuniform precession of atomic spins:

(a) the lateral view of a string of spins; (b) the top view,
giving a wave plotted by a curve connecting the tips of
spin vectors

calculate the wave frequency w. It proves to be
a function of the wave vector, and this function
can be found only by analyzing the equations
of motion of all atomic magnetic moments. The
equations are derived by means of (3.28). Un-
fortunately, here we are unable to carry out this
analysis and have to give only the conclusions.
The quantum and classical approaches yield
identical results; the dependence of the frequency
of a nonuniform precession wave, ®, on the wave
vector k coincides with that of magnon energy
(3.24) if it is divided by Planck’s constant %
(recall the de Broglie relation).



246 Ch. 3. Ferromagnetism

In other words,

a magnon is a wave of the nonuniform precession
of atomic magnetic moments,

We have often stressed that the exchange inter-
action is isotropic. It aligns magnetic moments
but does not single out the direction along which
the magnetic moment ./ must be directed. This
direction is fixed either by a magnetic field or by
anisotropic forces described in Sec. 3.4.

‘As a result of the isotropy of exchange interac-
tion the frequency of precession waves (or magnon
energy) tends to zero as the wave vector k tends
to zero, If k = 0, this is the wave of uniform
precession (A = 2n/k = ool), that is,
a rotation of all magnetic moments by the same

angle, and we already know that the exchange }
interaction does not “notice” this operation. But “§

if nonexchange interactions are “switched on”
(anisotropy energy, magnetic field), then the
uniform precession of all magnetic moments will
proceed at a quite definite frequency. We denote
it by ;. In the simplest cases it is added to the
frequency of nonuniform precession.

The wave of precession of atomic magnetic
moments takes into account the discrete struc-
ture of the crystal: the rotating magnets are
precisely atomic magnets. Limiting the picture
to waves with small wave vectors (ak < 1) (and
it will be shown in Sec. 3.10 that this range is
the most interesting to us), we can be satisfied
with a macroscopic description of the motion of
magnetic moments, by introducing the mean
density of the magnetic moment in a ferromag-
netic material, .# = Jf (r, t), that is, the vector

merely

o
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sum of the atomic magnetic moments in unit
volume,

The oscillating quantity in a nonuniform pre-
cession wave with a small wave vector is the
magnetic moment density of the ferromagnetic.*
In particular, uniform precession is the rotation
of the magnetic moment of the specimen as a
whole, and a small-momentum magnon (we re-
mind the reader that momentum p = 7k) is a
wave of the nonuniform precession of magnetiza-
tion (magnetic moment density).

The advantage of the classical approach lies
in its simplicity and descriptiveness. But it
must be borne in mind that it is not as exact as
the quantum approach. Consequently, it is neces-
sary to know the limits of applicability of the
classical description in order to avoid errors,

3.9. Gas of Magnons

Now let us consider the case of a ferromagnetic
material at a temperature low in comparison with
the Curie temperature 7, when the material is
in a state of maximum ordering, i.e. in the
ground state.

At low temperatures magnons in ferromagnetics
are few, and therefore their “collisions” are infre-
quent and the interaction between them can be
ignored. We have already mentioned that this
interaction can be neglected completely and the

* The word “oscillates” must not be interpreted literally.
It means precisely the nonuniform precession. Although
a wave propagates through the ferromagnetic, o2 (r, ty =
= ofi% (oM, is the magnetic moment density at satura-
tion), and the magnetic moment only rotates,
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system of magnons can be treated as an ideal gas.

Of course, spin complexes are allowed to |
form, but at low temperatures their number is °
extremely small* and we can neglect them as
well.

At low temperatures magnons thus form an
ideal gas of quasiparticles. But in the range of
low temperatures not only quasiparticles but
ordinary “true” particles as well manifest the
quantum properties of systems especially well .

(see Sec. 2.4). The question that naturally arises
then is: Do magnons become bosons or fermions?
Are their collective properties described by the ¥
Bose-Einstein or Fermi-Dirac statistics? 2

You remember that particles with zero and '
integral spins are bosons, while particles with

half-integral spin are fermions. This theorem ¥ !

can be generalized to quasiparticles as well. The
spin of a magnon is unity, so that magnons are
bosons, and the magnon gas is a Bose gas.

— . -—

Bose Gas

Tt is high time we recall our promise and descri.bel
the properties of a degenerate Bose gas, that is,.
a Bose gas at temperatures much lower than

e N \2/3
Ta= %m (7)

* We shall see (although we expect it to be intuitively
clear) that at 7 € T, magnons predominantly have]
enerey & < kT, that is, energy much less than the magnon
band width 124 (according to (3.11), kT = z4/4).;
Such magnons have a low quasimomentum and they can-|
not form a spin complex, while the number of magnons:
with high momenta is very small. ~

3.9. Gas of Magnons 219

(see formula (2.17)). No degenerate Bose gases
of “true” particles exist at such temperatures:
all of them turn into liquids at 7 > Ty and so-
lidify (helium is the only exception). We shall
describe the properties of a Bose gas, dictated by
the laws of quantum statistics, if such gas existed
(attempts are being made nowadays to produce
a degenerate Bose gas artificially).

Let a volume V be filled with V Bose particles
at ' « T4. Each particle moves according to the
laws of quantum mechanics, and its energy is
determined by its momentum: & = p?/2m. We
remind the reader that inevitably the coordinate
of the particle has no definite value. As in the
case of a Fermi gas (see p. 125), we begin at abso-
lute zero of temperature when the system must
be in its ground state, that is, the state with
the lowest energy. Bosons are not governed by
the Pauli principle, and so nothing precludes
them from transferring to the state with zero
momentum. This macroscopic accumulation of
particles in a state with p = 0 is called the con-
densate. Hence,

the ground state of a boson gas is the condensate.

An elementary excitation of the gas of bosons
is equivalent to one particle leaving the conden-
sate, that is, to the creation of a moving particle
with p %= 0. Since most methods of detecting
a particle are based on detecting its motion, the
particles of the condensate “do not exist” but
are “born” when motion starts. Quantum sta-
tistics makes it possible to determine the mean
number of particles with momentum p =0,
that is, the equilibrium distribution function
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at T < Tgq
= 1
e —q

If we are interested in the mean density n (e)
of particles in an infinitesimal interval of energy
from e to & -4-de, this last expression must be
multiplied by the density of states* g (¢) equal to

2s-+-1) V =
S ™V

where s is the particle spin (s =10, 1, 2, .. .):

@s+1)Vm32 Ve (3.31) Q
V2 n2ps eT‘EF 4 o
The total number of moving Bose particles at 3

a temperature T is found by integrating over

energy:

n(e) =

Vjo ‘Vg de

(254-1) md/2
No= V2 n2r?

Although at ¢ = 0 the integrand tends to in- j
finity, the integral has a quite definite value and 3
is proportional to 7%2. The number of particles §
in the condensate, N,, equals the total number 3
of particles N minus N,. At a temperature }

L
ehT 4

.32 §

* We described the density of states and explained why 4
it is proportional to V& on p. 126. The formula given
here differs from (2.19) in that it is written for an arbi
trary spin. In the case of the electron we have to substi-"

tute s = {/2, arriving, of eourse, at formula (2.19). 4
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T = T, where
oo 331 2 [N \23
o™ 5 (7) (3:33)

the condensate disappears; at T > T, all the
particles move. The behavior of Bose gases is
psually studied by gradually lowering the tem-
uerature, so that the point T, is called the tem-
perature of the RBose-Einstein condensation. At

n

|
|
!

kT €
Fig.§54.’~ Energy distribution of Bose-gas particles with
pl=, 0,7 in arbitrary units. The area under the curve

n = n (e) equals the total number Np of gas particles
moving In a container

T << T, a finite number of particles is at rest,
being a part of the condensate. The specific
behavior of Bose gases must be revealed in all
its thermodynamic properties. Thus, at 7 << T,
the heat capacity of a Bose gas is proportional
to T%2 (the heat capacity of a classical gas is
independent of temperature, while that of a Fer-
mi gas linearly tends to zero).

To conclude this subsection, let us have a look
at the energy distribution of particles at T << T'.
And we literally mean “look”. Figure 54 plots
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the mean particle density n (¢). You observe
that practically all the particles concentrate
on the interval from O to £T, and as energy in-
creases, the density exponentially tends to zero.

L .

Let us return to the gas of magnons. We shall
use the approach developed in the preceding
section and described in italics on p. 216. We
shall begin with a wave of nonuniform precession.
It is characterized by a wave vector k and fre-
quency . If we can speak about frequency (in
this particular case o (k)), we can speak of an
“oscillator” whose frequency is o (k). It is not
so important what oscillates as long as it oscillates.
According to quantum mechanics, the oscillator
energy is known to assume the values equal to

en = 510 (k) + mucho (k) (3.34)

We intentionally chose this form instead of
a more familiar formula (n + 1/2) iw in order
to emphasize that the energy my/ie (k) is the
energy of the excited state. The state of a ferro-
magnetic is fixed by prescribing the numbers ny,
that is, the degrees of excitation of each oscillator.

Since a wave of nonuniform precession can be put &

in correspondence with a magnon with qu si-

momentum p = hk and energy % w (k), the degree “' '

of excitation of an oscillator (the number ny)

can be regarded as the number of magnons* with

* The introduction of magnons is justified precisely by
the fact that in units of Zw (k) the excitation energy
can assume only integral values. Evidently, the deriva-
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wave vector k or momentum p = #%k. This can
be illustrated by the following diagram:

spin wave as a wave of nonuniform precession

|

oscillator

|

magnon

When defining the state of a ferromagnetic, we
need not know the exact (corresponding to each
instant) values of the numbers n, of magnons (we
have switched completely to corpuscular terms,
having replaced k with p). In order to derive
the temperature dependence of the quantities
characterizing the gas of magnons, it is sufficient
lo know the mean number of magnons with
momentum p, that is, the distribution function

of the magnons, n,. Our nearest problem is to
lind this function.
But first another digression.

Quantum Oscillator

Let us turn to formula (2.5) on p. 102. On the
left-hand side of the equality we see the ratio
of the number of particles with energy &,, to
the total number of particles. This ratio can
be regarded as the probability W, for a particle

tion given here is far from being rigorous. The formulas
viven above are strictly proved in ferromagnetism theory.
\mong other things, it is proved that formula (3.34)
holds, and this formula is of paramount importance of
this part of our story about the magnon gas.
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to have a given energy €. On the right-hand

side we find

S
AT

e

P
&

that is,
Epr
T TRT
e
W =
M Y
2 e ¥
M

with summation in the denominator carried ouf

over all possible quantum states. This simplﬁl

relation (simple until we try to specify &)

the basis of physical statistics. We want to applylE

it to an oscillator with frequency . Then °

(3.3

is the probability that the oscillator is in tiy
nth quantum state. The mean value (often calleg
the ezpectation value in probability theory) of
any physical quantity which depends on thy
degree of excitation of the oscillator, that is,
dependent on n, is found by multiplying thy
guantity by W, and summing over all n. Firg

-

M e
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we find the mean value of the degree of excitation:

oo Lo

- —
o ne kT
> n=0
n= Z nW"— 0 ho
- =
n=_ Z kT
e
n=0

The infinite sum in the denominator is the
sum of terms of a geometric progression with
the first term equal to unity and the common
ratio exp (—%w/kT). Consequently,

o —ple = LR 1
Z e M= Z (e kT) - o
r=0 n=0 {—e kT

The sum in the numerator is obtained from the
sum in the denominator if the latter is differen-
tiated with respect to z = Aw/kT and taken
with reverse sign:

A ne " * — _dil (Z e—nx)

n=qQ

ho

x=—

RT

(3.36)
eh—T —1
Before discussing this important formula, let
us find the mean value of the oscillation energy:
- ho
E=—
ho
T —1

(3.37)

1501378
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This expression immediately shows how to trans-
form to classical statistics: if fio < kT, '

Lo ro
AT ~ —_
¢ Y457

and we have to conclude that

in_conditions where the classical description zsf‘
valid the mean oscillation energy is equal to %
temperature in energy units: & = kT. .

The mean degree of excitation of an oscillator

under the same conditions is n ~ kT/w. For-
mally, the proportionality factor includes Planck’s
constant but this is unimportant because it
cancels out in the calculation of mean values.
The derivation of formulas (3.36) and (3.37)8
reproduced above was first carried out by Max
Planck in 1900 when he studied the radiatio
emitted by a blackbody, that is, a body that
emits but does not reflect electromagnetic waves;;
(a small hole in the wall of a large cavity isi
a good model of a blackbody). In order to explain’@
experimental facts, Planck had to make an §
assumption that signified the rejection of clas-j
sical physics: he had to recognize that an oscilla- §
tor can occupy only those states in which its}
energy is a multiple of Zo (see (3.34)). Planck}
chose the value of the constant (Planck’s con-i
stant) that provided the best fit of the experi-;@
mental and theoretical curves.*

T

_— S
* Even today, after more than 80 years elapsed since, '8
Planck’s constant has been introduced, we see no pos-, s |
sibility of caleulating it. It is not calculated, just as‘i“"
other fundamental constants in physics are not: the”
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* x %

It is clear from the diagram given on p. 223
that the equilibrium distribution function for
magnons

[

(3.38)

ny =

)
-~

e(
e RT 4

is identical to the distribution function in a Bose
gas at a temperature below that of the Bose-
Einstein condensation. An ensemble of magnons
is indeed a Bose gas.

Formulas (3.38) and (3.30) differ in that
formula (3.38) describes the distribution of all
magnons. There is no magnon condensate.

If the temperature of a ferromagnetic material
is much less than its Curie temperature, the
main role in its properties is played, as we know
from the analysis of a degenerate Bose gas, by
particles (by quasiparticles, namely, magnons,
in this particular case) with energy less than k7.
We can thus make use of approximate formula
(3.25) and also of formulas (3.31) and (3.32) in
which, however, 2s 41 must be replaced with
1 because (as you remember) only one spin state
of the three possible spin states of the magnon is
realized, namely, that with s, = —1. The par-
ticle mass m must be replaced with the effective
magnon mass m* = h%244® (see p. 204).

speed of light ¢ and electron charge e. They must be

measured. It is interesting to note that the most accurate
values of Planck’s constant % were obtained by means
of a superconducting device, that is, by the methods of
solid-state quantum physics.

15*
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i

When the equilibrium distribution function
n, is known, it is possible to calculate a number

of macroscopic quantities that characterize the
magnon gas, and hence, the ferromagnetic mate-
rial. The quantity that is of maximum interest
for us is the magnetic moment of the gas of
magnons in unit volume, that is, its magnetiza-
tion. This important aspect calls for a separate
section.

3.10. Magnetization and Heat Capacity
of Ferromagnetics at Low Temperatures

When considering the behavior of magnons in
a ferromagnetic specimen placed in a magnetic

field, we observed that each magnon “carries”
a magnetic moment equal to twice the thr
magneton and pointing against the magnetization
of the ferromagnetic. Consequently, the magnet-
ization of unit volume of the material, o/ (T),
is the difference between the magnetic moment
at absolute zero, o#, = Nups, and the magnetic
moment of the magnon gas. This last is simply
equal to the number of magnons Nyaen times
2pp. Therefore,

o/t (T) = Npps — 2pnNmagn (3.39)

If the magnetic field H is low (psH < kT) (see
p. 105), we can set it to zero and resort to for-
mula (3.32), without forgetting to replace m
with the magnon effective mass and 2s -1
with 1. As a result, we obtain

ol (T):Nsz[1——0.1(kTT)3/2] (3.40)

ERETGRR
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(that the integration in formula (3.32) is carried
out to infinity need not bother us: the contribu-
tion of states with energy higher than %7 is
absolutely negligible). We have taken into
account that each unit cell of the crystal containg
one atom with the magnetic moment pps, that
is, 1/a® = N.

This relation first derived by Felix Bloch in
1930 is often called Bloch’s law, or the law of
3/2, thus indicating the exponent with temper-
ature.

We now see how wrong the result obtained
in the Curie-Weiss model was. Both formulas (3.5)
and (3.40) were derived under the assumption
that only exchange forces act among atomic
magnetic moments. However, the Curie-Weiss
model assumes that the energy of a spin system
is unambiguously determined by the total magnet-
ization, while the correct quantum-mechanical
theory reveals the existence of magnons whose
excitation leads to demagnetization of a ferro-
magnetic specimen with increasing temperature.
Obviously, the power and not the exponential
character of magnetization dependence occurs
because the number of magnons N,a,, increases
according to a power law. But why does Nyagm
increase by a power law and not otherwise?
In order to explain this (this follows formally
from (3.32)), let us consider a more complicated
case of a strong magnetic field or of a very low
temperature (upH > kT). To make the analysis
more general, we denote the quantity 2upH in
formula (3.26) by e,, thereby emphasizing that
this is the energy of a magnon “at rest”, the
magnon with p = 0, and realizing that it is
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determined by all nonexchange interactions. .

In this case the number of magnons is given ;
by a formula very similar to (3.32), but w1t1}
integration carried out not from zero but from &,: :

(3.41)

1 1 ¢ Va—eo de
Nmagn= %nia® A3/2 S e
€y ehT —1
(See Problem 23.) -
If kT < &, the unity in the denominator can
be dropped and the number of magnons proves -
to be exponentially small: :

e R

1 - kT \32 g

Nossn ™ g ® " (2~ (34204
Now compare the energy distributions of}
magnons th:an go =0 and when g, % 0. Ii»
go 5= 0, the distribution has a maximum a§
e ~ kT, that is, most of the magnons have an
energy roughly equal to temperature (in energy..
units), but if e,>> kT, the total number oj;
particles is exponentially small. If ¢, = 0, mos 7
of the magnons have energies less than kT bufg
the total number of magnons is ‘prOportlonal %
(kT)%*. The root of the matter is thus whethvv‘
the band of allowed energy values is separatedy
from the ground state by a gap or not. The exist#
ence of a gap leads to the exponential dependen: :
of the number of magnons, and hence, of‘ magne
ization, on temperature. Note that' in ’A'i:.,
magnetics the gap is not of exchange-interactiog
origin, and for this reason the correct res
is so drastically different from that obtaineg:
in the Curie-Weiss model. (See Problem 24)) iy
A gap in the energy spectrum of excited states
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of a macroscopic body is a very frequent phenom-
enon. Naturally, it always entails the exponen-
tial temperature dependence of those macroscop-
ic characteristics of a body that are determined
by the excited states. This demonstrates the
applicability of the formula that we called the
basis of physical statistics (see the formula on
p. 224),

When the energy distribution function of
magnons is known, we can find the internal
energy of the magnon gas, that is, the sum of the
energies of individual magnons:

oo

Emagn= S en (¢) de  (3.43)

0

where n (g) = g (e)/es*T — {,

Acting by analogy to our earlier calculations
and assuming that ¢, = 0, we readily establish
that Epagn oc 752, Obviously, the magnon ener-
gy tends to zero as temperature tends to zero,
but at a rate that will be shown presently to
be relatively low. (See Problem 25.) In fact, our
interest in the temperature dependence of mag-
non energy stems from just this feature.

By definition, the heat capacity of a body is
the amount of heat consumed by the body upon
its heating by one degree. If the volume of
the body remains unchanged, the supplied heat
goes to increase its internal energy, that is, the
obtained heat equals the increment in the internal
energy of the body, Ey,. Consequently, if the
volume is fixed (and the volume of a solid can
be regarded as fixed practically always), the heat
capacity C equals dE:,/dT. Beyond any doubt,




232 Ch. 3. Ferromagnetism

magnons contribute to the internal energy of

ferromagnetics. Consequently, we can speak of
the magnon part of ferromagnetics’ heat capacity: |

Fmagn (3.44)

Cmagn = _dT—

By now it is clear that the magnon heat ca-
pacity of ferromagnetics, just like their magneti-
zation, is a linear function of 7%/2. The exact
formula for Cpaen (per 1 cm®) will not be out
of place:

Craagn =~ o.ucN(’fTT)s/2 (3.45) §

(we have again replaced 1/a® with N). Here is ;

why the exact formula is needed. When we deal :
with magnetization, only magnons are respon- §
gible for its temperature dependence at T' < _T P
This is not so when we deal with heat capacity. -

We have hinted already at the explanation when

introducing a distinction between the internal
energy and the magnon energy of a body. The }
motion of atomic particles in a solid is not §
limited to the excitation of its spin system. §
There are excited states in which the positions J&
of atomic spins are not altered at all. The most |
important among such motions are vibrations qf :
atoms (or ions) around their equilibrium posi- |
tions. This is described in the next subsection.

Phonons 3

Atoms vibrate in all solids, not only in ferrg—"j“
magnetics. For this reason the contents of this 7

subsection refer to arbitrary solids.
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The atoms of solids, of course, interact: by
attractive forces at large distances and by repul-
sive forces at short distances. Otherwise nothing
could hold the atoms in the elegant structure
that is a crystal with the periodically repeated
arrangement of atoms in space. Should an atom
be displaced from its equilibrium position, the
forces mentioned above force it to return to that
position; however, its neighbor atoms cannot
remain “indifferent”, and a wave of atomic
displacements from the equilibrium positions
will travel through the crystal. The simplest
(elementary) form of such waves is a wave with a
certain wave vectork and frequency w dependent
on k. And now we follow the familiar path
outlined by the diagram on p. 223:

wave of atomic displacements
oscillator

phonon

The last line gives the name of the quasiparticle
put in correspondence (by the de Broglie rela-
tions) with the wave of displacements. It was
called the phonon because the waves of displace-
ments are the familiar sound waves (acoustic
waves) propagating through crystals (from the
Greek phine for sound),jat least when the wave-
length A = 2n/k is of macroscopic dimensions,
much greater than the lattice parameter a,
that is, when ak < 1. To recapitulate,

the phonon momentum (quasimomentum) is Ik,
the phonon energy is ¢ = ho (k).
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As with any other quasiparticle existing in
a periodic crystal lattice, the phonon energy g3
is a periodic function of quasimomentum ;
(Fig. b5a). However, since we are mostly inter- °

Fig. 55. (a) Phonon energy as a function of projection J&
kg of the wave vector onto the body diagonal of the 4
cube (cf. Fig. 51) for longitudinal () and transverse (f) %
waves. When k — 0, 2@ is a linear function of k (see
inset). The range of allowed values of the phonon energy
is shaded. () The displacement of atoms in the longitu-
dinal (I) wave is parallel to k, and in transverse waves
(t; two waves) it is perpendicular to k; uw—vector of 8
atomic displacement ;

ested in the lowest excited states of bodies, we}
can limit the analysis to the relation betweenj
the frequency o and the wave vector k that}
holds for long-wavelength sound, with A muchg
greater than the lattice parameter a: 1

® = Csoundky, OT A® = CsoundD
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where csoung is the sound velocity independent
(to a high accuracy) of sound frequency.* Sound
velocity differs for different types of solids.
“On the average” it is between 10% and 10° cm/s.

Three types of acoustic waves propagate in
solids: two of them are transverse waves and one
is longitudinal (Fig. 55b clearly shows the
directions of atomic vibrations in each of these
waves). The velocities of the transverse and
longitudinal waves somewhat differ, but we shall
neglect this, keeping in mind that there exist
three species of phonons.

The same Fig. 55 shows the region of allowed
values of phonon energies. Note that it starts
from zero: no gap separates it from the ground
state of the crystal!

A perusal of the subsection “Quantum Oscilla-
tor” immediately shows: the number of phonons
with momentum p is given by (3.36) or (3.38),
only the phonon energy (3.46) must be substitut-
ed for Zw or ¢ (p). Unfortunately, we cannot
make use of formula (3.31) (as we did in the
case of magnons) because the density of states
gpn (€) of phonons does not coincide with the
density of states of ordinary particles and mag-
nons. Taking up again the derivation of the
formula for the density of states (2.19) of elec-
trons (see p. 126), we readily find that gy, (¢) ~
~ €2 when ¢ — 0. The exact formula for three

* A more conventional form of relation (3.46) is v =
= ¢gound/A, where v is the cyclic frequency, and A is the
wavelength; since ® = 2nv and k = 2m/A, we obtain
the relations given in the text. :
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species of phonons is
3Ver

&) =53

gon (€) TR g

and hence,

- 3v g?

nph (3) = znzhscgound & N gL Emax (3.47)
ePT 4

We have also indicated the conditions under
which the formulas are valid. Indeed, we used
the relation (3.46) valid only for low-energy
phonons; €max i8 the maximum energy allowed
to a phonon. The quantity Emax/k = O is called
the Debye temperature. As a rule, it does not
exceed several hundred Kelvins. Thus, it equals
90 K for Pb, 210 K for Ag, 180 K for KBr,
and 280 K for NaCl. Diamond has an exception-
ally high Debye temperature: about 2000 K.

The Debye temperature is an important char-
acteristic of crystals. If the temperature of
a body is much greater than the Debye tempera-
ture, there is noneed to turn to quantum mechan-
ics in treating atomic vibrations (see the state-
ment in italics on p.f226). But if T < ©, the
quantum treatment is mandatory. As you remem-
ber, we are interested in the low-temperature
behavior. To be precise: we limit the analysis
to the temperature range I' < ©. In this case
we can forget about the limitation in formu-
la (3.47) and can show, in complete analogy to
the earlier analysis, that the phonon energy is
proportional to the fourth power of temperature
(Epn o< T4, and the phonon heat capaeity to
the third power of T (Cpn o< 73).

qw
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Figure 56 shows the phonon distributi
function at low temperaturlzas. You nsﬁr;l;u&;::
the energy of most phonons is of the order of k7T

We shall give the exact expression for the
phonon heat capacity of unit volume of the

(ho)

!

!

i

I

I

j
kT ho

Fig. 56. Energy distribution of phonons. The area under

= ( ) t t P &
||le curve n =n (Aeo e<glla ] he Ulill I]umbe[ Of hOllODq

crystal containing a single atom per unit cell:
2n2k T 3
== ) (3.48)

5\ Ttsouns”
(See Problem 26.) We remind the reader that
ri,g chofse tnot to distinguish between the veloci-

s of transverse and longitudi i
e ongitudinal acoustic

Phonons constitute one of the basi

; ¢ asic heat reser-
voirs of sohds. The decrease in heat capacity
f\;mh decreasmg temperature is probably the
lirst macroscopic phenomenon that was explained
;I;ldt(i:l’?mi) ci)f %uantum mechanics (A. Einstein

_P. Debye), or in modern te i -
duﬁllng phonons. rms, by intro

ow look carefully at formulas¥(3.45) a

. nd

(3.48). They are very similar. Botl% state) that
the heat capacities—that of magnons and that

Cph ~
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3

ture tends to 3

nons—tend to zero as tempera
(z)(far?)}.lOBut the magnon component te.nds to zero

slower than the phonon component:

Cpn T 50 as T—0
Cmagn 3
At sufficiently low temperatures the heatsciz}p:ﬁe ,
ity of a body is deteljmmed by lilagnt(ﬁ Dhtre
Curie temperature T, is g}'eater ’;l an e ey 2
temperature ©. Phonons have the uI-)pthe ond’
at very low temperatures kT K eto). tho e ,f
capacity of ferromagnetics is de erx? ed by 3

honons as T — 0 because the numbeIi .o* lm ega o0 4
%)s exponentially small (see (3.42)) (.':1 tltlu ;a arlier 4
it was possible to ignore €, (_;omplelg yfé)r vhat 3
was described in this subsection hlo s nductioni
metallic ferromagnetics. In meta slco T ®
electrons play an important rple at low lempor .
atures, and their heat capacity 18 propro e
to temperature (this is also a qu.smftutzim1 pelgctron

e 5 frglil) tlsl'e iefﬁgiﬁizzro(;l heaet capacity;:

gas, see Sec. 2.4). SINC ron heat cap

iminishes with temperature slo 1an .
th honcn nd magmOl COmp e e bahav.]
nt that de

(ie(l)ic:;or}lle:f négg;lgity in metals when temperaturg

tends to zero.

Chapter 4
Antiferromagnetism
We have mentioned, when describing the

properties of paramagnetics (see Sec. 2.1), that
the paramagnetic Curie temperature Op in the
Curie-Weiss law is negative in & number of
materials, and in the third chapter, when deriv-
ing the Curie-Weiss law for ferromagnetics at
temperatures above the Curie temperature T,
we found that O, (coinciding with T. in the
Curie-Weiss model) is determined by the exchange
integral (see formula (3.11)). It is natural to
assume that the negative sign of Op in these
materials stems from the negative sign of the
exchange integral. It would be natural to pose
a general question: What should be the behav-
ior, at decreasing temperatures, of paramagnet-
ics if the exchange interaction between their
atoms is high but the exchange integral is nega-
tive? L. D. Landau was probably the first to
formulate this question (in 1933); he was able
to show that such materials must undergo a pecu-
liar magnetic phase transition of the second
order, not accompanied by the creation of a macro-
scopic spontaneous magnetic moment. Later such
materials were called antiferromagnetics. Soon
after Landau’s work the antiferromagnetic state
was discovered experimentally by L. V. Shub-
nikov and his co-workers (in 1935). Table 6 lists
some antiferromagnetics and gives their phase
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Table 6
Antifr&r}{locmag- Ty, K
NiSO, 37
FeSO, 21
NiO 520
FeO 188
NiF, 73.2
FeFe 78.3

transition temperatures T'y. The temperature of
the phase transition into the antiferromagnetic
state is called the Néel temperature in honor.
of the French physicist Louis Néel who was
awarded in 1970 the Nobel Prize in physics for
his work on antiferromagnetism.

4A. Antiferromagnetic Ordering

It has already been mentioned that beth in
antiferromagnetics and in ferromagnetics the
main role is played by the exchange interaction.
It is then natural to turn to the Hamiltonian
(3.8"), in which we set A < 0. Let us forget
for a time about the quantum nature of exchange
interaction and even about spins and assume
that s;, sp are ordinary classical vectors of
a prescribed length, and formula (3.8') deter-
mines how the energy of a body depends on their
mutual arrangement (it will be demonstrated
later, in Sec. 4.3, that the classical model is
a necessity because there is no rigorous quantum
theory of antiferromagnetism). The word “mu-
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tual™ is essential her
. 5 essen e because the exch
mter:'ictlon is 1so!;r0pic with respect to the jaoniii
2(;tla{1;mnfof all spins. We find that the minimum
of energy in the case of negati i
_ ive 4
:e:;ched for. the spin configuration iﬁ which thl:
spins pointing along some direction and against

(a)

AR (b)
Vig. 57 . .
ig. 57. Antiferromagnetic ordering of magnetic moments:

(@) in a body-cent : :
cnbic latticey ntered cubic lattice; (b) in a primitive

go:;ltgznite f(Fig. 57). Indeed, with this configura-
to, hbc of the scalar products for the nearest
mdg né)r ts'plns will be maximum in magnitude
a gative in si i

o iegali sign. Energy will thereby be
reé\a rfl%?iﬁgélr&:io? with alternating spins can be
I 0 Ierromagnetic lattices em
il;:tiigilt?r’lcher .(usually called magnetic sublc?;?cg:)d
teracti g wg the negative exchange interac-
maoﬁeticgu:e 7 shows the simplest antiferro-
are,: ot 'bsl ructure. More complicated structures
are pass;h e. O_ne qf them is the structure of
tern215 . ovl&;rll in Fig. 58. If it is described in
introducedsuAli;ltlceS}; ‘fourhsublattices must be

. ough in what fol
o lows we do not
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go beyond antiferromagnetics with two sublat-
tices, it should be mentioned that various and
sometimes very sophisticated magnetic structures
have been discovered and are studied nowgday;.
For instance, in rare-earth metals the spins in

l\\ 4
) ; ) 4 58. M tic structure of
\ Fig. 58. Magneti
<27 th% compound UO, described
78N by four magnetic sublat-
s \ ~. tices. The spins of magnetic
/JL'_X atoms align along the cube
vl diagonals

jacent atomic planes are rotated relative to
Zg({z}ilceother by apcertain angle. The magnetic
structure is then a helix (Fig. 5Ya).

Furthermore, there exists a large class 'of
materials which as if combine the properties
of ferromagnetics and antiferromagnetics. They
are called ferrimagnetics, or ferrites. The_zse are
materials whose magnetic system can l?e pictured
as a system of several sublattices which do not
add up to zero magnetic moment (e.g. becausti
the magnetization of one sublattice is severa
times greater than that of the other; Flg: 598).
One important particular case of ferrites is that
of weak ferromagnetics: antiferromagnetics in
which the angle between the magnetic momentg
of sublattices slightly deviates from 180
(Fllgt. i55 9ccl)ear from Fig. 57 that the macroscopic
magnetic moment of antifen:omagnetlcs is zero.
But this means that the antiferromagnetic state
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cannot manifest itself by a magnetic field sur-
rounding this specimen, as the ferromagnetic
state can. But is it then possible to “recognize”

Fig. 59. Complex magnetic structures:

(a) helical structures; (b) the magnetic structure of a fer-
rite: the magnetic moment at the vertex of the cubic
unit cell is less than the atomic magnetic moment at the
center of the cell; (c) the magnetic structure of a weak
ferromagnetic material

an antiferromagnetic structure? To answer this
question, we need to recall how crystal structures
are “recognized” in the general case.

Not only can a regular arrangement of atoms
be detected but the distances between the atoms
can also be measured by using x-rays. The x-ray
structure analysis is based on the interference
which in this case makes the amplitude of the
electromagnetic waves reflected by identical atom-

16*
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ic planes large when the difference between
the optical path of the corresponding rays is
equal to, or is a multiple of, the _wavelength
of the x-ray radiation. If a crystal is modelled
by stacked parallel planes (Fig. 60), we can
readily derive the condition that shows in what

(9) (®)

. L . The
. 60. The Bragg-Wulfi condition of interference.
gil{gference between the optical path length of the rays
reflected by two adjacent equivalent atomic planes
(hatched on the drawing) must equal an integral number
of light wavelengthst: L o)

dinary crystal; : y
E‘tll)leagis(;;gnce bs(;twgen the equivalent atomic planes is 2a)

directions the interference conditions are met. :

This is the so-called Bragg-Wulff condition:

nL:cosﬁ
2a

where n are integers, A is the x-ray wavelength, |

a is the separation between atomic planes, and 6
is the incidence angle of the rays, equgl to the
reflection angle. If the wavelength A is longer

an antiferromagnetic crystal

(4.1) w

than twice the interatomic distance a, inter- '

ference is impossible (and this is why we have
to use x-rays with wavelength of several ang-
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stroms). If A << 2ae, several maxima can be
observed, their number being found from the
condition cos 8 << 1. Figure 60b in which the
alternating planes are marked with arrows
pointing to opposite directions shows the same
“crystal” as in Fig. 60a but in its antiferromag-
netic state. It might seem that in this case the
interference pattern should be that of a crystal
with doubled interatomic spacing: additional
maxima should appear for the same wavelength.
Yes, we might expect them but we would be
wrong. X-rays “feel” only the distribution of
electric charge. They cannot distinguish between
atoms with different orientation of a magnetic
moment. Hence,

the z-ray structure analysis does not reveal the
magnetic structure of crystals.

Should we use electrons? Owing to their
quantum wave properties, they also interfere
and can be used to find crystal structures (accord-
ing to the de Broglie relation, their wavelength
is 2nh/p, where p stands for momentum). More-
over, electrons have a magnetic moment and
thus interact differently with atoms whose magnet-
ic moments are different. Nonetheless, if we
carried out an experiment with an antiferro-
magnetic material scattering electrons, we would
in all likelihood miss the desired effect. The
thing is that electric interaction forces are
greater by a factor of 1372 than the forces of
interaction between magnetic moments. This
has already been mentioned in Ch. 1 when the
atomic structure was described (see Sec. 1.9).
Therefore, identical atoms with oppositely orient-
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ed magnetic moments will scatter almost iden-
tically, and the slight difference is practically
immeasurable. We wish there were microscopic
particles having a magnetic moment but no
charge.

But such particles exist. These are neutrons.
True, their magnetic moment is small (see
Table 1 on p. 60), but they are not charged.
Since the interaction of neutrons with atomic
magnetic moments leads to their scattering, we
can indeed find out by using neutron beams how
magnetic moments are arranged in antiferro-
magnetic crystals. (See Problem 27.) Therefore,

the elastic scattering of neutrons is a method
for analyzing magnetic structures.

We have emphasized that we mean elastic scat-
tering, that is, such scattering in which a neutron
is scattered but its energy remains unaltered (see
below).

Although the magnetic moment of a body is
zero both in the paramagnetic and in antiferro-
magnetic states, their magnetic characteristics
are obviously quite different. At high tempera-~
tures the magnetic susceptibility is governed
by the Curie-Weiss law, and at the Néel point
it reaches a maximum; as temperature is lowered
further, the magnetic susceptibility diminishes.
If measurements are carried out with single
crystals, it is possible to reveal the difference
in the behavior of thelongitudinal % and trans-
verse y susceptibilities (Fig. 61). In measuring
the longitudinal susceptibility the magnetic
field is applied along the aligned magnetic
moments, and in measuring the transverse sus-
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ceptibility it is applied perpendicularly to them.
When temperature passes through the Néel
point, the heat capacity of an antiferromagnetic

temperature (T'y is the
Néel point)

x
|
%
| Fig. 61. Transverse Xy
{ and longitudinal X)) sus-
| ceptibilities of antiferro-
1, 1 magnetics as functions of
1
Ty T

underg‘oes a jumpwise change (Fig. 62); this
effect is typical of the phase transitions of the
second order.

As‘a-lwayg (see Sec. 3.3), a second-order phase
transition is a “disorder-to-order” transition.
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Fig. 62. Temperature dependence of the heat capacity
of the antiferromagnetic MnF,

In this particular case the “disorder” is found
in the absolute identity of all lattice sites (of
course, those sites in which magnetic atoms are
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located), so that the mean magnetic moment is
zero at each site. Beginning with the Néel point
(at 7 << T'x), an “order” appears and lattice
sites grow to be different: in some of them the
mean magnetic moment “points” in one direction,
and in the others it points in the opposite direc-
tion. The transition is smooth (and it must be
for any phase transition of the second order)
because at the Néel point the mean magnetic
moment in a lattice site is zero, then increases
with decreasing temperature, and reaches its
maximum possible value at 7' =0. This behav-
ior imparts more physical meaning to the state-
ment made on p. 241 that an antiferromagnetic
is composed of two ferromagnetic sublattices
inserted into each other.* ‘

4.2. Magnelic Field Changes the Structure
of Antiferromagnetics

For a ferromagnetic material at a temperature
low compared with the Curie temperature the
role of a permanent uniform magnetic field is
rather minor: it deflects the magnetic moment
and partially suppresses magnetic disorder, realiz-
ing what we termed the paraprocess (see p. 188).
For antiferromagnetics the magnetic field plays
a more interesting role. A stronger magnetic
field may change the magnetic structure of an
antiferromagnetic: it may induce magnetic phase

* We described in Sec. 3.3 how ovdering sets iu in the
CuZn alloy. The autiferromagnetic ordering thus strongly
resembles the ordering of alloys. The role of “alloy com-
ponents” is played by atoms with differently oriented
magnetic moments,
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transitions. This is the subject of the present
section.

Let us assume that the magnetic field changes
the orientation of the magnetic moments of the
sul?lattices, but leaves their length unaltered.
Thls assumption which is observed to hold well
in wide ranges of parameters (temperature,
anisotropy and exchange constants, etc.) is
the theoretical foundation for studying the
orientational transitions in magnetic materials.
On the other hand, this assumption simplifies
thf pdrobllem to such an extent that it can be
solved almost completely even on
this booklet. b v the pages of

We have thus to'find out how a magnetic
field H:affects the magnetic structure of an anti-
ferromagnetic in which the magnetic moments
of sublattices, off, and .#f,, are antiparallel in
the absence of an external magnetic field:

M= — M= M (4.2)

and align along the anisotropy axis n. Such
antiferromagnetics are called the “easy-axis”-type
antiferromagnetics (Fig. 63a). For the sake of
further simplification, we assume that the mag-
netic fleld is also applied along the anisotropy
axis, that is, along the “ecasy axis” (the case of
a longitudinal field).

.To identify a structure means to determine the
directions of magnetic moments at which their
energy is minimum. When writing expressions
fo.r the energy of an antiferromagnetic, we start
y\nth arguments similar to those that we used
in analyzing the Curie-Weiss model (see formu-
las (3.10) and (3.14)), assuming energy to be
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completely defined by the magnitude and direc-
tion of the magnetic moments of sublattices
(calculated per unit volume). Omitting the terms
independent of the direction of the vectors off
and off,, we obtain

&= 8oy oMy — o B (Ml 1)+ (oM )]
- (d’t1+ a/’Zz) -H (4'3)

The three terms describe “different” energies:
the first represents the exchange energy (the

n,H}

n, H} n M} n%
DA LT

(@) H<H, (b) Hy<H<Hg () H=Hp (d) H=0

Fig. 63. Equilibrium orientation of the magnetic moments
in antiferromagnetics: ) ] .

(a-c) an “easy-axis"-type antiferromagnetic; (d) an “easy-
plane”-type antiferromagnetic

constant of exchange interaction, proportional
to the exchange integral, is denoted by the
letter 8; obviously, it is advantageous for the
magnetic moments to be antiparallel if 6 > 0);
the second term represents the anisotropy energy
(B is the anisotropy comstant; f§ > 0 for “easy-
axis”-type antiferromagnetics, and the magnetic
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moments align along the anisotropy axis n*);
the third term represents the magnetic energy,
that is, the energy of interaction between the
magnetic moments and the magnetic field H
(the magnetic energy equals zero when the
magnetic moments .ff, and .ff, are antiparallel).

The isotropic exchange interaction has a prior-
ity over the anisotropic interaction because
8 > B. The two constants have zero dimensional-
ity because & is the energy density. By the
order of magnitude, 8§ ~ | A |/pp#y; B =1;
up is, as always, the Bohr magneton; and o#,
here stands for the magnetization of the sublat-
tice far from the Néel point Tn which, as in
ferromagnetic materials, is determined by the
exchange integral (k7x =~ | 4 [). The estimates
of the parameters § and B coincide with the esti-
mates of the parameters o and B for ferromagnet-
ics (see pp. 158 and 171). We want to empha-
size that the direction of the magnetic moments
in antiferromagnetics is determined not only
by the relativistic anisotropic interaction but
also by the isotropic exchange interaction that
“strives” for an antiparallel alignment of the
magnetic moments of the sublattices.

It can be shown that an asymmetric arrange-
ment of magnetic moments relative to the aniso-
tropy axis n is energetically disadvantageous.

* Antiferromagnetics with B << 0 are said to be “easy-
plane”-type antiferromagnetics because at H = 0 the mo-
ments off, and off, lie in a plane perpendicular to the
vector n (Fig. 63d). We have slightly simplified the
expression for the anisotropy energy by omitting the term
p’ (qutl-n) (qut.)-n). This term makes the results less
descriptive, while changing them rather insignificantly,
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(See Problem 28.) For this reason we consider
here only the three configurations shown in
Fig. 63a, b, ¢ and compare them. First we write
the expressions for the energies of these configura-

tions:
&y = —(864-P) okt® (4.4)
?\/ 8ok 2cos 20—BoA2 cos? 0— 20/ H cos O (4.5)

&1y = Ol — Pt — 20l H (4.6)

The correspondence between these formulas and
the configurations in Fig. 63 is clear from the
1ntroduced notations. Formulas (4.4) and (4.6)
are “final”, and formula (4.5) must be used to
find the angle 6 minimizing the energy Z—?\/—..

This is a problem for finding a minimum:

aé
%z&%zsine[ (26 —P) cos 0+ %—] -0
)

azé
d‘e\z 7 = — 480/t2 cos 20 -}- 2Bok 2 cos 20

+ 20# H cos© >0

According to expressions (4.7), the energy reaches
an extremum either at

cos = ——, Hg= (20 —P) o/ (4.8)
HE

or at

sinf® =0 (4.9

Since cos 8 << 1, the first solution is meaningful
if H << Hy. In strong fields only solution (4.9)
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works, when both magnetic moments are parallel
to each other. We see from the expression for
the second derivative that the structure 44
corresponds to a minimum in energy when
H > Hg: the magnetic field has “defeated” the
exchange interaction and forced both magnetic
moments to “lie” along the field. Solution (4.8)
minimizes energy (4.5) if the magnetic field is
weaker than Hyz. The energy &\ V. then takes

on the following value:
H?
b = W5

By comparing the energy g\/ with the energy

of the antiparallel configuration &;;, we find
that at

H=H,=otV B(26—P)

they become equal, at H << H , the configuration
4 has a lower energy, and at H > H, the
configuration X is energetically more advanta-
geous, with magnetic moments nearly perpendic-
ular to the anisotropyaxis*, that is, é’\/ << &4y

Knowing the dependence of energy on the mag-
netic field, we can calculate the magnetic mo-
ment of the antiferromagnetic material that, in
this particular case, we denote by M. As the
magnetic field, it is also directed along the
anisotropy axis. In the <_ 7-phase ,m\/ =

(4.5")

* Since f§ € 6, we notice that # =~ /2 at H = H,.
Indeed,

cos0 = ‘/—Zﬁﬁ—ﬁ <1
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= —dé\ /,/dH , and therefore,

Mty =0 at H<H,
H
JJ%TT:Q@//Z at fI>HE

Figure 64 shows how the magnetic moment
depends on the magnetic field. You notice that

m
2M

|
HH;H, Hg H

Fig. 64. Magnetic moment of an “easy-axis”~type anti-
erromagnetic specimen as a function of the magnetic
field applied along the chosen axis. The hysteresis loop
(thin lines with arrows) manifest the presence of meta-
stable states in the range H; << H << Hy)

antiferromagnetics undergo transitions twice: at
H = H, a jumpwise reorientation of magnetic
moments occurs via a first-order phase transition
(the field H , is therefore called the reorientation
field). The reorientation is completed at H =
=Hy because then the angle between the magnet-
ic moments of sublattices dwindles to zero, and
these magnetic moments “flop together”. This
is a second-order phase transition: the magnetic
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moment is continuous but the magnetic suscep-
tibility changes jumpwise. If H <C H,, the
.,/ -phase is metastable, and at H > H, the
metastable phase is {. The existence of meta-
stable states results in a hysteresis. The width
of the hysteresis loop (shown by thin lines with
arrows in Fig. 64) is determined by the values of
the fields at which the phases become unstable
(instability fields): the {|-phase is stable until
the field reaches the value

H,—V B @1
and the N\ -phase is stable until

26—
H>H,=H2W_i%

It can be readily ascertained that
H <H,<H,

Since p < 8, the hysteresis loop is very narrow
compared with the reorientation field:

2p
= =T g

Unfortunately, the instability fields H; and
I, cannot be calculated if only symmetric
configurations are considered. We would have
to find the dependence of energy on the direc-
tions of magnetic moments e#,; and o/, when
these are arranged asymmetrically.

The “flop-together” field H gy is very high for
most antiferromagnetic materials (it is propor-
tional to the exchange-interaction constant 9§,
see (4.8)). However, some materials have an
anomalously weak exchange interaction (e.g.

zHA%<<HA
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MnBr,-4H,0, MnCl,-4H,0). These materials be-
come antiferromagnetic at temperatures of about
2 K. In these materials it was possible to observe
not only the reorientation of magnetic moments
(a first-order phase transition at /7 = H,) but
also the “flopping-together” (a second-order phase
transition at [ = H ) at which an antiferro-
magnetic material “converts” into a ferromagnet-
ic material.

Of course, Fig. 64 is merely schematic because
it does not reflect the “struggle” between the
magnetic field and the thermal disorder (the
effect of the magnetic field that we call the
paraprocess). This “struggle” is especially well
pronounced at high magnetic fields (4 = Hy).
If_ the paraprocess is taken into account, at
H > Hy the magnetic moment slightly increases
with increasing magnetic field, and at # << H
the magnetic moment is small but still does
not vanish (at any rate, at T 3% 0).

4.3. Spin Waves: Magnons
in Antiferromagnetics

The temperature dependence of the magnetic
moments of the sublattices in the neighborhood
of the Néel point 7'y can be found by means of
the self-consistent field model (see p. 145) which
generalizes the Curie-Weiss model to the case
of two sublattices. However, we already know
that this model “does not work” at low temper-
atures (at 7 <« T'y), leading to substantial
errors. The correct result can be obtained only
if we know how atomic magnetic moments move,
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that is, if the energy spectrum of the antiferro:
magnetic material is known. ‘
The excited states of an antiferromagnetic can
be treated similarly to what we did in the case
of a ferromagnetic: begin with a state in which
‘the spin of an individual atom is deflected from
its “correct” orientation, conclude that this
state is nonstationary, “construct” a spin wave,
rand so forth (see Sec. 3.7). But on the other
'hand, we know that excitations of maximum
|interest at low temperatures are spin waves
with wavelengths large compared with the
interatomic distance. And we saw that such
waves can be treated as the nonuniform preces-
sion of magnetization (see Sec. 3.8). In two-
sublattice antiferromagnetics we have to deal
with two magnetizations: ff; and ... Each
magnetic moment precesses around its equilib-
rium position but these precessions are not
independent because of the exchange interaction.
As in the case of ferromagnetics, we begin
with discussing the uniform precession and
describe it for three configurations given above:
T4, \\./, and }4. Unfortunately, all we can give
is just a description. The derivation of relevant
formulas requires a slightly higher level of
knowledge in mathematics than the one we take
for granted. But the physics is simple: each
magnetic moment is subjected to an effective
field that depends on the “other” moment. This
is why the precessions are not independent.
Configuration 1| (H << H 4). The motion of two

| magnetic moments is decomposed into the sum
{ of two

independent periodic motions. Both
moments participate in each of them. The fre-

17-01378
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quencies of these motions (precessiogs) will ;
be denoted by w4 and o_. An analysis shows ]

that
o, =7Hy = H)

Hy=V B2 +P) oA

where v is the gyromagnetic ratio (see p. 52). 7
Figure 65a shows how the magnetic moments g
of each sublattice precess in sach of the two 1

Z
an\ AH
oMy oM,
y
x .
0
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(a)

w=0_

W=,

i i i i the sub-
Fig. 65. Precession of the magnetic momenrs 0 1
l;tgtices in an “easy-axis’-type antiferromagnetic mater}a%
(the magnetic field points along the anisotropy axis):

motions. In the {motion at frequency w. the
moment along tlge field (o#, in the figure) is
deflected from the axis slightly more than the
other (off; in the figure) pointing against the
field; the situation is reversed in the motion at
frequency o-. Note that at H = _Hg_ the preces-
sion frequency drops to zero; this is a sign of
instability.
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Configuration\ / (H, << H << Hg). A rota-
tion of the magnetic moments, preserving the
angle between them, around the magnetic field
parallel to the chosen axis does not affect the
state of the antiferromagnetic material: it is
degenerate relative to the position of the plane
in which the magnetic moments lie. Consequent-
ly, the frequency related to this motion is zero.
This may baffle the reader. Indeed, such a system
of magnetic moments could be expected to rotate
at any frequency, but somehow this frequency
occurs to be zero.

This statement becomes more comprehensible
when quantum-mechanical concepts are applied.
Assume that the frequency of oscillations of
a system of the magnetic moments that preserve
the angle between them is @ 5%~ 0. Then this
motion is related to energy levels ZQ (n -+ 1/2).
But the rotation of the plane in which the mag-
netic moments lie does not change the energy
of the system. Hence, @ — 0. We hope that
now the reader is pacified.

The precession of magnetic moments in the
motion with nonzero frequency is shown in
Fig. 65b. The figure also shows the precession
of the total magnetic moment N = off; + off 2.
The frequency of this motion increases with
increasing magnetic field H. It equals zero at
H = H,, indicating that the \_,-configuration is
unstable, and at H = H g it coincides with the
precession frequency of a ferromagnetic material
with the magnetic moment equal to 2ec#, the
situation indeed expected for the ferromagnetic
configuration 44,

Figure 66 plots the frequencies of uniform

17+
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precession as functions of the magneticyfield H.
Obviously, the ensuing arguments coincide -
with those that were “rehearsed” in Sec. 3.8. *
The transition from uniform precession to non-
uniform precession makes the precession frequency

w
2y Hy | mmmmme

Fig. 66. Precession fre-
quencies in an “easy-plane”-
type antiferromagnet-
ic material as a function
of the magnetic field par-
allel to the anisotropy

i .
H’le HE H axis

YHz

depend on the wave vector k. Then follows the ﬁ
familiar scheme: 5

wave — oscillator — quasiparticle

As in ferromagnetics, the quasiparticles are ;
called magnons (or, infrequently, anfciferromag:—
nons). Of course, the wave-quasiparticle transi- §
tion involves the use of the de Broglie relations: ;
the magnon momentum is zk, and its energy 1s
ho. When H << H, (here we consider only this
case), there are two types of magnons in anti-
ferromagnetics with two sublattices. Their energy
depends on momentum in a slightly more compli-
cated manner than for ferromagnetics’ magnons. |
When the momentum is small, then

et (p) = 2up [+ (Hgak)?|V* = 2upH (4.12)]

where 2pp = Ay, and a is the crystal‘latti‘cec
parameter. The coefficient in front of k? is writ-

4.3. Magnons in Antiferromagnetics 261

ten in the form demonstrating its order of magni-
tude (Hg ~Hg> H,) and showing that it
originates in the exchange interaction. Note
that the presence of the terms +2ugH in expres-
sions (4.12) is not the basis for interpreting e+
and &~ as the energies of two out of the three
states of one spin-1 particle (cf. p. 205). These
terms refer to distinct magnons. Each of the
magnons of an antiferromagnetic material is
a spin-1 quasiparticle, but for each magnon only
one of the three possible spin states is realized
(s, = —1 for one and s, = 41 for the other).
Just as in ferromagnetic materials,

magnons in antiferromagnetics are bosons,

Formula (4.12) shows the structure of the
energy spectrum in antiferromagnetics. The first
excited states are separated by a gap from the
ground state. When H = 0, the gap is wide (at
any rate, as compared with ferromagnetic mate-
rials) because it depends not only on the aniso-
tropy constant f§ but also on a large exchange-
interaction constant § (see (4.11)). True, the gap
vanishes at H — H,, but an “easy-axis’-type
antiferromagnetic specimen will be restructured
“in advance” (at H << H,; see the preceding
section).

Knowing the dependence of the magnon energy
on the momenta and statistical properties of
magnons (knowing them to be bosons), one can
calculate the temperature dependence of the
total magnetic moment and heat capacity.
Clearly, as temperature tends to absolute zero,
the numbers of magnons will tend to zero expo-
nentially (the gap) and this will affect the tem-
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perature dependence of characteristics of anti-
ferromagnetic materials. We cannot go into the
details of this because, among other reasons,
the theoretical predictions made on the basis

it

et bR

of magnon concepts are not confirmed experi-
mentally for antiferromagnetics as successfully ;
as they are for ferromagnetics. The cause is the

wide energy gap: the contribution of magnons
is too small to be reliably detected.

A comparison of magnons in ferro- and anti-
ferromagnetics reveals one peculiar feature. If
we neglect anisotropic forces and the magnon-
magnetic field interaction, magnons in ferro-
magnetic materials become very similar to ordi-
nary particles with the mass m* = %2/2442 (see

formula (3.25)). Let us apply the same operation *

to magnons in antiferromagnetics. We set 4 = 0
in (4.12) and “switch off” the anisotropic forces

(i.e. H, tends to zero). This greatly simplifies .

the dependence of the magnon energy on mo- §

mentum:

2upH pa "~‘
e (p) = c*p, o*— o E (4.13)
The result is very similar to the dependence of
the phonon energy on momentum. The velocity ;
of a magnon ¢* is determined by the exchange |
interaction. Formula (4.13) holds not for all |
values of momentum: it is valid if

H

2 . ap ’ ;
m, <<——ﬁ—<<1 (4.13") |

However, if I, < Hp, there is a temperature
range (Zupfl, < k7 < 2ppHE) in which the s

“quasiphonon” formula (4.13) is acceptable. At
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these temperatures the contribution of magnons
to thermodynamic characteristics of antiferro-
magnetics much resembles the contribution of
phonons, For instance, under these conditions
the magnon heat capacity is proportional, as
the phonon heat capacity, to 7% (see p. 236).

We tried to describe antiferromagnetics and
their properties with only a minimum help from
quantum mechanics. And on p. 240 we clearly
stated that a rigorous quantum-mechanical theory
does not exist.

The thing is that in reality the state with
antiparallel spins in distinct sublattices does not
constitute a stationary state of an antiferromag-
netic material described by the Heisenberg
Hamiltonian (3.8) or (3.8"). This is best under-
stood by considering a system of spins with
s = 1/2. Let the spin at an arbitrary lattice site
be directed upward. Then the spins in the neigh-
bor sites belonging to the other sublattice are
directed downward, that is, are in the state we
are now discussing. The very meaning of exchange
interaction is such that in the case s = 1/2 it
reduces to interchanging the electrons occupying
neighbor lattice sites. This interchanging disturbs
the alternation of upward- and downward-point-
ing spins: the state will change because the
pairs of neighbor atoms will appear with identi-
cally directed [spins, but the wave function of
the stationary state cannot be altered by this
interchanging and can only be multiplied by
a certain quantity, namely, the value of energy
in the stationary state. Hence, if the state we
consider is not stationary, the true ground state
must be something different. This is an absolute-
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ly correct statement (it is as correct as it is
trivial). But the basic questions are: What is
the basic state? What is its wave function? What
is its energy? So far we do not know the answers.
Nobody succeeded in finding the ground state
of three-dimensional antiferromagnetics. Hans
Bethe calculated the ground-state energy of
a one-dimensional antiferromagnetic with interac-
tions only along the line as early as 1931 (at the
present time one- and two-dimensional systems
again attract the attention of physicists). Of
course, his result differs from the “classical”
energy of two sublattices with oppositely directed
spins. Nevertheless, attempts to generalize this
result to the two- and three-dimensional cases
have so far failed.

Bethe’s result was obtained for a system of
atoms with spins s = 1/2. The greater s is, the
smaller must the difference be between the
results of classical calculation (or rather, semi-
classical because the interaction itself is a quan-
tum effect) and the exact quantum-mechanical
calculation. When s >> 1, the space quantization
of spins becomes unimportant, the spin becomes
a classical moment that varies only in direction.
Strictly speaking, the results outlined above
hold precisely for systems consisting of “classical”
spins. But in order not to conclude at this gloomy
note, we should indicate that the eclecticism of
the theory. of antiferromagnetics at low temper-
atures (viz. the semiclassical nature of the
ground state and the quantum-mechanical ap-
proach to analyzing the energy spectrum) does
not stand in the way of attempts (which are
often quite successful) to explain and interpret
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a wide scope of experimental facts: thermody-
namic, kinetic, and high-frequency, including opti-
cal, data. The true “internal structure” of anti-
ferromagnetic materials is probably not very
different from that described above. This remark
in no way diminishes the importance of construct-
ing a rigorous theory.

44, How to “See” an Individual Magnon?

We hope that, haviug read our exposition of
magnons in ferro- and antiferromagnetics, you
feel respect to these quasiparticles. The knowl-
edge of their properties (e.g. the magnon energy
as a function of quasimomentum) will make it
possible to calculate the properties of magnetic
materials and to compare our theoretical con-
structions with experimental data. But a different
approach is possible: to use the experimental
data and certain general notions of energy
spectrum and try to find out the properties of
magnons. Let us compose the following logical
sequence. Experiments show that the deviation
As# of the spontaneous magnetic moment of
ferromagnetic materials from its value at 77 = 0
is proportional to 732 (cf. with (3.40)). The
deviation Ao/ of the magnetic moment «# from
saturation is caused by magnons. Magnons are
bosons. Consequently, the laws of statistics
dictate that the magnon energy be proportional
to the square of momentum. Moreover, the pro-
portiona%ity1 facto}f between A.# and I/2 enables
us to calculate the effective magnon mass.
Problem 29.) i o (See
The method of studying quasiparticles (not
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magnons) by analyzing the Pe}npgrature
gg;indengce of )thermodynamic quaptltles 1}? Yefﬁ;
frequently used. Even a mathematical techniq °
was developed to reconstruct, from theftembpe(;a
ture dependence of the heat capacity of a ‘01 v,
the density of the number of quas1partches£
namely, bosons, in a wide range of' energy. tﬁ
a physicist invariably dreams of 1solatmg.t _(;
object he studies. When stud.ymg electrons, i 1d
preferable to deal with a single el.ectron,_anle
while studying magnons, to deal with a sing
mig:toﬁs estimate to within an order o”f maglill—
tude how many magnons are requ10red for t_te
magnetic moment to depart by 1% frorélgé)s
saturation value. According to formula (3.39),

Aol Nmagn
M~ 0N

i — 40-2. Hence, Npgen = 1072
'}hl?;tlié,Nﬁn 32/1]\620 (s1ic) in each cub?c centimeter.
In a certain sense this is not much, in compgrli(})lr;
with the number of magnetic atoms, b'lyt mthe'r
absolute sense (as compared with un(l)tfy) I‘S;
number is macroscopically enormous. cou de;-
we can lower temperature (we remind the reaons
that Npaen o< I7°/2). The pumber of magn y
will decrease but still remgutl} l.argge,()ﬁ:gﬁssceo;\)v .

This is a goo 1ing, \
z?)}llls:l llzlicr)%efnake use of the formulas derived for

se gases, that is, ]
E?naorgoscopic number of Bose particles. Although

for systems consisting of ]

'r‘i(‘mm‘

this is a good thing in this sense, it leaves us |

i i i by decreas-
hove of isolating a single magnon !
?r?g te?nperature. Quite different techniques based

4.4. How to “See” an Individual Magnon? 267

on the resonant interaction of penetrating radia-
tion with magnons are used to study the behavior
of individual magnons.

The term “penetrating radiation” is not an
exact one: it is “something” that can penetrate
the analyzed object to a sufficient depth (e.g.
electromagnetic or acoustic waves or neutrons).
The principal features will be better understood
after we give several examples.

Ferromagnetic Resonance

When describing the electron paramagnetic reso-
nance (EPR, seep. 109), we discussed the possibi-
lity of resonant interaction between electromag-
netic waves and a precessing magnetic moment.
But if the magnetic moment of an atom can
precess, so can the mean magnetic moment of
a body, provided it is not zero. A ferromagnetic
sample has the magnetic moment, and so it can
precess (see Sec. 3.8). Hence, if the frequency of
electromagnelic waves coincides with that of
precession, resonance must set in, which can be
detected by a sharply enhanced absorption of
the electromagnetic energy in a ferromagnetic
specimen (Fig. 67). As a rule, the experiment
is performed in such a way that the frequency of
eleciromagnetic radiation (we mean the radio-
frequency band of radiation) is not varied in
measurements but the magnetic field applied to
the specimen is changed. We know that the
precession frequency w, is a function of the
magnetic field H. If the electromagnetic radia-
tion frequency e is chosen correctly, then the
frequencies coincide at a certain strength of the
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magnetic field and resonance occurs: © =
= w, (H). .

Buot, on the other hand, the frequency of the
uniform precession of a magnetic moment, ©g,
equals, to within Planck’s constant, thti energy
of a magnon at rest, &,. We can therefore “regard
the ferromagnetic resonance from the quantum

Q

|
|
|
‘l
"
i
|
|

Hres H

Fig. 67. Energy absorbed by a ferromagr}etlchspecn;xe;i
as a function of the permanent magnetic field has a eLe
onance nature; AH is the width of the resonance curv

i iplyi k’s con-
standpoint. After multlplymg by Planc
stant,p the resonance condition takes the form
of equality of the photon energy ko to the energy

of a magnon at rest:
hﬁ) == 80 (lj ,14)
and indicates that in resonance conditions a pho-
ton is transformed into a magnon:

photon — magnon

Obviously, this transformation must obeyrt‘he
energy and momentum conservation laws. The
law of energy conservation has already been
writien (see (4.14)). And how about momentum
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conservation? Indeed, a photon has a momentum
equal to 2w/c.* Do we have to take it into ac-
count? Since the resonance corresponds to a pho-
ton transformed into a magnon, that is, to the
disappearance of one quasiparticle and the crea-
tion of another, the two conservation laws reduce
to the equality of the energies of a magnon and
a photon with equal momenta: &, - p?/2m* =
= ¢p, where m* is the effective magnon mass.
Since ¢p = ko, we find

g, + % == hi® (4.15)
What we obtain here is more complicated than
(4.14). But before drawing conclusions, it is
necessary to evaluate the newly appeared addi-
tional term (Zw)*2m*c® as compared with e,
Let us assume it to be very small (this assumption
will be immediately verified). Then 7Zw ~ e,.
Let us estimate the second term on the left-hand
side of equation (4.15): (hw)*/2m*c?e, = e,/2m*c2.
We notice that the value of the ratio of interest
depends on the parameter v, = (g,/2m¥*)¥2 with
the dimensionality of velocity (we know the
value of the speed of light). In order to evaluate
Vg, We have to evaluate the effective magnon
mass m* (see p. 204). Assuming a ~ 3-10-8 cm,
and 4 = kT, (k ~1.4-107'% erg/deg), we find

h 102 .
daz X Me 7 (4.16)

m* ~

* The dependence of the plolon energy & = ko on

momentum is € = cp, where ¢ is the speed of light.
Indeed, @ = 2me¢/h (A is the wavelength). Multiplying
by % we oblain the formula given above becanse 2n#/L = p
according to the de Broglie relations.
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The electron mass m, =~ 1077 has been intro-
duced into this formula to facilitate evalua-
tions. You find that if 7, =10%* K, the effec-
tive magnon mass is close to the electron
mass.

The velocity v, essentially depends on &q.
Let a ferromagnetic specimen be placed in
a strong field H = 10* Oe; then g == 2upH
(as a rule, in this strong field the anisotropy
energy plays only a minor role). But according
to estimate (2.7), this field corresponds to an
energy k7T at T =1 K. Therefore, at 7. =~
~10%2 K we have g, =107 erg and v, =
~ 3-10° cm/s. A seemingly high velocity, but
still negligible in comparison with that of light:
v2/c* ~ 1071Y. Clearly, the second term in (4.15)
can be omitted: the photon momentum need not
be taken into accouni. But we hear the attentive
reader to ask: “What about the second root of
equation (4.15)?” It can be ignored because the
expression for the magnon energy, used above,
holds only at small momenta (the situation is
clarified in Fig. 68).

We devote so much space to the magnon-
photon interaction in order to make several
general remarks:

—as a rule, quasiparticles in crystals move
relatively slowly, at velocities much less than
the speed of light;

—the ferromagnetic resonance is not a unique
case when a photon transforms into a quasipar-
ticle; in antiferromagnetic materials the anti-
ferromagnetic resonance is possible, with a pho-
ton transforming into an antiferromagnon (see
Problem 30); in many crystals a photon may

44. How to “See” an Individual Magnon? 2

transform into an optical phonon*, and so on:

—the  velocity of quasiparticles, v, being,'
smallcompared with the speed of light (v < c)
a photon always transforms into a quasiparticlé

£ )
:
S/
o/l
S/
// : Magnon
!
1 I
i |
t [
o1 & 1 1 1 -
nh  2nh 3nh ?
a a a

Fig. 68. Graphical solution of the equation e (p) = ¢p.
The root is marked with a cross. There is no second raot
in the true dependence of the magnon energy e on the
momentum p. This root appears if the true dependence
of the magnon energy on momentum is replaced with
a quadratic equation

“at rest” (furthermore, this transformation is
possible if the energy of the quasiparticle is
nonzero).

The ferromagnetic (or antiferromagnetic) reso-
nance thus makes it possible to observe an
individual magnon but unfortunately a magnon
al rest (with p = 0). In fact, the information
obtained by resonance techniques is not limited

"“ Optical phonons are quasiparticles that correspond to
such waves in nonprimitive crystals in which the atoms
bg}l}onglng to one unit cell vibrate relative to one an-
other.
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to fixing the maghon, that is, to measuring the
energy of a zero-momentum magnon. The obser-
vation of resonance signifies the measurement
of that value of the magnetic field at which the
resonance sets in; hence, we can establish how
the frequency of uniform precession depends on
magnetic field (determine vy, find out the role
of anisotropy energy, etc.). Furthermore, and
this is possibly the most important result, an
analysis of the resonance curve (see Fig. 67)
enables us to evaluate the magnon lifetime 1.
Figure 67 shows that the absorption of energy
(the photon — magnon transformation) is pos-
sible not only if the frequencies are exactly equal
but in a certain interval Aw, = vy AH, -as if
the energy of a magnon is not prescribed very
accurately; there is a spread in magnon energies
(for the sake of simplicity we assume the photon
energy to be exactly known). The same can be
said in quantum terms (see pp. 34-38): the magnon
energy has no definite value. Quantum mechanics
states that the energy of a state has a definite
value only if the state is stationary, that is, if
its lifetime is infinite. But iffa state is nonsta-
tionary, it is subject to a relation quite similar
to the uncertainty relation:

Ae-t 2% or TAw x1 (4.17)

where Ae is the uncertainty in the energy of the
state, and T is its mean lifetime.

But why is a magnon not an everlasting entity?
What imposes limits on its lifetime? Some hints
were given in Sec. 3.7: magnons collide with
other magnons. Besides, they may collide with
phonons that are always present in crystals.
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By regarding a magnon as a particle (omlitling
the prefix “quasi”), we can readily imagino that
it is scattered in collisions with defects that
are inevitably encountered in crystals: impurity
atoms, grain boundaries, dislocations (this term
denotes the edges of truncated atomic planes),
and simply with specimen boundarics. We thus
find that the factors shortening the magnon
lifetime are numerous, In their totality thoy are
called the dissipative processes. To summarize,

the ferromagnetic resonance is a method of
studying dissipative processes involving magnons,

Ferroacoustic Resonance

The desire to “observe” individual magnons by
resonance methods leads to the idea of employing
waves that “move” slower than electromagnetic
waves. Such waves are available: these are
sound waves whose velocity is hundreds of thou-
sands of times less than the speed of light. If we
cannot “see”, let us try to “listen” to magnons.

The resonant interaction is capable of convert-
ing a phonon into a magnon. In this transforma-
tion the equation describing the conservation
laws for energy and momentum will difier from
equation (4.15) only in the replacement of the
speed of light ¢ with that of sound €gqupq- Since
Ceoung ~ 10° cm/s, the situation is radically
changed. For simplicity let us assume that
g = 2upH '(e.g. the anisotropy energy is enor-
mously low) and let us find the va}ue of ’_Lhe
magnetic field at which the resonant interaction

18—01378

: vy ——
:_m';mn 4
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is possible (find the resonant field):

QupH — o — 1D 4.18)§

*
2m*czonna

The right-hand side, being a function of %o, §
has a maximum at %o = m*cioumg and vanishes §

2 ’
e I
|
2t 1 ! \
f { |
& P— | O—

hw, m*clound  hoy,

AN
2 hw
2m*¢sound

Fig. 69. Graphical solution of equation (4.18); @, and @, }

are resonance irequencies at 2pgH <C m*c3ouna/2

at o = 2m*ciouna (Fig. 69). It is clear (the
figure shows it with extreme lucidity) that the
resonance is possible if

oupH < 1/2m*ciyma

(m*ciouna/2 is the value taken on by the right-
hand side of (4.18) at the maximum) when
ha << 2m*cioumg. If the acoustic frequency and
magnetic field are such that the resonant field
essentially depends on the second term in (4.18),
then we can find from the resonance condition
the effective magnon mass m* (can “listen” to
a moving magnon).

Inelastic Scattering

In both methods described above the “research
agent” (a photon or a phonon) perishes, its
dying being the evidence of resonmance. Aren’t
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there more “peaceful” methods of extracting
information on a quasiparticle? There are. These
methods are based on the inelastic scattering of
neutrons or photons. The scattering is said to be
inelastic if the interaction with the scatterer
changes the energy of a particle.

Let us consider again the scattering of neutrons
in ferro- or antiferromagnetics (see Sec. 4.1).
There are many ways for a neutron to change its
energy. Each such channel is characterized by
its probability. There is also a nonzero proba-
bility that the neutron energy will not be al-
tered.

We know that under proper conditions the
energy-conserving scattering (inelastic scattering)
gives information on the magnetic structure of
crystals,

There is also a finite probability for a neutron,
traversing a ferro- or antiferromagnetic specimen,
to emit (or absorb) a spin wave or, in corpuscular
terms, to create (or absorb) a magnon. Calcula-
tion of the probabilities of various scattering
processes is not an elementary problem of quan-
tum mechanics (we shall not give the correspond-
ing formulas, even without deriving them). But
we can clarify the principal possibility of crea-
tion or absorption of a magnon by a neutron,
correctly assuming that if the conservation laws
allow a process, the process takes place. The
conservation laws for energy and momentum must
thus be obeyed in the creation or absorption of
a magnon by a neutron. Let us denote the neutron
momentum prior to and after the scattering by
p, and py. The neutron energy is &, = pi/2m,.
The momentum and energy of the magnon are p

18%
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and £ (p). Then

2 2

R P ,
o Ee(@) =7~ Pa=PnkP

The two conservation laws can be written as
a single equation but one that contains vectors
(to be specific, we chose the absorption of a mag-
non):

2

S e = "”J”’)z (4.19)

Now we want to ﬁnd out whether this equa-
tion has a solution. If it has, the process is al-

I
|
!

yy

Fig. 70. Graphical solution of equation (4.19). The abscis-
sa axis gives the magnon momentum pointing along
a “good” direction. The roots of the equation are marked
with crosses

lowed. The simplest way to establish the exist-
ence of a solution (as a rule, several solutions exist)
is to analyze Fig. 70. But if solutions exist, the
method gives a direct possibility of measuring
the magnon energy as a function of the magnon
quasimomentum. It is then necessary to measure
independently the change in the neutron momen-
tum (it is equal to the magnon quasimomentum p)
and the change in the neutron energy (it is
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equal to the magnon energy € (p)). Many elegant
methods of realizing this idea were suggested.
It was by analyzing the inelastic scattering of
neutrons in ferro-, ferri-, and antiferromagnetics
that the main properties of magnons in these
materials were obtained.

Optics joined the magnon research in recent
years. Transparent magnetic materials have been
synthesized. The application of lasers, that is,
of sources of coherent light, to physical experi-
ments made it possible to study the inelastic
scattering of photons by such magnetic materials.
The creation or absorption of a magnon leads
to a change in a photon frequency (because the
photon energy is proportional to its frequency).
This effect can be detected by a change in the
color of a light beam.

The information on magnetic materials that
can be extracted from inelastic scattering experi-
ments is not exhausted by the dependence of the
energy of magnons on their quasimomentum.
As in resonance investigations, it proves pos-
sible to clarify numerous interesting details of
dissipative processes involving magnons.

* % %

Concluding a discussion about an actively
developing field of science is a bit like cutting
a dialogue short in midsentence. What reassures
us is that at the outset we formulated a well-
defined task: to describe the nature of magnetic
phenomena; we hope this goal was achieved.
There is almost no end to what can be said about
magnetic phenomena. The reader now passibly
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realizes that the magnetic properties of materials
are inseparably linked to their microscopic
structure and can be understood only if the
structure and composition of materials, the
interatomic, intermolecular, and interionic
forces are clearly understood. Sometimes (but
certainly not always) magnetic properties can
be “isolated”: can be treated without resorting
to the structure of microscopic particles. This
is how the model of magnetic-needles gas and
all its consequences can appear. With microscop-
ic particles and their properties known, it
is far from simple to “compose” the macroscopic
picture. On many occasions we had to turn to
statistical physics. The pages where we had to
operate in terms of statistical physics were
probably the most difficult for understanding and
the least descriptive.

Clearly realizing this, we attempted to help
the reader with explanations. We do not know
whether the attempt really succeeded.

A last remark: our discussion here has been
somewhat confined by our limited tools. This
approach was not always emphasized, We have
attempted to stimulate the reader to look for
explanations of the facts and properties. that
require greater knowledge, that is, to stimulate
the yearning for just this knowledge.

Problems

Problem 1, Calculate G by taking the value of
acceleration due to gravity 9.8 m/s?and finding
the remaining necessary information about_ the
Earth in a handbook or an encyclopaedia.

Problem 2. Derive formula (1.4).

Problem 3. Calculate the field far from two
identical antiparallel dipoles spaced by a distance
I from each other, on the perpendicular to the
line connecting them.

Problem 4. Show that A?/m.e® is the only
possible combination with the dimensionality pi
length, constructed of e, m,, and 4. Explain
why the speed of light ¢ is omitted from the set
of quantities from which the size of the atom
is constructed.

Problem 5. Those who are familiar with dif-
ferentiation and know the meaning of vector
product will easily derive from Newton’s equa-
tion dp/dt = F (the increment of momentum p
per unit time equals the force F) that L =
= [p X r] = const, that is, L is independent of
time (obviously, we assume that F is a central
force: F|lr).

Problem 6. Using the formulas of classigal
mechanics, calculate the change in the velocity
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of a particle with mass 1 g moving in a circular
orbit of radius 1 cm when the orbital angular
momentum changes because L is incremented by
unity. Try to explain why guantization can be
neglected in the motion of macroscopic bodies.

Problem 7. Find a numerical relationship
between the wavelength of an electromagnetic
wave with frequency oy and magnetic field H.

Problem 8. Find the magnet-screen distance L
in the Stern-Gerlach experiment necessary for
the separation of 0.0044 mm between the traces
of the beams. In the Stern-Gerlach experiment
dH/dz = 2.2.10°5 Oe/cm. The width of the non-
uniform field region, D = 10 cm (see Fig. 14),
the velocity of the atomic beam was 10® cm/s.

. Problem 9. Derive formula (1.35). This can be
done by using formula (1.26) for the energy of
a magnetic dipole in a magnetic field, assuming
that the field H is produced by another dipole
(see formula (1.7)).

Problem 10. Find the dimensionalify of H
and .

Problem 11. Rewrite the EPR and NMR condi-
tions as relations between electromagnetic wave-
length and magnetic field. Find the numerical
value of the proportionality factor for the electron
and the proton (see Table 1 on p. 60).

Problem 12. Using formula (2.42), show that
the magnetic moment of g diamagnetic atom
~ug if el medla®, “

Problems 281

Problem 13. Derive the formula

o#=NM,L ( Mall ). L(z)=cothz —+ (2.15")
by taking into account that the number of
particles whose magnetic moment makes an
angle 0 with the magnetic field H is proportional
to exp (M, H cos 6/kT) (see p. 107).

Derive from (2.15’) an expression for y (for-
mula (2.15"), as (2.13), was derived by Langevin).

Problem 14. Prove that the work of the Lorentz
force is zero.

Problem 15. Calculate the mean energy of
a particle in a Fermi gas at 7 = 0 and express
this energy via the Fermi energy E€y.

Problem 16. Show that the equality ppH =
= gp is reached at H =~ 108 Oe. The most

colossal magnets produce magnetic fields not
exceeding 5-10° Oe.

Problem 17. Show that yp =~ (1/137)* to
within a factor of the order of unity (cf. the
derivation of formula (2.16)).

Problem 18. Explain why the magnet shown
in Fig. 30 does not fall onto the plate. The hover-
ing-magnet experiment was first performed by
V. K. Arkadyev in 1945. Nowadays this phenom-
enon has found technical applications.

Problem 19, Derive all the formulas of this
section for J = 1; it would be even better if
you derived them for arbitrary J. Possibly,
this is the wmost complicated of the suggested
problems,
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Problem 20. Show that by virtue of the Curie-
Weiss equation

2T,

:(de/% <e T at T—>0

dH )H-o

(see the footnote to p. 150).

Problem 21. Using the expression
1,
Feg (T —Te) v+ bt

(a, b are constants), calculate m and show that
for b > O this function describes a second-order
phase transition (L. D. Landau, 1937). Find
a relation between the parameters a, T, b and
the quantities characterizing the “para-ferro”
transition.

Problem 22, Verify this statement.

Problem 23. Use the arguments employed in
deriving an expression for the density of states
g (e) (seep. 126) and the dependence of the magnon
energy on momentum at p < %i/a to derive
formula (3.41).

Problem 24. Use (3.42) and calculate o# (T)
at €y = 2upH > kT; compare the result with
(3.5). For a numerical evaluation take H =
= 1000 Qe and T, = 10% K.

Problem 25. Find the function E,,gq (T) at
kT < &,

Problem 26, Calculate the phonon component
of heat capacity by using formula (3.47).

Problems 283

Problem 27. Roughly estimate the energy that
neutrons must have in order to be used for ana-
lyzing crystal structures.

Problem 28. Prove (preferably without calcu-
lations) that an asymmetric arrangement of the
magnetic moments off, and ., at H = Hn is
energetically unfavorable.

Problem 29, Verify that formula (3.40) does
not contradict the definition of the effective
magnon mass given on p. 204.

Problem 30. Find the condition of the anti-
ferromagnetic resonance for a two-sublattice
“easy-axis’-type antiferromagnetic material in
its three configurations. Can the resonance occur
in the antiparallel configuration?





