

Digitized by the Internet Archive
in 2019 with funding from
Kahle/Austin Foundation

https://archive.0rg/details/digitaltypographOOOOknut

Digital

typography

TeX is a trademark of the American Mathematical Society.

METRFONT is a trademark of Addison-Wesley Publishing Company, Inc.

PostScript is a trademark of Adobe Systems Incorporated.

Copyright ©1999

Center for the Study of Language and Information

Leland Stanford Junior University

Printed in Canada

05 04 03 02 01 00 99 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

Knuth, Donald Ervin, 1938-

Digital typography / Donald E. Knuth.

xvi,685 p. 23 cm. — (CSLI lecture notes ; no. 78)

Includes bibliographical references and index.

ISBN 1-57586-011-2 (cloth : alk. paper) —

ISBN 1-57586-010-4 (pbk. : alk. paper)

1. Printing—Data processing. 2. Computerized typesetting.

3. Computer fonts. 4. TeX (Computer system). 5. METAFONT.

I. Title. II. Series.

Z249.3.K59 1998

686.2'2544536—DC21 98-27331

CIP

to my father,

Ervin Knuth (1912-1974),

for his lifetime of sERVice

V

j_i

%

i

Contents

1 Digital Typography 1

2 Mathematical Typography 19

3 Breaking Paragraphs Into Lines 67

4 Mixing Right-to-Left Texts with Left-to-Right Texts

5 Recipes and Fractions 177

6 The TRX Logo in Various Fonts 181

7 Printing Out Selected Pages 183

8 Macros for Jill 185

9 Problem for a Saturday Morning 195

10 Exercises for TgX; The Program 197

11 Mini-Indexes for Literate Programs 225

12 Virtual Fonts: More Fun for Grand Wizards 247

13 The Letter S 263

14 My First Experience with Indian Scripts 285

15 The Concept of a Meta-Font 289

16 Lessons Learned from METRFONT 315

17 AMS Euler—A New Typeface for Mathematics 339

18 Typesetting Concrete Mathematics 367

19 A Course on METRFONT Programming 379

20 A Punk Meta-Font 391

21 Fonts for Digital Halftones 415

22 Digital Halftones by Dot Diffusion 449

23 A Note on Digital Angles 473

vii

157

viii

24

25

26

27

28

29

30

31

32

33

34

Digital Typography

TEXDR.AFT 481

TEX.ONE 505

Incunabula 533

Icons for and METflFONT 547

Computers and Typesetting 555

The New Versions of T^ and METflFONT 563

The Future of TgX and METflFONT 571

Questions and Answers, I 573

Questions and Answers, II 601

Questions and Answers, III 625

The Final Errors of TgX 655

Index 663

Preface

This book brings together more than 30 articles and notes that I have

written about the subject of digital typography, popularly called “desk¬

top publishing.” It was my privilege to be present at a time when a

significant revolution was taking place in the way words, symbols, and

images were being rendered in printed documents, as analog methods

gave way to digital methods that are amenable to computer processing.

I guess I must have ink in my veins: When I first learned about

the potential of digital printing technology, I couldn’t resist putting the

rest of my life on hold while I tried to adapt the typographic wisdom

of previous centuries to the possibilities of the present day. I hope the

reader will be able to share some of the excitement of my decades-long

quest to produce beautiful books with the help of computers.

Leonardo da Vinci made a sweeping statement in his notebooks:

“Let no one who is not a mathematician read my works.” In fact, he

said it twice, so he probably meant it. But, thank goodness, a lot of

people failed to heed his injunction; non-mathematicians are quite ca¬

pable of dealing with mathematical concepts, when the description isn’t

beclouded with too much jargon. So I would like to reverse Leonardo’s

dictum and say, “Let everyone who is not a mathematician read my

works.” (Furthermore, mathematicians are invited too.)

Every author likes to be read, of course; I’ve quoted Leonardo chiefly

as a sort of apology for the fact that some chapters of this book were

originally addressed to professional mathematicians, while others were

addressed to graphic artists or to people from other disciplines. My

hope is that by keeping jargon to a necessary minimum I can commu¬

nicate some significant ideas that cut across many specialized fields.

Indeed, the study of printing is probably as interdisciplinary as any

subject can be.

IX

X Digital Typography

Chapter 1 gives an overview of my work, written with hindsight

from the perspective of 1997. Chapter 2 gives an “underview” of the

same work, written in 1977 as I was just getting started. The occasion

for Chapter 2 was a special highlight of my life: I had just been asked to

deliver the Josiah Willard Gibbs Lecture, an exposition of mathematics

that is presented at each annual meeting of the American Mathematical

Society. Prominent mathematicians such as G. H. Hardy, Albert Ein¬

stein and John von Neumann had previously been Gibbs lecturers, so I

certainly had a hard act to follow. The people who had invited me to

talk expected me to preach about the glories of computer science; but I

decided to talk instead about the new work I had begun six months ear¬

lier and hadn’t had time to mention to anybody except a few colleagues:

I spoke about typography! Of course I didn’t want to dishonor the noble

tradition of the Gibbs lectureship, so I threw in some mathematics that

was at least slightly sophisticated. Yet the main point I wished to make

was that mathematical ideas need not be confined to the traditional ar¬

eas of application, and that I had found it especially exciting to bring

mathematics to bear on the field of typography. Fortunately, it turned

out that my remarks could not have been more timely or found a more

sympathetic audience, because many of the mathematicians present were

grappling with publication problems that could benefit greatly from the

kind of research I envisioned. As a result, I immediately had many offers

of help from a wide variety of experts, and the American Mathematical

Society gave strong support to my project.

Chapters 1 and 2 make it clear that my work on digital typography

has had two main themes, corresponding to two computer programs

known respectively as TgX and METRFONT. The first of these, T^X,

is concerned with placing characters and images on pages; the second,

METRFONT, is concerned with the design of the characters and images

themselves.

Ti^-related matters are discussed in Chapters 3-12. One of the

most challenging aspects of page layout is the problem of breaking para¬

graphs of text into individual lines. The fact that computers can do this

task better than all but the most dedicated hand-compositors was one of

my early motivations for developing the TfjX system; Chapter 3 presents

the history of line-breaking together with improved algorithms based

on several years of experience with prototype implementations of Tj^.

Then Chapter 4 discusses the additional complications that arise when

languages like Hebrew and Arabic — which are written from right to

Eft are intermixed with European languages written from left to right.

In a lighter vein. Chapters 5, 6, 7, and 8 are short discussions of handy

Preface xi

T^]Xniques that I have found useful for typesetting cookbook recipes,

for typesetting the TgX logo, for printing out only a few pages of a long

book, and printing my wife’s travel journals. Chapter 9 is a short chal¬

lenge problem for TgXperts, and Chapter 10 is a set of exercises for peo¬

ple who want to dig deeper and study the implementation of T^X itself.

The computer program for TgX was the first large-scale application of a

methodology that I have been calling “Literate Programming”; the pub¬

lished documentation of such a program is greatly enhanced by the provi¬

sion of hypertext-like mini-indexes, whose implementation is discussed in

Chapter 11. Finally, Chapter 12 discusses the interface between T]eX and

other systems by means of flexible specifications called “virtual fonts.”

METRFONT-related matters are the topics of Chapters 13-23. First,

Chapter 13 discusses an interesting mathematical problem that arises

when we attempt to teach a computer how to draw the letter S. Chap¬

ter 14 describes a brief demonstration in which I was asked to draw

an Indian character that I had never seen before, using METRFONT.

Both Chapters 13 and 14 illustrate the important concept of a “meta¬

font,” namely the idea that many different but related variants of letter-

forms are used to group fonts into font families; Chapter 15 discusses

meta-fonts and parametric variation in general. Chapter 16, which was

originally a keynote lecture addressed to an international working con¬

ference of type designers, is a retrospective look at what I learned about

font design during my first six years of experience with METRFONT-

like systems. A new family of typefaces for mathematics, designed for

the American Mathematical Society by Hermann Zapf and implemented

with METRFONT, is described in Chapter 17; Chapter 18 discusses how

I adapted the text fonts of a mathematics book to blend well with

Zapf’s mathematical symbols. Then Chapter 19 summarizes the results

of teaching METRFONT and introductory type design to several dozen

Stanford students. Chapter 20 describes a new family of fonts called

PllfllC, created for fun in one afternoon. Chapters 21 and 22 are devoted

to some of the fascinating problems that arise when photographs and

other continuous-tone images must be approximated by dots of ink. Fi¬

nally, Chapter 23 deals with the boundaries of bitmaps that are supposed

to imitate straight-line edges at oblique angles.

The remaining chapters discuss and METRFONT in historical

perspective, considering the past, the present, and the future. I’ve al¬

ways been interested in the origin of ideas and in the evolution of software

systems; therefore Chapters 24 and 25 reproduce the very first draft

descriptions of T^jX. These descriptions, taken from computer archive

tapes and published here for the first time, were written mostly to myself

xii Digital Typography

and my student assistants as a guide to the prototype implementations

of 1977 and 1978; they show clearly the influence of prior work, and they

reveal significant differences between my initial conceptions and the

system as it exists today. Chapter 26 describes the very first books that

were produced with TgX and METRFQNT in various parts of the world.

Then Chapter 27 jumps to more recent times and reflects the influence

of graphic user interfaces as computer operating systems became more

visually oriented: It presents little icons that symbolize the various kinds

of files associated with the input and output of and METRFQNT.

Chapter 28 is the text of a talk I gave in 1986, when I first believed that

I had brought my work on digital typography to a successful conclu¬

sion; Chapter 29 is what I said in 1989 when I realized that some final

changes to T^X and METRFQNT would be needed in order to accommo¬

date more of the world’s languages; Chapter 30 is what I said in 1990 to

confirm that those changes would indeed be the last. Chapters 31-33 are

transcripts of lively question-and-answer sessions that I conducted with

users of TeX and METRFQNT in the United States (1995), the Czech

Republic (1996), and the Netherlands (1996). Finally, Chapter 34 is a

newly written sequel to my paper on “The errors of Tg^.”

Many of this book’s chapters were written while today’s printing

technology was still developing rapidly, using experimental systems that

pushed the then-current state of the art to its limits. To reproduce

them here. I’ve had to recreate some of those experimental systems and

to resuscitate dozens of long-lost fonts by simulating them with the

mature versions of T^X and METRFQNT, hoping to do justice to the

historical context. Many of the chapters were originally written to fit the

formats of specific publications, so I have adapted them to the page size

and other conventions of the present book. I’ve improved the original

wording, here and there; but by and large the text material remains

essentially as it was when first published — except in Chapters 21 and 22,

where I have made extensive changes to bring the material up to date.

The bibliographies have been put into a consistent format; additional

references and notes have been added where appropriate; dozens of the

illustrations have been substantially improved.

Several of the example illustrations in this book are supposed to look

bad, in contrast to other illustrations that I propose as more suitable

alternatives. But printers have learned many tricks for improving poor

material that has been given to them, and they might have tuned up

some of my “bad examples” so that what you actually see is better

than what I supplied. I apologize in advance for any such unintended

enhancement, which is beyond my control.

Preface xiii

Pm extremely grateful to Stanford’s Center for the Study of Lan¬

guage and Information (CSLI) for the opportunity to publish this book

and for their expertise in preparing everything the way I like to see

it. In particular, William E. McMechan and William J. Croft prepared

electronic forms of many files that had originally been typed by my

secretary, Phyllis Winkler; Tony Gee collected and organized the mate¬

rials in a timely maimer; Copenhaver Cumpston designed the cover; and

Dikran Karagueuzian initiated and supervised the entire project. Stan¬

ford University Archives provided efficient access to its collection of T^X

and METflFONT memorabilia (SC 97, boxes 12-25). Martin Frost helped

me reconstruct numerous files that I had originally prepared on Stan¬

ford’s legendary SAIL computer (retired in 1990). Barbara Beeton of the

American Mathematical Society retrieved many electronic files of arti¬

cles that were originally published in TUGboat, the journal of the T^X

Users Group, which she has edited so capably for nearly twenty years.

Sun Microsystems and Apple Computer provided me with computers on

which I was able to do the final editing and polishing.

This is the third in a series of books that CSLI plans to publish

containing archival forms of the papers I have written. The first vol¬

ume, Literate Programming, appeared in 1992; the second. Selected

Papers on Computer Science, appeared in 1996. Five additional vol¬

umes are in preparation containing selected papers on Analysis of Al¬

gorithms, Computer Languages, Design of Algorithms, Discrete Mathe¬

matics, Fun and Games.

Donald E. Knuth

Stanford, California

August 1998

xiv Digital Typography

Acknowledgments

“Mathematical Typography” originally appeared in Bulletin of the Amer¬

ican Mathematical Society (new series) 1 (March 1979), pp. 337-372. Copy¬

right ©1979 by the American Mathematical Society. Reprinted by permission.

“Breaking Paragraphs Into Lines” originally appeared in Software —

Practice and Experience 11 (1981), pp. 1119-1184. Copyright John Wiley

& Sons Limited. Reproduced with permission.

“Mini-Indexes for Literate Programs” originally appeared in Software —

Concepts and Tools 15 (1994), pp. 2-11. Copyright ©1994 by Springer-Verlag

GmbH & Co. KG. Reprinted by permission.

“The Letter S” originally appeared in The Mathematical Intelligencer 2

(1980), pp. 114-122. Copyright ©1980 by Springer-Verlag GmbH & Go. KG.

Reprinted by permission.

“My First Experience with Indian Scripts” originally appeared in the

booklet CALTIS-84, p. 49. Copyright ©1984 by ITR Graphic Systems

Pvt. Ltd. Reprinted by permission.

“The Goncept of a Meta-Font” originally appeared in Visible Language

16 (1982), pp. 3-27. “Lessons Learned from METflFONT” originally appeared

in Visible Language 19 (1985), pp. 35-53. Copyright by Illinois Institute of

Technology — Institute of Design. Reprinted by permission.

“AMS Euler — A New Typeface for Mathematics” originally appeared in

Scholarly Publishing 20 (1989), pp. 131-157. Copyright ©1989 University of

Toronto Press Incorporated. Reprinted by permission of University of Toronto

Press Incorporated.

“Digital Halftones by Dot Diffusion” originally appeared in ACM Trans¬

actions on Graphics 6 (1987), pp. 245-273. Copyright ©1987 by ACM Press, a

Division of the Association for Computing Machinery, Inc. (ACM). Reprinted

by permission.

“A note on digitized angles” originally appeared in Electronic Publish¬

ing— Origination, Dissemination, and Design 3 (1990), pp. 99-104. Copyright

©1990 by Penn Well Publishing Co. Reprinted by permission.

“TeK Incunabula” originally appeared in TUGboat 5 (1984), pp. 4-11.

“A Course on METRFQNT Programming” originally appeared in TUGboat 5

(1984), pp. 105-118. “Recipes and Fractions” originally appeared in TUG¬

boat 6 (1985), pp. 36-38. “Computers and Typesetting” originally appeared

in TUGboat 7 (1986), pp. 95-98. “The TgX Logo in Various Fonts” originally

appeared in TUGboat 7 (1986), p. 101. “Mixing Right-to-Left Texts with

Left-to-Right Texts” originally appeared in TUGboat 8 (1987), pp. 14-25.

“Problem for a Saturday Morning” originally appeared in TUGboat 8 (1987),

pp. 73 and 210. “Fonts for Digital Halftones” originally appeared in TUGboat

8 (1987), pp. 135-160. “Printing Out Selected Pages” originally appeared in

TUGboat 8 (1987), p. 217. “Macros for Jill” originally appeared in TUGboat

Preface xv

8 (1987), pp. 309-314. “A Punk Meta-Font” originally appeared in TUG-

boat 9 (1988), pp. 152-168. “Typesetting Concrete Mathematics” originally

appeared in TUGboat 10 (1989), pp. 31-36 and 342. “The New Versions of

and METflFONT” originally appeared in TUGboat 10 (1989), pp. 325-

328. “Virtual Fonts: More Fun for Grand Wizards” originally appeared in

TUGboat 11 (1990), pp. 13-23. “Exercises for Tp;X: The Program” originally

appeared in TUGboat 11 (1990), pp. 165-170 and 499-511. “The Future of

and METRFONT” originally appeared in TUGboat 11 (1990), p. 489.

“Icons for and METRFONT” originally appeared in TUGboat 14 (1993),

pp. 387-389. “Questions and Answers, I” originally appeared in TUGboat 17

(1996), pp. 7-22. “Questions and Answers, 11” originally appeared in TUG¬

boat 17 (1996), pp. 355-367. Copyright Users Group. Reprinted by

permission.

“Questions and Answers, III” originally appeared in MAPS (Minutes and

APpendiceS) 16 (1996), pp. 38-49. Reprinted by permission of the NTG, the

Dutch-language-oriented Tt)X Users Group.

Chapter 1

Digital Typography

[Commemorative Lecture presented on 11 November 1996 in connection

with the 1996 Kyoto Prize for Advanced Technology, awarded by the
Inamori Foundation of Kyoto, Japan.]

[slide 0 to be shown during introduction of the speaker]

Slide 0.

I have been in love with books ever since I can remember. At first,

my parents read to me a lot — an unusual practice in America at the

time, because the prevailing “wisdom” of the 1940s was that a child

who is exposed to intellectual things at an early age will be bored later

when entering school. Thanks to my parents, I became at age four

the youngest member of the Book Worm Club at the Milwaukee Public

Library [slide 1].

That early experience with books is probably responsible for the

fact that I don’t remember ever being bored, throughout my education.

In fact, I think contemporary society is all mixed up in its concept of

“boredom”: People often say to each other that they are bored, but to

me this is almost a shocking, shameful admission. Why should it be

somebody else’s duty to entertain us? People who can’t find anything

of interest in what they are doing, who constantly need external sources

of stimulation and amusement, are missing most of life’s pleasures.

1

2 Digital Typography

Too young to read books himself.
Donald Knuth. 4, of 2961 N. 18lh
St. is nevertheless the youngest
member of the public library’s An¬
cient Order of Book Worms. His
father reads storybooks to him.
Wednesday he gave oral reports
on his "reading" in the young peo¬
ple's room of the library. Some of
the stories he reported on were
"Country Bunny." "Pokey Bear."
"When the Root Children Wake
Up" and "Babar the King."

Slide 1. Slide 2.

With me it has always been the opposite: I tend to err in the other

direction. I often get so interested in Chapter 1 of the books that Fm

reading or studying, I don’t have much time to read the final chapters.

Once, when I was five years old, my parents let me take the streetcar

to the downtown library by myself, and I was absolutely fascinated by

the children’s books. When I didn’t come home on time, my parents were

worried and phoned the library. One of the night staff went looking and

found me in the stacks, reading happily — I had no idea that the library

was closed and that everyone else had gone home! Even today my wife

knows that when I go into a library. I’ll probably come home late.

In fact, not only have I always loved books. I’ve also been in love

with the individual letters in books. Here’s a page from the first ABC

alphabet book that I had when I was little [slide 2]. Curiously, I marked

each serif in the letters with a little x, and I counted the serifs: The

letter K has 7 serifs. The letter P [slide 3] has 4; the letter O [slide 4]
has none.

Slide 3. Slide 4.

Prom this you can see that I like numbers as well as letters. By the

time I became a professor at Stanford I had learned that my main talents

were associated with computer programming, and I had begun to write

Digital Typography 3

books of my own. My first book, Volume 1 of The Art of Computer

Programming, came out in 1968, and Volume 2 was ready a year later
[slide 5].

I was excited to see these volumes not only because I was pleased

with the information they contained, but also because of the beautiful

typography and layout. These books were produced with the best, time-

tested methods known for the presentation of technical material. They

appeared in the same classic style that had been used in my favorite

college textbooks. So it was a pleasure to look at these volumes as well
as to read them.

Slide 5. Slide 6. Slide 7.

They were produced with 19th-century technology called Monotype,

involving two kinds of machines. First, there was a complex pneumatic

keyboard with 284 keys [slide 6]. This machine produced a punched

paper tape something like a player-piano roll; you can see this tape at

the top of the picture. The paper tape was then used to control a special

casting machine [slide 7] that produced individual pieces of type from

hot molten lead.

f

det(aij) < Yl I Y. 4)
l<i<n Vl<j<n /

.J
Slide 8.

The process of typesetting mathematics with such machines was

very complicated; here’s a typical formula from Volume 2 [slide 8].

4 Digital Typography

A specially trained typist would key in most of the formula by making

two passes: First the letters and symbols on the main line would be

entered, and their superscripts (namely the characters

I det(a)| <

in this case); then a second pass was made for the subscripts (namely the

characters b/, repeated twice here). The keyboard operator had to know

the width of each character so that there would be just enough space to

make the subscripts line up properly. After the formula had been cast

into metal, another specially trained technician inserted the remaining

large symbols (the big parentheses and symbols like H) tiy hand.

Only a few dozen people in the world knew how to typeset mathe¬

matical formulas with Monotype. I once had the pleasure and privilege

of meeting Eric, the compositor who did the keyboarding for Volumes 1

and 2; I was surprised to discover that he spoke with a very strong

London-Cockney accent, although he lived in America and was respon¬

sible for some of the world’s most advanced books in mathematics.

Program A (Addition, subtraction, and normalitation). The following program

is a subroutine for Algorithm A, and it is also designed so that the normalisation

portion can be used by other subroutines which appear later in this section. In

this program and in many other programs throughout this chapter, OFLO stands

for a subroutine which prints out a message to the effect that Mix’s overflow

toggle was unexpectedly found to be "on.*

0/ EXP EQU 1:1 Definition of exponent field.
OS FSUB STA TEMP Floating-point subtraction subroutine:
OS LOAN TEMP Change sign of operand.

Slide 9.

Books on computer science have added a new complication to the dif¬

ficulties that printers already faced in mathematical typesetting: Com¬

puter scientists need to use a special style of type called typewriter

type, in order to represent the textual material that machines deal with.

For example [slide 9], here’s another portion of a page from Volume 2,

part of a computer program. I needed to combine typewriter type like

the word ‘OFLO’ with the ordinary style of letters. At first I was told

that an extra alphabet would be impossible with Monotype, because

traditional math formulas were already stretching Monotype technology

to its limits. But later, Eric and his supervisor figured out how to do it.

Notice that I needed a new, squarish looking letter 0 in the typewriter

style, in order to make a clean distinction between 0 (oh) and 0 (zero).

New machines based on photography began to replace hot-lead ma¬

chines like the Monotype in the 1960s. The new machines created pages

Digital Typography 5

by exposing a photographic plate, one letter at a time, using an in¬

genious combination of rotating disks and lenses to put each character

in its proper position. Shortly after Volume 3 of The Art of Computer

Programming came out in 1973, my publisher sold its Monotype ma¬

chine and Eric had to hnd another job. New printings of Volume 1 and

Volume 3 were published in 1975, correcting errors that readers had

found in the earlier printings; these corrections were typeset in Europe,
where Monotype technology still survived.

I had also prepared a second edition of Volume 2, which required

typesetting that entire book all over again. My publishers found that it

was too expensive in 1976 to produce a book the way it had been done

in 1969. Moreover, the style of type that had been used in the original

books was not aA'ailable on photo-optical typesetting machines. I flew

from California to Massachusetts for a crisis meeting. The publishers

agreed that quality typography was of the utmost importance; and in

the next months they tried hard to obtain new fonts that would match
the old ones.

Program A (Addifjon, suftfrac/fon, and normaluation). The following program
is a subroutine for Algorithm A, and it is also designed so that the normalization
portion can be used by other subroutines which appear later in this section. In
this program and in many other programs throughout this chapter, OPLO
stands for a subroutine which prints out a message to the effect that Mix’s
overflow toggle was unexpectedly found to be "on." The byte size 6 is as-sumed
to be a multiple of 4. The normalization routine NORU assumes that rl2 = e
and rAX = /, where rA = 0 implies rX = 0 and rI2 < 6.

01 EXP EQU 1:1 Definition of PKponeni fiel<l.

OJ FSUB STA TEMP ^(jating-pfiini subiracnon siibrnuiine

03 LDAB TEMP Change mcii of operand.

Slide 10.

But the results were very disappointing. Eor example [slide 10],

here’s some of the type from the second, “tuned up” version of their

new fonts. These were much improved from the first attempt, but still

unacceptable. The “N” in “NORM” was tipped; the “ff” in “effect” was

much too dark; the letters “ip” in “multiple” were too close together;

and so on.

I didn’t know what to do. I had spent 15 years writing those books,

but if they were going to look awful I didn’t want to write any more.

How could I be proud of such a product?

A possible way out of this dilemma presented itself a few months

later, when I learned about another radical change in printing tech¬

nology. The newest machines made images on film by digital instead

of analog means — something like the difference between television and

real movies. The shapes of letters were now made from tiny little dots.

6 Digital Typography

Slide 11.

based on electronic pulses that were either ON or OFF [slide 11]. Aha!

This was something I could understand! It was very simple, like the

lights on a scoreboard at a sports match.

Metallurgy and hot lead have always been complete mysteries to me;

neither have I understood lenses or mechanical alignment devices. But

letters made of little dots — that’s computer science! That’s just bits,

binary digits. Os and Is! Put a 1 where you want ink, put a 0 where you

don’t want ink, and you can print a page of a book!

I had seen digital letterforms before, but only on crude machines.

Computer scientists had been experimenting for many years with a ma¬

chine called the Xerox Graphics Printer, which had been invented in

England about 1961 but not controlled by computers until the 70s. This

machine made letters out of dots, but the dots weren’t very small. There

were only about 180 dots per inch, so the letters had lots of jagged edges.

It was fun to play with the Xerox Graphics Printer, but I never expected

that such a machine could produce real books. It seemed too simple,

capable only of making cheap imitations — like the difference between

an electronic synthesizer and a real piano or violin.

But in February 1977 I saw for the first time the output of a high-

quality digital typesetter, which had more than 1000 dots per inch ...

and it looked perfect, every bit as good as the best metal typography

I had ever seen. Suddenly I saw that dots of ink will form smooth¬

looking curves if the dots are small enough, by the laws of physics.

And I remembered that human eyes are inherently digital, made from

individual rod and cone cells. Therefore I learned for the first time that

a digital typesetting machine was indeed capable of producing books of
the highest conceivable quality.

Digital cameras don’t capture all the sharp details of traditional

photographs. High-definition television can’t match the quality of a

Digital Typography 7

VistaVision movie. But for ink on paper, a digital approach is as good
as any other.

In other words, the problem of printing beautiful books had changed
from a problem of metallurgy to a problem of optics and then to a
problem of computer science. The fact that Gutenberg had made books
from movable metal type was suddenly only a 500-year-long footnote to
history. The new machines have made the old mechanical approaches
essentially irrelevant: The future of typography depends on the people
who know the most about creating patterns of Os and Is; it depends on
mathematicians and computer scientists.

When I realized this, I couldn’t resist tackling the typography prob¬
lem myself. I dropped everything else I was doing — I had just hnished
writing the first 100 pages of Volume 4 — and decided to write com¬
puter programs that would generate the patterns of Os and Is that my
publishers and I needed for the new edition of Volume 2.

At first I thought it would be easy; I expected that the job could
be done in a few months. In March of 1977 I wrote to my publishers
that I would probably have the first proofs ready in July. Boy, was
I wrong! All my life I have underestimated the difficulty of the projects
I’ve embarked on, but this was a new personal record for being too
optimistic.

In the first place, almost nobody else in computer science was doing
this kind of work, so it was difficult to get financial support. The type¬
setting machine was very expensive, too much for our university budget.
Moreover, that machine was designed to be run 24 hours per day by
trained operators; I was just a single individual with strange mathemat¬
ical ideas and no experience in the printing industry. Still, I assumed
that if I could get my computer program working. I’d be able to borrow
time on some digital typesetting machine.

There also was a chicken-and-egg problem. I couldn’t set type until
I had fonts of letters and mathematical symbols, but the fonts I needed
did not exist in digital form. And I could not readily design the fonts
until I could set type with them. I needed both things at once. Other
fonts had been digitized, but I had resolved to define the fonts by my¬
self, using purely mathematical formulas under my own control. Then
I would never have to face the possibility that another change in technol¬
ogy might upset the applecart again. With my own computer program
controlling all aspects of the Os and Is on the pages, I would be able to
define the appearance of my books once and for all.

My publishers provided me with original copies of the Monotype
images that had been used to make the first edition of Volume 1. So

8 Digital Typography

I thought it would be easy to find mathematical formulas to describe the

shapes of the letters. I had seen John Warnock doing similar things at

Xerox’s Palo Alto Research Center, so I asked if I could use Xerox’s lab

facilities to create my fonts. The answer was yes, but there was a catch:

Xerox insisted on all rights to the use of any fonts that I developed with

their equipment. Of course that was their privilege, but such a deal was

unacceptable to me: A mathematical formula should never be “owned”

by anybody! Mathematics belongs to God.

So I went to Stanford’s Artificial Intelligence lab, which had a tele¬

vision camera that I could use to magnify the letters and capture them

in digital form. Unfortunately, the television camera did not give a true

picture — the image was badly distorted. Even worse, a tiny change

in the brightness of the room lights made a tremendous change in the

television images. There was no way I could get consistent data from

one letter to another. With that TV camera my fonts would look much

worse than the fonts I had rejected from the non-digital machine.

I tried photographing the pages and magnifying them by projecting

the images on the wall of my house, tracing the enlarged outlines with

pencil and paper. But that didn’t work either.

Finally, a simple thought struck me. Those letters were designed

by people. If I could understand what those people had in their minds

when they were drawing the letters, then I could program a computer

to carry out the same ideas. Instead of merely copying the form of the

letters, my new goal was therefore to copy the intelligence underlying

that form. I decided to learn what type designers knew, and to teach
that knowledge to a computer.

That train of thought led to my computer system called METR-

FONT, which I want to try to show you now. [Switch from slides to

online computer display.] Here is the way I finally decided to create the

letter A, for example, using a computer program. All the key points of

the letter are based on a grid that is displayed here, although of course
the grid is really invisible.

Digital Typography 9

Based on this grid and the specification of a normal text font, the com¬

puter first draws the main stem stroke:

Part of this stroke needs to be erased, because it’s too thick at the top.

Then the left diagonal stroke is added.

and the crossbar.

10 Digital Typography

It’s time now to add a serif at the bottom left,

and to erase a little at the bottom so that the serif doesn’t make the

letter too heavy.

(This erasure is quite subtle: You have to look closely!) A similar serif

is drawn at the bottom right:

This completes the letter A.

The same program will draw infinitely many different A’s if we

change the specifications. For example, here’s a darker, boldface variant:

Digital Typography 11

■ ■■I
IIHI

Simply shrinking the original A by 50% would not produce such a legible

character at a small size; we would have ‘a’ instead of ‘a’. Good typogra¬

phy requires small letters to have shapes that are subtly different from

their larger cousins.

Even the typewriter style A can be drawn with the same program.

This time we specify that the thick strokes and thin strokes are identical,

and the corners of the serifs are rounded.

12 Digital Typography

The resulting A went into iny first typewriter-style font, but I learned

later that such an A was a bit darker than it should be. To solve the

problem, I moved the two diagonal strokes slightly apart, and cut a

“notch” in the interior so as to open the inside a bit.

This is the nice typewriter-style A that I use today. I didn’t learn such

tricks until several years after I started to study type design.

Here is an example of the way my first draft fonts looked on the

Xerox Graphics Printer, about one and a half years after I had begun

to work on typography [slide 12]. Two years later, with some financial

help from my publishers, my project was finally able to obtain a high-

resolution digital typesetting machine, and I could print the new edition

of Volume 2. The proofs for that book looked so much better than

the xerographic proofs I had been working with, I thought my goals for

quality typography had finally been reached.

But when I received the first printed copy of the new Volume 2 in its

familiar binding, and opened the pages, I burned with disappointment.

Digital Typography 13

Program A (Addition, subtraction, and normalisation). The following program

is a subroutine for Algorithm A, and it is also designed so that the normalization

portion can be used by other subroutines that appear later in this section. In this

program and in many other programs throughout this chapter, OFLO stands for

a subroutine that prints out a message to the effect that Mix's overflow toggle

was unexpectedly found to be “on.” The byte size 6 is assumed to be a multiple

of 4. The normalisation routine NORM assumes that rI2 — e and rAX — /, where

rA = 0 implies rX « 0 and rl2 < b.

00 BYTE EQU 1(4-4) Byte size b
01 EXP EQU 1 . 1 Definition of exponent field
02 FSUB BTA TEMP Floating-point subtraction subroutini
03 LOAN TEMP Change sign of operand.

Slide 12.

The book did not look at all as I had hoped. After four years of

hard work, I still hadn’t figured out how to generate the patterns of Os

and Is that are demanded by fine printing. The published second edi¬

tion [slide 13] didn’t look much better than the version I had rejected
before starting my typography project.

Program .K (Addition, subtraction, and normalization). The following program

is a subroutine for Algorithm A, and it is also designed so that the normalization

portion can be used by other subroutines that appear later in this section. In

this program and in many others throughout this chapter, OFLO stands for a

subroutine that prints out a message to the effect that Mix's overflow toggle was

unexpectedly found to be “on.” The byte size b is assumed to be a multiple

of 4. The normalization routine NORM assumes that rl2 = c and rAX = /, where

rA = 0 implies rX = 0 and rI2 < b.

00 BYTE EQU 1(4 4)
OJ EXP EQU 1:1
02 FSUB STA TEMP
OS LOAN TEMP

Byte size b
E>€finition of exponent field
Floating point subtraction subroutine:
Change sign of operand.

Slide 13.

Meanwhile I had had the good fortune to meet many of the world’s

leading type designers. They graciously gave me the instruction and

criticism I needed as I continued to make improvements. After five

more years went by, I finally was able to produce books of which I could

feel proud.

I don’t want to give the impression that those nine years of work

were nothing but drudgery. (As I said before, I rarely seem to get bored.)

Font design is in fact lots of fun, especially when you make mistakes.

The computer tends to draw delightfully creative images that no human

being would ever dream up. I call these “METR-fiops.” For example

[slide 14], here’s an ffi ligature combination in which the f at the left

reaches all the way over to the dot on the i at the right. And here’s

another weird ffi [slide 15]: I call it “the ffilling station.”

In one of my first attempts to do a capital typewriter-style Y, I put

the upper right serif in the wrong place [slide 16]. I swear that I was

not thinking of yen when I did this!

14 Digital Typography

r:i 1 I

i'

Wb

V

* i

Slide 16.

Does METRFONT work for Japanese characters as well as for Roman

letters? I think it does, but I haven’t been able to develop a good

eye for Asian letterforms myself. My student John Hobby did some

promising experiments together with Gu Guoan of the Shanghai Printing

Company, and I’d like to give you a taste of what they did. First they

wrote 13 computer programs for basic strokes. For example, here are

two “teardrop” shapes produced by one of their programs [slide 17].

A font designer specifies the top, the bottom, and the edge of the bulb;

the computer does the rest. Here [slide 18] are some more examples of

teardrops, together with variants of three other basic strokes.

Hobby and Gu used their stroke routines to design 128 Chinese

characters. And they did it in such a way that you could get three

Digital Typography 15

different styles of letters simply by using three different versions of the

13 basic strokes. Here [slide 19] are five characters rendered in Song

style, Long Song style, and Bold style. And here [slide 20] are examples
of the 13 basic strokes in all three styles.

Slide 19. Slide 20.

With the METRFONT system for type design, and the T^X system for

putting letters and symbols into the right positions on a page, anybody

who wants to write a beautiful book can now do so singlehandedly with a

reasonable amount of effort. These systems give an author total control

over the patterns of Os and Is that are needed to define the pages. I have

made special efforts to ensure that and METRFONT will give exactly

16 Digital Typography

the same results on all computers, and to ensure that they will give the

same results 50 years from today as they do today. Furthermore I have

published all of the details and put all of my programs in the public

domain, so that nobody has to pay for using them. Of course, many

people who offer additional services will charge a fee for their expertise,

but the main point is that a dedicated author now has the power to

prepare books that previously were prohibitively expensive.

Kapitola Xll

enS sluncem od^n^ drak sedmihla-
vy syna seZrati cht^l. 7. ale Mlchal
archand^l, draka pfemohl. 10, Nad
nimf a^oli uifostrifci Berdnkovi svit^-
zlli, 11,1 feno ulet^la. 16. a zeirv^ feku

vypila, 17. vSak ten drak proti ostatkdm svatych
bojovatl nepfestdvd.

I ukozQl se div velikp na nebi: Zena odS-
nd sluncem, pod jejimii nohama byl mS-
sic, a na jeji2 hlavg byla koruna dvandcti
hvffzd. 2 A jsouci t^hotnd, kflfela. pracu-
jlct ku porodu a trdp^ci se, aby porodila.
3 1 vidtn jest jiny div na nebi. Nebo aj, drak

Slide 21.

4.8.2 mddSr>

M rfrUi hAA mn/t fWVf «» lH>-

fmArtf hAA >*■ SI AH)-* mArtf hAA ©-ftT

/if. yoh It OitAT MPTC fmAftf A-^rtAA «

\Xrc{mAnf lUbhpl

n7>Tui\-M\ Mtu II

nr* Mto e-nnn^}

\aLCn{irtMf*)

n^m-* rtlAA- hf*ftA hMf-f* II hAA

rttAhP*^ ♦TC? Of* Ail-^A IS hlit OOfi '--Wi-l O')*-

mAftf" hAA ®*hT AAAhX Afthir> SI >X

"n -t-OOd iK* T7^ /••T»‘rA ”

Slide 22.

I can’t resist showing you samples from some of the books that I’ve

received in recent years from their authors. Here’s one from the Czech

Republic [slide 21], showing another font done with METRFONT. Here’s

one from Ethiopia [slide 22], telling Amharic-speaking people how to

use the TRX system.

a BOJBpauttCTca b ropXTOHTa^bHyio .Moay ana npoflo/i*CHna AGyaiia. (4>opMy-i8,

KOTDpM BwaenaeTca, ao^mchb OK8iii<iiBaTbca $$) HanpHMrp. npeanonoMtHM sw
BBOAHTC

HKcno t$\pi \&pprox 3.141692S636t$ iMaerca baxhum.

MPway aayMa $$ nepexoaHT b BuaericHHyio MaTfMBTM'iccKyio Mony k pe-

jynbTBT, KOTopbiA Bbj nojiy'iHTe, yraepwaaeT. mto 'ihc/io

!ras3.M1592C536
a»aaBTta aasKHUM.

Koriia*!^ kaxoahtcb b sepTHKa/tbHOH hoh BHyTp^HKeii BepTHKaabHOH

Moae, OH HCHOpiipyer npo6eabi h nycTue crpoKH (unH KOMAHAKbic nocneaoBa-

TWlbHOCTM \par). Tax HTO BAM HB HaaO 6BCnOKOHTkCa. MTO TaKHB BBUIH MOPyX

■iMCHHTb Moay H^H noBnHaxb iia coiaaBaeMbu'i aoK.vMBNT. KoMaHaHuti npoCen

(\u) Syaer, oniiaKo, paccMarpiieaTbca kbk Hasaao aCaaua, a6iAU KaHHerca c
npo6ejia noc<ie oxcryna

OewMiio nyvuic OKOKHiixb Bcio paSory. nocxaBHB b kohub pyxonKCM

TtX’a \by*, sxo asaaerca coKpauiCMHCM A.ia \vf ill\BjBct\«nd KoMaHAwaa

iKKJieAOBaxenbHocTb nepBBOAHX T^X 6 BBpTMxanbHyio Moay h BCTaenaer

Slide 23.

teiat kic@ 505-0*6 xyK * l-cisp

tb« Bumb«r St\pi \approx 3.141S926&36$$ ka iaportaat

TfeXti' $i-c-Bih.;fcll^4-ft9+6f8l. r * ■< j*:o5Z

^ ic. r the number

ft 5*3,1415926536

is important, j t IB t S tt 6«

TtX K. 1 EOi t tt. (i Jt« \pax ^

L t 6. Lst*:-5-C, L

A: •). eriBIJ h5 2*icflb-»«i>:*6 05Tttii;^i.i-Lie-r6'£-«rJikirv, us»*L.

3 1/ ho-a. • x^-:^ (\o) tt. «S05te« sjtA-stSKrLi^. t«'54&05K

Stt. -f h ■o-Ci/'5CtiCik5,

TfeX \bya i A L-Cd-z^-C 4-»T S < 60d:-UtM-C*

6=, plain TfeX KSR S n-C Js ^ \vlill\aj#ct\and

Slide 24.

Here [slide 23] is part of the Russian translation of my own book on

T^. And here [slide 24] is the same passage in Japanese translation.

By the way, if I had lived in Japan, I’m sure I never would have been

inclined to invent or METRFONT, because I wouldn’t have felt the

need: The standards of typography in this country never declined as

Digital Typography 17

they did in America and Europe. However, I’m extremely glad to see

that TeiX is now widely used also in Japanese publishing.

People have sent me many fine books that probably would never have

existed without TfiX and METRFONT. My favorite examples are scholarly

publications, such as the interlingual text of an Eskimo language folk

tale shown here [slide 25]. Here, similarly, are some footnotes from a

critical edition of a Greek and Latin text [slide 26]; another, in Arabic

[slide 27]; another in Sanskrit [slide 28].

14. Akiaq iriiqtuqami Icayuqtuq

iniqluq-(D)»nu k&]ru^luq
IM4I b* * i>rfd-3».C0ND/R lox

apiqsnigaluagaqnigaa qakugu

»piq«ru^-(k}&lu«q-(t)»q-ai^ -(klu

uk Alr/kltei HAB EVID3»3«.|N0 wken/U

amumaqma^aan pamiuni.

unu -iu4q -mm»-/(o]aa pamiuq-ioi
pall «ii-lNTNT lNDQ-i..».ENP lul .JIUjANP

IS. Kayuqtum kiuraqnigaa,

kayuqtuq-/(u)m kiu -Uq -niq '(kiu
fa* E *n»wCT-ITER-EVlD-3« 3i IND

16. "Maatnugu qalukpaura^kkuvich

oualnu^ qaluk-(q)p4ur»q-(«luk -(k)uvi«h
•lit' luh -vwy Ixt -DESIO &-COND/U

fre«ie / 11, bear / he

let him sit down / at

the hole / he dipping

it / his tail / 12. bear

/ he began to sit /

that evening / 13. fox

/ he started to watch

him / he not wanting

him to pull it out too

soon / his tail /

14. bear / when

he was tired / fox /

he asked him repeat¬

edly / when / (when)

he was going to pull

it out / his tail /

15. fox / he answered

him often / 16. wait!

out ad ipjuTTi in uno^o^e digne intelligvntw, \ R, 264' | stctif ipsa

revelant: ♦flE, DTP, HNETMA (hoc est lux, ignis, spiritus).

Haec, ut dixi, ab Epifanio tradita, ut quisquis interrogatus quae

tria et quid unum in sancta irinitate debeat credere, sana fide j J, H |

respondere ualeat, aui ad fidem accedens sic erudiatur. Et mihi uide- 743A

tur spiritum pro calore posuisse, quasi dixisset in similitudine; lux,

ignis, color. Haec enim tria unius essentiae sunt. Sed cur lucem primo

dixit, non est mirum. Nam et pater lux esi et ignis el color; et filius

est lux, ignis, calor; et spiritus sanctus lux, ignis, calor. Illuminat

enim pater, illuminat filius, illuminat spiritus sanctus; ex ipsis enim 30

omnis scientia et sapientia donatur

18-19 Match 11, 27 22 EPIPHANIV5, Ancoralvs 67; PG 43, 137C-140Ai GCS
25, p. 82, 2-12

1 mcipil . .nEPI+TEEflN] om. ft. incipic quartus W 2 ANAKE+AAIOEIE |
FJP, lege kvaxcipaXaiuoi; 2 physiologiae | phi&iologiae P, physeologiae ft
3 quod I p, natura tnnsp UR 3 TflEPOTEIAAEE | aUd. Vtrum Cmtp-
oumuSi)^ (hoc est superessentialis) natura cum GaU (p.ISO) an unepouoidtijq
(hoc est superessentialis natura) cvm Phss (PL lS2,7ilC) mleUigendum
Til, amSi^lur S OMOTEIOE] codd.. lege ditoouotoq 9 et | ftb om. ft*^

Slide 25. Slide 26.

Ji J)>i ^

r'.

Jlyi* •

r- ’
jlyt • 11

juyi 4^;

jlUi J. iij [!

t The rext u rrpraduced tw;cc oe pp 199-200 sad pp. 201-202 la tUfbtly dlfferm rersioas.

. giyji 01,0.1, „ , Cr, e,;,,;! cj, t,;,;, ;1,

• Ak^l Ak^'a Ml (,.>^1 Ml > . Jy!p . p Ml > .

^ I T HTd^Pd I so

*1 g TU t qi Afn fq#l'qvil'^'

ri'T^iHqln T ^TT Tf^Vni Hdfd I T

^ fa i

^rtTT t-Mia I nlq^Tlq 'iPq'Tlq I T I qq/fn ?7krrfT

>11 s')fa t xiiTifn I I [qr«i'>qd I (Vnl Tj" | 35

^ viqfa I at-ui T ^(q'>qfa I

23 om. 0 II ^ I*” **®y confusion in Slradi) || imjgr* Pj a. c.

25 *7 a 27 fW ora. o || qqq- (-4.) q%» B qqq"ftTr’qf5*

p, ; qaage* j (i.e. om. efif) || Pj a-c. || (5f?r ar p, &\

II few . faff codd. (a very easy confusion in Sirads) ; feff Pj a. c. || faff* ;

rsff* codd. 28 1^1 q I't'a Pj 0 (ff and 3r are not alike in SiradS, but ff and

7 are So if an original 7 were transliterated as 7 and the sandhi then regularized,

the MS readings would be accounted for) : TTOT J 29 Tfgffgnr B , Pj a. e.

II qfgqglTTPr J (tfiritftnr) || gwir* r qwu« * J || •snwnfffa Abhyankar

Slide 27. Slide 28.

Ever since I began working on T^X in 1977, I’ve kept a record of

all the errors, large and small, that I fonnd and removed from the pro¬

gram with the help of volnnteers around the world. This list has now

grown to 1,276 items. Perhaps T)jX has thereby become one of the most

thoroughly checked computer programs ever written.

I would like to conclude this talk by quoting one of my favorite

poems, written by the Danish sage Piet Hein. He calls it a “grook” —

it’s sort of a Danish variant of haiku. My wife and I like it so much, we

18 Digital Typography

commissioned a British stonecutter to carve it in slate for the entryway

of our house [slide 29]. It goes like this:

The road to wisdom?

Well it’s plain

and simple to express:

Err

and err

and err again

but less

and less

and less.

Illustration Credits
Slide 29.

Slide 0 was given to me by an unknown person about 1980; it was evidently created

by someone named “M. S.” Slide 1 is a newspaper clipping from The Milwaukee

Journal (2 August 1942), page II-l. Slides 2, 3, and 4 come from The Brimful

Book, edited by Watty Piper, illustrated by G. & D. Hauman (New York: Platt

and Munk, 1927). Slides 6 and 7 are based on plates III and IV in The Print¬

ing of Mathematics by Chaundy, Barrett, and Batey (London: Oxford University

Press, 1954). Slide 9 is an excerpt from page 185 of The Art of Computer Pro¬

gramming, Volume 2, first edition (Reading, Massachusetts: Addison-Wesley, 1969);

Slide 13 is the corresponding material from page 202 of the second edition (1981).

Slides 10 and 12 are from material in collection SC 97 of the Stanford Univer¬

sity Archives. Slides 14-18 are taken from “Lessons Learned from METRFONT,”

Figs. 13h, 13i, 13f, 8, and 9 respectively; see Chapter 17 of the present volume.

Slides 19 and 20 are based on “A Chinese Meta-Font” by John D. Hobby and

Gu Guoan, TUGboat 5 (1984), 119-136, Figs. 7 and 9. Slide 21 is from Apoka-

lypsa by Albrecht Diirer, translated by Michaela Hajkova (Prague: Volvox Globator,

1993), page 20. Slide 22 is from cmdud. f’tJ'/S- oDtme'y [Book of

elATpK: Document Preparation Guidelines] by AOfl n<\P [Abass Belay

Alamnehe] (Houston, Texas: EthiO Systems, 1993), pages 70-71. Slide 23 is an ex¬

cerpt from page 107 of Bee npo TpX [Everything about TEX] by ^onajinfl E. Knyi

[Donald E. Knuth], translated by M. B. JlncHHa [M. V. Lisina] (Protvino, Moscow:

AO RDTEX, 1993); Slide 25 is the corresponding excerpt found on page 123 of

TpiKy [The TpK.book] by Donald E. Knuth, translated by ^ ^ fM ^ [Nobuo

Saito] and [Yoshiteru Sagiya] (Tokyo: ASCII Corporation, 1989). Slide 24

is from Formatting Interlinear Text by Jonathan Kew and Stephen McConnel (Dallas,

Texas: Summer Institute of Linguistics, 1990), page 71. Slides 26-28 are taken from

Critical Edition Typesetting: The EDMAC Format for Plain TTX by John Lavagnino

and Dominik Wujastyk (UK TEX Users Group, 1996), pages 94, 100, and 101. And

Slide 29 is based on Plate 15 of Letters Slate Cut: A Sequel by David Kindersley and

Lida Lopes Cardozo (Cambridge: Cardozo Kindersley Editions, 1990).

Chapter 2

Mathematical Typography

[Josiah W illard Gibbs Lect ure, given under the auspices of the American

Mathematical Society, January 4, 1978; dedicated to George Polya on

his 90th birthday. Originally published in Bulletin of the American

Mathematical Society (new series) 1 (March 1979), 337-372.]

Abstract

Mathematics books and journals do not look as beautiful as they used to.

It is not that their mathematical content is unsatisfactory, rather that

the old and well-developed traditions of typesetting have become too

expensive. Fortunately, it now appears that mathematics itself can be

used to solve this problem.

A first step in the solution is to devise a method for unambiguously

specifying mathematical manuscripts in such a way that they can easily

be manipulated by machines. Such a language, when properly designed,

can be learned quickly by authors and their typists; yet manuscripts in

this form will lead directly to high quality plates for the printer with

little or no human intervention.

A second step in the solution makes use of classical mathematics to

design the shapes of the letters and symbols themselves. It is possible to

give a rigorous definition of the exact shape of the letter ‘a’, for example,

in such a way that infinitely many styles — bold, extended, sans-serif,

italic, etc. — are obtained from a single definition by changing only a few

parameters. When the same is done for the other letters and symbols, we

obtain a mathematical definition of type fonts, a definition that can be

used on all machines both now and in the future. The main significance

of this approach is that new symbols can readily be added in such a way

that they are automatically consistent with the old ones.

Of course it is necessary that the mathematically-defined letters be

beautiful according to traditional notions of aesthetics. Given a sequence

19

20 Digital Typography

A = =b •s/|Ay= dz

there oorreajwncl two quadric forms eacdi containii

rameters. So much Hilbert states. In order to

as known systems it will he convenient U) use a

/^\ mental cubic, due to Hesse.*

^ Referred to an inflexional triangle, the equatio

(3) al = x\ + u'l +

All conic polars accordingly have the form ;

(4) aal = {yy\ + y.yl + -

I call this ineffective part of “innocuous”

validate the fundamental proposition

[^(4) =

(c) which was proved above (P. 4) for effective vah

ineffective part of x, is innocuous is clear: it, as

that the variation of x, does not take place in it

D. 3. But this consideration leads to the defin

of X. By this I mean the collection of values wh

i. e.,

Consider the functions F^ — v^{a = 1,2, • • •

According to the theorem a polynomial P {v,

analogous to those of P (z : J/„), and P (0, x :

since the latter is unique.

The .series of power series P {F ,x :yn) may be

of J, y, and it can readily be seen that its coefi (b)

those oi P (x ■. y„). It must, however, be f

not, a set of numerical coefficients could be sel

which P(P, x‘.y„) would not be identically

Weierstrass’ theorem concerning the sum of an ir

when the functions F and P {v, x : y„) are conv

six planes i/i + yic = 0, each counted three tim

typ6 i/i Vi — 2/3 2/4 — each counted twdce.
We have seen that any point on the line y, +

image in (X) the whole line X, + = 0, A'a

in (y) meets the line in one point, its image s'g co

the system sg has also the three lines of this typ (d)

12. Algebraic procedure. The plane coi

and the vertex (1, 0, 0, 0) has the equation

P34 a-j +j>43 a-s +Pi3 a-4 ^

Since (y) and (y') both sati.sfy this equation we

Figure 1. Typographic styles in the AMS Transactions: (a) 1 (1900), 2;

(b) 13 (1912), 138; (c) 23 (1922), 216; (d) 25 (1923), 10.

of points in the plane, what is the most pleasing curve that connects

them? This question leads to interesting mathematics, and one solution

based on a novel family of spline curves has produced excellent fonts of

type in the author’s preliminary experiments. We may conclude that a

mathematical approach to the design of alphabets does not eliminate the

artists who have been doing the job for so many years; on the contrary,

it gives them an exciting new medium to work with.

Introduction

I will be speaking about work in progress, instead of completed research;

that was not my original intention when I chose the subject of tonight’s

lecture, but the fact is I couldn’t get my computer programs working in

time. Fortunately, it is just as well that I don’t have a finished product to

describe to you right now, because research in mathematics is generally

much more interesting while you’re doing it than after it’s done. I will

try therefore to convey in this lecture why I am so excited about the

project on which I am currently working.

My talk will be in two parts, based on two different meanings of its

title. First I will speak about mathematical typography in the sense of

Mathematical Typography 21

typography as the servant of mathematics: The goal here is to commu¬

nicate mathematics effectively by making it possible to publish mathe¬

matical papers and books of high quality, without excessive cost. Then I

will speak about mathematical typography in the sense of mathematics

as the servant of typography. In this case we will see that mathematical
ideas can make advances in the art of printing.

Preliminary Examples

To set the stage for this discussion I would like to show you some ex¬

amples by which you can “educate your eyes” to see mathematics as a

printer might see it. These examples are taken from the Transactions of

the American Mathematical Society, which began publication in 1900;

by now over 230 volumes have been published. I took these volumes

from the library shelves and divided them into equivalence classes based

on what I could perceive to be different styles of printing: Two vol¬

umes were placed into the same class if and only if they appeared to be

printed in the same style. It turns out that twelve different styles can

be distinguished, and it will be helpful for us to look at them briefly.

The first example (Figure la) comes from page 2 of Transactions vol¬

ume 1; I have shown only a small part of the page in order to encourage

you to look at the individual letters and their positions rather than to

read the mathematics. This typeface has an old-fashioned appearance,

primarily because the uppercase letters and the taller lowercase ones like

‘h’ and ‘k’ are nearly twice as tall as the other lowercase letters, and this

is rarely seen nowadays. Notice the style of the italic letter ‘x’, the two

strokes having a common segment in the middle. The subscripts and

superscripts are set in rather small type.

This style was used in volumes 1 to 12 of the Transactions, and also

in the first 21 pages of volume 13. Then page 22 of volume 13 introduced

a more up-to-date typeface (Figure lb). In this example, the subscripts

are still in a very small font, and unfortunately the Greek a here is

almost indistinguishable from an italic ‘o’. Notice also that the printer

has inserted more space before and after parentheses than we are now

accustomed to. During the next few years the spacing within formulas

evolved gradually, but the typefaces remained essentially the same up

through volume 24; with one exception.

The exception was volume 23 in 1922 (Figure Ic), which in my opin¬

ion has the most pleasing appearance of all the Transactions volumes.

This typeface is less condensed, making it more pleasant to read. The

italic letters have changed in style too, not quite so happily — not the

‘x’, for example, which is not as nice as before, and the lower part of an

22 Digital Typography

(e)

(g)

(i)

(k)

of systems of division algebras. The next syste

of order pY over F with the basal units (

with an irreducible equation of degree pg, three

rational functions 0(i) and tp(i) with coefficie

iterative of 0(i} is i, and likewise =i

by
0’'[p'{i)] = p[e'‘{i)\ (^ = 0,1,- ■ ■,7-l

The complete multiplication table of the uni

associative law from

i'> = g , k’’ = y , kj=ajk , yf =

0 = ri,x(Y,r,a,) - (Y,r,a,)xri, = Y,
t-1

This element is of lower length. It follows there

f = 1, Hence, (a) yields that r, =

Now ri, ^ 0, by the minimality of k, and

which we deduce that = 0. But the a, a

which is impossible since in particular X/i= 1.

Theorem 7. Let R be a dense ring of linear t.

F be a maximal commutative subfield D. If Rr

tion of finite rank over F, then R contains als

The algebra P is nearly simple if and only if the

(a) N is spanned by a, ■ ■ ■ , a””*” *, h^f---

i, i = 1, y k.

(b) Either n - k = char F with k even or n

Proof. By Theorem 5.5, there are elements a

a,' ■ ' , a"~^~ Furthermore, ab. = i
i K. 1

for all i, j where each is in F. From th

space of the space spanned by

Assume P is nearly simple. Then there is a

show that each b. is in Ai. To do this, it is nec(
z

z =e“z‘> = .e“z°), 0 S d S 2rt,

cz C is called a Reinhardt circular set if along w

e E also the set

{z|lz,| = |z“|. k = l,2....,n}

bounded closed subset of C", unisolvent with respect

The function b(z) being defined and lower semio

= {h['\...,h'y}, =

The set Ni is nowhere dense in Zi and thus N=p

For each ? e Y-N vte must prove that /j satisfi

be the unique projection in {P^ | d s £>} such that

the algebra (Es/E) Po is finite and homogeneoi

onal abelian projections E^, E2, ...,£» such that

(1 sy, kin) be partial isometric operators in (Ez^

(1) = where 8 is the Kronecker di

(2) C/,jl = t/„;and

(3) U„ = E,,
for all \ ij,k,l,min. For each A in (Ezr/E) Pq, t

in .S^iPo such that

unctions in GL(IV) and h^g, a, J3 E 1 as coordinate

jrmined by the respective bases chosen above. If a,

e function of A' is the minor of \g,j\ determined by

the columns jSfl).Rip). The coordinate ring of

he h„g together with \/itt\h^g\, while that of GL(H0

■j, together with l/det|g,^j. The coordinate functions

gij, so to show A’’ is a morphism it suffices to show

nomial in g,j and l/det|g,^!. For this, the following

tl character of GLffF) is an integral power of the

3f Q, i.e.

s) = 0 for every xE A for which x(Q) = 0}.

'or is equivalent to the one induced by the

c:

{|x(z)|: xEA, lUII < 1 and x(w) = 0}.

^present the open unit disk in the complex plane, C,

t polydisk in n-dimensional complex space C". T"

'oundary of D", i.e.

/hich Xj is the (last) minimum of T^, let / >

of Y^, and the interjump times for T^. So

i such that = 7]'^ = 00. Notice that Yq is fini

t as £ -> 0, Yq converges to T = . Let A,

—CO, 00). Then, for example, if f > 1

s,- Y^ E C,ED,N>Q>i]

T,h, E B. Y,\, -Y,^E ED,N>Q = 1

00, a typical term in the summation of (3.5) may 1

(f)

(h)

(j)

(1)

Figure 1 [continued]. Excerpts from Transactions of the American

Mathematical Society: (e) 28 (1926), 207; (f) 105 (1962), 340;
(g) 114 (1965), 216; (h) 125 (1966), 38; (i) 169 (1972), 232;
(j) 179 (1973), 314; (k) 199 (1974), 370; (1) 226 (1977), 372.

Mathematical Typography 23

'/’ tended to be broken off -bnt by and large the reader has a favor¬

able impression when paging through this volume. Such (piality was not

without its cost, however. According to a contemporary report in the

AMS Bulletin [46, page 100], the Ti'ansactiuns came out 18 months late

at the time! Perhaps this is why the Society decided to seek yet another
printer.

In order to appreciate the next change, let’s look at two excerpts

from the Bulletin relating to the very first Gibbs lecture (Figure 2). The

preliminary announcement in 1923 appeared in the typeface of Figure lb,

but by the time the first lecture was reviewed in 1924 the letter shapes

had become very cramped and stilted. The uppercase letters in the title

remained roughly the same, but the lowercase letters in the text were

completely different. We also notice excessive spaces between words, in

many of the lines, while other lines are tightly spaced.

The same style appeared in volume 25 of the Transactions (Fig¬

ure Id), which incidentally was set in Germany in order to reduce the

cost of printing. The boldface letters and the italic letters in this ex¬

ample are actually quite beautiful — and we’re back to the good old

style of 'x' again — so the mathematical formulas looked great while the

accompanying text was crowded. Fortunately only three volumes were
published in this style.

A new era for the Transactions began in 1926, when its printing was

taken over by the Collegiate Press in Menasha, Wisconsin. Volumes 28

through 104 were all done in the same style (Figure le), covering 36 years

from 1926 to 1961, inclusive, and this style was used also in the American

Mathematical Monthly. In general the typefaces were quite satisfactory,

but there was also a curious anomaly: The italic letters used in subscripts

and superscripts of mathematical formulas were in a different style from

those used on the main line! For example, notice the A:’s in the first

displayed formula of Figure le: The largest one has a loop, so it is

topologically different from the smaller ones. Similarly you can see that

the p in is quite different from the p in p^. There are no x’s in this

example, but if you look at other pages you will find that my favorite

kind of X appears only in subscripts and superscripts. I can’t understand

why this discrepancy was allowed to persist for so many years.

Another period of typographic turmoil for the Transactions began

with volume 105 in 1962. This volume, which was typeset in Israel, intro¬

duced a switch to the Times Roman typeface (Figure If); an easy way to

recognize the difference quickly is to look at the letter ‘o’, since its strokes

now change thickness in a somewhat slanted fashion (‘O’ versus ‘O’); in

the previously used fonts this letter always had left-right symmetry, as

24 Digital Typography

THE JOSIAH WILLARD GIBBS LECTURESHIP

The Council of the Society has sanctioned the establishment

of an honorary lectureship to be known as the Josiah Willard

Gibbs Lectureship. The lectures are to be of a popular nature

on topics in mathematics or its applications, and are to be

given by invitation under the auspices of the Society. They

will be held annually or at such intervals as the Council may

direct. It is expected that the first lecture will be delivered

in New York City during the winter of 192.3-24, and a com¬

mittee has been authorized to inaugurate the lectures by

choosing the first speaker and making the necessary arrange¬

ments.

R. G. D. Richardson,

Secretary.

THE FIRST JOSIAH WILLARD GIBBS LECTURE

The first Josiah Willard Gibbs Lecture was delivered

under the auspices of this Society on February 29, 1924,

by Professor M. I. Pupin, of Columbia University, in the

auditorium of the Engineering Societies’ Building, New York

City. A large and distinguished audience was present,

including, besides members of the Society, many physicists,

chemists, and engineers who had been invited to attend.

In introducing the speaker. President Veblen spoke as

follows:

‘Tn instituting the Willard Gibbs Lectures, the American

Mathematical Society has recognized the dual character of

mathematics. On the one hand, mathematics is one of the

essential emanations of the human spirit,—a thing to be

valued in and for itself, like art or poetry. Gibbs made

notable contributions to this side of mathematics in his

Figure 2. A time of transition [from Bulletin of the American Mathe¬

matical Society 29 (1923), 385; 30 (1924), 289].

Mathematical Typography 25

if it were drawn with a pen held horizontally, bnt in Times Roman it

clearly has an oblique stress as if it were drawn by a right-handed scribe.

Notice that the three k's are topologically the same in the second dis¬

played equation here; but for some reason the two subscript k's are of

different sizes. Many of the Times Italic letters have a somewhat dif¬

ferent style than readers of the Transactions had been accustomed to,

and I personally think that this font tends to make formulas look more

crowded. The changeover to Times Roman and Times Italic wasn’t ac¬

tually complete; the italic letter still had its familiar shape, perhaps

because the new shape looked too strange to mathematicians.

Volumes 105 through 124 were all done in this style, except for a

brief interruption: In volumes 114, 115, and 116 the stress on the o’s

was left-right symmetrical and the k's had loops (Figure Ig). Another

style was used for volumes 125-168 (Figure Ih): Again Times Roman

and Times Italic were the rule, even in the g's, except for subscripts

and superscripts (which were in the style that I prefer); for example,

compare the j's and k's. These latter volumes were typeset in Great
Britain.

A greatly increased volume of publications, together with the ris¬

ing salaries of skilled personnel, was making it prohibitively expensive

to use traditional methods of typesetting, and the Society eventually

had to resort to a fancy form of typewriter composition that could sim¬

ply be photographed for printing. This unfortunate circumstance made

volumes 169-198 of the Transactions look like Figure li, except for vol¬

umes 179, 185, 189, 192, 194, and 198, which were done in a far better

(yet not wholly satisfactory) style that can be distinguished from Fig¬

ure If by the italic g’s and the lack of ligatures like ‘ffi’. Figure Ij was

composed on a computer using a system developed by Lowell Hawkinson

and Richard McQuillin; this was one of the fruits of an AMS research

project supported by the National Science Foundation [2-6].

Computer typesetting of mathematics was still somewhat prema¬

ture at the time, however, and another kind of “cold copy” made its

appearance in volumes 199 through 224 — an “IBM Compositor” was

used, except for volumes 208 and 211 which reverted to the Varityper

style of Figure li. The new alphabet was rather cramped in appear¬

ance, and some words were even more crowded than the others (see

Figure Ik). At this point I regretfully stopped submitting papers to the

American Mathematical Society, since the finished product was just too

painful for me to look at. Similar fluctuations of typographical quality

have appeared recently in all technical fields, especially in physics where

the situation has gotten even worse. (The history of publication at the

26 Digital Typography

American Society of Civil Engineers has been discussed in an interesting

and informative article by Paul A. Paris! [45].)
Fortunately things are now improving. Beginning with volume 225,

which was published last year, the Transactions now looks like Figure 11;

like Figure Ij, it is computer composed, and the Times Roman typeface

is now somewhat larger. I still don’t care for this particular style of

italic letters, and there are some bugs needing to be ironed out such as

the overlap between lines shown in this example; but it is clear that the

situation is getting better, and perhaps some day we will once again be

able to approach the quality of volumes 23 and 24.

Computer-Assisted Composition

Perhaps the main reason that the situation is improving is the fact that

computers are able to manipulate text and convert it into a form suitable

for printing. Experimental systems of this kind have been in use since the

early 1960s (see the book by Barnett [10]), and now they are beginning

to come of age. Within another ten years or so, I expect that the typical

office typewriter will be replaced by a television screen attached to a

keyboard and to a small computer. It will be easy to make changes to

a manuscript, to replace all occurrences of one phrase by another and

so on, and to transmit the manuscript either to the television screen, or

to a printing device, or to another computer. Such systems are already

in use by most newspapers, and new experimental systems for business

offices actually will display the text in a variety of fonts [26]. It won’t be

long before these machines change the traditional methods of manuscript

preparation in universities and technical laboratories.

Mathematical typesetting adds an extra level of complication, of

course. Printers refer to mathematics as “penalty copy,” and one of

America’s foremost typographers T. L. De Vinne wrote [17, page 171]

that “[even] under the most favorable conditions algebra will be trouble¬

some.” The problem used to be that two-dimensional formulas required

complicated positioning of individual metal pieces of type; but now this

problem reduces to a much simpler one, namely that two-dimensional

formulas need to be represented as a one-dimensional sequence of in¬

structions for transmission to the computer.

One-dimensional languages for mathematical formulas are now fa¬

miliar in programming langnages such as FORTRAN, but a somewhat

different approach is needed when all of the complexities of typesetting

are considered. In order to show you the flavor of languages for mathe¬

matical typesetting, I will briefly describe the three reasonably successful

systems known to me. The first, which I will call Type C, is typical of

Mathematical Typography 27

the commercially available systems now used to typeset mathematical

journals (see [12]). The second, which I will call Type B, was developed

at Bell Laboratories and has been used to prepare several books and

articles including the article that introduced the system [27]. The third,

which I will call Type T, is the one I am presently developing as part of
the system I call TfcX [29]. 1

Formula Type C Type B Type T

1

2
fls2$t 1 over 2 1 \over 2

*gq"2 theta sup 2 \thetat2

$rf(x'i)$t sqrt{f(x sub i)} \sqrt{f (x4-i)}

Figure 3. Three ways to describe a formula.

Figure 3 shows how three simple formulas would be expressed in

these three languages. The Type C language uses $f ... $s ... $t for

fractions, *g for “the next character is Greek,” q for the Greek letter

theta, $r ... $t for square roots, " for superscripts, and ' for subscripts.

The Type B language is more mnemonic, using over, theta, sup, sqrt,

and sub together with braces for grouping when necessary. The Type T

language is similar but it does not make use of reserved words; a special

character \ is used before any nonstandard text. This means that spaces

can be ignored, while they need to be inserted in just the right places in

the Type B language; for example, the space after the ‘i’ is important

in the example shown, otherwise would become ^f{Xi) according

to the Type B rules. Another reason for the \ in Type T is that the

processor need not match every text item against a stored dictionary,

and sup can be used to denote a supremum instead of a superscript.

The special symbols \ { } t 4- in Type T can be changed to any other

characters if desired; these five symbols don’t appear on conventional

typewriters, but they are common on computer terminal keyboards.

Incidentally, computer typesetting brings us some good news; We

can now obtain square roots quite easily in the traditional manner with

^ has no connection with a similarly-named system recently announced

by Honeywell Information Systems, or with another one developed by Dig¬

ital Research. In my language, the T, E, and X are Greek letters and TL;X

is pronounced “tech,” following the Greek words for art and technology.

28 Digital Typography

radical signs and vincnla; we won’t have to write when we don’t

want to.'^
None of these languages makes it possible to read complex formu¬

las as easily as in the two-dimensional form, but experience shows that

untrained personnel can learn how to type them without difficulty. Ac¬

cording to [12], “Within a few hours (a few days at most) a typist with

no math or typesetting background can be taught to input even the most

complex equations.” And the Type B authors [27] report that “the learn¬

ing time is short. A few minutes gives the general flavor, and typing a

page or two of a paper generally uncovers most of the misconceptions

about how it works.” Thus it will be feasible for both typists and mathe¬

maticians to prepare papers in such a language without investing a great

deal of effort in learning the system. The only real difficulties arise when

preparing tables that involve tricky alignments.

Once such systems become widespread, authors will be able to pre¬

pare their papers and see exactly how they will look when printed. All

authors of mathematical papers know that their intentions are often mis¬

understood by the printer, and corrections to the galley proofs have a

nontrivial probability of introducing further errors. Thus, in the words

of three early users of the Bell Labs’ system [1], “the moral seems clear.

If you let others do your typesetting, then there will be errors beyond

your control; if you do your own, then you have only yourself to blame.”

Personally, I can’t adequately describe how wonderful it feels when I now

make a change to the manuscript of my book, as it is stored in the Stan¬

ford computer, since I know that the change is immediately in effect; it

never will go through any intermediaries who might misunderstand my

intention.

Perhaps some day a typesetting language will become standardized

to the point where papers can be snbmitted to the American Mathe¬

matical Society from computer to computer via telephone lines. Galley

proofs will not be necessary, but referees and/or copy editors could send

suggested changes to the author; the author could insert these into the

manuscript, again via telephone.

Of course I am hoping that if any language becomes standard it

will be my language. Well ... perhaps I am biased, and I know

that TgX provides only small refinements over what is available in other

systems. Yet several dozen small refinements add up to something that

is important to me, and I think such refinements might prove important

^ (Added in proof.) I was pleased to find that this announcement was greeted

with an enthusiastic round of applause when I delivered the lecture.

Mathematical Typography 29

to other people as well. Therefore I’d like to spend the next few minutes
explaining more about T^X.

The TeX Input Language

TgX must deal with “ordinary” text as well as mathematics, and it is

designed to be a unified system in which the mathematical features blend

in with the word-processing routines instead of being “tacked on” to a

conventional typesetting langnage. The main idea of TLX is to construct

what I call boxes. A character of type by itself is a box, as is a solid black

rectangle; and we use such “atoms” to construct more complex boxes

analogous to “molecides,” by forming horizontal or vertical lists of boxes.

The final pages of text are boxes made out of lists of boxes made out

of lists of boxes, and so on down to the individual characters and black

rectangles, which are not decomposed further. For example, a typical

page of a book is a box formed from vertical lists of boxes representing

lines of type, and these lines of type are boxes formed from a horizontal

list of boxes representing individual letters. A mathematical formula

breaks down into boxes in a natural way; for example, the numerator

and denominator of a fraction are boxes, and so is the bar line between

them (since it is a thin rectangle of solid black). The elements of a

displayed matrix are boxes, and so on.

The individual boxes of a horizontal list or a vertical list are sep¬

arated by a special kind of elastic mortar that I call glue. The glue

between two boxes has three component parts {x, y, z) expressed in units

of length:

the space component, x, is the ideal or normal space desired between

these boxes;

the stretch component, y, is the amount of extra space that is tol¬

erable;

the shrink component, z, is the amount of space that may be re¬

moved if necessary.

Suppose the list contains n -f 1 boxes Bq, 5i, ..., Bn separated by n

globs of glue having specifications {xi, yi, zi),..., {xn, yn, Zn)- When

this list is made into a box, we set the glue according to the desired

final size of the box. If the final size is supposed to be larger than we

would obtain with the normal spacing xi + ■ ■ ■ + Xn, we increase the

space proportional to the y’s so that the actual spacing between boxes

is

^1 T lyii • • • 1 T lyn

30 Digital Typography

for some appropriate t > 0. On the other hand if the desired final size

must be smaller, we decrease the space to

Xi -tZi, . . . , Xn - tZn,

in proportion to the individual shrinkages Zi- In the latter case t is not

allowed to become greater than 1; the glue will never be smaller than

X — z, although it might occasionally become greater than x + y. Once

the glue has been set, the box is rigid and never changes its size again.

Consider, for example, a normal line of text, which is a list of in¬

dividual character boxes. The glue between letters of a word will have

X — y = z = 0, say, meaning that this word always has the letters

butting against each other; but the glue between words might have x

equal to the width of the letter ‘e’, and y = x, z = x/2, meaning that

the space between the words might expand or shrink. The spaces after

punctuation marks like periods and commas might be allowed to stretch

at a faster rate but constrained to shrink more slowly.

An important special case of this glue concept occurs when we have

“infinite” stretchability. Suppose the x and z components are zero, but

the y component is extremely large, say y is one mile long. If such an

element of glue is placed at the left of a list of boxes, the effect will be to

put essentially all of the expansion at the left; therefore the boxes will

be right-justified so that their right edges will be flush with the margins.

Similarly if we place such infinitely stretchable glue at both ends of the

list, the effect will be to center the line. These common typographic

operations therefore turn out to be simple special cases of the general

idea of flexible glue, and the computer can do its job elegantly since it

is dealing with comparatively few primitive operations. Incidentally you

will notice from this example that glue is allowed to appear at the ends

of a list, not just between boxes; in fact we might have glue next to glue,

and boxes next to boxes, so that a list of boxes really is a list of boxes

and glue mixed in any fashion whatever. I didn’t mention this before,

because for some reason it seems easier to explain the idea first in the

case when boxes alternate with glue.

The same principles apply to vertical lists. For example, the glue

that appears above and below a displayed equation will tend to be

stretchable and shrinkable, but the glue between lines of text will be

calculated so that adjacent base lines will be uniformly spaced when

possible. You can imagine how the concept of glue allows you to do

special tricks like backspacing (by letting x be negative), in a natural
manner.

Mathematical Typography 31

Line Division

One of the more interesting things a system like has to do is to

break a paragraph into individual lines so that each line is about the

right length. The traditional way to do this, which is still used on

today’s computer typesetting systems, is to make the best possible line

division you can whenever you come to the right margin, but once this

line has been output you never reconsider it; you start the next line with

no memory of what has come before. Actually you could often do better

by moving a short word down from one line to the next, but the problem

is that you don’t know what the rest of the paragraph will be like when

you have only looked at one line’s worth.

The TeX system will introduce a new approach to the problem of

line division, in which the end of a paragraph does influence the way

the first lines are broken; this will result in more even spacing and fewer

hyphenated words. Here is how it works: First we convert the task of line

breaking to a precisely-defined mathematical problem by using TgX’s

glne to introduce the concept of “badness.” When a horizontal list of

boxes has a certain natural width w (based on the width of its boxes and

the space components of its glue), together with a certain stretchability y

(the' sum of the stretch components) and a certain shrinkability z (the

sum of the shrinkages), the badness of setting the glue to make a box

of width IT is defined to be 1 -I- lOOt^ in our previous notation; more

precisely it is

1, if IT = w ,

fw -wV
1 + 100 - , if kT > u;,

\ y)

CO
 1

\i w — z <W < w 1 + 100 - ,
\ z)

infinite. if kT < w — z .

Thns if the desired width W is near the natural width w, or if there

is a lot of stretchability and shrinkability, the badness rating is very

small; but if W is much greater than w and there isn’t much ability to

stretch, we have a bad situation. Furthermore we add penalty points to

the badness rating if the line ends at a comparatively undesirable place;

for example, when a word needs to be hyphenated, the badness goes

up by 50, and an even worse penalty is paid if we have to break up a

mathematical formula.

32 Digital Typography

The line division problem may now be stated as follows. “Given
the text of a paragraph and the set of all allowable places to break it
between lines, find breakpoints that minimize the sum of the squares
of the badnesses of the resulting lines.” This definition is quite arbi¬
trary, of course, but it seems to work. Preliminary experiments show
that the same choice of breakpoints is almost always found when simply
minimizing the sum of the individual badnesses rather than the sum of
their squares, but it seems wise to minimize the sum of squares as a pre¬
cautionary measure since this will also tend to minimize the maximum
badness.

Just stating the line division problem in mathematical terms doesn’t
solve it, of course; we need to have a good way to find the desired break¬
points. If there are n permissible places to break (including all spaces
between words and all possible hyphenations), there are 2” possible ways
to divide up the paragraph, and we would never have time to look at
them all. Fortunately there is a technique that can be used to reduce the
number of computational steps to order instead of 2"^; this is a spe¬
cial case of what Richard Bellman calls “dynamic programming.” Let
f{j) be the minimum sum of badness squares for all ways to divide the
initial text of the paragraph up to breakpoint j, including a break at j,
and let b{i,j) be the badness of a line that runs from breakpoint i to
breakpoint j. Let breakpoint 0 denote the beginning of the paragraph;
and let breakpoint n -f 1 be the end of the paragraph, with infinitely
expandable glue inserted just before this final breakpoint. Then

/(0) = 0;

fU) = min (/(z) + b{i,jf) , for 1 < j < n + 1.
0<2<J

The computation of /(I), ..., f{n + 1) can be done in order steps,
and /(n-fl) will be the minimum possible sum of badnesses squared. By
remembering the values of i at which the minimum occurred for each j,
we can find breakpoints that give best line divisions, as desired.

In practice we need not test extremely unlikely breakpoints; for
example, there is rarely any reason to hyphenate the very first word of
a paragraph. Thus it turns out that this dynamic programming method
can be improved further to an algorithm whose running time is almost
always of order n instead of n^, and comparatively few hyphenations
will need to be tried. Incidentally, the problem of hyphenation itself
leads to some interesting mathematical questions, but I don’t have time
to discuss them at present. (See [42] and the references in that paper.)

Mathematical Typography 33

The idea of badness ratings applies in the vertical dimension as well

as in the horizontal; in this case we want to avoid breaking colnmns

or pages in a bad manner. For example, penalty points are given for

splitting a paragraph between pages after a hyphenation, or for dividing

it in such a way that only one of its lines — a so-called “widow” line —

appears on a page. The placement of illustrations, tables, and footnotes

is also facilitated by formulating appropriate rules of placement in terms
of badness.

There is more to TfX, including for example some facilities for

handling the rather intricate layouts often needed to typeset tables with¬

out having to calculate column widths; but I think I have described

the most important principles of its organization. During the next few

months I plan to write the computer programs for in such a way

that each algorithm is clearly explained and so that the system can be

implemented on many different computers without great difficulty; then

I intend to publish the programs in a book so that everyone who wants
to use them can do so.

Entr’acte

I said at the beginning that this talk would be in two parts, discussing

both the ways that typography can help mathematics and the ways

that mathematics can help typography. So far we have seen a little

of both, but the mathematics has been comparatively trivial. In the

remainder of my lecture I would like to discuss what I believe is a much

more significant application of mathematics to typography, namely to

the specification of the letter shapes themselves. A more accurate way

to describe the two parts of my lecture would be to say that the first part

was about TeiX, a system that takes manuscripts and converts them into

specifications about where to put each character on each page; and the

second part will be about another system I’m working on called METR-

FONT, which generates the characters themselves, for use in the inkier

parts of the printing business.

Before I get into the second part of my lecture I need to discuss re¬

cent developments in printing technology. The most reliable way to print

mathematics books of high quality during the past several decades has

been to use the monotype^ process, which casts characters in hot lead,

together with hand operations for complex built-up formulas. When I

watched this process being applied to my own books several years ago.

^ Actually the Monotype Corporation now manufactures digital photosetting

equipment as well as the traditional “monotype” machines.

34 Digital Typography

I was surprised to learn that the lead type was used to print only one

copy; this master copy was then photographed, and the real printing

took place from the photographic plates. This somewhat awkward se¬

quence of steps was justified because it was the best way known to give

good results. During the 1960s, however, hot lead type was replaced for

many purposes by devices like the Photon machine used to prepare the

printed programs for tonight’s lecture; in this case the process is entirely

photographical, since the letter shapes are stored as small negatives on a

rotating disk, and the plates needed for printing are obtained by expos¬

ing the film after transforming the characters into the proper size and

position with mirrors and lenses (see [10]). Such machines are limited

by slow speed and the difficulties of adding new characters.

“Third-Generation” Typesetting Equipment

More recent machines, such as the one used to prepare the current vol¬

umes of the Transactions, have replaced these analog processes by a

digital one. The new idea is to divide the page or the photographic

negative into millions of tiny rectangles, like a piece of graph paper or

like a television screen, but with a much higher resolution of about 1000

units per inch. For each of the tiny “pixels” in such a raster pattern —

there are about a million square pixels in every square inch — the type¬

setting machine decides whether it is to be black or white, and the black

ones are exposed on the photographic plate by using a very precisely

controlled electron beam or laser beam. Since these machines have few

moving parts and require little or no mechanical motion, they can op¬

erate at very high speeds even though they are exposing only a tiny bit

of the film at any time.

Stating this another way, the new printing equipment essentially

treats each page of a book as a huge matrix of Os and Is, with ink to

be placed in the positions that are 1 while the 0 positions are to be left

blank. It’s like the flashcards at a football stadium, although on a much

grander scale. The total job of a system like T^X now becomes one of

converting an author’s manuscript into a gigantic bit matrix.

The first question we must ask, of course, is, “What happens to

the quality?” Clearly a television picture is no match for a photograph,

and the digital typesetting machines would be quite unsatisfactory if

their output looked inferior to the results obtained with metal type. In

matters like this, I have to confess being somewhat of a stickler and a

perfectionist; for example, I refuse to eat margarine instead of butter,

and I have never heard an electronic organ that sounds even remotely as

beautiful as a pipe organ. Therefore I was quite skeptical about digital

Mathematical Typography 35

typography, until I saw an actual sample of what was done on a high

quality machine and held it under a magnifying glass: It was impossible

to tell that the letters were generated with a discrete raster! The reason

for this is not that our eyes can’t distinguish more than 1000 points per

inch; in appropriate circumstances they can. The reason is that particles

of ink can’t distinguish such fine details — you can’t print the edge of an

ink line that zigzags 1000 times on the diagonal of a square inch, because

the ink will round off the edges. In fact the critical number seems to be

more like 500 than 1000. Thus the physical properties of ink cause the
pages to appear as if there were no raster at all.

It now seems clear that discrete raster-based printing devices will

soon make the other machines obsolete for nearly all publishing activity.

Thus in future days the fact that Gutenberg and others invented movable

type will not be especially relevant; it will merely be a curious footnote to

history, which influenced the printing industry for only 500 years or so.

The ultimately relevant thing will be mathematics: the mathematics of
matrices of Os and Is!

Semiphilosophical Remarks

I have to tell the next part of the story from my personal point of view.

As a combinatorial mathematician, I really identify with matrices of Os

and Is, so when I learned last spring about such printing machines it was

impossible for me to continue what I was doing; I just had to take time

off to explore the possibilities of the new equipment. My motivation

was also increased by the degradation of quality I had been observing

in technical journals. Furthermore, the publishers of my books on com¬

puter programming had tried valiantly but unsuccessfully to produce the

second edition of Volume 2 in the style of the first edition, without using

the rapidly-disappearing hot lead process. It appeared that my books

would soon have to look as bad as the journals! When I saw that these

problems could all be solved by appropriate computer programming, I

couldn’t resist trying to And a solution by myself.

One of the most important factors in my motivation was the

knowledge that the problem would be solved once and for all, if I could

find a purely mathematical way to define the letter shapes and to con¬

struct the corresponding raster patterns. Even though new printing

methods are bound to be devised in the future, possibly even before I

finish Volume 7 of the books I’m writing, any new machines are almost

certain to be based on a high precision raster; and although the precision

of the raster may change, the letter shapes can stay the same forever,

once they are defined in a machine-independent form. My goal was

36 Digital Typography

therefore to give a precise description of the shapes of all the symbols I

would need.

I looked at the way fonts of type are being digitized at several places

in different parts of the world; it is basically done by taking existing fonts

and copying them using sophisticated camera equipment and computer

programs, together with manual editing. But this seemed instinctively

wrong to me, partly because the sophisticated equipment wasn’t readily

available in our laboratory at Stanford, and partly because the copying

of copyrighted fonts is of questionable legality, but mostly because I felt

that the whole idea of making a copy was not penetrating to the heart

of the problem. It reminded me of the anecdote I had once heard about

slide rules in Japan. According to this story, the first slide rule ever

brought to the Orient had a black speck of dirt on it; so for many years

all Japanese slide rules had a useless black spot in this same position!

The story is probably apocryphal, but the point is that we should copy

the substance rather than the form. I felt that the right question to ask

would not be “How should this font of type be copied?” but rather: “If

the great type designers of the past were alive today, how would they

design fonts for the new equipment?” I didn’t expect to be capable of

finding the exact answer to this question, of course, but I did feel that

it would lead me in the right direction, so I began to read about the

history of type design.

Well, this is a most fascinating subject, but I can’t talk much about

it in a limited time. Two of the first things I read were autobiographical

notes by two well-known 20th century type designers, Hermann Zapf [51]

and Frederic W. Goudy [20], and I was especially interested by some of

Zapf’s remarks:

With the beginning of the ’sixties ... I was stimulated by this

new field [photocomposing] The type-designer — or better,

let us start calling him the alphabet designer — will have to see

his task and his responsibilities more than before in the coordi¬

nation of the tradition in the development of letterforms with

the practical purpose and the needs of the advanced equipment

of today The new photocomposing systems using cathode-

ray tubes (CRT) or digital storage for the alphabet bring with

them some absolutely new technical problems, many more than
did the past. [51, page 71].

I have the impression that Goudy would not have been so sympathetic

to the new-fangled equipment, yet his book also gave helpful ideas.

Mathematical Typography 37

Mathematical Type Design

Fortunately the Stanford Library has a wonderful collection of books

about printing, and I had the chance to read many rather rare source

materials. I learned to my surprise that the idea of defining letters

mathematically is by no means new; it goes back to the fifteenth century

and it became rather highly developed in the early part of the sixteenth.

This was the time when there were Renaissance men who combined

mathematics with the real world, and one of the prominent ideas was to

use a ruler and compass to construct capital letters. The first person to

do this was apparently Felice Feliciano, about 1460, whose handwritten

manuscript in the Vatican Library was published 500 years later [19].

Feliciano was an excellent designer who wanted to put the principles of

letterforms on a sound mathematical foundation; his designs were used

by contemporary stonecutters in Verona. Several other fifteen-century

authors made similar experiments — [8] gives a critical summary of these

early developments — but the most notable work of this kind appeared
early in the sixteenth century.

(a) (b) (c) (d)

Figure 4. Renaissance ruler-and-compass constructions for the letter B, by

(a) Feliciano [19], (b) Pacioli [43], (c) Torniello [34], and (d) Palatino [44].

The Italian mathematician Luca Pacioli, who had previously writ¬

ten the most influential book on algebra at the time (one of the first

algebra books ever published), included an appendix on alphabets in his

Divina Proportione, a book about geometry and the “golden section,”

which appeared in 1509. Another notable Italian work on the subject

was published by Francesco Torniello in 1517 [34]; Figure 4 illustrates

the letter B as constructed by Feliciano, Pacioli, and Torniello, and also

by Giovanbattista Palatino [44]. Palatino was one of the best calligra¬

phers of the century, and he did this work about 1550. Similar work

appeared in Germany and Prance. The German book was probably the

most famous and influential: It was Albrecht Diirer’s Underweysung

der Messung [18], a manual of instruction in geometry for Renaissance

38 Digital Typography

painters. The French book was also rather popular; it was Champ Fleury

by Geofroy Tory [49], the first royal printer of France and the man who

introduced accented letters into French typography. Figure 5 shows

Tory’s two suggestions for the letter B. Of all these books I much pre¬

fer Torniello’s, since he was the only one who stated the constructions

clearly and unambiguously.

Figure 5. Two more B’s, by Tory [49].

Apparently nobody carried this work further to lowercase letters

or to numerals, or to italic letters and other symbols, until more than

100 years later when Joseph Moxon made a detailed study of some beau¬

tiful letters designed in Holland [39]. The ultimate in refinement of this

mathematical approach took place shortly afterwards when Louis XIV

of France commissioned the creation of a Royal Alphabet. A group of

artists and typographers worked on Louis’s project for more than ten

years, beginning about 1690, and they made elaborate constructions

such as those shown in Figure 6 [24].

Thus it is clear that the mathematical definition of letter forms has

a long history. However, I must also report near-universal agreement

among today’s scholars of typography that those efforts were a failure.

At worst, the ruler-and-compass letters have been called “ugly,” and at

best they are said to be “deprived of calligraphic grace” [8]. The French

designs were not followed faithfully by Phillipe Grandjean, who actually

cut Louis XIV’s type, nor by anybody else to date; and F. W. Goudy’s

reaction to this was: “God be praised!” [20, page 139]. Such strictly

geometric letter forms were in fact criticized already in the sixteenth

century by Giovanni Cresci, a noted scribe at the Vatican Library and

the Sistine Ghapel. Here is what Cresci wrote in 1560:

I have come to the conclusion that if Euclid, the prince of ge¬

ometry, returned to this world of ours, he would never find that

Mathematical Typography 39

Figure 6. Roman and italic letters designed for Louis XIV of Prance [24],

the curves of the letters could be so constructed by means of

circles made with compasses. [16]

Well, Cresci was right. But fortunately there have been a few ad¬

vances in mathematics during the last 400 years, and we now have some

other tricks np our sleeves besides straight lines and circles. In fact, it is

now possible to prescribe formulas that match the nuances of the best

type designers; and perhaps a talented designer working with appropri¬

ate mathematical tools will be able to produce something even better

than we now have.

Defining New Curves

Let’s consider the following mathematical problem: Given n points

Zi, Z2,.-.,Zn in the plane, what is the most pleasing closed curve that

40 Digital Typography

goes through them in the specified order zi, Z2, ■ ■ ■ ,Zn and then returns
to 21? To avoid degenerate situations we may assume that n is at least 4.
This problem is essentially like the dot-to-dot puzzles that we give to
young children.

Of course it is not a well-posed mathematical problem, since I didn’t
say what it means for a curve to be “most pleasing.” Let’s first postulate
some axioms that the most pleasing curve should satisfy.

Property 1 (Invariance). If the given points are rotated, trans¬
lated, or expanded, the most pleasing curve will be rotated, translated,
or expanded in the same way. [In symbols: MPC(a2i 6,..., azn + b) =
aMPC(2i,... ,2„) -f 6.]

Property 2 (Symmetry). Cyclic permutation of the given points
does not change the solution. [Thus we have MPC(zi, Z2, ■ ■ ■, Zn) =
MPC{z2, . . . , Zn, Zi).]

Property 3 (Extensionality). Adding a new point that is al¬
ready on the most pleasing curve does not change the solution. [If 2
is any point between Zk and Zk+i on MPC(2i,..., 2„) then we have
MPC(2i, . . . ,2/0, 2, 2/0+1, ... ,2n) = MPC(2i, . . . , 2/o, 2/o+i, . . . , 2^).]

These properties are rather easy to justify on intuitive grounds. For
example, the extensionality property says that additional information
won’t lead to a poorer solution.

The next property is not so immediately apparent, but I believe it
is important for the application I have in mind.

Property 4. (Locality). Each segment of the most pleasing
curve between two of the given points depends only on those points and
the ones immediately preceding and following. [MPC(2i, 22,..., Zn) is
composed of MPC(2„, 21, 22, 23) from 21 to 22, then MPC(2i, 22,23, 24)
from 22 to 23, ..., then MPC(2„_i, 2n, zi, 22) from 2„ to 21.]

According to the locality property, changes to one part of a pattern
won’t affect the other parts. This simplifies our search for the most
pleasing curve, because we need only solve the problem in the case of
four given points; and experience shows that locality also simplifies the
letter design process greatly, since individual portions of strokes can be
dealt with one at a time. Incidentally, Property 4 implies Property 2
(cyclic symmetry).

One way to satisfy all four of these properties is simply to let the
most pleasing curve consist of straight line segments. But polygons
aren’t adequately pleasing, so we postulate

Mathematical Typography 41

Property 5 (Smoothness). There are no sharp corners in the

most pleasing curve. [MPC(zi, • • •, z^) is differentiable, under some pa¬
rameterization.]

In other words, there is a unique tangent at every point of the curve.

The extensionality, locality, and smoothness properties taken to¬

gether imply, in fact, that the direction of the tangent at Zk depends

only on z^-i, Zk and z/c+i. For this tangent appears in two curves, the

one from Zk-i to z^ and the one from z^ to hence we know that

it depends only on {zk-2, Zk-i, Zk, Zk+i) and that it depends only on

{zk-i, Zk, Zk+i, Zk+2)- By the extensionality property, we can assume

that n is at least 5; hence Zk-2 is different from Zk+2 and the tangent
must be independent of them both. We have actually used only a very

weak form of extensionality in this argument.

If we apply the full strength of the extensionality postulate, we ob¬

tain a much stronger consequence, which is quite unfortunate: There is

no good way to satisfy Properties 1-51 For example, suppose we add

one more axiom, which is almost necessary in any reasonable definition
of pleasing curves:

Property 6 (Roundness). If zi, Z2, zs, 2:4 are consecutive points
of a circle, the most pleasing curve through them is that circle.

This property together with our previous observation about the tangent

depending only on three points completely determines the tangent at

each of our given points; namely, the tangent at Zk is the tangent to

the circle that passes through Zk-i, Zk, and Zk+i- (Let’s ignore for the

moment the possibility that these three points lie on a straight line.)

Now the extensionality property says that if z is any point between zi

and Z2 on the most pleasing curve for zi,... ,Zn, we know the tangent

direction at z, as long as 2: is not on the line from 2:1 to Z2. But there

is a unique curve starting at any 2: off this line and having the specified

tangents at each of its points, namely the arc of the circle from 2: to Z2

passing through Zi. No matter where we start, off the straight line, we

are able to draw only one curve having the correct tangents. It follows

that the tangent at Z2 depends only on zi, Z2, and the tangent at Zi,

and this is impossible.

The argument in the previous paragraph proves that there is no way

to satisfy Properties 3, 4, 5, and 6. A similar argument would show the

impossibility for any reasonable replacements for Property 6, since the

tangents determined for all 2: between Zi and Z2 will define a vector field

in which there are unique curves through essentially all of the points 2:,

42 Digital Typography

yet a two-parameter family of curves is required between zi and Z2 in

order to allow sufficient flexibility in the derivatives there.

So we have to give up one of these properties. The locality property

is the most suspicious one, but I mentioned before that I didn’t want to

give it up; therefore the extensionality property has to go. This means

that if we take the most pleasing curve through zi,... ,Zn and if we

specify a further point 2: actually on this curve between Zk and Zk+i,

then the “most pleasing” curve through these n -|- 1 points might be

different. A possible virtue is that we are encouraged not to specify too

many points; a possible drawback is that we may not be able to get the

curves we want.

A Practical Approximation

Returning to the question of type design, our goal is to specify a few

points Zk and to have a mathematical formula that defines a pleasant

curve through these points; such curves will be used to define the shape

of the character we are designing. Ideally it should also be easy to

compute the curves. I decided to use cubic equations

z{t) = q;o + otlt + 02^^ +

where ao, oi, 021 cts are complex numbers and t is a real parameter.

The curves I am dealing with are cubic splines, namely piecewise cubic

equations, since a different cubic will be used in each interval between

two of the given points; however, the way I am determining the coeffi¬

cients of these cubics is different from any of the methods known to me,

in my limited experience with the vast literature about splines. Perhaps

my way to choose the coefficients is more awkward than the usual ones;

but I have obtained good results with it, so I’m not ashamed to reveal

the curious way I proceeded.

In the first place, I decided that the cubic equation between zi and

Z2 should be determined completely by zi and Z2 and the direction of

the tangents at zi and Z2. We have already seen that these tangents are

essentially predetermined if Properties 4, 5, and 6 are to be valid, and

I have also found frequent occasion in type design when it was desirable

to specify that a certain tangent was to be made horizontal or vertical.

Thus, my method of computing a nice curve through a given sequence

of points is first to compute the tangent directions at each point, then to

compute the cubics in each interval based solely on the endpoints of that

interval and on the desired tangents there. By rotation and translation

and scaling, according to Property 1, we can assume that the problem

Mathematical Typography 43

is to go in the complex plane from 0 to 1, with given directions at the

endpoints. The most general cubic equation that does this is

z{t) = - 2t^ + re^^t{l - t)^ - - t),

and it remains to determine positive numbers r and s as appropriate

functions of 9 and tp.

In the second place, I realized that it was impossible to satisfy Prop¬

erty 6 with cubic splines, because you can’t draw a circle as a cubic

function of t. But I wanted to be able to get curves that were as near to

being circles as possible, whenever four consecutive data points lay on a

circle; the curves should preferably be indistinguishable from circles as

far as the human eye is concerned. Therefore when 9 = p 1 decided to

choose r = s in such a way that z(|) was precisely on the relevant circle,

hoping that the curve between 0 and | and between | and 1 wouldn’t

veer too far away. Well, this turned out to work extremely well: A little

calculation, done with the help of a computer,^ showed that the max¬

imum deviation from a true circle occurs at the point t = (3 ± \/3)/6,

and the relative error is negligibly small. For example, if we take four

points equally spaced at distance 1 from some center, the spline curve

defined by these points in the stated manner stays between distance 1

and distance

\J{71/6 - x/8)/3 < 1.000273

from the center, an error of less than three parts per million; and if there

are n points, the maximum error goes to zero as 1/n®.

(Changing the notation slightly, let

z{t) = 1 + - l)iM^ - 2t^)

-h 4it(l — t){l — t — [sin

and f{t) = \z{t)\'^. Then

1 — cos -

f{t) = 8

1 + cos -

2 . 9
— sm -
9 2

(t-l)t(2t-l)(6t^-6t + l)

/

^Thanks are due to the developers of the computer algebra system called

MACSYMA at M.I.T., and to the ARPA network, which makes this system

available for research work.

44 Digital Typography

and

06 010

55296 ^ 106168320 ’

while min o<t<i = '^(O) = z{^) = z{l) = 1. The “two-point

circle” has max|2;(t)| = 1.01835, while the three-point cir¬

cle has max|z(t)| ^^325/324 = 1.001542, and the eight-point circle

has niax|2:(t)| th 1.0000042455. These nearly circular parametric cubic

splines were introduced by J. R. Manning [33], who observed that they

are visually indistinguishable from true circles.)

Another case when a natural way to choose r and s suggests itself is

when Q T ^ = 90°; then the curve z{t) should be nearly the same as an

ellipse having the endpoints on its axes. (This boils down to requiring

that (3t^ — 2t^ — {s/ cos (^)t^(l — t) — 1)^ -|- (3t^ — 2t^ + {t/ cos d)t{l — t)'^)'^

be approximately equal to 1.) So far therefore I knew that I wanted

2

1 + cos 6 ’

2 cos 9

(l-f-cos 45°) cos 45° ’

I tried the formulas

2 cos 9 2 cos ip
— - g — _L_

(1 -|-cos'0) cos-0 ’ (1 -|-COS0) cos 0 ’

which fit both cases, where 0 = (0 -|- g))/2. But this didn’t give satis¬

factory results, especially when 0 approached 90°. My second attempt

was
2 sin p 2 sin 9

(1 -|- cos 0) sin 0
5 ■5 —

(1 4- cos 0) sin 0

and this has worked very well. Figure 7 shows the spline curves that

result from such an approach when = 60° and when 9 varies from 0°

to 120° in 5° steps.

One can prove that if 9 and ip are nonnegative and less than 180°,

the cubic curve z(t) I have defined will never cross the straight lines at

angles 9 and ip that meet the endpoints 0 and 1, respectively. This is a

valuable property in type design, since it can be used to guarantee that

the curve won’t get out of bounds. However, I found that it also led to

unsatisfactory curves when one of 0 or (p was very small and the other

1 -|- cos <p

2 cos ip

(l-f cos 45°) cos 45°

when 9 — ip\

when 9-\-ip = 90°.

max |z(t)|
0<i<l

3- v/3

6

Mathematical Typography 45

Figure 7.

Spline curves with

61 = 0° (5°) 120°

and cp = 60°.

Figure 8.

Like Figure 7, but

adjusted so that

r' — inax(l/2, r) and

s' = max(l/2, s).

was not, since this meant that the curve z{t) would be very close to a

straight line yet it would veer towards that line from the outside at a

rather sharp angle. In fact, the angle 6 is not infrequently zero, and this

forces a straight line and a sharp corner at the right endpoint. Therefore

I changed the formulas by making sure that both r and s are always |

or greater unless special exceptions are made; furthermore I never let r

or s exceed 4. Figure 8 shows the spline curves obtained under the same

conditions as Figure 7, but with r and/or s set to ^ if the formula calls

for any smaller value.

Using these techniques we obtain a system for drawing reasonably

nice curves, if not the most pleasing ones, and it is especially good

at circles. If the method gives the wrong tangent direction at some

point, you can control this by specifying two points very close together

having the desired slope. I have also included another way to modify

the standard tangent directions, intended to make the system as good at

drawing ellipses as it is at drawing circles: Before computing the splines

I first shrink the entire figure in the vertical direction by multiplying all

the y coordinates by a given aspect ratio (normally 1); then the splines

are calculated, and the resulting shrunken curves are stretched out again

by dividing the y coordinates by the aspect ratio.

Application to Type Design

Now let’s take a closer look at what can be drawn with a mathematical

system like this. I suppose the natural thing to show you would be

the letters A to Z; but since this is a mathematical talk, let’s consider

the digits 0 to 9 instead. (See Figure 9.) Incidentally, the way I have

arranged these numerals illustrates a fundamental distinction between a

46 Digital Typography

0123456789
Figure 9. Digits 0 to 9 drawn by the prototype METRFONT programs.

mathematician and a printer: The mathematician puts 0 next to the 1,

but the printer always puts it next to the 9.

Most of these digits are drawn by using another idea taken from

the history of typography, namely to imitate the calligrapher who uses

pen and ink. Consider first the numeral ‘3’, for example. The computer

program that drew this symbol in Figure 9 can be paraphrased as follows:

“First draw a dot whose left boundary is | of the way from the left edge

to the right edge of the type and whose bottom boundary is | of the

way from the top to the bottom of the desired final shape. Then take a

hairline pen and, starting at the left of the dot, draw the upward arc of

an ellipse; after reaching the top, the pen begins to grow in width, and it

proceeds downward in another ellipse in such a way that the maximum

width occurs on the axis of the ellipse, with the right edge of the pen |

of the way from the left edge to the right edge of the type. Then the pen

width begins to decrease to its original size again as the pen traverses

another ellipse taking it down to a position 48% of the way from the top

to the bottom of the desired final shape”

Notice that instead of describing the boundary of the character, as

the Renaissance geometers did, my METRFONT system describes the

curve traveled by the center of the pen, and the pen’s shape is allowed

to vary as the pen moves. The main advantage of this approach is that

the same definition readily yields a family of infinitely many fonts of

type, each font being internally consistent. The change in pen size is

governed by cubic splines in a manner analogous to the motion of the

pen’s center. In order to define the 20 or so different fonts of type used

in various places in my books, I need for the most part to use only three

kinds of pens, namely (i) a circular pen used for example to draw dots

and at the base of the number ‘7’; (ii) a horizontal pen, whose shape

is an ellipse, the width being variable but the height being constantly

equal to the height of a hairline pen; (iii) a vertical pen, analogous to

the horizontal one, used for example to draw the strokes at the bottom

of the ‘2’ and at the top of the ‘5’ and the ‘7’. The horizontal pen is used

most of the time, and in particular it draws all of the numeral ‘3’ except

Mathematical Typography 47

for the dots. For the fonts I require, I did not need to use an oblique

pen (namely, an ellipse that is tilted on its side) except to make the tilde

accent for a Spanish n; but to produce fonts of type analogous to Times

Roman, an oblique pen would of course be used. If this system were to

be extended to Chinese and Japanese characters, I believe it would be

best to add another degree of freedom to the pen’s motion, allowing an

elliptical pen shape to rotate as well as to change its width.

The digit ‘4’ shows another aspect of the METRFONT system. Al¬

though this character is fairly simple, consisting entirely of straight lines,

notice that the thick line has to be cnt off at an angle at the top. In order

to do this, METRFONT has erasers as well as pens. First the computer

draws a thick line all the way from top to bottom, like the uppercase

letter ‘F; then it takes an eraser that erases everything to its left and

comes down the diagonal stroke; then it takes a hairline pen and finishes

the diagonal stroke. Such an eraser is used also at the top of the ‘F and

the bottom of the ‘2’, etc.

Sometimes a simple spline seems to be inadequate to describe the

proper growth of pen width, so in a few cases I had to resort to de¬

scribing the left and right edges of the pen as separate curves, to be

filled in afterwards. This occurs for example in the main stroke of the

numeral ‘2’, whose edges are defined by two splines having a specified

tangent at the bottom and having vertical slope at the right of the curve.

0ABCDEFGHIJKLMN

OPQRSTUVWXYZ[“]-

‘abcdefghijklmno

pqrstuvwxyzfffiflfRffl aelfece/GLfACE

0123456789;;<=>? ...

rAeAEnsT<E>nij

Figure 10. A font of 128 characters defined by METRFONT with pen set¬

tings for 5-point type. (The accent characters will be appropriately

raised and centered over other letters when used by TeX.)

With these techniques I found that it was possible to define a decent-

looking complete font, containing a total of 128 characters, in about two

months, although I certainly will need to do fine tuning when more trial

pages are typeset. (See Figure 10.) The most difficult symbol by far, at

least for me, was the letter S (and the numeral 8, which uses the same

procedure); in fact I spent three days and nights without sleep, trying to

make the S look right, before I got it. At one point I even felt it would

be easier to rewrite all my books without using any S’s! After the first

48 Digital Typography

Figure 11. The letter S as defined by (a) Feliciano [19]; (b) Pacioli [43];

(c) Torniello [34]; (d) Palatine [44]; (e) French commission under Jaugeon [24],

day of discouraging trials, I showed what I had to my wife, and she said,

“Why don’t you make it S-shaped?”

Figure 11 shows how this problem was solved by Feliciano, Pacioli,

Torniello, Palatino, and the French academicians; but the letter doesn’t

look like a modern S. Furthermore I think the engraver of the French S

cheated a little in rounding off some lines near the middle — perhaps

he used a French curve. With my wife’s assistance, I finally came up

with a satisfactory solution, somewhat like those used in the sixteenth

century but generalized to ellipses. Each boundary of each arc of my S

curve is composed of an ellipse and a straight line, determined by (i) the

locations of the beginning and ending points, (ii) the slope of the straight

line, and (iii) the desired left extremity of the curve. It took me three

hours to derive the necessary formulas, and I think Newton and Leibniz

would have enjoyed working on this problem. Figure 12 shows various

Mathematical Typography 49

Figure 12. Different S’s obtained by varying the slope in the middle,

showing 1/2, 2/3, 3/4, 1, 4/3, 3/2, and 2 times the “correct” slope.

trial S’s drawn by this scheme with different slopes; I hope you prefer

the middle one, since it is the one I am actually using.

Families of Fonts

To extend the METRFONT system, one essentially writes a computer

program for the description of each character, in a special language

designed to describe pen and eraser strokes. My colleague R. W. Gosper

has observed that we thereby obtain the exact opposite of Sesame Street:

Instead of “This program was brought to you by the letter S,” we have

“This letter S was brought to you by a program.” The program has

about 20 parameters, telling how big a hairline pen is, how wide it

should be when drawing straight or curved stem lines, and specifying

the sizes and proportions of various parts of the letters (the x-height,

the heights of ascenders and descenders, the M-width, the length of

serifs, and so forth). By changing these parameters, we obtain infinitely

many different styles of type, yet all of them are related and they seem

to blend harmoniously with each other.

For example, Figure 13 shows some of the possibilities. In Figure 13a

we have a conventional “modern” font in the tradition of Bodoni and

Bell and Scotch Roman. Then Figure 13b shows a corresponding bold¬

face, in which the hairlines are slightly larger and the stem lines are

substantially wider. By making the hairlines and stem lines both the

same size and setting the serif length to zero, we obtain a sans-serif font

as shown in Figure 13c. All of these examples are produced with the

same programs defining the letter shapes; only the parameters are be¬

ing varied. Actually the particular font shown in Figure 13c will have

a different style of g (namely ‘g’), because the descenders are especially

short in this font, but I have shown this ‘g’ in order to illustrate the

parametric variations. Figure 13d shows a boldface sans-serif style in

which the pen has an oval shape, wider than it is tall. I find this style

especially pleasing, particularly because it came out by accident — I de¬

signed the programs only so that two or three different fonts would look

50 Digital Typography

(a) Mathematical
Typography

(c) Mathematical
Typography

(e) Mathematical
Typography

(g) Mathematical

Typography

Mathematical (b)
Typography

Mathematical (d)
Typography

Mathematical (o
Typography

ATHematical (h)

T YPOgraphy

MairiQmatiQai «
Typography

Figure 13. Different styles of type obtained by varying the parameters

to METRFQNT: (a) Computer modern roman; (b) Computer mod¬

ern bold; (c) Computer modern sans-serif; (d) Computer modern

sans-serif bold; (e) Computer modern typewriter; (f) Computer mod¬

ern slanted roman; (g) Computer modern roman with small caps;

(h) Computer modern roman with small caps and “small lowercase”;

(i) Computer modern funny.

right, hence all the others are free bonuses; I had no idea that this one

would be so nice.

With a suitable setting of the parameters, we can even imitate a

typewriter with its fixed width letters, as shown in Figure 13e. There

is also a provision to slant the letters as in Figure 13f; here the pen

position is varied, but the actual shape of the pen is not being slanted,

so circular dots remain circles.

Another setting of the parameters leads to caps and small caps as

shown in Figure 13g; small caps are drawn with the pens and heights

ordinarily used for lowercase letters, but controlled by the programs for

uppercase letters. Figure 13h shows something printers have never seen

before: This is what happens when you draw lowercase letters in the

small caps style, and we might call it “small lowercase.” It actually

Mathematical Typography 51

turns out to be one of the most pleasing fonts of all, except that the

dots are too large.

Finally, Figure 13i illustrates the variations you can get by giving

weirder settings to the parameters.

When I was an assistant professor at Caltech, the math department

secretaries would occasionally send “crank” visitors to my office, and I

recall one time when a man came to ask if anybody had calculated the

value of TT “out to the end” yet. I tried to explain to him that tt had

been proved irrational, but this didn’t seem to sink in. Finally I showed

him a fisting of tt to 100,000 decimals and told him that the expansion

hadn’t ended yet. I wish I could have had my typographical system

ready at that time, so that I could have shown him Figure 14!

26 535897 SSaaa...._

Figure 14. Variation in height, width, and pen size.

Figure 14 illustrates another principle of type design, namely that

different sizes of type in the same style are not simply obtained from

each other by optical transformations. The heights and widths and pen

stroke sizes change at different rates, and a good typographer will design

each size of type individually. I’m not claiming that Figure 14 shows

the best way for the proportions to vary; further experimentation will be

necessary before 1 have a good idea of what is desirable. The point 1 wish

to make is that the alteration of type sizes for subscripts and so on is

not as simple as it might seem at first, but a system like METRFONT will

be able to vary the parameters quite readily, and visual experiments on

different parameter settings can be carried out quickly. Type designers

used to need months to make their drawings and have them converted to

metal molds before they could see any proofs. One of the results was that

there simply wasn’t time to give proper attention to all the mathematical

symbols and Greek letters, etc., as well as to the more common symbols,

so a printer of mathematics had to make do with a hodge-podge of

available characters in different sizes. (For example, printers were often

obliged to use different styles of letters in subscript positions, as we have

seen.) Under the approach 1 am recommending, we automatically get

consistency of all the symbols whenever the parameters change.

From Continuous to Discrete

The METRFONT system must not only define the characters in the con¬

tinuum on the plane, it must also express them in terms of a discrete

52 Digital Typography

Figure 15. Lettering equivalent to this raster pattern appears in a Nor¬

wegian tapestry from Gildeskaal old church, woven about 1500 [22, page 116].

raster. Such squaring off of letters on graph paper has a long history,

going back far before the invention of computers or television; for exam¬

ple, we all can remember seeing cross-stitch embroidery samplers from

the nineteenth century. The same idea on a finer scale has been used in

tapestries for many centuries: My wife pointed out that our library at

home contains the example of Figure 15, which was woven in the north¬

ern part of Norway about 1500; it shows the name of St. Thomas in a

style imitating contemporary calligraphy, and I’m sure that examples

antedating the printing press can be found elsewhere.

Figure 16 shows how METRFONT produces the same letters from the

same parameters but with different degrees of resolution in the raster.

This digitization process itself is considerably more difficult than it may

seem at first, and some nontrivial mathematical concepts were needed

before 1 could produce satisfactory results. The obvious approach is

merely to draw or to imagine drawing the character with infinite pre¬

cision and then to “round” it by blacking in all the squares on graph

paper that are sufficiently dark in the true image; but this fails badly.

One of the reasons for failure is that the three stem lines of an ‘m’,

for instance, might be located in different relative positions with respect

to the grid, so that the first stroke might round to three units wide (say)

and the second might round to four. This would be quite unsatisfactory,

since our eyes easily pick up such a variation in thickness; but it is

avoided by METRFONT since the pen itself is first digitized and then

the same digitized pen is used for all three strokes. Another problem is

that the three stem strokes should be equally spaced; an ‘m’ looks bad

if it has, say, seven units between the first two strokes and eight units

between the last two. Therefore its program needs to round the points

in such a way that this doesn’t happen.

Mathematical Typography 53

The m’s are okay in Figure 16, but several unresolved problems are

still evident, and I’ll have to work on these when I get back home. The

middle example suffers from the fact that the curve width rounded np

to 2 from a value slightly greater than 1.5, while the stem width rounded

down to 1 from a value that was only slightly less. Therefore the curves

of the ‘a’, ‘e’, and ‘c’ are significantly darker than they should be. A

similar effect has made the dots too dark in the fourth example. The

tail at the lower right of the ‘a’ should be removed in the fifth example,

bnt at such low resolutions no automatic method is likely to be really

satisfactory.

mathematics
mathematics

atheniatics
m a.them fifties
mathQmatics

The process of digitizing the pen is not trivial either. Suppose,

for example, we want a circular pen that is 2 raster units wide; the

appropriate pen is clearly a 2 x 2 square, which is the closest to a circle

that we can come at this low degree of resolution. But notice that we

can’t center a 2 x 2 square on any particular square of a raster, since none

of the four squares is at its center; the same problem arises whenever we

have to deal with a pen having even dimensions. One way to resolve this

would be to insist on working only with odd numbers, but this would

be far too limiting; so METRFONT uses a special rounding rule for the

position of the pen’s center. In general, suppose the pen is an ellipse of

integer width w and integer height h; then if the pen is to be positioned

at the real coordinates {x,y), its actual position on the discrete grid is

taken to be

([a; - (i(u;)J,

where [xj denotes the greatest integer less than or equal to x, and

(i(even) = |, (5(odd) = 0. The pen itself, if positioned at the origin.

Figure 16.

The problem of

adjusting letters

to coarser rasters.

(Here the resolutions

are respectively 120,

60, 40, 30, and 24

pixels per inch.)

54 Digital Typography

■ ■■
■■■
III**
ll*«*

IIIIH*
Figure 17.

Discrete “elliptical” pens
of small integer
width and height.

would consist of all integer pairs {x,y) that satisfy

2{x — S{w))

w

2

+ < 1 + max

This formula — which incidentally is not the first one I tried — ensures

that the discrete pen will indeed be w units wide and h units high, when

w and h are positive integers. Figure 17 shows the pens obtained for

small w and h.

Figure 18.

Difficulties of rounding
an arc properly. (Three
semicircles of radius 10,
drawn with a 1 X 3 pen.)

Still another problem appears when we want curved lines to look

reasonable after they’ve become discrete. Figure 18a shows a semicircle

of radius 10 units, drawn with a pen of height 1 and width 3, when the

right boundary of the pen falls exactly at an integer point; the pen sticks

out terribly in one place. On the other hand if this right boundary falls

just shy of an integer point, we get the curve in Figure 18b, which looks

too fiat. The ideal occurs in Figure 18c, when the right boundary occurs

exactly midway between integers. Therefore, the METRFONT programs

adjust the location of curves to the raster before actually drawing the

Mathematical Typography 55

curves, forcing the favorable situation of Figure 18c; the actual shape of

each letter changes slightly in order to adapt that letter to the desired

raster size in a pleasant way.

There is yet another problem, which arises when the pen is growing

in such a way that the edges of the curve it traces would be monotonic if

the pen were drawn to infinite precision, yet the independent rounding

of pen location and pen width causes this monotonicity to disappear.

The problem arises only rarely, but when it does happen the eye imme¬

diately notices it. Consider, for example, the completely linear situation

in Figure 19, where each decrease by one unit in y is accompanied by an

increase of .3 units in x and an increase of .2 units in the pen width w,

the intended pen height is constant and very small, but in the discrete

case the pen height is taken to be 1. The lightly shaded portion of Fig¬

ure 19 shows the true shape intended, but the darker squares show that

the digitized form yields a nonmonotonic left boundary. METRFONT

compensates for this sort of problem by keeping track of the desired

boundaries when the pen width is varying, plotting points twice (for

example, plotting both (x, y) and (x — 1, y)) when necessary to keep the

boundary correct. In other words, the idea of rounding the pen location

and the width independently is sometimes effectively abandoned.

Pen width Rounded width

Q/Tlrd 1 location and location

{3.5, 0.5,: L0.5) (3, 0,: 10)
(3.7, 0.8, 9.5) (3, 0, 9)
(3.9, 1.1, 8.5) (3, 1, 8)
(4.1, 1.4, 7.5) (4. 0, 7)
(4.3, 1.7, 6.5) (4, b 6)
(4.5, 2.0, 5.5) (4, 1, 5)
(4.7, 2.3, 4.5) (4, 1, 4)
(4.9, 2.6, 3.5) (4, 2, 3)
(5.1, 2.9, 2.5) (5, 2, 2)
(5.3, 3.2, 1.5) (5, 3, 1)
(5.5, 3.5, 0.5) (5, 3, 0)

Figure 19. Failure of monotonicity due to independent rounding.

^Rounding takes (re, x,y) into ([u)], [x — (5((rej)J,

The final digitization problem that I needed to resolve was to make

the left half of an ‘0’ look like the mirror image of its right half, to

make a left parenthesis look like the mirror image of a right parenthesis,

and so on. This was done by having the METRFGNT programs in such

cases choose a center point that was either exactly at an integer or an

56 Digital Typography

integer plus and to introduce a dual rounding rule that has exactly

the correct symmetry properties.

Alternative Approaches

As I have said, I believe the METRFONT system is successful as a way to

define letters and other symbols, but probably even better procedures

can be devised with further research. Some of the limitations of my cubic

splines are indicated in Figure 20. Part (a) of that illustration shows a

hve-pointed star and the word “mathematics” in an approximation to my

own handwriting, done with straight line segments so that you can see

exactly what data points were fed to my spline routine. Part (b) shows

the way my handwriting might look when I get older; it was obtained

by simply setting r = s = 2 in all the spline segments, therefore making

clear what tangent angles are prescribed by the system. Part (c) is

somewhat more disciplined; it was obtained by putting r = s — 1/2

everywhere. Figure 20d is like Figure 20c but drawn with a combined

pen-and-eraser. Such a combination can lead to interesting effects, and

the star here is my belated contribution to America’s bicentennial.

Figure 20.

Examples of the cubic

splines applied to

sloppy handwriting.

When the general formulas for the parameters r and s are used as

explained above, we get Figure 20e, in which the star has become a very

good approximation to a circle (as I said it would). In this illustration the

pen is thicker and has a slightly oblique stress. Although my handwriting

is inherently unbeautiful, there are still some kinks in Figure 20e that

could probably be ironed out if a different approach were taken.

Mathematical Typography 57

The most interesting alternative from a mathematical standpoint
seems to be to find a curve of given length that minimizes the integral
of the square of the curvature with respect to arc length. This integral
is proportional to the strain energy in a mechanical spline of the given
length (in other words, the energy in a thin slat or beam), going through
the given points, so it seems to be an appropriate quantity to minimize;
Michael A. Malcolm [32] has reviewed early work on this variational
problem. The Norwegian mathematician Even Mehlum [37] has shown
that if we specify a fixed arc length between consecutive points, the op¬
timum curve will have linearly changing curvature of the form ax + by + c
at point {x,y), and he has suggested choosing the constants by taking
b/a = (y2 - yi)/(^2 - ^i) between (xi, yi) and {x2, 2/2), and requiring
that slope and curvature be continuous across endpoints. Such an ap¬
proach seems to require considerably more computation than the cubic
splines recommended here, but it may lead to better curves, perhaps
satisfying the extensionality property.

Another interesting approach to curve-drawing, which may be espe¬
cially useful for simulating handwriting, is a “filtering” method suggested
to me recently by Michael S. Paterson of the University of Warwick (un¬
published). To get a smooth curve passing through points Zk, assuming
that these points are about equally spaced on the desired curve and that
Zk — Zn+k for all integers k, one simply writes

z(t) = -k) / - k)
k k

where f{t) is an odd function of order as t -> 0, decreasing rapidly
away from zero; for example, we can take

f{t) = csch t = 2/(e* — e“*).

I have not had time yet to experiment with Paterson’s method or to
attempt to harness it for the drawing of letters. It is easy to see that
the derivative z'{k) = f{l){zk+i — Zk-i) — f{2){zk+2 — Zk-2) + • ■ • hes
approximately in the direction of Zk+\ — -Zfc-i-

Randomization

In conclusion. I’d like to report on a little experiment that I did with
random numbers. One might complain that the letters I have designed
are too perfect, too much like a computer, so they lack “character.” In
order to counteract this, we can build a certain amount of randomness

58 Digital Typography

into the choices of where to put the pen when drawing each letter, and

Figure 21 shows what happens. The coordinates of key pen positions

were chosen independently with a normal distribution and with increas¬

ing standard deviation, so that the third example has twice as much

standard deviation as the second, the fourth has three times as much,

and so on. Notice that the two m’s on each line (except the first) are

different, and so are the a’s and the t’s, since each letter is randomly

drawn.

mathematics
mathematics
mathematics
mathematics
mathematics
mathematics
mathematics
mathematics
mathematics
mathematiep
mathematics figure 21.

,1 1 . Increasingly random pen

mamemaiies positions; a = 0,1,... .

After the deviation gets sufficiently large the results become quite

ludicrous; and I don’t want people to say that I ended this lecture by

making a travesty of mathematics. So let us conclude by looking at

Figure 22, which shows what is obtained in various fonts when the de¬

gree of randomness is somewhat controlled. I think it can be said that

the letters in this final example have warmth and charm, in spite of

the fact that they were really generated by a computer following strict

mathematical rules. Perhaps the reason that the printing of mathemat¬

ics looked so nice in the good old days was that the fonts of type were

imperfect and inconsistent.

Mathematical Typography 59

mathematics
mathematics
mathematics

Figure 22.

A bit of randomness

introduced into

various styles of type. mathQmatiQa

Summary

I’d like to summarize now by pointing out the moral of this long story.

My experiences during the last few months vividly illustrate the fact that

plenty of good mathematical problems are still waiting to be solved, al¬

most everywhere we look, especially in areas of life where mathematics

has rarely been applied before. Mathematicians can provide solutions

to these problems, receiving a double payoff—namely the pleasure of

working out the mathematics, together with the appreciation of the peo¬

ple who can use the solutions. So let’s go forth and apply mathematics
in new ways.

Acknowledgments

I would like to thank my wife Jill for the many important suggestions

she made to me during critical stages of this research; also Leo Guibas

and Lyle Ramshaw for the help they provided in making illustrations

at Xerox Palo Alto Research Center; also Lester Earnest, Michael Fis¬

cher, Frank Liang, Tom Lyche, Albert Meyer, Michael Paterson, Michael

Plass, Bob Sproull, Jean E. Taylor, and Hans Wolf, for helpful ideas and

stimulating discussions and correspondence about this topic; also Gor¬

don L. Walker, for verifying my conjectures about the printing history

of the Transactions and for providing me with additional background

information; also Professor Dick Siefkes for his help in acquiring Fig¬

ures 4c and 11c, and the Kunstbibliothek Berlin der Staatlichen Museen

Preussischer Kulturbesitz for permission to publish them; and to Andre

Jammes for permission to publish Figures 6 and lid.

Bibliography

The references below include several articles not mentioned in the main

text, namely a discussion of publishing at the American Institute of

Physics [38]; some experiments in typesetting physics journals with the

Bell Labs system [7, 31]; computer aids for technical magazine layout and

60 Digital Typography

editing, together with a brief proposal for a standard typesetting lan¬

guage [11]; reports about early computer programs for character genera¬

tion and mathematical composition [23, 30, 35, 36, 41, 47]; a description

of the mathematics a traditional printer needs to know [9]; three stan¬

dard references on the typesetting of mathematics [14, 48, 50]; some fonts

of type and special characters designed by the American Mathematical

Society [40]; a recent and highly significant approach to mathematical

definition of traditional typefaces based on conic sections and on one¬

dimensional splines [15]; a proposal for a new way to control the spacing

between letters based on somewhat mathematical principles [28]; and

two purely mathematical papers inspired by typography [13, 21].

This research was supported in part by National Science Foundation grant MCS72—

03752 AOS, and by the Office of Naval Research contract N00014-76-C-0330.

References

[1] A. V. Aho, S. C. Johnson, and J. D. Ullman, “Typesetting by ACM

considered harmful,” Communications of the ACM 18 (1975), 740.

[2] American Mathematical Society, Development of the Photon for

Efficient Mathematical Composition, Final Report (10 May 1965),

National Science Foundation Grant G-21913; NTIS No. PB168627.

[3] American Mathematical Society, Development of Computer Aids

for Tape-Control of Photocomposing Machines, Report No. 2 (July

1967), “Extension of the system of preparing a computer-processed

tape to include the setting of multiple line equations,” National

Science Foundation Grant GN-533; NTIS No. PB175939.

[4] American Mathematical Society, Development of Computer Aids

for Tape-Control of Photocomposing Machines, Final Report, Sec¬

tion B (August 1968), “A system for computer-processed tape com¬

position to include the setting of multiple line equations,” National

Science Foundation Grant GN-533; NTIS No. PB179418.

[5] American Mathematical Society, Development of Computer Aids

for Tape-Control of Photocomposing Machines, Final Report, Sec¬

tion C (January 1969), “Implementation, hardware, and other sys¬

tems,” National Science Foundation Grant GN-533; NTIS No.

PB182088.

[6] American Mathematical Society, To Complete the Study of Com¬

puter Aids for Tape-Control of Composing Machines by Develop¬

ing an Operating System, Final Report No. AMATHS-CAIDS-71-0

Mathematical Typography 61

(April 1971), National Science Foundation Grant GN-690; NTIS
No. PB200892.

[7] American Physical Society, “APS tests computer system for pub¬

lishing operations,” Physics Today 30,12 (December 1977), 75.

[8] Donald M. Anderson, “Gresci and his capital alphabets,” Visible

Language 4 (1971), 331-352.

[9] J. Woodard Auble, Arithmetic for Printers, 2nd edition (Peoria,

Illinois: Bennett, 1954).

[10] Michael P. Barnett, Computer Typesetting: Experiments and Pros¬

pects (Cambridge, Massachusetts: M.I.T. Press, 1965).

[11] Robert W. Berner and A. Richard Shriver, “Integrating computer

text processing with photocomposition,” IEEE Transactions on

Professional Communication PC-16 (1973), 92-96. This article

is reprinted with another typeface and page layout in Robert W.

Berner, “The role of a computer in the publication of a primary

journal,” Proceedings of the APIPS National Computing Confer¬

ence 42, Part II (1973), M16-M20.

[12] Peter J. Boehm, “Software and hardware considerations for a tech¬

nical typesetting system,” IEEE Transactions on Professional Com¬

munication PC-19 (1976), 15-19.

[13] J. A. Bondy, “The ‘graph theory’ of the Greek alphabet,” in Graph

Theory and Applications, edited by Y. Alavi et al. (Berlin: Springer

Verlag, 1972), 43-54.

[14] T. W. Chaundy, P. R. Barrett, and Charles Batey, The Printing of

Mathematics (Oxford: Oxford University Press, 1954).

[15] P. J. M. Coueignoux, Generation of Roman Printed Fonts, Ph.D.

thesis. Dept, of Electrical Engineering, Massachusetts Institute of

Technology (June 1975).

[16] Giovanni Francesco Gresci Milanese, Essemplare de Piv Sorti Let-

tere (Rome: 1560). Also edited and translated by Arthur Sidney

Osley (London: 1968).

[17] T. L. De Vinne, The Practice of Typography: Modern Methods of

Book Composition (New York: Oswald, 1914).

[18] Albrecht Diirer, Underweysung der Messung mit dem Zirckel und

Richtscheyt (Nuremberg: 1525). An English translation of the sec¬

tion on alphabets has been published as Albrecht Diirer, Of the

Shaping of Letters, translated by R. T. Nichol (Dover, 1965).

62 Digital Typography

[19] Felice Feliciano Veronese, Alphabetum Romanum, edited by Gio¬

vanni Mardersteig and translated by R. H. Boothroyd (Verona:

Officina Bodoni, 1960).

[20] Frederic W. Gondy, Typologia: Studies in Type Design & Type

Making with Comments on the Invention of Typography, the First

Types, Legibility k Fine Printing (Berkeley, Galifornia: University

of California Press, 1940).

[21] F. Harary, “Typographs,” Visible Language 7 (1973), 199-208.

[22] Roar Hauglid, Randi Asker, Helen Engelstad, and Gunvor Traette-

berg. Native Art of Norway (Oslo: Dreyer, 1965).

[23] A. V. Hershey, “Calligraphy for computers,” NWL Report No.

2101 (Dahlgren, Virginia: U.S. Naval Weapons Laboratory, August

1967); NTIS No. AD662398.

[24] Andre Jammes, La Reforme de la Typographic Royale sous Louis

XIV (Paris: Paul Jammes, 1961).

[25] Paul E. Justus, “There is more to typesetting than setting type,”

IEEE Transactions on Professional Communication PC-15 (1972),

13-16, 18.

[26] Alan C. Kay, “Microelectronics and the personal computer,” Scien¬

tific American 237,3 (September 1977), 230-244.

[27] Brian W. Kernighan and Lorinda L. Cherry, “A system for type¬

setting mathematics,” Communications of the ACM 18 (1975),

151-157.

[28] David Kindersley, Optical Letter Spacing for New Printing Systems

(London: Wynkyn de Worde Society, 1976).

[29] Donald E. Knuth, “Tau Epsilon Chi, a system for technical text,”

Stanford Computer Science Report CS675 (September 1978). Re¬

vised version, TpX, A System for Technical Text (Providence,

Rhode Island: American Mathematical Society, 1979); also pub¬

lished as part 2 of TeX and METRFONT: New Directions in Type¬

setting (Bedford, Massachusetts: Digital Press, 1979).

[30] Dorothy K. Korbuly, “A new approach to coding displayed math¬

ematics for photocomposition,” IEEE Transactions on Professional

Communication PC-18 (1975), 283-287.

[31] M. E. Lesk and B. W. Kernighan, “Computer typesetting of tech¬

nical journals on UNIX,” Computer Science Technical Report 44

(Murray Hill, New Jersey: Bell Laboratories, June 1976).

Mathematical Typography 63

[32] Michael A. Malcolm, “On the computation of nonlinear spline func¬

tions,” SIAM Journal on Numerical Analysis 14 (1977), 254-282.

[33] J. R. Manning, “Continuity conditions for spline curves,” The Com¬
puter Journal 17 (1974), 181-186.

[34] Giovanni Mardersteig, The Alphabet of Erancesco Torniello da No¬

vara [1517] Followed by a Comparison with the Alphabet of E'a
Luca Pacioli (Verona: Officina Bodoni, 1971).

[35] M. V. Mathews and Joan E. Miller, “Computer editing, typeset¬

ting, and image generation,” Proceedings of the AFIPS Fall Joint

Computer Conference 27 (1965), 389-398.

[36] M. V. Mathews, Carol Lochbaum, and Judith A. Moss, “Three

fonts of computer drawn letters,” Communications of the ACM 10
(1967), 627-630.

[37] Even Mehlum, “Nonlinear splines,” in Computer Aided Geometric

Design, edited by Robert E. Barnhill and Richard F. Riesenfeld

(New York: Academic Press, 1974), 173-207.

[38] A. W. Kenneth Metzner, “Multiple use and other benefits of com¬

puterized publishing,” IEEE Transactions on Professional Commu¬

nication PC-18 (1975), 274-278.

[39] Joseph Moxon, Regulae Trium Ordinum Literarum Typographi-

carum: or the Rules of the Three Orders of Print Letters: viz.

The {Roman, Italick, English} Capitals and Small. Shewing how

they are compounded of Geometrick Eigures, and mostly made by

Rule and Compass (London: Joseph Moxon, 1676).

[40] Phoebe J. Murdock, “New alphabets and symbols for typesetting

mathematics,” Scholarly Publishing 8 (1976), 44-53. Reprinted in

Notices of the American Mathematical Society 24 (1977), 63-67.

[41] Nicholas Negroponte, “Raster scan approaches to computer graph¬

ics,” Computers and Graphics 2 (1977), 179-193.

[42] Wolfgang A. Ocker, “A program to hyphenate English words,”

IEEE Transactions on Engineering Writing and Speech EWS-14

(1971), 53-59.

[43] Luca Pacioli, Diuina proportione, Opera a tutti glingegni perspicaci

e curiosi necessaria Oue ciascun studioso di Philosophia: Propectiua

Pictura Sculptura: Architectura: Musica: e altre Mathematice:

suauissima: sottile: e admirable doctrina consequira: e delectarassi:

CO uarie questione de secretissima scientia (Venice: 1509).

64 Digital Typography

[44] Giovanbattista Palatino Cittadino Romano, Libro Primo del le

Lettere Maiuscole Antiche Romane (unpublished), Berlin Kunst-

bibliothek, MS OS5280. Some of the individual pages are dated

1543, 1546, 1549, 1574, or 1575. See James Wardrop, “Givis Ro-

manus Sum: Giovanbattista Palatino and his circle,” Signature 14

(1952), 3-39.

[45] Paul A. Parisi, “Gomposition innovations of the American Society

of Givil Engineers,” IEEE Transactions on Professional Communi¬

cation PC-18 (1975), 244-273.

[46] R. G. D. Richardson, “The twenty-ninth annual meeting of the

Society,” Bulletin of the American Mathematical Society 29 (1923),

97-116. (See also 28 (1922), 234-235, 378, for comments on the

special Transactions volume, and 28 (1922), 2-3 for discussion of

budget deficits due to increased cost of printing.)

[47] Glenn E. Roudabush, Gharles R. T. Bacon, R. Bruce Briggs,

James A. Eierst, Dale W. Isner, and Hiroshi A. Noguni, “The left

hand of scholarship: Gomputer experiments with recorded text as a

communication media,” Proceedings of the APIPS Pall Joint Com¬

puter Conference 27 (1965), 399-411.

[48] Ellen E. Swanson, Mathematics into Type (Providence, Rhode Is¬

land: American Mathematical Society, 1971).

[49] Geofroy Tory, Champs Pleury (Paris: 1529). Also translated into

English and annotated by George B. Ives (New York: Grolier Glub,

1927).

[50] Karel Wick, Rules for Typesetting Mathematics, translated by

V. Boublfk and M. Hejlova (The Hague: Mouton, 1965).

[51] Hermann Zapf, About Alphabets: Some Marginal Notes on Type

Design (Gambridge, Massachusetts: M.I.T. Press, 1970).

Addendum

After giving the lecture, I was pleased to learn from subsequent con¬

versations and correspondence that there is not such a great gulf be¬

tween mathematicians and artists as most people imagine. Eor example,

George Polya told me in 1979 that he had been familiar with the work
of Durer [18].

The Transactions of the American Mathematical Society began with

volume 302 (1987) to encourage authors to submit their papers in TeX

form. All volumes of the Transactions have been prepared completely
with TgX since volume 311 (1989).

Mathematical Typography 65

Of course I learned a great deal about typography after this paper

was written. The basic boxes-and-glue metaphor that underlies T^X has

remained essentially the same, but METRFONT’s basic curve-drawing

methods have changed completely. The new METRFONT, completed in

1984, still uses cubic splines, but they are governed by the far more in¬

tuitive notion of “control points” as suggested by Paul de Casteljau and

Pierre Bezier in 1959 and the early 1960s. The algorithms for plotting

the curves have thereby been improved dramatically in speed, from or¬

der to order n when there are n pixels per inch. The varying-width

feature of Figure 19 and the simultaneous pen-and-eraser trick of Fig¬

ure 20d are no longer supported; but they never actually turned out to

be useful.

Substantially better rounding rules for pens, with interesting con¬

nections to number theory as well as to geometry, were developed in John

Hobby’s Ph.D. thesis, Digitized Brush Trajectories (Stanford University,

1985). Hobby also devised new rules for creating a “most pleasing curve”

through a sequence of given points. The superiority of his methods has

been confirmed by considerable experience, but METRFONT’s current

solution to the problem of “handwritten mathematics” (Figure 20) is

admittedly quite bizarre: The output that METRFONT now produces,

when given the specifications that led to Figure 20e in 1977, is

The points that I specified awkwardly in Figure 20a should not in fact

be expected to define nice letter shapes.

V, |. • /

■■«■■' f. ■r

^ ■•--?, ♦. • I# ,(?%*.'

■* ■ ■ f « ♦ *.%,* -.ri*e.*. lbjj«r*;'' -I..,'' • ■•

#• '•/ '»*«kr'^4- *^l»i«%f>’'fHM

• ■*' I'V ' <inr t .Si '

•‘ *-■•?■ <U
■ ^ t

* * i

....*• ‘I» i •4

I •*

t

'If
V ■ >

» «

t. t i

t • 'lo* *

'' 'fj ' ll I

1 * ••” :' ■!*

' , ' '*1 I -

'.■ ' .1- .

* ' .n

» ■ tf
• * >* I j •- t

• , ■ i.i i

Hf 4.1.

■ _ - 44 '

3 * ’I '

^ ;
' * ^ t ^ « m

JlN >

■ • 4

.y* - • <•#* *•■'(•

Chapter 3

Breaking Paragraphs Into Lines

[Written with Michael F. Plass. Originally published in Software —
Practice and Experience 11 (1981), 1119-1184.]

This paper discusses a new approach to the problem of dividing the text

of a paragraph into lines of approximately equal length. Instead of simply

making decisions one line at a time, the method considers the paragraph

as a whole, so that the final appearance of a given line might be influ¬

enced by the text on succeeding lines. A system based on three simple

primitive concepts called “boxes,” “glue,” and “penalties” provides the

ability to deal satisfactorily with a wide variety of typesetting problems

in a unified framework, using a single algorithm that determines opti¬

mum breakpoints. The algorithm avoids backtracking by a judicious use

of the techniques of dynamic programming. Extensive computational

experience confirms that the approach is both efficient and effective in

producing high-quality output. The paper concludes with a brief history

of line-breaking methods, and an appendix presents a simplified algorithm
that requires comparatively few resources.

Introduction

One of the most important operations necessary when text materials are

prepared for printing or display is the task of dividing long paragraphs

into individual lines. When this job has been done well, people will not

be aware of the fact that the words they are reading have been broken

apart arbitrarily and placed into a somewhat rigid and unnatural rect¬

angular framework; but if the job has been done poorly, readers will be

distracted by bad breaks that interrupt their train of thought. Suitable

breakpoints are not always easy to find; for example, the narrow columns

often used in newspapers allow for comparatively little flexibility, and

the appearance of mathematical formulas in technical text introduces

special complications regardless of the column width. But even in com¬

paratively simple cases like the typesetting of an ordinary novel, good

67

68 Digital Typography

line breaking will contribute greatly to the appearance and desirability

of the finished product. In fact, some authors actually write better ma¬

terial when they are assured that it will look sufficiently beautiful when

it appears in print.

The line-breaking problem is informally called the problem of “jus¬

tification,” since it is the ‘J’ of ‘H & J’ (hyphenation and justification) in

today’s commercial composition and word-processing systems. However,

justification tends to be a misnomer, because printers have traditionally

used this term for the process of taking an individual line of type and

adjusting its spacing to produce a desired length. Even when text is be¬

ing typeset with ragged right margins (therefore “unjustified”), it needs

to be broken into lines of approximately the same size. The job of ad¬

justing spaces so that left and right margins are uniformly straight is

comparatively laborious when one must work with metal type, so the

task of typesetting a paragraph with last century’s technology was con¬

ceptually a task of justification; nowadays, however, computers easily

adjust the spacing in any desired manner, so the task of line-breaking

dominates the work. This shift in relative difficulty probably accounts

for the shift in the meaning of “justification”; we shall use the term line

breaking in this paper to emphasize the fact that the central problem of

concern here is to find breakpoints.

The traditional way to break lines is analogous to what we ordinarily

do when using a typewriter: A bell rings (at least conceptually) when we

approach the right margin, and at that time we decide how best to finish

off the current line, without looking ahead to see where the next line or

lines might end. Once the typewriter carriage has been returned to

the left margin, we begin afresh without needing to remember anything

about the previous text except where the new line starts. Thus, we don’t

have to keep track of many things at once; such a system is ideally suited

to human operation, and it also leads to simple computer programs.

Book printing is different from typing primarily in that the spaces

are of variable width. Traditional practice has been to assign a mini¬

mum and maximum width to interword spaces, together with a normal

width representing the ideal situation. The standard algorithm for line

breaking (see, for example, Barnett [4, page 55]) then proceeds as fol¬

lows: Keep appending words to the current line, assuming the normal

spacing, until reaching a word that does not fit. Break after this word,

if it is possible to do so without compressing the spaces to less than

the given minimum; otherwise break before this word, if it is possible to

do so without expanding the spaces to more than the given maximum.

Otherwise hyphenate the offending word, putting as much of it on the

Breaking Paragraphs Into Lines 69

current line as will fit; if no suitable hyphenation points can be found,

accept a line whose spaces exceed the given maximum.

There is no need to confine computers to such a simple procedure,

since the data for an entire paragraph is generally available in the com¬

puter’s memory. Experience has shown that signihcant improvements

are possible if the computer takes advantage of its opportunity to look

ahead at what is coming later in the paragraph, before making a final

decision about where any of the lines will be broken. Lookahead not

only tends to avoid cases where the traditional algorithm has to resort

to wide spaces, it also reduces the number of hyphenations necessary.

Thus line-breaking decisions provide another example of the desirability
of “late binding” in computer software.

One of the principal reasons for using computers in typesetting is

to save money, but at the same time we don’t want the output to look

cheaper. A properly programmed computer should, in fact, be able to

solve the line-breaking problem better than a skilled typesetter could

do by hand in a reasonable amount of time — unless we give this person

the liberty to change the wording in order to obtain a better fit. For

example, Duncan [14] studied the interword spacing of 958 lines that

were manually typeset by a “most respectable publishers’ printer” that

he chose not to identify by name, and he found that nearly 5% of the

lines were quite loosely set; the spaces on those lines exceeded 10 units

(i.e., 10/18 of an em), and two of the lines even had spaces exceeding

13 units. We shall see that a good line-breaking algorithm can do better.

Besides the avoidance of hyphens and wide spaces, we can improve

on the traditional line-breaking method by keeping the spaces nearly

equal to the normal size, so that they rarely approach the minimum or

maximum limits. We can also try to avoid rapid changes in the spacing

of adjacent lines; we can make special efforts not to hyphenate two lines

in a row, and not to hyphenate the second-last line of a paragraph; we

can try to control the white space on the final line of the paragraph; and

so on. Given any mathematical way to rate the quality of a particular

choice of breakpoints, we can ask the computer to find breakpoints that

optimize this function.

But how is the computer to solve such a problem efficiently? When

a given paragraph has n optional breakpoints, there are 2"' ways to

break it into lines, and even the fastest conceivable computers could

not run through all such possibilities in a reasonable amount of time.

In fact, the job of breaking a paragraph into equal-size lines as nicely

as possible sounds suspiciously like the infamous bin-packing problem,

which is well known to be NP-complete [16]. Fortunately, however, each

70 Digital Typography

line will consist of contiguous information from the paragraph, so the

line-breaking problem is amenable to the techniques of discrete dynamic

programming [6, 20]; hence there is a reasonably efhcient way to at¬

tack it. We shall see that the optimum breakpoints can be found in

practice with only about twice as much computation as needed by the

traditional algorithm; the new method is sometimes even faster than the

old, when we consider the time saved by not needing to hyphenate so

often. Furthermore the new algorithm is capable of doing other things,

like setting a paragraph one line longer or one line shorter, in order to

improve the layout of a page.

Formulating the Problem

Let us now state the line-breaking problem explicitly in mathematical

terms. We shall use the basic concepts and terminology of the TgX

typesetting system [26], but in simplified form, since the complexities of

general typesetting would obscure the main principles of line breaking.

For the purposes of this paper, a paragraph is a sequence xiX2 ■ ■ ■ Xm

of m items, where each individual item Xi is either a box specification,

a glue specification, or a penalty specification.

• A box refers to something that is to be typeset: either a character

from some font of type, or a black rectangle such as a horizontal or

vertical rule, or something built up from several characters such as

an accented letter or a mathematical formula. The contents of a box

may be extremely complicated, or they may be extremely simple;

the line-breaking algorithm does not peek inside a box to see what

it contains, so we may consider the boxes to be sealed and locked.

As far as we are concerned, the only relevant thing about a box is

its width: When item Xi of a paragraph specifies a box, the width

of that box is a real number Wi representing the amount of space

that the box will occupy on a line. The width of a box may be zero,

and in fact it may also be negative, although negative widths must

be used with care and understanding according to the precise rules
laid down below.

• Glue refers to blank space that can vary its width in specified ways;

it is an elastic mortar used between boxes in a typeset line. When

item Xi of a paragraph specifies glue, there are three real numbers

{wi, Pi, Zi) of importance to the line-breaking algorithm:

Wi is the “ideal” or “normal” width;

Pi is the “stretchability”;

Zi is the “shrinkability.”

Breaking Paragraphs Into Lines 71

For example, the space between words in a line is often specihed

by the values Wi = |em, yi = |ein, Zi = |ein, where one em

is the set size of the type being used (approximately the width of

an uppercase ‘M’ in classical type styles). The actual amount of

space occupied by a glue item can be adjusted when justifying a

line to some desired width; if the normal width is too small, the

adjustment is proportional to i/j, and if the normal width is too large

the adjustment is proportional to Zj. The numbers Wi, yi, and Zi may

be negative, subject to certain natural restrictions explained later;

for example, a negative value of Wi indicates a backspace. When

Vi ~ Zi = 0, the glue has a fixed width Wi. Incidentally, the word

“glue” is perhaps not the best term, because it sounds a bit messy;

a word like “spring” would be better, since metal springs expand or

compress to fill up space in essentially the way we want. However,

we shall continue to say “glue,” a term used since the early days of

TgX (1977), because many people claim to like it. A glob of glue

is often called a skip by TgX users, and the best policy might be

to speak of boxes and skips rather than boxes and springs or boxes

and glues. A skip, by any other name, is of course the same abstract

concept, embodied by the three values (ruj, yi, Zi).

• Penalty specifications denote potential places to end one line of a

paragraph and begin another, with a certain “aesthetic cost” in¬

dicating how desirable or undesirable such a breakpoint would be.

When item Xi of a paragraph specifies a penalty, there is a number pi

that helps us decide whether or not to end a line at this point, as

explained below. Intuitively, a high penalty pi indicates a relatively

poor place to break, while a negative value of pi stands for a good

breaking-off place. The penalty pi may also be -|-oo or — oo, where

‘oo’ denotes a large number that is infinite for practical purposes,

although it really is finite; in the 1978 version of Te)^, any penalty

> 1000 was treated as -|-oo, and any penalty < —1000 was treated

as —oo. When p^ — -(-oo, the break is strictly prohibited; when

Pj = — oo, the break is mandatory. Penalty specifications also have

widths Wi, with the following meaning: If a line break occurs at

this place in the paragraph, additional typeset material of width Wi

will be added to the line just before the break occurs. For exam¬

ple, a potential place at which a word might be hyphenated would

be indicated by letting pi be the penalty for hyphenating there and

letting Wi be the width of the hyphen. Penalty specifications are

of two kinds, flagged and unflagged, denoted by /j = 1 and fi — d.

The line-breaking algorithm we shall discuss tries to avoid having

72 Digital Typography

two consecutive breaks at flagged penalties (for example, having two

hyphenations in a row).

Thus, box items are specified by one number Wi, while glue items

have three numbers {wi, yif Zi) and penalty items have three numbers

(rcj, pj, fi). For simplicity, we shall assume that a paragraph xi .. .Xm

is actually specified by six sequences, namely

tl . . . tfYi ,

Wi . ..Wm,

Ul ■ • ■ Umi

Z\ . . . ZfYi ,

Pi ■ --Pm,

fl ■■■fm,

where ti is the type of item Xi, either ‘box’, ‘glue’, or

‘penalty’;
where Wi is the width corresponding to xq

where pi is the stretchability corresponding to Xi if

ti = ‘glue’, otherwise pi — 0,
where Zi is the shrinkability corresponding to Xi if

ti = ‘glue’, otherwise Zi = 0;

where pi is the penalty at Xi if ti = ‘penalty’,

otherwise pi = 0;

where fi — 1 ii Xi is a flagged penalty, otherwise fi = 0.

Any fixed unit of measure can be used in connection with Wi, pi, and zq

uses printers’ points, which are slightly less than ^ inch. In this

paper we shall specify all widths in terms of machine units equal to

1/18 em, assuming a particular size of type, since the widths turn out

to be integer multiples of this unit in many cases. The numbers in

our examples will be as simple as possible when expressed in terms of

machine units.
Perhaps the reader feels that we are defining altogether too much

mathematical machinery to deal with something that is quite straight¬

forward. However, each of the concepts defined here must be dealt with

somehow when paragraphs are broken into lines, and precise specifica¬

tions are important even for the comparatively simple job of setting

straight text. We shall see later that these primitive notions of boxes,

glue, and penalties will actually support a surprising variety of other

line-breaking applications, so that a careful attention to details will solve

many other problems as a free bonus.

For the time being, it will be best to think of a simple application

to straight text material such as the typesetting of a paragraph in a

newspaper or in a short story, since this will help us internalize the

abstract concepts represented by pi, etc. A typesetting system like

Te;^ transforms such an actual paragraph into the abstract form we want

in the following way:

(1) If the paragraph is to be indented, the first item xi is an empty box

whose width wi is the amount of indentation.

Breaking Paragraphs Into Lines 73

(2) Each word of the paragraph becomes a sequence of Ijoxes for the

characters of the word, including punctuation marks that belong

with that word. The widths Wi are determined by the fonts of type

being used. Flagged penalty items are inserted between the boxes

wherever an acceptable hyphenation could be used to divide a word

at the end of a line. (Such hyphenation points do not need to be

included unless necessary, as we shall see later, but for the moment

let us assume that all of the permissible hyphenations have been
specified.)

(3) There is glue between w'ords, corresponding to the recommended

spacing conventions of the fonts of type in use. The glue might

be different in different contexts; for example, Tj^X makes the glue

specifications following punctuation marks slightly different from the

normal interword glue.

(4) Explicit hyphens and dashes in the text are followed by flagged

penalty items having width zero. This specifies a permissible line

break after a hyphen or a dash. Some style conventions also al¬

low breaks before em-dashes, in which case an unfiagged width-zero

penalty would precede the dash.

(5) At the very end of a paragraph, three items are appended so that

the final line will be treated properly. First comes a penalty item

Xm-2 with Pm-2 = oo; then comes a glue item Xm-i that specifies
the white space allowable at the right of the last line. Finally there’s

a penalty item Xm with pm = — oo to force a break at the paragraph

end. T^]X ordinarily uses a “finishing glue” with Wm-i = Zm-i = 0

and j/m-i = oo (actually Um-i = 100000 points, which is finite
but large enough to behave like oo); thus the normal space at the

end of a paragraph is zero but it can stretch a great deal. The net

effect is that the other spaces on the final line will shrink, if that

line exceeds the desired measure; otherwise the other spaces will

remain essentially at their normal value (because the finishing glue

will do all the stretching necessary to fill up the end of the line).

More subtle choices of the finishing glue Xm-i are possible; we will

discuss them later.

For example, let’s consider the paragraph of Figure 1 on the next

page, which is taken from Grimm’s Fairy Tales [18]. The five rules

above convert the text into a sequence of exactly 601 items, as indicated

in Table 1. Each line of Figure 1 has been justified to exactly 390 units

wide, using the traditional one-line-at-a-time method to break up the

text as described earlier.

74 Digital Typography

In olden times when wishjing still helped one, ss?
there lived a king whose daugh,ters were all beaujtif- -.750

ful; and the youngest was so beaujtijful that the sun -.824
itpelf, which has seen so much, was astorijished i.os?
wherijever it shone in her face. Close by the king’s -.235

castle lay a great dark for/est, and un^ier an old .eor

lime-itree in the forjest was a well, and when the .500

day was very warm, the king’s child went out into -.500

the forjest and sat down by the side of the cool 700

founjtain; and when she was bored she took a i.seo
golden ball, and threw it up on high and caught it; - eso
and this ball was her favorjite playjthing. .001

Figure 1. An example paragraph that has been typeset by the “first-
fit” method. Small triangles show permissible places to divide words
with hyphens; the adjustment ratio for spaces appears at the right
of each line.

Optional hyphenation points have been indicated with tiny triangles
in Figure 1. Traditional style guides allow the insertion of a hyphen into a
word only if at least two letters precede it and three follow it; furthermore
the syllable following a hyphen shouldn’t have a silent ‘e’, so we do not
admit a hyphenation like ‘sylla-ble’. Smooth reading also means that
the word fragment preceding a hyphen should be long enough that it can
be pronounced correctly and unambiguously, before the reader sees the
completion of the word on the next line; thus, a hyphenation like ‘proc¬
ess’ would be disturbing. This pronunciation rule accounts for the fact
that the next-to-last word of Figure 1 does not admit the potential
hyphenation ‘fa-vorite’; the fragment ‘fa-’ might well be the beginning
of ‘fa-ther’, which is pronounced quite differently.

The choice of proper hyphenation points is an important but dif¬
ficult subject that is beyond the scope of this paper. We shall not
mention it further except to assume that (a) such potential breakpoints
are available to our line-breaking algorithm when needed; (b) we prefer
not to hyphenate when there is a way to avoid hyphens without seriously
messing up the spacing.

The rules for breaking a paragraph into lines should be intuitively
clear from this example, but they need to be stated explicitly. We shall
assume that every paragraph ends with a forced break item Xm (an item
with penalty —00). A legal breakpoint in a paragraph is a number b
such that either (i) Xb is a penalty item with pb < 00, or (ii) Xb is a
glue item and Xb-i is a box item. In other words, one can break at a
penalty, provided that the penalty isn’t 00, or at glue, provided that the
glue immediately follows a box. These two cases are the only acceptable

Breaking Paragraphs Into Lines 75

xi = empty box for indentation

X2 = box for ‘I’

X3 = box for ‘n’
X4 = glue for interword space

X5 = box for ‘o’

X309 = box for ‘1’

X310 = box for ‘i’

3^311 = box for ‘in’

X312 = box for ‘e’

X313 = box for ‘-’

X314 = penalty for explicit hyphen

3^315 = box for ‘t’

X590 = box for ‘a’

X591 = box for ‘y’
X592 = penalty for optional hyphen
•C593 = box for ‘t’
X594 = box for ‘h’

X595 = box for ‘i’

•1^596 = box for ‘n’

X597 = box for ‘g’

X598 = box for ‘.’

X599 = disallowed break
X600 = finishing glue
xeoi = forced break

rci = 18
W2 = 6

W3 = 10

W4 = 6,

0^
II Z4 = 2

rcs 9

U’309 = 5

10310 = 5

10311 = 15
W312 = 8

W3\3 = 6

W314 = 0, P314 = 50, /314 = 1

W315 = 7

W59O = 9

01591 = 10

00592 = 6, P592 — 50, /592 = 1

00593 7
W5Q4 10

00595 = 5
00596 = 10

OO597 = 9
00598 5
OII599 0, P599 = 00, /599 = 0

00600 =: 0, yeoo = 00, 2600 = 0

00601 = 0, Pool — —00, /eol = 1

Table 1. The sequence of box, glue, and penalty items constructed by

IBX for the paragraph of Figure 1. For purposes of this example,

each letter is assumed to have the width that was traditionally used

with Monotype equipment; namely, ‘a’ through ‘z’ are respectively

(9,10,8,10,8,6,9,10,5,6,10,5,15,10,9,10,10,7,7,7,10,9,13,10,10,8)

units wide and the characters ‘C’, ‘F, and ‘-’ have respective widths

of 13, 6, and 6 units. Commas, semicolons, periods, and apostrophes

occupy 5 units each. Glue has specifications (w, y, z) = (6,3, 2) be¬

tween words, except that it is (6,4, 2) after a comma, (6,4,1) after

a semicolon, and (8,6,1) after a period. A penalty of 50 has been

assessed for every line that ends with a hyphen.

breakpoints. Notice, for example, that several glue items may appear

consecutively, but we are allowed to break only at the first of them, and

only if this one does not immediately follow a penalty item. A penalty

of 00 can be inserted before glue to make it unbreakable; for example,

item X599 in Table 1 prevents a break at the paragraph-filling glue.

76 Digital Typography

The job of line breaking consists of choosing legal breakpoints

bi < ■ ■ ■ < bk, which specify the ends of k lines into which the para¬

graph will be broken. Each penalty item Xi whose penalty pi is — oo

must be included among these breakpoints; thus, the final breakpoint

6/. must be equal to m. For convenience we let bo = 0, and we define

indices oi < • • • < to mark the beginning of the lines, as follows: The

value of Uj is the smallest integer i between and bj such that Xi is

a box item; if none of the Xi in the range bj-i < i < bj are boxes, we let

aj = bj. Then the jth line consists of all items Xi for aj < i < bj, plus

item Xbj if it is a penalty item. In other words we get the lines of the bro¬

ken paragraph by cutting it into pieces at the chosen breakpoints, then

removing glue and penalty items at the beginning of each resulting line.

Desirability Criteria

According to this definition of line breaking, there are 2"' ways to break a

paragraph into lines, if the paragraph has n legal breakpoints that aren’t

forced. For example, there are 129 legal breakpoints in the paragraph

of Figure 1, not counting xeoi; so it can be broken into lines in 2^^^

ways, a number that exceeds 10^®. But of course most of these choices

are absurd, and we need to specify some criteria to separate acceptable

choices from the ridiculous ones. For this purpose we need to know

(a) the desired lengths of lines, and (b) the lengths of lines corresponding

to each choice of breakpoints, including the amount of stretchability and

shrinkability that is present. Then we can compare the desired lengths

to the lengths actually obtained.

We shall assume that a list of desired lengths h, hi hi ■ ■ ■ is given;

normally these are all the same, but in general we might want lines of

different lengths, as when fitting text around an illustration. The actual

length Lj of the jth line, after breakpoints have been chosen as above,

is computed in the following obvious way: We add together the widths

Wi of all the box and glue items in the range aj < i < bj, and we add

Wbj to this total if x^^ is a penalty item. The jth line also has a total

stretchability Yj and total shrinkability Zj, obtained by summing all of

the Pi and Zi for glue items in the range aj < i < bj. Now we can

compare the actual length Lj to the desired length Ij by seeing if there

is enough stretchability or shrinkability to change Lj into lj] we define

the adjustment ratio Vj of the jth line as follows:

If L = j — lj (a perfect fit), let Vj — 0.

If Lj < lj (a short line), let Vj — (lj — Lj)/Yj, assuming that Yj > 0;

the value of rj is undefined if lj < 0 in this case.

Breaking Paragraphs Into Lines 77

If Lj > Ij (a long line), let rj = {Ij — Lj)/Zj, assuming that Zj > 0;

the value of Vj is undefined if Zj < 0 in this case.

Thus, for example, Cj = 1/3 if the total stretchability of line j is three

times what would be needed to expand the glue so that the line length

would change from Lj to Ij.

According to this definition of adjustment ratios, the jth line can

be justified by letting the width of all glue items Xi on that line be

+ ifrj>();

iVi-\-rjZi, ifrj<0.

For if we add up the total width of that line after such adjustments are

made, we get either Lj + 7’j Yj = lj or Lj + rj Zj = lj, depending on

the sign of Vj. This distributes the necessary stretching or shrinking

by amounts proportional to the individual glue components yi or Zi, as

desired.

For example, the small numbers at the right of the individual lines

in Figure 1 show the values of rj in those lines. A negative ratio like

— .824 in the third line means that the spaces in that line are narrower

than their ideal size and rather near their minimum size, having used

up more than 82% of their shrinkability; on the other hand, a fairly

large positive ratio like 1.360 in the third-from-last line indicates a very

“loose” fit.

Although there are 2^^^ ways to break the paragraph of Figure 1

into lines, it turns out that only 12 of them will result in breaks whose

adjustment ratios rj do not exceed 1 in absolute value; this condition on

the ratios means that the spaces between words after justification will

lie between Wi — Zi and WiYyi, inclusive. The traditional method of line

breaking, which generates the breaks of Figure 1, does not discover any

of those solutions to the problem.

Our main goal is to avoid choosing any breakpoints that lead to

lines in which the words are spaced very far apart,

or in which they are very close together, because such lines are distracting and

harder to read. We might therefore say that the line-breaking problem is

to find breaks such that \rj\ < 1 in each line, with the minimum number

of hyphenations subject to this condition. Such an approach was taken

by Duncan and his associates in the early 1960s [13], and they obtained

fairly good results. However, the criterion |rj| < 1 depends only on

the values Wi — Zi and Wi + yi, not on Wi itself, so it does not use all

the degrees of freedom present in our data. Furthermore, such stringent

conditions may not be possible to achieve; for example, if the lines of

78 Digital Typography

our sample paragraph were supposed to be 400 units wide, instead of

the present width of 390 units, there would be no way to set the text

of Figure 1 without having at least one very tight line {rj < -1) or at

least one very loose line {rj >1).

We can do a better job of line breaking if we deal with a continuously

varying criterion of quality, not simply the yes/no test of the condition

\rj\ < 1. Let us therefore give a quantitative evaluation of the badness

of the jth line by finding a formula that is nearly zero when \rj\ is small

but grows rapidly when |rj| takes values exceeding 1. Experience with

TeX has shown that good results are obtained if we define the badness

of line j as follows:

r oo , if Vj is undefined or < — 1;

~ \ [l00|rjp + .5j , otherwise.

Thus, for example, the individual lines of Figure 1 have badness ratings

equal to 63, 42, 56, 128, 1, 22, 13, 13, 34, 252, 27, and 0, respectively.

The formula for (3j considers a line to be “infinitely bad” if < —1;

this means that glue will never be shrunk to less than Wi — Zi. However,

values of rj that exceed 1 are only finitely bad, so they will be permitted

if there is no better alternative.

A slight improvement over the method used to produce Figure 1

leads to Figure 2. Once again each line has been broken without looking

ahead to the end of the paragraph and without going back to reconsider

previous choices, but this time each break has been chosen so as to

minimize the “badness plus penalty” of that line. In other words, when

choosing between alternative ways to end the jth line, given the ending

of the previous line, we obtain Figure 2 if we take the minimum possible

value of I3j + tvj ; here jSj is the badness as defined above, and iij is the

amount of penalty pb^ if the jth fine ends at a penalty item, otherwise

TTj = 0. Figure 2 improves on Figure 1 by moving words or syllables

down from fines 2, 3, and 11 to the next line.

The method that produces Figure 1 might be called the “first-fit”

algorithm, and the corresponding method for Figure 2 might be called

the “best-fit” algorithm. We have seen that best-fit is superior to first-fit

in this particular case, but other paragraphs can be contrived in which

first-fit finds a better solution; so a single example is not sufficient to

decide which method is preferable. In order to make an unbiased com¬

parison of the methods, we need to get some statistics on their “typical”

behavior. Therefore 300 experiments were performed, using the text of

Figures 1 and 2, with line widths ranging from 350 to 649 in unit steps.

Breaking Paragraphs Into Lines 79

In olden times when wislyng still helped one, ss?
there lived a king whose daughters were all beaii^ .000

tijful; and the youngjest was so beau,tiiful that the 280

sun itself, which has seen so much, was astorijished -.235

whenever it shone in her face. Close by the king’s -.235

castle lay a great dark forpst, and unjder an old ,007

lime-itree in the forest was a well, and when the soo

day was very warm, the king’s child went out into -.boo

the forest and sat down by the side of the cool 700

fountain; and when she was bored she took a i.seo

golden ball, and threw it up on high and caught .357

it; and this ball was her favorite playithing. noo

Figure 2. The paragraph of Figure 1 when the “best-fit” method has

been used to find successive breakpoints.

The text for each experiment was the same, but the varying line widths

made the problems quite different, since line-breaking algorithms are

quite sensitive to slight changes in the measurements. The “tightest”

and “loosest” lines in each resulting paragraph were recorded, as well

as the number of hyphens introduced, and the comparisons came out as
follows:

min Tj max Tj hyphens

first-fit < best-fit 68% 40% 13%
first-fit = best-fit 26% 45% 79%
first-fit > best-fit 6% 15% 9%

Thus, in 68% of the cases, the minimum adjustment ratio rj in the

lines typeset by first-fit was less than the corresponding value obtained

by best-fit; the maximum adjustment ratio in the first-fit lines was less

than the maximum for best-fit about 40% of the time; etc. We can

summarize this data by saying that the first-fit method usually typesets

at least one line that is tighter than the tightest line set by best-fit,

and it also usually produces a line that is as loose or looser than the

loosest line of best-fit. The number of hyphens is about the same for

both methods, although best-fit would produce fewer if the penalty for

hyphenation were increased.

We can actually do better than both of these methods by finding

an “optimum” way to choose the breakpoints. For example. Figure 3

shows how to improve on both Figures 1 and 2 by hyphenating the end

of line 4, thereby avoiding the problem of the loose 10th line. This

pattern of breakpoints was found by a “total-fit” algorithm that will be

discussed in detail below. It is globally optimum in the sense of having

fewest total demerits over all choices of breakpoints, where the demerits

80 Digital Typography

assessed for the jth line are computed by the formula

r (1 + /3j + TTj)^ + , if TTj > 0 ;

5j = <1 (1 + /3j)^ - + aj , if -oo < TTj < 0 ;

[{1 + Pj)'^ + aj , if TTj = -oo .

Here Pj and nj are the badness rating and the penalty, as before; and aj

is zero unless both line j and the previous line ended on flagged penalty

items, in which case aj is the additional penalty assessed for consecutive

hyphenated lines (e.g., 3000). We shall say that we have found the best

choice of breakpoints if we have minimized the sum of 6j over all lines j.

The formula for Sj is quite arbitrary, like our formula for Pj, but

it works well in practice because it has the following desirable proper¬

ties: (a) Minimizing the sum of squares of badnesses not only tends

to minimize the maximum badness per line, it also provides secondary

optimization; for example, when one particularly bad line is inevitable,

the other line breaks will also be optimized, (b) The demerit function dj

increases as nj increases, except in the case nj = — oo when we don’t

need to consider the penalty because such breaks are forced, (c) By

adding 1 to Pj instead of using the badness Pj by itself, we minimize the

total number of lines in cases where there are breaks whose badness is

approximately zero.

For example, the following table shows the respective demerits

charged to the individual lines of the paragraphs in Figures 1,2, and 3:

First fit Best fit Total fit

4096 4096 4096

8649 2601 2601

3249 9 9

16641 196 22801

4 4 1
529 529 9

196 196 256

196 196 1
1225 1225 1225

64009 64009 4

784 36 36

1 1 1

99579 73098 31040

In the first-fit and best-fit methods, each line is likely to come out about

as badly as any other; but the total-fit method tends to have its bad

Breaking Paragraphs Into Lines 81

In olden times when wisli^ng still helped one, ss?
there lived a king whose daughters were all beauj- .000

ti^ul; and the youngest was so beau,tijful that the ,280

sun itself, which has seen so much, was astoiij- 1.000

ished whenever it shone in her face. Close by the oe?
king’s castle lay a great dark forest, and nufler an .278

old lime-,tree in the forjest was a well, and when .636
the day was very warm, the king’s child went out - le?
into the forpst and sat down by the side of the .700

cool fonujtain; and when she was bored she took a -.170

golden ball, and threw it up on high and caught .357

it; and this ball was her favorite play,thing. .000

Figure 3. This is the best possible way to break the lines in the para¬

graph of Figures 1 and 2, in the sense of fewest total demerits as

defined in the text.

cases near the beginning, since the line-breaking problem allows less

flexibility in the opening lines.

Figure 4 on the next page shows another comparison of the same

three methods on the same text, this time with a line width of 500 units.

Here the total-fit algorithm finds a solution that does not hyphenate any

words, because of its ability to look ahead; the other two methods, which

proceed one line at a time, miss this solution because they do not know

that a slightly worse first line leads in this case to fewer problems later

on. The demerits per line in Figure 4 are:

First fit Best fit Total fit

1521 1521 2209

3136 3136 4

3600 3600 676

4489 9 2916

4 1 1
1 4 1

400 121 9

4 25 16

1 16 400

1 1

13156 8434 6233

Here the 3600 demerits on the third line for “first fit” and “best fit” are

primarily due to the penalty of 50 for an inserted hyphen.

The first-fit method finds a way to set the paragraph of Figure 4

in only nine lines, while the total-fit method yields ten. Publishers who

prefer to save a little paper, as long as the line breaks are fairly decent.

82 Digital Typography

First fit: In olden times when wishjing still helped one, there lived a king -.727

whose daughjters were all beaujtijful; and the youngest was so .821

beauitijful that the sun itself, which has seen so much, was astonj- -.455

ished whenever it shone in her face. Close by the king’s castle lay -.870

a great dark forjest, and un^der an old lime-itree in the forest was - .208

a well, and when the day was very warm, the king’s child went .000

out into the for|est and sat down by the side of the cool fourijtain; - .577

and when she was bored she took a golden ball, and threw it up - .231

on high and caught it; and this ball was her favorite plaything. .000

Best fit: In olden times when wish^ing still helped one, there lived a king -.727

whose daughjters were all beau,ti/ul; and the youngest was so 821
beaujtijful that the sun itself, which has seen so much, was astouj- -.455

ished whenever it shone in her face. Close by the king’s castle .278
lay a great dark forjest, and ur^ier an old lime-,tree in the forpst .000

was a well, and when the day was very warm, the king’s child .237

went out into the forest and sat down by the side of the cool .452
foun,tain; and when she was bored she took a golden ball, and .343

threw it up on high and caught it; and this ball was her favor,ite .-.320

plaything. .004

Total fit: In olden times when wishing still helped one, there lived a .774

king whose daughters were all beau,ti/ul; and the youngest was .179

so beau,ti/ul that the sun itself, which has seen so much, was .629

astonished whenever it shone in her face. Close by the king’s .545

castle lay a great dark forjest, and un,der an old lime-,tree in the .000

forpst was a well, and when the day was very warm, the king’s .079

child went out into the forpst and sat down by the side of the .282
cool foun,tain; and when she was bored she took a golden ball, .294

and threw it up on high and caught it; and this ball was her .575

favorite plaything. .004

Figure 4. A somewhat wider setting of the same sample paragraph.

might therefore prefer the first-fit solution in spite of all its demerits.
However, there are various ways to modify the specifications so that the
total-fit method will give more preference to short solutions; for example,
the stretchability of the glue on the final line could be decreased from
its present huge size to about the width of the line, thereby making the
algorithm prefer final lines that are nearly full. We could also replace
the constant ‘1’ in the definition of demerits 5j by a larger number. The
total-fit algorithm can in fact be set up to produce the optimum solution
having the minimum number of lines.

The text in these examples is quite straightforward, and we have
been setting type in reasonably wide columns; thus we have not been
considering especially difficult or unusual line-breaking problems. Yet
we have seen that an optimizing algorithm can produce noticeably better
results even in such routine cases. The improved algorithm will clearly

Breaking Paragraphs Into Lines 83

be of significant value in more difficult situations, for example when

mathematical formulas are embedded in the text, or when the fines must
be narrow as in a newspaper.

Anyone who is curious about the fate of the beautiful princess men¬

tioned in Figures 1 through 4 can find the answer in Figure 6 on pages

84-85, which presents the whole story. The columns in Figure 6 are

unusually narrow, allowing only about 21 or 22 characters per line; a

width of about 35 characters is normal for newspapers, and magazines

often use columns about twice as wide as those illustrated here. The

line-at-a-time algorithms cannot cope satisfactorily with such stringent

restrictions, but Figure 6 shows that the optimizing algorithm is able to

break the text into reasonably equal lines. Quite a few hyphenations turn

out to be desirable, since hj'phenation increases the number of spaces

per fine and aids justification, even though the penalty for hyphenation

was increased from 50 to 5000 in this example.

Although our line-breaking criteria have been developed with jus¬

tified text in mind, tfie lookahead algorithm was used in Figure 6 to

produce ragged right margins by simply suppressing justification after

the fine breaks were chosen. Another criterion of badness, based solely

on the difference between the desired length Ij and the actual length Lj,
should actually be used in order to get the best breakpoints for ragged-

right typesetting, and the space between words should be allowed to

stretch but not to shrink so that Lj never exceeds lj. Furthermore,

ragged-right typesetting should not allow words to “stick out,” that is,

to begin to the right of where the following fine ends; for example, the

word ‘it’ should really move down to the second line in Figure 5.

Figure 5. Here the best-fit method was used to

break a paragraph into extremely narrow lines.

The results have been left unjustified, because

they w'ould look terrible otherwise. For example,

the third line contains only two spaces, and the

third-from-last line only one; these spaces would

have to stretch considerably if the lines were jus¬

tified. The first line of this paragraph illustrates

the “sticking-out” problem that can arise in un¬

justified settings.

In the meantime it
knocked a second
time, and cried,
“Princess, youngest
princess, open the
door for me. Do you
not know what you
said to me yesterday
by the cool waters of
the well? Princess,
youngest princess,
open the door for
me!”

These considerations show that an algorithm intended for high qual¬

ity fine breaking in ragged-right formats is actually a little bit harder to

write than one for justified text, contrary to the prevailing opinion that

justification is more difficult. On the other hand. Figure 6 indicates that

84 Digital Typography

In olden times when

wishing still helped

one, there lived a king

whose daughters were

all beautiful; and the

youngest was so beau¬

tiful that the sun it¬

self, which has seen so

much, was astonished

whenever it shone in

her face. Close by

the king’s castle lay a

great dark forest, and

under an old lime-tree

in the forest was a

well, and when the

day was very warm,

the king’s child went

out into the forest

and sat down by

the side of the cool

fountain; and when

she was bored she

took a golden ball,

and threw it up on

high and caught it;

and this ball was her

favorite plaything.

Now it so happened

that on one occasion

the princess’s golden

ball did not fall into

the little hand that

she was holding up

for it, but on to the

ground beyond, and

it rolled straight into

the water. The king’s

daughter followed it

with her eyes, but

it vanished, and the

well was deep, so

deep that the bottom

could not be seen. At

this she began to cry,

and cried louder and

louder, and could not

be comforted. And

as she thus lamented

someone said to her,

“What ails you, king’s

daughter? You weep

so that even a stone

would show pity.”

She looked round

to the side from

whence the voice

came, and saw a frog

stretching forth its

big, ugly head from

the water. “Ah, old

water-splasher, is it

you?” said she; “I

am weeping for my

golden ball, which has

fallen into the well.”

“Be quiet, and do not

weep,” answered the

frog. “1 can help you;

but what will you give

me if I bring your

plaything up again?”

“Whatever you will

have, dear frog,” said

she; “my clothes, my

pearls and jewels, and

even the golden crown

that 1 am wearing.”

The frog answered,

“1 do not care for your

clothes, your pearls

and jewels, nor for

your golden crown;

but if you will love

me and let me be

your companion and

play-fellow, and sit

by you at your little

table, and eat off your

little golden plate,

and drink out of your

little cup, and sleep in

your little bed—if you

will promise me this

I will go down below,

and bring you your

golden ball up again.”

“Oh yes,” said she,

“I promise you all

you wish, if you will

but bring me my ball

back again.” But she

thought, “How the

silly frog does talk!

All he does is sit in the

water with the other

frogs, and croak. He

can be no companion

to any human being.”

But the frog, when

he had received this

promise, put his head

into the water and

sank down; and in a

short while he came

swimming up again

with the ball in his

mouth, and threw

it on the grass. The

king’s daughter was

delighted to see her

pretty plaything once

more, and she picked

it up and ran away

with it. “Wait, wait,”

said the frog. “Take

me with you. I can’t

run as you can.” But

what did it avail him

to scream his croak,

croak, after her, as

loudly as he could?

She did not listen to

it, but ran home and

soon forgot the poor

frog, who was forced

to go back into his

well again.

The next day when

she had seated her¬

self at table with the

king and all the cour¬

tiers, and was eat¬

ing from her little

golden plate, some¬

thing came creeping

splish splash, splish

splash, up the marble

staircase; and when

it had got to the

top, it knocked at

the door and cried,

“Princess, youngest

princess, open the

door for me.” She

ran to see who was

outside, but when

she opened the door,

there sat the frog

in front of it. Then

she slammed the door

to, in great haste,

sat down to dinner

again, and was quite

frightened. The king

saw plainly that her

heart was beating vi¬

olently, and said, “My

child, what are you so

afraid of? Is there per¬

chance a giant outside

who wants to carry

you away?” “Ah, no,”

replied she. “It is no

giant, it is a disgust¬

ing frog.”

“What does a frog

want with you?” “Ah,

dear father, yesterday

as I was in the forest

Figure 6. The tale of the Prog King, typeset with quite narrow lines and

with “ragged right” margins. The breakpoints were chosen optimally

under the assumption that the lines would be justified.

sitting by the well,
playing, my golden
ball fell into the
water. And because
I cried so, the frog
brought it out again
for me; and because
he so insisted, I prom¬
ised him he should
be my companion, but
I never thought he
would be able to come
out of his water. And
now he is outside
there, and wants to
come in to see me.”

In the meantime
it knocked a sec¬
ond time, and cried,
“Princess, youngest
princess, open the
door for me. Do you
not know what you
said to me yesterday
by the cool waters
of the well? Prin¬
cess, youngest prin¬
cess, open the door
for me!”

Then said the king,
"That which you have
promised must you
perform. Go and let
him in.” She went
and opened the door,
and the frog hopped
in and followed her,
step by step, to her
chair. There he sat
and cried, “Lift me
up beside you.” She
delayed, until at last
the king commanded
her to do it. Once the
frog was on the chair
he wanted to be on
the table, and when
he was on the table he
said, “Now, push your
little golden plate
nearer to me, that
we may eat together.”
She did this, but it
was easy to see that
she did not do it will¬
ingly. The frog en¬
joyed what he ate, but
almost every mouth¬
ful she took choked
her. At length he said.

Breaking Paragraphs Into Lines 85

“I have eaten and
am satisfied, now I
am tired; carry me
into your little room
and make your little
silken bed ready, and
we will both lie down
and go to sleep.”

The king’s daugh¬
ter began to cry, for
she was afraid of the
cold frog, which she
did not like to touch,
and which was now
to sleep in her pretty,
clean little bed. But
the king grew angry
and said, “He who
helped you when you
were in trouble ought
not afterwards to be
despised by you.” So
she took hold of the
frog with two fingers,
carried him upstairs,
and put him in a cor¬
ner. But when she was
in bed he crept to her
and said, “I am tired,
I want to sleep as well
as you; lift me up or I
will tell your father.”
At this she was terri¬
bly angry, and took
him up and threw him
with all her might
against the wall.
“Now, will you be
quiet, odious frog?”
said she. But when he
fell down he was no
frog but a king’s son
with kind and beauti¬
ful eyes. He by her
father’s will was now
her dear companion
and husband. Then
he told her how he
had been bewitched
by a wicked witch,
and how no one could
have delivered him
from the well but
herself, and that to¬
morrow they would
go together into his
kingdom.

Then they went to
sleep, and next morn¬
ing when the sun

awoke them, a car¬
riage came driving
up with eight white
horses, which had
white ostrich feath¬
ers on their heads,
and were harnessed
with golden chains;
and behind stood
the young king’s ser¬
vant Faithful Henry.
Faithful Henry had
been so unhappy
when his master was
changed into a frog,
that he had caused
three iron bands to
be laid round his
heart, lest it should
burst with grief and
sadness. The car¬
riage was to conduct
the young king into
his kingdom. Faithful
Henry helped them
both in, and placed
himself behind again,
and was full of joy
because of this de¬
liverance. And when
they had driven a part
of the way, the king’s
son heard a cracking
behind him as if some¬
thing had broken. So
he turned round and
cried, “Henry, the
carriage is breaking.”

“No, master, it is
not the carriage. It
is a band from my
heart, that was put
there in my great
pain when you were
a frog and impris¬
oned in the well.”
Again and once again
while they were on
their way something
cracked, and each
time the king’s son
thought the carriage
was breaking; but it
was only the bands
that were spring¬
ing from the heart
of Faithful Henry
because his master
was set free and was
so happy.

Figure 6 (continued). A somewhat different criterion of optimality

would have been more appropriate for unjustified setting, yet the

lines did turn out to be of approximately equal width.

86 Digital Typography

an algorithm designed for justification usually can be tuned to produce

adequate breakpoints when justification is suppressed.

The difficulties of setting narrow columns are illustrated in an in¬

teresting way by the pattern of words

“Now, push your little golden plate nearer ...”

that appears in the fourth-from-last paragraph of Figure 6. We don’t

want to hyphenate any of those words, for reasons stated earlier; and it

turns out that all of the four-word sequences containing the word ‘little’,

namely

“Now, push your little

push your little golden

your little golden plate

little golden plate nearer

are too long to fit in one line. Therefore the word ‘little’ will have to

appear in a line that contains only three words and two spaces, no matter

what text precedes this particular sequence.

The final paragraphs of the story present other difficulties, some

of which involve complex interactions spanning many lines of the text,

making it impossible to find breakpoints that would avoid occasional

wide spacing if the text were justified. Figure 7 shows what happens

when a portion of Figure 6 is, in fact, justified; this is the most difficult

part of the entire story, in which one of the lines in the optimum solution

is forced to stretch by the enormous factor 6.616. The only way to

typeset that paragraph without such wide spaces is to leave it unjustified

(unless, of course, we change the problem by altering the text or the line

width or the minimum size of spaces).

and were harpessed 3.137

with golden chains; 3.277

and bejhind stood s.740

the young king’s serj- .783

vant Faithful Henry. 1.971

Faithjful Henry had 3.474

been so un^happy e.eie
when his master was .940

changed into a frog, 1.612

Figure 7. This portion of the story in Figure 6

is the most difficult to handle, when we try to

justify the text using such narrow columns; even

the optimum breakpoints result in wide spaces.

Further Applications

Before we discuss the details of an optimizing algorithm, let us con¬

sider more fully how the basic primitives of boxes, glue, and penalties

allow us to solve a wide variety of typesetting problems. Some of these

applications are straightforward extensions of the simple ideas used in

Breaking Paragraphs Into Lines 87

Figures 1 through 4, while others seem at first to be quite unrelated to

the ordinary task of line breaking.

Combining paragraphs

If the desired line widths li are not all the same, we might want to type¬

set two paragraphs with the second one starting in the list of line lengths

where the first one leaves off. This can be done simply by treating the

two paragraphs as one, i.e., appending the box/glue/penalty items of the

second to the first, assuming that each paragraph begins with indenta¬

tion and ends with finishing glue and a forced break as mentioned above.

Patching

Suppose that a paragraph starts on page 100 of some book and continues

on to the next page, and suppose that we want to make a change to the

first part of that paragraph. We want to be sure that the last line of

the new page 100 will end at the right-hand margin just before the word

that appears at the beginning of page 101, so that page 101 doesn’t

have to be redone. It is easy to specify this condition in terms of our

conventions, simply by forcing a line break (with penalty —oo) at the

desired place, and discarding the subsequent text. The ability of the

total-fit algorithm to look ahead means that it will find a suitable way

to patch page 100 whenever such a solution exists.

We can also force the altered part of the paragraph to have a certain

number of lines, k, by using the following trick: Set the desired length

f/c+i of the {k + l)st line equal to a number 9 that is different from the

length of any other line. Then an empty box of width 9 that occurs be¬

tween two forced-break penalty items will have to be placed on line k + 1.

Hanging punctuation

Some people prefer to have the right edge of their text look “solid,”

by setting periods, commas, and other punctuation marks (including

inserted hyphens) in the right-hand margin. For example, this practice is

occasionally used in contemporary advertising. It is easy to get inserted

hyphens into the margin: We simply let the width of the corresponding

penalty item be zero. And it is almost as easy to do the same for periods

and other symbols, by putting every such character in a box of width

zero and adding the actual symbol width to the glue that follows. If no

break occurs at this glue, the accumulated width is the same as before;

and if a break does occur, the line will be justified as if the period or

other symbol were not present.

88 Digital Typography

Avoiding “psychologically bad” breaks

Since computers don’t know how to think, at least not yet, it is reason¬

able to wonder if there aren’t some line breaks that a computer would

choose but a human operator might not, when the breaks somehow don’t

seem right. This problem does not arise very often when straight text is

being set, as in newspapers or novels, but it is quite common in technical

material. For example, it is psychologically bad to break before ‘x’ or ‘y’

in the sentence

A function of x is a rule that assigns a value y to every value of x.

A computer will have no qualms about breaking anywhere unless it is

told not to; but a human operator might well avoid bad breaks, perhaps

even unconsciously.
Psychologically bad breaks are not easy to define. We just know

they are bad. When the eye journeys from the end of one line to the

beginning of another, in the presence of a bad break, the second word

often seems like an anticlimax, or isolated from its context. Imagine

turning the page between the words ‘Chapter’ and ‘8’ in some sentence;

you might well think that the compositor of the book you are reading

should not have broken the text at such an illogical place.

During the first year of experience with T^X, the authors of this

paper began to notice occasional breaks that didn’t feel quite right,

although the problem wasn’t thought to be severe enough to warrant

corrective action. Finally, however, we were less able to justify our claim

that TgX has the world’s best line-breaking algorithm, when the com¬

puter would occasionally make breaks that were semantically annoying;

for example, the preliminary TeX manual [26] had quite a few of them,

and the first drafts of that manual were even worse.

As time went on, the authors grew more and more sensitive to psy¬

chologically bad breaks, not only in the copy produced by but also

in other published literature, and it became desirable to test the hy¬

pothesis that computers were really to blame. Therefore a systematic

investigation was made of the first 1000 line breaks in the ACM Journal

of 1960 (which was composed manually by a Monotype operator), com¬

pared to the first 1000 line breaks in the ACM Journal of 1980 (which

was typeset by one of the best commercially available computer systems

for mathematics, developed by Penta Systems International). The final

lines of paragraphs, and the lines preceding displays, were not consid¬

ered to be line breaks, since they are forced. Only the texts of articles

were considered, not the bibliographies. A reader who wishes to try the

same experiment should find that the 1000th break in 1960 occurred

Breaking Paragraphs Into Lines 89

on page 67, while in 1980 it occurred on page 64. The results of this

admittedly subjective procedure were a total of

13 bad breaks in 1960,

55 bad breaks in 1980.

In other words, there was more than a four-fold increase, from about

1% to a quite noticeable 5.5%! Of course, this test is not absolutely

conclusive, because the style of articles in the ACM Journal has not

remained constant, but it suggests strongly that computer typesetting

causes semantic degradation when it chooses breaks solely on the basis
of visual criteria.

Once this problem was identihed, a systematic effort was made to

purge all such breaks from the second edition of Knuth’s book Semi-

numerical Algorithms [28], which was the first large book to be typeset

with T]eX. It is quite easy to get the line-breaking algorithm to avoid

certain breaks by simply prefixing the glue item by a penalty with pi =

999, say; then the bad break is chosen only in an emergency, when

there is no other good way to set the paragraph. We can also make

the typist’s job reasonably easy by reserving a special symbol (e.g.,

to be used instead of a normal space between words whenever breaking

is undesirable. Although this problem has rarely been discussed in the

literature, the authors subsequently discovered that some typographers

have a word for it: They call such spaces “auxiliary.” Thus there is a

growing awareness of the problem.

Let us call such spaces ties. It may be useful to list the main kinds of

contexts in which ties were used in Seminumerical Algorithms, since that

book ranges over a wide variety of technical subjects. The following rules

should prove to be helpful to compositors who are keyboarding technical

manuscripts into a computer.

1. Use ties in cross-references:

Theorem'A Algorithm'B Chapter'S

Table'4 Programs E and'F

No tie appears after ‘Programs’ in the last example, since it would

be quite all right to have ‘E and F’ at the beginning of a line.

2. Use ties between a person’s forenames and between multiple sur¬

names:

Dr.'I.'J. Matrix Luis'I. Trabb'Pardo

Peter van'Emde'Boas

A recent trend to avoid spaces altogether between initials may be

largely a reaction against typical computer line-breaking algorithms!

90 Digital Typography

Notice that it seems better to hyphenate a name than to break

it between words; for example, ‘Don-’ and ‘aid E. Knuth’ is more

tolerable than ‘Donald’ and ‘E. Knuth’. In a sense, rule 1 is a special

case of rule 2, since we may regard ‘Theorem" A’ as a name; another

example is ‘register'X’.

3. Use ties for symbols in apposition with nouns:

hase'b dimension'd

function~/(a;) string's of length'/

But compare the last example with ‘string's of length /'or more’.

4. Use ties for symbols in series:

1,'2, or'3 CL~b, and'c 1, 2, • • ■ ,Ut-

5. Use ties for symbols as tightly-bound objects of prepositions:

of'x from 0 to'l

increase z by'l in common with'm

This rule does not apply to compound objects: For example, con¬

sider ‘of u'and'u’.

6. Use ties to avoid breaking up mathematical phrases that are ren¬

dered in words:

equals'n less than'e mod'2 modulo'p^

(given'Ai) when a;'grows if /'is ...

Compare ‘is'15’ with ‘is 15'times the height’; and compare ‘for all

large'n’ with ‘for all n'greater than'uo’-

7. Use ties when enumerating cases:

(b)'Show that f{x) is (1)'continuous; (2)'bounded.

It would be nice to boil these seven rules down into one or two, and it

would be even nicer if the rules could be automated so that keyboarding

could be done without them; but subtle semantic considerations seem to

be involved in many of these instances. Most examples of psychologically

bad breaks seem to occur when a single symbol or a short group of

symbols appears just before or after the break. An automatic scheme

would do reasonably well if it would associate large penalties with a

break just before a short non-word, and medium penalties with a break

just after a short non-word. Here ‘short non-word’ means a sequence

of symbols that is not very long, yet long enough to include instances

like ‘exercise'15(b)’, ‘length'2^^’, ‘order'n/2’ followed by punctuation

marks; one should not simply consider patterns that have only one or

two symbols. On the other hand it is not so offensive to break before or

Breaking Paragraphs Into Lines 91

after fairly long sequences of symbols; for example, ‘exercise 4.3.2-15’
needs no tie after the word ‘exercise’.

Many books on composition recommend against breaking just be¬

fore the final word of a paragraph, especially if that word is short; this

can, of course, be done by using a tie just before that last word, and the

computer could insert this automatically. Some books also give recom¬

mendations analogous to rule 2 above, saying that compositors should

try not to break lines in the middle of a person’s name. But there is ap¬

parently only one book that addresses the other issues of psychologically

bad breaks, namely a nineteenth-century FVench manual by A. Prey [15,

volume 1, page 110], where the following examples of undesirable breaks
are mentioned:

Henri'IV M.“Colin l®''“sept. art.“25 20“fr.

It seems to be time to resurrect such old traditions of fine printing.

Recent experience of the authors indicates that the task of inserting

ties is not a substantial additional burden when entering a manuscript

into a computer. The careful use of such spaces may in fact lead to

greater job satisfaction on the part of the keyboard operator, since the

quality of the output can be noticeably improved with comparatively

little work. It is comforting at times to know that the machine needs

your help.

Author lines

Most of the review notices published in Mathematical Reviews are signed

with the reviewer’s name and address, and this information is typeset

flush right, namely at the right-hand margin. If there is sufficient space

to put such a name and address at the right of the final line of the

paragraph, the publishers can save space, and at the same time the re¬

sults look better because there are no strange gaps on the page. During

recent years the composition software used by the American Mathemat¬

ical Society was unable to do this operation, but the amount of money

saved on paper made it economical for them to pay someone to move

the reviewer-name lines up by hand wherever possible, applying scissors

and (real) glue to the computer output.

This is a case where the name and address fit in nicely
with the review. A. Reviewer (Ann Arbor, Mich.)

But sometimes an extra line must be added.
N. Bourbaki (Paris)

Figure 8. The MR problem.

92 Digital Typography

Let us say that the “MR problem” is to typeset the contents of a

given box flush right at the end of a given paragraph, with a space of at

least w between the paragraph and the box if they occur on the same line.

This problem can be solved entirely in terms of the box/glue/penalty

primitives, as follows:

(text of the given paragraph)

penalty(0, oo, 0)

glue(0, 100000, 0)

penalty(0, 50, 0)

glue(rc, 0, 0)

box(O)

penalty(0, oo, 0)

glue(0, 100000, 0)

(the given box)

penalty(0, —oo, 0)

The flnal penalty of — oo forces the final line break with the given box

flush right; the two penalties of +oo are used to inhibit breaking at the

following glue items. Thus, the above sequence reduces to two cases:

whether or not to break at the penalty of 50. If a break is taken there,

the ‘glue(w, 0, 0)’ disappears, according to our rule that each line begins

with a box; the text of the paragraph preceding the penalty of 50 will

be followed by ‘glue(0, 100000, 0)’, which will stretch to All the line as if

the paragraph had ended normally, and the given box on the flnal line

will similarly be preceded by ‘glue(0, 100000, 0)’ to All the gap at the

left. On the other hand if no break occurs at the penalty of 50, the net

effect is to have the glues added all together, producing

(text of the given paragraph)

glue(ro, 200000, 0)

(the given box)

so that the space between the paragraph and the box is w or more.

Whether the break is chosen or not, the badness of the two flnal lines or

the flnal line will be essentially zero, because so much stretchability is

present. Thus the relative cost differential separating the two alterna¬

tives is almost entirely due to the penalty of 50. The total-fit algorithm

will choose the better alternative, based on the various possibilities it has

for setting the given paragraph; it might even make the given paragraph

a little bit tighter than its usual setting, if this works out best.

Breaking Paragraphs Into Lines 93

Ragged right margins

We observed in Figure 6 that an optinnnn line-breaking algorithm in¬

tended for justihed text does a fairly good job at making lines of nearly

equal length even when the lines aren’t justified afterwards. However,

one can easily construct examples in which the justification-oriented

method makes bad decisions, since the amount of deviation in line

width is weighted by the amount of stretchability or shrinkability that is

present. A line containing many words, and therefore containing many

spaces between words, will not be considered problematical by the jus¬

tification criteria even if it is rather short or rather long, because there

is enough glue present to stretch or shrink gracefully to the correct size.

Conversely, when there are few words in a line, the algorithm will take

pains to avoid comparatively small deviations. This is illustrated in Fig¬

ure 5, which actually reads better than the corresponding paragraph in

Figure 6 (except for the word that sticks out on the first line); hyphens

were inserted into the paragraph of Figure 6 in order to create more

interword space for justification.

Although the box/glue/penalty model appears at first glance to be

oriented solely to the problem of justified text, in fact it is powerful

enough to be adapted to the analogous problem of unjustified typeset¬

ting: If the spaces between words are handled in the right way, we can

make things work out so that each line has the same amount of stretch-

ability, no matter how many words are on that line. The idea is to let

spaces between words be represented by the sequence

glue(0, 18, 0)

penalty(0, 0, 0)

glue(6, -18, 0)

instead of the ‘glue(6, 3, 2)’ we used for justified typesetting. We may

assume that there is no break at the ‘glue(0, 18, 0)’ in the sequence, be¬

cause the algorithm cannot do worse by breaking at the ‘penalty(0, 0, 0)’,

when 18 units of stretchability are present. If a break occurs at the

penalty, there will be a stretchability of 18 units on the line, and the

‘glue(6, —18, 0)’ will be discarded after the break so that the next line

will begin flush left. On the other hand if no break occurs, the net effect

is to have glue(6, 0, 0), representing a normal space with no stretching

or shrinking.

The stretchability of -18 in the second glue item has no physical

significance, but it nicely cancels out the stretchability of -|-18 in the first

glue item. Negative stretchability has several interesting applications,

94 Digital Typography

so the reader should study this example carefully before proceeding to

the more elaborate constructions below.

Optional hyphenations in unjustified text can be specified in a simi¬

lar way; instead of using ‘penalty(6, 50, 1)’ for an optional 6-unit hyphen

having a penalty of 50, we can use the sequence

penalty(0, oo, 0)

glue(0, 18, 0)

penalty(6, 500, 1)

glue(0, -18, 0).

The penalty has been increased here from 50 to 500, since hyphenations

are less desirable in unjustified text. After the breakpoints have been

chosen using the above sequences for spaces and for optional hyphens,

the individual lines should not actually be justified; otherwise a hyphen

inserted by the ‘penalty(6, 500, 1)’ would appear at the right margin.

It is not difficult to prove that this approach to ragged-right type¬

setting will never lead to words that “stick out” as in the first line of

Figure 5; the total demerits are reduced whenever a word that sticks out

is moved to the following line.

Centered text

Occasionally we want to take some text that is too long to fit on one

line and break it into approximately equal-size parts, centering the parts

on individual lines. This is most often done when setting titles or cap¬

tions, but it can also be applied to the text of a paragraph, as shown

in Figure 9.

Boxes, glue, and penalties can perform this operation, in the fol¬

lowing way: (a) At the beginning of the paragraph, use ‘glue(0, 18, 0)’

instead of an indentation, (b) For each space between words in the

paragraph, use the sequence

glue(0, 18, 0)

penalty(0, 0, 0)

glue(6, —36, 0)

box(O)

penaltyfO, oo, 0)

glue(0, 18, 0).

(c) End the paragraph with the sequence

glue(0, 18, 0)

penalty(0, —oo, 0).

Breaking Paragraphs Into Lines 95

In olden times when wishing still helped one, there lived a king whose
daughters were all beautiful; and the youngest was so beautiful that the
sun itself, which has seen so much, was astonished whenever it shone in
her face. Close by the king’s castle lay a great dark forest, and under an
old lime-tree in the forest was a well, and when the day was very warm,
the king’s child went out into the forest and sat down by the side of the
cool fountain; and when she was bored she took a golden ball, and threw

it up on high and caught it; and this ball was her favorite plaything.

Figure 9. “Ragged-centered” text: The total-fit algorithm will pro¬

duce special effects like this, when appropriate combinations of

box/glue/penalty items are used for the spaces between words.

The tricky part of this method is part (b), which ensures that an optional

break at the ‘penalty(0, 0, 0)’ puts stretchability of 18 units at the end of

one line and at the beginning of the next. If no break occurs, the net ef¬

fect will be glue(0, 18, 0)-|-glue(6, -36, 0) + glue(0, 18, 0) = glue(6, 0, 0),

a fixed space of 6 units. The ‘box(O)’ contains no text and occupies no

space; its function is to keep the ‘glue(0, 18, 0)’ from disappearing at

the beginning of a line. The ‘penalty(0, 0, 0)’ item could be replaced

by other penalties, to represent breakpoints that are more or less de¬

sirable. However, this technique cannot be used together with optional

hyphenation, since our box/glue/penalty model is incapable of insert¬

ing optional hyphens anywhere except at the right margin when lines

are justified.

The construction used here essentially minimizes the maximum gap

between the margins and the text on any line; and subject to that mini¬

mum it essentially minimizes the maximum gap on the remaining lines;

and so forth. The reason is that our definitions of badness and demerits

reduce in this case so that the sum of demerits for any choice of break¬

points is approximately proportional to the sum of the sixth powers of

the individual gaps.

ALGOL-like languages

One of the most difficult tasks in technical typesetting is to get computer

programs to look right. In addition to the complications of mathemati¬

cal formulas and a variety of typefaces and spacing conventions, we want

to indent the lines suitably in order to display the program structure.

Sometimes a single statement must be broken across several lines; some¬

times a number of short statements should be grouped together on a

single line. Computer scientists who attempt to publish programs in

journals that are not accustomed to such material soon discover that

96 Digital Typography

very few printing establishments have the expertise necessary to handle

ALGOL-like languages in a satisfactory way.

Once again, the concepts of boxes, glue, and penalties come to the

rescue: It turns out that our line-breaking methods developed for ordi¬

nary text can be used without change to do the typesetting of programs

in ALGOL-like languages. For example. Figure 10 shows a typical pro¬

gram taken from the Pascal manual [23] that has been typeset assuming

two different column widths. Although these two settings of the pro¬

gram do not look very much alike, they both were made from exactly

the same input, specihed in terms of boxes, glue, and penalties; the

only difference was the specihcation of line width. (The input text in

this example was prepared by a computer program called Blaise [27],

which will translate any Pascal source text into a hie that can be

incorporated into other documents.)

The box/glue/penalty specihcations that lead to Figure 10 involve

constructions similar to those we have seen above, but with some new

twists; it will be sufficient for our purposes merely to sketch the ideas

instead of dwelling on the details. One key point is that the breaks are

chosen by the minimum-demerits criteria we have been discussing, but

the lines are not justified afterwards (i.e., the glue does not actually

stretch or shrink). The reason is that relations and assignment state¬

ments are processed by TeX’s normal “math mode,” which allows line

breaks to occur in various places but without any special constructions

particular to this application, so that justification would have the un¬

desirable effect of putting all such breaks at the right margin. The fact

that justification is suppressed actually turns out to be an advantage in

this case, since it means that we can insert glue stretching wherever we

like, within a line, if it affects the ‘badness’ formula in a desirable way.

Each line in the wider setting of Figure 10 is actually a “paragraph”

by itself, so it is only the narrower setting that shows the line-breaking

mechanism at work. Every “paragraph” has a specified amount of in¬

dentation for its first line, corresponding to its position in the program,

as a given number t of “tab” units. The paragraph is also given a hang¬

ing indentation oft + 2 tab units; this means that all lines after the first

are required to be two tabs narrower than the first line, and they are

shifted two tabs to the right with respect to that line. In some cases

(e.g., those lines beginning with ‘var’ or ‘while’) the offset is three tabs

instead of two.

The paragraph begins with ‘glue(0, 100000, 0)’, which has the effect

of providing enough stretchability that the line-breaking algorithm will

not wince too much at breaks that do not square perfectly with the

Breaking Paragraphs Into Lines 97

const n = 10000;

var sieve, primes :

set of 2 .. n;

next,j : integer]

begin { initialize }

sieve := [2 .. n];

primes := [];

next := 2;

repeat { find next

prime }

while not {next in

sieve) do

next :=

succ{next)]

primes ;=

primes + [next]]

j next]

while j <= n do

{ eliminate }

begin sieve :=

sieve — [j];

j := j + next

end

until sieve = []

end.

Figure 10. These two settings of a sample Pas¬

cal program were made from identical input

specifications in the box/glue/penalty model;

in the first case the lines were set 10 ems wide,

and in the second case the width was 25 ems.

All of the line-breaking and indentation was

produced automatically by the total-fit algo¬

rithm, which has no specific knowledge of Pas¬

cal. Compilation of the Pascal source code into

boxes, glue, and penalties was done by a com¬

puter program called Blaise.

const n = 10000;

var sieve, primes : set of 2 .. n;

next,j : integer]

begin { initialize }

sieve := [2.. n]; primes := []; next := 2;

repeat { find next prime }
while not {next in sieve) do next := succ{next)]

primes := primes + [next]] j := next]

while j <= n do { eliminate }

begin sieve sieve — [j]; j := j + next

end

until sieve = []

end.

98 Digital Typography

right margin, at least not on the first line. Special breaks are inserted

at places where TgX would not normally break in math mode; e.g., the

sequence

penalty(0, oo, 0)

glue(0, 100000, 0)

penalty(0, 50, 0)

glue(0, -100000, 0)

box(O)

penalty(0, oo, 0)

glue(0, 100000, 0)

has been inserted just before ‘’primes' in the var declaration. This se¬

quence allows a break with penalty 50 to the next line, which begins

with plenty of stretchability. A similar construction is used between

assignment statements, for example between ‘sieve := [2 . . n];’ and

‘primes := []’, where the sequence is

penalty(0, oo, 0)

glue(0, 100000, 0)

penalty(0, 0, 0)

glue(6 + 2ry, —100000, 0)

box(O)

penalty(0, oo, 0)

glue(—2ta, 100000, 0);

here w is the width of a tab unit. If a break occurs, the following

line begins with ‘glue(—2ry, 100000, 0)’, which undoes the effect of the

hanging indentation and effectively restores the state at the beginning

of a paragraph. If no break occurs, the net effect is ‘glue(6, 100000, 0)’,

a normal space.

No automatic system can hope to find the best breaks in programs,

since an understanding of the semantics will indicate that certain breaks

make the program clearer and reveal its symmetries better. However,

dozens of experiments on a wide variety of Pascal source texts have

shown that this approach is surprisingly effective; fewer than 1% of the

line-breaking decisions have been overridden by authors of the programs

in order to provide additional clarity.

A complex index

The final application of line breaking that we shall study is the most

difficult one that has so far been encountered by the authors; it was

solved only after we had acquired more than two years of experience

Breaking Paragraphs Into Lines 99

ACM Symposium on Principles of Programming

Languages, Third (Atlanta, Ga., 1976), selected

papers .*1858

ACM Symposium on Theory of Computing, Eighth

Annual (Hershey, Pa., 1976) . 1879, 4813,

5414, 6918, 6936, 6937, 6946, 6951, 6970, 7619,

9605, 10148, 11676, 11687, 11692, 11710, 13869

Software .See *1858

ACM Symposium on Principles of

Programming Languages, Third

(Atlanta, Ga., 1976), selected

papers . *1858

ACM Symposium on Theory of

Computing, Eighth Annual

(Hershey, Pa., 1976) .

1879, 4813, 5414, 6918, 6936, 6937,

6946, 6951, 6970, 7619, 9605, 10148,

11676, 11687, 11692, 11710, 13869

Software .See *1858

Figure 11. These three extracts

from a Key Index were all typeset

from identical input, with respective

column widths of 22.5, 17.5, and

12.5 ems. Notice the combination of

ragged right and ragged left setting,

and the “dot leaders.”

with more straightforward line-breaking tasks, since the full power of

the box/glue/penalty primitives was not immediately apparent. The

task is illustrated in Figure 11, which shows excerpts from a Key Index

in Mathematical Reviews. Such an index now appears at the end of each

volume, together with an Author Index that has a similar format.

As in Figure 10, the examples in Figure 11 were generated by the

same source input, but they were typeset using different line widths

in order to illustrate the various possibilities of breakpoints. Each entry

in the index consists of two parts, the name part and the reference part,

both of which might be too long to fit on a single line. If line breaks

occur in the name part, the individual lines are to be set with a ragged

right margin, but breaks in the reference part are supposed to produce

lines with a ragged left margin. The two parts are separated by leaders,

a row of dots that expands to fill the space between them; leaders are

introduced by a slight generalization of glue that typesets copies of a

ACM Symposium on

Principles

of Programming

Languages, Third

(Atlanta, Ga., 1976),

selected papers ... *1858

ACM Symposium on

Theory of Computing,

Eighth Annual

(Hershey, Pa., 1976)

........ 1879, 4813, 5414,

6918, 6936, 6937, 6946,

6951, 6970, 7619, 9605,

10148, 11676, 11687,

11692, 11710, 13869

Software .See *1858

100 Digital Typography

given box into a given space, instead of leaving that space blank. A

hanging indentation is applied to all lines but the first, so that the first

line of each entry is readily identifiable. One of the goals in breaking

such entries is to minimize the white space that appears in ragged-right

or ragged-left lines. A subsidiary goal is to minimize the number of lines

that contain the reference part; for example, if it is possible to fit all of

the references on one line, the line-breaking algorithm should do so. The

latter event might mean that a break occurs after the leaders, with the

references starting on a new line; in such a case the leaders should stop a

fixed distance wi from the right margin. Furthermore, the ragged-right

lines should all be at least a fixed distance W2 from the right margin, so

that there is no chance of confusing part of the name with part of the

reference material. The individual boxes to be replicated in the leaders

are W3 units wide.

The ground rules are illustrated in Figure 11, where there is a hang¬

ing indentation of 27 units, and wi = 45, W2 — 9, = 7.2; the digits are

9 units wide, and the respective column widths are 405 units, 315 units,

and 225 units. The entry for ‘Theory of Computing’ shows three pos¬

sibilities for the leader dots: They can share a line with the end of the

name part and the beginning of the reference part, or they can end a

line before the reference part or begin a line after the name part.

Here is how all this can be encoded with boxes, glue, and penalties:

(a) Each blank space in the name part is represented by the sequence

penalty(0, 00, 0)

glue(u;2, 18, 0)
penalty(0, 0, 0)

glue(6 - W2, -18, 2)

which yields ragged right margins and spaces that can shrink from 6 units

to 4 units if necessary, (b) The transition between name part and refer¬

ence part is represented by sequence (a) followed by

box(O)

penalty(0, 00, 0)

leaders(3rc3, 100000,

glue(wi, 0, 0)

penalty(0, 0, 0)

glue(-wi, -18, 0)

box(O)

penaltylO, 00, 0)

glue(0, 18, 0).

Breaking Paragraphs Into Lines 101

(c) Each blank space in the reference part is represented by the sequence

penaltyfO, 999, 0)

ghie(6, -18, 2)

box(O)

penalty(0, oo, 0)

glue(0, 18, 0),

which yields ragged left margins and 6-nnit to 4-nnit spaces.

Parts (a) and (c) of this construction are analogous to things we have

seen before; the 999“point penalties in (c) tend to minimize the total

number of lines occupied by the reference part. The most interesting

aspect of this construction is the transition sequence (b), where there

are four possibilities: If no line breaks occur in (b), the net result is

(name part) glne(6, 0, 2) (leaders) (reference part),

which allows leader dots to appear between the name and reference

parts on the current line. If a line break occurs before the leaders, the
net result is

(name part) glue(6, 0, 2)

(leaders) (reference part),

so that we have a break essentially like that after a blank space in the

name part, and the dot leaders begin the following line. If a line break

occurs after the leaders, the net result is

(name part) glue(6, 0, 2) (leaders) glue(tyi, 0, 0)

glue(0, 18, 0) (reference part),

so that we have a break essentially like that after a blank space in the

reference part but without the penalty of 999; the leaders end wi units

from the right margin. Finally, if breaks occur both before and after the

leaders in (b), we have a situation that always has more demerits than

the alternative of breaking only before the leaders.

When the choice of breakpoints leaves room for at least 2>w^ units

of leaders, we are sure to have at least two dots, but we might not have

three dots since leader dots on different lines are aligned with each other.

The glue in other blank spaces on the line with the leaders will shrink if

there is less than Sica of space for the leaders, and this tends to make it

more likely that the leader dots will not disappear altogether; however,

in the worst case the space for leaders will shrink to zero, so there might

not be any dots visible. It would be possible to ensure that all the leaders

contain at least two dots, by simply setting the shrink component of the

102 Digital Typography

leader item in (b) to zero. This would improve the appearance of the

resulting output; but unfortunately it would also increase the length of

the author indexes by about 15 percent, and such an expense would

probably be prohibitive.
A preliminary version of this construction has been used with T^X

to prepare the indexes of Mathematical Reviews since November, 1979.

However, the items ‘box(()) penalty(0, oo, 0)’ were left out of (b), for

compatibility with earlier indexes prepared by other typesetting soft¬

ware; this means that the leaders disappear completely whenever a break

occurs just before them, and the resulting indexes have unfortunate gaps

of white space that spoil their appearance.

An Algebraic Approach

The examples we have just seen show that boxes, glue, and penalties

are quite versatile primitives that allow a user to obtain a wide variety

of effects without extending the basic operations needed for ordinary

typesetting. However, some of the constructions may have seemed like

magic; they work, but it isn’t clear how they were ever conceived in the

first place. We shall now study a fairly systematic way to deal with these

primitives in order to assess their full potentiality. This brief discussion

is independent of the remainder of the paper and can be omitted.

In the first place it is clear that

hox{w) box(ty') = box(u; -|- w') ,

if we ignore the contents of the boxes and consider only the widths;

only the widths enter into the line-breaking criteria. This formula says

that any two consecutive boxes can be replaced by a single box without

affecting the choice of breakpoints, since breaks do not occur at box

items. Similarly it is easy to verify that

glue(w, y, z) glue(u;', y', z') = glue(u; + w', y + y', z + z') ,

since there will be no break at g\ue{w', y', z'), and since a break at

glue(u;, y, z) is equivalent to a break at glue(u; + w', y + y', z + z').

Under certain circumstances we can also combine two adjacent

penalty items into a single one; for example, if — oo < p, p' < -foo
we have

penalty(u;, p, f) penalty(u;, y', /) = penalty(u;, min(p, p'), f)

Breaking Paragraphs Into Lines 103

with respect to any optimal choice of breakpoints, since there are fewer

demerits associated with the smaller penalty. However, we cannot always

replace the general sequence ‘penalty(rc, p, /) penalty(r(;', p', /')’ by a
single penalty item.

We can assume without loss of generality that all box items are

immediately followed by a pair of items having the form ‘penalty(0, oo, 0)

glue(it;, y, z)'. For if the box is followed by another box, we can combine

the two; if it is followed by a penalty item with p < oo, we can insert

‘penalty(0, oo, 0) glue(0, 0, 0)’; if it is followed by ‘penalty(u;, oo, /)’ we

can assume that u; = / = 0 and that the following item is glue; and if

the box is followed by glue, we can insert ‘penalty(0, oo, 0) glue(0, 0, 0)

penalty(0, 0, 0)’. Furthermore we can delete any penalty item that has

p = oo if it is not immediately preceded by a box item.

Thus, any sequence of box/glue/penalty items can be converted into

a normal form, where each box is followed by a penalty of oo, each

penalty is followed by glue, and each glue is either followed by a box or

by a penalty that is < oo. We assume that there is only one penalty — oo,

and that it is the final item, since a forced line break effectively separates

a longer sequence into independent parts. It follows that the normal-

form sequences can be written

X1X2 . . . Xn penalty(ti;, -00, /)

where each W is a sequence of items having the form

box(rc) penalty(0, 00, 0) glue(ty', y, z)

or the form
penalty(n, p, /) glue(u;, y, z) .

Let us use the notation bpg(rt;-l-u;', y, z) for the first of these two forms,

noting that it is a function ofw + w' rather than of w and w' separately;

and let us write pg(n, p, /, w, y, z) for X's of the second form. We can

assume that the sequence of X’s contains no two bpg’s in a row, since

bpg(u;, y, z) bpg(rc', y', z') = hpg{w + w\y + y', z + z) .

Familiarity with this algebra of boxes, glue, and penalties makes

it a fairly simple matter to invent constructions for special applica¬

tions like those listed above, whenever such constructions are possible.

For example, let us consider a generalization of the problems arising in

ragged-right, ragged-left, and ragged-centered text: We wish to specify

104 Digital Typography

an optional break between words such that if no break occurs we will

have the sequence

(end of texti) glue(u;i, yi, zi) (beginning of text2)

on one line, while if a break does occur we will have

(end of texti) glue(u;2, 2/2, -^2) penalty(u;o, P, f)
g\ue{w3, ys, -23) (beginning of text2)

on two lines. A consideration of normal forms shows that the most

general thing we can do is to insert the sequence

bpg(u;, y, z) pg(u;o, P, /, w', v', z') bpg(u;", y \ z")

between texti and text2, where no additional text is associated with the

two inserted bpg’s. Our job reduces therefore to determining appropriate

values of w, y, z, w', y', z', w", y”, and z”] these can be obtained

immediately by solving the equations

w + w' + w" = Wi , y + y' + y” = yi , z -\- z' -\- z" — zi ,

w = W2 , 2/ = 2/2 , 2 = 22 ,
// H ff W =W3 , y =y^ , z ^ Z3 .

Once a construction has been found in this way, it can be simplified

by undoing the process we have used to derive normal forms and by

using other properties of box/glue/penalty algebra. For example, we

can always delete the penalty 00 item in a sequence like

penalty(0, 00, 0) glue(0, y, z) penalty(0, p, 0) ,

if y > 0 and z > 0 and p < 0, since a break at the glue is always worse

than a break at the penalty p.

Introduction to the Algorithm

The general ideas underlying the total-fit algorithm for line breaking

can probably be understood best by considering an example. Figure 12

repeats the paragraph of Figure 4(c) and includes little vertical marks

to indicate “feasible breakpoints” found by the algorithm. A feasible

breakpoint is a place where the text of the paragraph from the beginning

to this point can be broken into lines whose adjustment ratio does not

exceed a given tolerance; in the case of Figure 12, this tolerance was

taken to be unity. Thus, for example, there is a tiny mark after ‘went’

Breaking Paragraphs Into Lines

' In olden times when wishjing still helped one, there lived a'

kin^ whose daughters were all beaujti/nl; and the youngest was'

so' beaujtijful that the sun itself, which has seen so much, was'

astonjished whenever it shone in her face. Close by the king’s'

castld lay a great dark forpst, and uiifler an old lime-itree in' the'

forjest' was' a' well, and when the day was very warm, the' king’s'

child' went' out' into the forpst and sat down by the side' of the'

cool' founjtain;' and when she was bored she took a golden' ball,'

and' threw' it' up' on' high and caught it; and this ball was' her*

favorjitd playjthing. i

Figure 12. Tiny vertical marks show “feasible breakpoints” where lines

could end without forcing any prior spaces to stretch more than their
given stretchability.

on line 7, since there is a way to set the paragraph up to this point with

‘went’ at the end of the 6th line and with none of lines 1 to 6 having a

badness exceeding 100 (see Figure 4(a)).

The algorithm proceeds by locating all of the feasible breakpoints

and remembering the best way to get to each one, in the sense of fewest

total demerits. This is done by keeping a list of active breakpoints, rep¬

resenting all of the feasible breakpoints that might be a candidate for

future breaks. Whenever a potential breakpoint b is encountered, the

algorithm tests to see if there is any active breakpoint a such that the

line from a to 6 has an acceptable adjustment ratio. If so, 6 is a feasible

breakpoint and it is appended to the active list. The algorithm also

remembers the identity of the breakpoint a that minimizes the total de¬

merits, when the total is computed from the beginning of the paragraph

to b through a. When an active breakpoint a is encountered for which

the line from a to b has an adjustment ratio less than —1 (that is, when

the line can’t be shrunk to fit the desired length), breakpoint a is re¬

moved from the active list. Since the size of the active list is essentially

bounded by the maximum number of words per line, the running time

of the algorithm is bounded by this quantity (which usually is small)

times the number of potential breakpoints.

For example, when the algorithm begins to work on the paragraph in

Figure 12, there is only one active breakpoint, representing the beginning

of the first line. It is infeasible to have a line starting there and ending

at ‘In’, or ‘olden’, ..., or ‘lived’, since the glue between words does not

accumulate enough stretchability in such short segments of the text;

but a feasible breakpoint is found after the next word ‘a’ is encountered.

Now there are two active breakpoints, the original one and the new one.

After the next word ‘king’, there are three active breakpoints; but after

the next word ‘whose’, the algorithm sees that it is impossible to squeeze

105

.774

.179

.629

.545

.000

.079

.282

.294

.575

.004

106 Digital Typography

all of the text from the beginning up to ‘whose’ on one line, so the initial

breakpoint becomes inactive and only two active ones remain.

Skipping ahead, let us consider what happens when the algorithm

considers the potential break after ‘fountain;’. At this stage there are

eight active breakpoints, following the respective text boxes for ‘child’,

‘went’, ‘out’, ‘side’, ‘of’, ‘the’, ‘cool’, and ‘foun-’. The line starting

after ‘child’ and ending with ‘fountain;’ would be too long to fit, so

‘child’ becomes inactive. Feasible lines are found from ‘went’ or ‘out’ to

‘fountain;’ and the demerits of those lines are 400 and 144, respectively;

the line from ‘went’ actually turns out to be preferable, since there are

substantially fewer total demerits from the beginning of the paragraph to

‘went’ than to ‘out’. Thus, ‘fountain;’ becomes a new active breakpoint.

The algorithm stores a pointer back from ‘fountain;’ to ‘went’, meaning

that the best way to get to a break after ‘fountain;’ is to start with the

best way to get to a break after ‘went’.

The computation of this algorithm can be represented pictorially

by means of the network in Figure 13, which shows all of the feasible

breakpoints together with the number of demerits charged for each fea¬

sible line between them. The object of the algorithm is to compute the

shortest path from the top of Figure 13 to the bottom, using the de¬

merit numbers as the “distances” corresponding to individual parts of

the path. In this sense, the job of optimal line breaking is essentially

a special case of the problem of finding shortest paths in an acyclic

network; the line-breaking algorithm is slightly more complex only be¬

cause it must construct the network at the same time as it is finding the

shortest path.

Notice that the best-fit algorithm can be described very easily in

terms of a network like Figure 13: It is the “greedy algorithm” that

simply chooses the shortest continuation at every step (although it uses

badness-plus-penalty as the criterion, not demerits). And the first-fit al¬

gorithm can be characterized as the method of always taking the leftmost

branch having a negative adjustment ratio (unless it leads to a hyphen,

in which case the rightmost non-hyphenated branch is chosen when¬

ever there is a feasible one). From these considerations we can readily

understand why the total-ht algorithm tends to do a much better job.

Sometimes there is no way to continue from one feasible breakpoint

to any other. This situation doesn’t occur in Figure 13, but it would

be present below the word ‘so’ if we had not permitted hyphenation

of ‘astonished’. In such cases the first-fit and best-fit algorithms must

resort to infeasible lines, while the total-fit algorithm can usually find

another way through the maze.

2209

B'

Breaking Paragraphs Into Lines 107

B
■ 1521

king

5329 3136

was so

676 3600

was astoii-

289 i . 4489

king’s castle lay

5929 1 I 3481

in the for¬ est

676 1 : 841 1600

the king’s child

00 i 4 2209

was B
I 1 ''81 .1369

went out

16 49 6561 121, 3249, .400 144 \1444

side of the cool foun- tain; and

1' ... 324, 5929 16 ; 25 i 4 1 '289 \ 4 2401 .

golden ball. and threw B up

25 676 400 2601

on

16 2601'"--

was

3364

her favor¬ ite play-

1 '., 3001 3001

/ 1

thing.

Figure 13. This network shows the feasible breakpoints and the number

of demerits charged when going from one breakpoint to another. The

shortest path from the top to the bottom corresponds to the best

way to typeset the paragraph, if we regard the demerits as distances.

On the other hand, some paragraphs are inherently difficult, and
there is no way to break them into feasible lines. In such cases the al¬
gorithm we have described will find that its active list dwindles until
eventually there is no activity left; what should be done in such a case?
It would be possible to start over with a more tolerant attitude toward
infeasibility (a higher threshold value for the adjustment ratios). TgX
takes the attitude that the user wants to make some manual adjustment

108 Digital Typography

when there is no way to meet the specified criteria, so the active list is

forcibly prevented from becoming empty by simply declaring a break¬

point to be feasible if it would otherwise leave the active list empty. This

results in an overset line and an error message that encourages the user

to take corrective action.

Figure 14 shows what happens when the algorithm allows quite loose

lines to be feasible; in this case a line is considered to be infeasible

only if its adjustment ratio exceeds 10 (so that there would be more

than two ems of space between words). Such a setting of the tolerances

would be used by people who don’t want to make manual adjustments

to paragraphs that cannot be set well. The tiny marks that indicate

feasible breakpoints have varying lengths in this illustration, with longer

marks indicating places that can be reached via better paths; the tiny

dots are for breakpoints that are just barely feasible. Notice that all of

the potential breakpoints in Figure 14 are marked, except for a few in

the first two lines; so there are considerably more feasible breakpoints

here than there were in Figure 12, and the network corresponding to

Figure 13 will be much larger. There are 806,137,512 feasible ways to

set the paragraph when such wide spaces are tolerated, compared to

only 50 ways in Figure 12. However, the number of active nodes will not

be significantly bigger in this case than it was in Figure 12, because it is

limited by the length of a line, so the algorithm will not run too much

more slowly even though its tolerance has been raised and the number of

possible settings has increased enormously. For example, after ‘fountain;’

there are now 17 active breakpoints instead of the 8 present before, so

the processing takes only about twice as long although huge numbers of

additional possibilities are being taken into account.

When the threshold allows wide spacing, the algorithm is almost

certain to find a feasible solution, and it will report no errors to the user

even though some rather loose lines may have been necessary. The user

who wants such error messages should set the tolerance lower; this not

only gives warnings when corrective action is needed, it also improves

the algorithm’s efficiency.

One of the important things to note about Figure 14 is that break¬

points can become feasible in completely different ways, leading up to

different numbers of lines before the breakpoint. For example, the word

‘seen’ is feasible both at the end of line 3:

‘In olden ... lived/a... young-/est... seen’

and at the end of line 4:

‘In olden ... helped/one ... were/all... beau-/tiful... seen’.

109 Breaking Paragraphs Into Lines

' In olden times when wisl^ng still helped one,' there' lived' a'
kin^ whose daughters were all beaujti^ul;' and' the' yoim^st' was'
so' beaujtijful that the sun itself, which has' seen' so' much,' was'
astonjished when]ever' it shone' in her' face.' Close' by the' king’s'
castld lay a' great' dark' forjest,' and' unider' an' old lime-,tree' in' the'
forjpst' was' a' well, and when the' day' was' very warm,' the' king’s'
child went' out' into' the' forest' and sat' down' by' the' side' of the'
cool' founjtain;' and' when' she' was' bored she' took' a' golden' ball,'
and threw' it' up' on' high' and caught' it;' and this' ball' was' hel
favorite' plaything. i

.774

. 179

.629

.545

.000

.079

.282

.294

.575

.004

Figure 14. When the tolerance is raised to 10 times the stretchability,

more breakpoints become feasible, and there are many more possi¬
bilities to explore.

although ‘seen’ was not a feasible break at all in Figure 12. The breaks

that put ‘seen’ at the end of line 3 have substantially fewer demerits than

those putting it on line 4 (1,533,770 versus 12,516,097,962), so the algo¬

rithm wall remember only the former possibility. This is an application

of the dynamic-programming “principle of optimality” which is respon¬

sible for the efficiency of our algorithm [6]: The optimum breakpoints

of a paragraph are always optimum for the subparagraphs they create.

But the interesting thing is that this economy of storage would not be

possible if the future lines were not all of the same length, since differing

line lengths might well mean that it would be much better to put ‘seen’

on line 4 after all; for example, we have mentioned a trick for forcing the

algorithm to produce a given number of lines. In the presence of varying

line lengths, therefore, the algorithm would need to have two separate

list entries for an active breakpoint after the word ‘seen’. The computer

cannot simply remember the one with fewest total demerits; that would

invalidate the optimality principle of dynamic programming.

Figure 15 is an example of line breaking when the individual lengths

are all different. In such cases, the need to attach line numbers to break¬

points might cause the number of active breakpoints to be substantially

more than the maximum number of words per line, if the feasibility tol¬

erance is set high. Therefore we want to set the tolerance low. But if

the tolerance is too low, there may be no way to break the paragraph

into lines having a desired shape. Fortunately, there is usually a happy

medium in which the algorithm has enough flexibility to find a good so¬

lution without needing too much time and space. The data in Figure 16

shows, for example, that the algorithm did not have to do very much

work to find an optimal solution for Galileo’s remarks on circles, when

the adjustment ratio on each feasible line was required to be 2 or less;

yet there was sufficient flexibility to make feasible solutions possible.

110 Digital Typography

The area of a
circle is a mean propor¬

tional between any two regular
and similar polygons of which one

circumscribes it and the other is iso-
perimetric with it. In addition, the area

of the circle is less than that of any cir¬
cumscribed polygon and greater than that
of any isoperimetric polygon. And further,
of these circumscribed polygons, the one
that has the greater number of sides has
a smaller area than the one that has

a lesser number; but, on the other
hand, the isoperimetric polygon

that has the greater num¬
ber of sides is the

larger.
— Galileo Galilei (1638)

I
turn, in the

following treatises, to
various uses of those triangles

whose generator is unity. But 1 leave out
many more than I include; it is extraordinary how

fertile in properties this triangle is. Everyone can try his hand.

— Blaise Pascal (1654)

Figure 15. Examples of line breaking with lines of different sizes.

Figure 16.
Details of the feasible

breakpoints in the first

example of Figure 15,

showing how the optimum

solution was found.

The area of a' .375
circle is a mean propor- .828

tional between any two regulah .406

and similar polygons of which one' i.o98

circumscribes it and the other is iso-' 1.268
erifnetric with it. In addition, the area' .574

of the' circle is less than that of any cir-' 1.111
cumhcribed' polygon and greater than that' .931
of any iso'peri'metric polygon. And further,' .534
of thesd circumscribed polygons, the ond i.sei

that' has' thd greater number of sides has' .703
a' smaller area' than the one that has' 1.437

a' lesser number;' but, on the otheh 1.240
hand,' the' iso^Jerl'metric polygon' i.ose

that has the' greater num-' .974
ber of sides is' the' .479

larger.' .000

Breaking Paragraphs Into Lines 111

A good line-breaking method is especially important for technical

typesetting, since mathematical formulas embedded in text should re¬

main unbroken whenever possible. Some of the most difficult copy of this

kind appears in Aiathenia.tical Reviews or in the answer pages of The

Art of Computer Programming, since the material in those publications

is often densely packed with formulas. Figure 17 shows a typical exam¬

ple from the answer pages of Seminumerical Algorithms [28], together

with indications of the feasible breaks when the adjustment ratios are

constrained to be at most 1. Although some feasible breakpoints occur

in the middle of formulas, they are associated with penalties that make

them comparatively undesirable, so the algorithm was able to keep all

of the mathematics of this paragraph intact.

15. {This procedure maintains four integers (A, B, C, D) with the invariant meaning'

that “our remaining job is to output the continued fraction for {Ay + B)/{Cy T D)j

where y is the input yet to come.”) Initially set j •<— fc <- 0, {A, B, C, D) ■(-' (a, 6, c, d);'

then input Xj and set (A, B, C, D) e- {Axj + B, A, Cxj + D, C), j e-' j -f' 1,' one' oi^

more' times until C + D has the same sign as C. (When j > l' and' the' input' has' not'

terminated, we know that 1 < y < oo; and when C + D> has' the' same' sign' as C we' .

know therefore that (Ay + B)/{Cy + D) lies between' (A +' B)/{C -|-' D)' and' A/C.)'
Now' comes the general step: If no integer lies strictly between' (A +' B)/{C +'D)'

and' A/Cl output ^ VA/C\, and set (A, B, C, D) (C, D, A -'X^C, B -'XfcD),'

k k -f-'1;' otherwise input Xj and set {A, B,C, D) e-' {Axj +' B, A,Cxj +' D,C)j

j ■(—' j +' 1.' The' general step is repeated ad infinitum.' However,' if at' anjf time' the'

final Xj' is' input,' the' algorithm immediately switches' gears: It' outputs' the' continued'

fraction fob {Axj +' B)/{Cxj + D), using Euclid’s' algorithm,' and' terminates. '

Figure 17. An example of the feasible breakpoints found by the algo¬

rithm in a paragraph containing numerous mathematical formulas.

More Bells and Whistles

The optimization problem we have formulated is to find breakpoints

that minimize the total number of demerits, where the demerits of a

particular line depend on its badness (i.e., on how much its glue must

stretch or shrink) and on a possible penalty associated with its final

breakpoint; additional demerits are also added when two consecutive

lines end with hyphens (i.e., end at penalty items with / = 1). Two

years of experience with such a model of the problem gave excellent

results, but a few paragraphs showed up where further improvement

was possible.

The first two lines of Figures 4(a) and 4(b) illustrate a poten¬

tial source of visual disturbance that was not considered in the model

discussed above. These paragraphs begin with a tight line (having

.409

.057

.788

,207

.282

.124

.192

,582

,098

479

266

325

000

112 Digital Typography

r — —.727) immediately followed by a loose line (having r = +.821).

Although the two lines are not offensive in themselves, the contrast be¬

tween tight and loose makes them appear worse. Therefore TeX’s new

algorithm for line breaking recognizes four kinds of lines:

Class 0 (tight lines), where — 1 < r < — .5;

Class 1 (normal lines), where — .5 < r < .5;

Class 2 (loose lines), where .5 < r < 1;

Class 3 (very loose lines), where r > 1.

Additional demerits are added when adjacent lines are not of the same

or adjacent classes, i.e., when a Class 0 line is preceded or followed by

Class 2 or Class 3, or when Class 1 is preceded or followed by Class 3.

This seemingly simple extension actually forces the algorithm to

work harder, because a feasible breakpoint may now have to be entered

into the active list up to four times in order to preserve the dynamic¬

programming principle of optimality. For example, if it is feasible to

end at some point with both a Class 0 line and a Class 2 line, we must

remember both possibilities even though the Class 0 choice has more

demerits, because we might want to follow this breakpoint with a tight

line. On the other hand, we need not remember the Class 0 possibility

if its total demerits exceed those of the Class 2 break plus the demerits

for contrasting lines, since the Class 0 breakpoint will never be optimum

in such a case.

More experience is needed to determine whether the additional com¬

putation required by this extension is worthwhile. It is comforting for

the user to know that the line-breaking algorithm takes such refinements

into account, but there is no point in doing the extra work if the output

is hardly ever improved.

Another extension to the algorithm is needed to raise it to the high¬

est standards of quality for hand composition: Sometimes we wish to

make a paragraph come out one line longer or shorter than its optimum

length, because this will avoid an isolated “widow line” at the top or

bottom of a page, or because it will make the total number of lines even,

so that the material can be divided into two equal columns. Although

the paragraph itself will not be in its optimum form, the entire page will

look better, and the paragraph will be set as well as possible subject to

the given constraints. For example, two of the paragraphs in the story

of Figure 6 have been set a line shorter than their optimum length, so

that all six columns come out equal.

The line-breaking algorithm we shall describe therefore has a “loose¬

ness” parameter, illustrated in Figure 18. The looseness is an integer q

Breaking Paragraphs Into Lines

In olden times when wisli^ng still helped one, there lived a king
whose daughters were all beaujti/nl; and the youngest was so
beaujtijful that the sun itself, whicli has seen so much, was astoi^
ished whenever it shone in her face. Close by the king’s castle lay
a great dark forpst, and ui^fler an old lime-jtree in the forpst was
a well, and when the day was very warm, the king’s child went
out into the forpst and sat down by the side of the cool fouiijtain;
and when she was bored she took a golden ball, and threw it up
on high and caught it; and this ball was her favorjite playjthing.

In olden times when wisli^ing still helped one, there lived a
king whose daughters were all beaujti^ul; and the youngest was
so beaUjti/ul that the sun itself, which has seen so much, was
astoi:ijished whenever it shone in her face. Close by the king’s
castle lay a great dark foi'iest, and linger an old lime-jtree in the
forest was a well, and when the day was very warm, the king’s
child went out into the forpst and sat down by the side of the
cool foun,tain; and when she was bored she took a golden ball,
and threw it up on high and caught it; and this ball was her
favorite play,thing.

In olden times when wishing still helped one, there lived
a king whose daughters were all beauiti/ul; and the young¬
est was so beaujtijful that the sun itself, which has seen so
much, was astonished whenever it shone in her face. Close
by the king’s castle lay a great dark forest, and un^er an
old lime-jtree in the forpst was a well, and when the day
was very warm, the king’s child went out into the forpst
and sat down by the side of the cool founjtain; and when
she was bored she took a golden ball, and threw it up on
high and caught it; and this ball was her favorite playj-
thing.

Figure 18. Paragraphs obtained when the “looseness” parameter has

been set to —1, 0, and -|-1. Such settings are sometimes necessary to

balance a page, but of course the effects are not beautiful when one

goes to extremes.

such that the total number of lines produced for the paragraph is as close

as possible to the optimum number plus q, without violating the condi¬

tions of feasibility. Figure 18 shows what happens to the example para¬

graph of Figure 14 when |g| < 1. Values of g < — 1 would be the same

as q = —1, since this paragraph cannot be squeezed any further; values

of 5 > 1 are possible but rarely useful, because they require extremely

loose spacing. The user can get the optimum solution having fewest pos¬

sible lines by setting q to an extremely negative value like —100. When

q ^ 0, the feasible breakpoints corresponding to different line numbers

must all be remembered, even when every line has the same length.

113

-.727

.821

-.455

-.870

-.208

.000

-.577

-.231

-.883

.774

.179

.629

.545

.000

.079

.282

.294

.575

.557

1.393

1.464

1.412

1.226

1.412

1.735

1.774

1.559

1.378

2.129

.862

114 Digital Typography

If the lines of a paragraph are fairly loose, we don’t want the last line

to be noticeably different, so we should reconsider our previous assump¬

tion that a paragraph’s “finishing glue” has almost infinite stretchability.

The penalty for adjacent lines of contrasting classes seems to work best

in connection with looseness if the finishing glue at the paragraph end

is set to have a normal space equal to about one-third of the total line

width, stretching to the full width and shrinking to zero.

The Algorithm Itself

Now let us get down to brass tacks and discuss the details of an optimum

line-breaking algorithm. We are given a paragraph xi .. .Xm described

by items Xi — {ti,’Wi,yi, Zi,pi, fi) as explained earlier, where Xi is a box

item and Xm is a penalty item specifying a forced break {pm — — oo).

We are also given a potentially infinite sequence of positive line lengths

li, I2,_There is a parameter a that gets added to the demerits when¬

ever two consecutive breakpoints occur with /^ = 1, and a parameter 7

that gets added to the demerits whenever two consecutive lines belong

to incompatible fitness classes. There is a tolerance threshold p that

is an upper bound on the adjustment ratios. And there is a looseness

parameter q.

A feasible sequence of breakpoints {bi,... ,bk) is a legal choice of

breakpoints such that each of the k resulting, lines has an adjustment

ratio Tj < p. If g = 0, the job of the algorithm is to find a feasible

sequence of breakpoints having the fewest total demerits. If g / 0, the

job of the algorithm is somewhat more difficult to describe precisely; it

can be formulated as follows: Let k be the number of lines that the al¬

gorithm would produce when q = 0. Then the algorithm finds a feasible

sequence of k + q breakpoints having fewest total demerits. However, if

this is impossible, the value of q is increased by 1 (if g < 0) or decreased

by 1 (if g > 0) until a feasible solution is found. Sometimes no feasible

solution is possible even with g = 0; we will discuss this situation later

after seeing how the algorithm behaves in the normal case.

We have seen that it is occasionally useful to permit boxes, glue,

and penalties to have negative widths and even negative stretchability;

but a completely unrestricted use of negative values leads to unpleas¬

ant complications. For reasons of efficiency, it is desirable to place two

limitations on the paragraphs that will be treated:

• Restriction 1. Let Mb be the length of the minimum-length line

from the beginning of the paragraph to breakpoint b, namely the

sum of all Wi — Zi taken over all box and glue items Xj for 1 < f < 6,

Breaking Paragraphs Into Lines 115

plus Wf, if xt, is a penalty item. The paragraph mnst have Ma <

whenever a and b are legal breakpoints with a < b.

• Restriction 2. Let a and b be legal breakpoints with a < b, and

assume that no Xi in the range n < i < 6 is a box item or a forced

break (penalty pi = —oo). Then either b = 7n, or a^b+i is a box item

or a penalty pb+i < oo.

Both of these restrictions are quite reasonable, as they are met by

all known practical applications. Restriction 2 seems peculiar at first

glance, but we will see in a moment why it is helpful.

Our algorithm has the following general outline, viewed from the

top down:

(Create an active node representing the starting point);

for 6 := 1 to m do (if 6 is a legal breakpoint) then

begin (Initialize the feasible breaks at b to the empty set);

(for each active node a) do

begin (Compute the adjustment ratio r from a to 6);

if r < — 1 or (6 is a forced break) then (Deactivate node a);

if -1 < r < p then (Record a feasible break from a to b);
end;

(if there is a feasible break at b) then

(Append the best such breaks as active nodes);

end;

(Choose the active node with fewest total demerits);

if 9 7^ 0 then (Choose the appropriate active node);

(Use the chosen node to determine the optimum breakpoints).

The meaning of the ad hoc ALGOL-like language used here should be

self-evident. An active node in this description refers to a record that

includes information about a breakpoint together with its fitness classi¬

fication and the line number on which it ends.

We want to have a data structure that makes this algorithm efficient,

and a reasonably good one is not hard to design. Two considerations

are paramount: The operation of computing the adjustment ratio, from

a given active node a to a given legal breakpoint 6, should be made as

simple as possible; and there should be an easy way to determine which

of the feasible breaks at b ought to be saved as active nodes.

In the first place, the adjustment ratio depends on the total width,

total stretchability, and total shrinkability computed from the first box

after one breakpoint to the following breakpoint, and we don’t want to

compute those sums over and over. To avoid this, we can simply compute

the sum from the beginning of the paragraph to the current place, and

116 Digital Typography

subtract two such sums to obtain the total of what lies between them.

Let (Eu;)b, {T,y)b, and (Ez)^ denote the respective sums of all the Wi, yi,

and Zi in the box and glue items Xj for 1 < i < b. Then if a and b are

legal breakpoints with a < b, the width Lab of 3, line from a to b and its

stretchability Yab and shrinkability Zab can be computed as follows:

Lab = (Ew)b - (Er(;)after(a) + i^b if tb = ‘penalty’);

Zab — {Zy)b (Ey)after(a) i

Zab — {Zz'jb (E2:)after(a) •

Here ‘after(a)’ is the smallest index i > a such that either z > m or Xj is

a box item or x^ is a penalty item that forces a break {p^ — — oo). These

formulas hold even in the degenerate case that after(a) > b, because of

Restriction 2; in fact, Restriction 2 essentially stipulates that the relation

after(a) > b implies that (Ew)b = (Ew)after(a)) {Zy)b = (Ej/)after(a), and

{YjZ)b (E2:)after(a) •

From these considerations, we may conclude that each node a in the

data structure should contain the following fields:

position(a) = index of the breakpoint represented by this node;

line(a) = number of the line ending at this breakpoint;

fitness(a) = fitness class of the line ending at this breakpoint;

totalwidth(a) = (Eu;)after(a)) used to calculate adjustment ratios;

totalstretch(a) = (E?/)after(a)5 used to calculate adjustment ratios;

totalshrink(a) = (E2;)after(a)5 used to calculate adjustment ratios;

totaldemerits(a) = minimum total demerits up to this breakpoint;

previous(a) = pointer to the best node for the preceding breakpoint;

link(a) = pointer to the next node in the list.

Nodes become active when they are first created, and they become

passive when they are deactivated. The algorithm maintains global vari¬

ables A and P, which point respectively to the first node in the active

list and the first node in the passive list. The first step can therefore be

fleshed out as follows:

(Create an active node representing the starting point) =

begin A := new node (position = 0, line = 0, fitness = 1,

totalwidth = 0, totalstretch = 0,

totalshrink = 0, totaldemerits = 0,

previous = A, link = A);

P:=A;

end.

We also introduce global variables EVF, ET, and EZ to represent

{T,w)b, (Ey)b, and (Ez)b in the main loop of the algorithm, so that the

Breaking Paragraphs Into Lines 117

operation ‘for 6 := 1 to m do (if 6 is a legal breakpoint) then (main

loop)’ takes the following form:

SIP SF := SZ := 0;

for b := 1 to m do

if tb = ‘box’ then Sll' := SIP + wt,

else if tb = ‘glue’ then

begin if tb-i = ‘box’ then (main loop);

SIP SIP + int; SP:=SP + '(/b; SZ SZ + 2^;

end

else if pb 7^ +oo then (main loop).

In the main loop itself, the operation (Compute the adjustment ratio r

from a to b) can now be implemented simply as follows:

L := SIP — totalwidth(n);

if tb = ‘penalty’ then L := L Wb\

j := line(a) + 1;

if L ^ Ij then

begin Y := SP — totalstretch(a);

if 1' > 0 then r := {Ij — L)/Y else r := oo;

end

else if L > Ij then

begin Z := SZ — totalshrink(a);

if Z > 0 then r := {Ij — L)IZ else r := oo;

end

else r := 0.

The other nonobvious problem we have to deal with is caused by the

fact that several nodes might correspond to a single breakpoint. We will

never create two nodes having the same values of (position, line, fitness),

since the whole point of our dynamic programming approach is that we

need only remember the best possible way to get to each feasible break

position having a given line number and a given fitness class. But it is

not immediately clear how to keep track of the best ways that lead to a

given position, when that position can occur with different line numbers;

we could, for example, maintain a hash table with (line, fitness) as the

key, but that would be unnecessarily complicated. The solution is to

keep the active list sorted by line numbers: After looking at all the

active nodes for line j, we can insert new active nodes for line j + 1 into

the list just before any active nodes for lines > i P 1 that we are about

to look at next.

An additional complication is that we don’t want to create active

nodes for different line numbers when the line lengths are all identical,

118 Digital Typography

unless g 7^ 0, since this would slow the algorithm down unnecessarily;

the complexities of the general case should not encumber the simple

situations that arise most often. Therefore we assume that an index jo

is known such that all breaks at line numbers > jo can be considered

equivalent. This index jo is determined as follows: U q ^ 0, then jo = oo;

otherwise jo is as small as possible such that Ij — Ij+i for all j > jo-

For example, if g = 0 and li = I2 = I3 ^ U ~ h = ■■■, we let jo = 3,

since it is unnecessary to distinguish a breakpoint that ends line 3 from a

breakpoint that ends line 4 at the same position, as far as any subsequent

lines are concerned.

For each position b and line number j, it is convenient to remember

the best feasible breakpoints having fitness classifications 0, 1, 2, 3 by

maintaining four values Dq, Di, D2, D3, where Dc is the smallest known

total of demerits that leads to a breakpoint at position b and line j and

class c. Another variable D = mm{Do, Di, D2, D3) turns out to be

convenient as well, and we let Ac point to the active node a that leads

to the best value Dc- Thus the main loop takes the following slightly

altered form, for each legal breakpoint b:

begin a := A; preva := A;

loop: Do := Di := D2 := D3 D := +(X);

loop: nexta := link(a);

(Compute j and the adjustment ratio r from a to b);

if r < — 1 or pb = —00 then (Deactivate node a)

else preva a;

if — 1 < r < p then

begin (Compute demerits d and fitness class c);

if d c then

begin Dc d; Ac := a; if d < D then D := d;

end;

end;

a := nexta] if a = A then exit loop;

if hne(a) > j and j < jo then exit loop;

repeat;

if D < 00 then

(Insert new active nodes for breaks from Ac to b);
if a = A then exit loop;

repeat;

if A = A then

(Do something drastic since there is no feasible solution);

end.

Breaking Paragraphs Into Lines 119

For a given position b, the inner loop of this code considers all nodes a

having eqnivalent line numbers, while the outer loop runs through all of

the line numbers that are not equivalent.

It is not difficult to derive a precise encoding of the operations that

have been abbreviated in these loops:

(Compute demerits d and fitness class c) =

begin if pt > 0 then d := (1 + 100|rp + pb)^

else if pb 7^ —oo then d := (1 + 100|7’|^)^ — pi

else d := (1 + 100|7’|^)^;

d := d Q ‘ fh ■ /position(a) i

if r < —.5 then c := 0

else if r < .5 then c := 1

else if r < 1 then c := 2

else c := 3;

if |c — fitness(a)| > 1 then d := d + 7;

d := d + totaldenierits(a);

end;

(Insert new active nodes for breaks from Ac to b) =

begin (Compute tw = (Sl«)after(6)> iy ^ (5^p)aft,er(6),

tz — (S-2^)after(6)))

for c := 0 to 3 do if Dc < D + then

begin s := new node (position = b, line = line(i4c) + 1,

fitness = c, totalwidth = tw,

totalstretch = ty, totalshrink = tz,

totaldemerits = Dc, previous = Ac,

link = a);

if preva = A then A — d else link(pre7;a) := 5;

preva := s\

end;

(Compute tw = (Sm)after(6)5 ty = (Sy)after(&), tZ = (S2:)after(b)) =

begin tw := SVF; ty ~ SF; tz := EZ; i := 6;

loop; if z > 777. then exit loop;

if ti = ‘box’ then exit loop;

if ti = ‘glue’ then

begin tw := tw + Wi] ty ;= ty + yp, tz := tz + zp

end

else if Pi = -00 and i > b then exit loop;

i := i + 1;

repeat;

end;

120 Digital Typography

(Deactivate node a) =

begin if preva = A then A := nexta else link(pret>a) := nexta;

link(a) := P; P := a;

end;

After the main loop has done its job, the active list will contain only

nodes with position = m, since Xm is a forced break. Thus, we can write

(Choose the active node with fewest total demerits) =

begin if a := b := A; d := totaldemerits(o);

loop: a := hnk(o);

if a = A then exit loop;

if totaldemerits(a) < d then

begin d totaldemerits(a); b := a;

end;

repeat;

k := line(f));

end.

Now b is the chosen node and k is its line number. The subsequent

processing for g 7^ 0 is equally elementary:

(Choose the appropriate active node) =

begin a A] s := 0;

loop: S := line(a) — k]

if q<5<s or s<6<q then

begin s S; d := totaldemerits(a); b a;

end

else if (5 = s and totaldemerits(a) < d then

begin d := totaldemerits(a); b := a;

end;

a := hnk(a); if a = A then exit loop;

repeat;

k := line(5);

end.

Now the desired sequence of k breakpoints is accessible from node b:

(Use the chosen node to determine the optimum breakpoints) =

for j := k down to 1 do

begin bj := position(6); b previous(6);

end.

(Another way to complete the processing, getting the lines in forward

order from 1 to A: instead of from A: to 1, appears in the appendix below.)

Breaking Paragraphs Into Lines 121

If there is no garbage collection, the algorithm concludes by deallocating

all nodes on lists A and P.

Restriction 1 makes it legitimate to deactivate a node when we dis¬

cover that r < —1, since r < —1 is equivalent to Ij < Lab — Zab, therefore

subsequent breakpoints b' > b will have Lab> - Zab' > Lai, - Zab- Thus

it is not difficult to verify that the algorithm does indeed find an opti¬

mal solution: Given any sequence of feasible breakpoints bi < ■ ■ ■ < bi^,

we can prove by induction on j that the algorithm constructs a node

for a feasible break at bj, with appropriate line numbers and fitness

classifications, having no more demerits than the given sequence does.

There is only one loose end remaining in the algorithm, namely the

operation (Do something drastic since there is no feasible solution). As

mentioned above, TRX assumes that the user has chosen the tolerance

threshold p in such a way that human intervention is desirable when

this tolerance cannot be met. Another alternative would be to have two

thresholds and to try the algorithm first with threshold po, which is lower

than p, so the algorithm will generate comparatively few active nodes;

if there is no way to succeed at tolerance po, the algorithm could simply

return all nodes to free storage and try again with the actual threshold p.

This dual-threshold method will not always find the strictly optimum

feasible solution, since it is possible in unusual circumstances for the

optimum solution to include a line whose adjustment ratio exceeds po

while there is a non-optimum feasible solution meeting the tolerance po;

for practical purposes, however, the difference is negligible.

actually uses a different sort of dual-threshold method. Since

the task of word division is nontrivial, TgX tries first to break a para¬

graph into lines without any discretionary hyphens except those already

present in the given text, using a tolerance threshold pi. If the algo¬

rithm fails to find a feasible solution, or if there is a feasible solution

with q ^ 0 but the desired looseness could not be satisfied {S / q),

all nodes are returned to free storage and T^X starts again using an¬

other tolerance p2- During this second pass, all words of five letters

or more are submitted to TeiX’s hyphenation algorithm before they are

treated by the line-breaking algorithm. Thus, the user sets pi to the

limit of tolerance for paragraphs that can be completely broken with¬

out hyphenation, and p2 is set to the tolerance limit when hyphenation

must be tried; possibly pi will be slightly larger than p2, but it might

also be smaller, if hyphenation is not frowned on too much. In prac¬

tice Pi and p2 are usually equal to each other, or else pi is near 1 and

P2 is slightly larger; alternatively, one can take p2 = 0 to effectively

disallow hyphenation.

122 Digit a] Typography

When both passes fail, TlgX continues by reactivating the node

that was most recently deactivated and treats it as if it were a feasi¬

ble break leading to h. This situation is actually detected in the routine

(Deactivate node a), just after the last active node has become passive:

if yl = A and secondpass and D = oo and r < — 1 then r := —1.

The net result is to produce an “overfull box” that sticks out into the

right margin, whenever no feasible sequence of line breaks is possible.

As discussed above, some kind of error indication is necessary, since the

user is assumed to have set p to a value such that further stretching is

intolerable and requires manual intervention. An overfull box is easier

to provide than an underfull one, by the nature of the algorithm. This

is fortunate: The setting of the overfull box will be as tight as possible,

hence the user can easily see how to devise appropriate corrective action

such as a forced line break or hyphenation.

Computational Experience

The algorithm described in the previous section is rather complex, since

it is intended to apply to a wide variety of situations that arise in type¬

setting. A considerably simpler procedure is possible for the special cases

needed for word processors and newspapers; the appendix to this paper

gives details about such a stripped-down version. Contrariwise, the al¬

gorithm in TeX is even more complex than the one we have described,

because T^X must deal with leaders, with footnotes or cross references

or page-break marks attached to lines, and with spacing both inside and

immediately outside of math formulas; the spacing that surrounds a for¬

mula is slightly different from glue because it disappears when followed

by a line break, but it does not represent a legal breakpoint. (A complete

description of TljjX’s algorithm will appear elsewhere [29].) Experience

has shown that the general algorithm is quite efficient in practice, in

spite of all the things it must cope with.

So many parameters are present, it is impossible for anyone actually

to experiment with a large fraction of the possibilities. A user can vary

the interword spacing and the penalties for inserted hyphens, explicit

hyphens, adjacent flagged lines, and adjacent lines with incompatible

fitness classifications; the tolerance threshold p can also be twiddled,

not to mention the lengths of lines and the looseness parameter q. Thus

one could perform computational experiments for years and not have a

completely definitive idea about the behavior of this algorithm. Even

with fixed parameters there is a significant variation with respect to

the kind of material being typeset; for example, highly mathematical

Breaking Paragraphs Into Lines 123

copy presents special problems. An interesting comparative study of line

breaking was made by Duncan and his coworkers [13], who considered

sample texts from Gibbon’s Decline and Fall versus excerpts from a

story entitled Saiar the Salmon; as expected, Gibbon’s vocabulary forced

substantially more hyphenated lines.

On the other hand, we have seen that the optimizing algorithm

leads to better line breaks even in children’s stories where the words are

short and simple, as in Grimm’s fairy tales. It would be nice to have a

quantitative feeling for how much extra computation is necessary to get

this improvement in quality. Roughly speaking, the computation time is

proportional to the number of words of the paragraph, times the average

number of words per line, since the main loop of the computation runs

through the currently active nodes, and since the average number of

words per line is a reasonable estimate of the number of active nodes in

all but the first few lines of a paragraph (see Figures 12 and 14). On the

other hand, there are comparatively few active nodes on the first lines

of a paragraph, so the performance is actually faster than this rough

estimate would indicate. Furthermore, the special-purpose algorithm in

the appendix runs in nearly linear time, independent of the line length,

since it does not need to run through all of the active nodes.

Detailed statistics were kept when TfipC’s first large production,

Seminumerical Algorithms [28], was typeset using the procedure above.

This 702-page book has a total of 5526 “paragraphs” in its text and

answer pages, if we regard displayed formulas as separators between in¬

dependent paragraphs. The 5526 paragraphs were broken into a total

of 21,057 lines, of which 550 (about 2.6%) ended with hyphens. The

lines were usually 29 picas wide, which means 626.4 machine units in

10-point type and about 677.19 machine units in 9-point type, roughly

twelve or thirteen words per line. The threshold values pi and p2 were

normally both set to 1.26, so the spaces between words ranged

from a minimum of 4 units to a maximum of 6 -f \/2 k, 9.78 units. The

penalty for breaking after a hyphen was 50; the consecutive-hyphens

and adjacent-incompatibility demerits were a = ■y = 3000. The sec¬

ond (hyphenation) pass was needed on only 279 of the paragraphs,

thus about 5% of the time; a feasible solution without hyphenation

was found in the remaining 5247 cases. The second pass would at¬

tempt to hyphenate only the uncapitalized words of five or more let¬

ters, containing no accents, ligatures, or hyphens, and it turned out

that exactly 6700 words were submitted to the hyphenation procedure.

Thus the average number of attempted hyphenations per paragraph

was approximately 1.2, only slightly more than needed by conventional

124 Digital Typography

iionoptimizing algorithms, and hyphenation was not a significant factor

in the running time.

The main contribution to the running time came, of course, from the

main loop of the algorithm, which was executed 274,102 times (about

50 times per paragraph, including both passes lumped together when the

second pass was needed). The total number of break nodes created was

64,003 (about 12 per paragraph), including multiplicities for the com¬

paratively rare cases that different fitness classifications or line numbers

needed to be distinguished for the same breakpoint. Thus, about 23% of

the legal breakpoints turned out to be feasible ones, given these compar¬

atively low values of pi and p2- The inner loop of the computation was

performed 880,677 times; this is the total number of active nodes exam¬

ined when each legal breakpoint was processed, summed over all legal

breakpoints. Note that this amounts to about 160 active node examina¬

tions per paragraph, and 3.2 per breakpoint, so the inner loop definitely

dominates the running time. If we assume that words are about five

letters long, so that a legal break occurs for every six characters of input

text including the spaces between words, the algorithm costs about half

of an inner-loop step per character of input, plus the time to pass over

that character in the outermost loop.

This source data was also used to establish the importance of the

optional dominance test ‘if He < D + preceding the creation of a new

node; without that test, the algorithm was found to need about 25%

more executions of the inner loop, because so many unnecessary nodes

were created.

And how about the output? Figure 19 shows the actual distribu¬

tion of adjustment ratios r in the 15,531 typeset lines of Seminumerical

Algorithms, not counting the 5526 lines at the ends of paragraphs, for

which r 0. There was also one line with r ^ 1.8 and one with r pa 2.2

(i.e., a disgraceful spacing of 12 units); perhaps some reader will be able

to spot one or both of these anomalies some day. The average value of r

over all 21,057 lines was 0.08, and the standard deviation was only 0.403;

about 67% of the lines had word spaces varying between 5 and 7 units.

Furthermore the author believes that virtually none of the 15,531 line

breaks are “psychologically bad” in the sense mentioned above.

Anyone who has experience with typical English text knows that

these statistics are not only excellent, they are in fact too good to be true;

no line-breaking algorithm can achieve such stellar behavior without

occasional assists from the author, who notices that a slight change in

wording will permit nicer breaks. Indeed, this phenomenon is another

source of improved quality when an author is given composition tools

Breaking Paragraphs Into Lines 125

-1.00 < r <-0.95

-0.95 < r <-0.85

-0.85 < r <-0.75

-0.75 < r <-0.65

-0.65 < r <-0.55

-0.55 < r <-0.45

-0.45 < r <-0.35

-0.35 < r <-0.25

-0.25 < r <-0.15

-0.15 < r <-0.05

-0.05 < r < + 0.05

+ 0.05 < r <+0.15

+ 0.15 < r <+0.25

+ 0.25 < r < + 0.35

+ 0.35 < r <+0.45

+ 0.45 < r < + 0.55

+ 0.55 < r < + 0.65

+ 0.65 < r < + 0.75

+ 0.75 < r < + 0.85

+ 0.85 < r < + 0.95

+ 0.95 < r < + 1.05

+ 1.05 < r < + 1.15

+ 1.15 < r < + 1.26

like TgX to work with, because a professional compositor does not dare

to mess around with the given wording when setting a paragraph, while

an author is happy to make changes that look better, especially when

such changes are negligible by comparison with changes that are found to

be necessary for other reasons when a draft is being proofread. Authors

know that there are many ways to say what they want to say, so it is no

trick at all for them to make an occasional change of wording.

Theodore L. De Vinne, one of America’s foremost typographers at

the turn of the century, wrote [11, page 138] that “When the author

objects to [a hyphenation] he should be asked to add or cancel or sub¬

stitute a word or words that will prevent the breakage. ... Authors

who insist on even spacing always, with sightly divisions always, do not

clearly understand the rigidity of types.”

Another interesting comment was made by G. B. Shaw [39]: “In

his own works, whenever [William Morris] found a line that justified

awkwardly, he altered the wording solely for the sake of making it look

well in print. When a proof has been sent to me with two or three lines

so widely spaced as to make a grey band across the page, I have often

rewritten the passage so as to fill up the lines better; but I am sorry

to say that my object has generally been so little understood that the

compositor has spoilt all the rest of the paragraph instead of mending

his former bad work.”

126 Digital Typography

The bias caused by Knuth’s tuning his manuscript to a partic¬

ular line width makes the statistics in Figure 19 inapplicable to the

printer’s situation where a given text must be typeset as it is. So an¬

other experiment was conducted in which the material of Section 3.5 of

Seminumerical Algorithms was set with lines 25 picas wide instead of

29 picas. Section 3.5, which deals with the question “What is a ran¬

dom sequence?”, was chosen because this section most closely resembles

typical mathematics papers containing theorems, proofs, lemmas, etc.

In this experiment the total-fit algorithm had to work harder than it did

when the material was set to 29 picas, primarily because the second pass

was needed about thrice as often (49 times out of 273 paragraphs, in¬

stead of 16 times); furthermore the second pass was much more tolerant

of wide spaces (p2 = 10 instead of \^), in order to guarantee that every

paragraph could be typeset without manual intervention. There were

about 6 examinations of active nodes per legal breakpoint encountered,

instead of about 3, so the net effect of this change in parameters was to

nearly double the running time for line breaking. The reason for such

a discrepancy was primarily the combination of difficult mathematical

copy and a narrower column measure, rather than the “author tuning,”

because when the same text was set 35 picas wide the second pass was

needed only 8 times.

-1.00 < r <-0.75

-0.75 < r <-0.50

-0.50 < r <-0.25

-0.25 <r< 0.00

0.00 < r < + 0.25

+ 0.25 < r < + 0.50

+ 0.50 < r < + 0.75

+ 0.75 < r < + 1.00

+ 1.00 < r < + 1.25

+ 1.25 < T- < + 1.50

+ 1.50 < r < + 1.75

+ 1.75 < r < + 2.00

+ 2.00 < r < + oo

-1.00 < r'<-0.75

-0.75 < r <-0.50

-0.50 < r <-0.25

-0.25 <r< 0.00

0.00 < r < + 0.25

+ 0.25 < r < + 0.50

+0.50 < r < + 0.75

+ 0.75 < r < + 1.00

+ 1.00 < r < + 1.25

+ 1.25 < r < + 1.50

+ 1.50 < r < + 1.75

+ 1.75 < r < + 2.00

+ 2.00 < r < + co

Figure 20. The distribution of interword spaces found by the best line-

at-a-time method, compared to the distribution found by the best

paragraph-at-a-time method, when difficult mathematical copy is

typeset without human intervention.

It is interesting to observe the quality of the spacing obtained in

this 25-pica experiment, since it indicates how well the total-fit method

can do without any human intervention. Figure 20 shows what was ob¬

tained, together with the corresponding statistics for the best-fit method

Breaking Paragraphs Into Lines 127

when it was applied to the same data. About 800 line breaks were in¬

volved in each case, not counting the final fines of paragraphs. The

main difference was that total-fit tended to pnt more lines into the

range .5 < r < 1, while best-fit produced considerably more fines that

were extremely spaced out. The standard deviation of s])acing was 0.53

(total-fit) versus 0.64 (best-fit); 24 of the lines typeset by best-fit had

spaces exceeding 12 units, while only 7 such bad lines were produced

by the total-fit method. An examination of these seven problematical

cases showed that three of them were due to long unbreakable formulas

embedded in the text, three were due to the rule that does not

try to hyphenate capitalized words and the other one was due to TgX’s

inability to hyphenate the word ‘reasonable’. Cursory inspection of the

output indicated that the main difference between best-fit and total-fit,

in the eyes of a casual reader, would be that the best-fit method not only

resorted to occasional wide spacing, it also tended to end substantially

more lines with hyphens: 119 by comparison with 80. An author who

cares about spacing, and who therefore will edit a manuscript until it

can be typeset satisfactorily, would have to do a significant amount of

extra work in order to get the best-fit method to produce decent results

with such difficult copy, but the output of the total-fit method could be

made suitable with only a few author’s alterations.

A Historical Summary

We have now discussed most of the issues that arise in line breaking,

and it is interesting to compare the newfangled approaches to what

printers have actually been doing through the years. Medieval scribes,

who prepared beautiful manuscripts by hand before the days of printing,

were generally careful to break lines so that the right-hand margins

would be nearly straight, and this practice was continued by the early

printers. Indeed, the compositors who set the type had to fill up each

line with spaces anyway, so that the individual letters wouldn’t fall out

of position while making impressions; they could insert extra spaces

between words almost as easily as they could put those spaces at the

ends of lines.

One of the most difficult challenges faced by printers over the years

has been the typesetting of “polyglot Bibles,” that is, editions of the

Bible in which the original languages are set side by side with various

translations, since special care is needed to keep the versions of various

languages synchronized with each other. Furthermore the fact that sev¬

eral languages appear on each page means that the texts tend to be set

with narrower columns than usual; this, together with the fact that one

128 Digital Typography

c*^N*pridpi'o*’crea .i.
c^uirdeus coooowocoo
'ccIum'8(®tciTa. Terra
autem coocoocoocoocoo
‘erat‘mams'& vacua:'"6(
tenebre crant"fiip®fadc
‘’abyflTi: fpiritiis' def
®fercbatiir'fupcr coocoo
\aquas.DixitcpMeus.
“Fiat coooooococooooocoo

facta PIiix. *Et
Vidit'deus'^luccm coocco

eflet^bona: '& diirifit
CCOOOOOOO(>>X»WCCOOOOOOO

"liicemPa ‘‘tenebris: ’’ap
pelLairitcK ooooaxwcoocoo
*lucem"aie: *& tenebras
’noctcni. axwccooooooooo
“Factumc^ eft ** vefpe'bf
^mane'dicsVnus.ococxx)
®Dixit quocpMewsdFiat
"firmamentu ‘ in medio
"'aqiiariini:"8i‘’ diuidat
‘’aquas ccoooooxooooocoa
•■ab aquis.® Et fedt*deus
*firmamentum. cooocco

> > > *

> ainrf
> > >

> p5"a%‘i^xS

>» nnx' j‘

>>>>

Figure 21. The opening verses of Genesis as typeset in the Complu-

tensian Polyglot Bible. Here Latin words are keyed to the Hebrew,

and leaders are used to fill out lines that would otherwise be ragged

right and ragged left. Greek and Chaldee (Aramaic) versions of the

text also appeared on the same page.

dare not alter the sacred words, makes the line-breaking problem espe¬

cially difficult. We can get a good idea of the early printers’ approaches

to line breaking by examining their polyglot Bibles carefully.

The first polyglot Bible [10, 19, 24] was produced in Spain by the

eminent Cardinal Jimenez de Cisneros, who reportedly spent 50,000 gold

ducats to support the project. It is generally called the “Complutensian

Polyglot,” because it was prepared in Alcala de Henares, a city near

Madrid whose old Roman name was Complutus. The printer, Arnao

Guillen de Brocar, devoted the years 1514-1517 to the prodnetion of

this six-volume set, and it is said that the Hebrew and Greek fonts he

made for the occasion are among the finest ever cut. His approach to

justification was quite interesting and unusual, as shown in Figure 21:

Breaking Paragraphs Into Lines 129

Instead of justifying the lines by increasing the word spaces, he inserted

visible leaders to obtain solid blocks of copy with straight margins.

These leaders appear at the right of the Latin lines and at the left of

the Hebrew lines. He changed this style somewhat after gaining more ex¬

perience: Starting at about the 46th chapter of Genesis, the Hebrew text

was justified by word spaces, although the leaders continued to appear

in the Latin colnmii. It is clear that straight margins were considered

strongly desirable at the time.

Guillen de Brocar’s method of line breaking seems to be essentially

a first-fit approach to the Hebrew text; the corresponding Latin transla¬

tion could then be set up rather easily, since there were two lines of Latin

for each line of Hebrew, giving plenty of room for the Latin. In some

cases when the Greek text was abnormally long by comparison with the

corresponding Hebrew (e.g.. Exodus 38), he set the Hebrew quite loosely,

so it is evident that he gave considerable attention to line breaking.

At about the same time, a polyglot version of the book of Psalms was

being prepared as a labor of love by Agostino Giustiniani of Genoa [17].

This was the first polyglot book actually to appear in print with each

language in its own characters, although Origen’s third-century Hexapla

manuscript is generally considered to be the inspiration for all of the later

polyglot volumes. Giustiniani’s Psalter had eight columns: (1) The He¬

brew original; (2) a literal Latin rendition of (1); (3) the common Latin

(Vulgate) version; (4) the Greek (Septuagint) version; (5) the Arabic

version; (6) the Chaldee version; (7) a literal Latin translation of (6);

(8) notes. Since the Psalms are poems, all of the columns except the last

were set with ragged margins, and an interesting convention was used

to deal with the occasional line that was too wide to fit: A left paren¬

thesis was placed at the very end of the broken line, and the remainder

of that line (preceded by another left parenthesis) was placed flush with

the margin of the preceding or following line, wherever it would fit.

Only column (8) was justified, and it had a rather narrow measure of

about 21 characters per line. By studying this column we can conclude

that Giustiniani did not take great pains to achieve equal spacing by

fiddling with the words. For example. Figure 22, which comes from

the notes on Psalm 6, shows two very tight lines enclosing a very loose

one in the passage ‘scriptum est ... quod qui’. If Giustiniani had been

extremely concerned about spacing he would have used the hyphenation

‘cog-nosces’; the other potential solution, to move ‘ad’ up a line, would

not have worked since there isn’t quite room for ‘ad’ on the loose line.

Notice that another aid to line breaking in Latin at that time was to

replace an m or n by a tilde on the previous vowel (e.g., ‘premiu’ for

130 Digital Typography

Figure 22. Part of Giustiniani’s commen¬

tary on the Psalms. The presence of a loose

line surrounded by two very tight lines indi¬

cates that the compositor did not go back to

reset previous lines when a problem arose.

qui arboribus plcnus
eft,fcccrunc fm noti^

acceperuntin
tclledum ab co,dC uu
cilTira cum corumdo^
mino fecognoucrunr,
facies cum facie,
cuius cumoc ulo,8<:hu
JUS rei gratia mcruc^#
runt premiu in future
mudo,8<: hoc eft quod
feriptum eft,8(rcogno:^
fees hodie rcuerfus
adcortuum,quod qui
dac ciTc ipfc eft Deus
in cells dcfupcr,8(:qct
in terra deorfumnon
iitprecer eum*

premium and ‘mudo’ for mundo); an extension to the box/glue/penalty

algebra would be needed to include such options in TgX’s line-breaking

algorithm. It is not clear why Giustiniani didn’t set ‘acceperut’ on the

third line, to save space, since he had no room for the hyphen of ‘in-

tellectum’; perhaps he didn’t have enough u’s left in his type case.

Figure 23 shows some justified text from the Complutensian Poly¬

glot, taken from the Latin translation of an early Aramaic translation of

the original Hebrew. The compositor was somewhat miraculously able to

maintain this uniformly tight spacing throughout the entire volume, by

making use of abbreviations and frequent hyphenations. In five places,

as in Figure 22, the hyphen was omitted from a broken word when there

was no room for it; e.g., ‘diuisit’ has been divided without a hyphen.

The next great polyglot Bible was the “Royal Polyglot of Ant¬

werp” [1], produced during 1568-1572 by the outstanding Belgian printer

Christophe Plantin. Numerous copies of the Complutensian Polyglot had

unfortunately been lost at sea, so King Philip II commissioned a new

edition that would also take advantage of recent scholarship. Plantin was

a pious man who was active in pacifist religious circles and anxious to

undertake the job; but when he had completed the work he described it

as “an indescribable toil, labor, and expense.” On June 9, 1572, Plantin

sent a letter to one of his friends, saying “I am astonished at what I nn-

dertook, a task I would not do again even if I received 12,000 crowns as

a gift.” But at least his work was widely appreciated; Lucas of Bruges,

writing in 1577, said that “the art of the printer has never produced

anything nobler, nor anything more splendid.”

Breaking Paragraphs Into Lines 131

1R pjtncipio crciiuit ©cue cclfi t tcrrS.
^crra auterat t*cfcrta x vaaiart tencbzc fug
factcmabr(Ti;t fpus bet infufflabatfug factd

aqua9.;gt btnt bcus.Stt lurtt fait luc.t vidtt beus
lucf ciTet bona.lit btutfit bens inter luc^ x inter te
ncbiaa.appeUauitcp bcua luc5 bte:t tenebiao vocas
uitnocte.£tfuitvcfi)e'rfuttinancbtcsvnii6.£t bP
jettbeus.Sitfirmamcntutnmcdto aqu3tr:ibtutdat
inter aquas x aqs.£t fecit bcus firmamentftret biut
fit Iter aquas q erant fubter finnam^tu^ii inter aqs
q erant fug firmamenturt futt ita. £t vocauit bc^' fir
mamentu celu^. lit fuit vefgc t fmtmanc bies fci5s.
j£t oicit bc^. /I osregetur aque q fub celo fiint in loctt
vnum:'rappareat3rtda.£lfuitita.£tvocauttbcu8
arida terra; x locu cogregationis aquarfi appellauit
maria. £tviditbc^ q6 eflet bond .£t bijeit bcus. Ser
minet terra germinationc l^crbecui^filmafcm^tis
feminai rarboi^cp fructifera fadentf fructus fm ge^
nus fuu: cuius filius femf tf s in ipfo fit fug terra. £t
fuit ita.£t4)durit terra germ^berbecuius filius fe
m^tis feminaf fm genus fuftretarbotc fadent^ frus
cttts:cui9 filius femetts i ipfo fm genus fuu.£t vidii

Figure 23. Early printing of Latin texts featured uniformly tight spac¬

ing, obtained by frequent use of abbreviations and word division.

This sample comes from the same page as Figure 21.

Most of Plantin’s polyglot Bible was justified with fairly wide

columns having about 42 characters per line, so it did not present espe¬

cially difficult problems of line breaking. But we can get some idea of his

methods by studying the texts of the Apocrypha, which were set with

a narrower measure of about 27 characters per line. He arranged things

so that each column on a page would have about the same number of

lines, even though the individual columns were in different languages.

’ ‘ *Et ftatim perrexcrunt ad
cos, & conftitueruntaduer-

fus cos prodium in die fab-
batorum , & dixerunt ad

cos.

Figure 24. The Latin version of Maccabees 2 :32 from Plantin’s Royal

Polyglot of Antwerp, showing how the second-last line of a paragraph

was spaced out in order to add a line.

Figure 24 shows an example of a passage excerpted from a page where

the Latin text was comparatively sparse, so the paragraphs on that

page needed to be rather loose. It appears that the entire page was set

132 Digital Typography

first, then adjustments were made after the Latin column was found to
be too short; in this case the word ‘eos’ was brought down to make a
new line and the previous line was spaced out. Plantin’s compositor
did not take the trouble to move ‘sab-’ down to that line, although
such a transposition would have avoided a hyphen without making the
spacing any worse. The optimum solution would have been to avoid
this hyphenation and to hyphenate the previous line after ‘ad-’, thus
achieving fairly uniform spacing throughout.

The most accurate and complete of all polyglot Bibles was the
“London Polyglot” [41], printed by Thomas Roycroft and others dur¬
ing the Cromwellian years 1653-1657. This massive 8-volume work in¬
cluded texts in Hebrew, Greek, Latin, Aramaic, Syriac, Arabic, Ethiopic,
Samaritan, and Persian, all with accompanying Latin translations, and
it has been acclaimed as “the typographical achievement of the seven¬
teenth century.” As in Plantin’s work shown in Figure 24, a paragraph
that has been loosened will often end with an unnecessarily tight hy¬
phenated line followed by a loose line followed by a one-word line; so
it is clear that Roycroft’s compositors did not have time to do complex
adjustments of line breaks.

Hyphenations were clearly not frowned upon at the time, since about
40% of all lines in the London Polyglot end with a hyphen, regardless of
the column width. It is not difficult to find pages on which hyphenated
lines outnumber the others; and in the Latin translation of the Aramaic
version of Genesis 4:15, even the two-letter word ‘e-o’ was hyphenated!
Such practice was not uncommon; for example, the Hamburg Polyglot
Bible of 1596 [42] had more than 50% hyphens at the right margin. Both
Plantin’s polyglot and the notes of Giustiniani’s Psalter had hyphenation
percentages of about 40%, and the same was true of many medieval
manuscripts. Thus it was considered better to have the margins straight
and to keep the spacing tight, rather than to avoid word splits.

One of the first things that strikes a modern eye when looking at
these old Bibles is the treatment of punctuation. Notice, for example,
that no space appears after the commas in Figure 22, and a space ap¬
pears before as well as after one of the commas in Figure 24. One can
find all four possibilities of ‘space before/no space before’ and ‘space
after/no space after’ in each of the Bibles mentioned so far, with respect
to commas, periods, colons, semicolons, and question marks, and with
no apparent preference between the four choices except that it was com¬
paratively rare to put a space before a period. Giustiniani and Plantin
occasionally would insert spaces before periods, but Roycroft apparently
never did. Gommas began to be treated like periods in this respect about

Breaking Paragraphs Into Lines 133

1700, but colons and semicolons were generally both preceded and fol¬

lowed by spaces until the 19th century. Such extra spaces were helpful in

justifying, of course, and printers evidently relished the option of leaving

out all of the space next to a punctuation mark. Roycroft would in fact

eliminate the space between words when necessary, if the following word

was capitalized (e.g., ‘dixitDeus’); apparently a printer’s main goal was

to keep the text unambiguously decipherable, while ease of readability

was only of secondary importance.

Knowledge about how to carry out the work of a trade like print¬

ing was originally passed from masters to apprentices and not explained

to the general public, so we can only guess at what the early printers

did by looking at their finished products. A trend to put trade secrets

into print was developing during the 17th century, however [21], and a

book about how to make books was finally written: Joseph Moxon’s Me-

chanick Exercises [30], published in 1683, was by forty years the earliest

manual of printing in any language. Although Moxon did not discuss

rules for hyphenation and punctuation, he gave interesting information

about line breaking and justification.

“If the Compositer is not firmly resolv’d to keep himself strictly to

the Rules of good Workmanship, he is now tempted to make Botches-”

namely bad line breaks, according to Moxon. The normal “thick space”

between words, when beginning to make up a line, was one-fourth of

what Moxon called the body size (one em), and he also spoke of “thin

spaces” that were one-seventh of the body size; thus, a printer who

followed this practice would deal mostly with spaces of 4.5 units and

2.57 units, although such measurements were only approximate because

of the primitive tools used at the time. Moxon’s procedure for justifying

a line whose natural width was too narrow was to insert thin spaces

between one or more words to “fill up the Measure pretty stiff,” and if

necessary to go back through the line and do this again. “Strictly, good

Workmanship will not allow more [than the original space plus two thin

spaces], unless the Measure be so short, that by reason of few Words in

a Line, necessity compells him to put more Spaces between the Words.

... These wide Whites are by Compositers (in way of Scandal) call’d

Pidgeon-holes... And as Lines may be too much Spaced-out, so may

they be too close Set.” [30, pages 214-215]

Notice that Moxon’s justification procedure would normally leave

uneven spacing between words on the same line, since he inserted the

thin spaces one by one. In fact, such discrepancies were the norm in

early printed books, which look something like present-day attempts

at justification on a typewriter or computer terminal with fixed-width

134 Digital Typography

If there be a long ivor(/ or more left out, he
cannot exped: to Get that in into that Line, where¬
fore he rnufl now Over-run', that is, hemufl; put fo
much of the fore-part of the Line into the Line

above it, or fo much of the hinder part of the Line

into the next Line under it, as will make room for
what is Left out: Therefore he confiders how
he has Set, that fo by Over-runing the fewer Linet

backwards or forwards, or both, (as he finds his help)
he may take out fo many Spaces, or other Whites

as will amount to the Thicknefs of what he has Left

out : Thus if he have Set wide, he may perhaps Get

a fmall Word or a Syllable into the foregoing Line^nA

perhaps another fmall Word or Syllable in the follow¬
ing Line, which if his out i^ not much, may
Get it in : But if he Left out much, he rnufl Over-run

many Lines, either backwards or forwards, or both,
till he come to a Break : And if when he comes at
a Break it be not Gotten in ; he Drives out a Line.

In this cafe if he cannot Get in a Line, by Getting

in the Words oD'mx. Break (as I juft now fliew’d you

Figure 25. An excerpt from page 245 of Joseph Moxon’s Mechanick Ex¬

ercises, Volume 2, the first book about how printing was done. Here

Moxon is describing the process of making corrections to pages that

have already been typeset; the irregular spacing found throughout

his book is probably due in part to the fact that such corrections

were necessary. (Yes, the lines were crooked too.)

spacing. For example, the relative proportions in the spaces of the third

line of Plantin’s text in Figure 24 are approximately 8 : 12 : 5 : 9 : 4

and in the fifth line of Giustiniani’s Figure 22 they are approximately

3:2:1. Moxon’s book itself (see Figure 25) shows extreme variations,

frequently breaking the rules he had stated for maximum and minimum

spaces between words.

It would be nice to report that Moxon described a particular line-

breaking algorithm, like the first-fit or best-fit method, but in fact he

never suggested any particular procedure, nor did any of his successors

until the computer age; this is not surprising, since people were just

expected to use their common sense instead of to obey some rigid rules.

Many of the breaks in Figure 25 can, however, be accounted for by

assuming an underlying first-fit algorithm. For example, the looseness

on lines 1, 4, and 8 is probably due to the long words at the beginning of

lines 2, 5, and 9, since these long words would not fit on the previous line

unless they were hyphenated. On the other hand, the extremely tight

spacing on line 13 can best be explained by assuming that one or more

Breaking Paragraphs Into Lines 135

words had to be inserted to correct an error after the page had been set.

We cannot satisfactorily infer the compositor’s procedure from the final

copy; we really need to see the first trial proofs. All we can conclude for

certain is that there was very little attempt to go back and reconsider

the already-set lines unless it was absolutely necessary to do so. For

example, the paragraph in Figure 25 would have been better if the first

line had ended with ‘can-’ and the second with ‘wherefore’.

Moxon’s compositor was, however, supposed to look ahead: “When

in Composing he conies near a Break [i.e., the end of a paragraph], he

for some Lines before he comes to it considers whether that Break will

end with some reasonable White', If he finds it will, he is pleas’d, but

if he finds he shall have but a single Word in his Break, he either Sets

wide to drive a Word or two more into the Break-line, or else he Sets

close to get in that little Word, because a Line with only a little Word

in it, shews almost like a White-line, which unless it be properly plac’d,

is not pleasing to a curious Eye.” [30, page 226]

Figure 26.

Printers do not always

practice what they preach.

Another extract from a London printing manual [7] is shown in Fig¬

ure 26; this one is from 1864 instead of 1683. Although the author says

that the justifying spaces are to be made as nearly equal as possible,

whoever did the composition of his book did not follow the instructions

it contains! Only one of the fine books considered above has spaces

that look the same, namely the Complutensian Polyglot. In fact, print¬

ers only rarely achieved truly uniform spacing until machines like the

Monotype and Linotype made the task easier towards the end of the

nineteenth century; and these new machines, with their emphasis on

speed, changed the philosophy of justification so much that the quality

of line breaking decreased when the spacing became uniform: Compos¬

itors could not afford to go back and reconsider any of the earlier line

breaks of a paragraph, when they were expected to turn out so many

more ems of type per hour.

they may be all exactly the same length, it will almost

always happen that the line will either have to be

brought out by putting in additional spaces between

the words, or contracted by substituting thinner spaces

than those used in setting up the lines. If the line by

that alteration is not quite tight, an additional thin

space may be inserted between such words as begin

with j or end with f, and also after aU the points, but

they must, to look well, be put as near equally as

possible between each word in the line, and after each

sentence an em space is used.

136 Digital Typography

The line breaks in Figure 26 are fairly well done in spite of the uneven

spacing, given that the compositor wished to avoid hyphenations and the

psychologically bad break in the phrase ‘with j’. The word ‘but’ could,

however, have advantageously moved down to the ninth line.

Probably the most beautiful spacing ever achieved in any typeset

book appeared in The Art of Spacing [5] by Samuel A. Bartels (1926).

This book was hand set by the author, and it contains about 50 charac¬

ters per line. There are no loose lines, and no hyphenated words; the final

line of each paragraph always fills at least 65% of the column width, yet

ends at least one em from the right margin. Bartels must have changed

his original wording many times in order to make this happen; the au¬

thor as compositor can clearly enhance the appearance of a book.

General-purpose computers were first applied to typesetting by

Georges P. Bafour, Andre R. Blanchard, and Frangois H. Raymond in

France, who applied for patents on their invention in 1954. (They re¬

ceived French and British patents in 1955, and a U.S. patent in 1956

[2, 3].) This system gave special attention to hyphenation, and its au¬

thors were probably the first to formulate the method of breaking one

line at a time in a systematic fashion. Figure 27 shows a specimen of their

output, as demonstrated at the Imprimerie Nationale in 1958. In this

example the word ‘en’ was not included in the second line because their

scheme tended to favor somewhat loose lines: Each line would contain as

few characters as possible subject to the condition that the line was feasi¬

ble but the addition of the next K characters would not be feasible; here

K was a constant, and their method was based on a iF-stage lookahead.

Michael P. Barnett began to experiment with computer typesetting

at M.I.T. in 1961, and the work of his group at the Gooperative Gom-

puting Laboratory was destined to become quite influential in the U.S.A.

For example, the troff [31] system that is now in use at many computer

centers is a descendant of Barnett’s PG6 system [4], via other systems

called Runoff and Nroff. Another line of descent is represented by the

PAGE-1, PAGE-2, and PAGE-3 systems, which have been used extensively

in the typesetting industry [22, 25, 34]. All of these programs use the

first-fit method of line breaking that is described above.

At about the same time that Barnett began his M.I.T. studies

of computer typesetting, another important university research project

with similar goals was started by John Duncan at the Gomputing Lab¬

oratory of the University of Newcastle-Upon-Tyne. Line breaking was

one of the first subjects studied intensively by his group, and they devel¬

oped a program that would find a feasible way to typeset a paragraph

without hyphenations, if any sequence of feasible breaks exists, given

Breaking Paragraphs Into Lines 137

Le bon sens est la chose du monde
la mieux partagee: car chacun pense
en etre si bien pourvu que ceux meme
qui sont les plus difficiles a contenter
en toute autre chose n’ont point cou-
tume d’en desirer plus qu’ils en ont. En
quoi il n’est pas vraisemblable que tous

Figure 27. This is a specimen of the output produced in 1958 by the

first computer-controlled typesetting system in which all of the line
breaks were chosen automatically.

minimum and maximum values for interword spaces. Their program es¬

sentially worked by backtracking through all possibilities, treating them

in reverse lexicographic order (i.e., starting with the first breakpoint bi

as large as possible and using the same method recursively to find fea¬

sible breaks (62, 63,...) in the rest of the paragraph, then decreasing

bi and repeating the process if necessary). Thus it would either find

the lexicographically largest feasible sequence of breakpoints or it would

conclude that none are feasible; in the latter case hyphenation was at¬

tempted. This was the first systematic sequence of experiments to deal

with the line-breaking problem by considering a paragraph as a whole
instead of working line by line.

No distinction was made in these early experiments between one

sequence of feasible breakpoints and another; the only criterion was

whether or not all interword spacing could be confined to a certain

range without requiring hyphenation. Duncan found that when lines

were 603 units wide, it was possible to avoid virtually all hyphenations

if spaces were allowed to vary between 3 and 12 units; with 405-unit

lines, however, hyphens were necessary about 3% of the time in order

to keep within these fairly generous limits, and when the line width de¬

creased to 288 units the hyphenation percentage rose to 12% or 16%

depending on the difficulty of the copy being typeset. More stringent

intervals, such as the requirement of 4- to 9-unit spaces used in most of

the examples we have been considering above, were found to need more

than 4% hyphenations on 603-unit lines and 30% to 40% on 288-unit

lines. However, these percentages are larger than necessary because the

Newcastle program did not search for the best places to insert hyphens:

Whenever there was no feasible way to set more than k lines, the (A;+l)st

line was simply hyphenated and the process was restarted. One hyphen

generated by this method tends to spawn more in the same paragraph.

138 Digital Typography

since the first line of a paragraph or of an artificially resumed paragraph

is the most likely to require hyphenation. Examples of the performance

can be seen in the article where the method was introduced [13], using

spaces of 4 to 15 units for the first six pages and 4 to 12 units for the

rest, as well as in Duncan’s survey paper [14], These articles also discuss

possible refinements to the method, one idea being to try to avoid loose

lines next to tight lines in some unspecified manner, another being to

try the method first with strict spacing intervals and then to increase

the tolerance before resorting to hyphenation.

Such refinements were carried considerably further by P. I. Cooper at

Elliott Automation, who developed a sophisticated experimental system

for dealing with entire paragraphs [9]. Cooper’s system worked not only

with minimum and maximum spacing parameters; it also divided the

permissible interword spaces into different sectors that yielded different

“penalty scores.” He associated penalties with the spaces on individual

lines, and he charged additional penalties based on the respective spacing

sectors of two consecutive lines. The goal was to minimize the total

penalty needed to typeset a given paragraph. Thus, his model was

rather similar to the model that we have been discussing, except

that all spaces were equivalent to each other and special problems like

hyphenation were not treated.

Cooper said that his program “employs a mathematical technique

known as ‘dynamic programming’ ” to select the optimum setting. How¬

ever, he gave no details, and from the stated computer memory require¬

ments it appears that his algorithm was only an approximation to true

dynamic programming in that it would retain just one optimum sum-

of-penalties for each breakpoint, not for each (breakpoint, sector) pair.

Thus, his algorithm was probably similar to the method given in the

appendix below.

Unfortunately, Cooper’s method was ahead of its time; the consen¬

sus in 1966 was that such additional computer time and memory space

were prohibitively expensive. Eurthermore his method was evaluated

only on the basis of how many hyphens it would save, not on the better

spacing it provided on non-hyphenated lines. Eor example, J. L. Dolby’s

summary of current work [12] compared Cooper’s procedure unfavorably

to Duncan’s since the Newcastle method removed the same number of

hyphens with what appeared to be a less complex program. In fact.

Cooper himself undersold his scheme with unusual modesty and caution

when he spoke about it: He said “this investigation does not support

the view that [my approach] should be given a general and enthusiastic

recommendation. ... It has to be admitted ... that, in general terms.

Breaking Paragraphs Into Lines 139

an aesthetic improvement is neither predictable nor measurable.” His
method was soon forgotten.

In retrospect we can see that the defect in Cooper’s otherwise ad¬

mirable approach was the way it dealt with hyphenation: No proper

tradeoff between hyphenated lines and feasible unhyphenated lines was

made, and the method would be restarted after every hyphen had to be

inserted. Thus, hyphens tended to cluster as Duncan’s experiments.

Another approach to line breaking has recently been investigated by

A. M. Pringle of Cambridge University, who devised a procedure called

Juggle [36]. This algorithm uses the best-fit method without hyphen¬

ation until reaching a line that cannot be accommodated; then it calls

a recursive procedure pushback that attempts to move a word from the

offending line up into the previous text. If pushback fails to solve the

problem, another recursive routine pullon tries to move a word forward

from the previous text. Hyphenation is attempted only if pullon fails

too. Thus, Juggle attempts to simulate the performance of a methodical

super-conscientious workman in the good olde days of hand composi¬

tion. The recursive backtracking can, however, consume a lot of time by

comparison with a dynamic programming approach, and an optimum

sequence of line breaks is not generally achieved; for example. Figure 2

would be obtained instead of Figure 3. Furthermore there are unusual

cases in which feasible solutions exist but Juggle will not find them; for

example, it may be feasible to push back two words but not one.

Hanan Samet has suggested another measure of optimality in his

recent work on line breaking [38]. Since all methods for setting a para¬

graph in a given number of lines involve the same total amount of blank

space, he points out that the average interword space in a paragraph is

essentially independent of the breakpoints (if we ignore hyphenation and

the fact that the final line is different). Therefore he suggests that the

variance of the interword spaces should be minimized, and he proposes a

“downhill” algorithm that shifts words between lines until no such local

transformation further reduces the variance.

The first magazine publisher to develop computer aids to typesetting

was Time Inc. of New York City, whose line-breaking decisions went

largely online in 1967. According to comments made by H. D. Parks at

the time [32], line breaks were determined one by one using a variation of

the first-fit algorithm that we might call “tight-fit”; this gives the most

words per line except that hyphenation is done only when necessary, and

it is equivalent to the first-fit method if the normal interword spacing

is the same as the minimum. The tight-fit method had previously been

used on the IBM 1620 Type Composition System demonstrated in 1963

140 Digital Typography

nc Nnmn ni Nnnini
Nnnmiiii Nnnnniinii
in nni inni n nnnnnin,
nnn nn minim inn
iiiinnii, nnn ninnn-

nin nnn mii, in nininin. Nn-
nnnninn 15% ni inn nniin’i
innn nniinnn, nnn Nnnini Nn-
inn niiniinni nnn n niniini
111 niiinni nninnini in Nniinin
Nnnnnn in inn Nnninn Nunn
nil nnn iin ni Nmnnn, nninii
inn nnnimnnin nnn nmnnn iini
nniini; nnin innn 3,000 mini—
innnnin inn niiinnnn iinn Nnn
Nnin in Nnn Ninnniinn—inn-
ninin inn inn iinini ni inn
Niniin Nnnnn nnn inn nnn-
nninnnn Nnin Nnn Nninii. Nnn
262.4 nminn niiinnni ni inn
N.N.N.N. nmnnn in nnin innn
100 ninnm ninnni nnn mnin nn-
nnnni iinn Nninnnmni, Nnini,
Nnnnnn nnn nnnnimii Nnin-
imn iiinnn. Nnnii nnnninnani
ninnnnni nn innn, in Nmnnn,
nnnni nnn inninni niinnn ni
n 19in nnninin Nmnnn ninmi.
Nnnn, nnnnnni, innnn in nnin
innn 100 innnnni nnn nniinin
Nnnnmin, Nnn, Nnnnnn, Nunn,
ni inn nmnnn iniiiii ni nnnnmn

Nninin nnn nnnnn nnimniiin
Nnmn nun raniin nnn nnmi. Nnn
inn N.N.N.N. m nminn, nniinniiniii

nn Nnmn ni Nnnini
Nnmniiii Nnnnmini
11 nni mil n nnnnnn,
nni nn nnnnn—inn
ininnii, nnn ninnn-

nin inn inii, in niiinin.
Nnnnnmnn 15% ni inn nniin’i
innn nnnnnn, inn Nnnini Nnmn
iiininnni iinn n niniini ni
niiinni nninnini in Nniinin
Nmnnn in inn Nnnnn Niinii nn
inn nn ni Nminn, nninii inn nnn-
iinnnii nnn nmnnn iinn nnnni;
nnin innn 3,000 mini—innnnin
inn niiinnnn nnn Nnn Nnin
in Nnn Ninnminn—innninin inn
inn iinini ni inn Niniin Nnnnn
linn inn nnn-nninnnn Nnin
Nnn Nninii. Nnn 262.4 nnnnn
miinnni ni inn N.N.N.N. nnmnn
in nnin innn 100 ninnin ninnni
nnn mnin nninnni iinn Nninn¬
nmni, Nnini, Nnnnnn nnn
nnnniinii Nninimn iimni. Nnnii
nnnninnnm ninnnnni in innn,
in Nmnnn, nnnni inn inmnnn
nnnnn ni n 19in nnmnin
Nmnnn ninniii. Nnnn, nnnnnn,
innnn in nnin innn 100 innnnm
nnn nniimn Nnnnnnn, Nnn,
Nnnnnn, Nunn, ni inn nni-
niii iniiiii ni nnnnnin nnninii in inn ini nnnn.

Nninin nnn nnnnn nmniniiin nnrm nnnnmn inn Nnnim
Nnmn nun mnun nnn mmii. Nnn ninnminm nnninnnninii ni
inn N.N.N.N. in nminn, nnimniimi nnn nnninn ninnnniinn iiiu

nnninii in inn ini nnnn.
nnnn nnnnmn inn Nnnini

ninnininm nnmnnnnnmi ni
nnn nnninn ninnnnimn iiiii

Figure 28. This example is based on the spacing in a recent issue of Time

magazine, but all of the letters have been replaced by n’s of various

widths. If the text were readable, the line breaks in Version B (which

were chosen by Te^’s total-fit algorithm) would be less distracting

than those in Version A. Moreover, Version B needs no letterspacing.

(see Duncan [14, pages 159-160]), and it is reasonable to suppose that

essentially the same method was carried over to the Time group when

they dedicated two IBM 360/40 computers to the typesetting task [33].

Since the final copy in Time magazine has been edited and re-edited,

and since manual intervention and last-minute corrections will change

line-breaking decisions, it is impossible to deduce what algorithm is

presently used for Time articles merely by examining the printed pages;

but it is tempting to speculate about how the total-fit algorithm might

Breaking Paragraphs Into Lines 141

nn Nmnn ni Nnimii
Nnnmnii Nnnnnimi
II nni mil n nnnniin,
nni nn inniin—inn
minnii, nnn ninnn-

nin inn inii, m niiinin. Nnnnnn-
inn 15% ni inn nniin’i mnn ini-
innn, inn Nnnmi Nmnn iiininnni
linn n niniini ni niiinni nnmmni
in Nniinin Nninnn in inn Nniinn
Niinii nil inn iin ni Nminn, nninii
inn nnniinnnii nnn ninnnn iinn
nnnni; nnin innn 3,000 mini—
innnmn inn miinnnn iinn Nnn
Nnin in Nnn Ninnniinn—innni-
nin inn mn iinini ni inn Nin-
iin Nmnn iinm inn inn-nninnin
Nnin Nnn Nninii. Nnn 262.4
nniinn niimnni ni inn N.N.N.N.
nninnn in nnin innn 100 ninmn
ninnni nnn ninin nninnni unn
Nninnninni, Nnini, Nnnnnii nnn
nnnniinii Nniniinn iiinni. Nnnii
nnnninnnni ninnnnni in innn, in
Nniiinn, nnnni inn inninnn nii-
nnn ni n 19in nnninin Nninnn
ninniii. Nnnn, nnnnnni, innnn
in nnin innn 100 innnnni nnn
nniinm Nnnnnnn, Nnn, Nnnnnn,
Nnnn, ni inn nninui iniiiii ni
nnnnnii nnninii in inn ini nniin.

Nninin nnn nnnnn nnininiiii
Nmnn nun nnniin nnn nnnni. Nnn
inn N.N.N.N. m mninn, nniinminin

nin inn

nn Nmnn ni Nnnini
Nnnmnii Nnnnnuni
11 nni mil n nnnnnn,
nni nn nnniin—inn
ininnii, nnn ninnn-
inii, in niiinin.

Nnnnnnmn 15% ni inn nniin’i
innn iniiniin, inn Nnnini Nmnn
iiininnni unn ii uiniini in
niiinni nninnini in Nniinin
Nninnn in inn Nnnnn Niinii nn
inn nn ni Niniim, nniiiii inn nnn-
imnnii nnn ninnnn unn nnnni;
nnin innn 3,000 mini -innnnin
inn miinnnn unn Nnn Nnin
in Nnn Ninnniinn—innninin inn
inn iinini ni inn Niniin Nnnnn
unn inn inn-nninnnn Nnin
Nnn Nninii. Nnn 262.4 nnnnn
niiinnni ni inn N.N.N.N. nninnn
in nnin innn 100 ninnin ninnni
nnn imin nninnni unn Nninn¬
ninni, Nnini, Nnnnnn nnn
nnnniuui Nninimn iiinni. Nnnn
nnnninnnni ninnnnii in innn,
in Nninnn, nnnni inn inninnn
nnnnn ni n 19in nnninin
Nninnn ninnui. Nnnn, nnmnni,
innnn m nnin innn 100 innnnni
nnn nniimn Nnnnimn, Nnn,
Nnnnnn, Nunn, ni inn nni-
niii iniiiii ni nnnnnin nnninii in inn ini nniin.

Nninin nnn nnnnn nnininiiin nnnn nnnnnnn inn Nnnini
Nmnn nun nnnnn nnn nnnni. Nnn ninnmmni nnnmnnnnnu ni
inn N.N.N.N. in nmmn, nnimminin nnn nnninn ninnnnimn iiiii

nnnn nnnnnnn inn Nnnini
ninnmmni nnnmninnnii ni
nnn nnninn ninnnnimn mu

Figure 29. Given the “Time magazine problem” of Figure 28, TLX does

even better when it is allowed to choose the optimum number of lines.

Version B of Figure 28 was produced with looseness 1, in order to

force the first paragraph to end just below the rectangular illustra¬

tion. With looseness 0, more text fits in the narrow column.

improve the appearance of such publications. Figure 28 shows an inter¬

esting example based on page 22 of Time dated June 23, 1980; Version A

shows the published spacing and Version B shows what the new algo¬

rithm would produce in the same circumstances. All letters of the text

have been replaced by n’s of the corresponding width, so that there is

no problem of copyright and so that we can concentrate solely on the

spacing; however, this device makes bad spacing less annoying, since a

reader isn’t so distracted when no semantic meaning is present.

142 Digital Typography

The most interesting thing about Figure 28 is that the final line

of the first paragraph was brought flush right in order to balance the

inserted photograph properly; the photograph actually carried over into

the right-hand column. Version A shows how the desired effect was

achieved by stretching the final three lines, leaving large gaps that surely

caught the curious eye of many a reader; Version B shows how the opti¬

mizing algorithm is magically able to look ahead and make things come

out perfectly. Perhaps even more important is the fact that Version B

avoids the need for letterspacing that spoiled the appearance of lines 6, 9,

10, 23, and 32 in Version A.

Letterspacing — the insertion of tiny spaces between the letters of a

word so as to make large interword spaces less prominent — could read¬

ily be incorporated into the box/glue/penalty model, but it is almost

universally denounced by typographers. For example, De Vinne [11,

page 206] said that letterspacing is improper even when the columns are

so narrow that some lines must contain only a single word; Bruce Rogers

[37, page 88] said, “it is preferable to put all the extra space between

the words even though the resultant ‘holes’ are distressing to the eye.”

Even one-fourth of a unit of space between letters makes words look

noticeably different. The style rules of the U.S. Congressional Record

[40] stipulate that, “In general, operators should avoid wide spacing.

However, no letterspacing is permitted.” The total-fit algorithm there¬

fore makes it possible to comply more easily with existing laws.

The idea of applying dynamic programming to line breaking oc¬

curred to D. E. Knuth in 1976 when Professor Leland Smith of Stanford’s

music department raised a related question that arises in connection with

the layout of music on a page. During a subsequent discussion with stu¬

dents in a problem-solving seminar (see Clancy and Knuth [8]), someone

pointed out that essentially the same idea would apply to the words of

paragraphs as well as to the bars of music. The box/glue/penalty model

was developed by Knuth in April 1977 when the initial design of T[5X

was planned, although he didn’t know at that time whether a general

optimizing algorithm could be implemented with enough efficiency for

practical use. Knuth was blissfully unaware of Cooper’s supposedly un¬

successful experiments with dynamic programming, otherwise he might

have rejected the whole idea subconsciously before pursuing it at all.

During the summer of 1977, M. F. Plass introduced the idea of

feasible breakpoints into Knuth’s original algorithm in order to limit

the number of active possibilities and still find the optimum solution,

unless the optimum was intolerably bad anyway. This algorithm was

implemented in the first complete version of T^K (March 1978), and it

Breaking Paragraphs Into Lines 143

appeared to work well. The unexpected power of the box/glue/penalty

primitives gradually became clear during the next two years of experi¬

ence with T^]X; and when somewhat wild uses of negative parameters

were discovered (as in the Pascal and Math Reviews examples of Figures

10 and 11), the authors had to ferret out subtle bugs in the original im¬
plementation.

Finally it became desirable to add more features to TeX’s line-

breaking procedure, especially an ability to vary the line widths with

more flexibility than simple hanging indentation. At this point a

more fundamental defect in the 1978 implementation became apparent,

namely that it maintained at most one active node for each breakpoint,

regardless of the fact that a single breakpoint might feasibly occur on

different lines; this meant that the algorithm could miss feasible ways to

set a paragraph, in the presence of sufficiently long hanging indentation.

A new algorithm was therefore developed in the spring of 1980 to replace

TeiX’s previous method. At that time the refinements about looseness

and adjacent-line mismatches were also introduced, so that TgX now uses

essentially the total-fit algorithm that we have discussed in detail above.

Problems and Refinements

One unfortunate restriction remains in T1h)X, although it is not inherent

in the box/glue/penalty model: When a break occurs in the middle of a

ligature (e.g., if ‘efficient’ becomes ‘ef-ficient’), the computation of char¬

acter widths is more complicated than usual. We must take into account

not only the fact that a hyphen has some width, but also the fact that ‘f’

followed by ‘fi’ is wider than ‘ffi’. The same problem occurs when setting

German text, where some compound words change their spelling when

they are hyphenated (e.g., ‘backen’ becomes ‘bak-ken’ and ‘Bettuch’ be¬

comes ‘Bett-tuch’). TgX does not permit such optional spelling variants

at present; it will only insert an optional hyphen character among other

unchangeable characters. Manual intervention is necessary in the rare

cases when a more complicated break cannot be avoided.

It is interesting to consider how to extend the total-fit algorithm so

that it could handle cases like the dropping of m’s and n’s in Figure 22.

The badness function of a fine would then depend not only on its natu¬

ral width, stretchability, and shrinkability; it would also depend on the

number of m’s and the number of n’s on that line. A similar technique

could be used to typeset biblical Hebrew, which is never hyphenated:

Hebrew fonts intended for sacred texts usually include wide variants of

several letters, so that individual characters on a line can be replaced by

their wider counterparts in order to avoid wide spaces between words.

144 Digital Typography

For example, there is a super-extended aleph in addition to the normal

one. An appropriate badness function for the lines of such paragraphs

would take account of the number of dual-width characters present.

The most serious unanticipated problem that has arisen with re¬

spect to TeX’s line-breaking procedure is the fact that floating-point

arithmetic was used for all the calculations of badness, demerits, etc., in

the original implementations. This has led to different results on differ¬

ent computers, since there is so much diversity in existing floating-point

hardware, and since there are often two choices of breakpoints having

almost the same total demerits. It is important to be able to guarantee

that all versions of TgX will set paragraphs identically, because the abil¬

ity to proofread, edit, and print a document at different sites is becoming

significant. Therefore the “standard” version of TfiX, planned for release

in 1982, will use fixed-point arithmetic for all of its calculations.

Books on typography frequently discuss a problem that may be

the most serious consequence of loose typesetting, namely the occa¬

sional gaps of white space that are called “houndsteeth” or “lizards”

or “rivers.” Such ugly patterns, which run up through a sequence of

lines and distract the reader’s eye, cannot be eliminated by a simple

efficient technique like dynamic programming. Fortunately, however,

the problem almost never arises when the total-fit algorithm is used,

because the computer is generally able to find a way to set the lines

with suitably tight spacing. Rivers begin to be prevalent only when the

tolerance threshold p has been set high for some reason, for example in

Figure 7 where an unusually narrow column is being justified. Another

case that sometimes leads to rivers arises when the text of a paragraph

falls into a strictly mechanical pattern, as when a newspaper lists all of

the guests at a large dinner party. Extensive experience with TgX has

shown, however, that manual removal of rivers is almost never necessary

after the total-fit algorithm has been used.

The box/glue/penalty model applies in the vertical dimension as

well as in the horizontal; hence is able to make fairly intelligent de¬

cisions about where to start each new page. The tricks we have discussed

for such things as ragged-right setting correspond to analogous vertical

tricks for such things as “ragged-bottom” setting. However, the current

implementation of T^jX keeps each page in memory until it has been out¬

put, so Te^X cannot store an entire document and find strictly optimum

page breaks using the algorithm we have presented for line breaks. The

best-fit method is therefore used to output one page at a time.

Experiments are now in progress with a two-pass version of TgX

that does find globally optimum page breaks. This experimental system

Breaking Paragraphs Into Lines 145

will also help with the positioning of illustrations as near as possible to

where they are cited in the accompanying text, taking proper account

of the fact that certain pages face each other. Many of these issues can

be resolved by extending the dynamic programming techniciue and the

box/glue/penalty model of this paper, but some closely related problems
can be shown to be NP complete [35].

Appendix: A Stripped-Down Algorithm

Many applications of line breaking (e.g., in word processors or news¬

papers) do not need all of the machinery of the general optimizing

algorithm described in the text above, and it is possible to simplify the

general procedure considerably while at the same time decreasing its

space and time requirements, provided that we are willing to simplify

the problem specifications and to tolerate less than optimal performance

when hyphenation is necessary. The “subtotal-fit” program below is

good enough to discover the line breaks of Figure 3 or Figure 4(c), but it

will not handle some of the more complicated examples. More precisely,

the stripped-down program assumes that

a) Instead of the general box/glue/penalty model, the input is specified

by a sequence wi... Wn of nonnegative box widths representing the

words of the paragraph and the attached punctuation, together with

a sequence of small integers gi. ■ ■ Qn that specifies the type of space
to be used between words. For example, we might have gk = 1

when a normal interword space follows the box of width Wk, while

gk — 2 when there is to be no space since box k ends with an explicit

hyphen, and gk — 3 when box k is the end of the paragraph. Other

type codes might be used after punctuation. Each type corresponds

to three nonnegative numbers {xg,yg,Zg) representing respectively

the normal spacing, the stretchability, and the shrinkability of the

corresponding kind of space. For example, if types 1, 2, and 3 are

used with the meanings just suggested, we might have

{xi, yi, zi) — (6, 3, 2) between words

(x2, 2/2) 22) = (0, 0, 0) after explicit hyphens or dashes

(x3, 2/3, 23) = (0, 00, 0) to fill the final line

in terms of ^em units, where 00 stands for some large number.

The width w of the first box should include the blank space needed

for paragraph indentation; thus, the Grimm fairy tale example of

Figure 1 would be represented by

u;i,..., Wn = 34,42,..., 24, 39,30,..., 60, 80

gu...,gn= 1, I,---, 1, 2, 1,..., 1, 3

146 Digital Typography

corresponding to

‘□In’, ‘olden’,..., ‘old’, ‘lime-’, ‘tree’,..., ‘favorite’, ‘plaything.’

respectively, using widths as in Table 1. The general input sequences

wi...Wn and gi ... Qn can be expressed in the box/glue/penalty

model by the equivalent specification

box(u;i) glue(xgi,2/3i,2:gj ... hox{wn) g^ue{Xg^,yg^, ZgJ

followed by ‘penalty(0, -oo,0)’ to finish the paragraph.

b) All lines must have the same width /, and each Wk is less than 1.

c) No word will be hyphenated unless there is no way to set the

paragraph without violating minimum or maximum constraints on

spacing. The minimum for type g spaces is

z'g^Xg- Zg

and the maximum is

y'g=^9+ PVg >

where p is a positive tolerance that can be varied by the user. For

example, if p = 2 the maximum type g space is Xg + 2yg, the normal

amount plus twice the stretchability.

d) Hyphenation is performed only at the point where feasible line

breaking becomes impossible, even though it may be better to hy¬

phenate an earlier word. Thus, the general total-fit algorithm of the

text will give substantially better results when high-quality output

is desired and hyphenation is frequently necessary.

e) No penalty is assessed for a tight line next to a loose line, or for

consecutive hyphenated lines, and the algorithm does not produce

paragraphs that are longer or shorter than the optimum length. (In

other words, a = 7 = g = 0in the general algorithm.)

Under these restrictions, optimum breakpoints can be found with extra

efficiency.

The subtotal-fit algorithm manipulates two arrays:

SqSi . . . ,

where Sk denotes the minimum sum of demerits leading to a break after

box k, or Sfc = oo if there is no feasible way to break there; and

Pi ■ ■■Pn+l 5

Breaking Paragraphs Into Lines 147

where pk is meaningful only if < oo, in which case the best case to

end a line at box k is to begin it with box 1. We also assume that

Wn+l = 0;

this represents an invisible box at the end of the paragraph’s final line.

Besides the 4n + 4 storage locations for arrays Wi... Wn+i, gi ... pn,

So ... Sn+i, and pi ... Pn+i, and the memory required to hold the param¬

eters I, p, and {xg, pg, Zg) for each type g, the stripped-down algorithm

needs only a few miscellaneous variables:

a = the beginning of the paragraph (normally 0,

changed after hyphenation);

k = the current breakpoint being considered;

j = the breakpoint being considered as a predecessor of k;

i = the leftmost breakpoint that could feasibly precede k;

m — the number of active breakpoints (i.e., subscripts
j > i with Sj < oo);

E = the normal width of a line from i to A:;

Emax = the maximum feasible width of a line from i to k;

Emin = the minimum feasible width of a line from i to k;
E' = the normal width of a line from j to k;

^max = tire maximum feasible width of a fine from j to k]

E(nin = the minimum feasible width of a line from j to k]

r = the adjustment ratio from j to k]

d = the total demerits from a to • ■ ■ to j to A:;

d' = the minimum total demerits known from a to • • • to A;;

j' = the predecessor of k that leads to d' total demerits, if d' < oo.

All of these variables are integers except r, which will be a fraction

in the range — 1 < r < p. The reader may verify the validity of the

algorithm by verifying that the stated interpretations of the variables

remain invariant in key places as the program proceeds.

Here now is the program, viewed from the top down:

a := 0;

loop: i := a; Sj := 0; m := 1; k := i + 1;

E .— Eniax •— Eniin • ^/cj

loop: while Emin > ^ do (Advance z by 1);
(Examine all feasible lines ending at k);

Sk ■= d'; if d' < oo then

begin m := m -f- 1; pk := /;

end;
if m = 0 or A: > n then exit loop;

E := E -|- rwfc+i T ^gk 'i

148 Digital Typography

^max •— ^max T 4" l/pj,,) ^min • ^min T ‘^k+1 T
A; := fc + 1;

repeat;

if k > n then

begin output {a, n + 1); exit loop;

end

else begin (Try to hyphenate box k, then output

from a to this break);

a := k — 1]

end;

repeat.

The operation (Advance i by 1) is carried out only when Emin > ^ and

this cannot happen when k = i + 1 since Emin — Wk < I in such a case.

Therefore the while loop terminates; we have

(Advance i by 1) =

begin if < oo then m := m — 1;

z := z + 1;

T, T, - Wi - Xgp,

Emax •— Emax Vgii ^min •— Emin ’
end.

The inner loop of the subtotal-fit program is simpler and faster than

the corresponding loop in the general total-fit algorithm because it does

not consider active breakpoints near k, only those that are approximately
one line-width away:

(Examine all feasible lines ending at k) =

begin j z; E E; Emax •“ Emax! E^jj^ Emin ; d' := oo;
while E;^^^ > I do

begin if Sj < oo then

(Consider breaking from a to ■ • • to j to A:);

3 ■= j + 1;
E' := E' — Wj — Xg.;

^max ■“ ^max ~ ~ Vgji ^min ’ ^min ~ ~ ^gji

end.

Again we can conclude that the while loop must terminate, since it will

not be executed when k = j + 1. The innermost code is easily fleshed out:

(Consider breaking from a to ■ • • to j to A;) =

begin if E' < i then r := p ■ [I - - E')

else if E' > / then r := {I — E')/(E' —

else r := 0;

Breaking Paragraphs Into Lines 149

d Sj + (1 + 100|r|3)^
if d < d' then

begin d' := d; f := j-

end;

end.

When hyphenation is necessary, the algorithm goes into panic mode,

first searching for the last value of i that was feasible, then attempting

to split word k. At this point the line from i to A: — 1 is too short, and

from f to A: it is too long, so there is hope that hyphenation will succeed.

(Try to hyphenate box k, then output from a to this break) =
begin loop S := E + Wi + Xg.;

Tmax •= Tmax + + yg^] := Sjnin + 'li’i +
i := i - 1;

if Sj < (X) then exit loop;

repeat;

output {a, z);

(Split box k at the best place);

(Output the line up to the best split and adjust Wk

for continuing);
end.

Let us suppose that there are hk ways to split box k into two pieces,

where the widths of these pieces in the jth such split are and

respectively; here w'f,j includes the width of an inserted hyphen. An

auxiliary hyphenation algorithm is supposed to be able to compute hk

and these piece widths on demand; this algorithm is invoked only when

we reach the routine (Split box k at the best place). If no hyphenation

is desired one can simply let hk — 0, and the program below becomes

much simpler. There are hk + 1 alternatives to be considered, including

the alternative of not splitting at all, and the choice can be made as

follows:

(Split box k at the best place) =

begin (Invoke the hyphenation algorithm to compute hk

and the piece widths);

j' ■■= 0; d' := oo;
for j 1 to hk do if Emin + w'^j — < I then

begin E' := E + wj,

if E' <l

then d := lOOOOp • (/ - E')/ (100(Emax - T) + 1);

else d := 10000 • (E' - /)/ (100(E - Emin) + 1);

if d < d' then

150 Digital Typography

begin d' := d; f := j;

end;

end;

end.

The final operation, (Output the line up to the best split and ad¬

just Wk for continuing), will only be sketched informally here since we

need not introduce still more notation to explain such an elementary

concept. If j' / 0, so that hyphenation is to be performed, the program

outputs a line from box f -|-1 to box k inclusive, but with box k replaced

by the hyphenated piece of width ; then Wk is replaced by the width

of the other fragment, namely . In the other case when j' = 0, the

program simply outputs a line from box z -|- 1 to box A: — 1 inclusive.

Finally, one more loose end needs to be tightened up: The procedure

output {a, i) simply goes through the p table determining the best line

breaks from a to z and typesets the corresponding lines. One way to

do this without requiring extra memory space is to reverse the relevant

p-table entries so that they point to successors instead of predecessors:

procedure output {integer a,i) =

begin integer q, r, s; q := i] s := 0;

while q a do

begin r := pq\ pg := s; s := q- q := r;

end;

while q ^ i do

begin (Output the line from box q -|- 1 to box s, inclusive);

q:= S-, s :^pq]

end;

end.

In practice there is only a bounded amount of memory available

for implementing this algorithm, but arbitrarily long paragraphs can be

handled if we make a minor change suggested by Cooper [9]: When the

number of words in a given paragraph exceeds some maximum number

^^rnax) apply the method to the first Umax words; then output all but the

final line and resume the method again, beginning with the copy carried

over from the line that was not output.

Acknowledgments

We wish to thank Barbara Beeton of the American Mathematical Society

for numerous discussions about “real world” applications; we also are

grateful to James Eve of the University of Newcastle-Upon-Tyne and

Neil Wiseman of Cambridge University for helping us obtain literature

Breaking Paragraphs Into Lines 151

that was not readily available in California; and we thank the librarians

of the rare book rooms at Columbia University and Stanford University

for letting us study and photograph excerpts from polyglot Bibles.

This research was supported in part by the National Science Foundation under
grants 1ST—7921977 and MCS—7723738; by Office of Naval Research grant N00014—
76—C—0330; by the IBM Corporation; and by Addison-Wesley Publishing Company.

References

[1] Benedictus Arias Montamis, editor, Biblia Sacra Hebraice, Chal-

daice, Graece, (U Latine (Antwerp: Christoph. Plantinus, 1569-
1573).

[2] G. P. Bafour, A. R. Blanchard, and F. H. Raymond, “Automatic

Composing Machine,” U.S. Patent 2762485 (11 September 1956).

(See also British patent 771551 and French patent 1103000.)

[3] G. Bafour, “A new method for text composition — The BBR Sys¬

tem,” Printing Technology 5,2 (1961), 65-75.

[4] Michael P. Barnett, Computer Typesetting: Experiments and Pros¬

pects (Cambridge, Massachusetts: M.I.T. Press, 1965).

[5] Samuel A. Bartels, The Art of Spacing (Chicago: The Inland
Printer, 1926).

[6] Richard Bellman, Dynamic Programming (Princeton, New Jersey:

Princeton University Press, 1957).

[7] D. G. Berri, The Art of Printing (London: 1864).

[8] Michael J. Clancy and Donald E. Knuth, “A programming and

problem-solving seminar,” report STAN-CS-77-606, Computer Sci¬

ence Department, Stanford University (April 1977), 85-88.

[9] P. 1. Cooper, “The influence of program parameters on hyphenation

frequency in a sophisticated justification program,” Advances in

Computer Typesetting (London: The Institute of Printing, 1967),

176-178, 211-212.

[10] T. H. Darlow and H. F. Moule, Historical Catalogue of the Printed

Editions of Holy Scripture in the Library of the British and Eoreign

Bible Society (London: The Bible House, 1911).

[11] Theodore Low De Vinne, Correct Composition, Volume 2 of The

Practice of Typography (New York: Century, 1901).

[12] James L. Dolby, “Theme C: Software and hardware,” in a booklet

of summaries distributed on 18 July 1966 at the conclusion of the

152 Digital Typography

International Computer Typesetting Conference, University of Sus¬

sex (London: The Institute of Printing, 1966). Dolby gave a slightly

warmer review of Cooper’s work in the conference proceedings pub¬

lished the following year; see Advances in Computer Typesetting

(London: The Institute of Printing, 1967), 292.

[13] C. J. Duncan, J. Eve, L. Molyneux, E. S. Page, and Margaret G.

Robson, “Computer typesetting: An evaluation of the problems,”

Printing Technology 7 (1963), 133-151.

[14] C. J. Duncan, “Look! No hands!” The Penrose Annual 57 (1964),

121-168.

[15] A. Prey, Manuel Nouveau de Typographie (Paris: 1835), 2 volumes.

[16] Michael R. Carey and David S. Johnson, Computers and Intract¬

ability (San Francisco: W. H. Freeman, 1979).

[17] Aug. Giustiniani, Psalterium (Genoa: 1516).

[18] Jakob Ludwig Karl Grimm and Wilhelm Karl Grimm, “Der Frosch-

konig (The Frog King),” in Kinder- und Hausmarchen (Berlin:

1912). For the history of this story see Heinz Rolleke, Die Alteste

Marchensammlung der Briider Grimm (Cologny-Geneve: Fondation

Martin Bodmer, 1975), 144-153.

[19] Basil Hall, The Great Polyglot Bibles (San Francisco: The Book

Club of California, 1966).

[20] M. Held and R. M. Karp, “The construction of discrete dynamic

programming algorithms,” IBM Systems Journal 4 (1965), 136-147.

[21] Walter E. Houghton, Jr., “The history of trades: Its relation to sev¬

enteenth century thought,” in Roots of Scientific Thought, edited

by Philip P. Wiener and Aaron Noland (New York: Basic Books,

1957), 354-381.

[22] Information International, Inc., PAGES Composition Language,

privately distributed. First edition, October 31, 1975; second edi¬

tion, October 20, 1976. The language is sometimes called “PAGE-

111” because of the company that created it.

[23] Kathleen Jensen and Niklaus Wirth, Pascal User Manual and Re¬

port (Heidelberg: Springer-Verlag, 1975).

[24] Francisco Jimenez de Cisneros, sponsor, Uetus testamentum mul-

tiplici lingua nunc primo impressum (Alcala de Henares: Industria

Arnaldi Guillelmi de Brocario in Academia Complutensi, 1522).

The printing was completed in 1517, but papal permission to pub¬

lish this book was delayed for several years.

Breaking Paragraphs Into Lines 153

[25] Paul E. Justus, “There is more to typesetting than setting type,”

IEEE Transactions on Professional Communication PC-15 (1972),
13-16, 18.

[26] Donald E. Knuth, Tf^ and METRFONT: New Directions in Type¬

setting (Bedford, Massachusetts: Digital Press and American Math¬
ematical Society, 1979).

[27] Donald E. Knuth, “BLAISE, a preprocessor for PASCAL,” file

BLAISE.DEK[UP,DOC] at SU-AI on the ARPA network (March 1979).

The program itself is hie BLAISE.SAI [TEX,DEK].

[28] Donald E. Knuth, Seminumerical Algorithms, Volume 2 of The Art

of Computer Programming, 2nd edition (Reading, Massachusetts:
Addison-Wesley, 1981).

[29] Donald E. Knuth, T^Y; The Program, Volume B of Computers &

Typesetting (Reading, Massachusetts: Addison-Wesley, 1986).

[30] Joseph Moxon, Mechanick Exercises: Or, the Doctrine of Handy-

Works. Applied to the Art of Printing (London: J. Moxon, 1683-

1684). Reprinted by the Typothetae of New York, 1896, with notes

by T. L. De Vinne; also reprinted by Oxford University Press, 1958,

with notes by Herbert Davis and Harry Carter; but the reprints do

not capture the full feeling of the original, with its less sumptuous

seventeenth-century workmanship.

[31] Joseph F. Ossanna, Nroff/Troff User’s Manual, Bell Tele¬

phone Laboratories internal memorandum (Murray Hill, New Jer¬

sey: 1974). Revised version in UNIX Programmer’s Manual 2,

Section 22 (January 1979).

[32] Herman D. Parks, “Computerized processing of editorial copy,” Ad¬

vances in Computer Typesetting (London: The Institute of Print¬

ing, 1967), 119-121, 157-158.

[33] Herman Parks, contributions to the discussions. Proceedings of the

ASIS Workshop on Computer Composition (American Society for

Information Science, 1971), 143-145, 151, 180-182.

[34] John Pierson, Computer Composition Using PAGE-1 (New York:

Wiley-Interscience, 1972).

[35] Michael F. Plass, Optimal Pagination Techniques for Automatic

Typesetting Systems, Ph.D. thesis, Stanford University (1981).

Published also as Xerox Palo Alto Research Center report ISL-81-1

(Palo Alto, California: August 1981).

[36] Alison M. Pringle, “Justihcation with fewer hyphens,” The Com¬

puter Journal 24 (1981), 320-323.

154 Digital Typography

[37] Bruce Rogers, Paragraphs on Printing (New York: William E.

Rudge’s Sons, 1943).

[38] Hanan Samet, “Heuristics for the line division problem in computer

justified text,” Communications of the ACM 25 (1982), 564-571.

[39] George Bernard Shaw, “On modern typography,” The Dolphin 4

(1940), 80-81.

[40] U.S. Government Printing Ofhce, Style Manual (Washington, D.G.:

1973). The quotation is from rule 22 (catch?).

[41] Brianus Waltonus, editor, Biblia Sacra Polyglotta (London: Thomas

Roycroft, 1657).

[42] David Wolder, Biblia Sacra Graece, Latine & Germanice (Hamburg:

Jacobus Lucius Juni., 1596).

Addendum

Michael Plass prepared a shorter version of this article for the book

Document Preparation Systems, edited by Jurg Nievergelt, Giovanni

Coray, Jean-Daniel Nicoud, and Alan C. Shaw (Amsterdam: North-

Holland, 1982), 221-242. His version generalizes and simplifies the

box/glue/penalty model by introducing the notion of a kerf, which con¬

sists of three sequences of boxes and glue for prebreak, postbreak, and

nobreak alternatives, together with a penalty p and a flag /; breakpoints

occur only at kerfs.

The standard version of which was completed about two years

after the paper above was written, extended the line-breaking model in

another way, by introducing leftskip and rightskip glue at the left and

right of each line. This simplifies many constructions, such as those for

ragged-right and ragged-centered setting. T^X now uses an improved

formula for demerits, namely

r (/ + Pj)‘^ + ^j ’ if TTj > 0 ;

= S (^ + Pj)'^ “ < TTj < 0 ;

[(/ + PjY + aj , if TVj = -oo ;

here I is a parameter called the line penalty, normally set to 10. See

D. E. Knuth, Literate Programming (1991), 272-274, for a discussion of

why it was important to change from (/ -f Pj + Wjp to (/ + Pjp + tt] in

the case iTj >0.

People who use T^X extensively will be aware that “infinite” penal¬

ties are now rated 10000 instead of 1000, and that TgX’s glue now has

Breaking Paragraphs Into Lines 155

three levels of infinity called fil, fill, and filll. Version 3.0 of

introduced an optional third pass to the line-breaking algorithm, if the

user has specified emergency stretch. [See change 885 in the error log

of Ti^X, Literate Programming (1991), 338.] If there is no feasible way

to typeset a paragraph with tolerances pi or p2, the emergency stretch

is added to the stretchability of all lines when calculating badness and

demerits; this gives T]eX a decent way to distinguish between different

levels of extremely bad breaks in the most difficult cases.

» i J*

'H* ? “
^ . i. ’ / • '..

»V * ' •

I

V

II

■■t

JS>*

li

Chapter 4

Mixing Right-to-Left Texts with Left-to-

Right Texts

[Written with Pierre MacKay. Originally published in TUGboat 8
(1987), 14-25.]

TeX was designed to produce documents that are read from left-to-right
and top-to-bottom, according to the conventions of English and other
Western languages. If such documents are turned 90°, they can also
be read from top-to-bottom and right-to-left, as in Japan. Another
90° or 180° turn yields documents that are readable from right-to-left
and bottom-to-top, or from bottom-to-top and left-to-right, in case a
need for such conventions ever arises. However, T^X as it stands is not
suitable for languages like Arabic or Hebrew, which are right-to-left and
top-to-bottom.

It would not be difficult to use T^^X for documents that are purely
Arabic or purely Hebrew, by essentially producing the mirror image of
whatever document is desired. A raster-oriented printing device could
easily be programmed to reflect the bits from right to left as it puts
them on the pages. (This is sometimes called “T-shirt mode”, because
it can be used to make iron-on transfers that produce readable T-shirt
messages, when English language output is transferred to cloth after
being printed in mirror image.)

Complications arise, however, when left-to-right conventions are
mixed with right-to-left conventions in the same document. Consider
an Arabic/English dictionary, or a Bible commentary that quotes He¬
brew, or a Middle-Eastern encyclopedia that refers to Western names in
roman letters; such documents, and many others, must go both ways.

The purpose of this paper is to clarify the issues involved in mixed-
direction document production, from the standpoint of a Western author
or reader or software implementor. We shall also consider changes to
T)EX that will extend it to a bidirectional formatting system.

157

158 Digital Typography

Terminology and conventions

Let us say for convenience that an L-text is textual material that is

meant to be read from left to right, and an R-text is textual material

that is meant to be read from right to left. Similarly we might say

that English and Spanish are L-languages, while Arabic and Hebrew are

R-languages.

In order to make this paper intelligible to English readers who

are unfamiliar with R-languages, we shall use “reflected English”, i.e.,

riailgnS, as an R-language. All texts in reflected English will be type¬

set in bobnoixS bIo9 moboM loiuqrnoD type, which is a reflected

version of Computer Modern Bold Extended type. To translate from

English to riailgnS and back again, one simply needs to reverse the or¬

der of reading. Both English and rieilgnS are pronounced in the same

way, except that rIaiIgnS should be spoken in a louder and/or deeper

voice, so that a listener can distinguish it.

The simplest case

It’s not difficult to typeset single R-language words in an L-text docu¬

ment. will work fine if you never need to deal with R-texts of more

than one word at a time; all you have to do is figure out a macro that

will reverse isolated words.

Let’s suppose that we want to type ‘the I English I script’ in order

to typeset ‘the rlailgna script’ with T^. All we need is a font for

rIaiIgnS, called xbmclO, say, and the following macros:

\f ont\revrm=xbmc 10 \hyphenchar\revrin=-1

\catcode‘\|=\active

\def I #11 {{\revrin\ref lect#l\empty\tcelf er}}

\def\reflect#l#2\tcelfer{\ifx#l\empty

\else\reflect#2\tcelfer#l\fi}

(The characters of xbmclO can be generated like those of cmbxlO with
the extra METRFONT statement

extra_endchar := extra_endchar &

"currentpicture:=currentpicture

reflectedabout((.5[l,r],0),(.5 [1,r],1));"

added to the parameter file. Both fonts have the same character widths,

but they have different ligature-kern tables; for example, an ‘i’ followed
by an ‘d’ gives ‘ft’.)

Mixing Right-to-Left Texts with Left-to-Right Texts 159

Alternating texts

But that simple approach does not work when there are multiword R-

text phrases, e.g., asgBnlq txst-H biowitium, embedded in an L-text

document because of the possibility of line breaks, e.g., to oauBood

gjlBoid onilto y;tilidi8goq orit. For example, let’s consider the problem
of typesetting the following paragraph:*

Leonardo da Vinci made a sweeping statement

in his notebooks: |‘‘Let no one

who is not a mathematician read my works.’’|

In fact, he said it twice, so he probably meant it.

Here are samples of the proper results, considering two different column
widths:

Leonardo da Vinci made a sweeping statement in his

notebooks: nBioiiBmodlBm b ion gi odw ono on ioJ"

''.g>Iiow bBor In fact, he said it twice, so he probably
meant it.

Leonardo da Vinci made a sweep¬

ing statement in his notebooks: i9J“

-iiBmsdiBm b ion gi odw sno on

".gdiow Ytn bBST nBio In fact, he

said it twice, so he probably meant it.

Notice that the R-text in each line is reflected; in particular, a hyphen

that has been inserted at the right of an R-segment will appear at the

left of that segment.

How can we get to do this? The best approach is probably to

extend the driver programs that produce printed output from the DVI

files that TRX writes, instead of trying to do tricky things with TeiX

macros. Then Th?C itself merely needs to put special codes into the DVI

output files, in order to tell the “DVI-IVQ” drivers what to do.

For example, one idea that almost works is to put ‘\special{R}’

just before an R-text begins, and ‘\special{L}’ just after it ends. In

* After Leonardo lost the use of his right hand, he began to make left-handed
notes in mirror writing. Of course, he actually wrote in nBiletl instead of
riailgnU.

160 Digital Typography

other words, we can change the ‘ I ’ macro in our earlier example to the

simple form

\defI#11{{\revrm\special{R}#l\special{L}}}

which does not actually reverse the characters; we can also leave the

‘\hyphenchar’ of \revrm at its normal value, so that R-texts will be

hyphenated. Line breaking will proceed in the normal way, and the

DVI-IVQ driver program will have the responsibility of reflecting every

segment that it sees between an R and an L.
Reflecting might involve arbitrary combinations of characters, rules,

accents, kerns, etc.; for example, the R-text might be in or it

might even refer to XgT!

An approach to implementation

In order to understand how DVI-IVQ programs might do the required

tasks, we need to look into the information that TgX puts into a DVI

file. The basic idea is that whenever TgX outputs an hbox or a vbox,

the DVI file gets a ‘push’ command, followed by various commands to

typeset the box contents, followed by a ‘pop’ command. Therefore we

can try the following strategy:

a) Whenever ‘\speciaI{R}’ is found in the DVI file, remember the cur¬

rent horizontal position ho and vertical position uq; also remember

the current location po in the DVI file. Set c ■<— 0. Then begin

to skim the next DVI instructions instead of actually using them

for typesetting; but keep updating the horizontal and vertical page

positions as usual.

b) When ‘\special{L}’ is found in the DVI file, stop skimming in¬

structions. Then typeset all instructions between po and the current

location, in mirror-reflected mode, as explained below.

c) When ‘push' occurs when skimming instructions, increase c by 1.

d) When ‘pop’ occurs when skimming instructions, there are two cases.

If c > 0, decrease c by 1. (This ‘pop’ matches a previously skimmed

‘push'.) But if c = 0, effectively insert ‘\special{L}’ at this point

and ‘\special{R}’ just after the very next ‘push'.

The mirror-reflected mode for DVI commands in positions po to pi in

the DVI file, beginning at (hoWo) and ending at {hi,vi), works like this:

A character of width w whose box sits on the baseline between {h,v)

and {h T w,v) in normal mode should be placed so that its box sits on

Mixing Right-to-Left Texts with Left-to-Right Texts 161

the baseline between [h' — 'w,v) and {h',v) in mirror mode, where h' is
dehned by the equation

h ~ ho = hi — h'.

Similarly, a rule of width w whose lower edge runs from (h, v) to {h+w, v)

in normal mode should run from [h' — w,v) to {h',v) in mirror mode.

Fixing bugs

We stated above that the approach just sketched will “almost” work.

But it can fail in three ways, when combined with the full generality of

First, there might be material “between the lines” that is inserted

by \vadjust commands; this material might improperly be treated as

R-text. Second, the suggested mechanism doesn’t always find the cor¬

rect left edge of segments that are being reflected, since the reflection

should not always begin at the extreme left edge of a typeset line; it

should begin after the \leftskip glue and before other initial spacing

due to things like accent positioning. Third, certain tricks that involve

\unhbox can make entire lines disappear from the DVI file; however, this

problem is not as serious as the other two, because people shouldn’t be
playing such tricks.

A much more reliable and robust scheme can be obtained by building

a specially extended version of IFX, which puts matching \special

commands into every line that has reflected material. It is not difficult to

add this additional activity to TR^’s existing line-breaking mechanism;

the details appear in an appendix below. When this change has been

made, parts (c) and (d) of the DVI-IVQ skimming algorithm can be

eliminated.

L-chauvinism

We have been discussing mixed documents as if they always consist of

R-texts inserted into L-texts; but people whose native script is right-to-

left naturally think of mixed documents as the insertion of L-texts into

R-texts. In fact, there are two ways to read every page of a document,

one in which the eye begins to scan each line at the left and one in which

the eye begins to scan each line at the right.

The Leonardo illustration above is an example of the first kind, and

we shall call it an L-document. To read a given line of an L-document,

you start at the left and read any L-text that you see. Whenever your

eyes encounter an R-character, they skim ahead to the end of the next

R-segment (i.e., until the next L-character, or until the end of the line.

162 Digital Typography

whichever comes first); then you read the R-segment right-to-left, and

continue as before. The rules for reading an R-document are similar,

but with right and left reversed.

It’s usually possible to distinguish an L-document from an R-

document because of the indentation on the first line of a paragraph

and/or the blank space on the last line. For example, the R-documents

that correspond to the two L-document settings of the paragraph about

Leonardo look like this:

Leonardo da Vinci made a sweeping statement in his

nBioiffimorllBrn 6 Ion orlw sno on notebooks:

In fact, he said it twice, so he probably ".gjliow bsai
meant it.

Leonardo da Vinci made a sweep-

ing statement in his notebooks:

-ilBmsxflBm b Ion ai oriv/ sno on

In fact, he ”.8>I-iow bB9i nnio

said it twice, so he probably meant it.

We can imagine that these R-documents were composed on an R-

terminal and processed by from an olft fnqni that looks like this:

J-nsmsd-BJa gniqsswa b ehBin xoniV Bb obiBiiosJl

sno on J9J’’ hajloodsJon aid ni

‘Vadnow bBsn UBioiJBrnsdJBra b Jon ax odw

I . Jx JxLB9in yldBdonq 9d oa ,9dxwJ Jx bxBa 9d ,JoBi nil

In this case it is the L-text, not the R-text, that is enclosed in I’s. (The

reader is urged to study this example carefully; there is borlJoni in’t!)

A poet could presumably construct interesting poems that have

both L-meanings and R-meanings, when read as L-documents and R-

documents.

Notice that our examples from Leonardo have used boldface quota¬

tion marks (i.e., the quotation marks of rlailgna), so that these marks

belong to the text being quoted. This may seem erroneous; but it is

in fact a necessary convention in documents that are meant to display

no favoritism between L-readers and R-readers, because it ensures that

the quotation marks will stay with the text being reflected. (See the

examples of contemporary typesetting at the end of this paper.) If we

Mixing Right-to-Left Texts with Left-to-Right Texts 163

had put the quotations marks into English rather than rlail§n3, the

R-documents illustrated above would have looked very strange indeed:

Leonardo da Vinci made a sweeping statement in his

nBiDilBrnarilnm b Ion ai orlw ono on loJnotebooks: “

” In fact, he said it twice, so he probably.ajliow beoi

meant it.

Leonardo da Vinci made a sweep-

IsJing statement in his notebooks: “

-ilBmorllBm 6 Ion ai orlw ono on

” In fact, he.ajliow bfioi nsio

said it twice, so he probably meant it.

Multi-level mixing

The problems of mixed R- and L-typesetting go deeper than this, be¬

cause there might be an L-text inside an R-text inside an L-text. For

example, we might want to typeset a paragraph whose TgX source file
looks like this:

\R{Alice} said, \R{‘‘You think English is

\L{‘English written backwards’}; but to me,

\L{English} is English written backwards.

I’m sure \L{Knuth} and \L{MacKay} will

both agree with me.’’} And she was right.

An intelligent bidirectional reader will want this to be typeset as if it

were an R-document inside an L-document. In other words, the eyes

of such a reader will naturally scan some of the lines beginning at the

left, and some of them beginning at the right. Here are examples of the

desired output, set with two different line widths: (Look closely.)

odIIA said, si rlailgnH jlnirll jjoY“

(9m ol lud ;‘English written backwards’

.abiBWjIoBd nellxiw dgilgnH si English

dlod Iliw MacKay bnB Knuth siua m'l

".sra dliw 99agB And she was right.

9DiIA said, ‘En- si riailgnH jlnidl jjoY“

English (9m ol lud ("glish written backwards’

91JJ8 m'l .abiBWjIoBd n9lliiw dailgnH 8i

dliw 99'igB dlod lliw MacKay bnB Knuth

".9m And she was right.

164 Digital Typography

Multi-level documents are inherently ambiguous. For example, the

second setting of soilA’s example might be interpreted as the result of

I’m sure and \L{MacKay} will both agree with}

Knuth \R{me.’’} And she was right.

and the first setting would also result from a source file like this(!)

\R{‘‘You think English is \L{said,} Alice

\L{‘English}; but to me,} written backwards’

\R{written backwards.} \R{\L{English} is English}

will both} MacKay \R{and} Knuth \R{I’m sure

\L{And she} agree with me.’’} was right.

except for slight differences in spacing due to T£;X’s “space factor” for

punctuation.

In general, we have \R{\L{a}\L{b}} = ba, hence any permutation

of the characters on each line is theoretically possible. A reader has

to figure out which of the different ways to parse each line makes most

sense. Yet there is unanimous agreement in Middle Eastern countries

that a mixture of L-document and R-document styles is preferable to an

unambiguous insistence on L-reading or R-reading throughout a docu¬

ment, because it is so natural and because the actual ambiguities arise

rarely in practice. The quotation marks in the example above make it

possible to reconstruct the invisible \R’s and \L’s; in this way an author

can cooperate with a literate reader so that the meaning is clear.

Multi-level texts arise not only when quotes are inside quotes or

when R-document footnotes or illustrations are attached to L-docu-

ments; they also arise when mathematics is embedded in R-text. For

example, consider the TgX source code

The \R{English} version of ‘the famous identity

$e''{i\pi}+l=0$ due to Euler’ is

\R{‘the famous identity $e"{i\pi}+l=0$ due to Euler’}.

It should be typeset like this:

The rleilgna version of ‘the famous iden¬

tity -f 1 = 0 due to Euler’ is auomBd 9rli^

'i9Ijj3 of 9jjb -f 1 = 0

An extension of T^X called Tg^X-X;;^, described in the appendix, prop¬

erly handles multi-level mixtures including math, as well as the simpler

case of alternating R-texts and L-texts.

Mixing Right-to-Left Texts with Left-to-Right Texts 165

Conclusions

When right-to-left and left-to-right texts are mixed in the same doc¬

ument, problems can arise that are more subtle than simple examples

might suggest. The difficulties can be overcome by extending T]eX to

and by extending DVI drivers to DVI-IVQ drivers. Neither of
these extensions is extremely complex.

Appendix

The extensions to TRX described here are designed to put the hitherto-

undefined byte codes 250 begin^reflection') and 251 {^end-reflection')

into the DVI file, instead of ‘\special{R}’ and ‘\special{L}’ as men¬

tioned above, because mixed-direction typesetting is important enough

to deserve efficient DVI coding. The resulting output files are called
DVI-IVQ files.

The TbiX language is extended to have four new primitive operations,

\beginL \endL \beginR \endR

which are supposed to nest like parentheses in each paragraph and in

each hbox. However, \endL and \endR should be omitted at the end of

a paragraph if they are supposed to take effect after the \parf illskip

glue. (Thus, for example,

\everypar{\kern-\parindent\beginR\indent}

can be used to start a series of paragraphs that all follow the conventions

of an R-document. The last line of every such paragraph will be flush

right, filled at the left; the first line will be indented at the right.)

The four new operations each contribute a new sort of “whatsit

node” to the current horizontal list; they are additional cases of a

(horizontal command) as explained in the T^X manual [2]. The \L

and \R macros in our multi-level example about odiIA can be defined

as follows:

\def\L{\afterassignment\moreL \let\next= }

\def\moreL{\bracetest \aftergroup\endL \beginL \rm}

\def\R{\afterassignment\moreR \let\next= }

\def\moreR{\bracetest \aftergroup\endR \beginR Xrevrm}

\def\bracetest{\ifcat\next{\else\ifcat\next}\fi

\errmessage{Missing left brace has been substituted}\fi

\bgroup}

166 Digital Typography

The remainder of this appendix gives complete details about changes

to the standard TgX program [3] that will convert it to the extended

system It is convenient to list these changes in order by the

WEB section numbers in [3], for every section that is affected.

2. Here we should change the final introductory paragraph; the new

copy will explain that the present program is actually ‘TEX-XgT’, not

‘ThX’. The banner string is correspondingly redefined:

define banner = 'ThisuisuTeX-XeT.uVersionyS.1415'

{ printed when TTX-XgT starts }

11. The pooLname is changed so that TeX-X^ can coexist happily

with T^iX.

pool-UCiTTie — TeXf ormats ITEXXET. POOLljljuijijijijijijuljijuuuuuu J
{ string of length file.namesize; tells where the string pool appears }

161. Additional subroutines, to be defined later, are stuck into the

program at this place.

(Declare functions needed for special kinds of nodes 1381)

208. A new command code is added at the end of the former list; the

final definition is therefore replaced by two:

define LR — 71 { text direction (\beginL , XbeginR, \endL , \endR) }

define max-non-prefixed-command — 71

{largest command code that can’t be \global}

209. We have to add 1 to the right-hand sides of all these definitions,

define toks^register = 72 {token list register (\toks) }

define set-interaction = 101

{ define level of interaction (\batchmode , etc.) }

define max-Command = 100

{the largest command code seen at bigswitch }

585. The description of DVI commands is augmented by two new ones

at the end:

begin-reflect 250. Begin a (possibly recursive) reflected segment.

end-reflect 251. End a (possibly recursive) reflected segment.

Commands 250-255 are undefined in normal DVI files, but 250 and 251

are permitted in the special ‘DVI-IVQ’ files produced by this variant

of TfeX.

Mixing Right-to-Left Texts with Left-to-Riglit Texts 167

When a DVI-IVQ driver enconnters a begin.reflect command, it

should skim ahead (as previously described) until finding the match¬

ing endure fleet] these will be properly nested with respect to each other

and with respect to push and pop. After skimming has located a seg¬

ment of material to be reflected, that segment should be re-scanned and

obeyed in mirror-image mode as described earlier. The reflected segment

might recursively involve begin.reflect / end^reflect pairs that need to be
reflected again.

586. Tw'o new definitions are needed;

define begin^reflect = 250
{ begin a reflected segment (allowed in DVI-IVQ files only) }

define endure fleet = 251
{ end a reflected segment (allowed in DVI-IVQ files only) }

638. At the beginning of ship-Out, we will initialize a stack of \beginL

and \beginR instructions that are currently in force; this is called the

LR stack, and it is maintained with the help of two global variables

called LR.ptr and LRAmp that will be defined later. The instructions

inserted here (just before testing if tracing-output > 0) say that on the

outermost level we are typesetting in left-to-right mode. The opening

‘begin’ is replaced by:

begin LR-ptr ■<— get-avail\ info{LR-ptr) •<— 0;
{ begiu-L-Code at outer level}

639. At the end of ship-Out, we want to clear out the LR stack. Thus,

^flush-node-list {pY is replaced by:

flush-node-list(p); (Flush the LR stack 1385);

649. The hpack routine is modified to keep an LR stack as it packages

a horizontal list, so that errors of mismatched \beginL. . . \endL and

\beginR. . .\endR pairs can be detected and corrected. Changes are

needed here at the beginning of the procedure and at the end.

function hpack(p : pointer] w : scaled] m ; smalLnumber): pointer]

hd: eight-bits] { height and depth indices for a character }

LR-ptr, LR-tmp-. pointer] { for LR stack maintenance }
LR-problems: integer] { counts missing begins and ends }

begin LR-ptr •<— null] LR-problems <— 0;
r c— get-node(box-nodesize)]

168 Digital Typography

common-ending: (Finish issuing a diagnostic message for an overfull or

nnderfull hbox 663);

exit: (Check for LR anomalies at the end of hpack 1390);

hpack r;
end;

877. Similarly, the post-line-break routine should keep an LR stack, so

that it can output \endL or \endR instructions at the ends of lines and

\beginL or \beginR instructions at the beginnings of lines. Changes

occur at the beginning and the end of this procedure:

procedure post-line-break(finaLwidow-penalty : integer)]

cur-line: halfword] { the current line number being justified }

LR-ptr, LR-tmp: pointer] { for LR stack maintenance }

begin LR-ptr •<— null]

{Reverse the links of the relevant passive nodes, setting cur-p to the first

breakpoint 878);

prev-graf <— best-line — 1; (Flush the LR stack 1385);

end;

880. The new actions to be performed when broken lines are being

packaged are accomplished by three new steps added to this section of

the program.

(Justify the line ending at breakpoint cur-p, and append it to the

current vertical list, together with associated penalties and other

insertions 880) =

(Insert LR nodes at the beginning of the current line 1386);

(Adjust the LR stack based on LR nodes in this line 1387);

(Modify the end of the line to reflect the nature of the break and to include

\rightskip; also set the proper value of disc-break 881);

(Insert LR nodes at the end of the current line 1388);

(Put the \leftskip glue at the left and detach this line 887);

1090. We add ^vmode + LR' as a new subcase after ^vmode +

no-boundary' here. This means that the new primitive operations will

become instances of what The T^Xbook calls a (horizontal command).

1196. Math-in-text will be formatted left-to-right, becanse two new

‘append’ instructions are inserted into this section of the code.

(Finish math in text 1196) =

Mixing Right-to-Left Texts with Left-to-Right Texts 169

begin taiLappend{new-math[mathsurround, before))-,

(Append a begin-L to the tail of the current list 1383);

cur-mlist p; curstyle •<— textstyle;

mlist-penalties {mode > 0);

mlist-to-hlist-,

link {tail) <— link{temp-head)-,

while link {tail) ^ null do tail •<— link {tail)-,

(Append an end-L to the tail of the current list 1384);

tail-append{new-math{math-Surround, after))-, space-factor f- 1000;
unsave-,

end

1341. The new primitive operations put new kinds of whatsit nodes

into horizontal lists. Therefore two additional definitions are needed
here:

define LR-node =4 { subtype in whatsits that represent \beginL, etc. }

define LR-type{#) = mem[# + l].int {the sub-subtype}

1344. Here’s where the new primitives get established.

define immediate-Code = 4 (command modifier for Ximmediate }

define set-language-code = 5 (command modifier for \ set language }

define begin-L-Code =0 { command modifier for \beginL }

define begin-R-Code = 1 { command modifier for \beginR }

define end-L-Code = 2 { command modifier for \endL }

define end-R-Code = 3 { command modifier for \endR }

define begin-LR{#) = {LR-type{tt) < end-L-Code)

define begin-LR-type{tt) = {LR-type{#) — end-L-code)

(Put each of TRX’s primitives into the hash table 226) +=

primitive{''heginL'', LR, begin-L-code)-,

primitive{"hegiTiR", LR, begin-R-Code);

primitive{"e-adL", LR, end-L-code)-,

primitive{"endR", LR, end-R-Code)-,

primitive{"opexio-at", extension, open-node)-,

1346. The new primitives call for a new case of cases here.

LR: case chr-code of

begin-L-code: print-esc ("beginL");

begin-R-Code: print-esc {"beginR");

end-L-Code: print-esc{"e-ndL")-,

othercases print-esc{"endR")

endcases;

170 Digital Typography

1356. We also need to be able to display the newfangled whatsits.

LR.node: case LR-type{p) of

begin-L.code: prinTesc ("beginL");

begiri-R-Code: print-esc("beginR");

end-L.code: phnLesc("endL");

othercases prinTesc{"endR")

endcases;

1357, 1358. Copying and deleting the new nodes is easy, since they

can be handled just like the \closeout nodes already present. We sim¬

ply replace ‘'close-node' by ‘‘close-node, LR-node' in these two sections.

1360. We used to do-nothing here, but now we must do something-.

(Incorporate a whatsit node into an hbox 1360) =

if subtype (p) = LR-node then

(Adjust the LR stack for the hpack routine 1389)

This code is used in section 651.

1366. (Output the whatsit node p in an hlist 1366) =

if subtype (p) 7^ LR-node then out-what{p)

else (Output a reflection instruction if the direction has changed 1391)

This code is used in section 622.

1379. Most of the changes have been saved up for the end, so that the

section numbers of T^jX in [3] can be left unchanged. Now we come to

the real guts of this extension to mixed-direction texts.

First, we allow the new primitives to appear in horizontal mode, but

not in math mode:

(Cases of main-control that build boxes and lists 1056) -|-=

hmode + LR: begin neiv-ivhatsit{LR-node, smalLnodesize)-,

LR-type{tail) <(— cur-chr; end;

mmode 4- LR: report-illegaLcase]

1380. A number of routines are based on a stack of one-word nodes

whose info fields contain either begin-L-Code or begin-R-Code. The top

of the stack is pointed to by LR-ptr, and an auxiliary variable LR-tmp

is available for stack manipulation.

(Global variables 13) -|-=

LR-ptr, LR-tmp: pointer-, { stack of LR codes and temp for manipulation }

Mixing Right-to-Left Texts with Left-to-Right Texts 171

1381. (Declare functions needed for special kinds of nodes 1381) =

function new-LR{s : smalLnumber): pointer;

var p: pointer; { the new node }

begin p ■<— get-node{smalLnodesize); type{p) i— whatsit-node;

subtype{p) <- LR-node; LR-type{p) e- s; new-LR •(—p;

end;

See also section 1382.

This code is used in section 161.

1382. (Declare functions needed for special kinds of nodes 1381) +=

function safe-info{p : pointer): integer;

begin if p = null then safeRnfo <-1 else safeJnfo t— info{p);

end;

1383. (Append a begin-L to the tail of the current list 1383) =

taiLappend (new-LR (begin-L-code))

This code is used in section 1196.

1384. (Append an end-L to the tail of the current list 1384) =

taiLappend (new-LR (end-L-Code))

This code is used in section 1196.

1385. When the stack-manipulation macros of this section are used

below, variables LR-ptr and LR-tmp might be the global variables de¬

clared above, or they might be local to hpack or post-line-break.

define push-LR{#) =

begin LR-tmp geLavail; info {LR-tmp) t— LR-type{#);

link {LR-tmp) ■«— LR-ptr; LR-ptr t— LR-tmp;

end

define pop-LR =

begin LR-tmp -f- LR-ptr; LR-ptr t— link {LR-tmp);

free-avatl {LR-tmp);

end

(Flush the LR stack 1385) =

while LR-ptr ^ null do pop-LR

This code is used in sections 639 and 877.

1386. (Insert LR nodes at the beginning of the current line 1386) =

while LR-ptr ^ null do

begin LR-tmp t— new-LR{info{LR-ptr));

link {LR-tmp) •<— link {temp-head); link {temp-head) -f- LR-tmp; pop-LR;

end

This code is used in section 880.

172 Digital Typography

1387. (Adjust the LR stack based on LR nodes in this line 1387) =

q ■(— link {temp-head)]

while q ^ cur-break{cur-p) do

begin if -tis-char-node{q) then

if type{q) = whatsiLnode then

if subtype {q) = LR-node then

if begin-LR{q) then push-LR{q)

else if LR-ptr ^ null then

if info{LR-ptr) = begin-LR-type{q) then pop-LR]

q link{q)\

end

This code is used in section 880.

1388. We use the fact that q now points to the node with \rightskip

glue.

(Insert LR nodes at the end of the current line 1388) =

if LR-ptr 7^ null then

begin s i— temp-head; r link{s)]

while r ^ q do

begin s r] r lmk{s)]

end;

r -f- LR-ptr;

while r 7^ null do

begin LR-tmp ■<— new-LR{info{r) + end-Licode)] link{s) <— LR-tmp\

s LR-tmp] r •<— link{r)]

end;

link{s) -f- g;

end

This code is used in section 880.

1389. (Adjust the LR stack for the hpack routine 1389) =

if begin-LR{p) then push-LR{p)

else if safe-info{LR-ptr) = begin-LR-type{p) then pop-LR

else begin incr(LR-problems)]

while link{q) 7^ p do g •<— link{q)\

link{q) •(— link{p)\ free-node{p, smalLnodesize)] p ■(— q-,

end

This code is used in section 1360.

1390. (Check for LR anomalies at the end of hpack 1390) =

if LR-ptr / null then

begin while link{q) / null do g ■<— link{q)\

repeat link{q) •(- new-LR{info{LR-ptr) + end-L-code)] q -i- link{q)\

LR-problems e- LR-problems + 10000; pop-LR]

Mixing Right-to-Left Texts with Left-to-Right Texts 173

until LR.ptr = null]

end;

if LR^problems > 0 then

begin printJn] pnnLn/("\endLuoru\endRuproblemu(");

printJnt{LR.problems div 10000); pnnt("umissing.u");

print-int{LR^problems mod 10000); phn<("yextra");

LR.problems e- 0; goto common^ending]
end

This code is used in section 649.

1391. (Output a reflection instruction if the direction has changed 1391) =

if begin.LR{p) then

begin if safeJnfo{LR.ptr) 7^ LR.type(p) then

begin synch-h] synch-V] dvi-Out{begin-refleet)]
end;

push.LR{p)]

end

else if safeRnfo^LR.ptr) = begin.LRRype{p) then

begin pop-LR]

if info{LR^ptr) + end.L^code 7^ LRAype{p) then

begin synch-h] synch.v] dvLout{end-refleet)]
end;

end

else con/tision ("LR")

This code is used in section 1366.

Final Important Note

The extensions to TgX just described are “upward compatible” with

standard T^iX, in the sense that ordinary TFiX programs will still run

correctly (although more slowly) on Tj^X-X^T. However, TRX-XaT must

not be called a new version of ‘TeX’, even though it runs all TgX pro¬

grams; the reason is, of course, that TRX will not run all Te;X-X(^

programs.

A name change is necessary to distinguish all programs that do not

agree precisely with the real TeiX. Anybody who runs a program called

‘TeX’ should be able to assume that it will give identical results from

all its implementations.

174 Digital Typography

References

[1] Joseph D. Becker, “Arabic word processing,” Communications of

the ACM 30 (1987), 600-610.

[2] Donald E. Knuth, The TEXhook, Volume A of Computers k Type¬

setting (Reading, Massachusetts: Addison-Wesley, 1986).

[3] Donald E. Knuth, TpfK: The Program, Volume B of Computers

k Typesetting, fifth printing (Reading, Massachusetts; Addison-

Wesley, 1993). [Earlier printings correspond to earlier versions of

T)5X, when the changes for TEX-X:^r were analogous but slightly

different.]

[4] Pierre MacKay, “Setting Arabic with a computer,” Scholarly Pub¬

lishing 8,2 (January 1977), 142-150.

[5] Pierre MacKay, “Typesetting problem scripts,” Byte 11,2 (Eebru-

ary 1986), 201-218.

Examples of Typesetting Practice

1. Prom Textus 5 (1966), page 12; Magnes Press, Hebrew University

of Jerusalem. (Notice the Hebrew quotation marks surrounding the

Hebrew title in footnote 6.)

ters adhered,'® and which may have been similar to that adopted, by normative

Jewry presumably somewhat later, during the period of the Second Temple.'®

Frag. E. Yadin correctly states; “Sanders’ cautious indication ‘103 (? 104)* can now

be eliminated” (ib., p. 5).

6 Sanders’ ediiio princeps of Ps. 151 already has been discussed by various scholars. The

present author deals with the text of Ps. 151, and its literary genre in: B''ns'n D'^WTB-

'IKnnipti nnayn pipba. Tarbiz 35 (1966) 214-228.

2. Fragments from the third edition of William Wright’s classic nine¬

teenth century grammar of Arabic, volume 2, pages 295-297. (Notice

the page break in the midst of right-to-left text, and some left-to-right

brackets.)

w 9 ^ 9 k ik * 9 ^ 9 ^9 i

gnawed at us; i«»l ye are the best people

9 ^ ^ ^ 9 * ^

that has been brought forth {created) far mankind; Cjpkl
^ St ^ mt i Jf ^ 9 ^ St ^ * 9

^1^1 lyjui they walked as spears wave, the

tops of which are bent by the passing of gentle bi'eezes; SjUl

Mixing Right-to-Left Texts with Left-to-Right Texts 175

296 Part Third.—[§ 152

brightness qf the intellect is obscured (or

eclipsed) by obeying lust. As the above examples show, this agreement

§ 152] Sentence and its Parte.—Concord of Predicate & Subject. 297

verb is placed after a collective subject (see § 148); as

but the greatest part of mankind are thankless;

^UJI a, part of them are afraid of men ;

let the Turks alone as long as they let you alone;
e iS 6

because his army had perished).

3. From page 233 of the same book. Here R-texts are equated with ~

signs; the left sides of each equation are to be read first.

^ > I ^ O' e it ^ \ ^ ^ it i \ it ,

understood; itUJI i.e. itLJI S^LaJI

o' ^ 0 ^ 0^ ^ e

(see § 77). Similarly, some grammarians consider

^ 0 o' X ^ o' o' » y ^ o' Oo^ OO 00 dtO J 0

—

^ 9 e* do* 0t0 t doo ^oo^ooOotf >o'Oo' ^o'Oo' it ooOotf J e ^ e

or ^.olikoJt jirfc 't, gli prfc)l aJJu = {ILpAoJ t 3,.ao II aJlij, and

o' 0 00 Jo' o' ^ o' tto Jo* J o' o£

j\i = Sj^’^\ SLaiJt jlj*. Here too the constructions j-iil

O' i«o0

4. From Bulletin of the Iranian Mathematical Society 8 (Tehran, 1978),

page 78L. (Left-to-right mathematics in right-to-left text.)

“v*

nM , 2(n-l)(n-2) , 3(n-l)(n-2)
' /y ' O ’••••

2m 3m^ Am"^

6=2.71828 l/(l-a) + [logg(l-a)] /a

^ I a! P ^ ^ ^ si^ ^^ • ■X'WI

176 Digital Typography

5. Prom np>00>n)3^ Him [Introduction to Mathematics, pronounced

BjIilBrnorllsM ol ovbM] by Abraham A. Fraenkel, Volume 1 (Jeru¬

salem: Hebrew University, 1942), page 38. (Page numbers are ‘96-90’

because ‘90’ and ‘96’ are Hebrew numbers.)

n n 1D jopn DDuran ns airs'? Vau .•T'SJKTiaaipn ai^ioa UBranma

:mixa iioVn ddb^q nxi .a'’=a {mod. p) :n*nx2

1*2‘3'-' (/7—1) = —1 (mod./?).

.mn modulus .o’ltno = congruens nvnnn o’^nn]n .i

Journal f. d n ii6 n psa isoe nipa M. Hamburger jwp nnai.na]”y .2

’uun inKrin riK nyaipn ,1802 mpn Dim ^ nnoiiV (96—90 Toy) reine u. ang. Mathematik

6. Page 200 of the same book illustrates the difference between ellipses

‘ ’ in formulas and in the text. None of this book’s math-in-text is

broken between lines.

o’lBOD^ plena n dk rpyan nx nine^ iTpeKir (a .’aiP'R leoa bv yiana
^a V'ava mnej iTyanc? 'xana .n=p^-p^.p^ amir

nannKn nayon nK iKaac? ^^a penoa .n=p^.n=p^ ■n=p^ D’anyn
mrya niaaV “nreKB? o’Knpn anV ’Kina yn’ ./z = i5=3-5 naan*? on'a

:inN]iipV) [1] nKicran ^a ,n=p .nt mpaair pis’ ^a mip

im*iE? jaiaa *’D'''»a''D''a’'"iD* d''b;“>e? aan (i*? did ntniran ’b^ib? Va

.n=p KICK '.T./? V 'll (1,2, ... ,p — \) nnoH pna k Tiy '?a nniz?; 199 'aya

iTiriB? ^a -ilt tk >[1] nsiB^an ^b^ inip'?a B^nr | i

.nT'n’'n ’itib? D'Kipa n^Kn D^B^iDn [i] nx'iB'an

Chapter 5

Recipes and Fractions

[Originally published in TUGboat 6 (1985), 36-38.]

Pages 233, 236, and 237 of The Tp^book contain examples of alignment

based on excerpts from the well-known book Mastering the Art of French

Cooking, by Julia Child et al. Several of the measurements in those

examples involve fractions like and this caused unpleasant interfer¬

ence between adjacent lines when I first looked at proofs of the tables

for pages 236-237. The fractions on different lines didn’t actually touch

each other, but they came close enough to be visually disturbing. That’s

why I increased the distance between baselines by 2 pt in those examples.

Since writing The Tp^Kbook I’ve had several opportunities to typeset

recipes for various social occasions, and I learned something that I should

have realized long ago; The typographer’s ‘ 1/2’ works better than a

mathematician’s in such contexts. Hence I recently added a new

exercise 11.6 to The TEKbook, explaining how to make fractions like ‘ 1/2’

when they aren’t already present in a font; I also changed the examples

on pages 233, 236, and 237 so that they would use this idea. (See the

current errata list or the most recent printings for details.)

Last December, my wife and I made a keepsake for the Associates

of the Stanford University Libraries: My mother’s mother’s recipe for

“Stollen” was used to bake some of the goodies at their annual Christ¬

mas Tea, and we provided copies of the recipe as an example of digital

typography. I was glad to find that the members of this booklovers’

group were pleased not only by the delicious cake; they also liked the

quality of the typesetting, even though it was done by a computer! If I

hadn’t used an appropriate style of fractions. I’m sure we wouldn’t have

gotten such a favorable response.

Here is a copy of the keepsake, and the code that produced

it, in case the reader is interested in seeing another small but complete

example of TgX usage (based only on the plain Tg^ macros). The final

output was mounted and printed in such a way that we could easily fold

177

178 Digital Typography

the two pages, making essentially a 3" x 5" card that could be filed with

other recipes. Since the recipe is so short, I didn’t use any fancy macros

to do the double-column formatting of the list of ingredients.

7o A recipe for Christmas Stollen

\hsize=4.5in width of text blocks

\vsize=2.3in % height of text blocks

\nopagenumbers

\font\ninerm=cmr9

\def\frac#l/#2{\leavevmode\kern.lem

\raise.5ex\hbox{\the\scriptfontO #l}\kern-.lem

/\kern-.15em\lower.25ex\hbox{\the\scriptfontO #2}}

\parskip=3pt % space between paragraphs

\parindent=Opt % no indentation

{\bf Christmas Stollen}

\medskip

\tabskip=10pt plus Ifil

\halign to \hsize{&#\hfil\cr

1 pint milk, scalded and cooledfe

\fracl/2 teaspoon nutmegXcr

1 ormce compressed or dry yeastfe

l\fracl/2 teaspoons salt\cr

1 cup butterfe

8 cups flour\cr

1 cup sugarfe

1 poimd mixed candied fruit\cr

4 eggsfe

\frac3/4 pound candied cherries\cr

grated rind of 1 lemonfe

1 cup nuts\cr

}

\smallskip

Dissolve yeast in scalded, cooled milk. Add 1 cup of

the flour. Let it rise \fracl/2~hour.

Cream butter and sugar. Beat in eggs, one at a time.

Stir in yeast mixture. Add lemon rind, nutmeg and salt.

Dredge the fruit in a little flour to keep the pieces

from sticking together. Add the rest of the flour to

Recipes and Fractions 179

the dough, and finally stir in the fruit and nuts.

Knead the dough until smooth. Put in a warm place in a

covered bowl and let rise until doubled in bulk.

\ (Because the fruit maJses the dough heavy, it

may tcike two or three hours to rise.) \ Divide the

dough into three parts. Roll each portion out to about

l~inch thick, then fold over in thirds to form a long,

loaf shape. Place on a greased cookie sheet, cover and

let rise until doubled~again.

Bcike at $325"\circ\,$F. for 45 minutes.

Stollen is traditionally frosted with thin

powdered-sugar-and-butter icing. Decorate each loaf

with red and green candied cherries.

Vary the fruit and nuts to suit your taste.

You may use cherries alone, mixed fruit, and/or dates;

almonds, pecans, walnuts, or no nuts at all.

\medskip \ninerm \baselineskip=llpt

This is the recipe that was used each Christmas by Don’s

grandmother, Pauline Ehlert~Bohning, Cleveland, Ohio.

Don’s mother, Louise Bohning~Knuth, still makes

more than 20 loaves each year, and when we were married

she passed the recipe on to us. We hope you enjoy it.

\vskip-\baselineskip

\rightline{Don and Jill Knuth, Stanford, 1984}

\eject

\end

180 Digital Typography

Christmas Stollen

1 pint milk, scalded and cooled 1/2 teaspoon nutmeg
1 ounce compressed or dry yeast 11/2 teaspoons salt
1 cup butter 8 cups flour
1 cup sugar 1 pound mixed candied fruit
4 eggs 3/4 pound candied cherries
grated rind of 1 lemon 1 cup nuts

Dissolve yeast in scalded, cooled milk. Add 1 cup of the flour. Let it rise
1/2 hour. Cream butter and sugar. Beat in eggs, one at a time. Stir in yeast
mixture. Add lemon rind, nutmeg and salt. Dredge the fruit in a little flour

to keep the pieces from sticking together. Add the rest of the flour to the

dough, and finally stir in the fruit and nuts. Knead the dough until smooth.

Put in a warm place in a covered bowl and let rise until doubled in bulk.

(Because the fruit makes the dough heavy, it may take two or three hours

to rise.) Divide the dough into three parts. Roll each portion out to about

1 inch thick, then fold over in thirds to form a long, loaf shape. Place on a

greased cookie sheet, cover and let rise until doubled again. Bake at 325° F.
for 45 minutes.

Stollen is traditionally frosted with thin powdered-sugar-and-butter icing.
Decorate each loaf with red and green candied cherries.

Vary the fruit and nuts to suit your taste. You may use cherries alone,

mixed fruit, and/or dates; almonds, pecans, walnuts, or no nuts at all.

This is the recipe that was used each Christmas by Don’s grandmother, Pauline

Ehlert Bohning, Cleveland, Ohio. Don’s mother, Louise Bohning Knuth, still

makes more than 20 loaves each year, and when we were married she passed the

recipe on to us. We hope you enjoy it. Don and Jill Knuth, Stanford, 1984

Chapter 6

The TEt^ Logo in Various Fonts

[Originally published in TUGboat 7 (1986), 101.]

According to the plain TgX macro package described in The TjgAbook,

\def\TeX{T\kern-.1667em\lower.5ex\hbox{E}\kern-.125emX}

is the “official” definition of I^’s logo. But the plain T^X macros are

specifically oriented to the Computer Modern fonts. Other typefaces

call for variations in the backspacing, in order to preserve the logo’s

general flavor.

The definition above seems to work satisfactorily with the main

seriffed fonts of Computer Modern (namely with all sizes of cmr and

cmsl and cmti and cmbx); but sans-serif types are a different story.

Indeed, The TpiKbook itself gives alternative definitions of ‘\TeX’ on

pages 418 and 419, one for the font cmssdclO at 40pt used in chapter

titles (see page 36) and one for the cmssq fonts used in quotations at

the ends of chapters (see page 337).

My purpose in this note is to record the various versions of ‘\TeX’

that were actually used to typeset the books in the Computers & Type¬

setting series, so that it will be easy to make forgeries of the particular

style used there.

In every case the ‘E’ has been lowered by . 5ex (half of the x-height);

the only variation is in the amount of backspacing represented by the

two \kern instructions. Let us therefore consider a “generic” TgX logo

to be defined by

\def\TeX{T\kern aem\lower.5ex\hbox{E}\kern/? emX}

for some a and (d. The following table shows the values of (a, (5) that

were actually used in the published volumes:

181

182 Digital Typography

font family a P

cmr -.1667 -.125
cmsl -.1667 -.125
cmti -.1667 -.125
cmbx -.1667 -.125
cmssdc -.2 -.06
cmssq -.2 0
cmssqi -.2 0
cmss -.15 0
cmssi -.2 0
cmssbx -.1 0

(The last three were used only to typeset the jacket copy, not the “real”

texts inside. It took a bit of fiddling to get the spacing right.)

I’ve had little experience with other fonts, but they seem to respond

to a similar treatment. For example, my paper on “Literate Program¬

ming” in The Computer Journal 27 (1984), 97-111, was typeset in a

variant of Times Roman, and the standard \TeX macro worked fine.

The captions and references in that article were set in Univers; for that
sans-serif font we used (a,/3) = (-.2,0) as in cmssq.

Chapter 7

Printing Out Selected Pages

[Originally published in TUGboat 8 (1987), 217.]

In TUGboat Vol. 7, No. 3, Helen Horstman asked, “Is there some way

by which one can select only a page (or pages) of printout?”

I recently put some new lines, shown below, into manmac (the macros

of Appendix E that generated Volumes A and E), so that I could put

only selected pages into the DVI file. The method should work if you use

it at the end of almost any macro file. (Or, if necessary, at the front of

a source document.)

The idea is to make T^X look for a file called pages.tex. If such a

file doesn’t exist, everything works as before. Otherwise the file should

contain a list of page numbers, one per line, in the order they will be

generated. After the last page number has been matched, all further

pages will be printed. Thus, if you want to print page 123 and all pages

from 300 onwards, your file pages.tex should say

123

300

but if you want to print pages 123 and 300 only, the file should say, e.g.,

123

300
-999999999 7, impossible number

so that the end of file will never occur.
You should rename the pages.tex file after you’re done with it;

otherwise it will continue to affect the output.

On UNIX systems I recommend installing in such a way that

input files not found in the current directory will be sought next in the

parent directory. Then you can put pages.tex into a special pages

subdirectory, and ‘cd pages’ just before invoking TlgX to get a subset

of pages. This has the advantage that none of the master files on the

parent directory can be clobbered by accident. For example, auxiliary

183

184 Digital Typography

files that might be generated by \write commands, when indexes or

bibliographies or tables of contents are being produced automatically,

will remain intact.
The macros cause TgX to announce that fact that it’s doing some¬

thing special.

Macros for printing out selected pages

% To produce only a subset of pages,

'/, put the page numbers on separate lines

y. in a file called pages.tex

\let\Shipout=\shipout

\newread\pages \newcount\nextpage

\openin\pages=pages

\def\getnextpage{\ifeof\pages\else

{\endlinechar=-l\read\pages to\next

\ifx\next\empty % in this case we should have eof now

\else\global\nextpage=\next\fi}\fi}

\ifeof\pages '/, do nothing if pages.tex not foimd

\else\message{OK, I’ll ship only the requested pages!}

\getnextpage\fi

\def\shipout{\ifeof\pages\let\next=\Shipout

\else\ifnum\pageno=\nextpage

\getnextpage\let\next=\Shipout

\else\let\next=\Tosspage\fi\fi \next}

\newbox\garbage

\def\Tosspage{\deadcycles=0\setbox\garbage=}

Chapter 8

Macros for Jill

[Originally published in TUGboat 8 (1987), 309-314.]

At the TUG meeting in July, 1986, I mentioned in conversation that

one of my new household duties was to write macros for my wife Jill,

who had just installed T^X on her PC. Later, when Jill came to the

dinner party, many people asked her for copies of the macros; and this

led eventually to the idea that I should publish them in TUGboat. So

here they are, slightly cleaned up from the way I originally wrote them.

The first task Jill assigned me was perhaps the most interesting.

She had started to keep an electronic journal, and she wanted to make a

nice hardcopy book. The format she had in mind was somewhat tricky

because she wanted to be able to generate marginal notes in the middle

of any paragraph. Furthermore, she wanted these notes to go in the

left-hand margin on left-hand pages and in the right-hand margin on

right-hand pages.

This task is difficult for T^iX, because T^]X generates paragraphs

before it knows what page they will go on. Indeed, the decision about

what to put on page 100 may not be made until Tj^X has generated a

good deal of page 101.

One way to solve the problem would be to cheat, by putting the

notes in both margins and masking off the undesired ones. Jill didn’t

like that idea very much.

A legitimate solution can be obtained by asking to make two

passes over the input: The first pass writes an auxiliary file that tells

the page numbers of each marginal note; the second pass reads this file

and puts the notes into the desired margin.

The second solution isn’t terribly difficult, but I decided to use a

third approach, which is surprisingly simple. Tj^X can easily be pro¬

grammed to put all the notes in the left margin, or all in the right

margin. Then we simply tell TgX to output only the left-hand pages, or

only the right-hand pages. With two runs, we’ve got everything.

185

186 Digital Typography

The text of the marginal notes was specified in Jill’s journal by using

a special case of an idea that appears in Appendix E of The TpiKbook,

where a similar notation is used for index entries. Namely, “{note}

yields ‘note’ in the margin and ‘note’ in the paragraph; ““{note} yields

‘note’ in the margin only.

Here is the macro file jmac.tex:

'/o format for Jill’s Journal

y, sample input:

y, \ input jmac

y \title A New Chapter That Starts a New Page

y.
y„ \date Umbruary 29

y.
y When I woke up this morning, I decided to make this

y journal into a book, using \TeX. I like to put “{notes}

y into the margin, so that it’s easy to find things later,

y My husband““{Don} figured out a tricky way to put these

y notes into the left margin on left-hand pages, and into

y the right margin on right-hand pages.

y
y In order to do this, he claims that it’s necessary to rrm

y \TeX\ on the file {\it twice\/}!““{two runs needed} One

y run gives the odd-numbered pages, the other gives

y even-numbered pages. Fortimately, this doesn’t take

y much longer, because printing is the slow part.

y
y This journal contains {\it “{no math}}.

y
y \bye

y Each run begins with a little dialog:

\newif\ifleft

\def\lefthand{l }

\message{************ Which pages do you want (1 or r)? }

\read-l to\next y get user’s response (1 or r)

\ifx\next\lefthand\lefttrue\else\leftfalse\fi

\message{OK, I’ll produce only the

\ifleft left\else rightXfi-hand pages. }

Macros for Jill 187

7. Here are conventions for text layout

\frenchspacing

\hsize=5.25in

\baselineskip=14pt

\parindent=Opt

\parskip=\baselineskip

\topskip=5\baselineskip

\vsize=40\baselineskip

7, no extra space after punctuation

7o lines to be 5.25 inches wide

7. and 14 points apart

7. no paragraph indentation

7o blank line between paragraphs

7. four blank lines at top of page

7. forty lines on a page

\setbox\strutbox=\hbox{\vrule height.75\baselineskip

depth.25\baselineskip widthOptJ 7. this is a one-line strut

\newdimen\titleoffset

\titleoffset=l.5in

\newdimen\notespace

\notespace=.375in

\newdimen\maxnote

\inaxnote=2in

7. titles move into margin

7. space between notes, text

7o maximum width of a note

7o Fonts

\fontXtitlefont=cmbxlO scaled\magstep2

\fontXdatefont=cmbxlO scaledXmagstephalf

XfontXnotefont=cmbxlO

XfontXtextrm=cmrlO scaledXmagstephalf

XfontXtextit=cmtilO scaledXmagstephalf

7« page top titles

7o dates in margin

7o notes in margin

7o normal text

7o emphasized text

XfontXfoliofont=cmbxlO scaledXmagstephalf 7. page numbers

XletXrm=Xtextrm Xrm

XletXit=Xtextit

Xtextfont2=Xnullfont

7o the default font is roman (Xrm)

7. all text is either Xrm or Xit

7« disallow math mode

7o Here “ and are changed to Xmnote, visible or invisible

XnewifXifvisible

Xcatcode'X~=Xactive

Xdef“{XfutureletXnextXtestdoublehat}

XdefXtestdoublehat{XifxXnext'XletXnext=Xsilentnote

XelseXvisibletrueXletXnext=XmnoteXfi Xnext}

XdefXsilentnote"{XvisiblefalseXmnote}

Xifleft 7. do the next only if assuming left margins

XdefXtitle#lXpar{XvfillXejectXmessage{#l:}

XnullXvskip-4Xbaselineskip

XmoveleftXtitleoffsetXhbox{XtitlefontXuppercase{#l}}

XvskipXbaselineskip}

188 Digital Typography

\def\date#l\par{\vskip\parskip

\moveleftXnotespace

\llap{\hbox to\maxnote{\hf il\datefont#l\iinskip}}

\nobreak\vskip-\baselineskip\vskip-\parskip}

\def\mnote#l{\strut\vadjust{\kern-\dp\strutbox

\vtop to\dp\strutbox{\vss \baselineskip=\dp\strutbox

\moveleftXnotespace

XllaplXhbox toXniaxnote{XhfilXnotefont#l}}Xnull}}X

Xifvisible#lXfi}

Xhoffset=Xtitleoffset

Xelse '/o do the next only if assuming right margins

Xdef Xtitle#lXpar{Xvf illXejectXmessage-[#l:}

XnullXvskip-4Xbaselineskip

XmoverightXtitleof f setXrightline{y,

XtitlefontXuppercase{#l}}

XvskipXbaselineskip}

XdefXdate#lXpar{XvskipXparskip

XmoverightXnotespaceXrightline{yo

Xrlap{Xhbox toXmaxnote{Xdatefont#lXunskipXhfil}}}

XnobreaikXvskip-XbaselineskipXvskip-Xparskip}

XdefXmnote#l{XstrutXvadjust{Xkern-XdpXstrutbox

Xvtop toXdpXstrutbox{Xvss Xbaselineskip=XdpXstrutbox

XmoverightXnotespaceXrightline-Cy,

Xrlap{Xhbox toXmaxnote{Xnotefont#lXhf il}}}Xnull}}y,

Xifvisible#lXfi}

Xfi y in both cases, TeX will choose the same page breaks

y We output either left-hand or right-hand pages (only)

Xoutput{Xifleft

XifoddXpagenoXdiscardXelse

XshipoutXvbox{Xbox255 Xbaselineskip=30pt

Xhbox{XfoliofontXfolio}}Xfi

XelseXifoddXpageno

XshipoutXvbox-[Xbox255 Xbaselineskip=30pt

Xrightline{XfoliofontXfolio}}

XelseXdiscardXfiXfi

Xadvancepageno}

XnewboxXvoidbox

XdefXdiscard{XglobalXsetbox255=XboxXvoidbox}

XouterXdefXbye{XvfillXejectXdeadcycles=OXend}

Macros for Jill 189

The sample file at the beginning of jmac.tex would be output as

follows, on two pages (and in two passes), if we make the following

adjustments to fit the constraints of the present book:

\hsize=2.5in

\baselineskip=12pt

\vsize=12\baselineskip

\font\titlefont=cmbxl2

\fontXdatefont=cmbxlO

\font\notefont=cmbx9

\font\textrm=cmrlO

\f ont\textit=cintilO

\font\foliofont=cmbxlO

A NEW CHAPTER THAT STARTS A NEW PAGE

When I woke up this morning, I decided Umbruary 29

to make this journal into a book, using

TeX. I like to put notes into the margin, notes

so that it’s easy to find things later. My

husband figured out a tricky way to put Don

these notes into the left margin on left-

hand pages, and into the right margin on

right-hand pages.

1

In order to do this, he claims that it’s

two runs needed necessary to run T^X on the file twicel

One run gives the odd-numbered pages,

the other gives even-numbered pages. For¬

tunately, this doesn’t take much longer,

because printing is the slow part.

no math This journal contains no math.

2

190 Digital Typography

The second task was rather different. Our collection of family recipes

was kept on scraps of paper, and the pieces kept crumbling and/or get¬

ting lost. Jill decided to enter the recipes into her computer so that we

could print them on file cards. This way we could keep everything in

order, and we could also make sets for our son and daughter to use.

Jill worked out a system of codes that she found convenient for

entering the data efficiently. The main interesting thing (to me) was

the way it was possible to implement these codes as “active” characters

in T^X. The trick was to dehne the macros first, before fooling around

with active characters, so that the old character meanings wouldn’t get

mixed up with the new ones.

Here is the file rmac . tex, which should be almost “self explanatory”:

y, recipe format

y sample input:

% \input rmac

y #RELISH

y >Thanksgiving Cranberry Relish

y <Wilda Bates Carter

y $3 cups

y I chill overnight

y *
y @1 pound fresh cranberries

y 2 oranges, peeled and seeded

y rind of one orange, grated

y 1 "1/2 c sugar

y *
y !Coarsely grind cranberries and oranges. Add rind

y and sugar. Refrigerate overnight.

y =
y #BREAD

y >Cheese Crisps

y I chill at least 2 hours, bake 20—25 minutes

y 7,300X0 F

y $5 dozen

y ♦
y @1 jar sharp cheese spread (5 ounces)

y "1/2 c butter

y "1/4 t salt

y dash pepper

Macros for Jill 191

y, 1 ~l/2 c flour

y. *

y, IBeat together cheese and butter. Stir in remaining

y, ingredients. Form into two rolls, l~"l/4 inch in

y diameter. Wrap eind chill at least 2~hours. Cut into

y, ~ 1/4-inch slices, place on ungreased cookie sheet,

y bake 20—25 minutes at 300\0~F until slightly

y darker in color.

y =
y \bye

\hsize=4.25in

\vsize=7in

\parindent=0pt

\font\classfont=cmbxl0 scaled\magstep2

\font\titlefont=cmbxl0 scaled\magstep2

\font\specfont=cmsll0 scaled\magstephalf '/time, temp, qty

\fontXingredfont=cnu:7 scaled\magstep2

\fontXnormalfont=cmrl0

XnewdimenXspecbaseline

Xspecbaseline=14pt ’/, baselineskip between time, temp, qty

Xoutput{XshipoutXvbox{Xvbox to .75in{

Xrightline-fXclassf ontXcurrentclassXhskip-. 25in}Xvss}

XnointerlineskipXbox255}

Xadvancepageno XglobalXletXcurrentdonor=Xempty}

XletXcurrentdonor=Xempty

XdefX0{$~Xcirc$} % degrees

Xobeylines

XdefXclass#!

{XgdefXcurrentclass{#l}}

XdefXtitle#!

{{Xmessage{#l}Xtitlefont#lXpar}}

XdefXdonor#!

{XgdefXcurrentdonor{#l}}

XdefXtime#l

{{Xbaselineskip=Xspecbaseline XrightlinelXspecfont#lX/}}}

XdefXtemp#lX0 F

{{Xbaselineskip=Xspecbaseliney

Xrightline{Xspecfont#lX/X0 FX/}}}

192 Digital Typography

\let\quantity=\time

\def\ingredients{\ingredfont\everypar{\hangindent=20pt}}

\def\method{\let~"M=\space \normalfont \everypar{}}

\def\endit{\par\vf iliy.

\if x\currentdonor\emptyyo

\else\rightline{-\currentdonor}\f i'/.

\eject\obeylines}

\def \f rac#l/#2{\leavevmodeyo

\raise. 5ex\hbox{\the\scriptfontO #1}°/.

\kern-.lem/\kern-.15emy

Mower.25ex\hbox{\the\scriptfonto #2}}

\catcode‘\"=14

\catcode‘\#=\active

\catcode‘\>=\active

\catcode'\<=\active

\catcode'\I=\active

\catcode ‘ \yo=\active

\catcode‘\$=\active

\catcode‘\@=\active

\catcode‘\!=\active

\catcode‘*=\active

\catcode‘\~=\active

\catcode‘\==\active

\let#=\class

\let>=\title

\let<=\donor

Met I =\tiine

Mety,=\temp

\let$=\quantity

Met @=\ingredients

" comment character

class of food, e.g. SOUP

" name of recipe

" source of recipe

" preparation time

" baking temperature

" amount of output

" begin input list

Met!=\method " begin cooking algorithm

Met*=\medskip " spacer

Met~=\frac " numerator of fraction

Met=\endit " end of recipe card

Notice the use of \obeylines here: Most of the data for a recipe appears

on single lines, until you get to the “method” which consists of one or

more paragraphs. Therefore \method converts the ends of lines to spaces.

The method is followed by an this finishes the card and restores

\obeylines mode.

If the \vsize is reduced to 2.4 inches, the sample input produces

the two cards of output shown on the next page.

Since we computerized our recipes in July, we’ve used the resulting

cards quite often. Jill’s format has worked well; it’s easy to read the

recipes while fixing the food, and it’s easy to plan ahead because the

quantities and preparation are highlighted.

Of course, the next step should be to connect the computer to our

kitchen equipment, so that the cooking will be done automatically. But

I think I’ll work on The Art of Computer Programming first.

Macros for Jill 193

RELISH

Thanksgiving Cranberry Relish
3 cups

chill overnight

1 pound fresh cranberries

2 oranges, peeled and seeded

rind of one orange, grated

1 V2 c sugar

Coarsely grind cranberries and oranges. Add rind and sugar. Refriger¬

ate overnight.

—Wilda Bates Carter

BREAD

Cheese Crisps
chill at least 2 hours, bake 20-25 minutes

300° F
5 dozen

1 jar sharp cheese spread (5 ounces)

V2 c butter

1/4 t salt

dash pepper

1 1/2 c flour

Beat together cheese and butter. Stir in remaining ingredients. Form

into two rolls, 1 1/4 inch in diameter. Wrap and chill at least 2 hours.

Cut into Y4-inch slices, place on ungreased cookie sheet, bake 20-25

minutes at 300° F until slightly darker in color.

i ■ .. 1. ''In.* .

i ■

«% i'

l> Ui^. . ^ , I' .:■■ fV"i i*

.(

* ' :'

f-'

^ -V- *•

ITT t l'-^>f" J * i ‘ '> «< **i4’'^

,1' V* tt)i> -4<fl

•>’ • !<' 7 /■ iv; it

<V

Chapter 9

Problem for a Saturday Morning

[Originally published in TUGboat 8 (1987), 73, 210.]

This puzzle was suggested to me by Sape Mullender, of the Centre for

Mathematics and Computer Science in Amsterdam. He told me his belief

that “the general design of TgX is better than that of troff, but the real

guru can make troff do things that you could never do in TeX.”

As an example, he showed me a page on which troff had typeset

a picture in the middle of a para- graph, with the text going around

the picture. “It’s not pretty, but it can be done, and that’s what counts,”

he said. Well, I have to admit that I didn’t think of a simple solution

until the next Saturday morning; and I didn’t finish debugging it until

that afternoon. Can you guess how I typeset the paragraph you’re now

reading? (The answer appears below; but don’t peek at it until you’ve

solved the problem yourself! It doesn’t demonstrate the superiority of

to troff, but it does have some interesting and instructive features.)

???

I!!

\fontXbigfont=cmbxlO scaled \magstep5

\newbox\qmark \setbox\qmark=

\hbox{\raise6pt\hbox{\bigfont\thinspace?\thinspace}}

\newdimen\leftedge \newdimen\rightedge

\leftedge=\hsize \advance\leftedge by-\wd\qmark

\divide\leftedge by 2

\rightedge=\leftedge \advance\rightedge by\wd\qmark

\parshape 10 OptXhsize OptXhsize OptXhsize

OptXleftedge XrightedgeXleftedge

OptXleftedge XrightedgeXleftedge

OptXleftedge XrightedgeXleftedge OptXhsize

XnewboxXpartpage XnewcountXn

XnewdimenXsavedprevdepth Xsavedprevdepth=Xprevdepth

195

196 Digital Typography

\newdimen\savedvsize \savedvsize=\vsize

\begingroup \clubpenalty=0 \brokenpenalty=0

\output={\global\setbox\partpage=\vbox{\unvbox255\\iiiskip}}

\vfillXbreak

\topskip=\ht\strutbox \vsize=\topskip

\n=200 y. we will store nine lines of text in boxes 201—209

\output={\global\advance\n by 1

\ifnum\n<210 \global\setbox\n=\box255

\else \unvbox\partpage \prevdepth=\savedprevdepth

\vskip\parskip \box201 \box202 \box203

\box204 \vskip-\baselineskip \box205

\box206 \vskip-\baselineskip \box207

\box208 \vskip-\baselineskip \box209

\vskip-\baselineskip

\moveright\leftedge\hbox{\smash{\box\qmark}}

\box255 \global\vsize=\maxdimen \fi}

\noindent This puzzle was suggested to me by Sape

Mullender, of the Centre for Mathematics and Computer

Science in Amsterdam. He told me his belief that ‘ 'the

general design of \TeX\ is better than that of {\it troff},

but the real guru can make {\it troff\/} do things that you

could never do in \TeX.’’ As an example, he showed me

a page on which {\it troff\/} had typeset a picture in the

middle of a paragraph, with the text going around the

picture. ‘‘It’s not pretty, but it can be done, and that’s

what counts,’’ he said. Well, I have to admit that I didn’t

think of a simple solution until the next Saturday morning;

and I didn’t finish debugging it until that afternoon. Can

you guess how I typeset the paragraph you’re now reading?

(The answer appears below; but don’t peek at it until

you’ve solved the problem yourself! It doesn’t demonstrate

the superiority of \TeX\ to {\it troff}, but it does have

some interesting and instructive features.)

{\parfillskip=Opt\par} \global\savedprevdepth=\prevdepth

\output{\global\setbox\partpage=\vbox{\unvbox255\unskip}}

\vfillXbreak; Xendgroup Xvsize=Xsavedvsize

XunvboxXpartpage Xprevdepth=Xsavedprevdepth

y. Improvements to this solution are welcome I

[Note; Alan Hoenig independently presented a considerably more gen¬

eral solution in TUGboat 8 (1987), 211-215, based on Xvsplit.]

Chapter 10

Exercises for TfcX: The Program

[Originally published in TUGboat 11 (1990), 165-170, 499-511.]

During the spring of 1987 I taught a course for which T^iX’s source code,

Volume B of Computers & Typesetting, was the textbook. Since that

book was meant to serve primarily as a reference, not as a text, I needed

to supplement it with homework exercises and exam problems.

The problems turned out to be interesting and fun, for people who

like that sort of thing, and they might be useful for self-study if any¬

body wants to learn The Program without taking a college course.

Therefore I’ve collected 32 of them here and given what I think are the

correct answers.

The final problem, which deals with the typesetting of languages

that have large character sets, is especially noteworthy since it presents

an extension of that might prove to be useful in Asia.

Some of the problems suggested changes in the text. I’ve changed my

original wording of the exercises and answers so that they make sense in

the latest printings of the book (TgX versions 3.0 or higher); people who

have the 1986 edition should check the published errata before looking

too closely at the answers below.

The Problems

Here, then, are the exercises in the order I gave them. Although they

begin with a rather “gentle introduction,” I recommend that the first

ones not be skipped, even if they may appear too easy; there often is a

slightly subtle point involved. Conversely, some of the problems are real

stumpers, but they are intended to teach important lessons. A serious

attempt should be made to solve each one before turning to the answer,

if the maximum benefit is to be achieved.

1. (An exercise about reading a WEB.) In the Pascal program defined

by the book, what immediately precedes ‘PROCEDURE INITIALIZE’?

197

198 Digital Typography

(Of course it’s a semicolon, but you should also figure out a few things

that occur immediately before that semicolon.)

2. Find an unnecessary macro in §15.

3. Suppose that the string at the beginning of the prinLromanJnt

procedure were "m2d5c212q5v5i" instead of "m2d5c215x2v5i". What

would printed from the input 69? From the input 9999?

4. Why does error-Count have a lower bound of —1?

5. What is printed on the user’s terminal after ‘q’ is typed in response

to an error prompt? Why?

6. Give examples of how might fail in the following circumstances:

a) If the test ‘t < 7230584’ were eliminated from §108.

b) If the test ‘s > 1663497’ were eliminated from §108.

c) If the test ‘r > p + 1’ were changed to ‘r > p' in §127.

d) If the test 'rlink{p) p' were eliminated from §127.

e) If the test 'lo-merri-max + 2 < merri-bot + max-halfword' were

eliminated from §125.

7. The purpose of this problem is to figure out what data in mem could

have generated the following output of show-node-list:

\hbox(10.0+0.0)xl00.0, glue set lO.Ofill lOO

.\discretionary replacing 1 200

..\kern 10.0 300

. I \large U 10000

. I Marge ~~K (ligature ff) 400,10001,10002

. Marge ! 10003

.\penalty 5000 500

.\glue 0.0 plus 1.Ofill 600

.\vbox(5.0x0.5)xl0.0, shifted -5.0 too

..\hbox(5.0x0.0)xl0.0 800

...\small d 10004

...\small a 10005

..\rule(0.5+0.0)x* 900

Assume that Marge is font number 1 and that \small is font number 2.

Also assume that the nodes used in the lower (variable-size) part of mem

start in locations 100, 200, etc., as shown; the nodes used in the upper

(one-word) part of mem should appear in locations 10000, 10001, etc.

Make a diagram that illustrates the exact numeric contents of every

relevant mem word, if miu-quarterword — min-halfword = 0.

Exercises for T^: The Program 199

8. What will short^display print, when given the horizontal list inside

the larger \hbox in the previous problem, assuming that the variable

fontJnshort^display is initially zero?

9. Suppose the following commands are executed immediately after

INITEX has initialized itself:

incr{prev-depth)\ decr{modeJine)-, incr{prev.graf)] show-activities \

what will be shown?

10. What will ''show-eqtb{int-base + 17)’ show, after INITEX has initial¬

ized itself?

11. Suppose has been given the following definitions:

\def\a{\advajice\day by l\relax} \def\g{\global\a}

The effect of this inside T^X will be that an appearance of \a calls

eq-Word-define{p, eqtb\p\.int + 1),

and an appearance of \g calls geq-Word-define{p, eqtb\p\.int + 1), where

p = int-base -|- day-Code. Consider now the following commands:

\day=0 \g\a{\a\g\a{\g\a\g}\a{\a}\a}

Each calls newsaveJevel(simple-group), and each calls unsave.

Explain what gets pushed onto and popped off of the savestack,

and what gets stored in eqtb\p\ and xeq-level\p\, as the above commands

are executed. What is the final value of \day? (See The TpiKbook,

exercise 15.9 and page 301.)

12. Use the notation at the bottom of page 122 in The Program

to describe the contents of the token list corresponding to \! after the

definition

\def\!!1#2![{!#]#!!2}

has been given, assuming that [,], and ! have the respective catcodes

1, 2, and 6, just as {, }, and # do. (See exercise 20.7 in The TpiKbook.)

200 Digital Typography

13. What is the absolute maximum number of characters that will

printed by show-eqtb(every-parJoc), if the current value of \everypar

does not contain any control sequences? {Hint: The answer exceeds 50.

You may wish to verify this by running TgX, defining an appropriate

worst-case example, and saying

\tracingrestores=l \tracingonline=l {\everypax{}}

since this will invoke show-eqtb when \everypar is restored.)

14. What does INITEX do with the following input line? (Look closely.)

\catcode“=7

15. Explain the error message you get if you say

\endlinechar=‘! \error

in plain TeX.

16. Fill in the missing macro definition so that the input file

\catcode‘?=\active

\def\answer{...}

\answer

will produce precisely the following error message when it is run with

plain TeX:

! Undefined control sequence.

<recently read> How did this happen?

1.3 \answer

7

(This devilish problem is much harder than the others above, but there

are at least three ways to solve it!)

17. Consider what will do when it processes the following text:

{\def\t{\gdef\a##}\catcode‘d=12\tld#2#3{#2}}

\hfuzz=100P\if diinl2pt=lP\expandaf ter\a

\expandafter\else\romannumeral888\relax\fi

\showthe\hfuzz \showlists

(Assume that the category codes of plain TeX are being used.)

Determine when the scanning routines scan-keyword, scan-int, and

scau-dimen are called as this text is being read, and explain in general

terms what results those subroutines produce.

Exercises for TgX: The Program 201

18. What is the difference in interpretation, if any, between the following

two Te?^ commands?

\thickmuskip=-\thickmuskip

\thickinuskip=-\the\thickmuskip

(Assume that plain T^X is being used.) Explain why there is or isn’t a

difference.

19. In what way would T^^X’s behavior change if the assignment at the

end of §508 were changed to ‘5 e- (p = null)' ?

21. The initial implementation of 1^5X82 had a much simpler procedure

in place of the one now in §601:

procedure dvLpop-,

begin if dvLptr > 0 then

if dvi-buf [dvi^ptr — 1] = push then decr{dvLptr)

else dvLout{pop)

else dvLout{pop)-,
end;

(No parameter I was necessary.) Why did the author hang his head in

shame one day and change it to the form it now has?

21. Assign subscripts d, y, and z to the sequence of integers

2718281828459045

using the procedure sketched in §604. (This is easy.)

22. Find a short T^^X input file that will cause the print-mode subroutine

to print ‘no mode’. (Do not assume that the category codes or macros

of plain TeX have been preloaded.) Extra credit will be given to the

person who has the shortest file, i.e., the fewest tokens, among all correct

solutions submitted.

23. The textbook says in §78 that error might be called within error

within a call of error, but the recursion cannot go any deeper than this.

Construct a scenario in which error is entered three times before it

has been completed.

24. J. H. Quick (a student) thought he spotted a bug in §671 and he

was all set to collect $327.68 because of inputs like this:

\vbox{\moveright lpt\hbox to 2pt{}

\xleaders\lastbox\vskip 3pt}

202 Digital Typography

(He noticed that TgX would give this vbox a width of 2pt, and he

thought that the correct width was 3pt.) However, when he typed

\showlists he saw that the leaders were simply

\xleaders 3.0

.\hbox(0.0+0.0)x2.0

and he noticed with regret the statement 'shift.amount {cur.box) ^ 0’

in §1081.

Explain how §671 would have to be corrected, if the shift.amount

of a leader box could be nonzero.

25. When your instructor made up this problem, he gave the command

‘\hbadness=-l’ so that TgX would print out the way each line of this

paragraph was broken. (He sometimes wants to check line breaks with¬

out looking at actual output, when he’s using a terminal that has no

display capabilities.) It turned out that T^X typed this:

Tight \hbox (badness 0) in paragraph at lines 297—301

[]\tenrm When your in-struc-tor made up this prob-lem, h

e gave the com-mand

Loose \hbox (badness 3) in paragraph at lines 297—301

\tenrm ‘\tentt \hbadness=-l\tenrm ’ so that T[] would pr

int out the way each line of this

Tight \hbox (badness 0) in paragraph at lines 297—301

\tenrm para-graph was bro-ken. (He some-times wants to c

heck line breads with-

Loose \hbox (badness 14) in paragraph at lines 297—301

\tenrm out look-ing at ac-tual out-put, when he’s us-ing

a ter-mi-nal that has no

Why wasn’t anything shown for the last line of the paragraph?

26. How would the output of look different if the rebox procedure

were changed by deleting the statement ‘if type{b) — vlist.node then

b <r- hpack{b, natural)'? How would the output look different if the next

conditional statement, ‘if {is-char.node{p)) ...’ were deleted? (Note

that box b might have been formed by char.box.)

27. What spacing does TgX insert between the characters when it type¬

sets the formulas $x==l$, $x++l$, and $x, ,1$? Find the places in the

program where these spacing decisions are made.

Exercises for T^X: The Program 203

28. When your instructor made up this problem, he gave the com¬

mand ‘\tracingparagraphs=l’ so that his transcript file would ex¬

plain TIeX’s line-breaking decisions for this paragraph. He also said

‘\pretolerance=-l’ so that hyphenation would be tried immediately.

The output is shown on the next page; use it to determine what line

breaks would have been found by a simpler algorithm that breaks off one

line at a time. (The simpler algorithm fintls the breakpoint that yields

fewest demerits on the first line, then chooses it and starts over again.)

29. Play through the algorithms in parts 42 and 43, to figure out the con¬

tents of trie.op, tric-char, trie-link, hyf-distance, hyf-num, and hyf-uext
after the statement

\patterns{albc 2bcd3 ablcd bcldd}

has been processed. Then execute the algorithm of §923, to see how

TgX uses this efficient trie structure to set the values of hyf when the

word aabcd is hyphenated. [The value of hn will be 5, and the values

of /ic[1..5] will be (97,97,98,99,100), respectively, when §923 begins.

Assume that miu-quarterword = Lhyf = r-hyf = 0.]

30. The savestack is normally empty when a program stops. But

if, say, the user’s input has an extra (or a missing ‘}’), IIeX will print

the warning message

(\end occurred inside a group at level 1)

(see §1335).

Explain in detail how to change T^X so that such warning messages

will be more explicit. Eor example, if the source program has an un¬

matched ‘{’on line 2 and an unmatched ‘\begingroup’ on line 9, your

modified Tg^ should give two warnings:

(\end occurred when \begingroup on line 9 was incomplete)

(\end occurred when { on line 2 was incomplete)

You may assume that simple-group and semisimple-group are the only

group codes present on savestack when §1335 is encountered; if other

group codes are present, your program should call confusion.

31. (The following question is the most difficult yet most important

of the entire collection. It was the main problem on the take-home

final exam.)

204 Digital Typography

■/. This is the paragraph-trace output for Problem 28:
[]\tenrni When your in-struc-tor made up this prob-lem, he gave the com-
Q\discretionary via (9®0 b=145 p=50 d=36525
0Q1: line 1.0- t=36525 -> 000
mand
0 via 000 b=0 p=0 d=100
002: line 1.2 t=100 -> 000
‘\tentt \tracingparagraphs=l\tenrni ’ so that his tran-script file would ex-
0\discretionary via 001 b=179 p=50 d=78221
003: line 2.0- t=114746 -> 001
plain
0 via 001 b=l p=0 d=10121
004: line 2.2 t=46646 -> 001
T[]’s
0 via 002 b=4 p=0 d=196
005: line 2.2 t=296 -> 002
line-breaking de-ci-sions for this para-graph. He also said
0 via 003 b=89 p=0 d=9801
006: line 3.1 t=124547 -> 003
‘\tentt \pretolerance=-l\tennn ’ so that hy-phen-ation would be tried im-me-di-ately.
0 via 006 b=ll p=0 d=441
007: line 4.2 t=124988 -> 006
The out-put is shown on the next page; use it to de-ter-mine what
0 via 007 b=318 p=0 d=117584
008: line 5.0 t=242572 -> 007
line
0 via 007 b=14 p=0 d=576
009: line 5.1 t=125564 -> 007
breaks would have been found by a sim-pler al-go-rithm that breaks
0 via 008 b=2 p=0 d=10144
0 via 009 b=295 p=0 d=93025
0010: line 6.0 t=218589 -> 009
off
0 via 008 b=31 p=0 d=11681
0 via 009 b=15 p=0 d=625
0011: line 6.1 t=126189 -> 009
one
0 via 009 b=26 p=0 d=11296
0012: line 6.3 t=136860 -> 009
line at a time. (The sim-pler al-go-rithm finds the break-
0\discretionary via 0010 b=607 p=50 d=383189
0013: line 7.0- t=601778 -> 0010
point
0 via 0010 b=80 p=0 d=8100
0 via 0011 b=503 p=0 d=263169
0014: line 7.1 t=226689 -> 0010
that
0 via
0 via
0 via
0015:
yields
0 via
0016:
fewest
0 via

0010 b=0 p=0 d=10100
b=20 p=0 d=900
b=369 p=0 d=153641

line 7.1 t=127089 ->

0012 b=0 p=0 d=100
line 7.2 t=136960 -> 0012
de-mer-its on the first line,

0013 b=293 p=0 d=91809
then chooses it

0017: line 8.0 t=693687 -> 0013
and
0 via 0013 b=5 p=0 d=10225
0 via 0014 b=571 p=0 d=337561
0018: line 8.0 t=564250 -> 0014
starts
0 via 0014 b=2 p=0 d=144
0 via 0015 b=308 p=0 d=101124
0019: line 8.0 t=228213 -> 0015
0020: line 8.2 t=226833 -> 0014
over again.)
0\par via 0016 b=0 p=-10000 d=100
0\par via 0017 b=0 p=-10000 d=10100
0\par via 0018 b=0 p=-10000 d=10100
0\par via 0019 b=0 p=-10000 d=10100
0\par via 0020 b=0 p=-10000 d=100
0021: line 8.2- t=137060 -> 0016

Exercises for T[^: The Program 205

The purpose of problem 31 to extend TgX so that it will sell better in

China, Japan, and Korea. The extended program, called TJ^XX, allows

each font to contain up to 65536 characters. Each extended character

is represented by two values, its ‘extension’ x and its ‘code’ c, where

both X and c lie between 0 and 255 inclusive. Characters with the same

‘c’ but different ‘x’ correspond to different graphics; but they have the

same width, height, depth, and italic correction.

TeXX is identical to TgX except that it has one new primitive com¬

mand; \xchar. If \xchar occurs in vertical mode, it begins a new

paragraph; that is, it’s a (horizontal command) as on page 283 of The

T^book. If \xchar occurs in horizontal mode it should be followed by

a (number) betw^een 0 and 65535; this number can be converted to the

form 256x -|- c, where 0 < x, c < 256. The corresponding extended char¬

acter from the current font will be appended to the current horizontal

list, and the space factor will be set to 1000. (If x = 0, the effect of

\xchar is something like the effect of \char, except that \xchar dis¬

ables ligatures and kerns and it doesn’t do anything special to the space

factor. Moreover, no penalty is inserted after an \xchar that happens

to be the \hyphenchar of the current font.) A word containing an ex¬

tended character will not be hyphenated. The \xchar command should

not occur in math mode.

Inside TeXX, an extended character (x, c) in font / is represented

by two consecutive char-node items p and q, where we have font (p) =

null-font, character{p) = qi{x), link{p) = q, character(q) = qi{c), and

font{q) = /. This two-word representation is used even when x = 0.

T^XX typesets an extended character by specifying character num¬

ber 256x 4- c in the DVI file. (See the set2 command in §585.)

If TeXX is run with the macros of plain T^)X, and if the user types

‘\tracingall \xchar600 \showlists’, the output of T^XX will include

{\xchar}

{horizontal mode: \xchar}

{\showlists}

horizontal mode entered at line 0

\hbox(0.0+0.0)x20.0

\tenrm \xchar"258

spacefactor 1000

(since 600 is "258 in hexadecimal notation).

Your job is to explain in detail all changes to T^X that are necessary

to convert it to T^XX.

206 Digital Typography

[Note: A properly designed extension would also include the primi¬

tive operator \xchardef, analogous to \chardef and \mathdef, because

a language should be ‘orthogonally complete’. However, this additional

extension has not been included as part of problem 31, because it

presents no special difficulties. Anybody who can figure out how to

implement \xchar can certainly also handle \xchardef.]

32. The first edition of TpiK: The Program suggested that extended

characters could be represented with the following convention: The first

of two consecutive char-node items was to contain the font code and a

character code from which the dimensions could be computed as usual;

the second char-node was a halfword giving the actual character number

to be typeset. Fonts were divided into two types, based on character¬

istics of their TFM headers; ‘oriental’ fonts always used this two-word

representation, other fonts always used the one-word representation.

Explain why the method suggested in problem 31 is better than this.

(There are at least two reasons.)

The Answers

1. According to the index, initialize is declared in §4. It is preceded

there by (Global variables 13), and §13 tells us that the final global vari¬

able appears in §1345. Turning to §1345, we find 'write-loc: pointer^

and a comment. The comment doesn’t get into the Pascal code. The

mini-index at the bottom of page 541 tells us that pointer' is a macro

defined in §115. Our quest is nearly over, since §115 says that pointer

expands to halfword, which is part of the Pascal program. Page xi tells

us that lowercase letters of a WEB program become uppercase in the cor¬

responding Pascal code; page xii tells us that the underline in ‘'writeJoc'

is discarded. Therefore we conclude that ‘PROCEDURE INITIALIZE’ is

immediately preceded in the Pascal program by ‘WRITELOC:HALFWORD; ’.

But this isn’t quite correct! The book doesn’t tell the whole story.

If we actually run TANGLE on TEX.WEB (without a change file), we find

that ‘PROCEDURE INITIALIZE’ is actually preceded by

{1345:dWRITELOC:HALFWORD;{:1345}

because TANGLE inserts comments to show the origin of each block of

code. Here the code comes indeed from §1345.

2. The index tells us that doned is never used. (It was included only for

people who want to make system-dependent changes and/or extensions.)

Exercises for T^X: The Program 207

3. The new string essentially substitutes “quarters” q (of value 25) for
“dimes” x (of value 10). Playing through the code of §69 tells us that
69 is now represented by Ivvviv and 9999 is

mmmnmiinmmmcmqcvqiv.

(The first nine m’s make 9000; then cm makes 900; then qc makes 75;
then vq makes 20; and iv makes the remaining 4.)

4. Because it may be decreased by 1 in §1293 before being increased
by 1 in §82. (The code in §1293 decreases error^count because “showing”
uses the error subroutine although it isn’t really an error.)

5. The q — which stands for “quiet,” not “quit”—becomes Q in §83.
This Q causes §86 to print ‘OK, entering \batchmode’, after which
selector is decreased so that ‘’ and (return) are not printed on the
terminal! (They appear only in the log file, if it has been opened.) This
is TgX’s way of confirming that \batchmode has indeed been entered.

6. (a) Arithmetic overflow might occur when computing ^*297, because

7230585 X 297 = 2^^ + 97.

(b) Some sort of test is need to avoid division by zero when s is
positive but less than 297. If s < 1663497 then

s div 297 < 5601,

and 7230585/5600 is a bit larger than 1291 so we will have r > 1290
in such a case. The threshold value has therefore been chosen to save
division whenever possible. (One student suggested that the statement
‘r ■<— f be replaced by ‘r 1291’. That might or might not be faster,
depending on the computer and the Pascal compiler. In machine lan¬
guage one would goto the statement that sets badness inf-bad, but
that is inadmissible Pascal.)

(c) If we get to §128 with r — p we will try to make a node of
size 1, but then there’s no room for the nodesize field.

(d) If we get to §129 with only one node available, we’ll lose every¬
thing and rover will be invalid. (Older versions of T^X have a more
complicated test in §127, which would suppress going to §129 if there
were two nodes available. That was unnecessarily cautious.)

(e) This is a subtle one. The lower part of memory must not
be allowed to grow so large that a nodesize value could ever exceed
max-halfword when nodes are being merged together in §127.

208 Digital Typography

7. 100

101

102

103
104

105
106

200;

201:

0 0 0
6553600

0

655360
0

1 2 200

10 .0

7 1 10003

300 10000

400:
401:

600:
601:

700
701
702
703
704
705

706

800
801
802
803
804

805
806

900
901
902
903

10000
10001

10002

10003
10004

10005

300: 11 1 0

301: 655360

6 0 0

1 11 10001

500; 12 0 600

501: 5000

10 0 700

8 0

1 0 0
655360

32768
327680

-327680
0 0 800

0 0

900
655360

0

327680
0

10004
0.0

0 0
-1073741824

0

32768

1 85 400
1 102 10002
1 102 0
1 33 500
2 100 10005
2 96 0

type {hlist.node), , link
width (100 pt)

depth
height (10 pt)
shift-amount
glue.sign {stretching), glue.order (fill), list-ptr

glueset (type real)

type (disc.node), replace .count, link

pre-break, post-break

type {kern-node), subtype {explicit), link

width (10 pt)

type {ligaturc-node), , link
font, character, lig-ptr

type {penalty.node), , link

penalty

type {gluc-node), subtype {normal), link
glue.ptr {filLglue), leader-ptr

type {vlist-node), , link

width (10 pt)
depth (0.5 pt)
height (5pt)
shift-amount (—5pt)
gluesign {normal), glue-order {normal), lisLptr

glueset (type real)

type {hlist-node), , link

width (10 pt)
depth
height (5pt)
shift-amount

gluesign {normal), glue-order {normal), list.ptr
glueset (type real)

type {rule.node), , link
width {null-flag)
depth

height (0.5 pt)

font, character ("U"), link

font, character ("£")> link
font, character ("f"), link

font, character ("!")i link
font, character ("d"), link
font, character ("a"), link

Exercises for TeX: The Program 209

8. (Norwegian Americans will recognize this as an “Uff da” joke.) The

output of short-display is

Marge Uff []

since short-display shows the pre-break and post-break parts of a discre¬

tionary (but not the replacement text). However, if t his box were output

by hlist-out, the discretionary break would not be effective; the result

would be a box 100 pt wide, beginning with a large *!’ and ending with a

small ‘da’, the latter being raised 5pt and underlined with a 0.5pt-rule.

9. Since prev-depth is initially ignore-depth, we get

vertical mode entered at line 1 (\output routine)

prevdepth -999.99998, prevgraf 1 line

10. According to §236, int-base -t- 17 is where mag is stored. (One of

the definitions suppressed by an ellipsis on page 101 is mag; you can

verify this by checking the index!) The initial value of mag is set in

§240. Hence show-eqtb branches to §242 and prints ‘\mag=1000’.

11. In the following chart, ‘(3)’ means a value at level three, and ‘—’ is

a level boundary;

(2)

9

(1) (1) -

6 6 (1) (1) (1) (1) (1)
- 88888

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

44444444444

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

2222222222222

savestack: —-— — —-—
xeq-level\p\\ (i) (i) (i) (i) (2) (l) (2) (2) (i) (3) (i) (l) (2) (2) (3) (2) (2) (1)

eqtb[p].int: 01223455678899 10 9 10 8

day=0 \g \a { \a \g \a { \g \a \g } \a { \a } \a }

The final value is therefore \day=8.

12. (reference count), match I, match #, left-brace [, end-match,

left-brace {, mac-param #, right-brace], mac-param !, ouLparam 2,

left-brace [. Notice that the left-brace before the end-match is repeated

at the end of the replacement text, because it has been matched (and

therefore removed from the input).

210 Digital Typography

13. According to §233, show .eqtb {every.par Joe) calls showJokenJist

with the limit I = 32. According to §292, we want the token list to con¬

tain a token that prints as many characters as possible when tally =31;

the value of tally is increased on every call to prinLchar (§58). By

studying the cases in §294, we conclude that the worst case occurs when

a mac.param is printed, and when the character c actually prints as four

characters. The statement ‘pnnAe5c("ETC.")’ in §292 will print eight

additional characters if the current escape.char is another quadrupler.

(Longer examples are possible only if TeX has a bug that tweaks one of

the outputs ACLOBBERED. ’ or ‘\BAD.’ in §293; but this can’t happen.)

In other words, a worst-case example such as

\escapechar= ‘ \ ~ "df \catcode ‘ X"''d0=6

\everypar{1234567890123456789012345678901"'d0etc.}

in connection with the suggested test line will print

{restoring

''~dfeverypar=1234567890123456789012345678901''~d0''~d0''''dfETC.}

thereby proving that show.eqtb{every.parJoe) can print 60 characters.

14. Here we must look at the get-next procedure, which scans the buffer

in strange ways when two identical characters of category 7 {sup-mark)

are found. After the \catcode of open-quote has been set to 7, get.next

begins to scan a control sequence in §354, which goes to §355 and finds a

space after ‘ L Since a space is code 'fO ^ it is changed to 'IfO, and the

buffer contents are shifted left 2. By strange coincidence, 'IfO is again

an open-quote character, so we get back to §355, which changes ‘ ‘ (to

h and goes back to start.es a third time. Now we go to §356 and then

back to §355 and start.es, having changed ‘ to i. The fourth round,

similarly, changes ‘ ‘ ‘ to a blank space, and the fifth round finishes the

control sequence.

If we try to input the stated line, INITEX will come to a halt as

follows:

! Undefined control sequence.

<*> \catcode‘‘=7 \hi

!\error

This proves that the buffer now says \hi !.

Exercises for T^: The Program 211

15. The error message in question is

! Undefined control sequence.

<*> \endlinechar=‘! \error

and our job is to explain the appearance of The standard setting of

\endlinechar is carriage^retiirn, according to §240; this is '15 accord¬

ing to §22, and 15 is in ASCII code. Thus, a carriage-return is

normally placed at the end of each line when it’s read into the buffer (see

§360). This carriage-return is not usually printed in an error message,

because it equals the end-line-char (see §318). We see it now because

end-linc-char has changed.

Incidentally, if the input line had been

\endlinechar='!\error

(without the space after the !), we wouldn’t have seen the ~~M. Why not?

Because TeX calls get-next when looking for the optional space after the

ASCII constant ‘ ! (see §442-443), hence the undefined control sequence

\error is encountered before end-line-char has been changed!

16. One problem is to figure out which control sequence is undefined;

it seems to be the “?’, since this character has been made active.

One clue is to observe from §312 and §314 that ‘<recently read>’

can be printed only when base-ptr = input-ptr, state = token-list,

token-type = backed-up, and loc = null. A token list of type backed-up

usually contains only a single item; in that case, the control sequence

name must be ‘How did this happen?’, and we have a problem getting

an active character into a control sequence name.

But an arbitrarily long token list of type backed-up can be created

with the \lowercase operation (see §1288). In that case, however, the

right brace that closes \lowercase is almost always still present in Te)X’s

input state, and it would show up on the error message. (The back-list

procedure of §323 does not clear a completed token list off of the stack.)

We have to make T^)X clear off its stack before the } is scanned.

At this point the exercise begins to resemble “retrograde chess”

problems. Here is one solution; it is shown here in two lines, broken

up to fit the page size of this book, although the strict conditions of the

problem require us to put an equivalent one-line definition in line 2 of

the actual input file:

\def\answer{\let~\expandafter\lccode‘! = ‘Hyo [line broken]

~\lowercase~{~I~o~w~ ~d~i~d~ ~h~a~p~p~e~n~?}}

212 Digital Typography

(The ‘H’ is a lowercase an \expaiidafter chain is used to make the

right brace disappear from the stack.)

Another approach uses \csname, and manufactures a ? from a !:

\def\aiiswer{\def\a##l{{\global\let##l?\aftergroup##l}}y,

\escapechar‘H\lccode'j ?\lowercase{\expandafterXaX

\csname ow did this happen! \endcsnaxne}}

But there is a devious solution that is considerably shorter; it makes

the invisible carriage-return following \answer into a right brace(!):

\def\answer{\catcodel3=2\lccode‘ ! = ‘H7,

\lowercase\bgroup!ow did this happen?}

17. (The answer to this problem was much more difficult to explain in

class than I had thought it would be, so I guess it was also much more

difficult for the students to solve than I had thought it would be. After

my first attempt to explain the answer, I decided to make up a special

version of that would help to clarify the scanning routines. This

special program, called DemoTEX, is just like ordinary TgX except that

if \tracingstats>2 the user is able to watch ThpC’s syntax routines in

slow motion. The changes that convert 'IfyjX to DemoTEX are explained

in the appendix below. Given DemoTEX, we tried a lot of simple exam¬

ples of things like ‘\hfuzz=l. 5pt’ and ‘\catcode ‘ a=ll’ before plunging

into exercise 17 in which everything happens at once. While we were

discussing input stacks, by the way, we found it helpful to consider the

behavior of TeX on the following input:

\output{\botmark}

\def\a{\error}

\mark{

\everyvbox{

\everypar{

\everydisplay{

\everyhbox-f

\everymath{\noexpand\a}

$\relax}

\hbox\bgroup\relax}

$$\relax}

\noindent\relax}

\vbox\bgroup\relax}

\hbox{}\vfill\penalty-10000

Exercises for T^^X: The Program 213

Here \penalty triggers \botmark, which defines \everyvbox and begins

a \vbox, which defines \everypar and begins a \par, which defines

\everydisplay and begins a \display, etc.)

Back to problem 17: The first line is essentially

\gdef\a#ld#2#3{#2}

where the second d has catcode 12 [other-char). Hence the second d will

match a d that is generated by \romcmnumeral. In this line, scanJnt is

called only to scan the ‘d and the 12.

The second line calls scan^dimen in order to evaluate the right-

hand side of the assignment to \hfuzz. After scan^dimen has used

scari-int to read the TOO’, it calls scari-keyword in order to figure out

the units. But before the units are known to be ‘pt’ or ‘pc’, an \ifdim

must be expanded. Here we need to call scari-dimen recursively, twice;

it finds the value 12 pt on the left-hand side, and is interrupted again

while scan-keyword is trying to figure out the units on the right-hand

side. Now a chain of Xexpandafter’s causes \romannumeral888 to be

expanded into dccclxxxviii, and then we have to parse

\a\else dccclxxxviii

followed by \relax\f i. Here #1 will be \else, #2 and #3 will each be c;

the expansion therefore reduces to cclxxxviii\relax\f i. The first ‘c’

completes the second ‘Pc’, and the \ifdim test is true. Therefore the

second ‘c’ can complete the first ‘Pc’, and \hfuzz is set equal to 1200 pt.

The characters Ixxxviii now begin a paragraph. The \fi takes the

\if dim out of Td^X’s condition stack.

(The appendix below gives further information. Examples like this

give some glimmering of the weird maneuvers that can be found in the

TRIP test, an intricate pattern of unlikely code that is used to validate

all implementations of TeX.)

18. If, for example, \thickmuskip has the value 5mu plus 5mu that

plain T^}X gives it, the first command changes its value to -5mu plus

-5mu, because scan-glue in §461 will call scansomething-internal with

the second argument true; this will cause all three components of the

glue to be negated (see §413, §430, §431).

The second command, on the other hand, tells TIeX to expand

‘\the\thickmuskip’ into a sequence of characters, so it is equivalent

to the assignment

\thickmuskip=-5mu plus 5mu

214 Digital Typography

(The minus sign doesn’t carry into the stretch component of glue, since

§461 applies negate only to the first dimension found.)

This problem points out a well-known danger that is present in any

text-macro-expanding system.

19. We’d have a funny result that two macro texts would be considered

to match by \ifx unless the first one (the one starting at q when we

begin §508) is a proper prefix of the second. (Notice the statement

‘p ^ null' inside the while loop.)

20. Because the byte in dvLbuf [dvLptr — 1] is usually not an operation

code, and it just might happen to equal push.

21. 2y 7d U 8z 2y 8, U 8, 2y 8, 4y 5, 9d Od 4y 5,.

22. is in ‘no mode’ only while processing \write statements, and

the mode is printed during \write only when tracing ^commands > 1

during expand. We might think that \catcode operations are necessary,

so that the left and right braces for \write exist; but it’s possible to

let T^jX’s error-recovery mechanism supply them! Therefore the shortest

program that meets the requirements is probably the following one based

on an idea due to Ronaldo Ama, who suggests putting

\batchmode\tracingconffliands2\immediate\write!\nomode

into a file. (Seven tokens total.)

23. When error calls geDtoken, because the user has asked for tokens

to be deleted (see §88), a second level of error is possible, but further

deletions are disallowed (see §336 and §346). However, insertions are

still allowed, and this can lead to a third level of error when overflow

calls succumb.

For example, let’s assume that maxJmopen = 6. Then you can

type ‘\catcode ‘ ?=15 \x’ and respond to the undefined control sequence

error by saying ‘i\x??’ six times. This leads to a call of error in which

six ‘<insert>’ levels appear; hence in-open — 6, and one more insertion

will be the last straw. At this point, type ‘T; this enters error at a second

level, from which ‘i’ will enter error a third time. (The run-time stack

now has maimcontrol calling get^x^token calling expand calling error

calling get-token calling get-next calling error calling begin-file-reading

calling overflow calling error.)

24. We’d replace ^width{gfl by ^width(g) + shift-amount{gY (twice).

Similar changes would be needed in §656. (But a box shouldn’t be

able to retain its shift-amount; this quantity is a property of the list the

box is in, not a property of the box itself.)

Exercises for T^X; The Program 215

25. The final line has infinite stretchability, since plain TJgX has set

\parf illskip=Opt plus Ifil. Reports of loose, tight, underfull, or

overfull boxes are never made unless o = normal in §658 and §664.

26. If a vbox is repackaged as an hbox, we get really weird results

because things that were supposed to stack up vertically are placed to¬

gether horizontally. The second change would be a lot less visible, except

in characters like V where there is a large italic correction; the charac¬

ter would be centered without taking its italic correction into account.

(The italic correction in math mode is the difference between horizontal

placement of superscripts and subscripts in formulas like V^-)

27. The spacing can be found by saying

$x==l$ $x++l$ $x,,l$ \tracingall\showlists.

Most of the decisions are made in §766, using the spacing table of §764.

But the situation is trickier in the case of +, because a bin-noad must

be preceded and followed by a noad of a suitable class. In the formula

$x++l$, the second + is changed from bimnoad to ord.noad in §728. It

turns out that thick spaces are inserted after the x and before the 1 in

‘x == 1’; medium spaces are inserted before each -|- sign in ‘x-t--!-!’; thin

spaces are inserted after each comma in ‘x,, 1’. (A comma in math mode

appears in the semicolon position of the math italic font; see page 430

of The TEKbook.)

28. The behavior of the simpler algorithm, which we may call Brand X,

can be deduced from the demerits values (‘d=’) in the trace output. The

best choice for the first line is clearly @02 (only 100 demerits, versus

36525 for @®1); then @®4 is the only decent choice. But then we’re

stuck, and must accept a terribly loose line that ends at @@6. From here

we must go to @@7; then Brand X thinks it’s best to go to ®@9, then @@11

(the best of three possibilities), then @@15, then @@19, finally @@21. The

resulting paragraph, as typeset by Brand X, looks like this (awful):

28. When your instructor made up this problem, he gave the command

‘\tracingparagraphs=l’ so that his transcript file would explain IRX’s

line-breaking decisions for this paragraph. He also said

‘\pretolerance=-l’ so that hyphenation would be tried immediately.

The output is shown on the next page; use it to determine what line

breaks would have been found by a simpler algorithm that breaks off

one line at a time. (The simpler algorithm finds the breakpoint that

yields fewest demerits on the first line, then chooses it and starts

over again.)

216 Digital Typography

29. (This exercise takes awhile, but the data structures are especially

interesting; the hyphenation algorithm is a nice little part of the program

that can be studied in isolation.) The following tables are constructed:

op char link [1] [2] [3]

trie [1] 0 0 2 hyf-distance 2 0 3

trie [99] 0 97 3 hyf-num 1 3 2

trie [100] 0 98 7 hyffnext 0 0 2

the [101] 0 98 4

the [103] 1 99 5

trie [105] 1 100 0

trie [106] 0 99 8

trie [108] 3 100 5

Given the word aabcd, it is interesting to watch §923 produce the hy¬

phenation numbers ‘oa-oa.2biCod3’ from this trie.

30. The idea is to keep line numbers on the save stack. Scott Douglass

has observed that, although T^^ is careful to keep cur.boundary up to

date, nothing important is ever done with it; hence the save-index field

in level-boundary words is not needed, and we have an extra halfword to

play with! (The present data structure has fossilized elements left over

from old incarnations of Te)X.) However, line numbers might get larger

than a halfword; it seems better to store them as fullword integers.

This problem requires changes to three parts of the program. First,

we can extend §1063 as follows:

(Cases of mairi-control that build boxes and lists 1056) -|-=

non-math {left-brace): begin saved{0) e- line; incr{save-ptr);

new-save-level (simple-group);

end; {the line number is saved for possible use in warning message }

any-mode{begin-group): begin saved{0) ■«— line; incr{save-ptr);

new-save-level {semisimple-group);

end;

any-mode{end-group): if cur-group — semisimple-group then

begin unsave; decr{save-ptr);

{ pop unused line number from stack }

end

else off save;

A similar change is needed in §1068, where the first case becomes

simple-group: begin unsave; decr{save-ptr);

{ pop unused line number from stack }

end;

Exercises for TeX: The Program 217

Finally, we replace six lines of §1335 by similar code for the desired

messages:

while curJevel > leveLone do

begin prmt-nl{'' (.")■, pnnLesc("enduOccurreduwhenu");
case cur-group of

simple-group: print-char{''{")\

semi-simple-group: print-esc("begingroup");

ot hercases confusion (" endgroup ")

endcases;

pnnt("uonulineu"); unsave; decr{save-ptr); print-int{saved{Q));

pnnt ("uwasuincomplete)");
end;

while cond-ptr ^ null do

begin pnn<_n/(" ("); prznLe5c("endu0ccurreduwhenu");
print-cmd-chr{if-test, cur-if);

31. First, §2 gets a new paragraph explaining what TgXX is, and the

banner line changes:

define banner = 'ThiSuisuTeXX,uVersionu2.2'

{ printed when TeX starts }

Then we add two new definitions in §134:

define is-xchar-node{#) = {font{#) = font-base)

{ is this char-node extended? }

define bypass-xchar{#) =

if is-xchar-node{#) then # •<— link{#)

(It’s necessary to say font-base here instead of null-font, because the

identifier null-font isn’t defined until later.)

The short-display routine of §174 can treat an \xchar like an ordi¬

nary character, because print-ASCII makes no restrictions. Here is one

way to handle the change:

procedure short-display{p : integer); {prints highlights of list p}

label done;

var n: integer; (for replacement counts}

ext: integer; {amount added to character code by xchar }

begin ext t— 0;

while p > mem-min do

begin if is-char-node{p) then

begin if p < mem-end then

begin if is-Xchar-node{p) then

begin ext t— 256 * {qo{character{p))); goto done;

end;

if font (p) A font-inshort-display then

218 Digital Typography

begin if {font{p) < font-base) V {font(p) > font-max) then

print-char ["*'')

else (Print the font identifier for font{p) 267);

print-char{"u")', fonLinshort-display •(—/onf(p);

end;

print-ASCII{ext + qo{character(p)))-, ext ■<— 0;

end;

end

else (Print a short indication of the contents of node p 175);

done: p -f- link{p)-,

end;

end;

A somewhat similar change applies in §176:

procedure print-font-and-char{p : integer)] {prints char-node data}

label reswitch]
var ext: integer] { amount added to character code by xchar, or — 1 }

begin ext <-1;

reswitch: if p > mem-end then pA7it_esc("CLOBBERED.")

else begin if is-xchar-node{p) then

begin ext ■(— qo {character {p))] p -f- link{p)] goto reswitch] end;

if {font{p) < font-base) V {font{p) > font-max) then print-char{"*")

else (Print the font identifier for font{p) 267);

print-char {" u")]
if ext < 0 then print-ASCII {qo {character {p)))

else begin prmf_esc("xchar");

print-hex {ext * 256 + qo {character {p)))]

end;

end;

end;

(These routines must be extra-robust.) The first line of code in §183

now becomes

if is-char-node{p) then

begin print-fonLand-char{p)] bypass-xchar{p)]

end

In §208 we introduce a new operation code,

define xchar-Tium = 17 (extended character (\xcliar) }

Every opcode that follows it in §208 and §209, from math-char-num to

max-Command, must be increased by 1. We also add the following lines

to §265 and §266, respectively:

primitive{"xchar", xchar-num,0)]

xchar-num: print-esc{"xchar")]

This puts the new command into T^XX’s repertoire.

Exercises for T1]]X; The Program 219

The next thing we need to worry about is what to do when \xchar

occurs in the input. It’s convenient to add a companion procedure to

scan.char-num in §435:

procedure scan-xchar-num\

begin scari-int;

if {cur.val < 0) V {cur-val > 65535) then

begin print.err ("Baducharacterucode ");

("Anu\xcharunumberumustutieubetweenu0uandu255.")

("lychangeduthisuoneutouzero. int-error[cur-val)-, cur-val 0;

end;

end;

Similarly, new-character gets a companion in §582:

function new-xchar{f : intemaLfont-number; c : integer): pointer;

var p,q: pointer; {newly allocated nodes}

begin q •<— new-character{f ,c mod 256);

if q = null then new-xchar null

else begin p e— geLavail; font{p) •(— font-base;

character{p) •<— 9z((c div 256)); link{p) e- q;

new-Xchar ■<— p;

end;

end;

Extended characters can be output properly if we replace the open¬

ing lines of the code in §620 by these:

reswitch: if is-char-node{p) then

begin synch-h; synch-v;

repeat if is-Xchar-node{p) then

begin / ■<— font {link {p));

if character(p) = qi{0) then p link{p);

{ bypass zero extension }

end

else / ^ font{p);

c ^ character(p);

if / ^ dvi-f then (Change font dvLf to / 62i);

if is-xchar-node (p) then

begin dvi-out{setl -|- 1); dvi-out{qo{c)); p •<— link{p);

c e- character{p);

end
else if c > 5i(128) then dvi-Out{setl);

dvi-Out{qo{c));

Many of the processing routines include a statement of the form

.(_ font{#y, which we want to do only after bypassing the first half

of an extended character. This can be done by inserting the following

220 Digital Typography

statements:
bypass-Xchar {p) in §654;

bypass-xchar {s) in §842;

bypass-xchar (cur-p) in §867;

bypass-xchar{s) in §871;

bypass-Xchar {p) in §1147

In §841 we need to do a little more than a simple bypass:

if is-char-node{v) then

begin if is-Xchar.node{v) then

begin v link{v)-, decr{t); { an xchar counts as two chars }

end;

Two changes are needed in order to suppress hyphenation in words

that contain extended characters. First we insert

if hf — font.base then goto donel; { is^xchar.node{s) }

after 'hf -(— /onf (s)’ in §896. Then we replace ‘endcases;’ in §899 by

endcases

else if is-xchar-node{s) then goto donel]

If \xchar appears in math mode, we want to recover from the error

by including mmode -\- xchar-num in the list of cases in §1046. If \xchar

appears in vertical mode, we want to begin a paragraph by including

vmode + xchar-num in the second list of cases in §1090.

But what if \xchar appears in horizontal mode? To handle this, we

might as well rewrite §1122:

1122. We need only two more things to complete the horizontal mode

routines, namely the \xchar and \accent primitives.

(Cases of main-control that build boxes and lists 1056) +=

hmode + xchar-num: begin scan-xchar-num]

link (tail) •(— new-xchar {cur-font, cur-val)]

if link{tail) null then tail link {link {tail))]

space-factor •<— 1000;

end;

hmode + accent: make-accent]

Finally, we need to extend make-accent so that extended characters

can be accented. (Problem 31 didn’t call for this explicitly, but Te?^

should surely do it.) This means adding a new case in §1124:

else if cur-cmd — xchar-num then

begin scan-xchar-num] q •(— new-Xchar {f, cur-val)]

end

221 Exercises for T^X: The Program

and making changes at the beginning and end of §1125:

(Append the accent with appropriate kerns, then set p •<— q 1125) =

begin t ■«— slant{f)/float-constant{()5536)-,

if is.xchar.node{q) then i ■<— char-info{f){character[link{q)))

else i <— char-info{f){character{q));

w e- char-width{f){i.)\

subtype {tail) ■<— acc-kem; link{p) -f- tail-,

if is-xchar-node {q) then

{ in this case we want to bypass the xchar part}

begin taiLappend{q); p ■(— link{q)-,

end

else p •(— q;

end

32. The main reason for preferring the method of problem 31 is that the

italic correction operation (§1113) would be extremely difficult with the

other scheme. Other advantages are: (a) Division by 256 is needed

only once; T^^XX’s main loops remain fast, (b) Comparatively few

changes from TgX itself are needed, hence other ripoffs of T^X can

easily incorporate the same ideas, (c) Since fonts don’t need to be

segregated into ‘oriental’ and ‘occidental’, \xchar has wide applicability.

For example, it gives users a way to suppress ligatures and kerns; it

allows large fonts to have efficient 256-character subsets of commonly-

used characters, (d) The conventions of TeXX match those of the GF

files produced by METRFONT.

The only disadvantage of the Te)XX method is that it requires all

characters whose codes differ by multiples of 256 to have the same box

size. But this is a minor consideration.

Appendix

The solution to problem 17 refers to a special version of TgX called

DemoT^, which allows users to see more details of the scanning process.

DemoT^X is formed by making a few changes to parts 24-26 of T^X-

First, in §341, the following code is placed between ^exit-f and ‘end’:

if tracingstats > 2 then

begin k <— trace-depth-,

print-nl {'"')-,

while k > 0 do

begin print("□");
decr{k)-,

end;

222 Digital Typography

print {" I ");

print-char {" u")\
if cur-cs > 0 then

begin print-cs{cur-cs)]

print-char {"=")■,

end;

print-cmd-chr{cur-cmd, cur^chr)',

end;

(A new global variable, trace-depth, is declared somewhere and initial¬

ized to zero. It is used to indent the output of DemoTEiX so that the

depth of subroutine nesting is displayed.)

At the beginning of expand (in §366), we put the statements

incr(trace-depth);

if tracingstats > 2 then

print ("u<x");

this prints ‘<x’ when expand begins to expand something. The same

statements are inserted at the beginning of scan-int (§440), scan-dimen

(§448), and scan-glue (§461), except that routine scan-int prints ‘<i’,

scan-dimen prints ‘<d’, and scan-glue prints ‘<g’. (Get it?) We also

insert complementary code at the end of each of these procedures:

deer (trace-depth);

if tracingstats > 2 then

print-char {">'')]

this makes it clear when each part of the scanner has done its work.

Finally, scan-keyword is instrumented in a similar way, but with

explicit information about what keyword it is seeking. The code

incr (trace-depth);

if tracingstats > 2 then

begin print("□<"");
print (s)]

print-char["'");

end;

is inserted at the beginning of §407, and

if tracingstats > 2 then

print-char {" *")]

exit: deer (trace-depth)]

if tracingstats > 2 then

print-char (">")]

end;

replaces the code at the end. (Here denotes ‘success’: the keyword

was found.)

Exercises for Tf^X: The Program 223

For example, here’s the beginning of what DemoT^^X prints out when

scanning the right-hand side of the assignment to \hfuzz in problem 17:

I the character = <d

I the character 1 <i

I the character 1

I the character 0

I the character 0

I the letter P>

I the letter P <’em’

I the letter P> <’ex’

I the letter P> <’true’

I the letter P> <’pt’

I the letter P

I \ifdim =\ifdim <x <d

I the character 1 <i

I the character 1

I the character 2

I the letter p>

I the letter p <’em’

I the letter p> <'ex’

I the letter p> <’true’

I the letter p> <’pt'

I the letter p

I the letter t*>

I the character =>

(After seeing ‘=’, T^ calls scari-dimen. The next character seen is T’;

scan^dimen puts it back to be read again and calls scanAnt, which finds

TOO’, etc. This output demonstrates the fact that frequently uses

back-input to reread a character, when it isn’t quite ready to deal with

that character.)

Acknowledgments

I wish to thank the brave students of my experimental class for mo¬

tivating me to think of these questions, for sticking with me when the

questions were impossible to understand, and for making many improve¬

ments to my original answers.

I*

• t

* • *.

V , —.
4

iUi hi, ^'

**>^-*H “mm
*4.f ■ i

•- * ’

' ‘'I
■»<•,(' ' 1

, ' Is ■

S ■' •'

t* ' !* I' I'i , k

' W 14 V ..-.I

•1 1. M I ' H

. <1 ! '. : ‘< ■ 17 ',1 I'l-

Chapter 11

Mini-Indexes for Literate Programs

[Originally published in Software — Concepts and Tools 15 (1994),
2-11.]

This paper describes how to implement a documentation technique that

helps readers to understand large programs or collections of programs,

by providing local indexes to all identifiers that are visible on every two-

page spread. A detailed example is given for a program that finds all

Hamiltonian circuits in an undirected graph.

Introduction

Users of systeras like WEB [4], which provide support for structured doc¬

umentation and literate programming [7], automatically get a printed

index at the end of their programs, showing where each identifier is de¬

fined and used. Such indexes can be extremely helpful, but they can

also be cumbersome, especially when the program is long. An extreme

example is provided by the listing of [5], where the index contains

32 pages of detailed entries in small print.

Readers of [5] can still find their way around the program quickly,

however, because

... the right-hand pages of this book contain mini-indexes that

will make it unnecessary for you to look at the big index very

often. Every identifier that is used somewhere on a pair of fac¬

ing pages is listed in a footnote on the right-hand page, unless

it is explicitly defined or declared somewhere on the left-hand

or right-hand page you are reading. These footnote entries

tell you whether the identifier is a procedure or a macro or a

boolean, etc. [5; 7, page 183]

A similar idea is sometimes used in editions of literary texts for foreign

language students, where mini-dictionaries of unusual words appear on

225

226 Digital Typography

each page [11]; this saves the student from spending a lot of time search¬

ing big dictionaries.
The idea of mini-indexes was first suggested to the author by Joe

Weening, who prepared a brief mockup of what he thought might be

possible [13]. His proposal was immediately appealing, so the author

decided to implement it in a personal program called TWILL — a name

suggested by the fact that it was a two-pass variant of the standard

program called WEAVE. The TWILL software was used in September 1985
to produce T^: The Program [5] and METRFONT: The Program [6].

The original WEB system was a combination of TeI^ and Pascal. But
the author’s favorite programming language nowadays is CWEB [8], which
combines with C. (In fact, CWEB version 3.0 is fully compatible with
C-hH, although the author usually restricts himself to a personal subset
that might be called C —.) One of the advantages of CWEB is that it
supports collections of small program modules and libraries that can be
combined in many ways. A single CWEB source file foo.w can generate
several output files in addition to the C program foo.c; for example,
foo.w might generate a header file foo.h for use by other modules that
will be loaded with the object code foo.o, and it might generate a test
program testfoo.c that helps verify portability.

CWEB was used to create the Stanford GraphBase, a collection of

about three dozen public-domain programs useful for the study of com¬

binatorial algorithms [12]. These programs have recently been published

in book form, again with mini-indexes [9]. The mini-indexes in this case

were prepared with CTWILL [10], a two-pass variant of CWEAVE.

The purpose of this paper is to explain the operations of TWILL and
of its descendant, CTWILL. The concepts are easiest to understand when
they are related to a detailed example, so a complete CWEB program
has been prepared for illustrative purposes. The following section of
this paper explains the example program; the next two sections explain
how CTWILL and process it; and a final section contains concluding
comments.

An Example

The CWEB program for which sample mini-indexes have been prepared

especially for this paper is called HAM. It enumerates all Hamiltonian

circuits of a graph, namely all undirected cycles that include each vertex

exactly once. For example, the program can determine that there are

exactly 9862 knight’s tours on a 6 x 6 chessboard, ignoring symmetries

of the board, in about 2.3 seconds on a SPARC station 2. Since HAM

Mini-Indexes for Literate Programs 227

may be interesting in its own right, it is presented in its entirety as an

appendix to this chapter (see pages 241-245).

Please take a quick look at HAM now, before reading further. The

program appears in five two-column pages, each of which will be called

a spread, by analogy with the two-page spreads in [5], [6], and [9]. This

arrangement gives us five miui-indexes to look at instead of just two, so

it makes HAM a decent example in spite of its relatively small size. A

shorter program wouldn’t need much of an index at all; a longer program

would take too long to read.

HAM is intended for use with the library of routines that comes with

the Stanford GraphBase, so §1 of the program tells the C preprocessor

to include header files gb_graph.h and gb_save.h. These header files

define the external functions and data types that are needed from the

GraphBase library.

A brief introduction to GraphBase data structures will suffice for

the interested reader to understand the full details of HAM. A graph is

represented by combining three kinds of struct records called Graph,

Vertex, and Arc. If v points to a Vertex record, v-name is a string

that names the vertex represented by v, and v-arcs points to the rep¬

resentation of the first arc emanating from that vertex.^ If a points to

an Arc record that represents an arc from some vertex v to another

vertex u, then a-tip points to the Vertex record that represents u; also

a-^next points to the representation of the next arc from v, or a-next = A

(i.e., NULL) if a is the last arc from v. Thus the following loop will print

the names of all vertices adjacent to v:

for (a = v-arcs] a] a = a-^next)

print/{"7,s\n", a-tip^name)',

An undirected edge between vertices u and v is represented by two

arcs, one from u to n and one from v to u. Finally, if g points to

a Graph record, then g-m is the number of vertices in the associated

graph, and the Vertex records representing those vertices are in loca¬

tions g^vertices + k, iov 0 < k < g-n.

A Vertex record also contains “utility fields” that can be exploited

in different ways by different algorithms. The actual C declarations of

these fields, quoted from §8 and §9 of the program GB. GRAPH [9], are

^ 'v-name' is actually typed ‘v->name’ in a C or CWEB program; typographic

sugar makes the program easier to read in print.

228 Digital Typography

as follows:

typedef union {

struct vertex-struct

/* pointer to Vertex */

struct arc-struct

/* pointer to Arc */

struct graph-struct *G',

/* pointer to Graph */

char *S;

/* pointer to string *j

long /;
I* integer */

} util;

typedef struct vertexstruct {

struct arc-struct *arcs\

/* linked list of arcs out of this vertex */

char *name\

I* string identifying this vertex symbolically */

util u,v,'w,x,y, z;

/* multipurpose fields */

} Vertex;

Program HAM uses the first four utility fields in order to do its work

efficiently. Field u, for example, is treated as a long integer representing

the degree of the vertex. Notice the definition of deg as a macro in §2;

this makes it possible to refer to the degree of v as v-deg instead of the

more cryptic actually seen by the C compiler. Similar macros for

utility fields v, w, and x can be found in §4 and §6.

The first mini-index of HAM, which follows the code for §2 in the

first spread of the program, gives cross-references to all identifiers that

appear in §1 or §2 but are not defined there. For example, restore^graph

is mentioned in one of the comments of §1; the mini-index tells us that

it is a function, that it returns a value of type Graph *, and that it is

defined in §4 of another CWEB program called GB_SAVE. The mini-index

also mentions that Vertex and arcs are defined in §9 of GB_ GRAPH

(from which we quoted the relevant definitions above), and that fields

next and tip of Arc records are defined in GB. GRAPH §10, etc.

One subtlety of this first mini-index is the entry for u, which tells

us that u is a utility field defined in GB_ GRAPH §9. The identifier u

actually appears twice in §2, once in the definition of deg and once as

Mini-Indexes for Literate Programs 229

a variable of type Vertex *. The mini-index refers only to the former,

because the latter usage is defined in §2. Mini-indexes don’t mention

identifiers defined within their own spread.

The second mini-index, below §5 of HAM, is similar to the first.

Notice that it contains two separate entries for v, because the identifier v

is used in two senses — both as a utility field (in the definition of taken)

and as a variable (elsewhere). The C compiler will understand how

to deal with constructions like — O’, which the C preprocessor

expands from ^v-taken = O’, but human readers are spared such trouble.

Notice the entry for deg in this second mini-index: It uses an equals

sign instead of a colon, indicating that deg is a macro rather than a

variable. A similar notation was used in the first mini-index for cross-

references to typedef’d identifiers like Vertex. See also the entry for

not-taken in the fourth mini-index: Here 'notAaken = macro ()’ indi¬

cates that not-taken is a macro with arguments.

The operation of CTWILL

It would be nice to report that the program CTWILL produces the mini¬

indexes for HAM in a completely automatic fashion, just as CWEAVE au¬

tomatically produces ordinary indexes. But that would be a lie. The

truth is that CTWILL only does about 99% of the work automatically;

the user has to help it with the hard parts.

Why is this so? Well, in the first place, CTWILL isn’t smart enough

to figure out that the ‘u’ in the definition of deg in §2 is not the same as

the ‘u’ declared to be register Vertex * in that same section. Indeed,

a high degree of artificial intelligence would be required before CTWILL

could deduce that.

In the second place, CTWILL has no idea what mini-index entry to

make for the identifier k that appears in §6. No variable k is declared

anywhere! Indeed, users who write comments involving expressions like

‘/(^)’ might or might not be referring to identifiers / and/or x in their

programs; they must tell CTWILL when they are making “throwaway”

references that should not be indexed. CWEAVE doesn’t have this prob¬

lem because it indexes only the definitions, not the uses, of single-letter

identifiers.

In the third place, CTWILL will not recognize automatically that the

vert parameter in the definition of not-taken, §4, has no connection with

the vert macro defined in §6.

A fourth complication, which does not arise in HAM but does occur

in [5] and [9], is that sections of a WEB or CWEB program can be used more

230 Digital Typography

than once. Therefore a single identifier might actually refer to several

different variables simultaneously. (See, for example, §652 in [5].)

In general, when an identifier is defined or declared exactly once, and

used only in connection with its unique definition, CTWILL will have no

problems with it. But when an identifier has more than one implicit or

explicit definition, CTWILL can only guess which definition was meant.

Some identifiers — especially single-letter ones like x and y — are too

useful to be confined to a single significance throughout a large collection

of programs. Therefore CTWILL was designed to let users provide hints

easily when choices need to be made.
The most important aspect of this design was to make CTWILL’s

default actions easily predictable. The more “intelligence” we try to
build into a system, the harder it is for us to control it. Therefore
CTWILL has very simple rules for deciding what to put in mini-indexes.

Each identifier has a unique current meaning, which consists of three

parts: its type, and the program name and section number where it was

defined. At the beginning of a run, CTWILL reads a number of files

that define the initial current meanings. Then, whenever CTWILL sees

a C construction that implies a change of meaning — a macro defini¬

tion, a variable declaration, a typedef, a function declaration, or the

appearance of a label followed by a colon — it assigns a new current

meaning as specified by the semantics of C. For example, when CTWILL

sees ‘Graph in §2 of HAM, it changes the current meaning of g to

‘Graph *, HAM §2’. These changes occur in the order of the CWEB source

file, not in the “tangled” order that is actually presented to the C com¬

piler. Therefore CTWILL makes no attempt to nest definitions according

to block structure; everything it does is purely sequential. A variable

declared in §5 and §10 will be assumed to have the meaning of §5 in

§6, §7, §8, and §9.
Whenever CTWILL changes the current meaning of a variable, it out¬

puts a record of that current meaning to an auxiliary file. For the CWEB

program ham.w, this auxiliary file is called ham. aux. The first few entries

of ham. aux are
®$deg {ham}2 =macro@>

@$argc {ham}2 \&{int}@>

®$argv {ham}2 \&{char} ${*}[\,]$@>

and the last entry is

@$d {ham}8 \&{register} \&{int}@>

In general these entries have the form

®$ident {name}nn type®>

Mini-Indexes for Literate Programs 231

where ident is an identifier, name and nn are the program name and

section number where ident is defined, and type is a string of com¬

mands to indicate its type. In place of {name}nn the entry might have

the form "string" instead; then the program name and section number

are replaced by the string. (This mechanism leads, for example, to the

appearance of <stdio .h> in HAM’s mini-index entries for print/.) Some¬

times the type field says ‘\zip’. This situation doesn’t arise in HAM, nor

does it arise very often in [9]; but it occurs, for example, when a pre¬

processor macro name has been defined externally as in a Makefile,

or when a type is very complicated, like FILE in <stdio.h>. In such

cases the mini-index will simply say ‘FILE, <stdio.h>’, with no colon
or equals sign.

The user can explicitly change the current meaning by specifying

<3$ident {nameynn type®> anywhere in a CWEB program. This means

that CTWILL’s default mechanism is easily overridden.

When CTWILL starts processing a program foo.w, it looks first for

a file named foo.aux that might have been produced on a previous

run. If foo.aux is present, it is read in, and the @$. . .@> commands

of foo.aux give current meanings to all identifiers defined in foo.w.

Therefore CTWILL is able to know the meaning of an identifier before

that identifier has been declared — assuming that CTWILL has been run

successfully on foo.w at least once before, and assuming that the final

definition of the identifier is the one intended at the beginning of the

program.

CTWILL also looks for another auxiliary file called f oo .bux. This one

is not overwritten on each run, so it can be modified by the user. The

purpose of foo.bux is to give initial meanings to identifiers that are not

defined in foo.aux. For example, ham.bux is a file containing the two

lines
@i gb_graph.hux

@i gb_save.hux

which tell CTWILL to input the files gb_graph.hux and gb_save.hux.

The latter files contain definitions of identifiers that appear in the header

files gb_graph.h and gb_save.h, which HAM includes in §1. For exam¬

ple, one of the lines of gb_graph.hux is

@$Vertex {GB_\,GRAPH}9 =\&{struct}@>

This line appears also in gb.graph.aux; it was copied by hand, using a

text editor, into gb_graph.hux, because Vertex is one of the identifiers

defined in gb_graph.h.

232 Digital Typography

CTWILL also reads a file called system.bux, if it is present; that
file contains global information that is always assumed to be in the
background as part of the current environment. One of the lines in
system.bux is, for example,

@$printf "<stdio.h>" \&-Cint} (\,)@>

After system.bux, ham.aux, and ham.bux have been input, CTWILL

will know initial current meanings of almost all identifiers that appear
in HAM. The only exception is k, found in §6; its current meaning is
\uninitialized, and if the user does not take corrective action its
mini-index entry will come out as

k: ???, §0.

Notice that d is declared in §4 of HAM and also in §8. Both of these
declarations produce entries in ham.aux. Since CTWILL reads ham.aux
before looking at the source file ham.w, and since ham.aux is read se¬
quentially, the current meaning of d will refer to §8 at the beginning of
ham.w. This causes no problem, because d is never used in HAM except in
the sections where it is declared, hence it never appears in a mini-index.

When CTWILL processes each section of a program, it makes a list
of all identifiers used in that section, except for reserved words. At the
end of the section, it mini-outputs (that is, it outputs to the mini-index)
the current meaning of each identifier on the list, unless that current
meaning refers to the current section of the program, or unless the user
intervenes.

The user has two ways to change the mini-outputs, either by sup¬
pressing the default entries or by inserting replacement entries. First,
the explicit command

®-ident®>

tells CTWILL not to produce the standard mini-output for ident in the
current section. Second, the user can specify one or more temporary
meanings for an identifier, all of which will be mini-output at the end
of the section. Temporary meanings do not affect an identifier’s current
meaning. Whenever at least one temporary meaning is mini-output, the
current meaning will be suppressed just as if the @-. . . @> command had
been given. Temporary meanings are specified by means of the operation
©"/o, which toggles a state switch affecting the (9$. . . @> command: At the
beginning of a section, the switch is in “permanent” state, and @$. . . @>
will change an identiher’s current meaning as described earlier. Each

Mini-Indexes for Literate Programs 233

occurrence of @7, changes the state from “permanent” to “temporary”

or back again; in “temporary” state the @$. . . ®> command specifies

a temporary meaning that will be mini-ontpnt with no effect on the

identifier’s permanent (current) meaning.

Examples of these conventions will be given momentarily, but first

we should note one further interaction between CTWILL’s and @$

commands: If CTWILL would normally assign a new current meaning

to ident because of the semantics of C, and if the command ®-ident®>

has already appeared in the current section, CTWILL will not override

the current meaning, but CTWILL will output the current meaning to the

. aux file. In particular, the user may have specified the current mean¬

ing with ©$ident. . .®>; this allows user control over what gets into the

. aux file.

For example, here is a complete list of all commands inserted by

the author in order to correct or enhance CTWILL’s default mini-indexes

for HAM:

• At the beginning of §2,

®-deg®>

®$deg {hain}2 =\|u.\ll®>

®y,®$u {GB_\,GRAPH}9 \&{util}®>

to make the definition of deg read ‘u.P instead of just ‘macro’ and

to make the mini-index refer to u as a utility field.

• At the beginning of §4,

®-taken®> ®-vert®>

®$taken {hain}4 =\|v.\ll@>

®y,®$v {GB_\,GRAPH}9 \&{util}@>

®$v {ham}2 \&{register} \&{Vertex} $*$®>

for similar reasons, and to suppress indexing of vert. Here the mini¬

index gets two “temporary” meanings for v, one of which happens

to coincide with its permanent meaning.

• At the beginning of §6,

®-k®> ®-t®> ®-vert®> ®-ark®>

®$vert {hain}6 =\|w.\lV®>

®$ark {hain}6 =\|x.\lA®>

®y.®$w {GB\._\,GRAPH}9 \&{util}®>

®$x {GB_\,GRAPH}9 \&{util}®>

for similar reasons. That’s all.

234 Digital Typography

These commands were not inserted into the program file ham.w; they

were put into another file called ham.ch and introduced via CWEB’s

“change hie” feature [8]. Change hies make it easy to modify the effective

contents of a master hie without tampering with that hie directly.

Processing by TeX

CTWILL writes a TgX hie that includes mini-output at the end of each

section. For example, the mini-output after §10 of HAM is

\]{GB_\,GRAPH}10 Wfnext} \&{Arc} $*$

\ [7 Wfadvemce} label

\[6 \\{ark} =\|x.\|A

\ [2 \Kt} \&{register} \&{Vertex} $*$

\[4 \\{not_taken} =macro (\,)

\]{GB_\,GRAPH}10 \\{tip} \&{Vertex} $*$

\[2 \I{v} \&{register} \&{Vertex} $*$

\[2 \|{a} \&{register} \&{Arc} $*$

Here the control sequence \] introduces an external reference to some

other program; \ [introduces an internal reference to another section of

HAM; \\ typesets an identiher in text italics; \ 1 typesets an identiher in

math italics; \& typesets in boldface.
A special debugging mode is available in which TeX will simply

typeset all the mini-output at the end of each section, instead of making

actual mini-indexes. This makes it easy for users to check that CTWILL is

in fact producing the information they really want. Notice that mistakes

in CTWILL’s output need not necessarily lead to mistakes in mini-indexes;

for example, a spurious reference in §6 to an identiher dehned in §5 will

not appear in a mini-index for a spread that includes §5. It is best to

make sure that CTWILL’s output is correct before looking at actual mini¬

indexes. Then unpleasant surprises won’t occur when sections of the

program are moved from one spread to another.

When TeX is hnally asked to typeset the real mini-indexes, however,

it has plenty of work to do. That’s when the fun begins. TeX’s main

task, after formatting the commentary and C code of each section, is to

hgure out whether the current section hts into the current spread, and

(if it does) to update the mini-index by merging together all entries for

that spread.

Consider, for example, what happens when TeX typesets §10 of

HAM. The current spread begins with §8, and T^X already knows that

§8 and §9 will fit together in a single page. After typesetting the body of

Mini-Indexes for Literate Programs 235

§10, TgX looks at the mini-index entries. If any of them refer to §8 or §9,

will tentatively ignore them, because those sections are already part

of the current spread. (That situation doesn’t actually arise in §10; but

when T^X processed §7, it did suppress entries for vert and ark, since

they referred to §6.) TbiX also tentatively discards mini-index entries

that match other entries already scheduled for the current spread. (In

this case, everything is discarded except the entries for advance and ark;

the others — next, t, not-taken, v, and a — are duplicates of entries in

the mini-output of §8 or §9.) Finally, T^X tentatively discards previ¬

ously scheduled entries that refer to the current section. (In this case

nothing happens, because no entries from §8 or §9 refer to §10.)

After this calculation, knows the number n of mini-index entries

that would be needed if §10 were to join the spread with §8 and §9.

divides n by the number of columns in the mini-index (here 1, but

3 in [5] and [9]), multiplies by the distance between mini-baselines (here

9 points), and adds the result to the total height of the typeset text

for the current spread (here the height of §8 -|- §9 -f §10). With a few

minor refinements for spacing between sections and for the ruled line

that separates the mini-index from the rest of the text, TJjX is able to

estimate the total space requirement. In our example, everything fits in

a single page, so T^X appends §10 to the spread containing §8 and §9.

Then, after §11 has been processed in the same fashion, T^X sees that

there isn’t room for §§8-11 all together; so it decides to begin a new

spread with §11.

The processing just described is not built in to TeX, of course. It

is all under the control of a set of macros called ctwimac.tex [10]. The

first thing CTWILL tells TgX is to input those macros.

was designed for typesetting, not for programming; so it is at

best “weird” when considered as a programming language. But the job

of mini-indexing does turn out to be programmable. The full details of

ctwimac are too complex to exhibit here, but TeiX hackers will appreciate

some of the less obvious ideas that are used. (Non-T^jXnicians, please

skip the rest of this long paragraph.) T^jX reads the mini-outputs of

CTWILL twice, with different definitions of \ [and \] each time. Suppose

we are processing section s, and suppose that the current spread begins

with section r. Then T^X’s token registers 200, 201, ..., 219 contain all

mini-index entries from sections

r, r -I- 1, ..., s - 1

for identifiers defined respectively in sections r, r -B 1, ..., r -|- 19 of

the CWEB program. (We need not keep separate tables for more than 20

236 Digital Typography

consecutive sections starting with the base r of the current spread, be¬

cause no spread can contain more than 20 sections.) Token register 199

contains, similarly, entries that refer to sections preceding r, and token

register 220 contains entries that refer to sections r + 20 and higher. To¬

ken register 221 contains entries for identifiers defined in other programs.

Count register k contains the number of entries in token register k, for

199 < k < 221. When count register k equals j, the actual content of

token register /c is a sequence of 2j tokens,

\lmda\csi\lmda\cs2 ...\lmda\csj

where each \csi is a control sequence that uniquely characterizes a mini¬

index entry, defined via \csnaine. . . \endcsnaine. TeX can tell if a new

mini-index entry agrees with another already in the current spread by

simply testing if the corresponding control sequence is defined. The

replacement text for Xcsj is the associated mini-index entry, while the

definition of \lmda is

\def\lmda#l{#l\global\let#l\relax}

Therefore when TeX “executes” the contents of a token register, it type¬

sets all the associated mini-index entries and undefines all the associated

control sequences. Alternatively, we can say

\def\lmda#l{\global\let#l\relax}

if we merely want to erase all entries represented in a token register.

At the end of a spread containing p sections, we generate the mini¬

index by executing token registers 199 and 200 -|- p thru 221 using the

former definition of \lmda, and we also execute token registers 200 thru

200 -1- p — 1 using the latter definition. Everything works like magic.

A bug in the original TeX macros for TWILL led to an embarrassing

error in the first (1986) printings of [5] and [6]: Control sequences in

token registers corresponding to sections of the current spread were not

erased; in other words, the contents of those token registers were sim¬

ply discarded, not executed with the second definition of \lmda. The

effect was to make TeX think that certain control sequences were still de¬

fined, hence the macros would think that the mini-index entries were still

present; such entries were therefore omitted by mistake. Only about 3%

of the entries were actually affected, so this error was not outrageous

enough to be noticed until after the books were printed and people

Mini-Indexes for Literate Programs 237

started to read them. The only bright spot in this part of the story

was the fact that it proved how effective mini-indexes are: The miss¬

ing entries were sorely missed, because their presence woidd have been
really helpful.

The “greedy” longest-fit method by which CTWILL’s macros al¬

locate sections to pages tends to minimize the total number of pages,

but this is not guaranteed. For example, it’s possible to imagine un¬

usual scenarios in which sections §100 and §101, say, do not fit on a

single spread, while the three sections §100, §101, §102 actually do fit.

This might happen if §100 and §101 have lots of references to variables

declared in §102. Similarly, we might be able to fit §100 with §101 if §99

had been held over from the previous spread. But such situations are

extremely unlikely, and there is no reason to worry about them. The one-

spread-at-a-time strategy adopted by ctwimac is optimum, spacewise,
for all practical purposes.

On the other hand, experience shows that unfortunate page breaks

between spreads do sometimes occur unless the user does a bit more fine

tuning. For example, suppose the text of §7 in HAM had been one line

longer. Then §7 would not have fit with §6, and we would have been

left with a spread containing just tiny little §6 and lots of wasted white

space. It would look awful. And in fact, that’s the reason the statements

t-^ark = A; v = y\

now appear on a single line of the program instead of on two separate

lines: A bad break between spreads was avoided by manually tieing

those statements together, using CWEB’s 0+ command.

One further problem needs to be addressed — the mini-indexes must

be sorted alphabetically. TgX is essential for determining the breaks be¬

tween spreads (and consequently for determining the actual contents

of the mini-indexes), but is not a good vehicle for sorting. The

solution to this problem is to run the output of CTWILL twice through

TgX, interposing a sorting program between the two runs. When

processes ham.tex, the macros of ctwimac tell it to look first for a file

called ham.sref. If no such file is present, a file called ham.ref will

be written, containing all the (unsorted) mini-index entries for each

spread. will also typeset the pages as usual, with all mini-indexes

in their proper places but unsorted; the user can therefore make adjust¬

ments to fix bad page breaks, if necessary. Once the page breaks are

satisfactory, a separate program called REFSORT is invoked; REFSORT

converts ham.ref into a sorted version, ham.sref. Then when sees

ham.sref, it can use the sorted data to make the glorious final copy.

238 Digital Typography

For example, the file ham.ref looks like this:

!241
+ \]{GB_\,SAVE}4 \\{restore_graph} \&{Graph} $*(\,)$

+ \]{GB_\,GRAPH}9 \1{u} \&{util}

+ \]{GB_\,GRAPH}8 \|{I} \&{long}

!242

+ \] "<stdio.h>" \\{printf} \&-Cint} (\,)

And the file ham.sref looks like this:

\]{GB_\,GRAPH}10 \&{Arc} =\&{struct}

\]{GB_\,GRAPH}9 \1{u} \&{util}

\]{GB_\,GRAPH}9 \&{Vertex} =\&{struct}

\donewithpage241

\[2 \l{a} \&{register} \&{Arc} $*$

\]{GB_\,GRAPH}20 \\{vertices} \&{Vertex} $*$

\donewithpage245

Each file contains one line for each mini-index entry and one line to mark

the beginning (in ham.ref) or end (in ham.sref) of each spread.

Conclusions

The CTWILL system for mini-index generation can be regarded as a fur¬

ther enhancement of tools for viewing program structure, continuing a

long line of research that began with W. J. Hansen’s structured editor

called Emily [2, 3].
Although CTWILL is not fully automatic, it dramatically improves the

readability of large collections of programs. Therefore an author who

has spent a year writing programs for publication won’t mind spending

an additional week improving the indexes. Indeed, a little extra time

spent on indexing generally leads to significant improvements in the text

of any book that is being indexed by its author, who has a chance to see

the book in a new light.

Some manual intervention is unavoidable, because a computer can¬

not know the proper reference for every identifier that appears in pro¬

gram comments. But experience with CTWILL’s change file mechanism

Mini-Indexes for Literate Programs 239

indicates that correct mini-indexes for large and complex programs can

be obtained at the rate of about 100 book pages per day. For example,

the construction of change files for the 460 pages of programs in [9] took

5 days, during which time CTWILL was itself being debugged and rehned.

Mini-indexes are wonderful additions to printed books, but we can

expect hypertext-like objects to replace books for many purposes in

the long run. It’s easy to imagine a system for viewing CWEB programs

in which you can find the meaning of any identifier just by clicking

on it. Future systems will perhaps present “fish-eye” views of programs,

allowing easy navigation through complicated webs of code. (See [1] for

some steps in that direction.)

Such future systems will, however, confront the same issues that

are faced by CTWILL as it constructs mini-indexes today. An author who

wants to create useful program hypertexts for others to read will want to

give hints about the significance of identifiers whose roles are impossible

or difficult to deduce mechanically. Some of the lessons taught by CTWILL

will therefore most likely be relevant to everyone who tries to design

literate programming systems that replace books as we now know them.

References

[1] M. Brown & B. Czejdo, “A hypertext for literate programming,”

Lecture Notes in Computer Science 468 (1990), 250-259.

[2] Wilfred J. Hansen, Creation of Hierarchic Text With a Computer

Display, Ph.D. thesis, Stanford University (1971). Published also as

Argonne National Laboratory report ANL-7818 (Argonne, Illinois:

1971).

[3] Wilfred J. Hansen, “User engineering principles for interactive sys¬

tems,” AFIPS Fall Joint Computer Conference 39 (1971), 523-532.

[4] Donald E. Knuth, “Literate programming,” The Computer Journal

27 (1984), 97-111.

[5] Donald E. Knuth, TpJK.: The Program, Volume B of Computers Sz

Typesetting (Reading, Massachusetts: Addison-Wesley, 1986).

[6] Donald E. Knuth, METRFONT: The Program, Volume D of Com¬

puters & Typesetting (Reading, Massachusetts: Addison-Wesley,

1986).

[7] Donald E. Knuth, Literate Programming, CSLI Lecture Notes 27

(Stanford, California: Center for the Study of Language and Infor¬

mation, 1992). Distributed by Cambridge University Press.

240 Digital Typography

[8] Donald E. Knuth & S. Levy, The CWEB System of Structured Docu¬

mentation, Version 3.0 (Reading, Massachusetts: Addison-Wesley,

1994). Latest version available on the Internet via anonymous ftp

from labrea.stajiford.edu in directory f tp/pub/cweb.

[9] Donald E. Knuth, The Stanford GraphBase: A Platform for Com¬

binatorial Computing (New York: ACM Press, 1993).

[10] Donald E. Knuth, “CTWILL” (1993). Available via anonymous ftp

from labrea.stajiford.edu in directory ~ftp/pub/ctwill.

[11] Clyde Pharr, Virgil’s Mneid, Books I-VI (Boston: D. C. Heath,

1930).

[12] Stanford University Computer Science Department, “The Stanford

GraphBase.” Available on the Internet via anonymous ftp from

labrea.stanford.edu in directory ~ftp/pub/sgb.

[13] J. S. Weening, Personal communication. Preserved in the archives

of the project in Stanford University Library’s Department of

Special Collections, SC 97, series II, box 18, folder 7.6.

Mini-Indexes for Literate Programs 241

Appendix: HAM

1. Hamiltonian circuits.

This program finds all the Hamil¬

tonian circuits of an undirected

graph, using conventions of the

Stanford GraphBase.

If the user says, for example,

‘ham foo.gb’, the standard out¬

put will list every Hamiltonian cir¬

cuit of the graph f oo, which should

be represented in file foo .gb using

the Stanford GraphBase’s portable

ASCII format. The total number

of solutions is reported at the end

of the output.

An optional second parameter

specifies an interval between out¬

puts, so that the list contains only

a sample of the solutions. For

example, ‘ham foo.gb 1000’ will

list only one of every 1000 Ham¬

iltonian circuits. If the optional

parameter is zero, only the total

number of circuits will be output.

^include <stdio.h>

/* standard C input/output

functions */

#include "gb_graph.h" /* the

GraphBase data structures */

#include "gb_save.h"

/* the restore-graph routine */

2. We use a utility field deg to

record vertex degrees.

^define deg u.I

/* the current number

of arcs to and from

this vertex */

int main(int argc,char *argv[])

{ Graph *g-,

/* the user’s graph */

register Vertex *t, *u, *v,

/* key vertices */

Vertex *x, *y, *z;

/* vertices used less often */

register Arc *a, *aa-,

/* arcs used often */

Arc *b, *bb\

/* arcs used less often */

int count = 0;

/* solutions found so far */

int interval = 1;

/* the reporting interval */

{Scan the command line

arguments and input p 3);

(Prepare g for backtracking,

and find a vertex x of

minimum degree 4);

(Abort the run if g is malformed

or xr-deg <25);

for (6 = x-’arcs-, ir^next-,

b = h-*next)

for [hb = tr^next-, bb\

bb = bb-^next) {

V = b-^tip-,

z = bb-^tip]

(Find all simple paths of

length g-n — 2 from v

to z, avoiding x 7);

}
print/ (" Altogetheru7.duSolut \

ions.\n",

count);

return 0; /* normal exit */

}

Arc = struct, GB-GRAPH§10.

arcs: Arc *, GB-GRAPH§9.

Graph = struct, GB.GRAPH §20.
/: long, GB.GRAPH §8.

n: long, GB.GRAPH §20.
next: Arc *, GB.GRAPH §10.
print/: int (), <stdio.h>.
restore-graph: Graph *(), GB.SAVE§4.

tip: Vertex GB.GRAPH §10.
u: util, GB.GRAPH §9.
Vertex = struct, GB.GRAPH §9.

242 Digital Typography

3. (Scan the command line

arguments and input g 3) =

if {argc > 2 A sscanf {argv[2],

"’/td", &iinterval) = 1) {

argc —;

if {interval < 0)

interval — —interval',

else if {interval = 0)

interval = —10000;

/* suppress output

when 0 is specified */

}
if {argc 7^ 2) {

print/ {"Usage: u'/.Suf 00. gbu [i \

nterval] \n", argv [0]);

return —1;

}
g — restore-graph {argv [1])',

This code is used in section 2.

4. Vertices that have already ap¬

peared in the path are said to

be “taken,” and their taken field

is nonzero. Initially we make all

those fields zero.

T^tdefine taken v.I /* does

this vertex appear in

the current path? */
T^define not-taken{vert)

{{vert)-’taken = 0)

(Prepare g for backtracking, and

find a vertex x of minimum

degree 4) =

if {g) { int drain — g-ni',

for {v = g-^vertices;

V < g^vertices + g~m',

U++) {
register int d — O',

/* the degree of v */

y-’taken = 0;

for (a = v-‘arcs', a;

a = a-^next) d++',

v-^deg = d;

if {d < drain)

drain = d, x = v;

}
}

This code is used in section 2.

5. A vertex that has fewer than

two neighbors cannot be part of

a Hamiltonian circuit, so we give

such cases short shrift.

(Abort the run if g is malformed or
x-’deq <2 b) =

if (-’5) {
pnnt/("Graphu°/.SuiSumalforin\

edu(erroruCodeu‘/.ld) ! \n",
argv [1], panic-code);

return —2;

}
if {x-deg < 2) {

prmf/("NouSolutionsu(verte\

Xu'/.Suhasudegreeu'/.ld) .\n",

x-'name, x-^deg)',

return —3;

}
This code is used in section 2.

a: register Arc *, §2.

arcs'. Arc *, GB_GRAPH§9.

argc. int, §2.

argv. char *[], §2.

deg = u.I, §2.

g-. Graph *, §2.

/: long, GB.GRAPH §8.

interval: int, §2.

n: long, GB.GRAPH §20.

name: char +, GB.GRAPH §9.

next: Arc *, GB.GRAPH §10.

panic-Code: long, GB.GRAPH §5.

print/: int (), <stdio.h>.

restore-graph: Graph *(), GB.SAVE§4.

sscan/: int (), <stdio.h>.

v: register Vertex *, §2.

v: util, GB.GRAPH §9.

vertices: Vertex *, GB_GRAPH§20.

x: Vertex =i=, §2.

Mini-Indexes for Literate Programs 243

6. The algorithm. Unpro¬

ductive branches of the search tree

are cut off by using a simple rule:

If a vertex we could move to next is

adjacent to only one other unused

vertex, we must move to it now.

The moves will be recorded in

the vertex array of g. More pre¬

cisely, the kth. vertex of the path

will be invert when t is the kth

vertex of the graph. If the move

was not forced, t^ark will point

to the Arc record representing the

arc from invert to {t + iyvert] oth¬

erwise t^ark will be A.

#define vert w.V /* vertex
on current path */

#define ark x.A

/* arc to its current
successor */

7. This program is a typical ap¬

plication of the backtrack method;

in other words, it essentially does

a depth-first search in the tree of

all solutions. The author, being a

member of the Old School, is most

comfortable writing such programs

with labels and goto statements,

rather than with while loops. Per¬

haps some day he will learn his

lesson; but backtrack programs do

need to be streamlined for speed.

A complication arises because

we may discover that a move is

unproductive before we have com¬

pletely updated the data struc¬

tures recording that move.

(Find all simple paths of length
g-na — 2 from v to z,

avoiding x 7) =

{ Vertex *tmax;

t = g-‘vertices'

tmax = t + g-ni — 1;
x-taken — 1;
t-vert = x\ t^ark = A;

advance: (Increase t, updating

the data structures to show

that vertex v is now taken,

and set y to a forced move,

if any; but goto backtrack

if no moves are possible 8);

if (y) { /* move is forced */

t-ark = A; u = y;
goto advance]

}
a = v-'arcs]

search: (Look at arc a and its

successors, advancing if a

valid move is found lo);

restore: aa — A]

restore-to-aa:

(Downdate the data structures

to the state they were in

when level t was entered,

stopping at arc aa 9);

backtrack: (Decrease t, if possible,

and search for another

possibility ll);

}
This code is used in section 2.

o: register Arc *, §2.

A: Arc *, GB-GRAPH§8.

aa: register Arc §2.

Arc = struct, gb_graph§10.

arcs: Arc ♦, GB-GRAPH§9.

g: Graph *, §2.

n: long, gb_graph§20.

t: register Vertex *, §2.

taken = v.I, §4.

v: register Vertex §2.

V: Vertex GB_GRAPH§8.

Vertex = struct, GB-GRAPH §9.

vertices: Vertex *, gb_graph§20.

w: util, GB.GRAPH §9.

x: Vertex *, §2.

x: util, GB.GRAPH §9.

y: Vertex *, §2.

z: Vertex *, §2.

244 Digital Typography

8. When a vertex becomes ta¬

ken, we pretend that it has been

removed from the graph.

{Increase t, updating the data

structures to show that

vertex v is now taken, and

set y to a forced move, if any;

but goto backtrack if no

moves are possible 8) =

t++;

t-^vert = u;

v-taken = 1;

if (v = z) {
if (t = tmax)

{ Record a solution 12);

goto backtrack',

}
for {aa = v-‘arcs,y = A; aa;

aa = aa-'next) {

register int d;

u = aa-‘tip',

d = u-^deg — 1;

if (d = 1 A not-taken{u)) {

/* we must move next

to u *!

if (y) goto restorc-to-aa-,

/* two forced moves

can’t both be made */

y = u',

}
u-^deg = d; /* u can no

longer move to v */

}
This code is used in section 7.

9. We didn’t change the graph

drastically at level t; all we did

was decrease the degrees of ver¬

tices reachable from Dvert. There¬

fore we can easily undo previous

changes when we are backing up.

(Downdate the data structures to

the state they were in when

level t was entered, stopping

at arc aa 9) =

for (a = t-'vert-’arcs', a ^ aa]

a = a-next) a-‘tip-‘deg++]

This code is used in section 7.

10. (Look at arc a and its

successors, advancing if a

valid move is found lO) =

while (a) {

V = a-'tip]

if {not-taken{v)) {

t-ark — a;

goto advance]

/* move to u */

}
a — a-^next]

}
This code is used in section 7.

a: register Arc *, §2.

aa: register Arc *, §2.

advance: label, §7.

arcs: Arc *, GB.GRAPH §9.

ark = x.A, §6.

backtrack: label, §7.

deg =u.I, §2.

next: Arc *, GB_GRAPH§10.

notAaken — macro (), §4.

restore-to-aa: label, §7.

t: register Vertex *, §2.

taken = v.I, §4.

tip: Vertex GB.GRAPH §10.

tmax: Vertex §7.

u: register Vertex *, §2.

v: register Vertex *, §2.

vert — w.V, §6.

y: Vertex §2.

z: Vertex *, §2.

Mini-Indexes for Literate Programs 245

11. (Decrease t, if possible,
and search for another
possibility ii) =

t-vert-*taken = 0;

t—,
if (t-ark) {

a — t-ark-‘next;

goto search]

}
if [t ^ g-vertices) goto restore;

/* the move was forced, so we
bypass search */

This code is used in section 7.

12. We print a solution by sim¬

ply listing the vertex names in the

current path.

(Record a solution 12) =

{
count

if {count % interval = 0 A
interval > 0) {

printf (" y.d: u ", count);
for (u = g-'vertices;

u < tmax; u++)

printf (" "/.Su ", u-^vert-^name);
printf {"\n");

}
}

This code is used in section 8.

a: register Arc *, §2.

ark = x.A, §6.

count: int, §2.

g: Graph *, §2.

interval: int, §2.

name: char *, GB-GRAPH§9.

next: Arc *, GB.GRAPH §10.

printf: int (), <stdio.h>.

restore: label, §7.

search: label, §7.

t: register Vertex *, §2.

taken — v.I, §4.

tmax: Vertex *, §7.

u: register Vertex *, §2.

vert = w.V, §6.

vertices: Vertex GB_GRAPH§20.

\

-♦i. - \

. 1
• • . .1 *l1 *

' * *i J

I 111 * 111,.

■/MT I

.’.If'.

1' «-. • H'

. f '.t... I

Chapter 12

Virtual Fonts: More Pun for Grand

Wizards

[Originally published in TUGboat 11 (1990), 13-23.]

Many contributors to the Tl^Xhax newsgroup during the past year or

so have been struggling with interfaces between differing font conven¬

tions. For example, there’s been a brisk correspondence about mixing

oldstyle digits with a caps-and-small-caps alphabet. Other people de¬

spair of working with fonts supplied by manufacturers like Autologic,

Compugraphic, Monotype, etc.; still others are afraid to leave the lim¬

ited accent capabilities of Computer Modern for fonts containing letters

that are individually accented as they should be, because such fonts are

not readily available in a form that existing TgX software understands.

There is a much better way to solve such problems than the remedies

that have been proposed in T]EXhax. This better way was first realized

by David Fuchs in 1983, when he installed it in our DVI-to-APS soft¬

ware at Stanford (which he also developed for commercial distribution

by Arbor Text). David and I used it, for example, to typeset my arti¬

cle on Literate Programming for The Computer Journal, using native

Autologic fonts to match the typography of that journal.

I was expecting David’s strategy to become widely known and

adopted. But alas — and this has really been the only significant disap¬

pointment Pve had with respect to the way TJjX has been propagating

around the world — nobody else’s DVI-to-X drivers have incorporated

anything resembling David’s ideas, and TgXhaxers have spilled gallons

of electronic ink searching for answers in the wrong direction.

The right direction is obvious once you’ve seen it (although it wasn’t

obvious in 1983): All we need is a good way to specify a mapping from

T^’s notion of a font character to a device’s capabilities for printing.

Such a mapping was called a “virtual font” by the AMS speakers at the

TUG meetings this past August. At that meeting I spoke briefly about

247

248 Digital Typography

the issue and voiced my hope that all DVI drivers be upgraded within

a year to add a virtual font capability. Dave Rodgers of ArborText

announced that his company would make their WEB routines for virtual

font design freely available, and I promised to edit them into a form that

would match the other programs in the standard TgXware distribution.

The preparation of Version 3 and METRFONT Version 2 has

taken me much longer than expected, but at last I’ve been able to look

closely at the concept of virtual fonts. (The need for such fonts is indeed

much greater now than it was before, because TgX’s new multilingual

capabilities are significantly more powerful only when suitable fonts are

available. Virtual fonts can easily be created to meet these needs.)

After looking closely at David Fuchs’s original design, I decided

to design a completely new file format that would carry his ideas fur¬

ther, making the virtual font mechanism completely device-independent;

David’s original code was very APS-specific. Furthermore I decided to

extend his notions so that arbitrary DVI commands (including open-

ended “specials”) could be part of a virtual font. The new file format

I’ve just designed is called VF; it’s easy for DVI drivers to read VF files,

because VF format is similar to the PK and DVI formats they already

deal with.

The result is two new system routines called VFtoVP and VPtoVF.

These routines are extensions of the old ones called TFtoPL and PLtoTF;

there’s a property-list language called VPL that extends the ordinary PL

format so that virtual fonts can be created easily.

In addition to implementing these routines, I’ve also tested the ideas

by verifying that virtual fonts could be incorporated into Tom Rokicki’s

DVIPS system without difficulty. I wrote a C program (available from

Tom) that converts Adobe AFM files into virtual fonts for TgX; these

virtual fonts include almost all the characteristics of Computer Modern

text fonts (lacking only the uppercase Greek and the dotless j) and they

include all the additional Adobe characters as well. The derived virtual

fonts even include all the “composite characters” listed in the AFM file,

from ‘Aacute’ to ‘zcaron’; such characters are available as ligatures. For

example, to get ‘Aacute’ you type first ‘acute’ (which is character 19 =

'"S in Computer Modern font layout; it could also be character 194 =

Meta-B if you’re using an 8-bit keyboard with the new T^X) followed

by ‘A’. Using such fonts, it’s now easier for me to typeset European

language texts in Times Roman and Helvetica and Palatino than in

Computer Modern! (But with less than an hour’s work I could make a

virtual font for Computer Modern that would do the same things; I just
haven’t gotten around to it yet.)

Virtual Fonts: More Fun for Grand Wizards 249

A nice ligature scheme for dozens of European languages was pub¬

lished by Yannis Haralambous in TUGboat 10 (1989), 342-345. He uses

only ASCII characters, getting ‘Aacute’ with the combination <A. I coidd

readily add his scheme to mine, by adding a few lines to my VPL files.

Indeed, several different conventions can be supported simultaneously

(although I don’t recommend that really).

Virtual fonts make it easy to go from DVI files to the font layouts of

any manufacturer or font supplier. They also (I’m sorry to say) make

“track kerning” easy, for people who must resort to that oft-abused

feature of lead-free type.

Furthermore, virtual fonts solve the problem of proofreading with

screen fonts or with lowres laserprinter fonts, because you can have sev¬

eral virtual fonts sharing a common TFM file. Suppose, for example, that

you want to typeset camera copy on an APS machine using Univers as

the ultimate font, but you want to do proofreading with a screen pre¬

viewer and with a laserprinter. Suppose further that you don’t have

Univers for your laserprinter; the closest you have is Helvetica. And

suppose that you haven’t even got Helvetica for your screen, but you do

have cmsslO. Here’s what you can do: First make a virtual property list

(VPL) file univers-aps. vpl that describes the high-quality font of your

ultimate output. Then edit that file into rmivers-laser. vpl, which has

identical font metric info but maps the characters into Helvetica; simi¬

larly, make univers-screen.vpl, which maps them into cmsslO. Now

run VPtoVF on each of the three VPL files. This will produce three identi¬

cal tfm files imivers .tfm, one of which you should put on the directory

read by TgX. You’ll also get three distinct VF files called univers.vf,

which you should put on three different directories — one directory for

your DVTto-APS software, another for your DVI-to-laserwriter software,

and the third for the DVI-to-screen previewer. Voila.

So virtual fonts are evidently quite virtuous. But what exactly are

virtual fonts, detail-wise? Appended to this message are excerpts from

VFtoVP.web and VPtoVF. web, which give a complete definition of the VF

and VPL file formats.

I fully expect that all people who have implemented DVI drivers will

immediately see the great potential of virtual fonts, and that they will be

unable to resist installing a VF capability into their own software during

the first few months of 1990. (The idea is this: For each font specified in

a DVI file, the software looks first in a special table to see if the font is

device-resident (in which case the TFM file is loaded, to get the character

widths); failing that, it looks for a suitable GF or PK file; failing that, it

looks for a VF file, which may in turn lead to other actual or virtual files.

250 Digital Typography

The latter files should not be loaded immediately, but only on demand,

because the process is recursive. Incidentally, if no resident or GF or PK

or VF file is found, a TFM file should be loaded as a last resort, so that

the characters can be left blank with appropriate widths.)

An Excerpt from VFtoVP.web

6. Virtual fonts. The idea behind VF files is that a general interface mecha¬

nism is needed to switch between the myriad font layouts provided by different

suppliers of typesetting equipment. Without such a mechanism, people must

go to great lengths writing inscrutable macros whenever they want to use

typesetting conventions based on one font layout in connection with actual

fonts that have another layout. This puts an extra burden on the typeset¬

ting system, interfering with the other things it needs to do (like kerning,

hyphenation, and ligature formation).

These difficulties go away when we have a “virtual font,” i.e., a font

that exists in a logical sense but not a physical sense. A typesetting system

like TeX can do its job without knowing where the actual characters come

from; a device driver can then do its job by letting a VF file tell what actual

characters correspond to the characters T^X imagined were present. The

actual characters can be shifted and/or magnified and/or combined with other

characters from many different fonts. A virtual font can even make use of

characters from virtual fonts, including itself.

Virtual fonts also allow convenient character substitutions for proof¬

reading purposes, when fonts designed for one output device are unavailable

on another.

7. A VF file is organized as a stream of 8-bit bytes, using conventions bor¬

rowed from DVI and PK files. Thus, a device driver that knows about DVI and

PK format will already contain most of the mechanisms necessary to process

VF files. We shall assume that DVI format is understood; the conventions in

the DVI documentation (see, for example, The Program, part 31) are

adopted here to define VF format.

A preamble appears at the beginning, followed by a sequence of character

definitions, followed by a postamble. More precisely, the first byte of every VF

file must be the first byte of the following “preamble command”;

pre 247 f[l] k[l] x[A:] cs[4] ds[4]. Here i is the identification byte of VF, currently

202. The string x is merely a comment, usually indicating the source

of the VF file. Parameters cs and ds are respectively the check sum

and the design size of the virtual font; they should match the first two

words in the header of the TFM file, as described below.

After the pre command, the preamble continues with font definitions;

every font needed to specify “actual” characters in later set.char commands

is defined here. The font definitions are exactly the same in VF files as they

Virtual Fonts: More Fan for Grand Wizards 251

are in DVI files, except that the scaled size s is relative and the design size d
is absolute:

fnLdefl 243 A:[l] c[4] s[4] d[4] a[l] 1[1] n[a+l]. Dehne font A:, where 0 < A < 256.

fnt-def2 244 A[2] c[4] s[4] d[4] a[l] /[I] n[a+/]. Define font A, where 0 < A < 2^*’.

fnt^defS 245 A[3] c[4] s[4] d[4] a[l] 1[1] n[a+l]. Define font k, where 0 < A < 2^"^.

fnt-def4 246 A[4] c[4] s[4] (i[4] o[l] /[I] n[a + 1]. Define font A, where —2^^ <
A < 2^F

These font numbers A are “local”; they have no relation to font numbers

defined in the DVI file that uses this virtual font. The dimension s, which

represents the scaled size of the local font being defined, is a fix-word relative

to the design size of the virtual font. Thus if the local font is to be used

at the same size as the design size of the virtual font itself, s will be the

integer value 2^*^. The value of s must be positive and less than 2^^ (thus

less than 16 when considered as a fix-Word). The dimension d is a fix.word in

units of printer’s points; hence it is identical to the design size found in the
corresponding TFM file.

8. The preamble is followed by zero or more character packets, where each

character packet begins with a byte that is < 243. Character packets have

two formats, one long and one short:

long-char 242 pi[4] cc[4] tfm[A] dvi[pl]. This long form specifies a virtual

character in the general case.

short-charO .. short-char241 pl[l] cc[l] tfm[3] dvi[pl]. This short form spec¬

ifies a virtual character in the common case when 0 < pi < 242 and

0 < cc < 256 and 0 < tfm < 2^“^.

Here pi denotes the packet length following the tfm value; cc is the character

code; and tfm is the character width copied from the TFM file for this virtual

font. There should be at most one character packet having any given cc code.

The dvi bytes are a sequence of complete DVI commands, properly nested

with respect to push and pop. All DVI operations are permitted except bop,

eop, and commands with opcodes > 243. Font selection commands {fnt-numO

through fnt4) must refer to fonts defined in the preamble.

Dimensions that appear in the DVI instructions are analogous to fix^word

quantities; i.e., they are integer multiples of 2“^° times the design size of the

virtual font. For example, if the virtual font has design size 10 pt, the DVI

command to move down 5pt would be a down instruction with parameter

2^®. The virtual font itself might be used at a different size, say 12 pt; then

that down instruction would move down 6pt instead. Each dimension must

be less than 2^“* in absolute value.

Device drivers processing VF files treat the sequences of dvi bytes as

subroutines or macros, implicitly enclosing them with push and pop. Each

subroutine begins with w = x = y = z~0, and with current font / the

number of the first-defined font in the preamble (undefined if there’s no such

252 Digital Typography

font). After the dvi commands have been performed, the h and v position reg¬

isters of DVI format and the current font / are restored to their former values;

then, if the subroutine has been invoked by a seLchar or set command, h is

increased by the TFM width (properly scaled) — just as if a simple character

had been typeset.

9. The character packets are followed by a trivial postamble, consisting of

one or more bytes all equal to post (248). The total number of bytes in the

file should be a multiple of 4.

And Here Are Excerpts from VPtoVF.web

5. Property list description of font metric data. The idea behind

VPL files is that precise details about fonts, i.e., the facts that are needed by

typesetting routines like ItjX, sometimes have to be supplied by hand. The

nested property-list format provides a reasonably convenient way to do this.

A good deal of computation is necessary to parse and process a VPL file,

so it would be inappropriate for TeX itself to do this every time it loads a

font. deals only with the compact descriptions of font metric data that

appear in TFM files. Such data is so compact, however, it is almost impossible

for anybody but a computer to read it.

Device drivers also need a compact way to describe mappings from T^jX’s

idea of a font to the actual characters a device can produce. They can do this

conveniently when given a packed sequence of bytes called a VF file.

The purpose of VPtoVF is to convert from a human-oriented file of text

to computer-oriented files of binary numbers. There’s a companion program,

VFtoVP, which goes the other way.

7. A VPL file is like a PL file with a few extra features, so we can begin to

define it by reviewing the definition of PL files. The material in the next few

sections is copied from the program PLtoTF.

A PL file is a list of entries of the form

(PROPERTYNAME VALUE)

where the property name is one of a finite set of names understood by this

program, and the value may itself in turn be a property list. The idea is best

understood by looking at an example, so let’s consider a fragment of the PL

file for a hypothetical font.

(FAMILY NOVA)

(FACE F MIE)

(CODINGSCHEME ASCII)

(DESIGNSIZE D 10)

(DESIGNUNITS D 18)

(COMMENT A COMMENT IS IGNORED)

Virtual Fonts: More Fun for Grand Wizards 253

(COMMENT (EXCEPT THIS ONE ISN’T))

(COMMENT (ACTUALLY IT IS, EVEN THOUGH

IT SAYS IT ISN’T))

(FONTDIMEN

(SLANT R -.25)

(SPACE D 6)

(SHRINK D 2)

(STRETCH D 3)

(XHEIGHT R 10.55)

(QUAD D 18)

)
(LIGTABLE

(LABEL C f)

(LIG C f 0 200)

(SKIP D 1)

(LABEL 0 200)

(LIG C i 0 201)

(KRN 0 51 R 1.5)

(/LIG C ? C f)

(STOP)

)
(CHARACTER C f

(CHARWD D 6)

(CHARHT R 13.5)

(CHARIC R 1.5)

)

This example says that the font whose metric information is being described

belongs to the hypothetical NOVA family; its face code is medium italic ex¬

tended; and the characters appear in ASCII code positions. The design size

is 10 points, and all other sizes in this PL file are given in units such that 18

units equals the design size. The font is slanted with a slope of —.25 (hence

the letters actually slant backward —perhaps that is why the family name

is NOVA). The normal space between words is 6 units (i.e., one third of the

18-unit design size), with glue that shrinks by 2 units or stretches by 3. The

letters for which accents don’t need to be raised or lowered are 10.55 units

high, and one em equals 18 units.

The example ligature table is a bit trickier. It specifies that the letter f

followed by another f is changed to code '200, while code '200 followed by i

is changed to '201; presumably codes '200 and '201 represent the ligatures

‘ff’ and ‘fh’. Moreover, in both cases f and '200, if the following character is

the code '51 (which is a right parenthesis), an additional 1.5 units of space

should be inserted before the '51. (The ‘SKIP D 1’ skips over one LIG or

KRN command, which in this case is the second LIG; in this way two different

ligature/kern programs can come together.) Finally, there’s an example —

254 Digital Typography

although a rather strange one — of the “smart ligatures” introduced in It;X

version 3.0: If either f or '200 is followed by a question mark, the question

mark is replaced by f and the ligature program is started over. (Thus, the

character pair ‘f?’ would become the ligature ‘ff’, and ‘ff?’ or ‘f?f’ would

become ‘fff’. If this /LIG command had been /LIG> instead, the restarting

would be omitted; ‘f?’ would become ‘ff’ and ‘f?f ’ would become ‘fff’.)

Character f itself is 6 units wide and 13.5 units tall, in this example. Its

depth is zero (since CHARDP is not given), and its italic correction is 1.5 units.

8. The example above illustrates most of the features found in PL files. Note

that some property names, like FAMILY or COMMENT, take a string as their

value; this string continues until the first unmatched right parenthesis. But

most property names, like DESIGNSIZE and SLANT and LABEL, take a number

as their value. This number can be expressed in a variety of ways, indicated by

a prefixed code; D stands for decimal, H for hexadecimal, 0 for octal, R for real,

C for character, and F for “face.” Other property names, like LIG, take two

numbers as their value. And still other names, like FONTDIMEN and LIGTABLE

and CHARACTER, have more complicated values that involve property lists.

A property name is supposed to be used only in an appropriate prop¬

erty list. For example, CHARWD shouldn’t occur on the outer level or within

FONTDIMEN.

The individual property-and-value pairs in a property list can appear in

any order. For instance, ‘SHRINK’ precedes ‘STRETCH’ in the example above,

although the TFM file always puts the stretch parameter first. One could even

give the information about characters like ‘f ’ before specifying the number of

units in the design size, or before specifying the ligature and kerning table.

However, the LIGTABLE itself is an exception to this rule; the individual ele¬

ments of the LIGTABLE property list can be reordered only to a certain extent

without changing the meaning of that table.

If property-and-value pairs are omitted, a default value is used. For ex¬

ample, we have already noted that the default for CHARDP is zero. The default

for every numeric value is, in fact, zero, unless otherwise stated below.

If the same property name is used more than once, VPtoVF will not notice

the discrepancy; it simply uses the final value given. Once again, however, the

LIGTABLE is an exception to this rule; VPtoVF will complain if there is more

than one label for some character. And of course many of the entries in the

LIGTABLE property list have the same property name.

9. A VPL file also includes information about how to create each character,

by typesetting characters from other fonts and/or by drawing lines, etc. Such

information is the value of the ‘MAP’ property, which can be illustrated as

follows:

(MAPFONT D 0 (FONTNAME Times-Roman))

(MAPFONT D 1 (FONTNAME Symbol))

(MAPFONT D 2 (FONTNAME cmrlO)(FONTAT D 20))

Virtual Fonts: More Fun for Grand Wizards 255

(CHARACTER 0 0 (MAP (SELECTFONT D 1)(SETCHAR C G)))

(CHARACTER 0 76 (MAP (SETCHAR 0 277)))

(CHARACTER D 197 (MAP

(PUSH)(SETCHAR C A)(POP)

(MOVEUP R 0.937)(MOVERIGHT R 1.5)(SETCHAR 0 312)))

(CHARACTER 0 200 (MAP (MOVEDOWN R 2.1)(SETRULE R 1 R 8)))

(CHARACTER 0 201 (MAP

(SPECIAL ps: /SaveGray currentgray def .5 setgray)

(SELECTFONT D 2)(SETCHAR C A)

(SPECIAL ps: SaveGray setgray)))

(These specifications appear in addition to the conventional PL information.

The MAP attribute can be mixed in with other attributes like CHARWD or it can

be given separately.)

In this example, the virtual font is composed of characters that can be

fabricated from three actual fonts, ‘Times-Roman’, ‘S3nnbol’, and ‘cmrlO at

20\u’ (where \u is the unit size in this VPL file). Character '0 is typeset as

a ‘G’ from the Symbol font. Character '76 is typeset as character '217 from

the ordinary Times font. (If no other font is selected, font number 0 is the

default. If no MAP attribute is given, the default map is a character of the

same number in the default font.)

(Character 197 (decimal) is more interesting: First an A is typeset (in the

default font Times), and this is enclosed by PUSH and POP so that the original

position is restored. Then the accent character '312 is typeset, after moving

up .937 units and right 1.5 units.

To typeset character '200 in this virtual font, we move down 2.1 units,

then typeset a rule that is 1 unit high and 8 units wide.

Finally, to typeset character '201, we do something that requires a special

ability to interpret PostScript commands; this example sets the PostScript

“color” to 50% gray and typesets an ‘A’ from cmrlO at 20\u in that color.

In general, the MAP attribute of a virtual character can be any sequence

of typesetting commands that might appear in a page of a DVI file. A single

character might map into an entire page.

10. But instead of relying on a hypothetical example, let’s consider a complete

grammar for VPL files, beginning with the (unchanged) grammatical rules for

PL files. At the outermost level, the following property names are valid in

any PL file:

CHECKSUM (four-byte value). The value, which should be a nonnegative integer

less than 2^^, is used to identify a particular version of a font; it should

match the check sum value stored with the font itself. An explicit

check sum of zero is used to bypass check sum testing. If no checksum

is specified in the VPL file, VPtoVF will compute the checksum that

METflFONT would compute from the same data.

256 Digital Typography

DESIGNSIZE (numeric value, default is 10). The value, which should be a real

number in the range 1.0 < x < 2048, represents the default amount

by which all quantities will be scaled if the font is not loaded with an

‘at’ specification. For example, if one says ‘\font\A=cinrlO at 15pt’

in Te^ language, the design size in the TFM file is ignored and effectively

replaced by 15 points; but if one simply says ‘\f ont\A=cmrlO’ the stated

design size is used. This quantity is always in units of printer’s points.

DESIGNUNITS (numeric value, default is 1). The value should be a positive real

number; it says how many units equals the design size (or the eventual

‘at’ size, if the font is being scaled). For example, suppose you have a

font that has been digitized with 600 pixels per em, and the design size

is one em; then you could say ‘(DESIGNUNITS R 600)’ if you wanted to

give all of your measurements in units of pixels.

CODINGSCHEME (string value, default is ‘UNSPECIFIED’). The string should not

contain parentheses, and its length must be less than 40. It identifies

the correspondence between the numeric codes and font characters.

(1^)X ignores this information, but other software programs might make

use of it.)

FAMILY (string value, default is ‘UNSPECIFIED’). The string should not contain

parentheses, and its length must be less than 20. It identifies the name

of the family to which this font belongs, e.g., ‘HELVETICA’. (T^)K ignores

this information; but it is needed, for example, when converting DVI

files to PRESS files for Xerox equipment.)

FACE (one-byte value). This number, which must lie between 0 and 255 in¬

clusive, is a subsidiary identification of the font within its family. For

example, bold italic condensed fonts might have the same family name

as light roman extended fonts, differing only in their face byte. (T^X

ignores this information; but it is needed, for example, when converting

DVI files to PRESS files for Xerox equipment.)

SEVENBITSAFEFLAG (string value, default is ‘FALSE’). The value should start

with either ‘T’ (true) or ‘F’ (false). If true, character codes less than

128 cannot lead to codes of 128 or more via ligatures or charlists or

extensible characters. (TeX82 ignores this flag, but older versions of

would only accept TFM files that were seven-bit safe.) VPtoVF

computes the correct value of this flag and gives an error message only

if a claimed “true” value is incorrect.

HEADER (a one-byte value followed by a four-byte value). The one-byte value

should be between 18 and a maximum limit that can be raised or

lowered depending on the compile-time setting of max-header-bytes.

The four-byte value goes into the header word whose index is the

one-byte value; for example, to set header [18] -(— 1, one may write

‘(HEADER D 18 0 1)’. This notation is used for header information

that is presently unnamed. (TE)^ ignores it.)

Virtual Fonts: More Pun for Grand Wizards 257

FONTDIMEN (property list value). See below for the names allowed in this
property list.

LIGTABLE (property list value). See below for the rules about this special kind
of property list.

BOUNDARYCHAR (one-byte value). If this character appears in a LIGTABLE com¬

mand, it matches “end of word” as well as itself. If no boundary

character is given and no LABEL BOUNDARYCHAR occurs within LIGTABLE,

word boundaries will not affect ligatures or kerning.

CHARACTER. The value is a one-byte integer followed by a property list. The

integer represents the number of a character that is present in the font;

the property list of a character is defined below. The default is an
empty property list.

11. Numeric property list values can be given in various forms identified by
a prefixed letter.

C denotes an ASCII character, which should be a standard visible character

that is not a parenthesis. The numeric value will therefore be between

'41 and '176 but not '50 or '51.

D denotes an unsigned decimal integer, which must be less than 2^^, i.e., at
most ‘D 4294967295’.

F denotes a three-letter Xerox face code; the admissible codes are MRR, MIR,

BRR, BIR, LRR, LIR, MRC, MIC, BRC, BIC, LRC, LIC, MRE, MIE, BRE, BIE,

LRE, and LIE, denoting the integers 0 to 17, respectively.

0 denotes an unsigned octal integer, which must be less than 2^^, i.e., at most

‘0 37777777777’.

H denotes an unsigned hexadecimal integer, which must be less than 2^^, i.e.,

at most ‘H FFFFFFFF’.

R denotes a real number in decimal notation, optionally preceded by a “+’ or

sign, and optionally including a decimal point. The absolute value

must be less than 2048.

12. The property names allowed in a FONTDIMEN property list correspond

to various T^X parameters, each of which has a (real) numeric value. All

of the parameters except SLANT are in design units. The admissible names

are SLANT, SPACE, STRETCH, SHRINK, XHEIGHT, QUAD, EXTRASPACE, NUMl, NUM2,

NUM3, DENOMl, DEN0M2, SUPl, SUP2, SUP3, SUBl, SUB2, SUPDROP, SUBDROP,

DELIMl, DELIM2, and AXISHEIGHT, for parameters 1 to 22. The alternate names

DEFAULTRULETHICKNESS, BIGOPSPACINGl, BIG0PSPACING2, BIG0PSPACING3,

BIG0PSPACING4, and BIG0PSPACING5, may also be used for parameters 8 to 13.

The notation ‘PARAMETER n’ provides another way to specify the nth pa¬

rameter; for example, ‘(PARAMETER DIR -.25)’ is another way to specify

that the SLANT is —0.25. The value of n must be positive and less than

max-param^words.

258 Digital Typography

13. The elements of a CHARACTER property list can be of six different types.

CHARWD (real value) denotes the character’s width in design units.

CHARHT (real value) denotes the character’s height in design units.

CHARDP (real value) denotes the character’s depth in design units.

CHARIC (real value) denotes the character’s italic correction in design units.

NEXTLARGER (one-byte value), specifies the character that follows the present

one in a “charlist.” The value must be the number of a character in

the font, and there must be no infinite cycles of supposedly larger and

larger characters.

VARCHAR (property list value), specifies an extensible character. This option

and NEXTLARGER are mutually exclusive; i.e., they cannot both be used

within the same CHARACTER list.

The elements of a VARCHAR property list are either TOP, MID, EOT or REP; the

values are integers, which must be zero or the number of a character in the

font. A zero value for TOP, MID, or EOT means that the corresponding piece

of the extensible character is absent. A nonzero value, or a REP value of

zero, denotes the character code used to make up the top, middle, bottom, or

replicated piece of an extensible character.

14. A LIGTAELE property list contains elements of four kinds, specifying a pro¬

gram in a simple command language that T^X uses for ligatures and kerns.

If several LIGTAELE lists appear, they are effectively concatenated into a sin¬

gle list.

LAEEL (one-byte value) means that the program for the stated character value

starts here. The integer must be the number of a character in the font;

its CHARACTER property list must not have a NEXTLARGER or VARCHAR

field. At least one LIG or KRN step must follow.

LAEEL EOUNDARYCHAR means that the program for beginning-of-word ligatures

starts here.

LIG (two one-byte values). The instruction ‘(LIG c r)’ means, “If the next

character is c, then insert character r and possibly delete the current

character and/or c; otherwise go on to the next instruction.” Char¬

acters r and c must be present in the font. LIG may be immediately

preceded or followed by a slash, and then immediately followed by >

characters not exceeding the number of slashes. Thus there are eight

possible forms:

LIG /LIG /LIG> LIG/ LIG/> /LIG/ /LIG/> /LIG/»

The slashes specify retention of the left or right original character; the >

signs specify passing over the result without further ligature processing.

KRN (a one-byte value and a real value). The instruction ‘(KRN c r)’ means, “If

the next character is c, then insert a blank space of width r between

Virtual Fonts: More Fun for Grand Wizards 259

the current character character and c; otherwise go on to the next

intruction.” The value of r, which is in design units, is often negative.

Character code c must exist in the font.

STOP (no value). This instruction ends a ligature/kern program. It must follow

either a LIG or KRN instruction, not a LABEL or STOP or SKIP.

SKIP (value in the range 0 .. 127). This instruction specifies continuation

of a ligature/kern program after the specified number of LIG or KRN

steps has been skipped over. The number of subsequent LIG and KRN

instructions must therefore exceed this specified amount.

15. In addition to all these possibilities, the property name COMMENT is allowed

in any property list. Such comments are ignored.

16. So that is what PL files hold. In a VPL file additional properties are

recognized; two of these are valid on the outermost level:

VTITLE (string value, default is empty). The value will be reproduced at the

beginning of the VF file (and printed on the terminal by VFtoVP when

it examines that file).

MAPFONT. The value is a nonnegative integer followed by a property list.

The integer represents an identifying number for fonts used in MAP at¬

tributes. The property list, which identifies the font and relative size,

is defined below.

And one additional “virtual property” is valid within a CHARACTER:

MAP. The value is a property list consisting of typesetting commands. Default

is the single command SETCHAR c, where c is the current character

number.

17. The elements of a MAPFONT property list can be of the following types.

FONTNAME (string value, default is NULL). This is the font’s identifying name.

FONTAREA (string value, default is empty). If the font appears in a nonstandard

directory, according to local conventions, the directory name is given

here. (This is system dependent, just as in DVI files.)

FONTCHECKSUM (four-byte value, default is zero). This value, which should be

a nonnegative integer less than 2^^, can be used to check that the font

being referred to matches the intended font. If nonzero, it should equal

the CHECKSUM parameter in that font.

FONTAT (numeric value, default is the DESIGNUNITS of the present virtual font).

This value is relative to the design units of the present virtual font,

hence it will be scaled when the virtual font is magnified or reduced. It

represents the value that will effectively replace the design size of the

font being referred to, so that all characters will be scaled appropriately.

FONTDSIZE (numeric value, default is 10). This value is absolute, in units of

printer’s points. It should equal the DESIGNSIZE parameter in the font

being referred to.

260 Digital Typography

If any of the string values contain parentheses, the parentheses must be bal¬

anced. Leading blanks are removed from the strings, but trailing blanks

are not.

18. Finally, the elements of a MAP property list are an ordered sequence of

typesetting commands chosen from among the following;

SELECTFONT (four-byte integer value). The value must be the number of a pre¬

viously defined MAPFONT. This font (or more precisely, the final font that

is mapped to that code number, if two MAPFONT properties happen to

specify the same code) will be used in subsequent SETCHAR instructions

until overridden by another SELECTFONT. The first-specified MAPFONT

is implicitly selected before the first SELECTFONT in every character’s

map.

SETCHAR (one-byte integer value). There must be a character of this number

in the currently selected font. (VPtoVF doesn’t check that the character

is valid, but VFtoVP does.) That character is typeset at the current po¬

sition, and the typesetter moves right by the CHARWD in that character’s

TFM file.

SETRULE (two real values). The first value specifies height, the second spec¬

ifies width, in design units. If both height and width are positive, a

solid black rectangle is typeset with its lower left corner at the current

position. Then the typesetter moves right, by the specified width.

MOVERIGHT, MOVELEFT, MOVEUP, MOVEDOWN (real value). The typesetter moves

its current position by the number of design units specified.

PUSH. The current typesetter position is remembered, to be restored on a

subsequent POP.

POP. The current typesetter position is reset to where it was on the most

recent unmatched PUSH. The PUSH and POP commands in any MAP must

be properly nested like balanced parentheses.

SPECIAL (string value). The subsequent characters, starting with the first

nonblank and ending just before the first ‘)’ that has no matching

are interpreted according to local conventions with the same system-

dependent meaning as a ‘special’ {xxx) command in a DVI file.

SPECIALHEX (hexadecimal string value). The subsequent nonblank characters

before the next ')’ must consist entirely of hexadecimal digits, and they

must contain an even number of such digits. Each pair of hex digits

specifies a byte, and this string of bytes is treated just as the value

of a SPECIAL. (This convention permits arbitrary byte strings to be

represented in an ordinary text file.)

19. Virtual font mapping is a recursive process, like macro expansion. Thus,

a MAPFONT might specify another virtual font, whose characters are themselves

Virtual Fonts: More Fun for Grand Wizards 261

mapped to other fonts. As an example of this possibility, consider the fol¬

lowing curious file called recurse.vpl, which defines a virtual font that is

self-contained and self-referential:

(VTITLE Example of recursion)

(MAPFONT D 0 (FONTNAME recurse)(FONTAT D 2))

(CHARACTER C A

(CHARWD D DCCHARHT D 1) (MAP (SETRULE D 1 D 1)))

(CHARACTER C B

(CHARWD D 2)(CHARHT D 2)(MAP (SETCHAR C A)))

(CHARACTER C C

(CHARWD D 4)(CHARHT D 4)(MAP (SETCHAR C B)))

The design size is 10 points (the default), hence the character A in font recurse

is a 10 X 10 point black square. Character B is typeset as character A in recurse

scaled 2000, hence it is a 20 x 20 point black square. And character C is typeset

as character B in recurse scaled 2000, hence its size is 40 x 40.

Virtual font designers should be careful to avoid infinite recursion.

262 Digital Typography

News from St. Anford Press

[For release 24 August 1988]

We now offer a typeface named after San Serifo, the famous martyr

whose life was chronicled by Father Font in 1776. Japanese customers

may prefer the Serifu-San variation.

The designer, L. C. “Bo” Doni, says that she was inspired primarily

by recent brochures from type foundries in which the term “sans serif”

is spelled sans s. She is currently working on a sans-stem font, due to

be released next year.

San Serifo and Serifu-San are available in many weights, from ultra-

lite to obese, and in all major digital formats including FalseType^*^.

Chapter 13

The Letter S

[Originally published in The Mathematical Intelligencer 2 (1980),

114-122.]

Several years ago when I began to look at the problem of designing suit¬

able alphabets for use with modern printing equipment, I found that

25 of the letters were comparatively easy to deal with. The other letter

was S. For three days and nights I had a terrible time trying to under¬

stand how a proper S could really be defined. The solution I finally came

up with turned out to involve some interesting mathematics, and I be¬

lieve that students of calculus and analytic geometry may enjoy looking

into the question as I did. The purpose of this paper is to explain what

I now consider to be the “right” mathematics underlying printed S’s,

and also to give an example of the METRFONT language I have recently

been developing.* (A complete description of METRFONT, which is a

computer system and language intended to aid in the design of letter

shapes, appears in [3, part 3]).

Before getting into a technical discussion, I should probably mention

why I started worrying about such things in the first place. The central

reason is that today’s printing technology is essentially based on discrete

mathematics and computer science, not on the properties of metals or

of movable type. The task of making a plate for a printed page is now

essentially that of constructing a gigantic matrix of Os and Is, where the

Os specify white space and the Is specify ink. I wanted the second edition

of one of my books to look like the first edition, although the first edition

had been typeset with the old hot-lead technology; and when I realized

that this problem could be solved by using appropriate techniques of

discrete mathematics and computer science, I couldn’t resist trying to

find my own solution.

* All of the letters and symbols in this report were designed mathematically,

using METRFONT, and typeset with the author’s experimental software.

263

264 Digital Typography

Reference [2] explains more of the background of my work, and

it also discusses the early history of mathematical approaches to type

design. In particular, it illustrates how several people proposed to con¬

struct S’s geometrically with ruler and compass during the sixteenth and

seventeenth centnries.
Francesco Torniello published a geometric alphabet in 1517 that is

typical of these early approaches. Let’s look at his construction of an S

(Figure 1, taken from page 45 of [4]), in order to get some feeling for the

problems involved. Paraphrasing his words into modern mathematical

terminology, we can state the method as follows:

An S is drawn in a 9 x 9 square that we can represent by Cartesian

coordinates (x, y) for 0 < x < 9 and 0 < y < 9. We shall define 14 points

on the boundary of the letter, calling them (xi, yi), (x2, y2), • • ■, (a:i4, yi4)-

Point 1 is (4.5, 9), and a circular arc is drawn from this point with center

at (4.5,5.5) and radius 3.5 ending at point 2 where X2 = 6. [Hence

y2 = 5.5 -|- vTo 8.66.] A small arc is drawn with center (6.5,9) and

radius .5 from point 3 = (6.5, 8.5) to (7, 9). A straight line is drawn from

point 4 = (6, 7) to where it is tangent to this small arc; let us call this

point 5. [We shall see below that point 5 has the coordinates (6^,8y|);

it is interesting to speculate about whether Torniello would have been

happy to know this.] Now an arc is drawn with center (4, 7) and radius 2,

from point 6 = (4, 9) down to point 7 where xr = 3 and yj < 7 [hence

y-j — 7 — ss 5.27]. A straight line is drawn from point 7 to point 8 =

(5,4). An arc centered at (4.5, 7|) is now drawn from point 4 to point 9 —

(3.5,6), and a straight line continues from there to point 10 = (6,4.5). A

half-circle runs from this point to point 11 = (3, 0.5), with center (4.5, 2.5)

and radius 2.5. Another small circular arc is now drawn with center at

(2.5, y) and radius 1, from point 11 to point 12 where xi2 = l| [hence

y = (1 —-\/3/2 —.37 and yi2 = (-s/M+d —4\/3)/8 « 0.41]. Circular arcs

of radius 2 are drawn from point 8 to point 13 with the center x-coordinate

equal to 4 and with X13 = 4.5 [hence the center is (4,4 — \/3) ~ (4, 2.27)

and yi3 = 4 — -s/S — \/3.75 0.33], and from point 13 to point 14 with

the center x-coordinate equal to 4.5 and with yi4 = 2 [hence the center

is (4.5, 6 - \/3 -) Ri (4.5, 2.33), and

xi4 = 4.5 - {A-

is approximately 2.53]. Finally a straight line runs from point 14 to

point 12.

The reader will find it interesting to take a piece of graph paper and

carry out this vintage construction before proceeding further. Torniello’s

description was actually not so precise as this, and I have tried to make

The Letter S 265

Figure 1. Francesco Torniello’s method of “squaring the S” in 1517.

as much sense out of his words as possible; it seems that he had as much

trouble with S’s as I did, because his other letters are much more clearly

defined. The main editorial revision I have made is to change the center

of the arc between points 4 and 9 from Torniello’s (4.5, 7|) to the nearby

point (4.5, 7|), and to leave its radius unstated (he said that the radius

would be 1.5, but actually it is -s/145/8, a trifle higher), since (4.5, 7|)

is not equidistant from points 4 and 9.

Notice that the circular arc between points 10 and 11 is tangent to

the baseline at (4.5,0) and it has a vertical tangent at point (7, 2.5); this

works out nicely because

32 +4^ = 52,

and I believe Torniello did know enough mathematics to make use of this

pleasant coincidence in his design. He never stated exactly what curves

should be used between points 1 and 6 or between 2 and 3; apparently

a straight line segment should join 1 and 6, while the other curve is to

be filled with whatever looks right.

266 Digital Typography

{-r,h)

Figure 2.

A problem that arises in Torniello’s

construction: Find x and y, given

r and h. (—r, 0)

The calculation of point 5 suggests an elementary but instructive

exercise in analytic geometry: Given positive numbers h and r, find the

point (x, y) in the upper right portion of a circle of radius r, centered

at the origin, such that the straight line from (—r, h) to {x,y) is tangent

to the circle at {x,y). (See Figure 2.) We have and

y/x = tan^ = (x + r)/(/i — y), hence + rx + — yh = 0 and

rx — hy — r^. This leads to the equation {hy — r‘^)hy + r^y{y — h) =

rx(rx + r^) + r^y(y — h) = 0, hence y{h^y — hr'^ + r^y — hr^) = 0 and

we soon obtain the desired solution

h?r — 2hr‘^

| ^2 ’ y _|_ ^2

The solution is a rational function of h and r (i.e., no square roots are

needed) because the other tangent point is (—r, 0); this other point also

satisfies the stated equations. Rene Descartes would surely have liked

this demonstration of the power of his coordinate system.

Torniello’s construction can be expressed without difficulty in the
METRFONT language, a language that f have recently developed for
stating definitions of character shapes in a form that is convenient for
computer processing. Although ruler-and-compass methods do not re¬
ally use very many of METRFONT’s abilities, we can learn something
about METRFONT by looking at this as a first example.

The key points of a particular design are specified in METRFONTese
by writing equations for their x and y coordinates; then you can say
‘draw i.. j' to draw a straight line from point i to point j. You can also
say ‘draw i{a, P} .. j{'y, 5}’ to draw a curve from point i starting in the
direction of the vector {a,P) and ending at point j in direction (7,5).

The Letter S 267

This curve will be a circular arc if there is a circle passing though i and j

in the stated directions, provided that the circular arc is at most a half¬

circle. Thus, Torniello’s construction can be expressed with complete
precision by the following METflFONT program:

Xi = 4.5u; yi — 9u;

X2 = 6u; y2 - 5.5u = sqrt ((3.5it)(3.5u) - {x2-^.5u){x2~4.bu))]

draw l{yi - 5.5u,4.5u - Xi} .. 2{y2 - 5.5u,4.5u - X2}]
X3 — 6.5u; ^3 = 8.5n;

X4 = 6ti; y4 = 7n;

0:5 = (6+16/17)u; j/5 = (8 +13/17)u;

draw 3{9u - 2/3, ^3 - 6.5u} .. 5{9u - y^,x^ - 6.5w};
draw 4 .. 5;

^6 = 4u; ye = 9u;

xj = 3u; 7'U - yr ~ sqrt ((2'u)(2u) - {x7-4u){x7-4:u));

draw 6{7u - ye,Xe - 4u} .. 7{7u - yj.x^ - 4u};

xs = 5u; ys = 4u; draw 7.. 8;

xg = 3.5u; yg = 6u;

Xi5 = 4.5u; yi5 — 7.125u =

sqrt ((xg-4.5u)(xg-4.5u) -f (yg-7.125'u)(yg-7.125u));

draw 4{7.125n - y4, X4 - 4.5u} .. 15 .. 9{7.125'U - yg,xg - 4.5u};

Xio = 6u; yio = 4.5tt; draw 9 .. 10;

xii = 3u; yii = .5u;

draw 10{yio - 2.5u, 4.5u - xio} .. ll{yii - 2.5w, 4.5n - Xn};

X16 = 2.5u; yii - yie = sqrt((u)('u) - (xn-Xi6)(xii-xie));

X12 = 1.875u; yi2 - yie = sqrt((u)(u) - (xi2-xi6)(xi2-xi6));

draw ll{yi6 - yii,Xii - xie} .. 12{yi6 - yi2,3:^12 - a^ie};
Xi3 = 4.5u; Xi7 = 4u;

2/8 - 2/17 = sqrt((2u)(2u) - (xg-Xi7)(x8-X17));

yi7 - 2/13 = sqrt((2u)(2u) - (xi3-Xi7)(xi3-Xi7));

draw 8{y8 - yi7, X17 - xg} .. 13{yi3 - 2/i7,2:17 - 2^13};
X18 = 4.5u; yi8 - yiz = sqrt ((2u)(2u) - (xig-Xi3)(xi8-X13));

yi4 = 2u; X18 - xi4 = sqrt ((2u)(2u) - (yis-yi4)(2/i8-yu));

draw 13{yi3 - yis, xig - X13} .. 14{yi4 - yig, xig - X14};

draw 14 .. 12.

Here “u” is an arbitrary unit of measure that can be used as a scale

factor to control the overall size of the drawing. This program looks

somewhat formidable at first glance, but it really is not hard to un¬

derstand once you compare it to the informal English description given

earlier. A few more points, labeled 15, 16, 17, and 18, have been intro¬

duced; point 15 coaxes METRFONT to draw a circular arc bigger than a

268 Digital Typography

6 1

•
15

3 •
•

5

9

4

1
7

t

<
8

10
►

14
17

•
12

•n

11
13 ,
•

• 16

Figure 3. The METRFONT program in the text will produce this rendi¬

tion of Torniello’s S.

semicircle, and the other three points are centers of arcs in the construc¬

tion. The main fact used throughout is that a circular arc with center

{xk,yk) that passes clockwise through point {xi,yi) is going in direction

{yi — yk,Xk — Xi}, while if the arc is going counterclockwise its direction

1® {yk yii Xi Xk}■

Figure 3 shows what METRFONT draws from the given specifica¬

tions. METRFONT will also complete the drawing with appropriate

non-circular curves if we add the commands

draw 1.. 6;

draw 2{y2 — 5.5u, 4.5u — X2} ■ ■ 3{9u — y3,X3 — 6.5u}.

These tangent directions match the tangents at which the new curves

touch the old. If we ask METRFONT to fill in the space between these

boundary curves, we obtain Figure 4.

When the circular arc comes to point 7 from point 6, it is travel¬

ing in direction {7u — yjiXj — 4u} = {\/3n, —u}, but when it proceeds

from point 7 in a straight line to point 8 it shifts abruptly to direc¬

tion {xg — X7,y8 — yy} = {2^, (-s/3 — 3)u}. This discontinuity is only

slightly noticeable in Figure 4, but it is unsatisfactory from a mathe¬

matical standpoint. Similar discontinuities occur at points 8, 9, 10, 11,

The Letter S 269

Figure 4.

The curve of Fig. 3, completed

and filled in.

and 13, the problems at points 9 and 13 being especially prominent; the

illustrations in Torniello’s book had to be fudged slightly to hide these

defects (which Torniello did not mention). Contemporary standards of

accuracy were presumably not very stringent in the sixteenth century,

but nowadays we do not want our computers to draw such bumpy lines.

Figure 5.

A slight modification of Fig. 4 makes the

curves smoother at the junction points.

270 Digital Typography

Since METRFONT has no special commitment to circular arcs, it

will automatically make adjustments like Torniello’s illustrator did if

we just specify consistent directions at all of the key points. Figure 5

shows the result if the tangents at points 7, 8, 9 and 10 are taken as the

directions of the straight line segments and if the direction at point 13

is horizontal. The direction at point 11 corresponds to the circular arc

from point 10. Furthermore point 6 has been moved over to coincide

with point 1, so that the unfortunate flat spot at the top is avoided.

The curves touching these points are not circles any longer, but they are

close enough to fool most people, and it seems unlikely that Torniello

would have been offended by this approximation.

A Renaissance “S” looks somewhat skinny to modern eyes. We can

ask METRFONT to flesh it out by increasing all the x coordinates by

20% while leaving the y coordinates fixed; Figure 6 shows the result.

Notice that this stretching turns circles into ellipses. Torniello would

have had considerable difficulty trying to specify such a shape in terms

of strictly circular arcs; we are reminded of the early astronomers who

found it very cumbersome to use circles instead of ellipses as models of

planetary orbits.

Figure 6. When Fig. 5 is stretched 20% in the horizontal direction, we

obtain this figure; the circles have become ellipses.

The Letter S 271

By studying this example we can get some idea of the problems in¬

volved in specifying a proper S shape. However, I was actually seeking

the solution to a more general problem than the one Torniello faced:

Instead of specifying only one particular S, I needed many different vari¬

ations, including bold face S’s that are much darker than the normal

text. I discussed this recently with Alan Perils, who pointed out that a

central issue arising whenever we try to automate something properly is

what he calls “the art of making constant things variable.” In the case

of letter design, we don’t merely want to take a particular drawing and

come up with some mathematics to describe it; we really want to find

the principles underlying the drawing, so that we can generate infinitely

many drawings (including the given one) as a function of appropriate

parameters. My goal was to create entire alphabets that would depend

on a dozen or two parameters in such a way that all the letters would

vary in a compatible manner as the parameters would change.

After looking at these Renaissance constructions and a lot of mod¬

ern S shapes, I came to the conclusion that the main stroke of the

general S curve I sought would be analogous to the curve in Figure 6;

each boundary curve was to be an ellipse followed by a straight line

followed by another ellipse. This led me to pose the following problem:

What ellipse has its topmost point at {xt,yt) and its leftmost point at

{xi, yi) for some yi, and is tangent to the straight line of slope a that

passes through {xc, yc), given the values of Xt, yt, xi, a, Xc, and ijc?

(The ellipse in question is supposed to have the coordinate axes as its

major and minor axes; in other words, it should have left-right sym¬

metry. See Figure 7 on the next page.) The reason for my posing this

problem should be fairly clear from our previous discussions: We know a

point that is supposed to be the top of the S curve, and we also know how

far the curve should extend to the left; furthermore we have a straight

line in mind that will form the middle link of the stroke.

The problem stated in the preceding paragraph is interesting to me

for several reasons. In the first place, it has a nice answer (as we will

see). In the second place, the answer does in fact lead to satisfactory

S curves. In the third place, the answer isn’t completely trivial; during a

period of two years or so I came across this problem four different times

and each time I was unable to find my notes about how to solve it, so

I spent several hours deriving and rederiving the formulas whenever I

needed them. Finally I decided to write this paper so that I wouldn’t

have to derive the answer again.

The point {xt,yi) is the center of the ellipse we seek. Let {x,y)

be the point where the desired ellipse is tangent to the line of slope a

272 Digital Typography

through [xcUc) as shown in Figure 7. Our problem boils down to solving

three equations in the three unknowns x, y, and yp.

/ a: - Xf y / y -yi\^

[xi-xtj [yt-yij

yc-y

Xc — X

f yt - yi y x-xt

\xi-xt) y-yi

{*)

The first of these is the standard equation for an ellipse, and the second

is the standard equation for slope; the third is obtained by differentiating

the first,

2dx
X - Xt

(xi - Xt)2
+ 2dy

y-yi

{yt - yif
= 0,

and setting dy/dx equal to a.

ixt,ym)

Before attempting to solve equations (*), I would like to introduce

a notation that has turned out to be extremely useful in my work on

mathematical font design: Let a[x,y] be an abbreviation for

X + a{y - x),

which may be understood as “the fraction a of the way from x to y."

Thus 0[x,y] = X] l[x,y] = y; |[x,y] is the midpoint between x and y;

|[x,y] is halfway between y and this midpoint; and 2[x,y] lies on the

The Letter S 273

opposite side of y from x, at the same distance as y is from x. Identities

like a[x,x] = x and a[x,y] = (1 — a)[y,x] are easily derived. When

making some geometric construction it is common to refer to things like

the point one third of the way from A to B; the notation ^[>1, D] means

just that. I call it “mediation.”

One of the uses of this bracket notation is to find the intersection

{x,y) of two given lines, where the lines go respectively from (xi,yi)

to (x2,y2) and from (X3,y3) to (x4,y4). We can solve the intersection

problem by noting that there is some number a such that

x = Q![xi,X2] y = a[yi,y2]

and some number (5 such that

x = ^[x3,x4] y = ^[yz,yi]-

These four simultaneous linear equations in x, y, a, and (3 are easily

solved; and in fact METRFONT will automatically solve simultaneous

linear equations, so it is easy to compute the intersection of lines in

METRFONT programs.
The bracket notation also applies to ellipses in an interesting way.

We can write x = ajxo, Xmax] and y = P[yo, ymax] in the general equation

<2

(^ ~ ^0 ^ (y-yo
\ ^max ^0 / \ ymax yo

reducing it to the much simpler equation

+ = 1.

Returning to our problem of the ellipse, let us set

x = a[xt,xi], y = /3[yi,yt],

X = x - xt, Y =^yi -yt,

a = xi-xt, b={yc- oxP) - {yt - crxt).

The three equations (*) can now be rewritten as follows:

a^+P^ = l;

b + aX = {1 - P)Y ;

aY = aap;

X = aa.

274 Digital Typography

This gives us four equations in the four unknowns (a, /3, X, Y), so it may

seem that we have taken a step backwards; but the equations are much

simpler in form. We can eliminate a to reduce back to three unknowns:

+ (1)

b + aX = {l-P)Y- (2)

XY = a^ap. (3)

Multiplying (3) by (1 — /3) and applying (2) now leads to

X{b + aX) =aV/3(l -/3),

and this miraculously combines with (1) to yield

6X = aV(/3-l). (4)

It follows that {cPa{P — 1))^ + a^b^P^ = i.e.,

a^p-l){a^a\P-l) + b^P + l))=0. (5)

If a = 0, our equations become degenerate, with infinitely many solutions

{X,Y) = (0,6/(l - P)) for -1 < P < 1. If 6 = 0, another degenerate

situation occurs, with no solution possible unless aa = 0, in which case

there are infinitely many solutions with Y arbitrary and {X,a,P) —

(0, 0,1). Otherwise it is not difficult to see that / 1, so (5) determines

the value of P uniquely, and we can use this with (4) to determine the

full solution;
Q = —labojlara^ + o)',

/3 = (aV-&^)/(aV^ + 62);

X = —2a^&cr/(a^(T^ + b^);

Y = {b‘^ - aV^)/25.

I was surprised to find that the simultaneous quadratic equations {**)

have purely rational expressions as their roots. There is a curious simi¬

larity between this solution and the answer to the problem in Figure 2.

Translating (6) back into the notation of the original problem state¬

ment (Figure 7), let {xt,ym) be on the line of slope a through {xc,yc),

so that ym = yc T <y[xt — Xc). Then the unique solution is

X = Xt +

y = ym +

yi = yt

2a{xi - Xtp{yt - ym)

a‘^{xi - xtY + {yt - yruY ’

2a‘^{xi - xtp{yt - ym)

a‘^{xi - xt^ + {yt - y-mY ’

{yt - yraf - <y'^{xi - xtY

‘^{yt ym)

except in the degenerate cases xi — Xt or ym = yt-

(7)

The Letter S 275

Incidentally, I tried the automatic equation-solving feature of the

MACSYMA computer algebra system [5, 7] on this problem, in order

to get some idea of how long it will be before mathematicians will

be replaced by computers when such calculations are required. MAC¬

SYMA correctly found the solution {X,Y,l3) for equations (1), (2), (3)

in about 17 seconds, except that it said nothing about the degenerate

solutions that occur when ab - 0. The time required for MACSYMA to

solve the system of four equations (**) was essentially the same as to

deal with (1), (2), (3). But when I asked MACSYMA to solve the three

original equations (*) for x, y, and yi, the computer’s memory capacity

was exceeded after about a minute and twenty seconds, even when I sim¬

plified (*) by replacing (xc, t/c) by (xf , ym)- Thus, I was reassured to find

that the equations (*) aren’t completely trivial and that the conversion
to {**) was an important step.

{x'/,

Figure 8. A good S is obtained by drawing two partial ellipses according

to the method of Fig. 7, then filling in the space between them,

using a pen whose diameter is the width of the “hairlines” of the

desired letters.

This solution to the ellipse problem leads immediately to the de¬

sired S curves, since we can fill in the space between an ellipse-and-

straight-line arc that runs from {Xi.,y^) to {x[,y[) to (x',y') to {x^,y'^)

and another that runs from {x^,y^) to (x",yj') to {x",y") to {x^,y”),

where the distance between x[and x'/ is governed by the desired thick¬

ness of the stroke at the left and the distance between y'^ and y” is

governed by the desired thickness of the stroke at the center. (See

Figure 8. The actual S curve is drawn with a circular pen of small

276 Digital Typography

but positive radius whose center traces the curves shown, so the actual

boundary is not a perfect ellipse.) The bottom right part of the S is, of

course, handled in the same way as the upper left part.

Q Q Q Q Q Q Cl
O O O iO 1^ lO lO

Figure 9. Different possibilities can be explored by varying the param¬

eters. Here the slope is changing, but other characteristics are held

fixed; the respective slopes are 2/5, 1/2, 2/3, 1, 3/2, 2, and 5/2 times

the “correct” slope in the middle.

Figure 9 shows various S curves drawn by this method when the

slope a varies but the other specifications stay the same. Figure 10

shows an S that has the same slope as the middle one of Figure 9,

but the curve is wider when it is travelling vertically at the upper left

and the lower right. One of the chief advantages of a mathematical,

parameterized approach is that it is easy to make lots of experiments

until you find the setting of parameters that you like best. A METR-

FONT program that would draw the S’s in Figures 9 and 10, depending

on appropriate parameters, appears in the appendix below.

Figure 10.

The main stroke of this S is wider at

the upper left and lower right, but

otherwise it was drawn to the spec¬

ifications of the middle S in Fig. 9.

The Letter S 277

I happily made S’s with this method for more than two years, but

one day I decided to ask METflFONT to draw a great big letter S and

the resulting shape was unexpectedly ugly. Looking back at some of

the other supposedly nice S’s drawn previously, I started to notice an

occasional defect that was comparatively innocuous at the small scales

I had been working with. This defect became painfully apparent when

everything was enlarged, so I realized that I still hadn’t gotten to the

end of the story.

Figure 11 illustrates this new difficulty in a somewhat extreme form.

In terms of the notation of Figure 8, I had not placed x'l sufficiently far

to the right of x'/; hence the two ellipses through {x[,y[) and {x”,y")

actually crossed each other. This made the supposed inner boundary

switch over and become the outer boundary and vice versa, a distinctly

unpleasant result since I was not intending to have such a calligraphic

effect here.

Figure 11.

Disastrous effects can occur if there

isn’t enough width at the upper left

and lower right.

The problem of Figure 11 goes away if xj is sufficiently large, but of

course it is desirable to know what the permissible values are. We are led

to a third (and final) problem concerning ellipses: Given the situation in

Figure 8, what is a necessary and sufficient condition that the elliptical

arc from (xi',y'/) to (xt,yt) stays above the elliptical arc from {x[,y\) to

{x^,y^)? (We are assuming that x'/ < x[< x^ and y” < y'l < y^, and

that both ellipses have left/right symmetry as before.) It turns out that

278 Digital Typography

the answer to this problem can be expressed quite simply: The curves

fail to cross if and only if

vt-y'i > vt - y” (Q)
- {x,-x'lf

My first attempt to find the right condition got bogged down in a

notational mess, but finally I hit on the following fairly simple solution

to this problem: Let

a = xt-x'i, b = y^-y'i, A = x^-xl, B = yi~y”.

Using these abbreviations and turning the curves upside down, we want

the function h-h^Jl - (x/a)^ (which describes the bottom right quarter

of an elliptical arc from (0,0) to (a, 6)) to be less than or equal to the

analogous function B — B\/l — {x/A)'^, whenever |a:| < a, given that

0 < a < A and 0 < b < B. Expanding in power series we have

b = b
/ x^ x'^ x 2k

)

where
1/2 V Pfc-2)!
k)^ ’ 2“-V!(fc-l)!

is positive for all k > 0, and the power series converges for \x\ < a. If

b/a^ < B/A'^, the analogous power series

B-B B +
X

+ • • • + (-1)
fc+i X 2k

^2k +

will grow faster for small x and the two curves will cross. But if b/a^ >

B/A^, we will have 6/a^^ > B/A^^ for all > 0, so every term of the

first power series dominates every term of the second. Q.E.D.

According to the theory worked out earlier, we have

yt - yi ^ yt - ym_/qn

[xt-XiY 2{xt-xiY 2{yt-ym)'

Thus we can ensure that the quantity {y^ — y'i)/{x^ — x'l)^ is actually

equal to {y^ — y")l{x^ — x'lY by starting with desired values of x^, y^,

x'l', y'^, and y'^: Eirst y" is determined, then x[, and finally r/;.

The Letter S 279

Q Q Q Q Q
Figure 12. Varying thicknesses of the middle stroke lead to these S’s,

where the width at upper left and lower right has been chosen to be

as small as possible without the “crossover” problem of Fig. 11.

After learning how to draw an S with mathematical precision,

I found that the same ideas apply to many other symbols needed in a

complete system of fonts for mathematics. In fact, all of the characters

in Figure 13 use the same METflFONT subroutine that I first developed

for the letter S (or the dual subroutine obtained by interchanging x and

y coordinates). Without the theory developed in this paper, I would ei¬

ther have had to abandon my goal of defining books in a mathematical

w'ay or I would have had to stop using all of these characters.

Figure 13. The method used to draw an S stroke also is used as a sub¬

routine that draws parts of many other characters, including those

shown here.

Of course, this is only a first step; the letters I have designed are

far from optimal, and dozens of future experiments suggest themselves.

My current dream is that the next several years will see mathematicians

teaming up with experienced type designers to create truly beautiful

new fonts. This will surely be one of the most visible applications of

mathematics!

Let me close by asking a question of the reader. Ellipses have been

studied for thousands of years, so it is reasonable to assume that all of

their interesting properties were discovered long ago. Yet my experi¬

ence is that when mathematics is applied to a new field, new “purely

mathematical” questions are often raised that enrich mathematics itself.

280 Digital Typography

So I am most curious to know: Have the questions that I encountered

while trying to draw S-like ellipses been studied before, perhaps in some

other disguise? Or did the new application of mathematics to typog¬

raphy lead to fresh insights about even such a well-studied object as a

rectilinear ellipse?

Appendix

The program below, written in the METRFONT language as described

in [3, part 3], will draw the S shown in Figure 14 (and infinitely many

others) when the following parameters have been specified:

h, height of the character;
o, ’’overshoot” of curved lines at top and bottom;

u, one tenth of the character width;

Wo, size of circular pen used in drawing lines;

W4, width of triangular serifs before erasing;

ws, thickness at the upper left and lower right;

wg, thickness of S stroke in the middle.

The vertical lines in Figure 14 are u steps apart. The program uses

‘lpen:?(6’ and ‘rpen^^’ to erase unwanted ink that lies to the left and

right of a specified path; the effect of such erasure is visible in the illus¬

tration, since portions of the guidelines have been erased.

subroutine scomp(index i) % starting point

(index p) % turning point (pp to be defined)

(index j) % transition point (to be defined)

(index k) % ending point

(var s): % ending slope

% This subroutine computes pp, xj, and pj so that

% Pk — Pj = s.{xk — Xj) and so that the following curve

% is consistent with an ellipse:

% i{xp - Xi,0} ..p{0,pp - p^} . .j{xk - Xp,s.{xk - Xp)}.

Pk Pj — si^Xk

new a, 6; a = s(a;p - Xi); b = pk — Pi - s{xk — Xi)-,

Xj — Xi — —2a ■ b{xp — Xi)/{a ■ a + b ■ b)-,

Pp — Pi — •5(^> ■ b — a ■ a)/b.

subroutine sdraw (index

(index p)

(index k)

(index q)

(index j)

(index a)

i) % starting point

% upper turning point {pp to be defined)

% middle point

% lower turning point {pq to be defined)

% ending point

% effective pen width at turning points

The Letter S 281

Figure 14.

The labeled points in this S corre¬

spond to the numbers specified by

the METRFONT routine in the ap¬

pendix.

(index b) % effective pen height at middle point

(var s): % slope at middle point

cpen; topoys = topi,yfc; botoye = botbyt;

X5 — Xq —

rtaXp = rtoxi; Iftaa^p = lftoa:2;

— rto^9) Ift^Xg — lf*t0^10)
y2 = Vp; yg = y^;
call scoinp[i, 1, 3, 5, s);
call scomp(f, 2,4, 6, s);
call scomp{j, 9, 7, 5, s);
call sconip(j, 10, 8, 6, s);
Wo ddraw i{x\ — Xi, 0} .. 1{0, yi — yi} ..

^^Xq si^Xq ITp) ^ . . Y'^Xq

9{0, Vj - yg} • • - X9,0},
i{x2 - Xi, 0} .. 2{0, y2 - yi} • •

4{Xq — Xp, s{Xg — Xp)} . . 8{Xq — Xp, s(Xq — Xp)} . .

% compute yi

% compute 1/2

% compute yg

% compute yio

■Xp)]

—P’/J 4
10{0,yj - yio} --Hxi - a;io,0}.

point 3

point 4

point 7

point 8

s-curve

282 Digital Typography

"The letter S";

hpen; toppyi = round(/i + o); botoys = —o:

X3 = 5u; ya = -52/1;

IftgaJa = round u; rt8X4 = round 9u;

xi = 4.5u; xb = 5.5u;

IftoXe = round u; rtoXr = round 8.5u;

ye = goodo|h - 1; y7 = goodg|/i + 1;

botoys = 0; yg = ye; xs = xe; rt4X6 = rtoxg;
topgyio = h; yn = y?; xio = X7; lft4X7 = IftoXu
Wo ddraw 6 .. 8, 9 .. 8;
ddraw 7 .. 10, 11. . 10;
rpen#; rt;4 draw 6{0, —1} .. 5{1, 0};
Ipen#; 104 draw 7{0,1} .. 1{ — 1, 0};
hpen; ioq draw 6{0, —1} .. 5{1, 0};
draw 7{0,1} .. 1{ —1, 0};
call ' a sdraw(l, 2, 3, 4, 5, 8, 9, —h/(50u)).

% lower serif

% upper serif

% erase excess

% ditto

% lower left stroke

% upper right stroke

% middle stroke

The preparation of this article was supported in part by National Science Foundation
grants MCS-7723738 and lST-7921977, by Office of Naval Research grant N00014-
76-C-0330, and by the IBM Corporation. The author gratefully acknowledges the
help of Xerox Palo Alto Research Center facilities for the preparation of several

illustrations.

References

[1] Richard J. Fateman, Essays in Algebraic Simplification, Ph.D. the¬
sis, Harvard University (1971). Published also as report MAC TR-
95 (Cambridge, Massachusetts: M.I.T. Laboratory for Computer
Science, April 1972).

[2] Donald E. Knuth, “Mathematical typography,” Bulletin of the
American Mathematical Society (new series) 1 (1979), 337-372.
[Reprinted with corrections as Chapter 2 of the present volume.]

[3] Donald E. Knuth, T^K and METRFONT: New Directions in Type¬
setting (Bedford, Massachusetts: Digital Press and American Math¬
ematical Society, 1979).

[4] Giovanni Mardersteig, The Alphabet of Francesco Torniello da No¬
vara [1517] Followed by a Comparison with the Alphabet of Fra
Luca Pacioli (Verona: Ofhcina Bodoni, 1971).

[5] The Mathlab Group, MACSYMA Reference Manual, version nine
(Cambridge, Massachusetts: M.I.T. Laboratory for Computer Sci¬
ence, 1977). The original design and implementation of MAC-
SYMA’s SOLVE operator was due to R. J. Fateman, and it is de¬
scribed briefly in §3.6 of [1].

The Letter S 283

[6] H. W. Mergler & P. M. Vargo, “One approach to computer-assisted

letter design,” Journal of Typographic Research 2 (1968), 299-322.

[This paper describes the first computer system for drawing param¬

eterized letters; for reasons that are now clear, the authors were
unable to obtain a satisfactory S!]

[7] Joel Moses, “MACSYM A — The Fifth Year,” SIGSAM Bulletin 8, 3

(Association for Computing Machinery, 1974), 105-110.

Addendum

A much simpler way to solve the three equations (*) was pointed out

by G. J. Rieger [The Mathematical Intelligencer 3 (1981), 94]: We may

assume for convenience that Xf = yt = Xc = 0 and Vc = Vm] then the
equations take the form

+ {y - y = ym + crx, X^x = a{yi-y),

where A = yi/xi. Plugging the second equation into the third yields

X = a{yi — ym)/[\^ + o"^); and these expressions for x and y reduce the

first equation to (y; — ym)^ — yf + which is linear in yi.
Erich Neuwirth of the University of Vienna sent me a letter on

22 September 1980 with a beautiful explanation of the “curious similar¬

ity” I had noticed between the ellipse problem of Figure 7 and Torniello’s

circle problem of Figure 2. The ellipse problem can be restated as fol¬

lows: Find the rectilinear ellipse, centered on the y-axis, that is tangent

to the three lines y = 0, a; = —r, and y = ax — d, where r = xt — xi

and d = yt — y-m- If the points of tangency are (0,0), (—r, —c), and

(—a, —6), where a — Xt — x, h = yt — y, and c = yt — yi, let us say that
the {r,a,d) problem has solution {a,b,c). Neuwirth’s key observation

is that stretching the plane in the x direction takes ellipses into ellipses

and tangents into tangents. Therefore if ol is any stretching factor, the

(r, a, d) problem has solution (a, b, c) if and only if the {ar, a/a, d) prob¬

lem has solution (aa, b, c). Now if we turn to Figure 2 and set h = —d/a,

we see from the solution to Torniello’s problem that the (r, cr, d) problem

has solution

[—2ar'^d/{d^ + a^r"^), 2rd'^/{d‘^ + a'^r'^), r)

if d^ — (T^r^ = 2rd; this is the case where the ellipse is a circle. Thus the

{ar,a/a,d) problem has solution

[-2aar‘^d/{d'^ + cr^r^), 2ard'^/{d‘^ -f a'^r'^), ar)

if d'^—a^r'^ = 2ard. But we can choose a = {d"^ — a‘^r‘^)/{2rd) and apply

Neuwirth’s principle, establishing that the general (r, a, d) problem has

284 Digital Typography

the solution

{-2ar'^d/{d^ + 2ard^/{(f + ar).

This is equivalent to (7). If I were teaching a course about calculus or

analytic geometry, I would enjoy devoting one of the class periods to

problems related to S curves, since the approaches taken by both Rieger

and Neuwirth are quite instructive.
Computer algebra systems have been getting better. For example,

Mathematica® 2.2 on a SPARCstation 2 (vintage 1993) solves the sys¬

tem (*) in 141 seconds, given no hints. But a human mathematician is

still needed to put the solution into a comprehensible form like (7).

The METRFONT language has changed substantially since 1980, and

I’m happy to say that the characters in Figure 13 have all been signifi¬

cantly improved. (See Volumes C and E of Computers & Typesetting.)

However, the basic ideas for drawing S curves, as explained above, re¬

main valid.

Chapter 14

My First Experience with Indian Scripts

[Originally published in CALTIS-84, a booklet prepared for a seminar

on calligraphy, lettering, and typography of Indie scripts (New Delhi:

11-13 February 1984), 49.]

On February 13, 1980, a group of people from the typographic drawing

office of Mergenthaler Linotype Company came to visit me, in order

to look at the strange computer program called METRFONT that I was

developing. One of the things we tried that day was an experiment in

which Matthew Carter sketched a character, and my job was to write a

METRFONT program that would draw the same thing.

Matthew decided to give me a symbol that I hadn’t seen before,

so he chose a Devanagari character. This was an especially interesting

challenge, since I had never had a chance to look closely at Indian letter-

forms. On my third attempt, my program drew the letter in Figure 1,

and Matthew seemed to find it acceptable. (There are 12 design points,

each of which is represented by a triple of dots; for example, design

point 5 is represented by three black dots labeled 5, 105, and 205.)

102- * -202 9

*99 i,
309- -jSSO! 26»

•SO!

897

49^
324

HO

3p
12'

Figure 1.

Trial proof showing design points.

285

286 Digital Typography

I had written the program in such a way that it was easy to change

the weight of the pen strokes. Furthermore I decided to try drawing a

“random” variation in which I moved several of the 12 points slightly

away from their precise mathematical positions, using random numbers

to make such “errors.” The results are shown in Figure 2: Figure 2a

shows the original character; 2b is the bold version; 2c, 2d, and 2e show

random variations with standard deviations 5, 10, and 15. (Clearly a

deviation of 15 was too much, but we were having fun.)

(a) (b) (c) (d) (e)

Figure 2. Five outputs of the METRFQNT program.

Then I generated a font containing the characters of Figs. 2a and 2b,

plus 26 different characters like Fig. 2c. (In each case the standard

deviation was 5, but different random numbers were used.) We printed

this font on our Alphatype CRS phototypesetter, and Figure 3 shows

the results in their true size as they came from that machine.

You can tell from Figure 3 that this was my first experience with

Indian scripts, because I didn’t know how to spell Devanagari. If you

look closely you might also be able to see that the 26 letters on the third

line are all slightly different. I had a feeling that a little randomness

might make the characters seem “warmer,” even though they had been

generated by precise mathematical formulas.

These were early days and there still were bugs in our software;

there’s a glitch between two characters on the third line. (Something

always goes wrong when you are demonstrating a computer program.)

During the past year Mr. Pijush Ghosh visited our laboratory and

created a family of fonts that he called NCSD, “Novice Calligrapher’s

Simple Devanagari.” From these encouraging experiments I have been

glad to learn that my ideas might find application far across the seas,

in languages that I will probably never be able to comprehend. What a

wonderful feeling that gives me!

My coworkers and I are presently engaged in creating a new version

of METRFONT, which we hope to make available about one year from

My First Experience with Indian Scripts 287

Here is Matt Carter’s Devenagari character:
And here it is in boldface;

And here are random versions:

Figure 3. The first typeset samples, at their true size.

now. This new version should be much easier to use than the first, but

I am afraid it will still not be really simple; I think the best way to use it

will be to have an artist work together with a computer specialist, just

as Matthew Carter worked with me. The program will be designed to

run on a wide variety of computers, both large and small. We plan to

offer it free of charge, because all of this work has been inspired by our

love of printing.

Addendum

I learned later that the character ^ is a variant of the letter L, which is

most commonly written cT.

During the past fifteen years I’ve been delighted to see the creative

ways in which many people have applied METRFONT to the design of

Indie characters. For example, I recently used a Devanagari font de¬

signed by Frans J. Velthuis to typeset the word (kuttaka) in the

third edition of my book Seminumerical Algorithms (1997).

T . ,1 .*

W

r » ,1 Mi ^ * t • " ' f j 'i ^ d . t m

" t ** ' *1

. r *■ "Ji ’•

,1

• 'H ' t

•»

'« - ,

<*

« rt ■

‘ir

wV- » '

t (-•-1^ ,pf /.

!”*» j' .' *• < I

?•

1 ■ '•»
11

<•* •
V'

V

V ■'• 'J.'

.T<

4,

Chapter 15

The Concept of a Meta-Font

[Originally published in Visible Language 16 (1982), 3-27.]

A single drawing of a single letter reveals only a small part of what was

in the designer’s mind when that letter was drawn. But when precise in¬

structions are given about how to make such a drawing, the intelligence

of that letter can be captured in a way that permits us to obtain an infinite

variety of related letters from the same specification. Instead of merely

describing a single letter, such instructions explain how that letter would

change its shape if other parameters of the design were changed. Thus

an entire font of letters and other symbols can be specified so that each

character adapts itself to varying conditions in an appropriate way. Ini¬

tial experiments with a precise language for pen motions suggest strongly

that the font designer of the future should not simply design isolated al¬

phabets; the challenge will be to explain exactly how each design should

adapt itself gracefully to a wide range of changes in the specification.

This paper gives examples of a meta-font and explains the changeable

parameters in its design.

Some of Aristotle’s philosophical writings were called

Met aphysics, because they came after his Physics in the

conventional arrangement of his works. By the twentieth

century, most people had forgotten the original meaning

of Greek prefixes, and “meta-” was assumed to add a

transcendent character to whatever it qualified. We now

have metapsychology (the study of how the mind relates

to its containing body), metamathematics (the study of

mathematical reasoning), and metalinguistics (the study

of how language relates to culture); a metamathematician

289

290 Digital Typography

proves nietatlieoreiiis (tlieorems about tbeorems), and a

computer scientist often worlcs witb metalanguages (lan¬

guages for describing languages). Newly coined words

beginning witli ^^meta-^ generally reflect our contempo¬

rary inclination to view things from tbe outside, at a

more abstract level, witb wbat we feel is a more mature

understanding.

In tins sense a “meta-font” is a schematic descrip¬

tion of how to draw a family of fonts, not simply tbe

drawings themselves. Such descriptions give more or less

precise rules about bow to produce drawings of letters,

and tbe rules will ideally be expressed in terms of vari¬

able parameters so that a single description will actually

specify many different drawings. Tbe rules of a meta¬

font will thereby define many different individual fonts,

depending on tbe settings of tbe parameters. For exam¬

ple, tbe American Type Foimders specimen book of 1923

included tbe following members of its “Caslon’ family:

plain, oldstyle, ligbtface, bold, heavy, condensed, light-

face condensed, bold condensed, extra condensed, bold

extended, shaded, and openface, not to mention Ameri¬

can Caslon, New Caslon, Recut Caslon, and Caslon Ad-

bold; each of these was available in about sixteen different

point sizes, so tbe total number of Caslon roman fonts was

about 270. There was an overall design concept loosely

tying all these fonts together so that they were recogniz¬

ably “Caslon,” although the changes in size and weight

were accompanied by more or less subtle changes in the

letter shapes. We can regard this overall design as a

meta-font that specified how the letters would change

in different circumstances: The meta-font governed the

Of course, the actual design of all these Caslon vari¬

eties was not completely explicit; it was conveyed im¬

plicitly by means of a few drawings that specified a

The Concept of a Meta-Font 291

few critical examples. A skilled workman could make

tlie appropriate modifications for intermediate sizes and

styles just as skilled animators do tlie “in-betweening” for

Walt Disney cartoons. It would be preferable, liowever,

to liave a completely explicit design, so tliat tlie designer’s

intentions would be unambiguously recorded; tlien we

wouldn t liave to resort to tlie vague notion of “appro¬

priate modifications.’ Ideally, the designer’s intentions

sliould be so explicit tliat tliey can be carried out satisfac¬

torily by somebody wlio doesn’t understand letter shapes

at all — even by a stupid, inanimate, electronic computer!

George Forsytlie once wrote that “The question

A\ bat can be automated?’ is one of tbe most inspir¬

ing pliilosopliical and practical questions of contemporary

civilization.' We know from experience that we under¬

stand an idea much better after we have succeeded in

teaching it to someone else; and the advent of computers

has brought the realization that even more is true: The

best way to understand something is to know it so well

that you can teach it to a computer. Machines pro¬

vide the ultimate test, since they do not tolerate “hand

waving ” and they have no “common sense ” to fill the

gaps and vagaries in what we do almost unconsciously.

In fact, research in artificial intelligence has shown that

computers can do virtually any task that is traditionally

associated with “thinking,” but machines have great diffi¬

culty accomplishing what people and animals do “without

thinking. ” The art of letter design will not be fully un¬

derstood until it can be explained to a computer; and

the process of seeking such explanations will surely be

instructive for all concerned. People often find that the

knowledge gained while writing computer programs is far

more valuable than the computer’s eventual output.

In order to explain a font design to a machine, we

need some sort of language or notation that describes

292 Digital Typography

the process of letter construction. Drawings themselves

do not suffice, unless the design is so simple that all fonts

of the family are related to each other by elementary

transformations. Several notations for the precise de¬

scription of letter shapes have been introduced in recent

years, including one that the author developed during

1977—1979. The latter system, called METRFONT, dif¬

fers from previous approaches in that it describes the

motion of the center of a “pen” or “eraser” instead of

describing the boundary of each character. As a result,

the METRFONT language appears to facihtate the de¬

sign of font families; for example, it took only about two

weeks of work to create the crude but passable meta-font

described in reference [5].

After another six months of development, during

which literally thousands of refinements were made, the

design of this prototype meta-font reached a state able

to support the complete typesetting of a com plex 700-

page book [7]. The name Computer Modern has been

attached to the resulting group of fonts, a family that

includes meta-fonts for both roman and italic styles in ad¬

dition to the Greek and Cyrillic alphabets and an upper¬

case calligraphic script, together with an extensive set

of mathematical symbols. The basic idea underlying the

design of this font family was to capture the spirit of

the fonts used in the first printings of the author’s books

on computer programming, namely the fonts known as

“Monotype Modern Extended 8A,” while casting the de¬

sign in the METRFONT idiom and including a wide range

of parametric variations.

So many variations are possible, in fact, that the au¬

thor keeps finding new settings of the parameters that

give surprisingly attractive effects not anticipated in the

original design; the parameters that give the most read¬

ability and visual appeal may never be found, since there

The Concept of a Meta-Font 293

are infinitely many possibilities. On tlie otlier hand, it

would be possible to parameterize many otlier things that

cannot be varied in the present design; an almost endless

series of interesting experiments can be performed, now

that METRFONT is avail able.

At the present time (January 1981), the Computer

Modern Roman nieta- font lias 28 parameters that affect

the shapes of its letters, plus three parameters that help

control inter-letter spacin0; the number of parameters

continues to grow as more experience is gained. There

are also a half-dozen miscellaneous parameters whose

sole function is to select alternate character and ligature

shapes in different fonts. For example, one of the latter

parameters is used to select between two styles for the

letter ‘g’; the reader niay have already noticed that the

g’s in the present paragraph are different from those used

elsewhere in this article. A few other typographic tricks

like this will be played in what follows; relatively large

type has been used so that the effects are not impossible

to perceive.

The most interesting and important parameters of

Computer Modern will be changed in the following para¬

graphs, one at a time, in order to show how much vari¬

ability is possible. Of course it is easy to find settings

of the parameters that give unsatisfactory results, since

a single design cannot be expected to solve all conceiv¬

able problems; therefore our examples will attempt to

illustrate the limiting cases where things break down as

well as the in-between regions where usable fonts are to

be found.

The first and most obvious group of parameters con¬

trols the vertical dimensions of letters: The x-height

and the heights of ascenders and descenders can be
independently specified. There are, in fact, two inde¬

pendent measurements for descenders, one to control the

294 Digital Typography

depths of the letters g jptjy and the other to control the

depths of other symbols like commas and the tail of the

letter Q. The height of uppercase letters is independent

of the height of lowercase letters, and the height of the

numerals 0 to 9 can also he varied at will. The most un¬

usual parameter relating to vertical dimensions is called

the bar-height, namely the height of the bar in a lower¬

case e; in the current designs the bar-height also affects

several other lowercase letters:

tlLQ paolj:,

tlLQ pac]^:,

tlLe pacdj:,

ttie pacx,

tlLC pacX!

Another fairly obvious group of parameters governs

the horizontal dimensions of each character in a font: It

is possible to obtain fonts that are e>ctremely

e>itended or fitremel” teidensed nitkout dianging the heights or

widths of the strokes. One can al so imitate a type¬

writer by extending or condensing the individual

characters so that each one has the same wi dth.

Notice that the serifs stretch or shrink with the

rest of a letter; therefore an i has much longer

serifs than an m in the typewriter style.

Of course we get a much better imitation of a

typewriter when the distinction between thick and

thin strokes disappears . Such a font looks typewriter¬

like even when its letters do not all have the same width.

The letters of Computer Modern are conceptually

drawn by pens having an elliptical nib; for example, the

thick strokes of the h’s in this sentence were made by

The Concept of a Meta-Font 295

a pen tliat would look like ^ ’ il enlarged ten times.

Tlie ellipses kave perfectly liorizontal axes, not ti])]jed as

/ , because tlie letters are intended to have vertical

stress. Different pens are tised to draw different])arts of

tke letters.

Five parameters control tke dimensions of tkese ellip¬

tical pens: One for tke widtk of tkin kairlines, another

for tkick stem lines tkat ai'e straight, another for thick

stem lines that are curved, another for the bulbs on let¬

ters like acf.. .y, and another that gives the thickness in

the vertical dimension. If all five of these measurements

are ecjual, the pens will be perfect circles.

Special care is needed in the choices of the pen-size

parameters. For example^ undesirable blotehes appear

when the bulbs are too large for the sterns^ and the type

has a disturbing inconsistency when its curved stems are

substantially wider than the straight ones. A font eannot

get too hold without having portions of the letters run

into eaeh other. Perhaps future meta-fonts will be set

up to compute desirable pen dimensions from a smaller

set of independent parameters, since the proper widths

depend in a subtle way on each other; at the moment,

trial and error is necessary to get a compatible set of pen

sizes, but further research should shed some light on this

dependence.

Only five pen-size parameters have been mentioned,

for simplicity, but the actual situation is somewhat more

complex. For example, the pens used for drawing upper¬

case letters are specified separately from those used to

draw the lowercase ones, and numerals are drawn by mix¬

ing these two specifications. There is also a parametric

“fudge factor” that takes some weight off of letters like

w and m, which otherwise would look too dark in certain

styles; true uniformity in line widths does not lead to

uniform appearance, because our eyes play tricks on us.

296 Digital Typography

Anotlier sliglitly subtle parameter of tbe Computer

Modern fonts is tbe so-called “overshoot” by which curves

and sharp corners descend below the baseline and above

the mean line. For example, the letters in this sentence

have no overshoot at all. And certain letters in this

sentence overshoot their boundaries by thrice as much

as they do in the following sentenees. Experimenta¬

tion is still necessary to find the amount of overshoot

that makes the letters look most stable, and on low res¬

olution printing equipment it is desirable to eliminate

overshoot entirely; further study of this parameter, in

combination with the others, should prove to be quite

interesting.

Serif details can be varied in several ways. For ex¬

ample, there are no “sheared” serifs on the letters in this

sentence. And the letters you are now reading have thrice

as much shear as usual, just to make sure that the concept

of shear is clear.

Another serif-oriented concept is the amoimt of so-

called “bracketing”; the serifs in this sentence have no

brackets. But the brackets are exaggerated in this sen¬

tence, so the serifs appear darker. The difference can be

understood most easily if we enlarge the letters:

n o bracketing;

XT. ormal bracketing;

XT.oticeable bracketing.

A curve that starts at the edge of the serif will be tangent

to the stem at some distance above or below the serif; this

vertical distance is the “bracketing” parameter.

The length of serifs is, of course, controllable too. The

letters in this sentence have serifs that are 50% shorter

The Concept of a Meta-Font 297

than before. And in tliis sentence tlie serifs are 50%

longer tlxan before — so long tliat tliey soinetinies toncli

wKere tliey slionldn’t. One way to get sans-serif letters

is simply to set the serif length to zero (and make appro¬

priate changes in the inter-letter spacing); hiit it is better

to redesign several of the letters when serifs go away, for

example by using flared terminals instead of bulbs.

A “slant ” pHraiiietei' transforms the pen motion, as

shown in this sentence, but the pen shape remains the

same. A\ie degree of slant can be negative as well as pos¬

itive, if nnnsnal effects are desired.

Perhaps

the most interesting use o| the slant parameter occurs

rrhcn Computer IVIodern Italic Jonts are generated xrith-

out ang slant: Italic letters hare a di^crent stgle |rom

roman, and u’C arc so used to seeing such letters slanted

|oru'ard that thcg appear to he slanting backxrard rrhcn

most o f th cm arc actuallg upright or slanting slightlg

|orxrard.

The final parameter we shall discuss is the most in¬

teresting one; it is called “the sqxiare root of 2.” From

a mathematical standpoint, there is of coirrse only one

square root of 2, but the Computer Modern meta-fonts

treat \Pl as a variable parameter that is used to compute

the 45° points when a pen is drawing elliptical curves.

As a result, a value that is smaller than the true one will

change an ellipse to a superellipse and open up the bowls;

for example, if w^e use the fifth root of 4 in place of the

square root of 2, namely

1.31950791 instead of 1.41421356,

we obtain the famous superellipse defined by Piet Hein.

A higher value for the square root of 2, on the other hand,

will have the opposite effect:

298 Digital Typography

The “square rnnt nf 2

The “square root cdF 2'

The “square root of 2

The “square root of 2

The “square root of 2

The “square root of 2

The “square root of 2

The “square root of 2

The “square root of 2

The “square root of 2

in these letters is 1.100.

in the.se letters is 1.200.

in these letters is 1.320.

in these letters is 1.350.

in these letters is 1.380.

in these letters is 1.414.

in these letters is 1.450.

in these letters is 1.500.

in these letters is 1.600.

in these letters is 1.700.

Several additional parameters can be varied in addi¬

tion to those we have mentioned. For example, there is

an amount by which sharp corners in letters lihe V and

M are spread apart to avoid unnecessary lill-in. Several

parameters control details of the ^ beaks in letters like

E, T, and Z. But a complete description of Computer

Modern Roman is beyond the scope of this paper.

We have been studying the parameters one at a time;

what happens when they are all changing at once? Fig¬

ure 1 shows one of the interesting transformations that

can be made. At the top we have a font with an old-

fashioned feeling, essentially the same as the style of

type used so far in the text of this paper: The h-height

is 8.4 points, the x-height is 4 points, the bar-height is

2.3 points, and the descender depth is 3 points. Hair¬

lines are 0.26 points wide, compared to 1.2-point straight

stems and 1.34-point curved stems; the bulb diameter is

1.36 points, and the hairline pens are perfect circles. One

em in this style equals 12.6 points; serifs are .07777 of an

em long, and they have 0.54 points of shear, 0.8 points

of bracketing. The overshoot parameter is 0.3 points,

and the “square root of 2” has its mathematically correct

value 1.414214.

The Concept of a Meta-Font 299

Lord is my sliepliercl;

I shall not want.

He maketh me to lie clown

in green pastures:

he leacleth me

beside the still waters.

He restoreth my sonl:

he leadetli me

in the paths of righteousness

for his name’s sake.

Yea, though 1 walk through the valley

of the shadow of death,

I will fear no evil:

for thou art with me;

thy rod and thy staff

they comfort me.

Thou preparest a table before me

in the presence of mine enemies

thou anointest my head with oil,

my cup runneth over.

Surely goodness and mercy

shall follow me

all the days of my life:

and I will d we 11

in the house of the Lord

for ever.

Figure 1. Continuous variation of parameters can gradually convert a

font with an old-fashioned flavor into a contemporary style. All of

the letters in this example have the same h-height, but their em

width increases as their x-height increases. This gives a perspective

effect in which the words come out of the past to the present, as they

approach the future.

300 Digital Typography

n"he letters at the end of
Figure 1 have been transfornned

into an almost hypermodern

font, which will be used for the

remainder of this article. “The
h-height is still 8.4- points, but the

x-height has grown to 6.4 points

and the bar-height to 3.2; the
descender depth is now 4 points.

Hairlines and stem lines and
curved stems are all exactly one

point wide, and the pen nibs are

0.6 point tall. Thus, the pen that

draws most letters looks like
when magnified lO-fold. One em

is now 21.6 points; the serif length

is zero, and so are the shear and
bracketing parameters. There are

0.1 points of overshoot, and the

“square root of 2“ is 1.3.

Each of the 595 letters, spa¬

ces, and punctuation marks in

Figure 1 belongs to a difrerent

font, obtained by going 1/594

of the way further toward the

final parameter settings. Thus,

although each letter appears to be

in the same font as its neighbors,

the cumulative change is quite

dramatic-it is something like the

The Concept of a Meta-Font 301

gradual changes in our own faces

as we grow older, except that this

typeface is getting younger.

Hundreds of typefaces have

appeared in this article, yet all

of them belong to the Com¬

puter Modern Roman and Italic

meta-fonts. Each letter has been

specified by a computer program

written in the METRFONT language,

and the computer can draw any

desired variant of that letter

when the parameter values have

been supplied. It is important

to remember that none of these

conventions and parameters are

built into METRFONT itself; METR¬

FONT is a general-purpose language

intended to facilitate the design of

meta-fonts, and Computer Modern

is but one approach to font design

using such a language.

Let us take a brief look at the

program for the letter h, since

this will give some insight into the

way a meta-font can be designed.

Each Computer Modern Roman h

is drawn essentially as follows, if

we paraphrase the METRFONT code

into English:

302 Digital Typography

This character will be 10 units wide, where there are 18 units per em;

however, the width should be adjusted by the “serif correction” after

the character has been drawn, to account for long or short serifs.

This letter has several key points, defined as follows: Take an

elliptical pen whose height is equal to the hairline height, and whose

width is equal to the straight stem width for lowercase letters. When

this pen is centered at point 1, its center is approximately 2.5 units

from the left edge of the character (rounded so that the center is

in a good position with respect to the raster), and its top is at the

h-height for lowercase letters. Point 2 is directly below point 1; the

bottom of the pen will be exactly at the baseline when its center is

at point 2. Points 3 and 4 both lie approximately 2.5 units from the

right edge of the character; point 4 is directly to the right of point 2,

while point 3 is 1/3 of the way from the bar-height to the x-height.

Take the pen and draw a straight stem from point 1 to point 2, and

another from point 3 to point 4. Put a sheared serif at the left of

point 1, and attach serifs at both sides of points 2 and 4, using

the serif sub-programs (which take proper account of the shear,

bracketing, and serif-length parameters).

Finally, the shoulder of the h is drawn as follows: The stroke begins

vertically at a point 1/8 of the way from the bar-height to the x-

height, using a hairline pen positioned flush right with the left stem

line. This hairline pen traces a quarter-ellipse, ending at a point

that is halfway between the right edges of the stems and such that

the pen’s top is at the x-height plus half of the overshoot; let us call

this point 5.

The shoulder is completed by drawing one quarter of a superellipse

from point 5 to point 3 as the pen grows from the hairline width

to the straight stem width; the midpoint of this arc is computed

by using the geometric mean of the number 1.23114413 and the

“square root of 2” parameter, instead of v^, in the usual formulas

for ellipses. (The strange constant 1.23114413 is 2^/^®, chosen so

that Piet Hein’s original superellipse will be obtained if the “square

root of 2” is \/2.)

Similar routines will yield the m

and the n. Effects of the “slant”

parameter are not mentioned in

this description, since slanting is

The Concept of a Meta-Font 303

Figure 2.

The program that is

paraphrased in the

text might prepare

this character for a

low-resolution printing

device. Notice the five

key points numbered

1, 2, 3, 4, and 5; the

center of the “pen”

travels through these

points as it draws

the letter.

done by a d if re rent part of the

computer program, at the time the

actual drawing is being produced.

“The idea of a meta-font should

now be clear. But what good is

it? The ability to manipulate lots

of parameters may be interesting

and fun, but does anybody really

need a GVr-point font that is

one fourth of the way between

Baskerville and Helvetica?

We might consider also an

analogy with music; Musical

notation was developed centuries

before we had a notation for

drawing; during all this time there

304 Digital Typography

has been no widely perceived

need for meta-symphonies, so

why should we desire meta-fonts?

Well, these are legitimate

questions that surely deserve to

be answered; let’s think about

the musical analogy first. The

long history of musical notation

shows clearly that the mere

existence of a precise language

does not by itself call for the

introduction of parameters into

that notation. Indeed, parameters

have not crept into serious music,

even in primitive ways, until very

recently, except in a few almost-

forgotten pieces like Mozart’s

meta-waltz [11]. It would surely

be interesting and instructive to

write meta-music that could pro¬

duce variable degrees of suspense,

excitement, pathos, sturm und

drang in the listener, depending on

the setting of certain parameters;

but there would be little apparent

use for such music except in the

sound track of motion pictures.

All analogies break down, of

course, and font design is different

from musical composition because

The Concept of a Meta-Font 305

alphabets are not symphonies; an

alphabet is a “medium” while a

symphony is a “message.” We get

a much better analogy between

fonts and music when we consider

background music rather than

symphonies, since fonts serve as

the background for an author’s

printed ideas. Many people resent

background music because they

feel that music should either be

the main focus of a person's

attention or it should be absent

entirely. On the other hand, it is

generally agreed that the reader of

a book should not be conscious of

the g’s and the k’s in that book.

A font should be sublime in its

appearance but subliminal in its

effect.

The utility of parametric var¬

iations comes from our need for

variety. We don’t all want to

live in identical houses or drive

identical cars. Background music

becomes especially tedious when

it comes from a limited score

having only a few motifs; and five

centuries of typographic practice

have witnessed a continual craving

306 Digital Typography

for new alphabets and for large

families of related alphabets.

Thus, although any one particular

setting of a meta-font’s param¬

eters may seem to be somewhat

silly and unnecessary, the ability

to choose arbitrary parameter

settings fills a real need. Book

designers and the designers of

advertising copy will have greater

freedom than ever before when

they have several meta-fonts to

work with. Personalized fonts and

one-time-only fonts will also be

easy for anyone to obtain.

Another reason why meta-fonts

and meta-music were not highly

developed long ago is the fact

that computers did not exist until

recently. Human beings find it

ditricult and dull to carry out

calculations with a multiplicity

of parameters, while today’s

machines do such tasks with ease.

Perhaps the most important

practical result of parametric

variations is the ability to make

adjustments for each point size;

the contemporary tendency to

obtain T-point fonts by 70%

The Concept of a Meta-Font 307

reduction of lO-point fonts has

led to a lamentable degradation

of quality. Another advantage is

that a meta-font can adapt its

curves so that they are properly

rendered by digital typesetting

machines, which are based on

discrete rasters. This leads to a

significant reduction in the need

for manual editing of the raster
patterns.

It is, of course, quite a challenge

to design a meta-font instead of

a single font. A designer wants to

remain in control, yet the great

variety of possible parameter

settings means that the meta-font

is able to generate infinitely many

alphabets, most of which will
never be seen by human eyes;

only a few of the possibilities can

really be looked at, much less

fine-tuned, before the specifica¬

tion of the meta-font has been
completed. On the other hand,

the designer of a meta-font has

compensating advantages, because

meta-fonts allow us to postpone

making decisions about many

aspects of a design and to leave

308 Digital Typography

them as parameters, instead of

freezing their specifications in the

initial stages. Such things as the

amount of overshoot, the width of

hairlines, the length of serifs, and

so on, need not be decided once

and for all; it is easy to ask the

computer to make experiments

by which the designer will be

able to choose the best settings

of those subtle quantities after

viewing actual typeset material.

Experiments of this kind would be

unthinkable if each character had

to be drawn individually-i.e., if

each character were simply in a

font rather than a meta-font.

In the long run the scientific

aspects of meta-fonts should

prove to be the most important.

The ability to adjust continuous

parameters makes it possible to

carry out controlled experiments

about how such variations affect

readability or visual appeal. And

even more significant will be the

knowledge that will be explicitly

embedded in the descriptions of

meta-fonts. For example, the

author learned a great deal about

The Concept of a Meta-Font 309

font design while refining the

Computer Modern alphabets, and

this information is now accessible

to anybody who reads the METR-

FONT code. It is tantalizing to

think how much further the art

of font design will be advanced

when professionals who really

know the subject begin to create

meta-fonts in an explicit language

like METRFONT.

Acknowledgments and Apologies

The author wishes to thank Charles Bigelow, Matthew Carter, Douglas

Hofstadter, Jill Knuth, and Michael Parker for numerous suggestions

that helped to improve the presentation; and he owes a special debt

of gratitude to Hermann Zapf for dozens of invaluable suggestions that

helped greatly to improve the design of the Computer Modern meta¬

fonts. Apologies are made to language purists who object to mixing

Greek and Latin stems: The Greek equivalent of fans is TCriYri, so a word

like “metapeg” might be superior to “metafont.” However, such a name

would not be readily understood by people who encounter it for the first

time, at least not until the day that the science of font design becomes

known as pegology.

The research reported in this paper was supported in part by National Science Foun¬
dation grants IST-7921977 and MCS-7723738, and in part by the IBM Corporation.

Annotated Bibliography

The typefaces used to set this bibliography reflect the parameter settings

for Computer Modern Roman that were used in its original design, based

on the “Monotype Modern 8” fonts; the more extreme settings used to

typeset the text of the article above were chosen long after the design

itself was complete, in order to illustrate the meta-font concept.

[1] P. J. M. Coueignoux, Generation of Roman Printed Fonts, Ph.D.

thesis. Dept, of Electrical Engineering, Massachusetts Institute of

Technology (June 1975). This thesis represents the first use of

310 Digital Typography

sophisticated mathematical curves to describe letter shapes to a

computer. Coueignoux and his students are presently continuing

this research at the Ecole Nationale Superieure des Mines de Saint-

Etienne, France.

[2] Adrian Frutiger, Type Sign Symbol (Zurich: ABC Verlag, 1980); see

especially pages 15-21, which describe “Why Univers was designed

and how it developed.” Univers was the first true meta-font, in

the sense that a wide variety of different sizes and weights played

a central role in its design from the very beginning. “The decisive

factor for the many new design possibilities provided by Univers

was that it became possible, for the first time, to work with a set of

typefaces as a complete system.” Page 59 of this fascinating book

shows a meta-letter n, called the “proportional schema of a typeface

family,” graphically depicting the desirable stroke variations as the

font gets bolder.

[3] Peter Karow et ah, “IKARUS: computer controlled drafting, cutting

and scanning of characters and signs. Automatic production of fonts

for photo-, CRT and lasercomp machines. Summary” (Hamburg:

URW Unternehmensberatung, September 1979). Already by 1980,

the IKARUS system was widely used to capture the shapes of let¬

ters in mathematical form, based on original artwork [see Baseline 3

(1981), 6-11]. The computer programs will also interpolate between

different weights, although the number of independent parameters is

quite limited; this feature was used successfully by Matthew Carter

to develop several weights of his Galliard type, including Ultra Ro¬

man [see Charles Bigelow, “On type: Galliard,” Fine Print 5 (1979),

27-30].

[4] David Kindersley and Neil Wiseman, “Computer-aided letter de¬

sign,” Printing World (31 October 1979), 12, 13, 17. Discusses

the ELF system at Cambridge University, which features a novel

method of optical spacing between letters.

[5] Donald E. Knuth, “Mathematical typography,” Bulletin of the

American Mathematical Society (new series) 1 (1979), 337-372.

[Reprinted with corrections as Chapter 2 of the present volume.]

A paper written shortly after the author began his research on font

generation; it explains the initial motivations for this work and

shows an experimental roman meta-font.

[6] Donald E. Knuth, “The letter S,” The Mathematical Intelligencer 2

(1980), 114-122. [Reprinted as Chapter 13 of the present volume.]

The Concept of a Meta-Font 311

Discussion of the letter that is most difficult to incorporate into a
parameterized meta-font.

Donald E. Knuth, Seminuinerical Algorithms, Volume 2 of The Art

of Computer Programming, second edition (Reading, Massachu¬

setts: Addison-Wesley, 1981). This book was the first large work to

be typeset entirely with the Computer Modern meta-fonts; indeed,

Computer Modern was developed expressly for the books in this

series. At the time of printing, the design of Computer Modern

had evolved almost to the point represented in the original (1982)

printing of the article above, although certain characters like ‘2’

were subsequently revised and the x-height settings were decreased

slightly. Such revisions and afterthoughts are probably inevitable,

especially when the computer representation of a meta-font makes

changes so easy; it is very hard to stop and say “no more improve¬

ments will be made!”

Donald E. Knuth, The Computer Alodern Family of Typefaces,

Stanford Computer Science Department report STAN-CS-80-780

(January 1980). Hundreds of important refinements were made

between the completion of this report and the publication of [7], and

thousands more were made when everything was rewritten in the

new METRFONT language of 1984. A near-final version of Computer

Modern appears in The Computer Modern Family of Typefaces,

Volume E of Computers & Typesetting, fourth printing (Reading,

Massachusetts: Addison-Wesley, 1993); a few late changes are fisted

in the file cm85.bug, which is part of the CTAN archives on the

Internet. Computer Modern has had a total of 62 parameters ever

since 1985; the latest version (1998) has been used to typeset this

chapter, using parameter values that correspond to those of the

original article of 1982.

J. R. Manning, “Continuity conditions for spline curves,” The Com¬

puter Journal 17 (1974), 181-186. The clothing industry has needs

analogous to those of type designers; this paper, from the Shoe and

Allied Trades Research Association in England, discusses the gen¬

eration of curves that pass through given key points, and it includes

a “meta-shoe” as an example.

H. W. Mergler and P. M. Vargo, “One approach to computer as¬

sisted letter design,” Visible Language [nee The Journal of Typo¬

graphic Research] 2 (1968), 299-322. This paper describes ITSYLF,

the first computer system for parametric letter design; ITSYLF in¬

cluded a meta-font for uppercase roman letters. The approach was

312 Digital Typography

limited and unsuccessful because it was entirely based on edge gen¬

eration with a limited class of curves and because of the equipment

limitations of the 1960s, but the authors had laudable goals.

[11] W. A. Mozart, Anleitung zum Componiren von Walzern, so viele

man will vermittelst zweier Wiirfel, ohne etwas von der Musik

oder Composition zu verstehen (Berlin: Simrock, 1796); first pub¬

lished by J. J. Hummel of Amsterdam and Berlin, 1793. Listed

in Kochelverzeichnis 516f Anh. C 30.01. Reprinted as Mozart’s

Musikalisches Wiirfelspiel, edited by Karl Heinz Taubert, Edition

Schott 4474 (Mainz: B. Schott’s Sohne, 1957); also with an in¬

troduction by Hugh Norden (Brighton, Massachusetts: Carousel

Publishing, 1973). This unusual score presents a waltz that can be

played in 759,499,667,966,482 different ways, since there are eleven

possibilities for most of the individual bars; the harmonic principles

have been analyzed by Hermann Scherchen in Gravesaner Blatter 4

(May 1956), 3-14. Mozart also devised a meta-contredanse, and the

British Museum reportedly owns a meta-score by Haydn. A note¬

worthy 20th-century example of meta-music can be found in The

Schillinger System of Musical Composition by Joseph Schillinger,

Volumes 1 and 2 (New York: Carl Fischer, 1946).

[12] Edward Rondthaler, “From the rigid to the flexible,” Penrose An¬

nual 53 (1959), XV, 1-9. An early description of the variability of

type that is possible with photographic transformations alone.

Addendum

Brief reviews of “The Concept of a Meta-Font” by Fernand Baudin,

Charles Bigelow, Henri-Paul Bronsard, Ed Fisher, Jr., David Ford, Gary

Gore, W. P. Jaspert, Albert Kapr, Peter Karow, Alexander Nesbitt,

Edward Rondthaler, John Schappler, Walter Tracy, Gerard Unger, and

Hermann Zapf, together with a longer review by Douglas R. Hofstadter,

were published in Visible Language 16 (1982), 309-359, closing with the

following response from the author:

What a privilege it is to have so many distinguished people reading my

work, and what a pleasure to read their profound comments! Thank

you for giving me a chance to add a few more words to this stimulating

collection of letters.

As I was reading the diverse reactions, I often found myself sid¬

ing more with the people who were sharply critical of my research than

with those who acclaimed it. Critical comments are extremely helpful for

The Concept of a Meta-Font 313

shaping the the next phases of the work that people like me are doing, as

we search for the proper ways to utilize the new printing technologies.

Several of the writers mention my citation of George Forsythe, and

your readers may be interested in further details about what he said.

George was one of the first people to perceive the real importance of

computer science, as opposed to the mere use of computers, and the

remark I cited is taken from the introduction of an invited address on

Gomputer Science and Education that he gave in 1968 at the Gongress

of the International Federation for Information Processing, held in Ed¬

inburgh. I wish I could have quoted his entire article; the best I can

do is urge people to look for it in their libraries [Information Processing,

Volume 2 (North-Holland, 1968), 1025-1039].

Perhaps I may be forgiven for citing also another article of my own,

entitled “Computer programming as an art” [Communications of the

ACM 17 (1974), 667-673; L’Informatique Nouvelle, no. 64 (June 1975),

20-27]. In this essay I attempt to show that the essential difference be¬

tween science and art is that science has been codified (and in this sense

“automated”), while art is what human beings achieve with their mys¬

terious intuition. My main point is that science never catches up to art,

since the advances in science are always accompanied by artistic leaps.

Thus, my hope is that the advent of computers will help us to un¬

derstand exactly how little we really know about letter forms. Then, as

we attempt to explain the principles in such concrete terms that even a

machine can obey them, we will be learning a great deal more about the

subject, so that we and the coming generations will be able to raise the

artistic level even higher.

Meanwhile my experiences since publishing the article in Visible Lan¬

guage have been quite encouraging. Several leading designers have gener¬

ously given me specific pointers on how to improve the Gomputer Modern

fonts, and I spent the month of April making extensive refinements under

the tutelage of Richard Southall. The number of parameters has grown

from 28 to 45, but all the parameters still seem to make sense; and the

careful incorporation of such subtleties is already yielding significantly

better results. Much remains to be done, including further development

of the mathematics of shapes, but there now is some evidence that the

tools we are developing will not be inadequate to the task. I hope to

publish a book that captures the things these people have taught me,

so that such knowledge can be widely appreciated, apprehended, and

appropriated, not merely applied.

Donald E. Knuth

Computer Science Department

Stanford University

12 October 1982

314 Digital Typography

The design and character of this type
have received both favourable and unfavourable criticism,

but inasmuch as bibliographers have, to my knowledge,
written about it in seven languages

and in sixteen countries of the world,
I feel that the accomplishment has at least created interest.

— DARD HUNTER, Primitive Papermaking (1927)

Chapter 16

Lessons Learned from METRFONT

[A keynote address presented on 1 August 1983 at the Fifth Working

Seminar in Letterform Education and Research, held under the auspices

of the Association Typographique Internationale (ATypI). Originally

published in Visible Language 19 (1985), 35-53.]

Type designers today face an important problem, the problem of con¬

structing digitized patterns for printing. The central question is, “What

is the right way to create such patterns?” Or, rather, “What will be

the right way?” — since we are concerned primarily with long term is¬

sues that are different from the problems of meeting today’s deadlines.

In this paper, I shall try to convey some of my excitement about ex¬

ploratory research that has been going on here at Stanford, since I think

we have found a small part of the answer.

Let me state at the outset that I do not foresee the problem ever

becoming simple. Indeed, when I ponder what lessons I have learned so

far, the main lesson turns out to be that the problem is quite difficult!

In a way, this is not surprising. For more than thirty years, computers

have been oversold by salesmen who claim that computing machines are

easy to use, while the truth is quite the opposite: Computer program¬

ming requires more attention to detail than anything else that human

beings have ever done. Moreover, the problems of letterform design are

extremely subtle, much more complex than most people think, because

our machines and our eyes interact with the shapes in complicated ways.

I am convinced that digital alphabet design is an extremely challenging

problem, and that it is significant enough to deserve the attention of our

best scientific minds and our best artistic skills and sensitivities. Fur¬

thermore, I believe that the world will be a better place to live in after

we learn more about the subject.

There is also another point I want to make before getting into the

details of my work: I am a mathematician, well aware that I am no

artist. I do not believe that mathematical methods will resolve all the

315

316 Digital Typography

problems of digital typography; but I do believe that mathematics will

help. Indeed, it is almost inconceivable that more than 2000 years of

accumulated knowledge about geometry and curves will prove to be

irrelevant to alphabet design. Yet mathematics is a threat to people

whose love for letters is partly due to their hatred of (or, let us say,

lack of attraction to) algebra. I am sorry that “math anxiety” exists,

but I know that it is widespread. I am well aware that the injection of

mathematics into a previously untainted area can be considered unfair

to the leaders of that discipline, since they suddenly have to learn an

enormous amount of new material in order to stay on top of their subject.

However, I do not think there is really cause for alarm; it is not unusual

for a subject to be so complex that no one person can understand it all.

The most fascinating thing about recent developments in typography is,

in fact, the emerging collaboration between scientists and artists: the

bridges that are being built between C. P. Snow’s “two cultures.” I am

not proposing that letter designers suddenly abandon their traditional

ways and learn all about computer programming; I am proposing that

they team up with computer scientists the way they used to collaborate

with punchcutters. On the other hand, I am also pleased to see students

growing up with feet solidly grounded in both worlds.

But what specifically is it that I think is so interesting? During

the past few years I have been developing a computer system called

METRFONT, which has three somewhat unusual characteristics:

(1) METRFONT understands a special language for drawing shapes

with simulated pens that have thicknesses. For example, consider Fig¬

ure 1, which shows a valentine-like curve traced by a slightly broad-edged

pen. METRFONT drew this figure with ease, given only six points on the

“spine” of the curve; the actual edge of the curve is quite complex and

difficult to describe, but the pen motion is quite simple.

(2) The METRFONT language also encourages the construction of

designs with explicit parameters, so that a large family of shapes can be

described, rather than a single shape. For example. Figure 2 shows one

of the sketches that Matthew Carter made when he was developing Gal-

liard; METRFONT aims to facilitate the incorporation of variations into a

design. This, in fact, accounts for the prefix “meta-” in METRFONT; the

approach is “meta-” in the sense that it deals with fonts from outside, at

a higher level, somewhat as “metamathematics” is the theory of math¬

ematical proof techniques. Meta-concepts are proliferating these days:

For example, I recently learned of a new game called “metagame” [7]

in which the first move is to choose a game to play. (An interesting

problem arises when the first player says, “Let’s play metagame!”)

Lessons Learned from METRFONT 317

I have written elsewhere about the concept of a meta-font [6], which

is a high-level description that transcends any of the individual fonts

it describes. This concept is to be distinguished from the METRFONT

system itself, which is merely one way to describe meta-fonts. Figure 3

(due to Scott Kim) illustrates some of the parameter variations possible

in an early version of a meta-font called Computer Modern; each variable

has been pushed to extremes for the sake of example. Figure 3a shows

changes in the slant of characters, and Figure 3b shows changes in the

width; in both cases the pens stay the same but the path is different,

hence the changes in image could not be done by optical transformations.

(a)

Typography

(b)

T y p 0 5 n p h y
(c)
Typography

<DonB>l ResMSI Oilui TypO^FS-ptiy Typography (t*guur) »«isw=o Typo§r3,ph.y

(aonal SluUd] 1/6 lUa Typography Typography

Typography Typography Typography

Typography Typography Typography

Typography ™kd«k,is TJ/pqgrapt^ (bold) wBgbt = 1 Xypogrs-phy

™.hi.! Typography

Typography !ti Typography i.H.. Typography

1/. Typography Typography (i>onn»i) 10 point Xypo^FS-pHy

Typography „./ki Typography Typography

Mrih by Ty pogr3.phy Typography Typography

Inonul] iBihKalwlby 1 TypO^FSpliy Typography 7 k.,.. Typography

wih tcaiwi by! lypo^i'S-plxy .,u-,=„wi Typography Typography

HrifiK>Mby4 Ty Typography SH.. Typography

(d) (e) (f)

Figure 3.

318 Digital Typography

Figure 3c shows what happens when the pen motion stays almost

unchanged but the pen size varies. The lengths of serifs can be varied

too (Figure 3d). A more unusual transformation is shown in Figure 3e,

where alterations are made in the “constant” that is used to compute

curves; this changes the bowl shapes. Figure 3f shows several parameters

changing simultaneously to keep the letters readable as the type size

changes; this is one of the main reasons for having parameters in a

design. (The letters have been scaled here so that the a;-heights are the

same, thereby making the other changes more evident.) In each case the

letters have been generated from an identical METflFONT description;

the changes were caused only by changing parameters that apply to a

font as a whole.

(3) In order to support characteristics 1 and 2, METRFONT descrip¬

tions of letterforms are given as programs. For example, Figure 4 shows

two of the programs in an early version of a meta-font called CHEL,

developed by Thom Hickey in 1982 (see [1]). Sample letters produced

by these programs, for various settings of the parameters, appear at the

top of the figure. The program for ‘b’ is quite short because most of

the work is done by a subroutine — an auxiliary program that is used to

construct parts of several different letters. In this case, Hickey devised a

subroutine to draw a small bowl, and he used the same subroutine also

in the ‘d’ and ‘p’, etc.

METRFONT programs are quite different from ordinary computer

programs because they are largely “declarative” rather than “impera¬

tive.” In other words, they state relationships that are supposed to hold;

they do not tell the computer how to satisfy those conditions. For exam¬

ple, a METRFONT description might declare that the left edge of a stem

line should occur one unit from the left; the program does not need to

state that the center of the pen should be positioned one unit from the

left, plus half of the stem width, because the computer can figure that

out. Similarly, it is possible to state that a certain point lies on the in¬

tersection of two lines; it is not necessary to specify how to compute the

intersection point. Most of the mathematical complexities can therefore

be handled by the computer, behind the scenes.

Since METRFONT programs include all of the information about how

to draw each letter in a wide variety of circumstances, the programs are

able to record the “intelligence” that lies behind a design. I believe that

this aspect of METRFONT — its ability to capture the designer’s inten¬

tions rather than just the drawings that result from those intentions —

will prove to be much more important than anything else. The ability

to draw infinitely many alphabets by the variation of parameters is not

Lessons Learned from METRFONT 319

B B B B B B B B
B B B B B B B B
B B B B B B B B

B B B B B B
B B B B

B B

r Itigh for niiKiciisrd

- (k>pinii(*n(;
% on coumcr widths

Th B*.
CAll cinu-brgjn(8.2, 7(),pii.O, >/a[p*.phlsiajiO: % ilalu- c
cpen,

*i = *j - xj = ■ Xu. IflitXi = uciu;
Ki - h. y« = 0:
new eoptndent, boto/t<^, topo/bot. uim,
Copiiident = round! % iiuiriU lop rveii on rxindruseti
n-M = V»lwnft. wsi*); % a »low-gnw pen for middlr bar
botoAop = round(>^i[botMclit>ar.topavchbar|h % bottom of lop ouier arc
eopo/bot = roundf^/iibotMoiibar. top^ciibarl): % top of lower outer arc
rtiaxio = roundfr • uein + ho), rlisx? = rt|«xio -
x» = V»[rti#xi,lfti»XT)i X9 = >A(rti»xi,Iftloxic);
za = x« ' fs,

^<>PnTV» - h; 1« = pi. boturys = 0: yt = SM.
new uei. u>*r, % U9nl (or lop and bottom am
tt>w * rounditop^chbar - boio/topl. call cfi«*p«>(98). % to control thinning
w#r = roundUopofbot - botv«chbar). call riieckp«n(97l; % of arcs at center
top««V* top^eiibar. bottrm botmchtw.
If bot««|A > topfV* new ivm, ue« = ue«. new tree, tie* = irsa + 1. (ii
pr = ‘][botuTpi.top^chbar); jne = >/i[top,,.p9.botMchbar]: % */s of counters
pii = pij = dibar, *i» = **; % height of bar same as cap H
vpen. vpenwd 1,

% top level
% bot level
% mid level

\ir dri
drew 3 9;
drew 11 12;

bpen. hpenbt 1,
tuts draw 1 4,
call 'a ngarr(5,7,t0)ir>iei*);
call 'b m}arr(9,10, wiir.u'lsj
call 'c aqarclO. 7, U'M, u'ls);
call 'd RCi«/r(8.10. wsr.iiTis).

% stem
% upper upper

% lower lower
% lower upper
% upper lower

"Th* l«ii«r b",

call cJiAflx^mCb, 2. .(W.ph.O. VtP*
xi .= Xj = IrliiifT.
Pi = A; in = 0;
liponht 1, Upon,
lUi: draw 1 2;
call ' t «niAlfbuH’l(In/)).

Figure 4.

usually an important goal by itself; but the ability to explain a design

in precise terms is highly instructive both to designers and to those who

read their programs. The computer can enforce a discipline that helps

its users to clarify their own knowledge; this educational experience is

really the rewarding thing.

Now to return to my main theme, of lessons that I have learned so

far. I think it is best to start in the summer of 1977, when I began

this work; at that time I had no idea that I would ever be designing

a language for letterforms, much less ever getting to know artists and

typographers. I had been unable to obtain good drawings of the out¬

lines of the letters that I wanted to typeset, so I was virtually forced to

develop computer techniques for alphabet design, starting from scratch.

My publishers supplied me with high quality letterpress proof pages that

had been used to make the plates for the first printing of my book, but

otherwise I had to work with extremely primitive equipment. Experi¬

ments with television cameras hooked up to computers proved to be a

total failure, since the TV lenses caused considerable distortion when

they were used to magnify a small image, and since a slight change in

the brightness of the studio lighting caused enormous changes in the

televised shapes. The best results I could get were obtained by making

35 mm slides of the letterpress proofs, and by projecting them about

320 Digital Typography

8 meters onto a wall in my house, where I could make pencil sketches of

somewhat blurry images about 5 cm high.

The three p’s of METRFONT —drawing with pens and parameters

via programs — popped into my mind within an hour or so after I had

started to make those sketches. It suddenly dawned on me that I should

not simply try to copy the shapes. A human being had originally drawn

them, so I really wanted to learn as much as possible about what was

in that person’s mind at the time, and I wanted to incorporate that

knowledge into a computer program.

The programs I wrote in 1977 were done in a traditional “imper¬

ative” programming language called SAIL, which is very much like an

international computer language called ALGOL. Every time I changed

anything in the program for any letter, I would have to recompile the

changes into the machine’s language; the idea of a declarative, inter¬

pretable language like METRFONT did not occur to me until it was

suggested by Robert Filman a few months later. But the lack of such a

language was not actually a bottleneck in 1977; the main problem was

my ignorance about how to represent shapes in a decent way.

To illustrate these early difficulties, I have decided to show you some¬

thing that I have never dared to show anyone else before: the very first

results that I had in 1977 when I began to attempt drawing Arabic nu¬

merals. After I had translated my first rough, sketches into a computer

program, the machine presented me with Figure 5, in which each col¬

umn represents a different setting of the main parameters (normal, bold,

small-caps, sans-serif, and typewriter, respectively). The digit ‘8’ had a

special problem that — mercifully — prevented its appearance in all but

one style; but my initial errors in the ‘2’, ‘5’, ‘6’, and ‘7’ were repeated

fivefold. I am showing these early results because similar problems can

be expected even with today’s METRFONT; it is not easy to describe the

essence of shapes to a machine.

256782567 7 OT67 25671
Figure 5.

Figure 5 is obviously riddled with errors, and it is instructive to look

at them more closely. In a few cases I simply blundered: For example,

I forgot to use a thick enough pen when starting the diagonal of the ‘2’.

The strange glitch in the third ‘2’ was due to a bad specification of the

angle at the bottom; I had specified the same angle for small caps as for

the normal size, even though a smaller figure was being drawn. Another

Lessons Learned from METRFONT 321

bad angle occurs at the top of the bowl in each ‘5’. But other errors were

more serious: The difficulties at the bottoms of the ‘5’s are exhibited

more severely at the tops of the ‘6’s, where the bulbs are too high and

they are joined badly to the rest of the shape. Even worse things occur

at the bottoms of the ‘6’s, where my whole approach was completely

mistaken and had to be redone several times in subsequent experiments.

The top of the rightmost ‘7’ exhibits a problem that I did not resolve

adequately until five years later, when I finally realized that the upper

left portion of ‘7’ (and the lower right of ‘2’) could be regarded as an

“arm” and “beak,” analogous to parts of a letter like ‘T’ or ‘E’.

01234567
01234567
01234567
01234567
01234567 Figure 6.

By the end of 1977, the numerals in my experimental meta-font had

evolved to the point shown in Figure 6. I was satisfied with them at the

time, so I spent most of 1978 working on the TgX typesetting system

and doing other sorts of computer science research. In 1979 I decided to

design a symbolic language for letterforms that would reflect at a higher

level what I had been thinking about when writing my ALGOL programs

in 1977; this new language became the original METRFONT system [4].

Considerable work was necessary in 1980 to build an interface between

METR font’s output and a high-resolution phototypesetter; during this

time I was preoccupied with software problems and unable to do much

with the font designs. Then finally I reached the goal that I had hoped

to achieve two years earlier: I completed the second edition of my book

Seminumerical Algorithms [5], a 700-page work in which everything but

the illustrations had been done entirely by new computer methods. Al¬

together 35 fonts were used in that book — seven sizes of roman, six of

italic, and three each of bold and slanted and typewriter styles, with

each size drawn separately; there were six versions of sans-serif, and

seven pi fonts for math symbols. All of these were created with the first

METRFONT, and the sheets looked mighty good to me when they came

out of the typesetter.

322 Digital Typography

But I cannot adequately describe the enormous letdown I had when

Seniinumerical Algorithms finally appeared in print at the beginning

of 1981. That was the first time I had seen the result of the entire process,

including printing and binding; up to then I had been working almost

entirely with low resolution equipment, and of course the high resolution

output was much nicer, so I was eagerly anticipating a beautiful book.

When I received the first copy and opened the covers, I burned with

disappointment: Everything looked wrong! The main shock was due to

the fact that I now was seeing the fonts as they looked after printing

and—just as important — after binding the pages in buff covers just

as the first edition had been bound. The fact that the new format was

encased in the old context exaggerated the deficiencies of the new format.

Sure, the new text was readable, and I could console myself a little with

the thought that it was not as bad as some other books that were being

printed at the time; but it was not at all what I was hoping to achieve.

The sans-serif was totally wrong; the weights of roman versus italic

versus numerals were not quite right; and the high resolution revealed

unsuspected deficiencies in many individual characters. I developed a

strong antipathy for the shapes of the numerals, especially the ‘2 and

‘6’. When using the book for reference or teaching, I was forced to

look at the numbers on each page, and this would distract my thoughts;

I wanted to think about elegant mathematics, but it was impossible to

ignore the ugly typography.

My profound disappointment was not completely discouraging, how¬

ever. For one thing, I had been reading a lot of biographies, and I knew

about mid-life crises; since I was 40 years old in 1978, I had sort of been

expecting to make at least one big mistake. My idea had always been to

follow my intuition but to be ready for failure. I knew that METRFONT

was quite different from what anybody else had done or was doing, and it

certainly occurred to me that all of my ideas might simply be stupid: No

wonder nobody else had tried them! On the other hand, it still seemed

to me that the basic ideas of pens, parameters, and programs were still

valid; the deficiencies in my published book were due to my faulty exe¬

cution, but the ideas themselves seemed right. So I decided to persevere.

Two more years have gone by since then. In the meantime my

colleagues and I have accumulated a lot of experience with the first

METRFONT. I plan to spend the next year making a completely new

system, starting over from scratch, based on this experience; the new

system should therefore remove many of the deficiencies of the old.

Since the new language will be ready in 1984 we are wondering if we

should follow George Orwell and call it NEWSPEAK. Our plan is to

Lessons Learned from METRFONT 323

make METRFONT84 widely available and to design it so that it can be
used on all but the smallest computers.

Please forgive me for inserting so many biographical remarks into

this paper. My main purpose is to explain the lessons I have been

learning during this work, and it is high time that I give some more

concrete details.

One of the first important things that I learned was that the com¬

puter deserves to be treated as a new medium. When we approach the

problem of digital type design, we should not expect to do everything ex¬

actly as it was done before; we should rather expect that we can learn to

guide a computer as people have traditionally learned to guide a brush

or a chisel. When using the machine, it is best to hold back and to

relinquish some of our own control — to let the machine “have its own

head” as we find out what works and what does not. The ideal is to

work together with the tool; we specify the important details, but we

are willing to accept help as we do.

(a) Figure 7. (b)

Of course, this idea makes sense only if the computer is a decent

medium, only if the curves that it draws are aesthetically pleasing.

Consider, for example. Figure 7a; it turns out that today’s METRFONT
will produce these horrid shapes if the user simply specifies eight or

nine points as shown without giving any additional instructions. A per¬

son soon learns how to overcome such problems and to obtain pleasing

curves with METRFONT79, but the new system will be much better:

John Hobby has recently done some important mathematical work that

makes it possible to obtain Figure 7b from the same data that produced

Figure 7a, and his new approach will be adopted in METRFONT84. This

is quite important not only because it makes the system simpler to use

and more responsive, but also because curves need to be adjusted when

low-resolution characters are drawn; Hobby’s method makes it more

likely that such adjustments will not destroy the shapes of the curves.

324 Digital Typography

Figure 8. Figure 9.

Figures 8 and 9 illustrate another important sense in which a de¬

signer might find that computers can provide an expressive medium.

The “teardrop” shapes in Figure 8 were drawn by a METRFONT sub¬

routine in which only a few points needed to be specified (one at the

top, one at the bottom, and the horizontal coordinate at the edge of the

bulb); all of the other points were determined by mathematical calcu¬

lations inside the subroutine. John Hobby worked hard to create that

subroutine, but a designer can learn to use teardrops effectively with¬

out worrying about exactly how the subroutine actually computes them.

Figure 9 shows some of the strokes drawn by the teardrop subroutine

and by three other subroutines in Hobby and Gu’s early experiments on

East Asian character design [2]. Further work by Hobby and Gu has led

to another set of subroutines that may well be adequate for drawing a

complete set of Chinese and Japanese characters in a variety of styles [3].

The second chief lesson I learned while using METRFONT was that

it is best to let different parts of a design interact, rather than to specify

them independently. For example, it is better to say that one point is

midway between two others, instead of giving explicit coordinates to all

three points. One way to illustrate this is shown in Figure 10, which is

the result of an experiment with random numbers that I tried in 1977:

I changed my early programs so that key points of the design were not

specified exactly; the computer was supposed to pretend that it was a bit

tipsy when placing those points. The top line shows perfect placement,

but the second line shows what happened when the points were placed

randomly with a standard deviation of about 1%; the third line shows

a standard deviation of 2%, and so on. The chief thing I learned from

this experiment was that the resulting letters seemed to be “warmer”

Lessons Learned from METRFONT 325

mathematics
mathematics
mathematics
mathematics
mathematics
mathematics figure lo.

when a little bit of randomness entered into the design. But the reason

I am including Figure 10 is that it demonstrates that different parts

of a design can be interrelated so that they depend on each other. For

example, when the stems move, the serifs move with them; the individual

points are not independently random.

Figure 11.

Figure 11 exhibits a similar dependence; I made these three ‘6’s

by varying the position of only one point in the specification (point 6,

which is at the top of the bowl). Many of the other points changed

their position when point 6 moved, because my METRFONT program

specified their positions relative to other points rather than with absolute

coordinates.

Q Q Q QJ Q
O O o io

Figure 12.

Another example of interdependence appears in Figure 12; again a

series of letters has been drawn with only one parameter of the program

changing. In the upper line I changed the slope at the middle of the S;

in the lower line I changed the weight. In both cases a number of points

changed their position in order to accommodate other changes, because

I defined the positions by formulas instead of using numbers.

326 Digital Typography

(a) (b)

1 1

q

. \ 1

1 r

■p [

v;-

'--4
-4 >

vJ

■ •

Figure 13.

Perhaps the best way for me to convey the flavor of METRFONT

work is to show you some of my “METR-flops”: things that came out

in quite unexpected ways. In fact, the computer is full of surprises,

and this is where a lot of the fun comes in. For example, one of my

programming mistakes caused a link in the ‘g’ to fold over in an inter¬

esting way (Figure 13a); and one of my attempts to draw a sans-serif ‘A’

came out looking more like an ad for Levi’s western jeans (Figure 13b).

Fallacious formulas led to a marvelous ‘M’ (Figure 13c), a sparky ‘S’

(Figure 13d), and a cruel ‘C’ (Figure 13e). When I misplaced the serif

in Figure 13f, I swear that I was not thinking about Japanese yen; the

currency connection was purely coincidental!

Lessons Learned from METRFONT 327

(f) (g)

{

1 5 k

"tS

.}

A » • ’
V

*...

Figure 13 (continued).

Figure 13g came about when I was trying to discover why METR¬

FONT was drawing the wrong curve in an ‘a’; I wanted to see more

details of the underlying strokes, because I suspected a computer error.

In this case it turned out that METRFONT was not at fault — I had made

a mathematical mistake when I specified the slope at the critical point.

To complete this exhibition of meta-flops, Figure 13h illustrates a

ligature in which I unwittingly told the computer to make both of the

‘f’s aim at the dot on the ‘i’. And Figure 13i is what I like to call the

“ffilling station.”

Since 1980 I have been enormously fortunate in this research, be¬

cause people like Chuck Bigelow, Matthew Carter, Kris Holmes, Richard

328 Digital Typography

Southall, and Hermann Zapf have generously been helping me to refine

the crude tools I began with. In particular, Richard and I spent three

weeks intensively going over each letter, and our preliminary studies

were quite encouraging. He taught me many important lessons, and I

would like to give some indication of what kinds of things we did.

Figure 14 shows two of the ‘O’s we drew. The image is slightly

heavier at the bottom than at the top, and we added a parameter

that makes it possible to have different curves on the inside and out¬

side without losing the properties of a meta-font. Simply drawing two

independent superellipses with different degrees of “superness” doesn’t

work, because the inner curve sometimes gets too close to the outer

curve or even crosses it; our solution was to draw two superellipses from

the same family and then to “pull” the inner curve a certain fraction of

the way towards the outer one.

Some of Richard’s corrections, made as we were revising the ‘P’, are

shown in Figure 15. Notice, for example, that we took a little weight

away from the stem inside the counter. In order to retain the spirit

of a meta-font while making such refinements, we introduced a “stem

correction” parameter that could be used for stem-weight changes in

other letters. Sometimes a stem weight is changed by two or even three

times the stem correction.

We were pleased to discover that METRFONT is good at notching

the inside of diagonal strokes that fill in if they are not treated carefully.

For example, the inside top of a bold sans-serif ‘A’ has been opened up

in Figure 16a, so that the counter has an appropriate amount of white

space while giving the illusion of straight thick stems. Our METRFONT

Lessons Learned from METRFONT 329

Figure 15.

programs are designed to give this effect in low resolutions as well as high.

Figure 16b shows that the same idea applies to the typewriter-style ‘A’.

I can summarize this recent work by saying that we are now paying

a great deal of attention to the edges; the new version of METRFONT

330 Digital Typography

will differ from the old one primarily in this respect. I realize now that I

was extremely naive in 1977 when I believed that the edges would take

care of themselves if I simply drew with a pen that had the right shape.

On the other hand, we are not abandoning the pen metaphor, because

it gives the correct “first-order” insights about how letters are drawn;

the edge details are important second-order corrections that refine the

designs, but they should not distract us from the chief characteristics of

the forms.

Figure 17 is a test palette that I made in 1980 when first experi¬

menting with METRFONT programs to simulate broad-edged pens with

varying pressure, based on the advice of Hermann Zapf. (In fact, this

was the first thing Hermann wanted to try when he initially encoun¬

tered METRFONT.) Although these particular strokes were all drawn by

holding the pen at a fixed angle, in this case 25°, further experiments

showed that a varying pen angle could also be imitated.

I would like to conclude by inviting you to participate with me in a

thought experiment: Let us consider the letters ‘ATYPF that Sumner

Stone has prepared as the symbol of our conference [8], and let us try

to imagine how they could be incorporated into a new meta-font. Of

course we could simply trace the outlines of the letters; but that would

not be any fun, and it would not give us any insights. Let us rather try

to embed the principles of Sumner’s design into a specification that will

produce lots of beautiful letters.

Take first the ‘A’ (Figure 18a): This is clearly made up of three

strokes, two of which are thin and the other is thick. The thin strokes

Lessons Learned from METflFONT 331

(b) (c) (d) (e)

ATYP I
Figure 18.

appear to have been drawn with a narrower pen than was used to pro¬

duce the thick stroke. Immediately we are led to introduce parameters

for the width of those two pens. The strokes also taper gracefully; we

can add a third parameter to govern the amount of tapering. (By vary¬

ing this parameter we can experiment with letters that do not taper at

all and with letters that taper too much.)

Turning to the ‘T’ (Figure 18b), we see that its crossbar is neither

thin nor thick. We can either introduce a new parameter, or we can

assign it an intermediate weight (for example, halfway between the nar¬

row and wide pens in the ‘A’). Tapering is present here but not quite so

prominently as before; again we need not introduce a new parameter if

we decide, for example, that the stem of the ‘T’ tapers half as much as

that of the ‘A’. Another parameter of the design is the angle at which

the stem stroke terminates at the baseline; looking ahead, we can relate

this to analogous features of the ‘Y’ and the ‘P’.

The ‘Y’ itself (Figure 18c) will probably be difficult, because we will

need to work out the principles that underlie a rather complex joining

of three strokes at the center. This part of the letter looks simple, when

it is done right, but I would expect to spend three or four hours trying

different things before I found a scheme that would work properly as the

parameters were varied.

The ‘P’ (Figure 18d) has an interesting little taper at the top of the

bowl, but its most prominent feature is the gap at the bottom of the

bowl. We should probably introduce a “gap” parameter, which can be

used also in the ‘A’.

Finally there is the “hungry I” (Figure 18e), which I do not really

understand. Probably I would understand it more after actually trying

to incorporate it into a meta-font, but I would want to ask Sumner for

more information first. Then my METRFQNT program would be able to

reflect the designer’s true intentions.

Looking to the future, I have not got any good insights about how

new alphabets will actually be designed in, say, the year 2000. I certainly

332 Digital Typography

hope that none of the computer methods we are using today will still
be in use; at the moment we are just beginning to explore the subject,
and we should have lots of better ideas by then. But I have a hunch
that METRFONT’s notions of pens, parameters, and programs will find
a place as part of what is eventually perceived to be the most suitable
way to apply computers in digital alphabet design.

Appendix

[I could not resist actually trying the ATYPI experiment. I hope that
the following detailed example, worked out after the lecture above was
delivered, helps to clarify some of the points that I was trying to make.]

METRFONT can simulate broad-edged pen writing if we represent
the pen’s position by three points; left edge, middle, and right edge. The
middle point is halfway between the other two. In the existing METR¬

FONT, it is convenient to give numbers to the points by numbering the
midpoint and adding 100 for the left edge and 200 for the right edge;
thus, three points (101,1, 201) correspond to pen position 1. [In the new
METRFONT I plan to work things out so that the points can be called

(IL, 1, IR) instead.]

201

1 .••••■■

alO

ah

. 2
102 Figure 19.

It is easy to write a METRFONT subroutine that draws a simple
stroke with such pens, allowing for the possibility of tapering. For ex¬
ample, Figure 19 illustrates a subroutine that I am currently exploring.
Two pen positions are given — in this case they are called (101,1,201)
and (102,2,202)—together with three fractions A, p, and a; the frac¬
tions A and p represent an amount of taper at the left and the right.

Lessons Learned from METRFONT 333

while Q represents the position of maximum taper. The stroke is drawn

as follows: First the computer constructs points (all,al,a21) that are

a of the way from (101,1, 201) to (102, 2, 202). [In Figure 19, for exam¬

ple, Q is 0.4; thus a straight line drawn from 101 to 102 passes through

all, and the distance from all to 101 is 0.4 times the distance from 102

to 101. The three points (all,al,a21) constructed in this way will lie

on a straight line.] Next the computer constructs point alOl by going

A of the way from all to al, and it constructs a201 by going p of the

way from a21 to al; this determines the amount of taper. Finally the

edges of the stroke are determined as follows: A curve starts at 101,

aiming towards al; it passes through alOl, at which time it is travel¬

ing in the direction parallel to a straight line from 101 to 102; then it

finishes at 102, as if coming from al. This determines the amount of

taper. Finally the edges of the stroke are determined as follows: A curve

starts at 101 aiming towards al; it passes through alOl, at which time

it is traveling in the direction parallel to a straight line from 101 to 102;

then it finishes at 102, as if coming from al. This determines the left

edge; the right edge is similar.

By changing the widths and angles at the endpoints, and by chang¬

ing the fractions A, p, and a, it is possible to achieve a great variety

of strokes. And it is possible to learn the use of these strokes without

knowing or caring about the geometrical construction that produced

them. Much more elaborate stroke subroutines are obviously possible,

but at the moment I am getting familiar with simple ones like this.

In particular, I have found that it is not difficult to get a fairly good

approximation to Sumner’s ‘A’ with just three such meta-strokes, even

when everything is parameterized so that the construction works in quite

general circumstances.

Figure 20 shows the meta-A that I came up with. It was drawn by a

METRFONT program that can be paraphrased as follows: “The character

will be 13 units wide; its height will be 1.1 times the cap height of the

font, and its depth will be zero. Pen position 1 is at the baseline, with its

left edge a half unit from the left of the entire character. Pen position 4

is at the baseline with its right edge a half unit from the right of the

character. Pen position 2 is at 1.1 times the cap height and at the

horizontal midpoint of the character. Pen position 3 is at the cap height

and on a straight line between positions 2 and 4. The width of the pen

at position 1 is the thin width; at positions 2 and 4 it is the thick width;

and at position 3 it is 2/3 of the way from thin to thick. The pen angle

at 3 and 4 is 15 degrees more than the normal “cut angle” in a vertical

stem, and the angle at 2 exceeds the cut angle by 30 degrees. The bar

334 Digital Typography

202

Figure 20.

line is determined by pen positions 5 and 6, whose top is at 3/7 of the cap

height; the angle at 5 is 45°, the angle at 6 is 135°, and the width at both

positions is a fraction of the thin width, determined by a given aspect

ratio” parameter. Position 5 is offset to the left of where a straight line

from 5 to 6 intersects a straight line from 3 to 1; the amount of offset

is the “gap amount” plus half the thin pen width. Similarly position 6

is offset from where a straight line from 5 to 6 intersects a straight line

from 2 to 4; the amount of offset is the gap amount plus half the thick

width. Let r be the value of the taper parameter. The diagonal stroke

from 2 to 4 is drawn with A = r^, p = r, and a = .45; the diagonal

stroke from 3 to 1 is drawn with A = p = and a = .6. The

horizontal stroke has no taper.”

In order to complete the specification, we need to define the param¬

eter values. Figure 20 was obtained by letting the unit width be 26a:

(where x is an arbitrary scale factor); the cap height was 245a;; the thin

width and thick width were 22a: and 44a;, respectively. The aspect ratio

was 0.85; the cut angle was 15 degrees; the gap amount was one unit;

and the taper parameter was r = 0.4.

Figure 21 shows five ‘A’s drawn with the same parameters except

that the unit widths were 17a;, 20a;, 23a;, 26x, and 29x. Figure 22 shows

the effects of increasing weight: {thin, thick) = (11a;, 33a;), (22a;, 44x),

(33a;, 55x), and (44a:, 66a;). Finally, Figure 23 illustrates a few other

variations: (a) stem weights (55a;, 55x); (b) taper parameter increased

to 0.6; (c) cut angle reduced to 5° and gap amount reduced to 0.1 unit;

(d) all of the above. It is doubtful, of course, that Sumner would approve

Lessons Learned from METRFONT 335

AAAAA Figure 21.

A A A A
AAAA

Figure 22.

Figure 23.

of these particular examples, which were obtained by extrapolation from

a single drawing. But I think the two of us together could work out

something that is quite satisfactory.

Since this is an appendix, I shall conclude by appending the actual

METRFONT programs, for the benefit of people who would like to see

the complete details. I have used hh in the program below to stand

for cap height in pixels, phh for cap height in points; r denotes the

right edge of the character, and u denotes the unit width, in pixels;

charbegin{character-Code, unit-width, height Jn.points, depth Jn.points)

is a subroutine that sets up values like r and u, and tells where to put

the result in a complete font. The last half of this program, following

"The letter A", is what was paraphrased above. Equivalent programs

will be much simpler and more readable in next year’s METRFONT.

minvr 0; minvs 0; % shut off velocity corrections

fffi = 1; % width of pen used to fill the strokes

subroutine penpos(index t, % set pen position i

var angle, var d): % with given angle and width

Xi = .5[Xi-|-ioo, Xi + 20o]; Vi = •5[yi + 100, yi + 20o]

Xi+200 ~ a^j+100 = d ■ cosd angle',

yi+200 — yi+ioo = d ■ sind angle.

subroutine stroke (index i, index j, % draw a stroke from i to j

var lambda, var rho, % with given left and right taper amounts

var alpha): % and position of maximum taper

x-i = alpha[xi,Xj]', yi = alpha[yi,yj]',

x\i = a7pha[xi-(-ioo, a:j+ioo]; 2:21 = a.lpha[xi+20o,Xj+2oo]',

yii = afpha[yi+ioo, J/j+ioo]; 2/21 = alpha[yi+2oo, yj+200];

xioi = lambda[xii,xi]', yioi = lambda[yii, yi]]

X201 = rho[x2i,2:i]; 2/201 = rho[1/21, yi];

336 Digital Typography

cpen; HU ddraw

i + 100 {xi - Xi+ioo, yi - yi+ioo}

. . 101 {Xj-i-100 - Xi + lOO, yj + lOO

. .j + 100 {Xj+ioo - xi,yj+ioo

i + 200 {xi - x,+2oo,yi - yi+2oo}

. . 201 {Xj + 200 - Xi + 2U0, yj + 200

.. j + 200 {xj+200 — xi,yj+200

"The letter A";

call charbegin('A, 13, l.lphh, 0);

yi - 0; xioi = -Su;

2/4 = 0; X204 = r - .5u;

j/2 = l.lhh; X2 = -Sr;

2/3 = hh; new aa; 2/3 = aa[2/2,y4]; X3 = aa[x2,X4];

call penpos(l, —cut — 45, thin);

call penpos{2, cut + 25, thick);

call penpos(3, cut + 15, 2/3[thin, thick]);

call penpos(4, cut + 15, thick);

y205 = y206 = ^/rhh;
call penpos(5, 45, aspect ■ thin);

call penpos(6,135, aspect • thin);

new aa; 2/5 = aa[yi,y3]', X5 + gap • u + .5thin = aa[xi,X3];

new aa; ye = aa[y2,y4]; xe + gap ■ u + .5thick = aa[x2, X4];

call ' a stroke (2,4, tau ■ tau, tau, .45); % right diagonal

call 'b strokels, 1, sqrt tau, tau ■ sqrt tau, .6); % left diagonal

nil ddraw 105 .. 106, 205 .. 206. % bar line

It is possible for point 203 to stick out of the stem, for certain

values of the parameters (including, just barely, some of the examples

in Figures 22 and 23). Therefore I subsequently modified the program

so that it draws the left diagonal stroke first; then it says

rpen#; thick draw 2..4;

thereby erasing everything to the right of a straight line from 2 to 4.

Then it draws the right diagonal and the bar line.

This research was supported in part by National Science Foundation grant IST-820-
1926, and by the System Development Foundation.

Addendum

Readers who are interested in exploring this example further with the

current version of METRFONT (which was called “next year’s METfi-

FONT” in 1983) can now use the following version of the program;

— yi+100}

- yi} >

— yi+200}

- yi} •

Lessons Learned from METRFONT 337

% Sumner Stone’s A for ATypI, cut for METRFONT84 by Don Knuth

mode.setup;

u* := ^^/sept*;

cap-height* := ^‘^^/sept*;

thin* := ‘^'^/sept*;

thick* ■.= '^'^/sept*',
tau := 0.4;

gap := 1;

cut := 15;

aspect := 0.85;

define_pixels(u);

define.blacker.pixels (thin, thick);

vardef penpos^^{expr angle, d) =

% basic unit

% height of uppercase

% weight of thin strokes

% weight of thick strokes

% typical amount of tapering

% units of stroke separation

% degrees of tilt at stroke edge

% vertical / horizontal weight ratio

2@# — ■5[;
enddef;

% set pen position

= {d, 0) rotated angle]

vardef strode (suffix $, $$, @)(expr lambda, rho, alpha) = % tapered stroke

z@ = alpha[z$, z$$]] z@i = alpha[zsi, z$$i]] z@r = alpha[z$r, z$$r]]

z@i' = lambda[zm, zq]] z@r' = rho[z@r, z@]] % pull in for tapering
labels(@, @1, @r, @1', ®r');

•2$i{2@ — 2$;} . . 2|§(/{2$$i — 2$(} . . Z$$i{z$$i — 2@} --

•2$r{2@ — 2$$^} . . 2@r'{-2$r “ -2$$^} • • Z$r{z$r “ -2@} -- Cycle

enddef;

"The letter A";

beginchar("A", 13u^, l.lcap-height*,0)]

penpos— cut — 45, thin);

penpos^icut + 25, thick)]

penpos^(cut + 15, ‘^/slthin, thick])]

penpos^{cut + 15, thick)]

penpos5(45, aspect * thin)]

penpoSg(135, aspect * thin)]

yi = 0; xii = .5u;

Pi = 0; X4r — w — .5u]

1/2 = l.lh; X2 = .5ty;

j/s = h] 23 = whatever[z2, za]]

ysr = ^/jh] 25 + {gap *u + .5thin,0) = whatever[zi, zz]]

ysr = ^/ih] 26 + {gap * u + .5thick,0) = whatever [z2, Z4]]

fill stroke{3,1, b, sqrt tau, tau * sqrt tau, .6); % left diagonal

unfill 22 -- 24 -- (24 + {thick, 0)) -- (22 + {thick, 0)) -- cycle; % erase excess

cullit; % normalize after erasing

fill stroke{2, 4, a, tau * tau, tau, .45); % right diagonal

fill Z51 -- zei -- Z6r -- Z5r “ “ cycle; % bar line
penlabels(range 1 thru 6); endchar;

end.

338 Digital Typography

References

[1] Thomas B. Hickey and Georgia K. M. Tobin, The Book of Chels

(Dublin, Ohio: 1982), privately printed.

[2] John D. Hobby and Gu Guoan, “Using METRFONT to design Chi¬

nese characters,” Computer Processing of Chinese and Oriental

Languages 1 (July 1983), 4-23. A preliminary version appeared in

the proceedings of the 1982 International Conference of the Chinese-

Language Computer Society (September 1982), 18-36.

[3] John D. Hobby and Gu Guoan, “A Chinese meta-font,” TUGhoat 5
(1984), 119-136. A preliminary version appeared in the proceedings

of ICTP’83, the 1983 Internal Conference on Text Processing with

a Large Character Set(Tokyo: 17-19 October 1983), 62-67.

[4] Donald E. Knuth, “METRFONT, a system for alphabet design,”

Stanford Artificial Intelligence Memo AIM-332 (September 1979).

Reprinted as part 3 of Tp^K and METRFONT: New Directions in

Typesetting (Bedford, Massachusetts: Digital Press and American

Mathematical Society, 1979).

[5] Donald E. Knuth, Seminumerical Algorithms, Volume 2 of The Art

of Computer Programming, second edition (Reading, Massachu¬

setts: Addison-Wesley, 1981).

[6] Donald E. Knuth, “The concept of a meta-font,” Visible Language

18 (1982), 3-27. [Reprinted with revisions as Chapter 15 of the

present volume.]

[7] Raymond Smullyan, “Miscellanea: Metagame,” American Mathe¬

matical Monthly 90 (1983), 390.

[8] Sumner Stone, “The ATypI logotype: A digital design process,”

presented at Fifth ATypI Working Seminar, Stanford, California

(August 1983).

Chapter 17

AMS Euler — A New Typeface for

Mathematics

[Written with Hermann Zapf. Originally published in Scholarly Pub¬

lishing 20 (1989), 131-157.]

A collaboration between scientists and artists is helping to bring more

beauty to the pages of mathematical journals and textbooks.

The printing of mathematics has become faster, simpler, and less ex¬

pensive than ever before because of recent technological developments.

Pages are now composed from millions of tiny dots of ink positioned

by computers. Systems like [14] can be used to specify where the

letters and symbols should be placed on a page; companion systems like

METflFONT [16] can be used to specify the dots of ink that produce

those letters and symbols. TgX and METRFONT, completed in 1986,

are already in use by tens of thousands of people on more than a hun¬

dred different kinds of computers, from PCs and Macintoshes to giant

Cray machines. These systems are designed to give equivalent results

on all computing devices and all digital output devices, although the

quality will naturally vary with the quality of the typesetting machine

being used. Furthermore, T^X and METRFONT are designed to be fully

archival, in the sense that manuscripts preserved today in electronic

form as files of text can be expected to produce identical output several

generations from now.

Such trends were foreseeable ten years ago [12], but it has taken con¬

siderable time to dot all the i’s and cross all the t’s (literally) that were

necessary to obtain sufficiently flexible and refined systems. The Amer¬

ican Mathematical Society (AMS), one of the world’s largest publishers

of mathematics, formed a font committee in 1979 to help plan for the

future by taking appropriate advantage of the emerging technology. The

339

340 Digital Typography

initial members of this committee were Richard Palais (chair), a profes¬

sor of mathematics at Brandeis University; Barbara Beeton, an editor

from AMS headquarters; Peter Renz, the mathematics editor for W. H.

Freeman & Co.; and the two authors of the present article (DEK and HZ).

At that time DEK and HZ knew each other only through their re¬

spective publications. We both secretly wished to meet, but were afraid

to ask, knowing that the other was extremely busy. Fortunately the

AMS served as matchmaker, and we were able to begin a stimulating

collaboration between mathematician and artist that we hope will have

a beneficial effect on scholarly publishing. Our goal in this article is to

record some aspects of our collaboration that we think are particularly

noteworthy, as they bring out issues about mathematical publishing that

are rarely discussed in print.

It seems best to tell our story by quoting directly from the let¬

ters that we wrote to each other and received from others at the time.

(A complete record of this correspondence, with all the accompanying

drawings, has been deposited in the Stanford University Archives, col¬

lection SC 362.)

Richard Palais explained the original goals of our work admirably

in his initial invitation letter:

11 September 1979

R. Palais to HZ

Dear Professor Zapf,

[Introductory remarks ...] It is therefore now feasible for the AMS

to design a comprehensive and compatible family of alphabetic and

symbolic fonts, organized following the TgX pattern and meant not

only for use in the publication of the AMS journals and books, but

also for the use of the mathematical and scientific community at

large. Clearly this is a project that has long term value, a project

that should be carried out with planning, care, and the best profes¬

sional advice available.

At about the same time DEK wrote to HZ inviting him to get acquainted

with METflFONT by visiting Stanford in February 1980. Already the

germs of a design were beginning to emerge:

7 October 1979

HZ to DEK

Dear Dr. Knuth,

... We should work out carefully with METRFONT the basic struc¬

ture for a standard scientific alphabet, neutral in its forms, and the

best solution for all sorts of typesetting devices — to be printed later

by commercial offset or low-quality office equipment, then xeroxed

from printed sheets, etc., etc.

AMS Euler — A New Typeface for Mathematics

... I would prefer for a scientific basic alphabet the vertical struc¬

ture, for you have not as many problems as with the slanted forms.

For we want at the end a really good alphabet with many possi¬

bilities of special characters for all kinds of scientific publications.

An alphabet with all the necessary symbols and extra forms fitting

ideally together as a total design.

25 October 1979

DEK to HZ

Dear Prof. Zapf,

... 1 must explain that typography is not my life’s work; I am pri¬

marily an educator, doing and guiding research in computer science

and mathematics, and writing books that attempt to bring some

unity into those subjects. Meanwhile, while solving a problem re¬

lated to the publishing of such books, I seem to have stumbled onto

some ideas of value in the printing industry, so I want to make sure

that I have explained these ideas properly and gotten them off to a

good start. If the ideas have merit, they should survive without my

pushing for them; if not, they should die anyway.

... Now what about a set of fonts for AMS? At present they use

Times New Roman for text. Times Italic for formulas and for em¬

phasis. The use of Times Italic for formulas is very unfortunate

in my opinion (and I’m not alone!), since the formulas become too

crowded; there never was a good reason to use Times Italic except

that it was a fashionable font for text work at the time AMS switched

compositors.

The right thing to do seems obvious: to take an existing text

and italic face for the text and emphasized text, and to design a

compatible new face for use in mathematical formulas that go with

the text. For example, we could start with Times Roman and Italic;

but of course we should really use Zapf Book, or Optima, or some

other beautiful font that you have given to the world.

The new mathematical typeface should be readily distinguish¬

able from the text faces, in a subliminal way; furthermore it must

include Greek and Fraktur and Script alphabets as well as roman

letters and digits. Different letters and symbols must be readily dis¬

tinguishable (‘a’ from alpha, ‘v’ from nu, zero from Oh, etc.), but

it’s not necessary to distinguish Greek letters that correspond ex¬

actly to Roman ones (upper case A, B, E, H, I, K, O, P, T, U, X, Z;

lower case o and possibly u).

Your idea to design this face without a slant is very interesting,

and I believe it is a good one in spite of the long traditional use of

slanted symbols — especially because some mathematicians like to

stack up accents like a.

341

342 Digital Typography

Should the new font be different primarily because of the pres¬

ence or absence of serifs? Or by its weight? Traditionally the letters

of formulas have a slightly lighter weight than the text; for example,

Computer Modern math italic has stems about 3/4 as thick as the

stems of the roman and slanted roman text fonts. Mathematicians

attach significance to boldface symbols, so I believe it will be best to

maintain this tradition of making non-bold symbols slightly lighter

than the text.

One other characteristic might turn out to be important in plan¬

ning the design, namely that mathematicians think of formulas as

something they write on a blackboard or a piece of paper, while the

text is something typed. Thus, the difference between text and math

should probably be that the text is more mechanical, the math is

more calligraphic.

The design should be psychologically right for mathematicians

when they first see it, if possible; the mathematical meaning ide¬

ally will be perceived without conscious translation. Thus, the new

font must be well aware of historic traditions even as it breaks new

ground. ...

P.S. One other thought: Some mathematics seems to me inherently

unbeautiful, no matter how it is set in type! We should choose test

examples from books that have been well copy-edited.

To the authors’ knowledge, similar attempts to design a compati¬

ble set of typefaces and symbols for mathematics have been made only

twice before. The venerable typefoundry of Joh. Enschede en Zonen, in

Haarlem, Holland, asked Jan van Krimpen to undertake such a project

in the late 1920s. Professor H. A. Lorentz, Nobel laureate in Physics

(1902), lived in Haarlem and agreed to cooperate. But Lorentz died in

1928 and “the work involved proved to be even more extensive and intri¬

cate than had been anticipated” [4]; “as a consequence, the scheme was

abandoned” [23, page 32]. The lone outcome of that project was a Greek

typeface called Antigone, which van Krimpen says he designed quickly,

following the fashion of Greek text types [23, page 35]. Antigone is an

upright face, unlike the oblique Greek types traditionally used for math¬

ematics; so it appears that he too was planning for a scientific alphabet

with a vertical feeling.

A less abortive attempt was made by the American Mathemati¬

cal Society beginning in 1962. Here the decision was to make all the

mathematical alphabets slanted, to match Times Italic. This proved to

be unfortunate in the case of Fraktur, because “the dignity and weight

of the original was regrettably lost in many of the letters when they

were tilted 18° [20].” The AMS Script capitals, designed as part of this

AMS Euler — A New Typeface for Mathematics 343

The first collaboration between DEK (seated) and HZ (standing), 14 February

1980. [Stanford News Service photo by Chuck Painter.]

project, were noteworthy as the first script letters specifically intended

for mathematics. The difficulty was to create something that is “dis¬

tinctly a script alphabet but with minimal ornamentation” [20], since

the flowery hairlines of traditional script faces tend to disappear when

used in small sizes as subscripts and superscripts.

HZ spent two weeks visiting DEK at Stanford in February 1980, two

enormously exciting weeks for both of us. We were delighted to see how

easily people from C. P. Snow’s “two cultures” could work together;

and we certainly did work intensely during that time. We studied the

classic reference on mathematical typesetting [2], noting that even Ox¬

ford University Press did not have typefaces in which all the necessary

characters were readily distinguishable in small sizes. Most of our days

were devoted to tutorials by DEK about METRFONT and by HZ about

type design and calligraphy. HZ explained how to get special effects by

applying different amounts of “pen pressure,” and DEK found a way

to simulate such effects on a computer. We had very little time left to

begin the design of a new typeface, but we did succeed in making a few

344 Digital Typography

trial characters. Here is a copy of the one and only proof we had time

to make on a phototypesetting machine:

Consider the formula 66E — 77g.

Also consider the formula 66E — 77g > aX.

(We weren’t happy with this script X, of course; we had been able to

work on it for only a few minutes at the end of the day.)

24 February 1980

HZ to DEK

Dear Don,
I want to tell you how much I appreciate the cordial reception you

gave me. ... By separate mail Fm sending two broadsides, in case

you have some space left on a wall. The Oppenheimer quotation

[22, page 119; 25, page 220; 26, page 133] describes exactly my

personal feelings about arts and science: The left part of the circles

(in color) shows the world of the artist, the right side (abstract in

lines only) the world of the scientist. In general (as demonstrated in

the outer circle) they connect as human beings, but in other parts

and thoughts they try always to get an agreement as an ideal dream.

Let us take these two weeks in Stanford as a beginning.

17 March 1980

DEK to HZ

Dear Hermann,

... I now believe the proper name of the font would be “Euler”; or

else we might choose to be dull and impersonal and call it “AMS

Mathematics.”

In case “Euler” gets the nod, I tried to find examples of his

handwriting ...

The name Euler had been suggested during an AMS Font Committee

meeting on 23 February, because the Swiss mathematician Leonhard

Euler (1707-1783) was one of the greatest and best loved mathematicians

of all time [9]. Euler would surely have appreciated today’s advances in

technology, for the printing presses of his day could not keep up with

his prodigious output. (Indeed, the St. Petersburg academy continued

regular publication of the manuscripts in their “Euler backlog” for more

than thirty years after his death!)

Leonhard Euler was primarily responsible for introducing the wide

variety of alphabets now found in printed mathematics. John Wallis

had occasionally mixed Greek and Italic letters in the formulas of his

Algebra [24], but Euler carried this idea much further and made use also

AMS Euler — A New Typeface for Mathematics 345

of the Fraktur alphabet. Here, for example, is an extract from an article

he published in 1765 [6, §33];

Ind. V ^ a ^ h

Frad. 5 ? 0 » r» ^
vbi 35—1; ^

et a — I, b o; C —^ 5 "h a

Euler’s textbook on integral calculus (1769) contained formulas that

combine Roman, Italic, Praktur, and Greek all at once [7, §1130]:

-fxcoj.j

4
If he had used Cyrillic letters in his publications, today’s mathematicians

would probably know Cyrillic as well as Greek! But Euler did occasion¬

ally resort to notational novelties that did not survive him. Here is a

formula in which he combined the astronomical symbols for Sun, Saturn,

Jupiter, and Mars [8, §6]:

G= 2t’-h =i

By March 1980, DEK and HZ had decided that the new font should

have a “handwritten” flavor. Hence there was a chance that Euler’s own

handwriting would inspire some feature of the design. And indeed, it

turned out that Euler often made the top of the numeral zero pointed

instead of round [3]:

However, this is a common characteristic of handwriting in general, and

it didn’t directly influence the design of AMS Euler; HZ had already

been experimenting with pointed zeros before he had seen Euler’s writ¬

ing, after looking at mathematical manuscripts by Einstein, Newton,

346 Digital Typography

Ramanujan, and DEK. The “point” of this point was to distinguish zero

from Oh in a natural way.

20 March 1980

HZ to DEK

Dear Don:
Enclosed are a few sketches of some characters and symbols to¬

gether with alternates, to get first your opinion and corrections

before I make the sketches for AMS.

E=mc^
x'=fpRj = ax glAtn-pro)

f (Ap+pq) = A"-p 2(p+2A|u^ - a,o

IViHO-coMyy]
&L‘DT!H%33TeSSSSVWXyZT

y= 0.577216 (A+f)
[These drawings have been reduced to 50% of their original size. Many more

sketches were enclosed, not shown here.]

4 April 1980

DEK to HZ

Dear Hermann,

The samples you sent contain a lot of marvelous touches, and I’m

quite enthusiastic about the prospects for this design. However, in

order to save space, I will restrict my remarks below to the problem

areas and things that I don’t like instead of exclaiming over what

I do like very much; so this letter might seem to have too negative

a tone. I apologize in advance for this, and I hope you can get

the proper balance by imagining that I have written a much, much

longer letter in which there is glowing praise for everything I don’t

mention below. ...

1 / The hooks at the beginning and end of the Roman lowercase

letters must be more rounded so that they are more free and quite

distinct from the Fraktur. Let the abrupt angle be a “trademark”

of Fraktur, and let the Roman letters flow smoothly.

2 / For handwritten mathematics I much prefer a ‘'y’ with a curved

bowl, relating it to ‘u’ rather than to ‘v’). ...

AMS Euler — A New Typeface for Mathematics 347

4/1 don’t like the script K, but I’m not sure how to keep it from

looking funny and at the same time to make it quite distinct from

script H and X. Please do your best to find a nice K, as it is a very

important letter to me (as Z is to you)! ...

7 / The tear-drop zero is very successful, and I really would like to

see it used in this font. ...

9 / The upper left stroke of a 5 should be exactly vertical, not

slightly slanted as you have it. Otherwise it will look horrible when

digitized on the coarse rasters that many people will have in their

laboratories.

Seven compatible alphabets were necessary altogether: lowercase

Roman, uppercase Roman, uppercase Script, lowercase Greek, upper¬

case Greek, lowercase Praktur, and uppercase Fraktur. (Script alphabets

in the Italian style were invented by the Belgian punchcutter Jacques-

Frangois Rosart in 1753 [5]; but they apparently did not find their way

to Berlin or St. Petersburg during Euler’s lifetime, because he never

used them. Mathematicians became enamored of script capital letters

much later, during the 20th century. Script lowercase has never been

commonly used in mathematics except for the letter T’.)

23 April 1980

HZ to DEK

Dear Don:

Let me thank you especially for all the care you put into your correc¬

tions; it took quite a lot of your spare time. For a new font of such

importance, this is exactly the way I like to work. You should not

at all think I would be unhappy about any honest and constructive

criticism or corrections of special or difficult characters.

Enclosed you will find the proposals which Dr. LeVeque wanted

for the AMS Board of Trustees meeting in May.

UemPidGroMagRvy AufVtlDihJcbC 91 (T ^ T U X-IXTyiP 5 ?

££5TSXZ2)XV'yR:W33MO£TC -1752048639 13725490 = +^[{ (

Z[xicayLepuvA7Ttoxcrcj)5T]j6T]4p^'9o FI FA 0TG A 43T A 0L PtPXl C,t,

maepcOrtofRxsTus^vt^Whq^e CZFSLNQBWIXKYHTI E=mc^

William LeVeque, executive director of the American Mathemati¬

cal Society, was carefully monitoring this activity. (He even came to

Stanford during January 1981, and learned to design several Gyrillic

characters with METRFONT.)

9 May 1980

W. J. LeVeque to HZ

348 Digital Typography

Dear Professor Zapf:
I am very pleased to tell you that the Board of Trustees, at its

meeting of 3 May, agreed to accept your proposal.

... I think it is wise to be quite open about one matter at the outset.

Mathematicians tend, on the whole, to be rather conservative esthet-

ically, and to like what they are accustomed to. Due account must

be taken of that fact if either the Society or other mathematics pub¬

lishers are to adopt the new Euler font. The Trustees therefore want

to be sure that the entire Font Committee, augmented by several

mathematicians not now on that committee, will have an opportu¬

nity to react to your designs, before they are considered final.

... We are all looking forward to working with you and to having the

beautiful collection of fonts that we know will come from your efforts.

Date: 09 May 1980 0819-PDT

From: Don Knuth <DEK at SU-AI>

To: Palais at MIT-MC

Thanks for your message about the Trustees’ vote. As

for proceeding, how about this: (1) You send me a letter

explaining full details of any criticisms of the current

draft by the committee, so that I Ccin communicate them

to Zapf. (2) You write Zapf a brief note saying that the

committee’s recommendations have been forweirded to me and

that he should be heairing from me soon. (3) After I write

to him, he will make sketches at the size we need to make

the METAFONT designs. I’ll give these to Scott Kim, who

has agreed to do the METAFONTing as a preliminary to

his thesis work. Periodically I will check with Scott

and oversee what he is doing. (4) After Scott and I have

something done, we will send the results to Zapf and to

whoever else from AMS wants to participate in the review.

This final editing may go through a few iterations, but

we will be able to typeset a lot of sample material and

make changes easily once it is all in METAFONT form.

26 May 1980

HZ to DEK

Dear Don:

... Perhaps there may arise a few differences between members of

the Font Committee for some special character designs. I would

suggest coordinating these different opinions before starting with

the designs, so as to get precise directions for the final drawings and

to avoid excessive redesigns. The best would be if this could be done

by you.

AMS Euler — A New Typeface for Mathematics 349

27 May 1980

DEK to HZ

Dear Hermann,

I was glad to learn that the AMS trustees have officially decided to

commission your work on this important typeface. Now it “only”

remains to bring the project to a successful conclusion!

Thanks for the beautiful work enclosed in your letter. Most of

it is exactly right, and I’m amazed at how you’ve solved problems

that I thought would be almost impossible, like the script Q.

There is one thing that still bothers me, and I would like to

bring it up again because I do feel strongly about it. (However, if

you really want to overrule me, you certainly are the boss!) I think

the opening and closing booklets on the lowercase Roman letters

still turn too sharply, so I’ve enclosed a sketch of the way I think

they should be.

Present form: I would prefer them more rounded:

This will not only distinguish them more clearly from the Fraktur,

it also will make for a smoother, more Rowing, feeling. You have

captured this wonderful how in the lowercase ‘g’ and ‘x’; I would

like the ‘m’ and ‘yh etc., to have the same completely uncrotchety
spirit.

Now for more detailed comments on the individual letters: ...

Script T’ is a problem; the letter you have drawn looks fine, when

it is next to a ‘J’, but in mathematics that T’ will be all by itself

and few people will recognize what it is. ... The lowercase sigma

has slightly too long a hook now; it would be very hard to typeset

the formula ‘|cr|’ without making it look off center. ... The question

mark is beautiful but it won’t be needed in these fonts — mathe¬

maticians use exclamation points but not question marks! ... The

second lowercase zeta and xi are better than the first, but the main

horizontal stroke at the bottom is too long and mathematicians are

accustomed to more of a hook below the baseline.

How should we proceed from here? I’ve been thinking a lot about

this, and your recent boldface examples have made something clear

to me that I should have realized long ago. Namely, the best way to

prepare designs for METRFQNT will be somewhat different from the

normal way of working. In the first place, it is not necessary for you

to make extremely fine quality drawings with pen and ink; pencil

sketches will do nicely. But what I really need is two sketches for

each letter, one showing lightface and one showing boldface (perhaps

slightly extrabold in fact). This is the crucial information necessary

350 Digital Typography

to instruct METRFONT how to vary the design as the specifications

change. I would not have been able to predict the appearance of the

beautiful boldface uppercase Greek letters you sent, if just given the

lightface ones; both are therefore essential.
You should make two such sketches for each Fraktur letter, too,

even though the standard fonts will probably include Fraktur only in

one weight that is almost-but-not-quite bold. Then we’ll be able to

make experiments with lots of degrees of boldness without changing

the design.
I suppose it will be best for you to do all of the alphabets at

once, instead of trying to work on a few letters and send them to

California and then to do a few more, etc.; consistency will surely

be important. Scott Kim is working hard to finish his book about

“DESIGNatures” [11], and I expect he will be ready to start METR-

FONTing your work by September or October.

Meanwhile, to get started, we would like sample designs in large

size of say five characters: uppercase A, lowercase i, Greek Sigma,

numeral zero, and Fraktur R. Please send two drawings of each, one

bold and one light. I’ll check to see that the designs you send give

all the information that Scott and I need to prepare METRFONT

specifications. Then I’ll give you the “go-ahead” to do the main

part of your design work. ... How does this sound to you?

16 August 1980

HZ to DEK

Dear Don:
... On July 27th I had lunch in Boston with Palais and LeVeque,

but we all missed you.
By the end of next week I will finish two alphabets (handwritten

Roman and Greek), and I should send them directly to Rhode Is¬

land to be photographed and delivered to all the participants in the

project for their approval.

In the meantime you may test the enclosed large-size drawings

at Stanford and tell me as soon as possible if they are OK for Scott.

After receiving the comments and corrections for the two alpha¬

bets from you — checking and melting together the ideas of all our

other AMS friends — I could finish the final drawings in a short time.

5 September 1980

To: Font Committee

From: W. J. LeVeque

Enclosed are photocopies of Hermann Zapf’s first completed alpha¬

bets ... These will be the faces used for mathematical symbols, in

place of the traditionally used italics — e.g., the x in sinx. You will

notice that they are upright, which will provide great simplification

in the placement of diacritical marks above, below, or beside them.

AMS Euler — A New Typeface for Mathematics 351

[These drawings, enclosed in HZ’s letter of 16 August 1980, have been reduced
to 33% of their original size.]

What is needed now are your criticisms or suggestions, as soon

as you can supply them. Don Knuth will be visiting Providence on

September 24, and it would be most convenient if you could return

the enclosed sheets to me prior to that time.

abcdefghijklmnopcirstuv
wxy z 123 45 6 78 9 0 74f)
ABCDEGHIJLMNOP
Q.RSTUVWXYZKKFT
a|3y6eCTi 0 LKA|j.v^07rpcrQ,
Tb (b Ytb (1)12445678904)

TAQAinLO^^nASW
[Enlargements of these characters were distributed with identification numbers

added, from 1 (for ‘a’) to 119 (for Each committee member received a

five-page questionnaire asking for 119 ratings: Excellent/Satisfactory/Unsatis-

factory/Comments.j

8 September 1980

DEK to HZ

352 Digital Typography

Dear Hermann,
Thanks for your letter of August 16, and for the six sample letters

(medium and bold) for METRFONT testing. I’m giving these imme¬

diately to Scott, although he is just now finishing up the last details

on his book so it might be a few weeks before he can give this the

concentrated attention it deserves. We might have a tough time

keeping up with your productive pace!

The alphabet samples you sent to AMS are being circulated

to the font committee, and I will do my best to see that we can

gain the advantages of a committee’s collective wisdom without suf¬

fering the disadvantages of “design by committee.” Each member

is independently filling out a questionnaire; this will be extremely

valuable as an expression of what a mathematician’s eyes perceive,

especially when most of them independently make the same observa¬

tions. There may also be cases where the committee is in complete

disagreement (horrors!), but even then I think their input will be ex¬

tremely valuable although we may not be able to please everybody.

P.S. The opening and closing booklets on the letters now please me

greatly. Thank you so much!

Questionnaires were filled out by William J. LeVeque, Richard Palais,

Barbara Beeton, Peter Renz, DEK, and new committee members

Ralph P. Boas (of Northwestern University), Lincoln K. Durst, Phoebe

Murdock, Ellen Swanson, Samuel B. Whidden (all of the AMS), and

William B. Woolf (of Mathematical Reviews). Here is an excerpt from

a typical response:

16 September 1980

Ralph P. Boas to W. J. LeVeque

Dear Bill,

... People, including me, have been struggling for 50 years to get

printers to distinguish G from e. I thought the battle had been

won — and now the AMS, at the stroke of an artist’s pen, is about

to lose it for us. Why does it matter? Because ‘e G S’ is a perfectly

possible combination. ... I do think the new alphabet is inherently

quite attractive. However, I feel that the form ‘a’ fits better with

the rest of the letters than ‘a’.

The results were summarized in a long (13-page) epistle:

9 October 1980

DEK to HZ

Dear Hermann,

I hope you are having a pleasant autumn. School has just begun here

and we have many fine new students. The trees are turning colors

and the squirrels are gathering nuts; the birds are singing merrily.

AMS Euler — A New Typeface for Mathematics 353

But now to work! I went to AMS headquarters recently and we

had a long and informative discussion relating to the Euler fonts.

My purpose in this letter is to digest the committee’s opinions so

as to make your job as easy as possible. This committee is fairly

well representative of the outlook of mathematicians who care about

the quality of their papers, and I know that you appreciate such

attention to details; so I will write you a little story about each

character, based on their views.

The overall reaction was, of course, highly favorable, but we

realize that there is a danger of confusing the mathematics font with

the text font; more than half of the committee expressed concern

about this problem. A little more “cursiveness” or “exuberance” in

the shapes would be a noteworthy improvement in those letters that

now involve only straight strokes. There was a general feeling that

it’s better to have a slightly less beautiful character if it is more

distinguishable from ordinary Roman type, even when we love the

looks of the Roman-like one.

Now for the individual “short stories,” which are numbered ac¬

cording to the codes on the attached copy of the sample drawings.

But before you read them, note that I think it would be best if you

don’t make the METRFONT-size drawings until Scott and I have fin¬

ished with the test characters you already drew for us. Just look

quickly through the comments now, so that you can get an idea of

the committee’s sentiments; then I think the next thing to do is

to prepare samples of Script and Praktur analogous to the Roman

and Greek.

1 / Everyone likes the looks of this ‘a’, but we do feel strongly that

the other style should be used instead. The italic ‘a’ is what math¬

ematicians always write on the blackboard and it is more consistent

with the other Euler letters. I apologize for not commenting on this

before; I simply failed to notice the problem.

2) 3) 4) 5 / Everybody likes these, and they do seem sufficiently dis¬

tinct from ordinary roman text.

6 / Here the question is whether to choose (6) or (39). The com¬

mittee first split evenly over which was preferable, since (6) is quite

elegant. However, after someone pointed out that (6) doesn’t work

well in the common case that ‘f’ is followed by a left parenthesis,

the votes became unaminous in favor of (39), not (6).

7 / Excellent, unanimous approval.

119/ Eorm (119) should be used instead of (115), but add two serifs

at the bottom, as in T’ (48) and ‘4>’ (114).

Above all I want to emphasize the committee’s view that you

should make your own decisions about what is best for the overall

354 Digital Typography

design. Our aim is to give you as many facts as we can about

mathematicians’ experiences, and about what issues are the most

sensitive, but our separate opinions should not be allowed to mess

up the whole. The general feeling so far is: “Altogether what a

beautiful piece of work!”

22 October 1980

R. Palais to DEK

Dear Don,
On behalf of all of us I want to thank you for the care and effort you

obviously devoted to assimilating n x 119 opinions on characters in

the Zapf fonts. Your letter is in my mind a masterpiece. LeVeque

was very impressed. I think he originally feared that you would let

your own tastes dominate, but now he seems very enthusiastic about

the project and the strategy you have devised for attaining the best

of all worlds by bringing committee wisdom together with individual

creativity. If this design project is a success — as I believe it will

be — I think it will be as much due to your patience and aesthetic

balance as to Zapf’s wonderful taste and craftsmanship.

25 October 1980

HZ to DEK

Dear Don:
For me the whole Euler font story is an ideal example of teamwork.

I agree with all the corrections you and your friends have made.

And I am very happy that the new zeros are accepted.

5 December 1980

W. J. LeVeque to Font Committee

Dear Colleagues:

Enclosed is Sheet II of Hermann Zapf’s work, along with comment

sheets. In addition to Fraktur and Script alphabets, he has supplied

new versions of the letters on Sheet I that required major modifica¬

tions to take care of various criticisms. As before, please send your

comments to me.

8 December 1980

R. P. Boas to HZ

Dear Professor Zapf:

... The new gamma is attractive, and I wouldn’t worry if the loop

does disappear in reproduction — after all, many Greek fonts don’t

show a loop.

I have just been reading a Russian paper that actually uses,

more than once, e E E (fortunately not e G £), which points up the

importance of distinguishing between the letter e and the symbol G.

5 February 1981

DEK to HZ

AMS Euler — A New Typeface for Mathematics 355

abcbefgltijffmnopqrstuhtoir

fm tn o fp o 9i & 7 ii 03 2ir
X<^d>7{‘BCVLJ5^3Sl

TQfR S rilWI
vx]^ZAAUvwreTi(p
avwzxz7 QiVWyL-dw^

Dear Hermann,

Are you ready for another long letter about letters? Once again I’m

going to try to digest the independent opinions of the font committee

members. In general, people are feeling good about the way things

are progressing. Everybody (except me) voiced a concern that the

hairlines will drop out at small sizes; I should have explained to them

that METRFONT will take care of hairlines, and that we needn’t

worry about such things at this stage.

Now to the individual letters by number, as before.

1 / There was one comment that the southwest corner of the bowl

should bend at a slightly sharper angle (as in the b), so as to make

this more distinctly Fraktur.

2,3/ Unanimous approval: Bravo, bravo!

4 / Too much like a delta. I found a Fraktur D in two mathematical

reference books, and in both cases the diagonal stroke at the top

came down more sharply (more nearly horizontal)

106 / Everyone likes this aleph; one person wondered if it were too

bold, but we can always tune that later.

One more important change is necessary: I talked to a lot of

people about my proposal to let one set of numerals be of variable

width ... We should reverse that decision and make all ten digits

have the same width, both in lining style and in old style.

So, that completes this round of comments. Clearly the Euler

fonts are taking shape very nicely, and METflFONTing is going to

be the next critical step.

356 Digital Typography

Scott Kim, a graduate student of computer science working for DEK,

had volunteered to encode the Euler designs with the METRFONT sys¬

tem in preparation for his thesis work, which was to address questions

about the relationship between computers and visual thinking. His first

experiments were quite successful:

17 February 1981

DEK to HZ

Dear Hermann,

Here are the first five sample Euler characters as they have been

produced by METRFONT. Scott has done a considerable amount

of excellent work to develop a new style of METRFONT program¬

ming that simulates pen rotation and pressure, and we are gradually

learning how to control this medium. It isn’t easy, but it’s fun and

instructive.

While preparing these examples, there were many times we

wished you were right here to guide us! On the other hand, the

fact that we are communicating in writing is very useful, since it

forces us to be more precise and to get our ideas clearer.

Are the enclosed letters sufficiently close to your drawings that

we can go ahead to the next stage? If not, please say so frankly, and

send detailed comments about what refinements we should learn to

make before we are ready to proceed to the real letters of AMS Euler.

Users of METRFONT write a “program” for each letter, expressing

their intentions in a special language. The program tells the computer

how to draw that letter, based on a number of parameters for things such

as the height and unit width of the typeface, as well as the weights of

different kinds of strokes. The program uses these parameters to define

key points. For example, the crossbar stroke in the diagram shown here

goes from key points 110-310 to key points 111-311.

AMS Euler — A New Typeface for Mathematics 357

Such programs yield a “meta-font” [13], which can be used to gen¬
erate a wide variety of specific fonts when the parameters are chosen
appropriately. Here, for example, are six versions of the five test char¬
acters mentioned in DEK’s letter of 17 February 1981;

AilOf AilOf AilOf AilOf AilOf AilOf

The second and fifth examples correspond to HZ’s drawings of 26 August
1980; the middle two are interpolations; the outer two are extrapolations
(which are more dangerous).

A meta-font allows designers to experiment with many different pos¬
sibilities. For example, the height or width of a character can be changed
without altering the thickness of the strokes:

ooOOOO AAAAAA

23 February 1981
W. J. LeVeque to Scott Kim
Dear Scott,
I was very glad to hear that you expect to be able to complete the
metafonting of the Roman, Greek, Fraktur, and Script alphabets
this spring. ...

Yes, those were euphoric days; everything seemed to be proceeding
splendidly. But then came a big dose of reality, which threatened to
jeopardize the entire project. Meta-design is more difficult than ordinary
design, and it is not yet a well-understood concept (especially not for
fonts such as this). DEK had forgotten that he had needed more than a
year to learn the principles of meta-design. Furthermore there were more
than 200 characters to be done, each drawn with two weights. It was
impossible to expect that HZ had been precisely consistent in the way
he changed each stroke of each character from medium weight to bold;
hence no computer-generated meta-font could be expected to match HZ’s

drawings perfectly. Considerable judgment was necessary to distinguish
the really critical aspects of the drawings from things that HZ himself
wonld have changed if he were the meta-designer. Kim’s assignment was
therefore much more challenging than DEK or HZ realized at the time.

DEK asked if HZ would go so far as to give him and Scott the

following freedom: “If it is difficult to coerce METflFONT to produce

a faithful copy of your drawing, and if there is something nearly like

your drawing that is easy for METflFONT and that looks OK to us, may

358 Digital Typography

we deliberately change your design to what is most natural for METfl-

FONT? (This would of course be subject to your eventual approval of

our results.)” HZ replied in the affirmative: “I trust you. There will be

in several characters some compromise necessary between my drawings

and the structure pattern of METRFONT. Don’t be too anxious; I know

you both will do your best.”

26 May 1981

DEK to HZ

Dear Hermann,
The postman brought three delicious treats from you last week! By

now we have received complete sets of numerals together with lower

and upper case Roman and Greek, in both normal and bold weights.

So there is plenty of work for Scott to do now. He is planning

to give top priority to Euler during the summer.

Alas, however, the summer saw only the completion of 26 lowercase

Roman letters. There was no simple way to convert the drawings to

computer code; each letter took a day’s thought, a day’s tedious mea¬

surements and typing, then another day’s fighting with METRFONT. It

turned out that the first METRFONT system was not at all suited for a

project such as this; a completely new system was called for [15]. But

DEK was already committed to other projects that kept him busy more

than full time. We gradually learned that the necessary work would

require several years.

19 April 1982

DEK to HZ

Dear Hermann,

... I have absolutely no doubt that Euler will some day live up to our

expectations, but that day is much further off than I once believed.

To the rescue came Stanford’s new program in Digital Typography,

launched in the autumn of 1982 under the direction of Prof. Charles A.

Bigelow. New students John Hobby, Dan Mills, David Siegel, and Carol

Twombly combined a variety of skills to encapsulate all of HZ’s drawings

in computable form, just as DEK was finishing the brand-new METR¬

FONT system in September 1985. The complete saga of these instruc¬

tive developments has been told in a well-illustrated booklet by David

Siegel [21].

The group produced 484 characters in less than 484 working days,

including all the programming. Total disk space consumed by the

project was over 80 million characters stored on two computers.

... Equations set in Euler must endure the smudge of the over-inked

press onto the flimsiest of papers. They must not fade away on

AMS Euler — A New Typeface for Mathematics 359

the drum of a laserprinter, nor under the not-so-bright lights of

the ancient photocopiers in the math library. The letters must not

blur under the dimmest of lighting near the periodicals through the

foggiest of trifocals; they must shine clearly through the forest of

hen scratchings during proofreading. The Euler typeface is ready to

meet these challenges at the AMS.

I

Even after the fonts had been digitized, the work was not complete.

Appropriate amounts of “white space” needed to be specified at the

left, right, above, and below each character. Information needed to be

supplied for positioning of accents and subscripts. (The mathematicians’

original hopes that this would be unnecessary in an upright font were not

realized; the actual advantage of uprightness was more subtle, namely

that upright letters blend better with parentheses, plus signs, and the

other symbols of mathematics.) New “macros” needed to be written

so that authors and their computers would be able to refer to the new

fonts in appropriate ways. And — most significantly — experience was

needed to test and fine-tune the new designs in a variety of mathematical

contexts. We needed to live with the new conventions and learn their

basic properties before foisting them on a larger community.

The obvious next step was to make the Eraktur fonts widely avail¬

able, as a supplement to existing typefaces, because there was an imme¬

diate need for mathematical Eraktur. This portion of AMS Euler was

therefore the first to be used in actual publications, initially in a book

typeset as an experiment at Stanford [19] and subsequently in many

AMS journal articles.

360 Digital Typography

AMS Euler finally reached its original design goals when all of its

integrated alphabets were adopted for all of the mathematics in a sub¬

stantial textbook. This text, called Concrete Mathematics [10], was in

many ways an ideal launching pad for the new conventions. In the first

place. Concrete Mathematics treated many different kinds of mathe¬

matics in its various chapters. Secondly, DEK was both typesetter and

co-author of this book, so he could examine the formulas carefully and

make any necessary adjustments. And finally, the subject matter of

Concrete Mathematics was a perfect match for the name AMS Euler,

because DEK and his co-authors had already decided to dedicate their

book to Leonhard Euler! “Leonhard Euler’s spirit truly lives on every

page: Concrete mathematics is Eulerian mathematics” [10, page ixj.

When the book’s designer, Roy Howard Brown, first saw the Euler¬

ian fonts he noticed that they were slightly darker in color than tradi¬

tional mathematical typefaces, so they called for a slightly stronger text

face than normal. Based on these recommendations, DEK supplied a

new typeface called Concrete Roman and Italic for the main text, using

his Computer Modern meta-font [17] with somewhat “Egyptian” param¬

eters [18]. The combination of AMS Euler and Concrete Roman proved

to be a happy one throughout the 640 pages of Concrete Mathematics,

so the Euler fonts now seem to have a bright future indeed.

One aspect of the switch from existing conventions to AMS Euler

proved to be a surprise: There now are four distinct sets of numerals,

namely “lining style” (with all digits above the baseline, having identical

height: 0123456789) and “old style” (0123456789), in both the text face

and in the mathematics face. Therefore the authors needed to distin¬

guish for the first time between numbers that are part of the text (like

T988’) and numbers that are part of the mathematics (like ‘3.1416’).

This distinction proved to be rather effective and it was easily imple¬

mented with IgX. Lining numerals of the text face were used for such

phrases as ‘Chapter 2’; oldstyle numerals of the text face were used for

equation numbers. Lining numerals of AMS Euler were used within

mathematical formulas, and AMS Euler’s oldstyle numerals would have

been appropriate for numerical tables (not needed in this book).

The use of AMS Euler in Concrete Mathematics was otherwise fairly

routine, except in one passage on pages 142-143, where the authors

wanted to have a sequence of ever-more-complex-looking g’s (because

the mathematics was going from a “first-level” q to second, third, and

higher levels). In the first draft the sequence was lowercase Roman, then

uppercase Roman, then Script, then boldface Script: q Q Q Q. This

sequence didn’t work, because AMS Euler’s script Q is actually smaller

and less imposing than its Roman Q. Changing from the double use of

script to bold Roman followed by uppercase Fi'aktur gave a sequence

with the desired flavor: q Q Q O. (Of course, script letters proved to

be useful in other contexts; the goal of AMS Euler Script was always

to avoid the excesses of commercial fonts that are typically designed for

wedding invitations, not mathematics.)

While DEK was typesetting the book, during the period 1987-1988,

he soon became accustomed to the new “upright” look, and he no¬

ticed that the traditional integral sign was no longer appropriate. So

he introduced upright integral signs in the auxiliary math symbol fonts:

f became J. He also made a final change to the Euler alphabets (with
HZ’s approval), converting

to Aj

by using transformation capabilities of the new METRFONT. Now there

was a consistently vertical feeling in all of the mathematical formulas;

the ideal of a unified design was realized at last!

If these new typefaces find favor in the mathematical community

at large, more work should still be done. The present AMS Euler is

not really a meta-font; its characters have merely been digitized in two

weights from HZ’s original drawings. Thus the fonts cannot easily be

made wider for better readability in small sizes, nor can they easily be

adapted to typesetting devices that produce darker or lighter images

than the ideal. The new METRFONT, which was itself strongly inspired

by early experiences with AMS Euler, should prove to be an appropriate

tool for creating an Euler meta-font; therefore DEK and HZ both hope

that someone will rise to this challenge. We can assure whoever tries it

that the experience will be extremely stimulating and instructive.

Here are the major characters of Euler, shown in 12-point size with

Concrete Roman as the accompanying text.

Numerals: 0123456789 : 0123456789
& 0123456789 : 0123456789

Uppercase Roman: |A| + |B|-b|C| + |D| + |E|-|-|F|-l-|G| + |H| +
|I| + |J| + |K| + |L| + |M| + |N| + |0| + |P| + |Q| + |R| + |S| +

362 Digital Typography

Lowercase Roman: |a| + |b| + |c| + |d.| + \e\ + |f| + |g| + |H| +

li| + \]\ + |k| + |l| + |m| + |n| + |o| + |pl + lq| + |r| + |s| +

|t| + |u| + lv| + |w| + |x| + lyl + |z| + |a| + |b| + \c\ + |d| +
|e| + [fj + |g| + lh| + |il + |j| + |'l<| + \M + I'm-! + |n| + |o| +
|p| + |q| + |r| + |s| + |t| + |u| + |vl + |wl + |x| + |y| + |z|

Uppercase Greek: |r| + |A| + |01 + |A| + |E;| + |n| + |I| + |T| +
|(D| + + \CL\ + |ri + |A| + |0| + |A| + |E| + |n| + III +
|T| + |oi + |'F| + |ni

Lowercase Greek: |a| + |(3| + |y| + |6| + le| + lC| + l'nl + l0| + K| +
|K| + |A| + |p| + |w| + |£,| + |7r| + |p| + |a| + |T| + |o| + |4)| + lxl + |'4^| +
|cu| + |a| + ||3| + |y| + |6| + |e| + |C| + |'n| + |0| + KI + |Kl + |A| +

IpI +1^1 +1£,| + |7t| +1 p| + lcr| + |t| + |d| +101 + 1x1 + l-iH +

Uppercase Fraktur: |2l| + |25| + |(t| + |X>| + |(H| + + |0| +
|i3| + |3| + lal + 1-^1 + |ii| + |97t| + 1^1 + |D| + 1^1 + 10| +
imj + |6| + iT| + |U| + |Q31 + 12U| + |X| + |2}| + 13| + |2ll +
1^1+ 1^1 +12)1+ 1^1+ 1^1+ 1051+ 1^1+ 131+ 131+ 1^1 +
|i:| + istni + \^\ + \o\ +1^1 + \£i\ + i^Hi + |e| + i^i +
iil| + |2J| + |2IJ1 + |3e| + |2)| + I3|

Lowercase Fraktur: |a| + lb| + |c| + \d\ + lei + |f| + |g| + |t)| +

M +1)1 +1^1 +1^1 +1''^! +1^1 ++ IpI + IpI +1'*^! + l-^l ++
|u| + |d1 + |tu| + |j:| + 01 + |3| + |al + |b| + |c| + \D\ + |e| +

Ifl + Ifli + 01 + Kl + |j| + 01 +1^1 +1''^! +1^1 ++ Ifl +
|q| + 01 + 01 + |t| + |ul + 01 + |tt)| + 01 + 01 + 01

Uppercase Script: |yi| + |'B| + ICl + I'D! +1£| +1+1 +19| + 13C| +

P1 + 0| + |^| + 01 + |^| + 1^| + |C)|“I“|^| + |Q|“I"|^| + 1§|“I“
|T| + |ii| + |V| + |w| + ixi + 0i + |2:i + |A| + i:B| + ie| + iD| +
i£| + |3'| + |Si + lXC| + |3| + |31 + l^l + |'i^| + |^l + l^| + |0| +
|01 + |Q1 + |ai| + |S| + 1+1 + |U| + |V1 + |W1 + |X| + ly 1 + |2,1

Additional letters: |K| + 0| + 01 + 0| + |]| + 01 + I'&l + |cd| +
|(pl + |K| + 01 + 01 + 01 + 0 + 01 + 01 + \lD\ + l(p|

(The special p on the bottom line is noteworthy as being designed by

the eminent nineteenth-century mathematician Karl Weierstrass, who

taught “Schbnschrift” as a youth [1].)

363

Let us close by showing how three sets of formulas discussed above now
appear in their new Eulerian garb:

Ind.

Fract.

where

and

V, a, b

1 21 (J:

0’ V’ 7
21 = v; ^ = q21 + 1; (?: = b<B + 21

a = l; b = aa + 0; c = bb + a

exp
—fx cos c

(21 + 25x + Cxx) cos
fx sin C '

g

, . fxsinC
a + bx + cxx) sin-

€ G £ \ / £ G £

The recent rise of desktop publishing has increased mathematicians’

sensitivity to typographic quality. Therefore the authors have been most

pleased by the favorable reception this new typeface has been receiving

during the first months it has been on public view; the story of AMS

Euler has a happy ending indeed:

Date: Wed, 28 Dec 88 12:59:07 CST

From: thistedOgalton.uchicago.edu (Ronald A. Thisted)

To: dekOsail.stanford.edu

Subject: Concrete Mathematics

Don,

I just saw your new book in our bookstore, and

I impulsively bought a copy (a Christmas gift to

myself, perhaps). ...

Incidentally, I find the result of the typography and

design to be the most readable technical book I have

seen in some time. I am usually fatigued after reading

a few pages of most books, but I was able to read all of

chapter 1 without my eyes wandering.

The drawings and characters of AMS Euler shown in this article are copyright by
the American Mathematical Society and used with their permission. This research
was supported in part by grants from the System Development Foundation and the

National Science Foundation.

364 Digital Typography

References

[1] Kurt-R. Biermann, “Karl Weierstrafi,” Journal fiir die reine und

angewandte Mathematik 223 (1966), 191—220.

[2] T. W. Chaundy, P. R. Barrett, and Charles Batey, The Printing of

Mathematics (Oxford: Oxford University Press, 1954).

[3] A. L. Crelle, editor. Journal fiir die reine und angewandte Math¬

ematik 23 (1842), facsimile inserted between pages 104 and 105.

(A dozen additional examples of Eulerian zeros can be seen on

page 96 of reference 9.)

[4] John Dreyfus, The Work of Jan van Krimpen (London: Sylvan

Press, Museum House, 1952).

[5] Charles Enschede, Typefounders in the Netherlands; English trans¬

lation with revisions and notes by Harry Carter (Haarlem: Stichting

Museum Enschede, 1978), 261-267.

[6] Leonhard Euler, “De usu novi algorithm! in problemati Pelliano

solvendo,” Novi commentarii academiae scientiarum Petropolitanae

11 (1765; printed in 1767), 28-66.

[7] Leonhard Euler, Institutionum Calculi Integralis, Volume 2 (St. Pe¬

tersburg: Academiae Imperialis Scientiarum, 1769).

[8] Leonhard Euler, “De novo genere serierum rationalium et valde con-

vergentium quibus ratio peripheriae ad diametrum exprimi potest,”

Nova acta academiae scientiarum Petropolitanae 11 (1793; (printed

in 1798), 150-154.

[9] Leonhard Euler 1707-1783: Beitrage zu Leben und Werk (Basel:

Birkhauser Verlag, 1983).

[10] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik,

Concrete Mathematics (Reading, Massachusetts: Addison-Wesley,

1989).

[11] Scott Kim, Inversions (Peterborough, New Hampshire: Byte Books,

1981).

[12] Donald E. Knuth, “Mathematical typography,” Bulletin of the

American Mathematical Society (new series) 1 (1979), 337-372.

[Reprinted with corrections as Chapter 2 of the present volume.]

[13] Donald E. Knuth, “The concept of a meta-font,” Visible Language,

16 (1982), 3-27. [Reprinted as Chapter 15 of the present volume.]

[14] Donald E. Knuth, The J^pCbook, Volume A of Computers & Type¬

setting (Reading, Massachusetts: Addison-Wesley and American

Mathematical Society, 1984).

365

[15] Donald E. Knuth, “Lessons learned from METRFONT,” Visible Lan¬

guage, 19 (1985), 35"53. [Reprinted as Chapter 16 of the present
volume.]

[16] Donald E. Knuth, The METRFONTbook, Volume C of Computers &

Typesetting (Reading, Massachusetts: Addison-Wesley and Amer¬

ican Alathematical Society, 1986).

[17] Donald E. Knuth, Computer Modern Typefaces, Volume E of Com¬

puters &: Typesetting (Reading, Massachusetts: Addison-Wesley,
1986).

[18] Donald E. Knuth, “Typesetting concrete mathematics,” TUGboat

10 (1989), 31-36, 342. [Reprinted as Chapter 18 of the present

volume.]

[19] Ernst Kunz, Introduction to Commutative Algebra and Algebraic

Geometry (Boston, Massachusetts: Birkhauser Boston, 1985).

[20] Phoebe J. Murdock, “New alphabets and symbols for typesetting

mathematics,” Scholarly Publishing 8 (October 1976), 44-53.

[21] David R. Siegel, The Euler Project at Stanford (Stanford, Califor¬

nia: Computer Science Department, Stanford University, 1985).

[22] Technische Hochschule Darmstadt, Hermann Zapf: Ein Arbeits-

bericht (Hamburg: Maximilian-Gesellschaft, 1984).

[23] Jan van Krimpen, On Designing and Devising Type (New York:

Typophile Chap Books, 1957).

[24] John Wallis, A Treatise of Algebra (Oxford: 1685).

[25] Hermann Zapf and His Design Philosophy (Chicago: Society of Ty¬

pographic Arts, 1987).

[26] Sammlung Hermann Zapf (Wolfenbiittel: Herzog August Biblio-

thek, 1993).

Addendum

A shorter version of the text of this article was published in ABC-

XYZapf: Eifty Years in Alphabet Design, edited by John Dreyfus and

Knut Erichson (London: The Wynkyn de Worde Society, and Offenbach:

Bund Deutscher Buchkiinstler, 1989), pages 171-179. This version in¬

cludes several additional drawings from the later stages of the work.

The second edition of [10], published in 1994, used METRFONT to
improve the subscripts and superscripts by making them slightly more

extended.

Tv 8:-^

It . •

• • . ■.'i',t ' I

. 1 ; ^• %

■ t’’ f ’■ " •

1.

♦
. »

ri I J- V. I f ^

11
•m >■

i • t (ti 4 '• ■«■

' «■ • >!<’»-♦*’?(.
1>. - ;.- .**)• ^

^ i . ' n I •ti'
♦ .1 i

• *

■ \ 'a

■ "■' T' f;f ^ A

1

• : 4-■'., ?A

- fv* i» I mVj it^

-A' ... ’'‘V l>vl

*■ » ■ Ip' ti# W*1 if* • H»f
. ■ - . >t V>. ’ 1

'. . . *1. .‘.Cl**''

(' 4

Tt '

r..^/ ■’

1! W..- * ' » ■?t*-

'v;^' ■ ■
!i/ .».iifA-'"*'.'

AVI

irtf
(! K'<‘J

- • ‘ ., 'A AT iy i '

• ‘ A

- M

Chapter 18

Typesetting Concrete Mathematics

[Originally published in TUGboat 10 (1989), 31-36, 342.]

During 1987 and 1988 I prepared a textbook entitled Concrete Mathe¬

matics [1], written with co-authors Ron Graham and Oren Patashnik.

I tried my best to make the book mathematically interesting, but I also

knew that it would be typographically interesting — because it would

be the first major use of a new typeface by Hermann Zapf, commis¬

sioned by the American Mathematical Society. This typeface, called

AMS Euler, had been carefully digitized and put into METRFONT form

by Stanford’s digital typography students [9]; but it had not yet been

“tuned up” for real applications. My new book served as an ideal test

case, because (1) it involved a great variety of mathematical formulas;

(2) I was highly motivated to make the book readable and attractive;

(3) my experiences with tuning up Computer Modern gave me insights

into how to set the mysterious font parameters used by TeX in math

mode; and (4) the book was in fact being dedicated to Leonhard Euler,

the great mathematician after whom the typeface was named.

The underlying philosophy of Zapf’s Euler design was to capture

the fiavor of mathematics as it might be written by a mathematician

with excellent handwriting. For example, one of the earmarks of AMS

Euler is its zero, ‘O’, which is slightly pointed at the top because a hand¬

written zero rarely closes together smoothly when the curve returns to

its starting point. A handwritten rather than mechanical style is ap¬

propriate for mathematics because people generally create math with

pen, pencil, or chaik. The Euler letters me upright, not italic, so that

there is a general consistency with mathematical symbols like plus signs

and parentheses, and so that built-up formulas fit together comfort¬

ably. AMS Euler includes seven alphabets: Uppercase Roman (ABC

through XYZ), lowercase Roman (abc through xyz), uppercase Greek

(ABF through XTQ), lowercase Greek (a(3y through uppercase

Praktur (2193C through 3f553), lowercase Praktur (abc through and

367

368 Digital Typography

uppercase Script (yi!BC through XyZ.). It also includes two sets of digits

(0123456789 and 0123456789), as well as special characters like p, K,

and some punctuation marks. Details about its design are discussed in

another article [7].
To refine the digitized characters for mathematical use, I began by-

correcting the way they appeared in their “boxes,” from TgX s -view¬

point. For this purpose I used the \math tests of the standard testf ont

routine [5, Appendix H]; these tests put the characters through their

basic paces by typesetting formulas such as |A| + |B| +^C| + ••• + \Z\,

a^ + b^ + c^H-\-z^, 02 + 62 + C2 H-6321 and A + 23-|-C H 1-2..
I noticed among other things that the Fraktur characters had all been

placed too high above the baseline, and that more blank space was

needed at the left and right of the characters in subscript/superscript

sizes. After fixing such problems I also needed to set the italic correc¬

tions so that subscripts and superscripts would have proper offsets; and

I needed to define suitable kerns with a \skewchar so that accents would

appear visually centered. AMS Euler contains more than 400 charac¬

ters, and Hermann had made them beautiful; my job was to find the

right adjustments to the spacing so that they would fit properly into

mathematics.
The next step was to design a set of T^jX macros so that AMS

Euler could be used conveniently in math mode. This meant adding

new “families” to the conventions I had defined in previous formats.

Plain TbX typesets mathematics with four basic font families (namely,

\fam0 for text, \fainl for math italic, \fam2 for symbols, and \fam3

for large delimiters), plus a few others that are used less frequently

(\fam4 for text italic, \fam5 for slanted text, \fam6 for boldface roman,

and \fam7 for typewriter style). I added \fam8 for AMS Euler Script

and \fam9 for AMS Euler Fraktur; the AMS Euler Greek and Roman

went into the old position of math italic, \fainl. Hermann had de¬

signed new pcQ-entheses and brackets, which were bundled together with

the Fraktur fonts; therefore my macro file changed plain TeX’s conven¬

tions by defining, e.g., \mathcode‘ (="4928 and \delcode‘ (="928300.

Similarly, Euler has the symbol as an alternative to '<’, packaged

with the Script alphabet; to make TeX recognize this substitution I said

\mathchardef\leq="3814 \let\le=\leq.

With such additions to the plain Te^ macros I could type formulas

like $\tan(x+y) $ as usual and get not ‘tan(a;-(-?/)’but ‘tan(x+-y)’. There

was, however, one significant difference between typing the manuscripts

for Concrete Mathematics and for The Art of Computer Programming,

caused by the fact that the Euler numerals 0123456789 are distinctly

Typesetting Concrete Mathematics 369

different from the numerals 0123456789 in ordinary text. In previous

work, I used to “optimize” my typing by saying, e.g.,

x is either 1 or -1,

thereby omitting $’s around a mathematical constant unless I needed

them to get a minus sign instead of a hyphen. After all, I reasoned, those

extra $’s just make T^X work harder and the result looks the same; so

why should I be logical? But in Concrete Mathematics I needed to type

x is either 1 or -1,

to keep X from being ‘either 1 or — T. The early drafts of my manuscript

had been prepared in the old way; therefore I needed to spend several

hours laboriously hunting down and correcting all instances where the

new convention was necessary. This experience proved to be worthwhile,

because it taught me that there is a useful amd meaningful distinction

between text numerals and mathematical numerals. Text numerals are

used in contexts like ‘1776’ and ‘Chapter 5’ and ‘41 ways’, where the

numbers are essentially part of the English language; mathematical nu¬

merals, by contrast, are used in contexts like ‘the greatest common

divisor of 12 and 18 is 6’, where the numbers are part of the mathe¬

matics. (Authors of technical texts in languages like Japanese, where

Hindu-Arabic numerals are used in formulas but not in ordinary text,

have cdways been well aware of this distinction; now I had a chance to

learn it too.)

As I was tooling up to begin using AMS Euler, my publishers were

simultaneously showing the preliminary manuscript of Concrete Mathe¬

matics to a book designer, Roy Howard Brown. I had sent Roy a copy of

the first Euler report [9] so that he could see examples of the typeface we

planned to use for mathematics. Our original intention, based on Zapf’s

original plans when he began the design in 1980, was to use Computer

Modern Roman for the text and AMS Euler for the mathematics. But

Roy noticed that AMS Euler was somewhat darker in color than a tra¬

ditional mathematiccd italic, so he decided that the text face should be

correspondingly heavier. He sent me several samples of typefaces with

more suitable weights, so that I could prepare a special font compati¬

ble with AMS Euler. (One of my basic premises when I had developed

the Computer Modern meta-font was that it should be readily adapt¬

able to new situations like this.) When I saw Roy’s samples, I decided

to pursue something that I’d wanted an excuse to do for several years.

370 Digital Typography

namely to find settings for the parameters of Computer Modern that

would produce an “Egyptian” (square-serif) style.

The cover designs for Computers & Typesetting, Volumes A-E,

show a gradual transition of the respective letter pairs Aa, Bb, Cc,

Dd, and Ee from the style of standard Computer Modern Roman to an

Egyptian style. 1 had made these cover designs just for fun, at the sug¬

gestion of Marshall Henrichs, but I had never had time to experiment

with a complete text face in that style. Now I had a good reason to in¬

dulge that whim, and after a pleasemt afternoon of experiments I found

a combination of parameters that looked reasonably attractive, at least

when I examined samples produced by our laserprinter. (1 magnified

the fonts and viewed them from a distance, to overcome the effects of

300-dot-per-inch resolution.) Then I made more elaborate samples of

text and printed them on Stanford’s APS phototypesetter, to see if the

new fonts would really pass muster. Some characters needed to be ad¬

justed— for example, the ‘w’ was too dcirk — but I was happy with the

result and so was Roy.

I decided to call the resulting font Concrete Roman, because of its

general solid appearance and because it was first used in the book Con¬

crete Mathematics. (In case you haven’t guessed, the text you are now

reading is set in Concrete Roman.) There also is Concrete Italic,

a companion face that is used for emphasis in the book. Even

STRONGER EMPHASIS IS OCCASIONALLY ACHIEVED BY USING A CON¬

CRETE Roman Caps and Small Caps font. Anybody who has the

METRFONT sources for Computer Modern can make the Concrete fonts

rather easily by preparing parameter files such as ccrlO.mf, analogous

to cmrlO .mf; you just need to change certain parameter values as shown

in the accompanying table.

Here are some samples of Concrete Roman in the 9-point, 8-point,

7-point, 6-point, and 5-point sizes.

Mathematics books and journals do not look as beautiful as they used to.
It is not that their mathematical content is unsatisfactory, rather that the
old and well-developed traditions of typesetting have become too expensive.
Fortunately, it now appears that mathematics itself can be used to solve this
problem.

A first step in the solution is to devise a method for unambiguously specifying math¬

ematical manuscripts in such a way that they can easily be manipulated by machines.

Such languages, when properly designed, can be learned quickly by authors and their

typists; yet manuscripts in this form will lead directly to high quality plates for the

printer with little or no human intervention.

A second step in the solution makes use of classical mathematics to design the shapes

of the letters and symbols themselves. It is possible to give a rigorous definition of the

Typesetting Concrete Mathematics 371

exact shape of the letter ‘a’, for example, in such a way that infinitely many styles — bold,

extended, sans-serif, italic, etc. — are obtained from a single definition by changing only

a few parameters. When the same is done for the other letters and symbols, we obtain a

mathematical definition of type fonts, a definition that can be used on all machines both

now and in the future. The main significance of this approach is that new symbols can

readily be added in such a way that they are automatically consistent with the old ones.

Of course it is necessary that the mathematically-defined letters be beautiful according to tradi¬

tional notions of aesthetics. Given a sequence of points in the plane, what is the most pleasing

curve that connects them? This question leads to interesting mathematics, and one solution

based on a novel family of spline curves has produced excellent [sic] fonts of type in the author’s

preliminary experiments.

We may conclude that a mathematical approach to the design of alphabets does not eliminate the artists

who have been doing the job for so many years; on the contrary, it gives them an exciting new medium
to work with. [2, page 337]

Heavier weight makes the type more resilient to xeroxing and easier

to read in a poorly lighted library, so these new typefaces may help solve

some of the legibility problems we all know too well. But a typeface

that is too bold can also make a book tiresome to read. To avoid this

problem, Roy decided to use a \baselineskip of 13 points with 10-

point type. This gives an additional advantage for mathematical work,

because it prevents formulas like ‘X.o<k<n body of the text
from interfering with each other; the normal 12 pt baselineskip used in

most mathematics books can get uncomfortably tight. Of course, the

increased space between lines also increases the number of pages by

about 8%; this seems a reasonable price to pay for increased readability.

Is the extra weight of Concrete Roman really necessary for com¬

patibility with AMS Euler? Here is a small sample that uses ordinary

cmrlO as the text font, so that readers can judge this question for the

themselves:

The set S is, by definition, all points that can be written as

^k>i ~ for infinite sequence Qi, di, as, ... of
zeros and ones. Figure 1 shows that S can be decomposed into

256 pieces congruent to y^S; notice that if the diagram is rotated

counterclockwise by 135°, we obtain two adjacent sets congruent

to (1 /y/2)S, since (i — 1)S = S U (S -1- 1). [3, page 190]

And now let’s replay the same text again, using Concrete Roman and

\baselineskip=13pt:

The set S is, by definition, all points that can be written as

^k>i Ok{f—11'^) for an infinite sequence ai, ai, as, ... of zeros

and ones. Figure 1 shows that S can be decomposed into 256

pieces congruent to ^S; notice that if the diagram is rotated

counterclockwise by 135°, we obtain two adjacent sets congruent

to (1 /-\/2)S, since (i — 1)S = S U (S -I-1). [3, page 190]

372 Digital Typography

Table of Parameter Values for Concrete Fonts

name cmrlO ccrlO ccr9 ccr8 ccr7

fontJdent CMR CCR CCR CCR CCR

serif-fit 0 1 1 1 1

cap-serif-fit 5 3 2.8 2.6 2.4

X-height 155 165 148.5 132 115.5

bar-height 87 92 78.3 69.6 60.9

tiny 8 11 10 9 8

fine 7 6 6 6 6

thin-join 7 17 17 15 13

hair 9 21 20 19 17

stem 25 25 24 22 20

curve 30 27 26 24 21.5

ess 27 25 24 22 20

flare 33 29 26 24 23

cap-hair 11 21 20 19 17

cap-stem 32 27 26 24 21.5

cap-Curve 37 28 27 25 22.5

cap.ess 35 27 24 22 21.5

bracket 20 5 5 4 4

jut 28 30 27 24 21

cap-jut 37 32 29 26 23

vair 8 21 20 19 17

notch-Cut 10 5/6 3/4 2/3 7/12

bar, etc.* 11 21 20 19 17

cap-notch-Cut 10 1 .9 .8 .7

serif-dr op 4 5 3.6 3.2 2.8

0 8 4 4 3 3

apex-O 8 3 3 3 3

beak-darkness 11/30 4/30 4/30 4/30 4/30

other values from cmrlO cmr9 cmr8 cmr7

*The measurements for bar apply also to slab, cap.bar, and cap .band.

All of the Concrete fonts have dish = 0, fudge = .95, superness = 8/11,

and superpull — 1/15, except that ccslc9 has fudge = 1. Parame¬

ters not mentioned here are inherited from the corresponding cm fonts.

Typesetting Concrete Mathematics 373

(This table uses the conventions found on pages 12-31 of [6].)

ccr6 ccr5 ccslc9 cctilO ccmilO cccsclO lower

CCR CCR CCSLC CCTI CCMI CCCSC
1 1 0 1 1 1

2.2 2 2 3 3 3 2

99 82.5 155 165 165 155 116
52.2 43.5 85 92 92 87 65

7 6 9 11 11 11

6 5 6 6 6 6

12 11 13 17 17 17
15 14 16 21 21 21

18 16 22 24 25 25 23
19 17 23 26 27 27
17 12 25 24 25 25
20 18 28 28 29 29 22

15 14 16 21 21 21 21

19 17 23 26 27 27 24

20 18 24 27 28 28 26
19 14 23 26 27 27 24

3 3 5 5 5 5

19 17 15 30 30 30

20 18 16 32 32 32 24

15 14 15 21 21 21

1/2 5/12 3/4 5/6 5/6 5/6

15 14 15 21 21 21 21

.6 .5 .9 1 1 1 3/4

2.4 2 3.6 5 5 5

3 3 4 4 4 4 3

3 2 3 3 3 3 3

4/30 4/30 5/30 4/30 4/30 4/30

cinr6 cmr5 cmsl9 cmtilO cmmilO cmcsclO

except that cccsclO has lower.fudge = .93; cctilO has the u value 20

not 18.4, and the crisp value 11 not 8; ccmilO has the crisp value 0

not 8. Font ccsllO is the same as ccrlO except for its fontJdent and

the fact that its slant is 1/6.

374 Digital Typography

Equation numbers presented Roy and me with one of the most per¬

plexing design questions. Should those numbers be typeset in Euler or

cast in Concrete? After several experiments we hit on a solution that

must be right, because it seems so obvious in retrospect: We decided to

set equation numbers in an “oldstyle” variant of Concrete Roman, using

the digits ‘0123456789’. The result —e.g., ‘(3.14)’ —was surprisingly

effective.
After I had been using AMS Euler for several months and was totally

conditioned to “upright mathematics,” I began to work on a chapter of

the book where integral signs appear frequently. It suddenly struck

me that the traditional integral sign is visually incompatible with AMS

Euler, because it slopes like an italic letter. Such a slope was now quite

out of character with the rest of the formulas. So I designed a new,

upright integral sign to match the spirit of the new fonts. Then I could

typeset
g(z) dz

and cos dx, instead of

f(x) dx - (
2n\

f (x) dx —
2m

g(z) dz
z^

and cosx^ dx. The new integral signs went into a new font called

euexlO, which became \f amlO in math mode; I told Te^ to get integral

signs from the new font by simply saying

\mathchardef\intop="1A52

\mathchardef\ointop="1A48

in my macro file. Later I noticed that the infinity sign ‘00’ of Computer

Modern was too light to be a good match for the Euler alphabets, so

I created a darker version ‘00’ and put it into euexlO with the new

integral signs.
Hermann Zapf was helping to advise me all during this time. For

example, he approved a draft of Chapter 1 that had been phototypeset

in Concrete Roman and AMS Euler, while I was tuning things up. Later,

when he received a copy of the first printing of the actual book, he saw

Chapter 2 and the other chapters for the first time; and this led him to

suggest several improvements that he could not have anticipated from

Chapter 1 alone.

Typesetting Concrete Mathematics 375

Chapter 2 is about summation, and I had used the sign ^ from

Computer Modern’s cmexlO font, together with its displaystyle counter¬

part
n

k=0

to typeset hundreds of formulas that involve summation. Hermann

pointed out that the capital \Sigma of Euler looks quite different —

it is ‘Z’, without beaks — so he suggested chemging my summation signs

to look more like the L of Euler. I did this in the second printing of the

book, using Y. text formulas and

n

Xf(k)
k=0

in displays. Hermann also asked me to make the product symbols less

narrow, more like Euler’s ‘H’; so I changed them

from Yl n to n .

Moreover, he wanted the arrows to have longer and darker arrowheads:

not And he wanted curly braces to be lighter, so that

) b 1 > would become <
1 b [

1 1 1 ^ f
1 d J 1 1 1 d J

All of these new characters were easy to design, using the conventions

of Computer Modern [6], so I added them to euexlO and used them in

the second printing.

Readers of Concrete Mathematics will immediately notice one novel

feature: Most pages have “graffiti” printed in the margins. My co¬

authors and I asked students who were testing the preliminary book

drafts to write informal comments that might be printed with the text,

thereby giving the book a friendly-contemporary-lifelike flavor. We

weren’t sure how such “remarks from the peanut gallery” should be

typeset, but we knew that we did want to include them; in fact, we col¬

lected almost 500 marginal notes. Roy hit on the idea of putting them in

the inner (gutter) margin, where they would not have too much promi¬

nence. He also sent a sample of a suitably informal typeface, on which

I modeled “Concrete Roman Slanted Condensed” type.

376 Digital Typography

To typeset such graffiti, I introduced a \g macro into my format

file, so that it was possible to type simply ‘\g Text of a graffitoAg

on whatever line of text I wanted the marginal comment to begin. I did

a bit of positioning by hand to ensure that no two

comments would overlap; but my \g macro did most

of the work. For example, it automatically decided

whether to put graffiti into the left margin or the

right margin, based on an auxiliary ‘grf’ file that

recorded the choice that would have been appropri¬

ate on the previous run.

My macros for Concrete Mathematics cause

to produce not only the usual dvi file and log file corresponding to the

input, but also the grf file just mentioned and four other auxiliary files:

■ The ans file contains the text of any answers to exercises that ap¬

peared in the material just typeset; such answers will be \input at an

appropriate later time. (Page 422 of The T^book discusses a simi¬

lar idea. The only difference between Concrete Mathematics and The

T^book in this regard was that I used one file per chapter in Concrete

Mathematics, while The T^book was typeset from a single long file.)

• The inx file contains raw material for preparing the index. After

everything but the index was ready, I put all the inx files together,

sorted them, and edited the results by hand. (See pages 423-425 of The

T^book, where I describe similar index macros and explain why I don’t

believe in fully automatic index preparation.)

■ There’s also a ref file, which contains the symbolic names of equa¬

tions, tables, and exercises that may be needed for cross references.

(A ref file is analogous to an aux file in I^T^X.)

■ Finally, a bnx file records the page numbers of each bibliographic

reference, so that I can include such information as a sort of index to

the bibliography. That index was done automatically.

I wouldn’t want to deal with so many auxiliary files if I were producing

a simpler book or a system for more general consumption. But for the

one-shot purposes of Concrete Mathematics, this multiple-file approach

was most convenient.

My co-authors and I decided to use a nonstandard numbering system

for tables, based on the way superhighway exits are numbered in some

parts of America: Table 244, for example, refers to the table on page

244. (The idea wasn’t original with us, but I don’t remember who

suggested it.) Macros to accommodate this convention, and to update

This 9 pt typeface

has worked out very

nicely for marginal

graffiti, where it

is typeset ragged

right, 6 picas wide,

with 10pt between

baselines.

Typesetting Concrete Mathematics 377

the cross-references when the page numbers change, were not difficult

to devise.

All of the macros I wrote for Concrete Mathematics appear in a

file Ccilled gkpmac.tex, which (I’m sorry to admit) includes very little

documentation because it was intended only to do a single job. Macro

writers may like to look at this file as a source of ideas, so I’ve made

it publicly accessible [8]. But people who attempt to use these macros

should be aware that I have not pretended to make them complete or

extremely general. For example, I implemented a subset of I^TeX’s pic¬

ture environment, and used it to prepare all but one of the illustrations

in the book; but I didn’t include everything that I^TglX makes available.

Moreover, I didn’t need boldface type in the mathematical formulas of

Concrete Mathematics (except for the Q on page 143 of the second

printing); so I didn’t include macros for accessing any of the bold fonts

of AMS Euler in math mode. In this respect, the book was not a perfect

test, because almost half of the Euler cheiracters are boldface and there¬

fore still untried. Macros for bold mathematics would be easy to add,

following the pattern already established in gkpmac; but I must leave

such tasks to others, as I return to my long-delayed project of writing

the remaining volumes of The Art of Computer Programming.

References

[1] Ronald L. Graham, Donedd E. Knuth, and Oren Patashnik,

Concrete Mathematics (Reading, Massachusetts: Addison-Wesley,

1989). [Although the copyright date is 1989, I received my copy of

the first printing on 29 August 1988 and used the book as a text

during October-December of 1988. The second printing was dated

January 1989. A second edition, with several major changes to

the text but only minor changes to the typography — notably the

fact that the AMS Euler characters in subscripts and superscripts

became more extended — appeared in January 1994.]

[2] Donald E. Knuth, “Mathematical typography,” Bulletin of the

American Mathematical Society (new series) 1 (1979), 337-372.

[Reprinted with corrections as Chapter 2 of the present volume.]

[3] Donald E. Knuth, Seminumerical Algorithms, Volume 2 of The Art

of Computer Programming, second edition (Reading, Massachu¬

setts: Addison-Wesley, 1981).

[4] Donald E. Knuth, The TsKbook, Volume A of Computers & Type¬

setting (Reading, Massachusetts: Addison-Wesley and American

Mathematical Society, 1984).

378 Digital Typography

[5] Donald E. Knuth, The METRFONThook, Volume C of Computers &

Typesetting (Reading, Massachusetts: Addison-Wesley and Amer¬

ican Mathematical Society, 1986).

[6] Donald E. Knuth, Computer Modern Typefaces, Volume E of Com¬

puters & Typesetting (Reading, Massachusetts: Addison-Wesley,

1986).

[7] Donald E. Knuth and Hermann Zapf, “AMS Euler —A new type¬

face for mathematics," Scholarly Publishing 20 (1989), 131-157.

[Reprinted as Chapter 17 of the present volume.]

[8] Donald E. Knuth, gkpmac.tex, available by anonymous ftp from

labrea.stanford.edu in directory pub/concretemath.errata/

(last updated in 1996). Also available from the Comprehensive TeK

Archive Network (CTAN) in directory systems/knuth/local/lib/.

[9] David R. Siegel, The Euler Project at Stanford (Stanford, Califor¬

nia: Computer Science Department, Stanford University, 1985).

Addendum

The Concrete Roman and AMS Euler fonts have by now been used

together to typeset numerous technical books; the first of these, after

Concrete Mathematics, was probably Mindste Kvadraters Princip by

Kai Borre (Aalborg: Borre, 1992), ISBN 87-984210-1-8. In particular,

the translations of Concrete Mathematics into French, Hungarian, Ital¬

ian, and Polish have used essentially the conventions of the original

English edition. The Russian translation uses “Concrete Cyrillic” fonts

(a family analogous to Concrete Roman), developed by Olga Lapko.

Chapter 19

A Course on METRFONT Programming

[Originally published in TUGboat 5 (1984), 105-118.]

During the spring of 1984, four dozen brave students attended an un¬

usual class at Stanford University, taught by two brave professors and

by another reckless one. The subject of these lectures was type design in

general and the use of the new METRFONT in particular. The course was

necessarily improvisational, because METRFONT was still taking shape

during the entire time; but I think it’s fair to say that the lectures hung

together quite well and that the experience was rewarding for all.

The main reason I can make this claim is that the two brave pro¬

fessors referred to above were Richard Southall and Charles Bigelow,

who gave outstanding lectures in alternation with my own contributions.

Southall’s lectures covered the general subject of “Designing Typefaces,”

and he broke this down into five subtopics:

(1) Definitions — What is the difference between fonts and typefaces,

between type design and calligraphy?

(2) Quality criteria — How can we objectively judge the success of

text typefaces?

(3) Facets of the job — What does a type designer have to do?

(4) Methodology — How does traditional knowledge and practice teach

us to tackle the problem of type design?

(5) “Ideal” designs — Can anyone tell us what shapes the characters

ought to be?

Bigelow lectured on the history of letterforms, from ancient times to the

present. It was instructive to see how character shapes have changed as

the technology has changed: Alphabet designs were originally created

by a “ductal” process, by the movements of a writing tool; then printing

types were produced by a “glyptal” process, by carving in metal; and

nowadays most letterforms are produced by a digital or “pictal” process.

379

380 Digital Typography

by specifying patterns on a discrete raster. The work of master type

designers of all eras was presented and critically evaluated, and Bigelow

concluded by discussing the cnrrent state of the art in commercial digital

typefaces and in designs for CRT displays. All of the lectures by Southall

and Bigelow were lavishly illustrated, in most cases by unique slides from

their personal collections.

My job was to relate this all to the new METRFONT. My luck held

good throughout the quarter, as new pieces of the language would be¬

gin to work just about two days before I needed to discuss them in

class. That gave me one day to get some programming experience be¬

fore I was supposed to teach everybody else how to write good programs

themselves. I lectured about (1) coordinates, (2) curves, (3) equa¬

tions, (4) digitizing, (5) pens, (6) transformations, and (7) the syntax

of METRFONT.
The students did several instructive homework problems. First they

were asked to do two assignments with cut paper, in order to illustrate

the important differences between “what we see” and “what’s there.”

Then came Homework #3, the first computer assignment, which was

to write METRFONT code for Stanford’s symbol, El Palo Alto (the tall

tree); each student did just two of the branches, since it would have been

too tedious to do all twelve of them, and I combined their solutions to

obtain the following results:

(Each of these trees is different, although many of the individual

branches appear in several different trees because some of the branches

were worked on more often than others.) The purpose of this exercise

was to help the students get used to the ideas of coordinates and simple

curves, as they became familiar with the computer system and its text

editor. An organic shape like a tree is very forgiving.

The fourth homework assignment was much more interesting, and

we called it “Font 1.” The class created a new typeface with a sans-

serif, calligraphic flavor; we had just enough people who had completed

Homework #3 so that everybody could be assigned the task of creating

one uppercase letter and one lowercase letter. I presented an upper¬

case ‘U’ and lowercase ‘1’ as examples that would help to set the style;

A Course on METflFONT Programming 381

but of course each student had a personal style that was reflected in the

results, and there wasn’t much unity in our final font. This fact was

instructive in itself.

I had prepared two METflFONT macros to draw penlike strokes and

arcs, and the students were required to draw everything with those two

subroutines. This was a significant limitation, but it helped to focus

everyone’s attention by narrowing the possibilities. The students were

also learning the concepts of meta-design at this time, because their pro¬

grams were supposed to be written in terms of parameters so that three

different fonts would be produced; normal, bold, and bold extended.

This gave everyone a taste of METflFONT’s algebraic capabilities, in

which the computer plays a crucial role in the development.

The best way to describe the outcome of Homework #4 is to present

the font that we made:

In every period there have been better or worse types
employed In better or worse ways.
The better types employed in better ways
have been used by the educated printer
acquainted with standards and history.
directed by taste and a sense of the fitness of things,
and facing the industrial conditions of his time.
Such men have made of printing an art.
The poorer types and methods have been employed
by printers ignorant of standards
and caring alone for commercial success.
To these, printing has been simply a trade.
The typography of a nation has been good or bad,
as one or other of these classes had the supremacy.
And today any intelligent printer can educate his taste,
so to choose types for his work and so to use them,
that he will help printing to be an art rather than a trade.
There is not. as tne sentimentalist would have us think,
a specially devilish spirit now abroad
that prevents good work from being done.
The old times were not so very good,
nor was human nature then so different,
nor is the modem spirit particularly devilish.
But it was, and is, hard to hold to a principle.
The principles of the men of those times
seem simple and glorious.
We do not dare to believe that we, too,
can go and do likewise.

DANIEL BERKELEY UPDIKE

382 Digital Typography

ABCDEFGHIJKKLM
NOPQRSTTUVWXYZ

abcdefghijkl m
nopqrstuvwxyz

This font of type, the first
to be produced by the new

METAFONT system, was
designed by Neenie Billawala,

Jean-Luc Bonnetain,
Jim Bratnober,
Malcolm Brown,

William Burley, Renata Byl,
Pavel Curtis, Bruce Fleischer,

Kanchi Gopinath,
John Hershberger,

Dikran Karagueuzian,
Don Knuth, Ann Lasko-Harvi 11,

Bruce Leban, Dan Mills,
Arnie Olds, Stan Osborne,

Kwang-Chun Park, Tuan Pham,
Theresa-Marie Rhyne,

Lynn Ruggles, Arthur Samuel,
New Wave Dave,

Alan Spragens, Nori Tokusue,
Joey Tutt e, and Ed Williams.

A Course on METRFONT Programming 383

As I said, we didn’t expect Font 1 to have any unity, but I was pleased
that many of the individual characters turned out to be quite beautiful
even when the parameters took on values that the students had not tried.

The fifth and final homework assignment was more interesting yet.
Everybody was to design a set of eight characters that could be used to
typeset border designs. These characters were called NW, NM, NE, ME,
SE, SM, SW, and MW in clockwise order starting at the upper left; here
‘N’ means North, ‘E’ means East, ‘S’ means South, ‘W’ means West,
and ‘M’ means Middle. The height of each character was determined
by the first component of its name, and the width was determined by
the other component. Thus, for example, NW and NM were required
to have the same height; SE and ME were required to have the same
width. As a consequence, the four characters with M’s in their names
could be used as repeatable extension modules to make arbitrarily large
rectangles together with the four corner characters. But there were no
other ground rules besides these mild restrictions on height and width,
and the students were urged to let their creative minds dream up the
greatest borders that they could program in METRFONT.

It was especially exciting for me to see the completed border
projects, because I was impressed by the originality of the designs and
(especially) because I was glad to see that the new version of METRFONT
was working even better than I had dared to hope. We still need to wait
awhile before we’ll know how adequate METRFONT will be as a tool for
letterform design, but already we can be sure that it’s a super tool for
borders! Here are the results of this experiment:

i
I
I i METRFONT I

Ed Williams

SMETfiFONTS
Neenie Billawala

384 Digital Typography

maa
SUTaTS
rATA^AW*
^aTaTA
FaTaTaXY
ilTaYaTSJ

METRFONT
pss

Oitr^
Jean-Luc Bonnetain

METRFONT
Jim Bratnober

jgi1fiiJ||^pjJll5iinalMpyil§ijpMjl§ii^i!STi[^^

METRFONT
ip

i§j

yyi]

1 7^^

flHJ

[S] (p]

William Burley

METRFONT
Renata Byl

A Course on METRFONT Programming 385

Pavel Curtis

METRFONT
Bruce Fleischer

^ T" "V" v>_<

METRFONT
Kanchi Gopinath

METRFONT
John Hershberger

METRFONT
Dikran Karagueuzian

386 Digital Typography

liyiOJgl^li
■■

iiiuiiiiiiy ttl
iiinis^i

llag
Sifg
iiipisumi

!■"

--.“lisr ...

iMETRFONTi imM
US3 p'lsS

silaiiiismiiiap«iEnilSWSH'S»Sl«SiliiSii»__.

Don Knuth

Ann Lasko-Harvill

METRFONT
Bruce Leban

IMETRFONTI ■••a*

Dan Mills

fMETRFONT?
Arnie Olds

A Course on METRFONT Programming 387

gMETRFONTS
Stan Osborne

dbdk db^ dbdb dbdb dbdb dbdbdhdk
[i][i][0][S] OO [o][^ [S][S] [S][^ [S][^ [^[5] [51 [5] [5][5] [5][5]

IMETRFONTI
dbdk dbdk

[^[51 [^[^[^[Oldii]

Kwang-Chun Park

Q txj LXJ txj LXJ txj {•

? METRFONT C«
•> r5c^ O

Tuan Pham

Lynn Ruggles

METRFONTI
Arthur Samuel

388 Digital Typography

METRFONT
New Wave Dave Siegel

Nori Tokusue

I should mention some of our experiences related to the “high tech”

nature of a class like this. None of the computers accessible for classes

at Stanford had a high-resolution screen with graphic capabilities, so we

had ordered SUN workstations to fill the void. When those machines

finally arrived — a week before the class was scheduled to begin — they

were a new model for which new software needed to be written in order

to put them into the campus network and connect them to various pe¬

ripheral devices. The manufacturer balked at letting us see the source

code of their software, but we needed it in order to get going. We also

found that we couldn’t use their version of UNIX anyway, because it al¬

located each hie on our main disk to a specihc workstation; that would

have forced each student to log in at the same workstation each time!

Furthermore their Pascal compiler was unusable on a program as large

as METRFONT.
So we decided to use a locally developed operating system called the

V-System or V-Kernel, due to Profs. David Cheriton and Keith Lantz

and their students. Fortunately one of those students. Per Bothner,

A Course on METRFONT Programming 389

was a member of the project, and he had also written his own

Pascal compiler. Unfortunately, however, we couldn’t use the V-System

without connecting all of our SUNs to a more powerful machine like a

VAX, and we didn’t own such a computer. To make matters worse, the

building in which we had planned to put our SUNs was being renovated;

we were originally scheduled to occupy it in January, but each month

another problem had delayed the construction, and it was clear by the

end of March that we wouldn’t have any place to put the SUNs until
May at the earliest!

Here again Prof. Cheriton saved the situation for us, because he had

independently been making plans to set up a teaching lab with graphic

workstations in another building. His workstations hadn’t arrived yet,

so we were able to loan part-time use of our SUNs in return for the use of

his lab. Furthermore he had a new VAX that we could install next door.

The actual timetable went something like this: On March 24 I had

finished coding a subset of METRFONT that I hoped would be enough to

use in the class, but I hadn’t started to debug it yet. On April 1, I ob¬

tained the first successful output of that program on a small test case,

and METRFONT also displayed a character correctly for the first time

on my screen. (This was on the SAIL computer, a one-of-a-kind 36-bit

machine on which I have done all of the development of and METR¬

FONT.) The next day, April 2, I learned about the possibility of using

Cheriton’s lab for our course; the room was still without furniture, com¬

puters, and air-conditioning, but David Fuchs and other people pitched

in to help get things moving there. On April 3, Per Bothner success¬

fully transported METRFONT from SAIL to a SUN workstation using the

V-System. And April 4 was the first day of class.

The V-Kernel system had previously been used only by hackers, so

there was no decent manual for novices; furthermore none of us except

Per knew how to use it. Arthur Samuel came to the rescue and began to

prepare an introductory manual. Meanwhile, we had special meetings

with Stanford’s TV network technicians, because there was no adequate

way to run METRFONT from a classroom so as to display the results

online to the audience. On April 6 I began to write GFtoDVI, a fairly long

program that is needed to get proofsheets from METRFONT’S output;

I knew that it would take at least two weeks to complete that program.

Lynn Ruggles had already made progress on another utility routine,

GFtoQMS, which produces fonts suitable for a new laserprinter that we

had just received. (But that printer wasn’t installed yet.)

Bigelow and Southall knew that it would be a miracle if the com¬

puters were all in place on time, so they were prepared to “vamp” until

390 Digital Typography

I was ready. I gave ray first lecture on Friday, April 13, one day after

Lynn had been able to typeset the first METRFONT-made character on

our QMS. The students had plenty of non-computer homework to do, as

mentioned above, so we were able to make it seem natural that the first

computer assignment was not distributed until April 27.
Well, the month of May was a long story, too — the computers

broke down frequently because of inadequate air-conditioning, which

took weeks to install — and there were plenty of software problems as

I kept making new versions of METflFONT. But people were good na-

tured and they tolerated the intolerable conditions; I rewarded them for

this by cancelling a planned Homework #6. Teaching assistants Dan

Mills and Dave Siegel did yeoman service to keep everything running as

smoothly as possible throughout the nine weeks of the class.

Finally the course came to a glorious finish as we took a field trip

to San Francisco. We had a picnic on Font Boulevard, then toured the

fascinating MacKenzie—Harris type foundry and the Bigelow &; Holmes

design studio. I can best convey the jubilation of that memorable day by

showing a picture of the “italic” font that we all made just after lunch:

Photo by Jill Knuth

Back row (left to right): Per Bothner, Bruce Fleischer, John Hobby, Rachel

Hewson, Don Knuth, Neenie Billawala, Arnie Olds, Alan Spragens, Bruce

Leban, Joey Tuttle, Stan Osborne, Dave Siegel, David Fuchs. Front row:

John Hershberger, Jacques Desarmenien, Dikran Karagueuzian, Nori Tokusue,

Malcolm Brown, Kanchi Gopinath, Pavel Curtis, Jean-Luc Bonnetain, Renata

Byl, Kwang-Chun Park, Richard Southall, Michael Weisenberg.

Chapter 20

A Punk Meta-Font

[Originally published in TUGboat 9(1988), 152-168.J

In February 1985, Gerard and Marjan Unger gave a series of nine evening

lectures at Stanford, in which they surveyed the evolution of styles in art,

architecture, clothing, product design, and typography during the past

75 years. The lectures were especially interesting because of the way in

which changes in typographic fashions were juxtaposed with the changes

in other kinds of fashions; the Ungers demonstrated a remarkable fact:

Typography tends to lag behind other kinds of stylistic changes by about

ten years.

When I woke up on the morning of their final lecture, I suddenly

realized that there was an obvious corollary of what they had been

saying during the previous eight evenings: It was now about time to

design a typeface based on trends that had emerged during the late

70s! Furthermore, I also had a reasonably clear idea of what such a

design might be like, because the lectures had turned up a strong simi¬

larity between some “punk” graphics exhibited in London and a certain

lines-and-dots motif found in the upholstery of some “punk” furniture

designed in Italy.

A lines-and-dots motif is trivially easy for METFIFONT to handle, so

I decided to create a new family of trendy typefaces called F ll [JR. I spent

several pleasant hours at the computer terminal that afternoon; and by

evening I was able to present everybody in the audience with an up-

to-the-minute souvenir of the Ungers’ lectures, laserprinted in

and

The idea of F ll N K was to start with more-or-less traditional stick-

letter shapes, but to ask METRFONT to perturb the key points by ran¬

dom amounts so that the letters look a bit deranged. Here, for example,

are several texts set with a few varieties of Fllflf^ fonts:

391

392 Digital Typography

AHPEf6HJJKl(JtJC)fORSTljVnfZ AbeDeFSHUjCUMHO^SiUSTUV

wxYi b\n{uu? /C(E^r/i6A£niTi>'iffl
J ()[]TU/(=>

- PUNK10

SAID AuYie. His facf was ufd aj^d hf was ceu-

TAIt^UY FFUSTFUeo. 'Jt ’d BF A DFAD FUejCY THINS IF SOMF
MOUF t-FOf-FF ABOUND THF SHOt* ’d CHANQF A FITTFF. ThFY
eOUFD n’t bF ANY {‘UNKFU ’n THFY APF NOW/ [1]

ABep6fQiilJKlM^*^f(J)^5TUVWXYl Abcoef
rciR3T9vwxY^ 61?S#S67X? ;^(E0$i

O M r

- PUNK12

A fORlCSD VEIN bESAN TO SWELL IN StADe’s f^ORE-

HEAD. ... His voice bEcAHE fERSUASIVE ASAIN.

HistenT QiiTmanF We’ve AbsOLbTELY sot to eiVE

THEM A VICTIM. There’s no way out Of^ it. Let’s

eiVE THEM the rUNic.'’ He nodded tleasantly at

THE bOY IN THE doorway. [2]

MQmmmmm'imn

ABeDFFSHUKLMNGFQUSTtJrWXYl M

PUNK20

tisroL. iisiPe.] This funk is
ONF OF CuFip’s aARPiePS. Claf

ON MORF SAILsT FuRSUF; uF WITH

A Punk Meta-Font 393

YOUR i'isHTS; Sire j*ikel Sue is
mY ?kiie, ok oeeAN WHeiM THen
all! [£xir.] (6|

umFsnumf^H&mmvi

AbaDefsHUiCLMtior^Rsrvvvxvz Si
msmr /^rmFijrrMj?

B-’-S 0[]fU/(~)
PUNKSL20

tvHK! R6aic IS me sene/zis reRM
fOR me LAvesr musical sARtAse
bRei> by OUR TROUbieP auiruRef

British arp iMeRisAu. ...
Johnny korreN anp rne Sex fis'
tols Ake funks. "fneY sins 'An'

AkeHY IN THe UK/ WHICH eNPS

WITH A sekeAM:'PfiSTkOY-'’ CLASH
ANP PAMNeP Ake OTHek tANPS.

... fume Vfiuu *»ADe. Its
AfOUOQtSTS ARe UUpiORoUS.

ThCRC ARe VAYS TO fROTeST
AlJOOT THe fUTRlp FACeS Of*

394 Digital Typography

bOTH fOf AHD SOOieTY VITH-

OUT RCUAfSlHQ tMTO bAR-

bARISM. fONK 18 AMTI-Uli*er
AHTl-HUMANtTV. pi

AECPef6HlJKUN0r<iRSTUV
VXYZ AbCDei*«HljKUMMof^R

sTUVVfXYx 6l2S4S^789

* chitu/<s>
PUNKBX20

At the time I “designed” these typefaces, I had just begun to make the

final version of the Computer Modern fonts by converting my Almost

Computer Modern code to the conventions of METRFONT 84. The letters

‘A’, ‘B’, ‘C’, and ‘D’ had been debugged so far, and I was planning to

tackle ‘E’ soon; but I felt like taking a break. So I made sketches of

some punkish forms, as follows;

A Punk Meta-Font 395

(I used a large sheet of graph paper; this illustration has been reduced

to 25% of the original size. Needless to say, I had no idea that I would
ever show these sketches to anyone else.)

At 1 pm I went to the computer and began to compose a simple

base file. Not much needed to be done, since plain METRFONT already

included most of the basic routines; so I had my first proof output twenty
minutes later:

^^ETRFONT output 1985.02.28:1320 Page 1 Character 65

(45% of original size)

The letter ‘A’ seemed to be working, so I proceeded to type the METR¬

FONT programs for ‘U’ through ‘2’. I decided to type everything before

looking at any proofs; so I simply translated the sketches into METR¬

FONT constructions, composing everything at the keyboard. It wasn’t

necessary to make accurate measurements, because random perturba¬

tions to the points were going to be made anyway. Thus I soon got

used to the conventions of this font, and I was limited only by typing

speed. I didn’t even need sketches of the letters ‘V’ through ‘V, because

their algebraic formulation was easy to imagine after I had done 21 other

letters. At 3:04 pm the typing was done, and I was able to run METR¬

FONT and get proofs of all 26 uppercase letters. I also had thrown in a

few punctuation marks (period, comma, opening and closing single and

double quotes).

396 Digital Typography

Of course there were bugs in my code. For example, the first few

letters came out looking like this on the initial proofsheets:

METFIFONT output 1985.02.28:1504

(I refuse to show you the first form of the letter ‘6’.) But by 4 pm I was

ready to make the first trial setting of text:

M piAfoiirppA^poii

juiirtPoi^^ ri\£ lAKnA^^o^eifoti?.

At this point an unexpected glitch slowed things down a bit. The

letters of this font had some unusual characteristics that hadn’t arisen

in GF files before, so a bug showed up in our METRFONT-to-laserprinter

software when I tried to print at a 40-point test sample. I made copies

of the offending files, for later reference, and I was able to get around

the bug by choosing another random seed and generating the font again.

After another half hour of tuning things up (and toning the randomness

down), I was able to go home for supper.

During the supper hour, I realized that a proper keepsake for that

evening would include the typeset date. So I gulped down my meal.

A Punk Meta-Font 397

quickly sketched a set of numerals, and raced back to my office. Soon

I had a font of 43 characters — 26 letters, 10 nu¬

merals, and 7 punctuation marks. Whew! I was

ready to hand out a sample sheet to everybody

at 7 pm, hot off the copy machine.

A year or so later, I was wondering around in

Boston’s Museum of Fine Arts and I came across

a drawing made by Picasso in 1924 [5]; see the

illustration at the right. This made me wonder if

the fonts weren’t really sixty years behind

the times, not just ten. But I did find a striking confirmation of the

relevance of at least part of the FlJlIlC design in October 1986, when

I chanced to see the following typography on a billboard in the Paris
Metro(!):

In February of 1987 I decided to extend the original 43-character

font to the full TfijX character set. The extra programming didn’t take

long, since I chose to generate the lowercase letters as “small caps,” and

since only one or two minutes were needed to type each new character

into the computer. About one third of the characters had to be revised

after I saw proofsheets, since they looked either too punk or not punk

enough; and one-third of the revised characters had to be revised again;

and so on. But after about six hours of additional work, a complete

FI)flic meta-font with 128 characters was ready for use, in case anybody

wanted it.

In the remainder of this paper. I’ll present complete details of the

METRFONT code, since this may be the shortest nontrivial example of

METflFONT programs that produce all 128 characters used by plain TfijX.

The programs appear in several different kinds of files, as explained

in Appendix E of [4]: There are parameter files, to specify specific fonts

of the family; there is a driver file, which controls most of the font

generation process; and there are program files, which contain the code

for individual characters. (I didn’t need a base file, since the special

macros for these fonts could all be included in the driver file.)

Here is a typical parameter file, PUNK20.MF:

% 20-point PUNK font:
designsize := 20pt#; font .identifier := "PUNK";

398 Digital Typography

ht* ;= 14pt*-,

U*

s* :=

px* := .8p<^;
pytt .6pttt-^

dot# := 2.7pt#-,

dev# .hpt#\

slant := 0;

seed := 2.71828;

input PUNK

% height of characters

% unit width

% extra sidebar

% horizontal thickness of pen

% vertical thickness of pen

% diameter of dots

% standard deviation of punk points
% obliqueness

% seed for random number generator

% switch to the driver file

Its purpose is to customize the meta-design to a particular selection of

sizes and weights. The parameters used to define the five fonts exhibited

earlier in this article are:

PUNK10 PUNK12 PUNK20 PUNKSL20 PUNKBX20

designsize IQpt# 12pt# 20pt# 20pt# 2t)pt#

fontJdentifier "PUNK" "PUNK" "PUNK" "PUNKSL" "PUNKBX"

hf# 7pt# 8Apt# 14pf^ 14pf^ 14pf^

u# ^Upf# .3pt# '^/dPt# ‘^/gpt# .6pt#

s# 1.2pt# lApf# 2pt# 2pt# 2.2pt#

px# .6pt# .75pt# .8pt# Apt# 2pt#

py# .bpt# .62pt# Apt# Apt# l.t>pt#

dot# 1.2>pt# l.6pf# 2.7pt# 2.7 pt# 3.5pt#

dev# .3pt# .36pt# Apt# .hpt# .5pt#

slant 0 0 0 Vs 0

seed sqrt 2 sqrt 3 2.71828 3.14159 0.57722

The driver file PUNK.MF was the most difficult to write, because

it contains the “essence” of the design. The various parts of this file

grew one step at a time. For example, the last two parameters of the

‘beginpunkchar’ macro were added after I noticed that some characters

can’t tolerate as much random deviation in their points as a normal

character can; too much displacement makes them unrecognizable.

% This is Nflk

% a meta-font inspired by Gerard and Marjan Unger’s lectures, February 1985

mode_setup;

randomseed := seed]

define_pixels(u, dev)]

define_blacker.pixels(pa:, py, dot)]

define_whole_pixels (s);

xoffset := s;

pickup pencircle xscaled pa: yscaled pp; punk-pen := savepen]

A Punk Meta-Font 399

pickup pencircle scaled dot-, def.pen.path.-,

path dot.pen.path-, dot.pen.path := currentpen.path-,

currenttransform. := identity slanted slant yscaled aspecLratio-,

def beginpunkchar(expr c, n, h, v) = % code c; width is n units
hdev := h * dev-, % modify horizontal and

vdev := V * dev-, % vertical amounts of deviation
beginchar(c, n * u*, ht*, 0);

italcorr ht* + slant-, pickup punk.pen enddef;

extra.endchar := extra.endchar k. "w:=w+2s;charwd:=charwd+2s#";

def f = transformed currenttransform enddef;

def makebox{text rule) =
for y = 0, h:

rule{{-s, y)t, {w - s, y)t); endfor % horizontals

for X = —s, 0, w — 2s, w ~ s: rule{{x, 0)t, (x, endfor % verticals
enddef;

rulepen pensquare;

vardef pp expr z = 2-|-(/ideu*normaldeviate, wdeu*normaldeviate) enddef;

def pd expr z = addto.currentpicture contour

dot.pen.path shifted zt. withpen penspeck enddef; % drawdot

input PUNKL

input PUNKAE

input PUNKG

input PUNKP

input PUNKD

input PUNKA

ht"^ .Qht"^-, dev .7dev-,

input PUNKSL

extra.beginchar := extra.beginchar k

input PUNKL

extra.beginchar extra.beginchar k

input PUNKAE

font_slant := slant]

font_quad := 18u^ -|- 2s*]

font_normal_space := 9u* -|- 2s*]

font_normal_stretch := 6u*]

font_normal_shrink := 4u^;

font_x_height := ht*]

font_coding_scheme := "TeX text

% uppercase letters

% uppercase JE, CE, 0

% uppercase greek

% punctuation

% digits

% accents

% special lowercase

chcircode: =charcode+32; ";

% lowercase letters

chcircode: =charcode-35; ";

% lowercase ae, oe, 0

without f-ligatures";

end

400 Digital Typography

The 128 characters generated by PUNK.MF have the same font posi¬

tions as the characters in fonts like cmrB and cmcsclO that don’t have

f-ligatures. Here, for example, is the layout of the font PUNKZ20, which

is like PUNK20 except that dev = 0 (so that there is no randomness):

'0 T '3 'J, 'S '6 7

Wx r h A n 1 T
"Ox

'Olx fl t
I •

I
•

'02x I J
z M w

"lx

'03x s A (H 0 k (E !>

V4x I
•

r

:

"2x

'05x c)
% r

*
• /

'06x h 1 i i h I
"3x

'07x i ?
•
•

•
I

(
••

} •

TOx A c p f e
"4x

Tlx H I J i M N

T2x f R s T U V w
"5x

TSx X Y I [
n

]

•

T4x
:

A G P e F
"6x

TSx H I J R 1 M N 0

T6x f c R s T U V W
"7x

T7x X Y Z •-«
tr ••

"8 "9 "A "B "C "D "E "F

Let’s look now at the program files. The first one I wrote was

PUNKL.MF, which defines all the letters from A to 7:

% Punk letters:

A Punk Meta-Font 401

beginpunkchar("A", 13, 1, 2);

zi = pp{l.5u, 0); 22 = l.l/i); 23 = pp{w — 1.5n, 0);

pd pd 23; draw 2i -- 22 -- 23; % left and right diagonals

24 = ;>p.3[2i, 22]; 25 = pp.3[z3, 22];

pd 24; pd 25; draw 24 -- 25;

endchar;

beginpunkchar ("B", 12, 1, 1);

2i = pp{2u, 0); 22 = pp{2u, .Qh)] 23 = pp{2u, /i);
pd 21; pd 23; draw 2i -- 23;

21.5 = pp{w - u, .5^2); 22.5 = pp{w - u, .5[y2, 1/3]);

draw 22 -- 22.5 -- 23;

draw flex(22, 21,5, 21);

endchar;

beginpunkchar("C", 13, 1, 2);

2i = pp{w - 2u, .8h)\ 22 = pp{.6w, h); 23 = pp{u,

24 = (.6a', 0); Z5 = {w — 2u, .2h)\

pd 2i; pd 25; draw 21 .. 22 .. 23 .. 24 .. 25;

endchar;

beginpunkchar("D", 14, 1, 2);

2i — pp{2u, 0); 22 = pp{2u, h)] 23 = pp{w - u, .6h

pd 21; pd 22; draw flex(2i, 23, 22);

draw 2i - - 22;

endchar;

beginpunkchar("E", 12, .5, 1);

2^1 = PP(2n, 0); 22 = pp{2u, h)\ 23 = pp{w — 2.5u, h); 24 = pp{w — 2u, 0);

pd 23; pd 24; draw 24 - - 21 - - 22 - - 23; % stem and arms

25 = pp{2u, .6/1); 26 = pp{'w — 3a, .6h);

pd 2:5; pd 26, draAv 25 2^6, crossbar

endchar;

beginpunkchar ("F", 12, .5, 2);

2i = pp(2u, 0); 22 = pp{2u, h); 23 = pp{w — 2a, /i);
pd 2i; pd 23; draw 2i -- 22 -- 23; % stem and arm

2:5 = PPi'^u, .6/1); 26 = pp{w — 3a, .6/1); 24 = pp.5[z5, 26] — (0, .1/1);
pd 25; pd 26; draw flex(25, 24, 23); % crossbar

endchar;

beginpunkchar("G", 13, .5, .5);

— pp{w — 2a, .8/i); 22 = pp{.6w, h); 23 = pp{u, .5h);

24 = pp{.6w, 0); 25 = (a; — 2a, 0);

pd 2i; draw 21 .. 22 .. 23 .. 24 — 25; % arc

26 = pp{-5[u, X5], .4/1); pd 26; pd 25; draw 26 -- {pp{x5, ye)) -- 2:5; % spur

endchar;

% crossbar

% stem

% upper lobe
% lower lobe

.5h);

% arc

% lobe
% stem

402 Digital Typography

beginpunkchar("H", 14, 1, .5);

zi = pp{2u, 0); 22 = pp{2u, h)\ 23 = ppiw - 2u, 0); 24 = pp{w - 2u, h)\

25 = pp{2u, .6h)] 26 = pp{w — 2u, .6/1);
pd 2i; pd 22; pd 23; pd 24;
draw 2i--22; draw flex(23, 26, 24); % stems

pd 25; draw 25 -- ^6; % crossbar

endchar;

beginpunkchar("I", 5, 1, 2);

2i = pp{.5w, 0); 22 = (.5m, Va^); ^3 = (-Sm, 24 = (.5m, h)-,

pd 2i; pd 24; draw flex(2i, 22, 23, 24); % stem

endchar;

beginpunkchar("J", 9, 1, 2);

= pp{w — 2u, h)\ 22 = pp{w - 2u, —.Ih); 23 = pp{u, 0);

pd 2i; pd 23; draw 21 -- 22 -- 23; % arc

endchar;

beginpunkchar("K", 14, 1, 2);

21 = pp{2u, 0); 22 = pp{2u, h)-, 23 = pp{2u, Vs/i); -24 = pp{w - 1.5u, h)-,

pd 2i; pd 22; draw 21 -- 22; % stem

pd 23; pd 24; draw 23 -- 24; % upper diagonal

■26 = PP{W - U, 0); 25 = V3[23, 24];
pd 26; draw flex(25, .8[2i, 26]], 25); % lower diagonal

endchar;

beginpunkchar("L", 11, 1, 2);

2i = pp{2u, h)] 22 = pp{2u, 0); 23 = pp{w — 1.5n, 0);

pd 2i; pd 23; draw 2i -- 22 -- 23; % stem and arm

endchar;

beginpunkchar("M", 17, .5, 2);

2i = pp{2u, 0); 22 = pp{2u, h)-, 23 = pp{.5w, 0);

24 = pp{w — 2u, h); 25 = pp{w — 2u, 0);

pd 2i; pd 25; draw 21 - - 22 - - 23 - - 24 - - 25; % stems and diagonals

endchar;

beginpunkchar("N", 13, .75, 2);

2i = PP{2u, 0); 22 = pp{2u, h)] 23 = pp{w — 2u, 0); 24 = pp{w — 2u, h)\

pd pd 24; draw 2i -- 22 -- 23 -- 24; % stems and diagonals

endchar;

beginpunkchar("0", 12, .5, 2);

2i = pp{.5w, /i); 22 = pp{u, .55/1); 23 = pp{.5w, 0); 24 = pp{w — u, .5bh);

pd 2i; draw zi{left} .. 22 .. 23 .. 24 .. 21; % bowl

endchar;

beginpunkchar("P", 13, 1, 2);

21 = pp{2u, 0); 22 = pp{2u, l.l/i); 23 = pp{2u, .5h)] 24 = pp{w, .6[y3, 2/2]);

pd 21; pd 23; draw 2i -- 22 -- 24 -- 23; % stem and bowl

endchar;

A Punk Meta-Font 403

beginpunkchar("Q", 14, .5, 2);

zi = pp(.5w, h); Z2 — pp{u, .55/i); 23 = pp{.5w, 0); 24 = pp{w — u, .55/?);
pd 2i; draw 24 {curl 2} .. 22 .. 23 .. 24 .. 21; % bowl
^5 = pp{Aw, .2h)\ 26 = ppiw - u, -Ah)-, 27 = pp{.5[x5, Xq], -.2/?,);
pd Zb\ pd 26; draw 25 -- 27 -- 26; % tail
endchar;

beginpunkchar("R", 16, 1, 2);

21 = pp{2u, 0); 22 = pp(2u, h)\ 23 = pp{w - u, .6[y2, y4]);

24 = pp{2u, .5h); 25 = pp{w — 1.5u, 0);

pd 21; pd 2^2; pd 25;

draw 2i -- flex(22, 23, 24) --25; % stem, bowl, and diagonal

endchar;

beginpunkchar("S", 11, .3, 1);

2i = pp{w - 2u, .9h); 22 = pp{.5w, h); 23 = pp{u, .7/?); 24 = .6(26, 22];

25 = pp{w — u, .35/?); 26 = pp{.5w, n); 27 = pp{u, .2/?);

pd 2i; pd 27; draw 2i -- 22 ... 23 .. 24 .. 25 ... 26 -- 27; % stroke

endchar;

beginpunkchar("T", 13, .75, 2);

2i = pp{u, h); 22 = pp(w - u, h); 23 = pp(.5w, 0);

pd 21; pd 22; pd 23; draw 2i -- 22; % arms

draw .5[2i, 22] --23; % stem

endchar;

beginpunkchar("U", 13, .3, 2);

2i = pp(2u, h); 22 = pp(2u, .2h); 23 = pp(.5w, 0);

24 = pp(w — 2u, .2/1); 25 = pp(w — 2u, h);

pd 2i; pd 25; draw 21-22 ... 23(24 — 22} ... 24-25; % stroke

endchar;

beginpunkchar("V", 13, 1, 2);

2i = pp(1.5u, /?); 22 = pp(.5w, 0); 23 = pp(w - 1.5u, h);

pd 2i; pd 23; draw 21 -- 22 -- 23; % diagonals
endchar;

beginpunkchar("W", 18, 1, 2);

zi = pp(1.5u, /?); 22 = pp(.5[xi, X3], 0); 23 = pp(.5w, .8h);

24 = pp(.5[x3, X5], 0); 25 = pp(w - 1.5u, h);

pd 2i; pd 25; draw 21 -- 22 -- 23 -- 24 -- 25; % diagonals

endchar;

beginpunkchar ("X", 13, 1, 1);

zi = pp{1.5u, /?); 22 = pp{w - 1.5u, 0); 23 = pp{1.5u, 0);

24 = pp{w — 2.5ii, /?);
pd 2i; pd 22; draw 21 -- 22; % main diagonal
pd 23; pd 24; draw 23 -- 24; % cross diagonal

endchar;

404 Digital Typography

beginpunkchar("Y", 13, 1, 2);

zi = pp{l.bu, h)-, Z2 = pp{w - 1.5u, h); zs = pp(.5w, .5h); Z4 = pp(.5w, 0);

pd zi; pd 22; pd 24 i draw 21 -- 23 -- 24; % stem and left diagonal

draw 22 -- 23; % right diagonal

endchar;

beginpunkchar("Z", 11, 1, 2);

2i = pp{1.5u, h); 22 = pp{w - 2.5n, h); 23 = ppil.bu, 0);

24 = pp{'w — 1.5u, 0);

pd 2i; pd 24; draw 21 - - 22 - - 23 - - 24; % diagonals

endchar;_

(It slowed me down a little to type the comments that identify the

strokes. But such comments are enormously valuable when characters

are being revised, so I knew that I should include them right from the

beginning.)
Three of the letters go into a special file, PUNKAE.MF, because the

character codes of these uppercase letters have a nonstandard relation

to the character codes of the corresponding lowercase equivalents:

beginpunkchar(oct "035", 16, 1, 2); % JE

= pp{l.5u, 0); 22 = pp{.Qw, h)\ 23 = pp{w - 1.5n, h)\

pd 2i; pd 23; draw 21 -- 22 -- 23; % left diagonal and upper arm

24 = pp.3[2i, 22]; 25 = pp{.6w, 0); 26 = pp{w - 2u, .3fi);

pd 24; pd 26; draw 24 -- 25; % crossbar

Z7 = pp{w - u, 0)] pd 22; pd 27;

draw 22 - - 25 - - 27; % stem and lower arm

endchar;

beginpunkchar (oct "036", 18, 1, 2); % CE

= PPi-5w, h)] 22 = pp{u, Ah); 23 = pp{.5w, 0);

pd 2i; draw 21 .. 22 .. {right}Z3; % bowl

24 = pp{w — 1.5u, h); 25 = pp{w — 2u, Ah); zq = pp{w — u, 0);

pd 24; pd 26; draw 24 -- 21 -- 23 -- 25; % arms and stem

pd 25; draw 25 -- .4(23, 21]; % crossbar

endchar;

beginpunkchar (oct "037", 14, 1, 1); % 0

2i == pp{.5w, h); 22 = pp{u, .5h); 23 = pp{.5w, 0); 24 = pp{w — u, Ah);

25 = pp{w — 2u, lAh); 26 = pp{2u, —Ah);

pd 21; pd 26; draw 21 .. 22 .. 23 .. 24 .. 25 - - 26; % bowl and diagonal

endchar;

There’s also a special file PUNKSL.MF for lowercase letters with no

matching uppercase:

beginpunkchar (oct "020", 5, 1, 2); % dotless I

2i = pp{.5w, 0); 22 = {Aw, i/sfi); Z3 = {Aw, ^zh); 24 = {Aw, h);

A Punk Meta-Font 405

pd 2i; pd 24; draw flex(2i, 22, 23, 24); % stem
endchar;

beginpunkchar(oct "021", 9, 1, 2); % dotless J

2i = pp{w — 2u, h)\ 22 = pp{w — 2u, —.1/1); 23 = pp{u, 0);

pd 21; pd 23; draw 2i -- 22 -- 23; % arc

endchar;

beginpunkchar(oct "031", 18, .3, 1); % German sharp S

2^1 = pp(.5m - u, .9h); 22 — pp(VaU', h); 23 = pp(u, .7h); 24 = .6[26, 22];

25 = pp{-5w, .35h); z& — pp{^/zw, u)\ 27 = pp(u, .2/i);

pd 2i; pd 27; draw 21 - - 22 ... 23 .. 24 .. 25 ... 25 - - 27; % left stroke

for i = 1 upto 7: z[i -{■ 10] = pp(2[i] shifted {.bw — u, 0)); endfor

pd 1 y pd 217;

draw 2ii -- 212 ... 2i3 .. 2i4 .. 2i5 ... 2i6 -- 2i7; % right stroke

endchar;

The uppercase Greek letters in file PUNKG.MF may have a slightly

different style than those of PUNKL, because I wrote them two years

later. Is there an obvious difference?

% r

% stem and arm

% A

% triangle

% 0

beginpunkchar(oct "000", 11, 1, 2);

2i = pp(2'ii, 0); 22 = pp(2ti, h); 23 = pp(w — 1.5u, h);

pd 2i; pd 23; draw 21 --22 --23;

endchar;

beginpunkchar (oct "001", 15, 1, 2);

2i = pp{u, 0); 22 = pp{.5w, h)] 23 = pp{w - u, 0);

pd 2i; draw 21 - - 22 .. tension 5 .. 23 .. tension 5 .. 21

endchar;

beginpunkchar (oct "002", 15, .5, 2);

2i = pp(.5w, h)\ 22 = pp(a, .6/i); 23 = pp(.5w, 0); 24 = pp{w — u, .6/1);

pd 2i; draw 21 .. tension .8 .. 22 .. 23 .. 24 .. tension .8 .. 21; % bowl
25 = pp{x2 + 2u, Ah)-, 26 = pp(x4 - 2u, Ah)-,

pd 25; pd 26; draw 25 -- 23; % bar

endchar;

beginpunkchar (oct "003", 12, 1, 2); % A

2i = pp(u, 0); 22 = ppi-bw, h); 23 = pp{w - u, 0);

pd 2i; pd 23; draw 21 -- 22 -- 23; % diagonals

endchar;

beginpunkchar (oct "004", 12, 1, 1); %

2i = pp{u, h)-, 22 = pp{w - u, h)-,

pd 21; pd 22; draw 21 -- 22; % upper arm

23 = pp{2u, .55/i); 24 = pp{w — 2u, .55/i);

pd 23; pd 24; draw 23 -- 24; % bar

25 = pp{u, 0); 26 = pp{w - u, 0);

pd zs; pd 26; draw 25--26; % lower arm

406 Digital Typography

endchar;

beginpunkchar(oct "005", 13, 1, .5); % n

zi = pp{1.5u, 0); Z2 = pp{1.5u, h)\ = pp{w - l.Stt, /i);

Zi = pp{w — 1.5w, 0);

pd Zi\ pd Z4; draw zi -- Z2 23 -- Z4; % stems and bar

endchar;

beginpunkchar(oct "006", 13, 1, 1); % ^

•2^1 = pp[w — u, h)-, Z2 = pp{u, h); Z3 = pp{.5w — u, .5/i);

Z4 = pp{u, 0); Z5 = pp{w - u, 0);

pd zi; pd Z5; draw Zi -- Z2{.5[z4, Z5] — Z2} .. Z3 -- Z4 -- Z5; % arms and

diagonals

endchar;

beginpunkchar (oct "007", 15, 1, .5); % TO

zi = pp{u, .8h); Z2 = pp{-^w, h)] Z3 = pp{.5w, .5/i); Z4 = pp{.5w, 0);

pd zi; pd Z4; draw zi .. Z2 . ■ tension 2 .. Z3 — Z4; % left arc and stem

Z5 = pp{w - u, .8h)-, Z6 = pp{-7w, h)]

pd Z5; draw Z5 .. Z6 .. tension 2 .. {z4 - Z3}z3; % right arc

endchar;

beginpunkchar (oct "010", 13, 1, 2); % 4*

zi = pp{.5w, h)-, Z2 = pp{-7)W,Q)\ pd zi; pd Z2; draw zi --Z2; % stem

Z3 = pp{.5w, 2/3/1); Z4 = pp{u, .5/i); Z5 = pp{.5w, 1/4/1); = pp{w-u, .5/i);

pd Z3; draw Z3 .. Z4 .. Z5 .. Ze .. 2:3; % bowl

endchar;

beginpunkchar (oct "Oil", 14, 1, 1); % 4'

zi = pp{.5w, h)-, Z2 — pp{-7>w, 0)-, pd zi; pd Z2; draw zi --Z2; % stem

^3 = PP{u, -S/i); Z4 = pp{.5w, .2h)\ Z5 = pp{w — u, .8h};

pd ^3; pd Z5;
draw Z3{.4[zi, Z2] — Z3} .. Z4{right} .. {zs — .4[zi, Z2]}z5; % stroke

endchar;

beginpunkchar (oct "012", 13, 1, 2); %

zi = pp(u, 0); Z2 = ppi'^/aw, 0); Z3 = pp{u, 2/3/1); Z4 = pp{.5w, h);

Z5 = ppiw - u, 2/3/1); ze — pp{^/3W, 0); Z7 = pp{w - u, 0);

pd pd ZT,
draw zi -- Z2{up} .. Z3 .. Z4 .. Z5 .. {do'wn}z% -- Z7; % bowl and arms

endchar;

The next program file, PUNKD.MF, defines the ten punk digits. I ran

out of time while typing this, so the comments at the end are somewhat

uninspired.

beginpunkchar("0", 9, .5, 1);

zi = pp{.5w, h)] Z2 = pp{u, .55/i); Z3 = pp{.5w, 0); Z4 = pp{w — u, .55/i);

pd zi; draw zi{curl 2} .. Z2 .. Z3 .. Z4 .. zi; % bowl

endchar;

A Punk Meta-Font 407

beginpunkchar("l", 9, .3, 1);

zi = pp{2u, .7h)] Z2 — pp{.6w, h)-, 23 = pp{.6w, 0);

pd 21; pd 23; draw 2i -- 22 -- 23; % serif and stem
endchar;

beginpunkchar("2", 9, 1, 1);

zi = pp{2u, .7/1); 22 = pp{.5w, h)] 23 = pp{w — u, .6/i);

24 = pp{u, 0); 25 = pp{w - 2u, 0);

pd zi; pd 25; draw 2i .. 22 .. 23 .. 24 -- 25; % stroke

endchar;

beginpuiikchar("3", 9, .5, .5);

2i = pp{2u, .7/1); 22 = pp{.5w, h)\ 23 = pp{w - u, .5[y2, y4]);

24 = pp{.5w - u, .55/!); 25 = pp{w - u, .5[y4, ye]);

•26 = pp{.5w, 0); 27 = yp(1.5n, .2h);

pd 2i; pd 27; draw 21 .. 22 .. 23 .. 24 &: 24 .. 25 .. 23 .. 27; % arcs

endchar;

beginpunkchar("4", 9, 1, 1);

2i = pp[w - u, .3h); 22 = pp{u, .3/1); 23 = pp{^/3W, h)] 24 = pp{'^/3W, 0);

pd 2i; pd 24; draw 21 - - 22 - - 23 - - 24; % stem and diagonals

endchar;

beginpunkchar("5", 9, .5, .5);

2i = pp{w — 2u, /i); 22 = pp{2u, h)\ 23 = pp{u, .7/i);

24 = pp{w - u, .5[y3, ysj); 25 = pp{.5w, 0); 25 = pp{u, .2h)]

pd 21; pd 26; draw 21 - - 22 - - 23 .. 24 .. 25 .. 25;

endchar;

beginpunkchar("6", 9, 1, 1);

zi = pp{^/3W, h); 22 = pp{u, .3/i); 23 = pp{.5w, 0);

24 = pp{w — u, .3h); 25 = pp{.6w, .6/1); 26 = pp.z 2;

pd 21; pd 26; draw 21 .. 22 .. 23 • • 24 .. 2:5 - - 2:6;

endchar;

beginpunkchar("7", 9, .5, 1);

2i = pp{2u, h)\ 22 = pp{w — .5u, /i); 23 = pp{Aw, 0);

pd 2i; pd 23; draw 2i --22 & 22 .. 23{down};

endchar;

beginpunkchar("8", 9, .5, .5);

21 = pp{.5w, h)\ 22 = pp{u, .5[yi, y3]); 23 = pp{.5w, .6/1);

24 = pp{w - u, .5[y3, ys]); 25 = pp{.5w, 0);

26 = pp{u, .5[y5, ysj); 27 = ppiw - u, .5[yi, y3]);
pd 2i; draw Zi (curl 8} . . 22 .. 23 .. 24 .. 25 .. 26 .. 23 .. 27 .. 21; % stroke

endchar;

beginpunkchar ("9", 9, 1, 1);

2i = PPi^/sw, 0); 22 = pp{w - u, .7/1); 23 = pp{.5w, h)]

24 = pp{u, .7h); 25 = pp{.5w, Ah)-,

% stroke

% stroke

% stroke

408 Digital Typography

pd zi] pd zs,-, draw zi .. Z2 ■ ■ Z3 .. Z4 .. zs]

endchar;

% stroke

The program file PUNKP.MF defines “punk punctuation.” This was

one of the most difficult to write — although most of the characters are

very simple — because there are so dauh many punctuation marks.

beginpunkchar(" . 5, 1, 2);

pd pp{.5w, 0);

endchar;

beginpunkchar 5, .5, .5);

zi — pp{.5w, 0); 22 = pp{w - u, -.Ih); Z3 = ppi.5w,

pd zi] pd Z3-, draw zi -- Z2 -- ^3;

endchar;

beginpunkchar5, 1, .5);

pd pp{.5w, 0); pd pp{.5w, Ah)-,

endchar;

beginpunkchar5, .5, .5);

zi = pp{.5w, 0); Z2 = pp{w — u, —.1/1); 23 = pp{-5w, —.3h);

pd zi', pd zs] draw zi --22 --23;

pd pp{.5w, Ah)-,

endchar;

beginpunkchar(" ! ", 5, .5, .5);

pd pp{.5w, 0);

zi = pp{.5w, 1.05h)-, 22 = pp{Aw, .3h)-,

pd zi] pd 22; draw 21 - - 22;

endchar;

ligtable =; oct "016";

beginpunkchar(oct "016", 5, .5, .5);

pd pp{.5w, .9h)-,

2i = pp{.5w, —Ah)-, 22 = pp{.5w, .6/i);

pd pd 22; draw 2i--22;

endchar;

beginpunkchar("?", 9, 1, .5);

2i = pp{1.5u, .8/1); 22 = pp{.5w, h)-, 23 = pp{w — u, .8h); 24 = pp{.5w, Ah)-,

pd pd 24; draw 2i .. 22 .. 23 .. {down}z4-, % arc and stem

pd pp{.5w, 0); % dot

endchar;

ligtable =: oct "017";

beginpunkchar (oct "017", 9, 1, .5); % Spanish inverted ?

2i = pp{1.5u, Ah)] 22 = pp{.5w, —Ah)]

23 = pp{w — u. Ah)] 24 = pp{.5w, .6h)]

pd zi] pd 24; draw 2i .. 22 .. 23 .. {up}z4]

% dot

% stroke

% dots

% stroke

% dot

% dot

% stem

% Spanish inverted !

% dot

% stem

% arc and stem

pd pp{.5w, .9h);

endchar;

A Punk Meta-Font 409

% dot

beginpunkchar("&", 14, .5, .5);

zi = pp{w - 2u, h)] Z2 = pp{u, h)\ Z3 = pp(3u, 0);

Z5 = pp{w — u, .6h); ze = pp{w — 2u, 0);

pd zi; pd zs; draw zi -- Z2 -- Z3 -- Z5;

draw zi -- .5[z2, Z3]; pd ze; draw ze -- .6[z3, Z5];

endchar;

beginpunkchar("$", 12, .5, .5);

zi = pp{w — 1.5u, .7h)-, Z2 = pp{.5w, h)] Z3 = pp{u, .7h)\

Zh = pp{w — u, .S/i); Z6 = pp{.5w, 0); Z7 = pp{u, .3/i);

pd zi] pd Z7; draw zi .. Z2 .. Z3 .. Z4 .. Z5 .. Z6 • ■ 27;

Zs = Z2 + (0, .1/?,); pd zg; draw zg -- Zg;

endchar;

% arms and stem

% diagonals

Z4 = .5[z3, Zs];

% stroke

% stem

beginpunkchar18, .5, .5);

zi = pp{3.5u, l.lh); Z2 = pp{u, .8/1); Z3 = pp{3.5u, .5h)-,

Zs = pp{w — 3.5u, .bh)\ zg = pp{w — 6u, .2h)\

Z7 = pp{w — 3.5u, —.l/i); zg = pp{w — u, .2h)\

pd zi; draw zi .. Z2 .. Z3 .. Z4 .. Zi;

pd Zs; draw zs .. zg .. Z7 .. zg .. zs;

Zg = pp{w — 3u, l.l/i); Zg = pp{3u, —.l/i);

pd zo; drawz9--zo;

draw Zi{z5 — Zi} • • zg;

Z4 = pp{6u, .8h)\

% upper bowl

% lower bowl

% diagonal

% link

endchar;

beginpunkchar("0", 18, 1, .5);

zi = pp(2u, 0); Z2 = pp(^/3W, .7h); Z3 = pp(w - 6u, 0);

Z4 = pp(w, .3h); Zs = pp{^/3W, h)\ zg = pp{u, .5h)-, z? — .7[z2, Z3];

pd zi-, pd ZT,

draw zi -- Z2 -- Z3{right} .. Z4 .. zs .. zg .. Z7; % diagonals and stroke

endchar;

beginpunkchar7, .5, .5);

zi = pp{u, Ah)] Z2 = pp{w — u, .5h)] pd zi; pd zg; draw zi -- zg; % bar

endchar;

ligtable =: oct "173";

beginpunkchar(oct "173", 9, .5, .5); % -

Zi = pp{0, .5/1); Z2 = pp{w, Ah); pd zi; pd zg; draw zi -- zg; % bar

endchar;

ligtable oct "173": "-" =: oct "174";

beginpunkchar (oct "174", 18, .5, .5); % —

zi — pp{0, Ah)] Z2 — ppiw, Ah)] pd zi; pd Z2; draw zi -- Z2; % bar

endchar;

410 Digital Typography

beginpunkchar(" + ", 9, .5, 1);

zi = pp{0, .5/i); 22 = PPiw, .5h)-, pd zi; pd 22; draw 21 --22; % bar

23 — pp[.hw, .l/i); 24 = pp{.5w, .9h)] pd 23; pd 24; draw 23 -- 24; % stem

endchar;

beginpunkchar("*", 13, .5, 1);

zo = pp{-5w, l.l/i); 2i = pp{u, .9/1); 22 = ppi^u, .3/i);

23 = pp{w — u, .3h); 24 = pp{w — u, .9h);

pd 2o; draw 20 -- 22 .. ^/z[.b[z2, 24], 20] ■ ■ 24 - - 21 - - 23 - - 20; % star

endchar;

beginpunkchar 5, .3, .5);

2i = pp{l.hu, h)] 22 = pp{w - u, .85/i); 23 = pp{u,

pd 2i; pd 23; draw 21 -- 22 -- 23; % stroke

endchar;

ligtable =: oct "042";

beginpunkchar (oct "042", 9, .3, .5); % ”

zi = pp{.5w - .5u, h)-, 22 = pp{u, .6/i); 23 = ppiw - u, .95h)-,

pd 2i; pd 23; draw 21 -- 22 -- 23; % stroke

endchar;

beginpunkchar ‘ 5, .3, .5);

2i = pp{w - 1.5u, /i); 22 = ppiu, .85h)- 23 = pp{w - u, ’^/sh)]

pd 2i; pd 23; draw 21 -- 22 -- 23; % stroke

endchar;

ligtable "‘" =; oct "134";

beginpunkchar (oct "134", 9, .3, .5); % “

2i = pp{.5w + .5u, h); 22 = pp{w — u, .6/i); 23 = pp{u, .95/i);

pd 2i; pd 23; draw 21 -- 22 -- 23; % stroke

endchar;

beginpunkchar (oct "015", 9, .3, .5); % '

2i = pp{.5w, h); 22 = pp{.5w, .6/i); pd 21; pd 22; draw 21 -- 22; % stem

endchar;

beginpunkchar (" (", 7, .5, .5);

2i = pp{w - u, h)-, 22 = pp{u, .5/i); 23 = pp{w — u, 0);

pd pd 23; draw 2i .. 22 .. 23; % stroke

endchar;

beginpunkchar (") ", 7, .5, .5);

zi = PPiu, h); 22 = pp{w — u, .5/i); 23 = pp{u, 0);

pd pd 23; draw 2i .. 22 .. 23; % stroke

endchar;

beginpunkchar(" [", 8, .5, .5);

Zi = pp{w — u, h)-, 22 = pp{.5w, h); 23 = pp{.5w, 0); 24 = pp{w — u, 0);

pd zi] pd 24; draw 21 - - 22 - - 23 - - 24; % bars and stem

endchar;

A Punk Meta-Font 411

beginpunkchar("] ", 8, .5, .5);

zi = pp(u, h); 22 = pp(.5w, h); 23 = pp(.5w, 0); 24 = pp(u, 0);

pd 2i; pd 24; draw 21 - - 22 - - 23 - - 24; % bars and stem
endchar;

beginpunkchar("<", 9, .5, .5);

2i = pp(w — u, .9h); 22 = pp(u, .5h); 23 = pp(w — u, .Ih);

pd 2i; pd 23; draw 21 -- 22 -- 23; % diagonals

endchar;

beginpunkchar(">", 9, .5, .5);

2i = pp{u, .9h); 22 = pp(w - u, .5h); 23 = pp{u, Ah);

pd 2i; pd 23; draw 21 -- 22 -- 23; % diagonals
endchar;

beginpunkchar(" = ", 9, .5, .5);

25 = pp{u, 2/3^); ze = pp{w - u, 2/3/1);

pd 25; pd 25; draw 25 -- 25; % upper bar

27 = pp{u, 1/3/1); 28 = pp{w - u, 1/3/7);

pd 27; pd 28; draw 27 -- 28; % lower bar
endchar;

beginpunkchar("#", 15, .5, .5);

2i = pp{.5w, h); 22 = pp(3u, 0); 23 = pp{w — 3u, /i); 24 = pp{.5w, 0);

pd ^2; pd Z3;

draw 23 -- 2i -- 22; draw 23 -- 24 -- 22; % diagonals (linked)

25 = pp{u, 2/3/7); 26 = pp{w - u, 2/3/1);

pd 25; pd 26; draw 25 -- 25; % upper bar

27 = pp{u, 1/3/7); 28 = pp{w - U, 1/3/7);

pd 27; pd 28; draw z-j -- z%\ % lower bar

endchar;

beginpunkchar ("/", 9, 1, 1);

21 = pp(1.5u, —.05/7); 22 = pp(w — 1.5u, 1.05/7);

pd zii pd 22; draw 21 - - 22; % diagonal

endchar;

beginpunkchar(oct "013", 12, .5, .5); % T

zi = pp(u, .7/7); 22 = pp{.5w, h)-, 23 = pp{w - u, .7/7); 24 = pp{.5w, 0);

pd zv, pd Z3-, pd 24;

draw 2i --22 --24; draw 23 -- 22; % stem and diagonals

endchar;

beginpunkchar (oct "014", 12, .5, .5); % 4-

zi = pp{u, .3/7); 22 = pp{.5w, 0); 23 = pp{w — u, .3/7); 24 =: pp{.5w, h)\

pd zi; pd Z3; pd •24;

draw 2i --22 -- Z4; draw 23 -- 22; % stem and diagonals

endchar;

412 Digital Typography

The final program file, PUNKA. MF, defines accents in a form that T]eX

likes. The input

\def\AA{\accent’27A}

{\AA}ngel\aa\ Beatrice Claire Diana \'Erica Fran\c{c}oise

Ginette H\’el\'ene Iris Jackie K\=aren {\L}au\.ra

Mar{\’\i}a N\H{a}ta{\l}{\u\i}e {\0}ctave Pauline

Qu\~eneau Roxanne Sabine T\~a{\’\j}a Ur\v{s}ula Vivian

Wendy Xanthippe Yv{\o}nne Z\"azilie

causes accents to be positioned as follows, in the font PUNKSL20:

inseiA hATRiae Glairs
PlARA GrIgA FrARPOISS
SiRsrrs Fiihe Iris
Jagris Far SR I aura
Mar!A FXrAiIe Fgtavs
tAVLlRS GivGrSAV FoXARRS
^AblRS TxJa GrSvlA
VlVlAR WsRPY Farthirrs
fvpRRS Iazil is

(Notice that the macro \AA needs to be redefined, but the other accents

of plain TjEX work without change.)

Here is the way accents are drawn:

beginpunkchar(oct "022", 9, 1, 1); % '

zi = pp{2.5u, h)- Z2 = pp{.6w, .8/i);

pd zi; pd Z2; draw zi -- Z2; % diagonal
endchar;

beginpunkchar(oct "023", 9, 1, 1); % '

zi = pp(w - 2.5x1, h); Z2 ~ pp(Aw, .8h);

pd zp pd 2:2; draw zi -- 22; % diagonal
endchar;

A Punk Meta-Font 413

beginpunkchar(oct "136", 13, 1, 1); % "

zi = pp(2.5u, .8h); Z2 = pp(.5w, h); = {w ~ 2.5?i, .8/i);

pd zi\ pd 23; draw 21 -- 22 -- 23; % diagonals

endchar;

beginpunkchar(oct "024", 13, 1, 1); % '

= pp{2.5u, .9/1); 22 = pp{.5w, .7h); 23 = pp{w — 2.5a, .9/i);
pd 21; pd 23; draw 2i -- 22 -- 23; % diagonals

endchar;

beginpunkchar(oct "025", 11, 1, 1); %

2i = pp{'2u, h)-, 22 = pp{.5w, .75h); 23 = pp{w — 2u, /i);

pd 21; pd 23; draw flex(2i, 22, 23); % stroke

endchar;

beginpunkchar (oct "026", 12, 1, 1); % "

zi = pp(n, .8h); 22 = pp{w - u, .8/i); pd 21; pd 22; draw 21 -- 22; % bar

endchar;

beginpunkchar (oct "137", 5, 1, 1);

pd pp{.5w, .9/i);

endchar;

beginpunkchar (oct "177", 13, 1, 1);

pd pp{ ^/5W, .9/i); pd pp{^/zw, .9/i);

endchar;

beginpunkchar (oct "176", 13, 1, 1);

zi = pp{u, .75/i); 22 = pp{w — u, .9/1);

pd 21; pd 22; draw zi{up} .. {up}z2-,

endchar;

beginpunkchar (oct "175", 13, 1, 1);

zi = pp(4a, h)] Z2 — pp{2.5u, ■7h)\

23 = pp{w — 2u, /i); 24 = pp{w — 3.5n, .7/i);

pd 2i; pd 23; draw 21 - - 22 - - 24 - - 23; % diagonals (linked)

endchar;

beginpunkchar (oct "027", 13, 0, 0); % Scandinavian loop, for A and a

20 = (.5w, .66h); % point 22 of lowercase A

21 = (.5w, .9/1);

draw 2o{2o — (1.5u, 0)} .. 21 .. {(rc — 1.5u, 0) — 20)20; % loop

endchar;

beginpunkchar (oct "030", 13, .5, .5); % Cedilla, for g

2i = (.6ry, 0); 22 = pp(.6w, —.Ih); 23 = pp{2.5u, —.l/i);

pd 23; draw 21 - - 22 - - 23; % stroke

endchar;

% •

% dot

% ••

% dots

% '

% stroke

% "

414 Digital Typography

beginpunkchar(oct "040", 11, .5, .5);

~ PP{h, .25/i); 22 = pp{4u, Ah)]

pd zi] pd 22; draw 2i -- 22;

% Polish cross, for L and 1

% diagonal

endchar;

ligtable oct "040": "1" kern —charwd, "L" kern —charwd]

References

[1] George Ade, Artie: A Story of the Streets and Town (Chicago: H. S.

Stone, 1896), Chapter 19.

[2] Dashiell Hammett, The Maltese Falcon (New York: A. A. Knopf,

1930), Chapter 18.

[3] Derek Jewell, music review in the Sunday Times (28 November

1976), 37.

[4] Donald E. Knuth, The METRFONTbook, Volume C of Computers &

Typesetting (Reading, Massachusetts: Addison-Wesley and Amer¬

ican Mathematical Society, 1986).

[5] Pablo Picasso, pen drawing from Sketchbook 86. (This drawing

was later used as an illustration in Vollard’s de luxe edition of Le

Chef-d’CEuvre Inconnu by Honore de Balzac, 1931.)

[6] William Shakespeare, The Merry Wives of Windsor, Act 2, Scene 2,

lines 135-137. (The First Folio has the spelling ‘Puncke’.)

Addendum

Further proof that punkish characters were in the air at the time was

provided by J. Daniel Smith of Michigan State University, who sent me

the following example he found in the campus newspaper State News
83,152 (25 October 1988):

Chapter 21

Fonts for Digital Halftones

[Revision of an article that was originally published in TUGboat 8

(1987), 135-160. J

Small pictures can be “typeset” on raster devices in a way that simulates

the screens used to print fine books on photography. The purpose of this

note is to discuss some experiments in which METRFONT has created

fonts from which halftones can be generated easily on laserprinters. High

levels of quality are not possible at low resolution, and large pictures

will overflow TliX’s memory at high resolution; moreover, a number of

effective ways to deal directly with halftone images have been widely

available since 1990. Yet the fonts discussed below have proved to be

useful in several applications, and their design involves a number of

interesting issues that remain relevant.

I began this investigation at the beginning of 1985, when fifteen of

Stanford’s grad students were working on a project to create “high-tech

self-portraits” (see [4, pages 88-103]). The students were manipulat¬

ing digitized graphic images in many ingenious ways, but at that time

Stanford had no output devices by which the computed images could be

converted to hardcopy. Therefore I decided to create a font by which

halftones could be produced using TgX.

Such a font is necessarily device-dependent. For example, a laser-

printer with 300 pixels per inch cannot mimic the behavior of another

with 240 pixels per inch, if we are trying to control the patterns of pixels.

I decided to use our 300-per-inch Imagen laserprinter (also known as the

Canon LBP-CX engine), because it gave better control over pixel quality

than any other machine available for student use.

It seemed best at first to design a font whose “characters” were tiny

8x8 squares of pixels. The idea was to have 65 characters for 65 different

levels of brightness: For 0 < k < 64 there would be one character with

exactly k black pixels and 64 — A; white pixels.

415

416 Digital Typography

Indeed, it seemed best to find some permutation p of the 64 pixels

in an 8 X 8 square so that the black pixels of character k would be Po, Pi,

..., Pk-i- My first instinct was to try to keep positions po, pi, p2, ■ ■ ■ as

far apart from each other as possible. So my first METflFONT program

painted pixels black by ordering the positions as follows:

45 29 34 18 46 30 33 17

13 61 2 50 14 62 1 49

39 23 40 24 36 20 43 27

7 55 8 56 4 52 11 59

47 31 32 16 44 28 35 19

15 63 0 48 12 60 3 51

37 21 42 26 38 22 41 25

5 53 10 58 6 54 9 57

(This is essentially the “ordered dither” matrix of B. E. Bayer; see [5].)

It turns out to be easy to create such a font with METRFONT:

y, Halftone font with 65 levels of gray via "ordered dither"

% using characters "0" (white) to "p" (black)

pair p[]; the pixels in order

% (first pO becomes black, then pi, etc.)

pair d[]; % dither control

d[0] = (0,0); d[l] = (l,l); d[2] = (0,l); d[3] = (l,0);

def wrap(expr z)=(xpart z mod 8,ypart z mod 8) enddef;

for i=0 upto 3: for j=0 upto 3: for k=0 upto 3:

p [16i+4j+k]=wrap(4d[k]+2d[j]+d[i] + (2,2));

endfor endfor endfor

w#:=8/pt; y, that’s 8 pixels

font_quad:=w#; designsize:=w#;

picture prevchar; the pixels blackened so far

prevchar=nullpicture;

for i=0 upto 64:

beginchar(i+ASCII"0",w#,w#,0); currentpicture:=prevchar;

if i>0:

addto currentpicture also unitpixel shifted p[i-l];

fi

prevchar:=currentpicture; endchar;

endfor

Fonts for Digital Halftones 417

This file was called odith.mf; I used it to make a font called odithSOO

by applying METRFONT in the usual way to the following hie called

odithSOO.mf, which enforces the device-dependence of the font:

"/o Halftone font for Imagen, via ordered dither

mode_setup;

if (pixels_per_inch<>300) or (magOl) :

errmessage "Sorry, this font is only for resolution 300";

errmessage "Abort the rrm now or you’ll " &

"clobber the TFM file";

forever: endfor 7, go into an infinite loop

else: input odith fi

end.

It’s fairly easy to typeset pictures with odith300 if you input the

following macro hie ht.tex in a document:

y. Macros for typesetting halftones

y« Example of use:

y. \input ht y. input this file

y, \fontXhtfont=<your favorite halftone font> "L load a font

y, \beginhalftone

y, chars for top line of picture,

y, chars for second line of picture.

y. ...
y, chars for bottom line of picture,

y, \endhalftone

y. Now the picture is in a box of the appropriate size,

y, You can also say \setboxO=\beginhalf tone... \endhalf tone.

\chardef\other=12

\def\beginhalftone{\vbox\bgroup\offinterlineskipXhtfont

\catcode‘\\=\other \catcode‘\"=\other \catcode‘_=\other

\catcode‘\.=\active \starthalftone}

{\catcode‘\.=\active \catcode‘\/=0 \catcode‘\\=\other

/gdef/starthalftone#l\endhalftone{/let.=/endhalftoneline

/beginhalftoneline#l/endhalftone/ignorespaces}}

\def\beginhalftoneline{\hbox\bgroup\ignorespaces}

\def\endhalftoneline{\egroup\beginhalftoneline}

\def\endhalftone{\egroup\setboxO=\lastbox\unskip\egroup}

418 Digital Typography

(These macros are a bit tricky because ‘\’ is one of the legal characters in

odithSOO, but the ‘t’ of \endhalftone is not; we must make backslashes

revert temporarily to the status of ordinary symbols.)

Unfortunately, the results obtained with odithSOO weren’t very

good; the images were too blatantly based on binary recursion, too com-

putery. For example, here are three typical pictures, shown full size as

they came off the machine:*

The squareness of the 8x8 characters is much too prominent.

Moreover, the laserprinter did strange things when it was given pixel

patterns like those in odithSOO:*

Although character k has more black pixels than character k — 1, the

characters did not increase their darkness monotonically in our experi¬

ments. Character 6 seemed darker than character 7; this was an optical

illusion. Character 32 was darker than many of the characters that fol¬

lowed, and in this case the effect was not illusory: Examination with a

magnifying glass showed that the machine deposited its toner in a very
curious fashion.

* Asterisks are used in this paper to denote places where I am simulating the

output of a 300-pixels-per-inch laserprinter with the offset printing process,

using plates that were produced photographically from 1270-pixels-per-inch

PostScript output. Vagaries of printing have probably made these images

look rather different than they did on the Imagen of 1985, but I hope the
basic ideas remain clear.

Fonts for Digital Halftones 419

Another defect of the ordered-dither approach was that most of the

characters were quite dark. Measurements with a densitometer showed

that 50% density was reached already at about character number 16.

Hence odithSOO overemphasized the light tones.

My next attempt was to look at halftone pictures in books and

newspapers, in order to discover the secret of their success. Aha! These

were done by making bigger and bigger black dots; in other words, the

order of pixels po) Pi, • • • was designed to keep black pixels close together

instead of far apart. Also, the dots usually appear in a grid that has

been rotated 45°, since human eyes don’t notice the dottiness at this

angle as much as they do when a grid is rectilinear. Therefore I decided
to blacken pixels in the following order:

63

39 47 55

28 15 23 31 35
52 20 4 7 11 43 59

62 60 44 12 1 3 19 51
38 46 54 36 25 17 9 27

29 14 22 30 34 49 41 33

53 21 5 6 10 42 58 57
61 45 13 0 2 18 50

37 24 16 8 26

48 40 32

56

Here I decided not to stick to an 8 x 8 square; this nonsquare set of pixel

positions still “tiles” the plane in Escher-like fashion, if we replicate it

at 8-pixel intervals. The characters are considered to be 8 pixels wide

and 8 pixels tall, as before, but they are no longer confined to an 8 x 8

bounding box. The reference point is the lower left corner of position 24.

The matrix above is actually better than the one I first came up

with, but I’ve forgotten what that one was. John Hobby took a look at

mine and suggested this alternative, because he wanted the pattern of

black pixels in character k to be essentially the same as the pattern of

white pixels in character 64—k. (Commercial halftone schemes start with

small black dots on a white background; then the dots grow until they

form a checkerboard of black and white; then the white dots begin to

shrink into their black background.) The matrix (2) has this symmetry

property, because the sum of the entries in positions {x, y) and (a: 4-4, y)

is 63 for all x and y, if you consider “wraparound” by computing indices

420 Digital Typography

modulo 8. Other interesting symmetries are present too, if you study

the relative positions of the cells that are numbered 0-7, 8-15, 16-23,

24-31, 32-39, 40-47, 48-55, and 56-63; each group of eight is formed in

essentially the same way.

John and I used this new ordering of pixel positions to make a “dot

dither” font called ddithSOO, analogous to odithSOO. It yielded the

following sequence of gray levels:*

O (M 00
OCNTt^CDOOOCN’^COOOO'MTfCDOOOCS^XiOOOCS^^DGOOCN*^
rHi-ir-i.-ir-HCNCNCNCNCNCOCOCOCOCO'^^-t^-fLOlOlOLOincO'XJCO

Now we had a pleasantly uniform gradation, except for anomalies at

characters near 62 that were unavoidable on a xerographic printer. The

density reached 50% somewhere around character number 22, and we

could compensate for this by preprocessing the data to be printed (using

a “transfer function”).

The three images that were displayed with odithSOO above look like
this when ddithSOO is substituted:*

My students were able to use ddithSOO successfully, by making suitably

large images, so I stopped working on halftones and resumed my normal
activities.

However, I realized later that ddithSOO can easily be improved,

because each of its characters is made up of two dots that are about the

same size. There’s no reason why the dots of a halftone image need to

be paired up in such a way. With just a bit more work, we can typeset
each dot independently.

Fonts for Digital Halftones 421

Thus, I made a font sdithSOO for “single-dot dithering” with just

33 characters (not 65 as before), using the matrix

31

19 23 27

14 7 11 15 17

26 10 2 3 5 21 29

30 22 6 0 1 9 25

18 12 8 4 13

24 20 16

28

to control the order in which pixels are blackened. (This matrix cor¬

responds to just one of the two dots in the larger matrix above, if we

divide each entry by 2 and discard the remainder.) The characters are

still regarded as 8 pixels wide, but they are now only 4 pixels tall. When

a picture is typeset, the odd-numbered rows are to be offset horizontally

by 4 pixels.

Here is the METRFONT file sdith.mf that was used to generate the

single-dot font. Hotice that the regularity of pattern (3) allows us to

avoid listing all 32 elements of the matrix explicitly:

7, Halftone font with 33 gray levels via "single-dot dither"

7o using characters "0" (white) to "P" (black)

pair p[] ; 7, the pixels in order

7« (first pO becomes black, then pi, etc.)

p0=(l,l); p4=(2,0); p8=(l,0); pl2=(0,0);

pl6=(3,-l); p20=(2,-l); p24=(l,-l); p28=(2,-2);

transform r; r=identity rotatedaround ((1.5,1.5),90);

for i=0 step 4 until 28:

p[i+l]=p[i] transformed r;

p [i+3]=p [i+1] transformed r;

p [i+2]=p[i+3] transformed r;

endfor

w#:=8/pt; 7. that’s 8 pixels

font_quad:=w#; designsize:=w#;

picture prevchar; 7. the pixels blackened so far

prevchar=nullpicture;

for i=0 upto 32:

beginchar(i+ASCIl"0",w#,.5w#,0);

currentpicture:=prevchar;

422 Digital Typography

if i>0;

addto currentpicture also unitpixel shifted p[i-l];

fi

prevchar:^currentpicture; endchar;

endfor

(There’s also a file sdithSOO.mf to enforce device-dependence, analo¬

gous to the file odithSOO.mf considered earlier.)

Here’s how the three example images look when they’re rendered by

font sdithSOO — a clear improvement:*

The macros ht.tex presented earlier must be replaced by an

alternative set altht.tex when independent dots are used:

'/o Alternative macros for typesetting halftones

y. Example of use:

y \input altht y input this file

y \fontXalthtfont=<alternative halftone font> '/. load a font

y \beginalthalftone

y chars for top halfline of picture, (half-shifted right)

y chars for second halfline of picture, (not shifted right)

y ...

y chars for bottom halfline of picture, (possibly shifted)

y \endhalftone

y Now the picture is in a box of the appropriate size,

y You can also \setboxO=\beginalthalftone...\endhalftone.

\chardef\other=12

\newif\ifshifted \newdimen\hfm

\def\beginalthalftone{\vbox\bgroup\offinterlineskip

\shiftedtrue \althtfont \hfm=.5em

Fonts for Digital Halftones 423

\catcode‘\.=\active \moveright\hfm\hbox\bgroup}

{\catcode‘\.=\active \gdef.{\ifshifted\kern-\hfm\egroup

\shiftedfalse\else\egroup\shiftedtrue\moveright\hfm\fi
\hbox\bgroup\ignorespaces}}

\def\endhalftone{\egroup\setboxO=\lastbox\unskip\egroup}

These macros are much simpler than those of ht.tex, because the 33

ASCII characters "0" to "P" have no special meaning to plain TJeK.

I learned in 1987 that a related, but more clever, technique had

already been introduced in 1976 by Robert L. Card [3]. The methods

we have considered so far have been based either on (a) a halftone font

with 65 levels of gray, in which each 8x8 character essentially contributes

two dots to a picture, or (b) a halftone font with 33 levels of gray, in

which each 4x8 character contributes one dot to a picture. Card’s

method yields (c) a halftone font with 17 levels of gray, in which each

4x4 character contributes half of a dot (actually two quarter-dots) to

a picture.

The A:th level of gray in Card’s half-dot scheme is obtained by black¬

ening cells 0 to /r — 1 in the array

(We actually make two sets of characters, one the mirror image of the

other, and alternate between them as a picture is typeset.) The fol¬

lowing METflFONT file hdith.mf will generate such a font hdithSOO, in

essentially the same way that the other fonts ddithSOO and sdithSOO

were generated earlier:

% Halftone font with 17 gray levels via "half-dot dither"

7, using characters "A" (white) to "Q" (black) as well as

7, the mirror-reflected versions "a" (white) to "q" (black)

pair p[]; 7« the pixels in order
7« (first pO becomes black, then pi, etc.)

p0=(3,0); p4=(2,0); p8=(2,2); pl2=(3,2);

transform r; r=identity rotatedaround ((1.5,1.5),180);

for i=0 step 4 until 12:

p[i+l]=p[i] transformed r;

p[i+2]=p[i] shifted (0,1);

p [i+3]=p[i+2] transformed r;

endfor

14 10 5 1

12 8 7 3

2 6 9 13

0 4 11 15

1 5 10 14

3 7 8 12

13 9 6 2

15 11 4 0

424 Digital Typography

w#:=4/pt; '/, that’s 4 pixels

font_quad:=w#; designsize:=w#;

r:=identity reflectedabout ((2,0),(2,3));

picture prevchar; % the pixels blackened so far

prevchar=nullpicture;

for i=0 upto 16:

beginchar(i+ASCII"A",w#,w#,0); currentpicture:=prevchar;

if i>0:

addto currentpicture also unitpixel shifted p[i-l];

fi

prevchar:=currentpicture; endchar;

beginchar(i+ASCII"a",w#,w#,0);

currentpicture:=prevchar transformed r; endchar;

endfor

To typeset with such a font, we can say for example

\input ht

\font\htfont=hdith300

\beginhalftone

ilj Jj KkJj JkJkKkKkJj Jj JiliJkJkJj Jj JjIhHhJjIjHjIgHhliliGhF

hGiIhGhHhlj Jj Jj JjKkKkKkKkKkKkKkKilj JkKkLkKlKlLlLlLlLlL.

Ij JjKj Jj Jj JkKkKkKj Jj JkHiHiJkJkJj Jj JiHhHililgHhGgGglgGgFe

FfGfGhHhHhlhliJkKkKkKlKkKkKkKkKkKkJkJkKkKkLkKkLlLlKkLl.

ilj JiKj JjKkJkKkKkJkJj Jj Jj Jj JiJj JjliHhlhlhHiGgFgFfGfGiljK

jliHgGfGhHhJjIjKkKkJkLkLkKkLkKlKkKjKkKkKlKkKkKkLlLlLlL.

HhliJjJjKjJkJjKkKkKkJjJjJjJjliJjJjJililhlhlhGfFeFkMnOoOo

OoOnNlJhGgHilj Jj Jj JJKkLlKkKkKkKkJkKkKkLkKlKkKkLkKlKkLl.

iJililhljKjJiJjKkKjKjJjJjJjljJjJjliliHhlililfFgLnOoOoOoO

oOoPoOoNkGfGhHiJjJjJlKkKkKkKkLjKkKjKjKkKkKkJjKkKkKlLkL.

IjlilhHiJjKiJjJjKjKjJjJjljljJjliJiHhliHhljlgGkOoOoOoOoOo

OpOoOpPpOoJgFglj JjIj JkKkJkJj JkKkKj Jj JjKkKkJj Jj KkKlLkKl.

\endhalftone

Uppercase and lowercase letters alternate in checkerboard fashion, so

that the reflected characters will appear in the correct positions. Lines

can be broken if desired, because space characters have no width in font

hdith300. The \beginhalftone macro is the same for half dots as

for double dots; only the font name and the data encoding scheme are
different.

Fonts for Digital Halftones 425

Here are nine pictures for comparison, showing all three dot-dither
methods applied to all three images:*

double dot single dot half dot

Card’s half-dot method clearly improves the quality of single-dot pic¬

tures, in spite of its limitation to 17 levels of gray; it also has the

advantage that its characters are square instead of diamond-shaped,

hence the data is easier to compute. But it does ask to typeset

426 Digital Typography

twice as much data. Indeed, the double-dot pictures shown here were

typeset from 64 rows of 55 characters each; the single-dot pictures came

from 128 rows of 55 characters each; and the half-dot pictures came from

128 rows of 110 characters each. Small versions of are able to handle

at most about 50,000 characters per page.

(The macro \beginhalftone reads the entire image into Tf^X’s

memory before it typesets the first line; and Te]X does not release this

information until there is no chance of needing to use it in an error mes¬

sage. Thus the net effect is to double the amount of memory T^^X needs,

until after a picture has been converted to a box. A simpler version of

\beginhalftone would, however, suffice for the half-dot case, because

the 17-level font uses only alphabetic letters.)

Given a printer with higher resolution, say 635 pixels per inch (which

is equivalent to 25 pixels per millimeter), we could create analogous fonts

ddith635, sdith635, and hdith635. Then the nine pictures would come
out looking like this:

Now the pictures are smaller, because the characters are still 8 pixels

wide, and the pixels have gotten smaller. At this resolution the halftones

should look pretty much like those obtained by professional printers,

except that they tend to be too dark due to “ink squash”; such problems

can be cured by adjusting the densities in a preprocessing program.

These example images were prepared from 256-level data by using

a special preprocessing routine, which is presented in Appendix 1. The

preprocessor uses a generalization of the Floyd-Steinberg algorithm [2]

to ameliorate the effects of limited gray levels. Indeed, if we had tried

Fonts for Digital Halftones 427

the same experiments without error diffusion, by setting the])reproces-

sor’s dampening parameter to zero, the nine example images would have

looked like this:*

Diffusion makes little difference in Mona Lisa or in the high-frequency

details of the Lincoln and Liberty images, but it is important for back¬

ground areas that change only gradually. Without error diffusion, a

distracting “paint by number” effect can easily become too prominent,

especially when only 17 shades of gray are available.

428 Digital Typography

What resolution is needed? People traditionally measure the quality

of a halftone screen by counting how many lines of dots appear per inch

in the corresponding unrotated grid, and it’s easy to do this with a

magnifying glass. The photographs in a newspaper like the International

Herald Tribune use a 72-line screen, rotated 45°; this is approximately

the resolution 50\/2 that we would obtain with a font like sdith400 on a

laserprinter with 400 pixels per inch. (Our 300-per-inch fonts ddithSOO,

sdithSOO, and hdithSOO give a rotated screen with only 37.5-s/2 53

lines per inch.) The photographs on the book jackets of the Computers

(fe Typesetting volumes have a 133-line screen, again rotated 45°; this

is slightly better than the 635-pixels-per-inch examples shown earlier,

which have about 112 Ipi. But 133 is not the upper limit: A book that

reproduces photographs with exceptionally high quality, such as [1], has

a “duotone” screen of about 270 lines per inch.

Let’s turn now to another problem: Suppose we have an image for

which we want to obtain the best possible representation on a laser-

printer of medium resolution, because we will be using that image many

times — for example, in a letterhead. In such cases we get optimum re¬

sults by creating a special font for that image alone; instead of using

a general-purpose font for halftones, we’ll want to control every pixel.

The desired image can then be typeset from , a special-purpose font of

“characters” that represent rectangular subsections of the whole.

The examples above were first typeset on an Imagen printer as 64

lines of 55 columns per line, with 8 pixels in each line and each column.

To get an equivalent picture with every pixel selected individually, we

can make a font that has, say, 80 characters, each 64 pixels tall and 44

pixels wide. By typesetting eight rows of ten characters each, we’ll have

the desired image. For example, the following picture was done in that
way:*

Fonts for Digital Halftones 429

T^iX will typeset such an image if we say \gioconda after making the

following definitions:

\font\lisa=lisa300

\newcount\m \newcount\n

\def\gioconda{\vbox{\lisa \offinterlineskip \n=0

\loop \hbox{\m=0 \loop \char\n \global\advance\n by 1

\advcLnce\m by 1 \ifnum\in<10 \repeat}

\ifnuin\n<80 \repeat}}

And once we have the individual pieces, we can combine them to get

unusual effects:*

The font lisaSOO shown above was generated from a file lisa.mf

that began like this:

row 1; data "ff"

& "fffffffffffffffffffffffffffffffffffffff"

& "fffffffffffffffffffffffffff";

row 2; data "80808000900010008000209012101010201000009000"

& "9000001090802000001010a0000002291000002"

& "092009001008900805092080011";

"8010f0d000d050f0a0910080a0a0a04080c0805000b0" row 3; data

430 Digital Typography

& "8080c08020200050808040a0bl9090a040a050a"

& "0405100b050003010404021b0c3";

row 4; data "a8d00120b891308080a0a93100el2190a8005120a080"

& "2060945080a0a024a060a0284060204029a5a0c"

& "89020508134a850al59c8b065d9";

... and so on, until 512 rows had been specified; this file was generated

by the program in Appendix 2, using a method called dot diffusion [7].

The parameter file lisa300.mf was

“/o Mona Lisa for Imagen 300

mode_setup;

if (pixels_per_inch<>300) or (magol) :

(error messages as before)

else: input picfont

width:=44; height:=64; n:=10; filename:="lisa";

do_it; fi

end.

and the driver file picfont.mf was

string filename; picture pic[];

picO=nullpicture; pic8=unitpixel;

for j=0 upto 1: pic[4+8j]=pic[8j];

addto pic[4+8j] also miitpixel shifted (1,0); endfor

for j=0 upto 3: pic [2+4j]=pic[4j];

addto pic[2+4j] also unitpixel shifted (2,0); endfor

for j=0 upto 7: pic[l+2j]=pic[2j];

addto pic[l+2j] also unitpixel shifted (3,0); endfor

def do_it= ww:=width/4;

for j=0 upto n-1: jj:=ww*j;

scantokensCinput "&f ilename) ; endfor enddef ;

vardef row expr x =

cc:=(x-l)div height; rr:=height-l-((x-l)mod height);

if rr=height-l:

beginchar(cc*n+jj/ww,width/pt,height/pt,0); fi enddef;

vardef data expr s =

for k=0 upto ww-1: addto currentpicture also

pic[hex substring(jj+k,jj+k+1) of s]

shifted (4(jj+k),rr); endfor

if rr=0: xoffset:=-4jj; endchar; fi enddef;

Fonts for Digital Halftones 431

This is not very efficient, but it’s interesting and it seems to work. The

trick, of course, is to avoid overflowing METRFONT’S memory, by trading

time for space. (Some statistics: The file lisa.mf was 65428 bytes long;

METRFONT produced a generic font file lisaSOO. 300gf of 103088 bytes,

which compressed down to a packed font file lisaSOO. 300pk of 29044

bytes. The generation process occupied only 11256 words of METR-

FONT’s memory, and used space for only 466 string characters.)

Ken Knowlton and Leon Harmon have shown that surprising effects

are possible once a picture has been digitized (see [6]). Continuing this

tradition, I found that it’s fun to combine the macros above with

new fonts that frankly acknowledge their digital nature. One needn’t

always try to compete with commercial halftone screens!

For example, we can use ht.tex with a ‘negdot’ font that makes

negative images out of square dots:

The METRFONT file negdot.mf that generated this font is quite simple:

’/o negative pseudo-halftone font: 65 sizes of square dots

*/o using characters "0" (large) to "p" (small)

mode_setup;

w#:=8/300in#; font_quad:=w#; designsize:=w#;

for i=0 upto 64: beginchar(i+ASCII"0",w#,w#,0);

r#:=sqrt(.9w#*(l-i/80)); define_pixels(r);

fill unitsquare scaled r shifted(.5w,.5h); endchar;

endfor end.

Unlike the previous fonts we have been considering, this one is device¬

independent (it works at all resolutions). Its “gray levels” are

O CM CO 00
OCM'^COOOO<NTf<0000(M'^COOOOCM
i-Hi-lrHi-H^CMCMCMCMCMCOCOCOCOCOrt^"^

'^COOOOCM^COOOOCMTf

432 Digital Typography

We can, in fact, perceive images even when each character of the
halftone font has exactly the same number of black pixels. Here, for
example, is what happens when the three images above are typeset with
a font in which each character consists of a vertical line and a horizontal
line; the lines move np and to the right as the pixel gets darker, but they
retain a uniform thickness. We perceive lighter and darker features only
because adjacent lines get closer together or further apart.

The METRFONT file lines.mf for this device-independent font is:

% pseudo-halftone font: 65 lines that move right and up

y. using characters "0" (left/down) to "p" (right/up)

mode_setup; pickup pencircle scaled .3pt; q:=savepen;

w#:=8/300in#; font_quad:=w#; designsize:=w#;

for i=0 upto 64: beginchar(i+ASCII"0",w#,w#,0);

pickup q; draw (0,h*i/64)—(w,h*i/64);

draw(w*i/64,0)—(w*i/64,h); endchar;
endfor end.

Yet another possibility is the font produced by angles .mf; here each

character is a single fine of fixed radius that rotates from horizontal to
vertical as the density increases:

“/o pseudo-halftone font: 65 radii that change direction

y, using characters "0" (horizontal to "p" (vertical)

mode_setup; pickup pencircle scaled .3pt; q;=savepen;

w#:=8/300in#; font_quad:=w#; designsize:=w#;

Fonts for Digital Halftones 433

for i=0 upto 64:

beginchar(i+ASCII"0",w#,w#,0); pickup q;

draw ((0,0)—(w,0)) rotated (90*i/64); endchar;

endfor end.

00 O CN
to to CO CO

{N CO X OC4TftDXOCNTrcOXOC<l'^COXO<N'^COXOCSTrcO

(We can think of a large array of dials whose hands record the local light

levels.) It is amusing to view these images by tilting the page up until

your eyes are almost parallel to the paper.

As a final example, let’s consider a 33-character font that’s designed

to be used with altht.tex instead of ht.tex. Readers who like puz¬

zles are invited to try to guess what this METflFONT code will do, before

looking at the image of Mona Lisa that was typeset with the correspond¬

ing font. [Hint; The name of the METRFONT file is hex.mf.]

’/, alternate pseudo-halftone font: 33 secret patterns

% using characters "0" to "P"

mode_setup; q:=savepen;

w#:=6pt#; font_quad:=w#; designsize:=w#;

for i=0 upto 32: beginchar(i+ASCII"0",w#,.5w#,0);

pickup q; alpha:=.5-i/72; z0=(.5w,.5h);

zl=alpha[(5/6w,.5h),z0]; z2=alpha[(2/3w,-.5h),z0] ;

z0=.5[z2,z5]=.5[z3,z6]=.5[zl,z4]; x2=x6; y5=y6;

draw zl—z2; draw .5[zl,z2]—zO;

draw z3—z4; draw .5[z3,z4]—zO;

draw z5—z6; draw .5[z5,z6]—zO; endchar;

endfor end.

434 Digital Typography

The answer to this puzzle can be seen in the illustration at the very end

of this chapter (following the appendices and references).

Appendix 1: Preprocessing the image data

The following CWEB program illustrates how to convert digitized pictures

into the form required by the fonts and macros described above. (The

source file half tone, w and several data files are downloadable from

http://www-cs-facuity.Stanford.edu/~knuth/programs.html.)

1. Introduction. This program prepares data for images in the

form needed by the fonts and macros above. The input file {stdin) is

assumed to be an EPS file output by Adobe Photoshop^'^ on a Macintosh

with the binary EPS option, having a resolution of 72 pixels per inch.

This file either has m rows of n columns each, or m + n — 1 rows of

m + n — 1 columns each, or 2m rows of 2n columns each; in the second

case the image has been rotated 45° clockwise. (Such images can be

obtained by starting with a given km x kn image, optionally rotating it

45°, and then using Photoshop’s Image Size operation to reduce to the

desired number of pixel units. In my experiments I took A: = 8, so that

I could also use the dot diffusion method of Appendix 2; but k need not

be an integer. Larger values of k tend to make the reduced images more

accurate than smaller values do.)

The output file (stdout) is a sequence of ASCII characters that can be

placed into Tg)^ files leading to typeset output images of size 8m x 8n,

using fonts like those described in the paper. In the first case, we output

m lines of 65-level pixel data. In the second (rotated) case, we output

2m lines of 33-level pixel data. In the third case, we output 2m lines of

17-level pixel data.

#define m 64 /* base number of rows */

#define n 55 /* base number of columns */

define r 64 /* max(m, n) */

#include <stdio.h>

float a[m -|- m -|- 2] [n -|- r]; /* darknesses: 0.0 is white, 1.0 is black */

{ Global variables 4);

void main(int argc, char *argv[])

{ register int i, j, k, I, p;

int levels, trash, ii, jj-,

float dampening — 1.0, brightness = 1.0;

(Check for nonstandard dampening and brightness factors 2);

(Determine the type of input by looking at the bounding box 3);

fprintf {stderr, "Makingu’/.dulinesuofu’/.d-leveludataXn",

{levels < 65 ? m -|- m : m), levels)-.

Fonts for Digital Halftones 435

pnnt/("\\beginy,shalftone\n", leue/s = 33 ? "alt" :

(Input the graphic data 5);

(Translate input to output 12);

}

2. Optional command-line argnments allow the user to multiply the

diffusion constants by a dampening factor and/or to multiply the bright¬

ness levels by a brightness factor.

(Check for nonstandard dampening and brightness factors 2) =

if {argc > 1 A sscon/(ar5?)[l], , Szdampening) = 1) {

fprintf [stderr, "Usingudampeninguf actoruy.g\n", dampening)-,

if {argc > 2 A sscanf {argv[2], "7,g" brightness) = 1)

fprintf [stderr, "uuandubrightnessuf actoru'/.gXn", brightness)-,

}
This code is used in section 1.

3. Macintosh conventions indicate the end of a line by the ASCII

(carriage return) character (i.e., control-M, aka \r); but the C library

is set up to work best with newlines (i.e., control-J, aka \n). We aren’t

worried about efficiency, so we simply input one character at a time.

This program assumes Macintosh conventions.

The job here is to look for the sequence ‘Box: ’ in the input, followed

by 0, 0, the number of columns, and the number of rows.

#define panic{s) { fprintf [stderr, s)-, exit[—l)}

(Determine the type of input by looking at the bounding box 3) =

k = 0]
scan:

if (k-H- > 1000) panic("Couldn’tufindytheuboundinguboxuinf0!\n");

if [getchar[) ^ ’B’) goto scan-,

if [getchar[) ^ ’o’) goto scan-,

if [getchar[) ^ ’x’) goto scan-,

if [getchar[) ^ ’ : ’) goto scan-

if (scan/("y.duy.duy.duy.d", Szllx, &illy, k.urx, k.ury) ^ 4 \/ llx ^ 0 W Uy ^ 0)

panic("Baduboundinguboxudata!\n");

if [urx = n A ury = m) levels = 65;

else if [urx = n -b n A ury = m + m) levels = 17;

else if [urx = m + n — 1 A ury = urx) levels = 33;
else pamc("Boundinguboxudoesn’tumatchutheuformatsulyknow!\n");

This code is used in section 1.

4. (Global variables 4) =

int llx, lly, urx, ury-, /* bounding box parameters */

See also section 8.

This code is used in section 1.

436 Digital Typography

5. After we’ve seen the bounding box, we look for the string of char¬

acters ‘beginimageXrthis will be followed by the pixel data, one

character per byte.

(Input the graphic data 5) =

k = 0-,
skan:

if (fc-H- > 10000)

panjcC'Couldn’tufindutheupixeludata!\n");

if {getchar{) 7^ ’b’) goto skan-,

if {getchar{) ^ ’e’) goto skan-,

if {getchar{) 7^ ’g’) goto skan]

goto skan]

goto skan]

goto skan]

goto skan]

goto skan]

goto skan]

goto skan]

goto skan]

if {levels = 33) (Input rotated pixel data 7)

else (Input rectangular pixel data 6);

if {getchar{) 7^ ’\r’)

panic ("Wronguamountuofupixeludata!\n");

This code is used in section 1.

'm'

if {getchar{) A
if {getchar{) 7^

if {getchar{) 7^

if {getchar{) 7^

if {getchar{) 7^ ’a’

if {getchar{) 7^ ’g’ ^

if {getchar{) A ’e’)
if {getchar{) 7^ ’\r’^

6. Photoshop follows the conventions of photographers who consider

0 to be black and 1 to be white; but we follow the conventions of

computer scientists who tend to regard 0 as devoid of ink (white) and

1 as full of ink (black).

We use the fact that global arrays are initially zero to assume that

there are all-white rows of Os above and below the input data in the

rectangular case.

(Input rectangular pixel data 6) =

for (i = 1; i < ury] i-H-)

for {j = 0; j < urx] j++)

a[z][j] = 1.0 — brightness * getchar{)/255.0;

This code is used in section 5.

7. In the rotated case, we transpose and partially shift the input so

that the eventual Ah row is in positions a[i][j + \i/2\] for 0 < j < n.

This nonobvious arrangement will turn out to be most convenient for

the output phase, because of the error-diffusion algorithm that we will

be applying to the transposed output.

Fonts for Digital Halftones 437

For example, suppose m = 5 and n = 3; the input is a 7 x 7 array

that can be expressed in the form

/o 0 0 a .4 1

0 0 b D F J k

0 c c G K 0 S
d D H L P T j
e 1 M Q U i 0

e N R V h 0 0

\0 f IF 9 0 0 0/

In practice the boundary values a, b, c, d, e, /, g, h, /i, i, jf, k, I are very

small, so they are essentially “white” and of little importance ink-wise.

In this step we transform the input to the configuration

(1 k 0 0 0 0
A J 5 0 0 0 0
a F 0 j 0 0 0
0 B K T 0 0 0
0 b G P i 0 0
0 0 G L U 0 0
0 0 c H Q h 0
0 0 0 D M V 0
0 0 0 d I R 9

Vo 0 0 0 E N W /

and later w'e wdll output

(1 k o\
A J S

F 0 j
B K T

G P i

C L U

H Q h

D M V
I R 9

\e N W /

(Input rotated pixel data 7) =

{ for (i = 0; i < ury, i-H-) for (j = 0; j < urx; j++) {

a = m + i — j; jj = i + j + I — m-,

438 Digital Typography

if (it > 0 A ii < m + m Ajj > 0 A jj < n + n)

a[M][i] = 1.0 — brightness * getchar{)/255.0;

else trash = getchar{)-,

}
a[0][n — 1] = 1.0 — brightness', /* restore “lost value” */

}
This code is used in section 5.

8. Diffusing the error. We convert the darkness values to 65, 33,

or 17 levels by generalizing the Floyd-Steinberg algorithm for adaptive

grayscale [2], The idea is to sweep through the image one pixel at a

time, finding the best available density value at the currently scanned

position and diffusing the error into adjacent pixels that haven’t yet been

processed.

Given a font with k black dots in character A: for 0 < A: < /, we might

assume that the apparent density of the A;th character would he k/l. But

physical properties of output devices make the actual density nonlinear.

The following table is based on measurements from observations on font

ddithSOO with a Canon LBP-CX laserprinter, and it should be accurate

enough for practical purposes on similar machines. But in fact the

measurements could not be terribly precise, because the readings were

not strictly monotone, and because the amount of toner was found to

vary between the top and bottom of a page. Users should make their

own measurements before adapting this routine to other equipment.

(Global variables 4) +=

float d[65] = {

0.000, 0.060, 0.114,0.162,0.205, 0.243,0.276, 0.306,0.332, 0.355,

0.375, 0.393, 0.408,0.422, 0.435, 0.446, 0.456,0.465, 0.474, 0.482,

0.490, 0.498, 0.505, 0.512, 0.520, 0.527, 0.535, 0.543, 0.551, 0.559,

0.568,0.577,0.586, 0.596, 0.605, 0.615, 0.625, 0.635, 0.646, 0.656,

0.667, 0.677,0.688, 0.699, 0.710, 0.720, 0.731, 0.742, 0.753, 0.764,

0.775, 0.787,0.798, 0.810,0.822,0.835, 0.849, 0.863, 0.878, 0.894,

0.912, 0.931,0.952, 0.975,1.000};

9. In the main loop, we will want to find the best approximation to

a[f][j] from among the available densities d[0], d\p\, d[2p], d[3p], ...,

where p is 1, 2, or 4. A straightforward modification of binary search

works well for this purpose:

(Find I so that d[l] is as close as possible to a[z][j] 9) =

if (a[i][j] < 0.0) I = 0;

else if (a[i][j] > 1.0) I = 64;

else { register int loJ = 0, hiJ = 64;

Fonts for Digital Halftones 439

while [hiJ ~ loJ > p) { register int midJ = (lo.l + hiJ) 2> 1;

/ =*= hiJ - loJ is halved each time, so midJ is a multiple oi p */

if (a[i][j] > d[midJ]) loJ = rnidJ-,

else hiJ = midJ;

}
if (aH[i] — d[loJ] < d[hiJ] - a[t][j]) I = loJ;
else I = hiJ;

}
This code is used in sections 10 and 11.

10. The rectangular case is simplest, so we consider it first. Our

strategy will be to go down each column, starting at the left, and to

disperse the error to the four unprocessed neighbors.

^define alpha 0.4375 /* 7/16, error diffusion to S neighbor */

#define beta 0.1875 /* 3/16, error diffusion to NE neighbor */

^define gamma 0.3125 /* 5/16, error diffusion to E neighbor */

^define delta 0.0625 /* 1/16, error diffusion to SE neighbor */

(Process a[z][_7] in the rectangular case lo) =

{ register float err;

if (t = 0 V z > ury) / = 0;
/* must use white outside the output region */

else (Find I so that d[l] is as close as possible to a[z][j] 9);

err = a\i][j] - d[l];

a[z][_7] = (float) (l/p); /* henceforth a[z][j] is a level not a density */

if (z < ury) a[i + 1][_7] += alpha =»= dampening * err;

if {j < urx — 1) {

if (z > 0) a[z — l][j + 1] += beta * dampening * err;

a[z][_) + 1] += gamma * dampening * err;

if (z < ury) a[i + \][j + 1] += delta * dampening * err;

}
}

This code is used in section 12.

11. The rotated case is essentially the same, but the unprocessed

neighbors of a[t][i] are now a[i + l][j], a[i\[j + 1], a[i + l][j + 1], and

a[i + 2][j + 1], (For example, the eight neighbors of K in the matrices

of section 7 are B, F, J, O, T, P, L, G.)

Some of the computation in this step is redundant because the values

are known to be zero.

(Process a[z][j] in the rotated case n) =

{ register float err;

if ((z > 1) < j - n V (z » 1) > j) I = 0;

/* must use white outside the output region */

440 Digital Typography

else (Find I so that d[l] is as close as possible to a[z][j] 9);

err = a[{\[j] - d[l];

a[i][j] = (float) (l/p); /* henceforth a[f][j] is a level not a density */

if (i < m + m — 1) a[i + l][j] += alpha * dampening * err]

if {j < m + n - 2) {

a[f][_7 + 1] += beta * dampening * err]

if (i < m + m — 1) a[i + 1][_7’ + 1] += gamma * dampening * err]

if (i < m + m — 2) a[i + 2][j + 1] += delta * dampening * err]

}
}

This code is used in section 12.

12. Finally we are ready to put everything together.

(Translate input to output 12) =

p — 64:/{levels — 1);

if (p # 2) {

for {j = 0] j < urx] j++)

for (i = 0; i < ury + 1; i++)

(Process a[i][j] in the rectangular case 10);

for (i = 1; i < ury] i++) {

for {j = 0] j < urx] j++)

prmtf{''7,c'',{p = 1 ? ’0' : ((z + ;■) & 1) ? ’a’ : ’A’) + (int) a[z][j]);
print/{" .\n");

}
}
else {

for (j = 0; j < m + n — 1; j++)

for (z = 0; z < m + m; z++) (Process ci[z][j] in the rotated case 11);
for (z = 0; i < m + m] z++) {

for {j = 0; j < rz; ;++) printf{"%c", ’0’ + (int) a[z][j + (z > 1)]);

print/{" . \n");

}
}
pr’zrzt/("\\endhalf tone\n");

This code is used in section 1.

Appendix 2: Pixel optimization

Here is another short CWEB program. It was used to generate the special

font for Mona Lisa.

1. Introduction. This program prepares a METRFONT file for a

special-purpose font that will approximate a given picture. The input file

{stdin) is assumed to be an EPS file output by Adobe Photoshop’^’^ on a

Macintosh with the binary EPS option, containing m rows of n columns

Fonts for Digital Halftones 441

each; in Photoshop terminology the image is m pixels high and n pixels

wide, in grayscale mode, with a resolution of 72 pixels per inch. The

output hie [stdout) will be a sequence of m lines like

row 4; data "e8...d9";

this means that the pixel data for row 4 is the string of n bits

11101000 ... 11011001 encoded as a hexadecimal string of length n/4.

For simplicity, we shall assume that m = 512 and n = 440.

T^define m 512 /* this many rows */

^define n 440 /* this many columns */

#include <stdio.h>

float a[m + 2][n + 2]; /* darknesses; 0.0 is white, 1.0 is black */

(Global variables 4)

(Subroutines 12)

void main(int urge, char *or3t;[])

{ register int i, j, k, I, it, jj, w;

register float err;

float zeta = 0.2, sharpening — 0.9;

(Check for nonstandard zeta and sharpening factors 2);

(Check the beginning lines of the input file 3);

(Input the graphic data 5);

(Translate input to output is);

(Spew out the answers 17);

}

2—6. [Sections 2-6 of this program are entirely analogous to the cor¬

responding sections of the program in Appendix 1, but slightly simpler;

let’s cut to the end of section 6, where the interesting differences begin.]

We use the fact that global arrays are initially zero to assume that

all-white rows of Os appear above, below, and to the left and right of the

input data.

(Input rectangular pixel data 6) =

for (f = 1; i < ury; i++)

for {j = 1; i < urx; j++) n[i][j] = 1-0 — getchar{)/255.0;

This code is used in section 5.

7. Dot diffusion. Our job is to go from eight-bit pixels to one-bit

pixels; that is, from 256 shades of gray to an approximation that uses

only black and white. The method used here is called dot diffusion

(see [7]); it works as follows: The pixels are divided into 64 classes,

numbered from 0 to 63. We convert the pixel values to Os and Is by

442 Digital Typography

assigning values first to all the pixels of class 0, then to all the pixels

of class 1, etc. The error incurred at each step is distributed to the

neighbors whose class numbers are higher. This is done by means of

precomputed tables class^row, classical^ start, deLi, deLj, and alpha

whose function is easy to deduce from the following code segment.

(Choose pixel values and diffuse the errors in the buffer 7) =

for (fc = 0; k < 64; /c-H-)

for {i — class-row[k]\ i <m\ i += 8)

for {j = class-Col[k\\ j < n; j +— 8) {

(Decide the color of pixel [i,j] and the resulting err 9);

for {I = start[k]] I < start[k + 1]; 1++)

a[i + deLi[l]][j + deLj[l]] += err * alpha[l]-,

}
This code is used in section 15.

8. We will use the following model for estimating the effect of a given

bit pattern in the output: If a pixel is black, its darkness is 1.0; if

it is white but at least one of its four neighbors is black, its darkness

is zeta; if it is white and has four white neighbors, its darkness is 0.0.

Laserprinters of the 1980s tended to spatter toner in a w'ay that could

be approximated roughly by taking zeta = 0.2 in this model. The value

of zeta should be between —0.25 and +1.0.

An auxiliary array aa holds code values white, gray, or black to

facilitate computations in this model. All cells are initially white-, but

when we decide to make a pixel black, we change its white neighbors (if

any) to gray.

:^define white 0 /* code for a white pixel with all white neighbors */

#define gray 1 /* a white pixel with 1, 2, 3, or 4 black neighbors */

#define black 2 /* code for a black pixel */

{ Global variables 4) +=

char aa[m + 2][n + 2]; /* white, gray, or black status of final pixels */

9. In this step the current pixel’s final one-bit value is determined.

The pixel presently is either white or gray, we either leave it as is, or

we blacken it and gray its white neighbors, whichever minimizes the

magnitude of the error.

Potentially gray values near the newly chosen pixel make this calcu¬

lation slightly tricky. [Translation: I got it wrong the first two times

I tried.] Notice, for example, that the very first black pixel to be created

will increase the local darkness of the image by 1 + Azeta. Suppose the

original image is entirely black, so that a[i][j] is 1.0 for 1 < i < m and

1 < i < «■ If a pixel of class 0 is set to white, the error (i.e., the darkness

Fonts for Digital Halftones 443

that needs to be diffused to its npperclass neighbors) is 1.0; but if it is

set to black, the error is —4zeta. The algorithm will choose black unless

zeta > .25.

(Decide the color of pixel {i,j] and the resulting err 9)

if (aa[T][j] = white) err = a[z][j] - 1.0 - 4 * zeta-,

else { /* aa[i][j] = gray */

err = a[i][j] — 1.0 + zeta-,

if (aa[i — l][j] = white) err —= zeta-,

if (aa[i + l][j] = white) err —— zeta-,

if (aa[i][j — 1] = white) err — = zeta-,

if (aa[i][j + 1] = white) err —= zeta-,

}
if {err + a[i][j] > 0) {

oa[z][j] = black-,

if (ao[i — l][j] = white) aa[i — l][j] = gray-,

if (aa[2 + l][j] = white) aa[i + l][j] = gray-,

if (aa[z][j — 1] = white) oa[z][j — 1] = gray-,

if (aa[i][J + 1] = white) aa[z][jf + 1] = gray;

}
else err = a['i][i]; /* keep it white or gray */

This code is used in section 7.

/* black is better */

10. Computing the diffusion tables. The tables for dot diffusion

could be specified by a large number of boring assignment statements,

but it is more fun to compute them by a method that reveals some of

the mysterious underlying structure.

(Initialize the diffusion tables lO) =

(Initialize the class number matrix 13);

(Compile “instructions” for the diffusion operations 14);

This code is used in section 15.

11. (Global variables 4) +=

char class-row[64:], class-Col[64];

/ * first row and column for a given class * /

char class-number[l0][l0]; /* the number of a given position */

int kk — 0; /* how many classes have been done so far */

int start [65]; / * the first instruction for a given class * /

int deLi[256], deLj[256]; /* relative location of a neighbor */

float alpha[256]; /* diffusion coefficient for a neighbor */

12. The order of classes used here is the order in which pixels might

be blackened in a font for halftones based on dots in a 45° grid. In

fact, it is precisely the pattern used in matrix (2) for the font ddithSOO,

discussed earlier in this paper.

444 Digital Typography

(Subroutines 12) =

void siore(int z,int j)

{
if (i < 1) i += 8; else if (i > 8) i —= 8;
if (j < 1) j += 8; else if (j > 8) j -= 8;
class-number[i][j] — kk\
class-row[kk] = i\ class-Col[kk] =
kk ++;

}
void store-eight(\nt i,int j)

{
store{i,j)', siore(i — 4,j + 4); store(l — j,i — 4); store{b — j,i)\

store{j,5 — i)] store{4 + j,1 ~ i}] store{5 — i,5 — j); store{l — i,l — j),

}
This code is used in section 1.

13. (Initialize the class number matrix 13) =

store-eight{7, 2)-, store-eight {8, 3); store-eight{8, 2)] store-eight(8,1)]

store-eight{1,4)] store-eight {1,3)] store-eight{1,2)] store-eight{2, 3)]

for {i = 1] i < 8] t++) class-number[i][0] — class-number[i][8],

class-number[i][9] = class-number [i][l]]

for (j = 0; j < 9] j-H-) class-number[0][j] — class-number[8][j],

class-number[9][j] = class-number[l][j]]

This code is used in section 10.

14. The “compilation” in this step simulates going through the diffu¬

sion process the slow way, recording the actions it performs. Then those

actions can all be done at high speed later.

(Compile “instructions” for the diffusion operations 14) =

for {k = 0,1 = 0] k < 64; k++) {

start [k] — 1] /* I is the number of instructions compiled so far */

i — class-row[k]] j = class-Col[k]] w = 0]
for {a = i — 1] a < i + 1] ii++)

for {jj =j-l] jj <j + T, jj++)

if {class-number[ii]\jj] > k) {

del-i[l] = a ~i] del-j[l] =jj~j] 1++]

if {a ytzi Ajj / j) u;++;

/* diagonal neighbors get weight 1 */

else w += 2; /* orthogonal neighbors get weight 2 */

}
for {jj = start[k]] jj < 1] jj++)

if {del-i[jj] 7^ 0 A deLj\jj] 7^ 0) alpha[jj] = 1.0/m;

else alpha[jj] = 2.0/u;;

}

Fonts for Digital Halftones 445

start[64] = /; /* at this point I will be 256 */

This code is used in section 10.

15. Synthesis. Now we’re ready to put the pieces together.

(Translate input to output is) =

(Initialize the diffusion tables lo);

if {sharpening) (Sharpen the input 16);

(Choose pixel values and diffuse the errors in the buffer ?);

This code is used in section 1.

16. Experience shows that dot diffusion often does a better job if we

apply a filtering operation that exaggerates the differences between the

intensities of a pixel and its neighbors:

(l{j i—

Clij Ckdij

I — a

where

1
Clij — “ tj Q E

<5=-l

+ 1

^{i+S){j+e)

e=-l

is the average value of Uij and its eight neighbors. (See the discussion

in [7]. The parameter a is the sharpening value, which had better be

less than 1.0.)

We could use a buffering scheme to apply this transformation in place,

but it’s easier to store the new value of in and then shift

everything back into position afterwards. The values of a^o and uqj

don’t have to be restored to zero after this step, because they will not

be examined again.

(Sharpen the input 16) =

{
for (z = 1; i < m; z++) for (j = 1; J < n; j++)

{ float abar\

abar = {a[i - l][j - 1] + a[i - l][j] + a[i - l][j + 1] + a[i\[j - 1] +

+ + 1] + +1]^ “ l] + a[* + lib’] +o[i + l][j + l])/9.0;
a[i — l]b — 1] = (ablb] ~ sharpening * abar)/{1.0 — sharpening)-,

}
for (f = m; f > 0; i —) for {j = n; j > 0; j —)

a[i][j] = (a[z - l]b - 1] < 0.0 ? 0.0 : a[i - l][j - 1] > 1.0 ? 1.0 :

“b - i]b -1]);
}

This code is used in section 15.

446 Digital Typography

17. Here Fm assuming that n is a multiple of 4.

(Spew out the answers 17) =

for (i = 1; i < m; i-H-) {

print/("rowuXd;udatau\i);
for (/ = 1; / < n; j += 4) {

for (k = 0,w = 0] k < 4; k++)

w = w + w + {aa[i][j + A:] = black ? 1 : 0);

print/,w);

}
print/; \n");

}
This code is used in section 1.

18. The following examples indicate the effect of parameters zeta and

sharpening on this algorithm:*

no sharpening, C = -2 sharpening, (= .2 sharpening, C = 0

The research described in this paper was supported in part by the System Develop¬
ment Foundation and in part by National Science Foundation grants IST-8201926,
MCS-8300984, and DCR-8308109.

References

[1] Carolyn Caddes, Portraits of Success (Portola Valley: Tioga Press,

1986).

[2] Robert W. Floyd and Louis Steinberg, “An adaptive algorithm for

spatial greyscale,” Proceedings of the Society for Information Dis¬

play 17 (1976), 75-77. An earlier version appeared in SID 75 Digest

(1975), 36-37.

[3] Robert L. Card, “Digital picture processing techniques for the

publishing industry,” Computer Graphics and Image Processing 5

(1976), 151-171.

Fonts for Digital Halftones 447

[4] Ramsey W. Haddad and Donald E. Knntli, A Programming and

Problem-Solving Seminar, Stanford Computer Science Department

report STAN-CS-85-1055 (Stanford, California: June 1985). This

seminar was also recorded on videotapes under the title “Problem

solving with Donald Knuth,” The Stanford Video Journal 1 (Stan¬

ford, California: Stanford Instructional Television Network, 1985).

[5] J. F. Jarvis, C. N. Judice, and W. H. Ninke, “A survey of techniques

for the display of continuous tone pictures on bilevel displays,”

Computer Graphics and Image Processing 5 (1976), 13-40.

[6] Ken Knowlton and Leon Harmon, “Computer-produced grey

scales,” Computer Graphics and Image Processing 1 (1972), 1-20.

[7] Donald E. Knuth, “Digital halftones by dot diffusion,” ACM Trans¬

actions on Graphics 6 (1987), 245-273. [A revised form of this

article appears as Chapter 22 of the present volume.]

448 Digital Typography

O ^ ^ QQ O <M Tf QD O cs
CN (N

«£> 00 O CM
CM CM CO CO

Chapter 22

Digital Halftones by Dot Diffusion

[Revision of an article that was originally published in ACM Trans¬

actions on Graphics 6 (1987), 245-273.]

This note describes a technique for approximating real-valued pixels by

two-valued pixels. The new method, called dot diffusion, appears to avoid

some deficiencies of other commonly used techniques. It requires approx¬

imately the same total number of arithmetic operations as the Floyd-

Steinberg method of adaptive grayscale, and it is well suited to parallel

computation; but it requires more buffers and more complex program

logic than other methods when implemented sequentially on a machine

with limited memory. A “smooth” variant of the method may prove to

be useful in high resolution printing.

Given an m x n array A of real values between 0 and 1, we wish to

construct an m x n array B of zeros and ones such that the average

value of the entries B[i,j] when {i,j) is near (zo,Jo) is approximately

equal to A[zo,jo]- In applications, A represents the light intensities in

an image that has been scanned by some sort of camera; B represents a

binary approximation to the image that might appear on printed pages.

Error Diffusion

An interesting solution to this problem was introduced by Floyd and

Steinberg [7], who computed B from A as follows:

for i := 1 to m do for j 1 to n do
begin if A[i,j] < 0.5 then B[i,j] := 0 else B[i,j] := 1;

err := A[i,j] - B[i,j];

A[i,j + 1] := A[i,j + 1] + err * alpha;

A[i + 1, j - 1] := A[i + l,j - 1] + err * beta;

A[i + l,j] := A[i + l,j] + err * gamma;

Aff + l,j + 1] := A[i + 1, j + 1] + err * delta;

end.

449

450 Digital Typography

Here a, P, 7, and 5 are constants chosen to diffuse the error, which is

directed proportionately to nearby elements whose B values have not

yet been computed. Floyd and Steinberg suggested taking {a,P,'y,d) =

(7,3,5,1)/16. A similar but more complex method had previously been

published by Manfred R. Schroeder [23].

The Floyd-Steinberg method often gives excellent results, but it

has drawbacks. In the first place, it is an inherently serial method; the

value of B[m,n] depends on all mn of the entries of A. Furthermore, it

sometimes puts “ghosts” into the picture; for example, when faces are

treated by this approach, echoes of people’s hairlines can occasionally

be seen in the middle of their foreheads. Several other difficulties will

be discussed below.

The ghosting problem can be ameliorated by choosing {a,P,^,S)

so that their sum is less than 1; then the influence of A[i,j] on remote

elements decays exponentially. However, the ghosts cannot be exorcised

completely in this manner. Suppose, for example, that A[i,j] has the

constant value a for all i and j, and let ^ = (/3 + 7 -)- (5)/(l — a) < 1. If

a is very small, the entries of B[i,j] for small i will all be zero, and the

entries of A[i,j] will build up to the limiting value

a{\-\-09^ ^){1 + a + ■ ■ ■) — a{l9 + ■ ■ •9^ —a)

for large j. If we choose a so that this value is just slightly less than

1/2, the (i + l)st row will suddenly have many of its B values set to 1,

after they had been 0 in all previous rows.

Floyd [8] has found that ghosts disappear if the intensities A[i,j]

are rescaled. For example, we can replace each A[i,j] by 0.1 + 0.8A[z, j].

This works because the human eye is more sensitive to contrast than to

absolute signal levels.

Ordered Dither

A second approach to the problem is the interesting technique of ordered

dither [4, 17, 18]. Here we divide the set of all pairs (z,j) into, say,

64 classes numbered from 0 to 63, based on the values of i and j modulo 8

as shown in Table 1. If (i, j) belongs to class k, bit B[i,j] is set to 1 if and

only if A[i,j] > {k + .5)/64. In other words, each pixel is thresholded,

based on the value in the corresponding position of the dither matrix.

Notice that if A[i,j] has a constant value a, this method will turn on

t pixels in every 8x8 submatrix of B, where 11/64 - a | < 1/128.

Digital Halftones by Dot Diffusion 451

45 29 34 18 46 30 33 17

13 61 2 50 14 62 1 49

39 23 40 24 36 20 43 27

7 55 8 56 4 52 11 59

47 31 32 16 44 28 35 19

15 63 0 48 12 60 3 51

37 21 42 26 38 22 41 25

5 53 10 58 6 54 9 57

Table 1. Class numbers for ordered dithering.

Dot Diffusion

The technique of ordered dither is completely parallel and ghost-free,

but it tends to blur the images. It would be nice to have a solution

that retains both the sharpness of Floyd-Steinberg and the parallelism

of ordered dither.

The following technique seems to have the desired properties. Let us

divide the positions {i,j) into 64 classes according to i and j modulo 8 as

before, but replacing the matrix of Table 1 by the matrix of Table 2 on

the next page. (The intuition that suggested Table 2 will be explained

later; for now, let us simply consider it to be an arbitrary permutation

of the numbers {0,1,..., 63}.)

Given any such matrix, we can perform the following diffusion algo¬

rithm;

for A: := 0 to 63 do

for all (Ti) of class k do

begin if A[i,j] < 0.5 then B[i,j] := 0 else B[i,j] 1;

err := A[iJ] - S[z, j];

(Distribute err to the neighbors of {i,j)

whose class numbers exceed k)]

end.

Pixels of class 0 are computed first, then those of class 1, etc.; errors are

passed to neighboring elements yet to be computed.

Each position {i,j) has four orthogonal neighbors (u,v) such that

(u — -b (u — j)^ = 1, and four diagonal neighbors {u,v) such that

{u — i)^ -b (u — = 2. One feasible way to do the error distribution in

452 Digital Typography

35 48 40 32 28 15 23 31

43 59 56 52 20 4 7 11

51 62 60 44 12 1 3 19

38 46 54 36 25 17 9 27

29 14 22 30 34 49 41 33

21 5 6 10 42 58 57 53

13 0 2 18 50 63 61 45

24 16 8 26 39 47 55 37

Table 2. Class numbers for dot diffusion.

the diffusion algorithm is to proceed as follows:

(Distribute err to the neighbors of {i,j)

whose class numbers exceed k) —

w := 0;

for all neighbors (u,n) of (f,j) do

if class(M, v) > k then w -.= w + weight(n — i,v — j)-,

for all neighbors {u,v) of {i,j) do

A[u, n] := A[u^ n] + err * weight(n — i,v — j)/w.

We can choose the weight function to be weight(a:,y) = 2> ~ — y‘^\

this weighs orthogonal neighbors twice as heavily as diagonal neighbors.

For efficiency, the weights and the lists of relevant neighbors should be

precomputed, once and for all, since the class numbers are independent

of the A values.

A detailed implementation of this method appears in [14]. The

program in that paper considers also a generalization in which white

pixels orthogonally adjacent to black pixels are assumed to contribute

some gray value to the total darkness; this approximates the dot gain

characteristics of certain output devices.

Error Bounds

Let us say that position (i, j) is a baron if it has only low-class neighbors.

Barons are undesirable in the diffusion algorithm because they absorb

all of the local error. In fact, “near-baron” positions, which have only

one high-class neighbor, are also comparatively undesirable because they

direct all the error to one place. The class structure of the matrix in

Digital Halftones by Dot Diffusion 453

Table 2 has only two barons (62 and 63), and only two near-barons

(60 and 61). By contrast, the class structure of the matrix for ordered

dither. Table 1, would be much less successful for diffusion, since it has

sixteen barons (48 to 63).

The average error per pixel in the dot diffusion method will usually

be less than the number of barons divided by twice the number of classes,

if we average over a region that contains one pixel in each class. For

example, we expect to absorb at most 2/128 units of intensity per pixel

in any 8x8 region if we use the matrix above, since the error committed

at each pixel is compensated elsewhere except at the two baron positions,

where we usually make an error of at most 1/2.

However, it is possible to construct bad examples in which the entries

of the matrix became negative or greater than 1; hence the maximum

error does not simply depend on the number of barons. The worst case

can be bounded as follows:

for k := 0 to 62 do

for / := fc -I- 1 to 63 do

bound[i] := bound)/] + a^i * max(0.5, bound[fc]).

Here aki is the error diffusion constant from class k to class I as defined

above, or zero if class I is not a neighbor of class k. It follows that

bound)/] is the maximum error that can be passed to positions of class /

from positions of lower classes. The maximum total error in a region

containing one position of each class is the sum of max(0.5,bound)/;:])

over all baron classes k. Equivalently, it is the sum over all classes k of

the quantity max(0,0.5 — bound)/?]). {Proof: We have

max(0, 0.5 — bound)/?])

fc

= max (bound)/?], 0.5) — S

k

= max (bound)/?], 0.5) (^[k is a baron] -|- aki

k l>k

= max (bound)/?], 0.5) + bound)/] — S

A: is a baron I

-s

where S = bound)/?].) In the matrix of Table 2, we have bound)62] =

bound)63] Rs 4.3365; hence the average error per pixel is always less than

8.674/64 < 0.136.

454 Digital Typography

The original data must be chosen by a nasty adversary if the error

is going to be this bad. (The adversary sets A[i,j] = 0.5 + bound[A:] if

{i,j) belongs to class k where bound[/i’] < 0.5; otherwise A[i,j] = 0.)

On the other hand, an adversary who wants to defeat the ordered dither

algorithm can make it commit errors of 0.5 per pixel in every 8x8 block.

(When {i,j) is of class k, let A[i,j] be {k + .5)/64; then B[i,j] = 1 for

all i and j, but the A’s have average density 0.5.)

The Floyd-Steinberg method has near-zero error by this criterion,

because all of its errors occur at the boundary, which has negligible area.

25 21 13 39 47 57 53 45

48 32 29 43 55 63 61 56

40 30 35 51 59 62 60 52

36 14 22 26 46 54 58 44

16 6 10 18 38 42 50 24

8 0 2 7 15 31 34 20

4 1 3 11 23 33 28 12

17 9 5 19 27 49 41 37

Table 3. A single-baron arrangement.

The matrix of Table 3 has only one baron and one near-baron; more¬

over, it leads to bound[63] ~ 7.1457. Therefore it might be better for

dot diffusion than the matrix of Table 2. However, the barons in a large

image based on Table 3 would all line up rectilinearly, and this would

lead to a more noticeable visual texture. Human eyes tend to notice

rectilinear dot patterns, while they are less prone to notice the dots of a

halftone grid when the pattern has been rotated 45° (see [13]). If all en¬

tries of A are approximately 1/64, the arrangement of Table 2 produces

two pixels with H = 1 in every 8x8 submatrix, while Table 3 produces

only one; one is the correct number, yet Table 3 yields a less satisfactory

texture.

Table 2 was, in fact, suggested by dot patterns that are commercially

used in halftone grids. If we imagine starting with a completely white

matrix, and if we successively blacken all positions of classes 0,1,...,

we obtain 45° grids of black dots that gradually grow larger and larger.

When all classes < 32 have been blackened, we have a checkerboard; from

this point on, the blackening process essentially yields 45° grids of white

Digital Halftones by Dot Diffusion 455

dots that gradually grow smaller and smaller. Since the class number of

(z, j) plus the class number of {i,j + 4) is always equal to 63, the grid

pattern of 63 — /c white dots after k steps is exactly the same as the grid

pattern of 63 — k black dots after 63 — k steps, shifted right 4. This

connection of dot patterns to the diffusion pattern makes it reasonable

to call the new method dot diffusion.

Dot diffusion can also be tried on a smaller scale, with the 4x4

class matrix

14 13 1 2

4 6 11 9

0

C
O

 15 12

10

0
0

 5 7

It can also be used with dots aligned at different angles, using patterns

like those of Holladay [10], or with dots that are elliptical instead of

circular.

Enhancing the Edges

Jarvis and Roberts [11, 12] discovered that ordered dither can be im¬

proved substantially if the edges of the original image are emphasized.

Their idea, in essence, is to replace A[i,j] by

= Ali,j]-aAli,j]

where A[i,j] is the average value of A[i,j] and its eight neighbors:

.. i4-l i-l-1

^[*’•^1 = 9 A[u,v].
u=i —1 v=j — l

The new values A'[i,j] have the same average intensities as the old, but

when a > 0 they increase the difference of A[i,j] from the neighboring

pixels. If Q = 0.9 these formulas simplify to a well-known equation

(see [19], Eq. 12.4-3):

A'[iJ] = 9A[i,j] - A[u,v].

0<(ti —i)^ + (w—j)^<3

The sum here is over all eight neighbors of {i,j).

456 Digital Typography

Jarvis and Roberts formulated this “constrained average” method in

another way, which made it seem inherently tied to the ordered dither

technique. However, the equations above make it clear that edge en¬

hancement can be used with any halftoning method.

Actually we should also adjust A'[i^j] to ensure that it lies between

0 and 1, by clipping it to 0 or 1 whenever it lies outside those extreme

values. Otherwise too much of an “error” might need to be diffused.

Examples

The illustrations on the next few pages show what happens when the

three methods discussed so far are applied to two different images, with

and without edge enhancement. The data sets are deliberately rather

small so that the details can be studied: Each image has 360 rows of

data, with 250 pixels per row.

The first image is a digitized version of Mona Lisa, which is widely

available because it is part of the Stanford GraphBase [15]; the Graph-

Base function call lisa{m, n, 255,0, 0, 0, 0,0, 0, workplace) returns an ar¬

ray of 360 X 250 bytes in which each pixel corresponds to a one-byte

value, from 0 (black) to 255 (white). We want black to be represented

by 1, so we could change the byte value r to the fraction (255.5 —r)/256.

But the GraphBase image turns out to be rather dark, because of the lac¬

quer coating on Leonardo’s old painting; better results for our purposes

are obtained by squaring the density to make it lighter. Thus the data

entries A[i,j] for the first image all have the form ((255.5 — r)/256)^,

where r is the GraphBase byte for the pixel in row i and column j.

The second image was computed artificially by formulas: Given i

and j in the range 1 < z < 360 and 1 < j < 250, let x = {i — 120)/111.5

and y = {j —120)/111.5. < 1, the value of A[z, j] is (9 + a; — 4y —

8-^1 — x"^ — y^)/18; otherwise A[i,j] is simply (1500z -f j^)/1000000.

Edge-enhanced data A'[i,j] was obtained from the original values by

applying the simple formula above for the case a = 0.9. Notice that this

is amazingly effective in bringing out details of the Mona Lisa image, in

spite of the comparatively low resolution we are working with; one can

almost see the arches of the distant aqueduct in the background at the

right of the picture and the curls in Mona Lisa’s hair. The transforma¬

tion may, however, have broadened her mysterious smile.

When dot diffusion was applied to the enhanced Mona Lisa data

(Figure 10), the magnitude of the error absorbed at baron positions was

only 704.1/2835 0.248 on the average. The values of A[i,j] stayed

between —0.65 and 1.96 throughout the processing. Although we have

observed that a dot diffusion baron might be stuck with nearly 4.34

Digital Halftones by Dot Diffusion 457

Figure l (without edge enhancement) FIGURE 2 (with enhanced edges)

Images digitized by the Floyd-Steinberg algorithm.

458 Digital Typography

Figure 5 (without edge enhancement) FIGURE 6 (with enhanced edges)

Figure 7 (without edge enhancement) Figure 9 (with enhanced edges)

Images digitized by the ordered dither algorithm.

Digital Halftones by Dot Diffusion 459

Figure 11 (without edge enhancement) Figure 12 (with enhanced edges)

Images digitized by the dot diffusion algorithm.

460 Digital Typography

units of error in the worst case, only 26 of the 2835 baron positions

were “bad” in the sense that they absorbed an error whose magnitude

was more than 0.5; those included the cases where reached the

extreme values —0.65 and 1.96. In addition to baronial error, 24.14

units of pixel intensity leaked out at the boundaries; this is the sum of

\A[i,j]\ for i = 0 or z = m + 1 or ; = 0 or j = n + 1 after the diffusion

algorithm has done its work. Thus the total undiffused error came to

704.10 + 24.14 = 728.24 among 360 x 250 = 90000 pixels, about 0.008

per pixel.

Similar results occurred in Figures 9, 11, and 12; the statistics can

be summarized as follows:

min T [hi] max A[i,j] bad barons total undiffused error

Figure 9 -0.575 1.640 22 707.65 -b 72.78 = 780.43

Figure 10 -0.649 1.957 26 704.10 -b 24.14 = 728.24

Figure 11 -0.630 1.656 13 719.27-b 62.79 = 782.06

Figure 12 -0.773 1.913 22 725.08 + 41.44 = 766.52

The Floyd-Steinberg algorithm had undiffused errors only at the bound-

min A[hi] maxT[hi] total undiffused

Figure 1 -0.276 1.163 116.53
Figure 2 -0.331 1.405 66.14
Figure 3 -0.246 1.039 86.64
Figure 4 -0.324 1.483 48.20

By contrast, the ordered dither algorithm diffuses errors only in the

sense that it tries to make each 8x8 block approximately correct. The

relevant statistics for such a method are

r360/8l r250/8l

E E
i=l j=l

7 7

>l[8z — k, 8j — — B[8i — k, 8j — 1]

k=01=0

these sums came to (1000.72,1655.19,608.62,678.94), respectively, in

Figures 5, 6, 7, and 8. Thus ordered dithering was roughly twice as

bad as dot diffusion in the case of Mona Lisa, while it was slightly more

accurate in the case of the sphere. But the absolute error did exceed 1.0

in respectively (325, 710,103,150) of the 1440 blocks.

Figures 1-12 have been shown with relatively large square pixels,

measuring 0.22 mm on a side, so that the reader can plainly discern the

on/off patterns. We would have to reduce the illustrations by a factor

of 6 to get the equivalent of a medium-quality commercial screen for

photographic halftones.

Digital Halftones by Dot Diffusion 461

Problems

The ordered dither method produces a binary-recursive texture that is

unsuitable for most applications to publishing; such “cold” patterns are

probably useful only when the underlying technology is intentionally

being emphasized. The Floyd-Steinberg method usually gives much

more pleasing results, but it too has occasional lapses where intru¬

sive snake-like patterns call attention to themselves. The dot diffusion

method, likewise, introduces a grainy texture of its own. Thus none of

these approaches is wholly satisfactory, in the sense that a viewer pre¬

sented with the illustrations at this size would instinctively find them

attractive. Neither does any other halftoning method look great, when

viewed at this scale. We must stand back a few yards and squint, be¬

fore a continuous-tone effect can be perceived. When such experiments

are conducted, the Floyd-Steinberg examples tend to look better than

the others.

But the picture changes when we consider applications to printing.

The author experimented with variations of these images on a conven¬

tional 300-pixel-per-inch laserprinter (roughly a 38% reduction from the

present size of the illustrations), and the results of Floyd-Steinberg and

ordered dither proved to be quite unsatisfactory. Nonlinear effects of

the xerographic process caused large dark blotches to appear in places

wTere wTite pixels were fairly rare; there was a sharp jump between

gray and black areas. In the author’s experiments, the best laserprinted

Mona Lisa w'as produced by dot diffusion (see [14]); all other methods

tried w^ere significantly inferior.

Of course, laserprinters are only a crude approximation to the high-

resolution devices used in quality printing. Modern digital phototype¬

setters, with pixel sizes of say 20 /rm (1270 pixels per inch), can produce

excellent halftones by simulating the analog screening method that was

used on older equipment. Indeed, the method of ordered dither — but

with the 8x8 dot diffusion matrix of Table 2 in place of the 8x8

binary-recursive matrix of Table 1 — is essentially a simulation of the

traditional approach to halftones.

It is natural to suppose that we should be able to do an even better

job than before, if only we could think of how to use the new machines in

a more clever way, because so many things are now possible that could

not be done with analog devices. One might hope, for example, that

the Floyd-Steinberg method (with sufficiently high resolution) might be

able to reproduce Ansel Adams’s photographs better than any previous

method of printing has been able to achieve.

462 Digital Typography

But a moment’s reflection makes it clear that the Floyd-Steinberg

approach will be of no use at high resolution, because of physical lim¬

itations. Tiny droplets of ink are simply unable to arrange themselves

in patterns like those of Figures 1-4. The worst case probably occurs in

the case that A[i,j] = 1/2 for all i and j; then the Floyd-Steinberg algo¬

rithm produces a checkerboard of alternating black and white squares,

and a typical printing machine will convert this into a splotch of ink like

this: ■ Ordered dither, as in Figures 5-8, will fail for the same reason.

Both of these methods favor isolated black or white pixels.

Could dot diffusion, as described above, be useful at high resolution?

Let’s explore this by looking at a 27% reduction of Figures 9-12:

In this reduced form each pixel occupies .06 mm, so there are about 423

pixels per inch. If we rotate by 45° and divide by 4-^/2 (which is the

distance between “barons”), we see that the effect is analogous to a 75-

line screen, which is about newspaper quality. These images are very

small, and they would be even smaller on devices of higher resolution; a

medium-quality commercial screen has about 130 screen dots per inch,

or about 735 unrotated bilevel pixels per inch. A real illustration of

Mona Lisa would therefore have hundreds of times as much data; we

must keep this scale factor in mind.

Mona Lisa doesn’t look bad in this example, but there are serious

deficiencies in the reproduction of the sphere. Our eyes will not notice

a regular pattern of dots, if the dots are small enough, but we are quick

to perceive changes in texture. The background tones of gray behind

the sphere should be changing very gradually, but false contours show

up because a slight change in intensity can make a large change in the

pattern computed by dot diffusion. (Similar but less prominent false

contours can be seen in the background of the Floyd-Steinberg output.

Figures 3 and 4, especially where the intensities A[i,j] are nearly 1/2.)

Error diffusion methods are good at capturing the sharp details of

a picture, but a successful method must also be “quiet” where the data

shows little activity. The preparer of a digital halftone must be willing

to compose background music as well as the occasional fanfare. This

example demonstrates that dot diffusion, as defined above, is unsuitable
for general use at high resolution.

Digital Halftones by Dot Diffusion 463

In fact, there’s another good reason why dot diffusion breaks down.

It can be shown that if A[i,j] has the constant value 1/2 for all (i, j),

the dot diffusion algorithm defined above will produce a perfect checker¬

board of alternating black and white. (Small checkerboard patches can

be perceived in portions of Figures 11 and 12.)

These observations lead us to conclude that our initial criterion,

that the average of near (hii Jo) should be ai)proximately Jo])

is not sufficient, in spite of its mathematical appeal. What we really

want is a criterion that takes into account the distortions produced by

a printing process, as well as the subsequent distortions and illusions

produced by our optic nerves. In other words, human perception of

near (io) jo)) after printing, should be approximately the same as

human perception of H[i, j] near (io) jo)- Some steps in this direction

have been taken by Allebach and Dalton [2, 6], who include a visual

model in their experimental algorithms.

Smooth Error Diffusion

The discussion in the previous section seems to indicate that methods

based on error diffusion are doomed, as far as applications to high-

resolution printing are concerned. But we haven’t considered the lull

powder of error diffusion. An important discovery was made by Billotet-

Hoffmann and Bryngdahl [5], who realized that the Floyd-Steinberg

method reproduces average gray levels even when the constant ‘0.5’ is

replaced by any other value! For example, if we set B[i, j] 1 only when

A[t, j] > 0.6, we will be setting the upper left corner element B[l, 1] to

zero more often than before; but if we do, we’ll be distributing a larger

error value, hence the neighboring pixels will be more likely to become 1.

Billotet-Hoffman and Bryngdahl found that the resulting textures are

improved if the thresholds vary slightly as a function of i and j.

Let us therefore consider a parallel algorithm that has a more general

form than dot diffusion. All pixel positions (z,j) are divided into r

classes, numbered 0 to r — 1, and we proceed as follows:

for A: := 0 to r — 1 do for all (i, j) of class k do

begin if A[i,j] < 9k then B[i^j] 0 else B[i,j] 1;

err := A[i,j] - B[i,j]\

for / := A; -|- 1 to r — 1 do

begin let {u,v) be nearest to (i, j) such that class(u,u) = /;

A[u, u] := A[u, v] -(- err * aki',

end;

end.

464 Digital Typography

A diffusion algorithm that will be useful at high resolution must have

some sort of smoothness property. This means, intuitively, that small

changes to the given pixel values A[i,j] should produce small changes in

the resulting binary values D[i,j]. For example, if all the v4’s increase,

it would be nice if the B's all would stay the same or increase. Let us

therefore ask: Is there a sequence of parameter values 9k and akh for

0 < k < I < r, such that the general diffusion algorithm above has the

following projjerty?

If A[i,j] — a initially, for all i and j,

and if (m — .5)/r < a < (m + •h)/r for some integer m,

then the above algorithm should set

1, if 0 < class(z,j) < m;

0, if m < class(z,j) < r.

This condition states that the diffusion algorithm should act like a dither

algorithm, when the data is constant.

Surprisingly, there is a simple solution to these nonlinear constraints.

We may take

9k = -5/{r — k), aki = l/{r — k — 1), for all 0 < A: < / < r.

In particular, this threshold 9k is strictly less than 1/2, until we reach

the baron class k = r — 1. For all smaller classes, the error is distributed

equally to the higher-class neighbors; that is, it does not depend on 1.

Here’s the proof: Suppose that each A[i, j] has the initial value a =

Oo and that (m — 0.5)/r < ao < {m -|- 0.5)/r. If m > 0, the algorithm

sets all of class 0 to 1, and it sets all A[i,j] of classes > 0 to

the value ai = ao -f (ao - l)/(r - 1) = (rao - l)/(r - 1). Now we

have (m - 1.5)/(r - 1) < ai < (m - 0.5)/(r - 1). If m > 1, the

algorithm sets all B[i,j] of class 1 to 1, and it sets all A[i,j] of classes

> 1 to 02 = ai -f (oi — l)/(r — 2). Hence (m — 2.5)/(r — 2) < 02 <

(m - 1.5)/(r — 2); the process continues until we come to class m, with

A[i,j] = am and —0.5/(r —m) < a^ < 0.5/(r — m). The algorithm now

sets all B[i,j] of class m to 0, and it sets all H[i, j] of higher classes to

am+i = am-ham/{r — m — 1). At this point we have —0.5/(r — m — 1) <

Um+i < 0.5/(r — m — 1), hence the pattern persists; Q.E.D.

Although these threshold values 9k appear to be very unsymmetrical

with respect to 0 and 1, the stated smoothness property is symmetri¬

cal. Therefore the method is not as biased toward B[i,j] = 1 as it may

seem. But there is a small bias. It can be shown, for example, that if

Digital Halftones by Dot Diffusion 465

r — 2 and if the continuous A values for classes 0 and 1 are chosen inde¬

pendently and uniformly at random, then the resulting binary B values

will be (00,01,10,11) with the respective probabilities (3, 5, 20,4)/32;

hence the total expected binary weight is (5 20 -|- 8)/32 = 33/32,

slightly more than 1. If 7’ = 3 the probabilities for the eight possi¬

ble outcomes B = 000, 001, 010, 011, 100, 101, 110, 111, when the

A values are independently and uniformly random, are respectively

(57,123, 536,148,1423, 557, 2232,108)/5184; and the expected number

of Is is 115/72 1.597, slightly more than r/2. In general the probabil¬

ity that all r of the B values are set to 1 is l/(2'’r!), and the probability
that they are all set to 0 is

But of course the assumption of independently random A values is not

a good model for actual image data.

We can apply this method in the case r = 32, using the class ma¬

trix of Table 2 but with all class numbers divided by 2 (discarding the

remainder). Indeed, the ordinary dot diffusion method discussed earlier

would have given precisely the same results if we had considered it to

be a 32-class method instead of a 64-class method. But now we want to

expand the neighborhood of each pixel from size 9 to size 32; we regard

cell {i,j) as having 32 neighbors {u, v) that form a diamond-like pattern,

defined by
—3-|-|u —j| < u — i < 4—\v—j\;

these 32 neighbors (including {i,j) itself) contain one element from each

class. The neighbor relation isn’t symmetrical — for example, (4,1) is

a neighbor of (1,2) but (1,2) is not a neighbor of (4,1); that’s not a

problem.

Let us call the resulting algorithm smooth dot diffusion. The previ¬

ously described dot diffusion method requires no more arithmetic oper¬

ations than the ordinary Floyd-Steinberg algorithm, since 256 additions

and 256 multiplications are needed to process each 8x8 block. By con¬

trast, the smooth dot diffusion algorithm needs only 62 divisions per 8x8

block, since it distributes errors equally; but it performs 992 additions,

so it is slightly more expensive.
The maximum value of A[i,j] during the smooth diffusion algorithm

with r classes will occur when the A[i,j] are as large as possible subject

to the condition that B[i,j] is set to 0 for all classes < r - 1; this allows

the baron to grow arbitrarily near to its upper limit, 1.5 - 0.5/r.

466 Digital Typography

The minimum possible value of A\i,j] is more difficult to describe.

When r = 32 it occurs when we choose A values as small as possible so

that 5 = 1 for classes 0 to 19, while B = 0 for classes 20 to 30. This

extreme case will make the baron’s value —6(+ + + ^ + ^ +
Ri -11.776. For general r, let k be minimal such that the harmonic

sum l|{r — k)^-|-l/(r —1) exceeds 1 — 0.5/r; then k = r —r/e + (9(l),

and the least value that any A[i^j] can assume is

k-r f 2 2 2 2 1\

2 \r—A; r—k — \ r—k—2 ^ r—2 r—1 r/

T
= -- + 0(1).

e

Since smooth dot diffusion deals with rather large neighborhoods,

an error can move to positions quite far from its source. For example,

there is a propagation path from class 7 to 9 to 14 to 16 to 18 to 20

to 23 to 27 to 29 to 30 to 32 to 36 to 42 to 45 to 48 to 51 to 53 to 55 in

the matrix of Table 2 (before the class numbers have been divided by 2);

this moves downward 30 rows below the starting point! However, the

error is multiplied by small constants, so it is considerably dampened

by the time it reaches the end of its journey. Other paths can move

upward as many as 11 rows (for example, from 16 to 18 to 22 to 25

to 28 to 39 to 42 to 49). The only significant effect of such long paths

is that an optimized sequential implementation, which keeps only a few

consecutive rows of the image in memory at a time, requires a buffer of

16 rows; ordinary dot diffusion needs only 7 rows.

Comparison with Other Methods

Paul Roetling [21, 22] has developed a somewhat similar parallel algo¬

rithm for high-resolution halftones. His method, called ARIES (which

means Alias-Reducing Image-Enhancing Screener), is essentially a mod¬

ification of a dithering scheme in which the threshold levels are adjusted

for each dot. ARIES first forms the set of all values A[i,j] — k/r that

contribute to a single dot, where position (z, j) corresponds to level k

in the dither matrix and r is the total number of pixels per dot; then

ARIES sets B[i,j] := 1 in the m positions {i,j) that score highest by this

criterion, where m is chosen to equal the average intensity of the dot.

Figures 13 and 14 show the results of ARIES on our two sample

images. Here 32-pixel dots were used, based again on the class matrix

of Table 2 with all class numbers divided by 2. (If (zq, jo) is a pixel

of class 0, the 32 pixels of a dot are its 32 neighbors as defined above.

Digital Halftones by Dot Diffusion 467

Figure 13 (digitized by ARIES) FIGURE 14

Figure 15 (digitized by smooth dot diffusion) Figure 16

468 Digital Typography

namely (io + S,jo + e) where -3 + |5| < e < 4 - |5|.) Figures 15 and 16

are the corresponding results of smooth error diffusion. The problematic

false contours of Figure 12 have disappeared, but there is a small resid¬

ual effect since each dot has only 32 pixels and can represent only 33

shades of gray. Both algorithms yield images that should make excellent

halftones; at 423 pixels per inch they look like this:

The results of smooth dot diffusion may perhaps be slightly more crisp

than those of ARIES; they are also slightly darker (although, paradoxi¬

cally, Figure 16 appears to be somewhat lighter than Figure 12 on a low

resolution device).

The error made by ARIES is guaranteed to be at most 0.5 in each

dot position, and it should be about 0.25 per dot on the average. Our

sample images include 2943 dots or partial dots; sure enough, the total

error of ARIES was 723.42 in Figure 13 and 721.49 in Figure 14.

In Figures 15 and 16 the values of remained less than 1.0007

throughout the smooth diffusion algorithm. But negative errors tended

to accumulate, reaching a low of —4.555 in Mona Lisa and —3.703 in the

sphere (both in baron positions). The 2835 barons absorbed 2337.15

units of error in Mona Lisa and 977.23 in the sphere, mostly negative

as the algorithm tried to make the image a bit lighter. Altogether 1349

of the barons in Figure 15 were “bad,” and 595 in Figure 16, in each

case absorbing errors that were more negative than -0.5. The 32-cell

neighborhoods also caused substantially more leakage at the boundaries:

2072.49 and a whopping 4150.88. Thus the total amounts of error per

pixel in Figures 15 and 16 came to 0.049 and 0.057, respectively, com¬

pared to 0.008 for ARIES. The boundary errors would, of course, become

negligible in a sufficiently large image.

A generalization of ARIES was suggested by Algie [1], who proposed

a rank function of the form

A[i,j] -ak

where a is a tunable parameter. The ARIES scheme is the special case

a — 1/r; another scheme, called “structured pels” by Pryor, Cinque,

Digital Halftones by Dot Diffusion 469

and Rubenstein [20], is the special case a = 0. If we let a —> oo we get

methods in which each dot is chosen from a fixed repertoire of shapes.

Satisfactory results from such schemes have been obtained by Robert L.

Card [8], who used alternating patterns of half-dots. Another related

algorithm has been described by Anastassiou and Pennington [3].

Printers traditionally distinguish between “halftones” and “line art”;

each is treated differently. But we should not have to make this dis¬

tinction when high-resolution digital typesetting equipment is used. For

example, a photograph might well contain textual information (such as

a picture of a sign); why should that text have to be screened, when

it could be made more legible? Methods like ARIES and smooth dot

diffusion are able to adapt to whatever an image requires.

We could, of course, construct input data for which the output of

smooth dot diffusion will be unsuitable for printing. For example, if each

of the A[z,y] values is already 0 or 1, smooth dot diffusion will simply

set B[i,j] := A[i,j] for all {i,j); we might be faced with values A[i,j]

that are unprintable, like a checkerboard. But we can assume that no

such data will arise in practice. Such noise can be filtered out before the

digitization process begins.

At present the author knows of no method that produces images

of better quality for high-resolution digital phototypesetting than those

produced by the smooth dot diffusion algorithm. However, it is obviously

premature to make extravagant claims for this new method; computa¬

tional experience so far has been very limited. If smooth dot diffusion

lives up to its promise, a hardware implementation — possibly integrated

with a scanning engine — might be an attractive possibility.

Acknowledgments

The referees were extremely helpful in pointing me to literature of which

I was unaware. Their advice led to substantial improvements of the

methods and the exposition in this paper. I also wish to thank B. K. P.

Horn for letting me study the results of his many experiments with

computer-generated halftones.

The preparation of this paper was supported in part by NSF grant CCR-8610181.

References

[1] Stephen H. Algie, “Resolution and tonal continuity in bilevel

printed picture quality,” Computer Vision, Graphics, and Image

Processing 24 (1983), 329-346.

470 Digital Typography

[2] J. P. Allebach, “Visual model-based algorithms for halftoning im¬

ages,” Proceedings of SPIE, the Society of Photo-Optical Instru¬

mentation Engineers 310 (1981), 151-157.

[3] Dimitris Anastassiou and Keith S. Pennington, “Digital halftoning

of images,” IBM Journal Research and Development 26 (1982),

687-697.

[4] B. E. Bayer, “An optimum method for two-level rendition of contin¬

uous-tone pictures,” Conference Record of the IEEE International

Conference on Communications 1 (1973), (26-ll)-(26-15).

[5] C. Billotet-Holfmann and O. Bryngdahl, “On the error diffusion

technique for electronic halftoning,” Proceedings of the Society for

Information Display 24 (1983), 253-258.

[6] J. C. Dalton, Visual model based image halftoning using Markov

random field error diffusion, thesis. University of Delaware (Decem¬

ber 1983). See also J. C. Dalton, G. R. Arce, and J. P. Allebach,

“Error diffusion using random field models,” Proceedings of SPIE,

the International Society for Optical Engineering 432 (1983), 333-

339; John Dalton, “Perception of binary texture and the generation

of stochastic halftone screens,” Proceedings of SPIE, the Interna¬

tional Society for Optical Engineering 2411 (1995), 207-220.

[7] Robert W. Eloyd and Louis Steinberg, “An adaptive algorithm for

spatial greyscale,” Proceedings of the Society for Information Dis¬

play 17 (1976), 75-77. An earlier version appeared in SID 75 Digest

(1975), 36-37.

[8] R. W. Eloyd, Personal communication (21 May 1987).

[9] Robert L. Card, “Digital picture processing techniques for the

publishing industry,” Computer Graphics and Image Processing 5

(1976), 151-171.

[10] Thomas M. Holladay, “An optimum algorithm for halftone gener¬

ation for displays and hard copies,” Proceedings of the Society for

Information Display 21 (1980), 185-192.

[11] J. F. Jarvis and C. S. Roberts, “A new technique for displaying

continuous tone images on a bilevel display,” IEEE Transactions on

Communications COM-24 (1976), 891-898.

[12] J. F. Jarvis, C. N. Judice, and W. H. Ninke, A survey of techniques

for the display of continuous tone pictures on bilevel displays. Com¬

puter Graphics and Image Processing 5 (1976), 13-40.

[13] R. J. Klensch, Dietrich Meyerhofer, and J. J. Walsh, “Electronically

generated halftone pictures,” RCA Review 31 (1970), 517-533.

Digital Halftones by Dot Diffusion 471

[14] Donald E. Knuth, “Fonts for digital halftones,” TUGboat 8 (1987),

135-160. [A revised form of this article appears as Chapter 21 of

the present volume.]

[15] Donald E. Knnth, The Stanford GraphBase (New York: ACM

Press, 1993). Mona Lisa is shown on page 28.

[16] Kurt E. Knuth, James M. Berry, and Gary B. Ollendick, “An inkjet

facsimile recorder,” IEEE Transactions on Industrial Applications

IA-14 (1978), 156-161.

[17] J. O. Limb, “Design of dither waveforms for quantized visual sig¬

nals,” Bell System Technical Journal 48 (1969), 2555-2582.

[18] Bernard Lippel and Marvin Kurland, “The effect of dither on lu¬

minance quantization of pictures,” IEEE Transactions on Commu¬

nication Technology COM-19 (1971), 879-888.

[19] William K. Pratt, Digital Image Processing (New York: Wiley,

1978).

[20] R. W. Pryor, G. M. Cinque, and A. Rubenstein, “Bilevel image

displays — a new approach,” Proceedings of the Society for Infor¬

mation Display 19 (1978), 127-131.

[21] Paul G. Roetling, “Halftone method with edge enhancement and

Moire suppression,” Journal of the Optical Society of America 66

(1976), 985-989.

[22] Paul G. Roetling, “Binary approximation of continuous tone im¬

ages,” Photographic Science and Engineering 21 (1977), 60-65.

[23] M. R. Schroeder, “Images from computers,” IEEE Spectrum 6,3

(March 1969), 66-78. See also Communications of the ACM 12

(1969), 95-101.

■f, y H -v-fit IP

■■■ Jl,’' ' W* ?li ^Sp.

^ ■:.**/■. . •.

•» ■ ■> 1 '■ :• r *' «

-«• » 'V(,,

■; ■

•'if N j ' 1 = .M„

.- ■■ ■ ■* • I

r '■ 'c-i J j. •
i I

r.J*j|..-, :■■ tl

’ • ■> .4 ■.

(•‘P-W

‘**1 -

1 ■*

► • !

.- *v' t ». t'-w
t

*.*4I i , ..f

fJ

s

<1

S » * *

I .rJ

Chapter 23

A note on digitized angles

[Originally published in Electronic Publishing — Origination, Dissemi¬
nation, and Design 3 (1990), 99-104.]

We study the configurations of pixels that occur when two digitized

straight lines meet each other. The exact number of different configura¬

tions is calculated when the lines have rational slopes. This theory helps

to explain the empirically observed phenomenon that the two “halves” of
an arrowhead don’t look the same.

About ten years ago I was supervising the Ph.D. thesis of Christopher

Van Wyk [4], which introduced the IDEAL language for describing pic¬

tures [5]. Two of his example illustrations showed arrows constructed

from straight lines something like this:

When I looked at them, I was sure that there must be a bug either

in IDEAL or in the troff processor that typeset the IDEAL output, be¬

cause the long shafts of the arrows did not properly bisect the angle

made by the two short lines of the arrowheads. The shafts seemed to

be drawn one pixel too high or too low. Chris spent many hours to¬

gether with Brian Kernighan trying to hnd out what was wrong, but

no errors could be pinned down. Eventually his thesis was printed on

a high-resolution phototypesetter, and the problem became much less

noticeable than it had been on the laser-printed proofs. There still was

a glitch, but I decided not to hold up Chris’s graduation for the sake of

a misplaced pixel.
I remembered this incident at the end of 1983, when I was get¬

ting ready to write a new version of the METRFONT system for digital

473

474 Digital Typography

art [3]. I didn’t want my system to have such a flaw. But to my surprise,

I learned that the problem is actually unavoidable in raster output: Dig¬

itized angles can almost never be bisected exactly, except in very special

circumstances. The two “halves” of the angle will necessarily appear

somewhat different from each other, unless the resolution is quite high.

Therefore Van Wyk (and Kernighan) were vindicated. Similar problems

are bound to occur in MacDraw and in any other drawing package.

For example, one of the things I noticed was the following curious

fact. Consider the 45° angle that is made when a straight line segment

of slope 2 comes up to a point {xq, yo) and then goes down along another

line of slope —3:

{xq -h 2t, yo-t) / ^ 3^^)

If we digitize this angular path, the upper contour will take one of five

different shapes, depending on the value of the intersection point (xq, yo))

whose coordinates are not necessarily integers. The possibilities are

Now suppose that this 45° angle provides the left half of an arrow¬

head. The right half of the arrowhead will then be a 45° angle made by
a line of slope —3 meeting a line of slope —1/2:

{xi,yi) ^

(a:i +t,yi- 3t)

For this angle there are, similarly, five possibilities after digitization,
namely

(a:i -h 2u, yi - u)

To complete the arrowhead, we should match the left angle Pi with

an appropriate Qj. But none of the Q's has the same shape as any of

the P’s. And this is the point: Human eyes tend to judge the magnitude

of an angle by its appearance at the tip. By this criterion, some of

these angles appear to be quite a bit larger than others (except at high

A note on digitized angles 475

resolutions). Hence it is not surprising that a correctly drawn angle of

type P would appear to be unequal to a correctly drawn angle of type Q,

even though both angles would really be 45° when drawn with infinite

resolution. (The patterns of white pixels, not black pixels, are the source

of the inconsistency.) Here, for example, are four quite properly digitized

arrows with shafts of increasing thickness;

KXlKKKKWXm

««
KX XX

XXX XX
XX XXX

XXX
XX XX

XXX

5 XXX
xxxxx

xxxxxxxxx
xxxxx xxxxx

xxxxxx xxxxx
XX XXX xxxxx

sr S5S
XXX XXX
XX xxx

XXX XXX
XX xxx

xxx
xxx

xxxxxxxxx
xxxxx xxxxx

xxxxxxx xxXxx
XX xxxx xxxxx

58*
xxx

J5
S5S»

XX
X' x^Xx

IXXXXX
xxxxx

xxxxx

We might also wa.nt to know the probability that the digitized shape

will be of a particular type P^, when the corner point {xo,yo) is chosen

at random in the plane. Is one of the patterns more likely to occur than

the others? The answer is no, when we use the most natural method of

digitization; each P^ will be obtained with probability 1/5. Similarly,

each of the five shapes Qk turns out to be equally likely, as {xi, yi) varies.

The main purpose of this note is to prove that the facts just stated

are special cases of a general phenomenon:

Theorem. When a line of slope a/b meets a line of slope c/d at a point

(xo, yo)) number of different digital shapes it can produce as (xq, yo)

varies is |ad — bc\. Moreover, each of these shapes is equally likely to

occur, if (xo,yo) is chosen uniformly in the plane.

We cLSSume that a/b and c/d are rational numbers in lowest terms. Two

digitized shapes are considered to be equal if they are identical after

translation; rotation and reflection are not allowed.

Before we can prove the theorem, we need to define exactly what

it means to digitize a curve. For this, we follow a general idea that is

explained, for example, in [3, Chapter 24]. We consider the plane to be

tiled with pixels, which are the unit squares whose corners have integer

coordinates. Our goal is to modify a given curve so that it travels entirely

on the boundaries between pixels. If the curve is given in parametric

form by the function z{t) = [x{t),y{t)) as t varies, its digitization is

essentially defined by the formula

round z{t) = (round x{t), round y{t))

as t varies, where round(Q') is the integer nearest a.
We need to be careful, of course, when rounding values that are

halfway between integers, because round(Q;) is undefined in such cases.

476 Digital Typography

Let us assume for convenience that the path z{t) does not go through

any pixel centers; in other words, we will assume that z{t) is never equal

to (m + for integers m and n. (Exact hits on pixel centers

occur with probability zero, so they can be ignored in the theorem we

wish to prove. An infinitesimal shift of the path can be used to avoid

pixel centers in general, therefore avoiding the ambiguities pointed out

in Bresenham’s interesting discussion [1]; but we need not deal with such

complications.) Under this assumption, whenever we have x{t) = m + ^

so that ‘round x{ty is ambiguous, the value of round y{t) = n will be

unambiguous, and we can include the entire line segment from {m,n) to

{m, + l,n) in the digitized path. Similarly, when t reaches a value such

that round x{t) = m but round y{t) = n or n + 1, we include the entire

segment from {m,n) to {m,n + 1). This convention defines the desired

digitized path, round z{t).

When the path z{t) returns to its starting point or begins and ends

at infinity, without intersecting itself, it defines a region in the plane.

The corresponding digitized path, round z{t), also defines a region; and

this digitized region turns out to have a simple characterization, when

we apply standard mathematical conventions about “winding numbers”:

The pixel with corners at (m,n), (m + l,n), {m,n + 1), (m + l,n + 1)

belongs to the digitized region defined by round 2(t) if and only if its

center point {m + + |) belongs to the undigitized region defined

by z{t). (This beautiful property of digital curves is fairly easy to verify

in simple cases, but a rigorous proof is difficult because it relies ulti¬

mately on things like the Jordan Curve Theorem. The necessary details

appear in an appendix to John Hobby’s thesis [2], Theorem A.4.1.)

Now we are ready to begin proving the desired result. The region

defined by an angle at (a;o,yo) with lines of slopes a/h and c/d can be
characterized by the inequalities

a{x- a:o) - h{y - yo) > 0 ; c{x - Xq) - d{y - yo) > 0 .

(We may need to reverse the signs, depending on which of the four

regions defined by two lines through (xo,yo) are assumed to be defined

by the given angular path; this can be done by changing (a, b) to (—a, —b)

and/or (c,d) to (—c, —d).) The stated region contains the pixel with
lower left corner (m, n) if and only if

a{m+^-xo)-b{n+^~yo) > 0; c{m + ^ - xq) - d{n+ ^ - yo) > 0.

We can simplify the notation by combining several constants, letting

a = a{xo - |) - b{yo - i) and /3 = c{xo - |) - d{yo - ^):

am — bn > a; cm — dn> (3 .

A note on digitized angles 477

Let R{a,f3) be the digitized region consisting of all integer pairs (m,n)

satisfying this condition; these are the pixels in the digitized angle cor¬

responding to [xo.yo).

As noted above, it is safe to assume that the pixel centers do not

exactly touch the lines forming the angle; thus we are free to stipulate

that am — bn ^ a and cm — dn ^ (3 for all pairs of integers {m,n).

However, if equality does occur, we might as well define the digitized

region R{a,P) by the general inequalities am —bn > a and cm — dn > f3,

as stated, instead of treating this circumstance as a special case. Notice

that R{a,(3) is equal to [/?]); therefore we can assume that a

and (3 are integers in the following discussion.

Another corner point (xq, y^) will lead to parameters (ck', j3') defining

another region R{a',P') in the same way. The two regions R{a,f3) and

R{a',(3') have the same shape if and only if one is a translation of the

other; i.e., R{a,(3) = R{a',0') if and only if there exist integers {k,l)

such that

{m,n) € R{q:,(3) <t=^ {m — k,n — 1) E R{a',f3').

Our main goal is to prove that the number of distinct region shapes,

according to this notion of equivalence, is exactly \ad — bc\.

Lemma. Let a, (3, a', P' be integers. Then R{a,P) = i?(a',/3') with

respect to slopes a/b and cjd if and only if a — a' = ka — lb and P — 0' =

kc — Id for some integers {k, 1).

Proof. Assume that R{a,P) = R{a',P') with respect to a/b and c/d,

and let {k,l) be the corresponding translation amounts. Thus we have

J am — bn > j a{m — k) — b(n — 1) > oc' ^

\cm-dn>pj \c{m - k) - d{n - 1) > P')

for all integer pairs (m, n). Let a" — a' -\-ka —lb and 0" = 0' Pkc — Id,

so that
J am - bn > j am - bn > a 1

{cm - dn> 0 j {cm - dn > 0" j

for all integers (m, n). This implies that a = a" and 0 = 0". For if, say,

we had a < a", we could find integers m and n such that am — bn — a

and cm-dn> 0, because a and b are relatively prime; this would satisfy

the inequalities on the left but not on the right. (More precisely, we could

use Euclid’s algorithm to find integers a' and 6' such that aa' -bb' = 1.

Then the values (m,n) = (aa' + bx, ab' -1- ax) would satisfy the left

478 Digital Typography

inequalities but not the right, for infinitely many integers x, because

ad — be ^ 0.)

Thus R{a, P) = R{a', /?') implies that a — a' = ka — lb and /? — /?' =

kc — Id. The converse is trivial. □

Let k and I be integers such that a — ka — lb. The lemma tells us

that R{a,P) = R{0,P - kc + ld)\ hence every digitized region R{a,P)

has the same shape as some digitized region R{a',P') in which a' = 0.

It remains to count the inequivalent regions /?(0,/3) when /3 is an

integer. According to the lemma we have i?(0,/3) = 72(0,/5') if and only

if there exist integers (A;, 1) with 0 — ka — lb and P — P' = kc — Id. But

ka = lb a and only \i k = bx and I = ax for some integer x; hence the

condition reduces to P — P' = bxc — axd = x{bc — ad). In other words,

R{0,P) = R{0,P') if and only if /3 — /?' is a multiple of ad — be. The

number of inequivalent regions is therefore \ad — bc\, as claimed.

To complete the proof of the theorem, we must also verify that each

of the equivalence classes is equally likely to be the class of the digitized

angular region, when the intersection point {xQ,yo) is chosen at ran¬

dom in the plane. The notational change from {xo,yo) to (a,/3) maps

equal areas into equal areas; so we want to prove that the equivalence

class of R{a,P) is uniformly distributed among the \ad — bc\ possibili¬

ties, when the real numbers (a,/3) are chosen at random. Choosing real

numbers (a,/3) at random leads to uniformly distributed pairs of inte¬

gers (I'a’l, I"/?]). And if [a] has any fixed value and IP] runs through

all integers, the equivalence class of R{a,P) runs cyclically through all

|ad — 6cI possibilities. □

A close inspection of this proof shows that we can give explicit for¬

mulas for the sets of intersection points (xo,yo) that produce equivalent

shapes. Let D = \ad — bc\ and let Rj denote the shape corresponding to

region 72(0, j) in the proof, where 0 < j < D. Then the digitized angle

will have shape Rj if and only if {xo,yo) lies in the parallelogram whose

corners are (l/2 — bj/D, 1/2 — aj/D) plus

((b-d)/D,(a-c)ID), {~d/D,-clD), (b/D,a/D), (0,0),

or in a parallelogram obtained by shifting this one by integer amounts.

In the special case a/b — 2/1 and c/d — (-3)/l, the shapes Rj

are what we called Pj above; in the special case a/b = 3/(-l) and

c/d = (-l)/2, the Rj are what we called Qj. The shapes that appear

in the digitized angles depend on the values of (xq mod l,yo mod 1) in

A note on digitized angles 479

the unit square, according to the following diagrams:

Notice that the parallelograms “wrap around” modulo 1, each taking up

an area of 1/5. Half of Pj corresponds to half of Qe-ji the other half
corresponds to half of Qr-j.

When the slope of either line forming an angle is irrational, the num¬

ber of possible shapes is infinite (indeed, uncountable). But we can still

study such digitizations by investigating the shape only in the immedi¬

ate neighborhood of the intersection point; after all, those pixels are the

most critical for human perception. For example, exercises 24.7 through

24.9 of The METRFONTbook [3] discuss the proper way to adjust the

vertices of an equilateral triangle so that it will digitize well.

The moral of this story, assuming that stories ought to have a moral,

is probably this: If you want to bisect an angle in such a way that both

halves of the bisected angle are visually equivalent, then the line of bi¬

section should be such that reflections about this line always map pixels

into pixels. Thus, the bisecting line should be horizontal or vertical

or at a 45° diagonal, and it should pass through pixel corners and/or

pixel centers. Furthermore, your line-rendering algorithm should pro¬

duce symmetrical results about the line of reflection (see [1]).

This subject is clearly ripe for a good deal of further investigation.

Acknotvledgments

I wish to thank the referees and the editor for their comments. In

particular, one of the referees suggested the present proof of the theorem;

my original version was much more complicated.

The preparation of this note was supported in part by National Science Foundation

grant CCR-8610181.

480 Digital Typography

References

[1] Jack E. Bresenham, “Ambiguities in incremental line rastering,”

IEEE Computer Graphics and Applications 7, 5 (May 1987), 31-43.

[2] John Douglas Hobby, Digitized Brush Trajectories, Ph.D. thesis,

Stanford University (1985). Published also as Stanford Computer

Science Department report STAN-CS-85-1070 (April 1985).

[3] Donald E. Knuth, The METRFONThook, Volume C of Computers

Typesetting (Reading, Massachusetts: Addison-Wesley and Amer¬

ican Mathematical Society, 1986).

[4] Christopher John Van Wyk, A Language Eor Typesetting Graph¬

ics, Ph.D. thesis, Stanford University, (1980). Published also as

Stanford Computer Science Department report STAN-CS-80-803

(June 1980). The “arrow” illustrations that prompted this research

appear on page 20.

[5] Christopher J. Van Wyk, “A graphics typesetting language,” SIG-

PLAN Notices 16,6 (June 1981), 99-107.

Chapter 24

TEXDR.AFT

This chapter and the next are for readers who share my fascination with

original source documents. None of this material was intended for public

consumption when first written, but we can read it today and get a good

idea about how Tp]X and METRFONT came to exist in the first place.

The best way to establish the context for the genesis of TeX and METR¬

FONT is probably to reproduce several entries from my diary of 1977.

7 Feb. v^l.

Ckjur

Most of my working days during that winter were devoted either to

teaching an introductory class on data structures — 170 students showed

up for the first lecture on January 5, and 80 of them actually did all the

work and passed the course on March 18; or to administrative work —

I chaired the department’s comprehensive exam committee, supervised

research projects in the analysis of algorithms, and served on Stanford’s

Appointments and Promotions committee; or to writing portions of The

Art of Computer Programming — during that period I prepared new

material about bilinear forms for Section 4.6.4 of Volume 2, and new

material about bitwise manipulations for Section 7.1 of Volume 4. But

on February 7, while composing a memo for our department’s next com¬

prehensive exam committee, I looked at preview copies of new textbooks

and had the opportunity to see high-resolution digital typography for the

481

482 Digital Typography

first time. That experience changed my life. Already on February 8 I be¬
gan to talk to colleagues about the possibilities of using such machines
to typeset my own books.

My diary of 1977 says nothing more about typographic matters until
March 30; on that day, however, the die was cast.

30 Mar:
Gulloy ptoo'fi Vflb "2- finjiKy i^ty look rtwfv/ X X
/uux -fo -yul-f. '

I had to devote the month of April to finishing the other projects I had
started. But by the beginning of May I had decided to create a program
called ‘TEX’, and I was gearing up to embark on a new adventure.

S«<.'ViW 7i I \'O0 q.KWi.-— {
2 May:

3 May. 5<u« aif cLm¥cL f9Ce>*^

o\9l Qt/VAA«-A>-

4 May. Jdb "7, (all

lA^a^l Ti/ii lo hjifisAh^

® u(iijw>/F (kd Uij

6 May:

7 May. j^ru^fTViM /tPt

1= *voui?s ^\'fhfoiT~f yy y |h|o

8 May. ^»y. TiroV, TT'll -Id

lAcf' ^ClV|(v^

kl<>W^(oS

TEXDR.AFT 483

10 May. U ^ of •

11 May. \v»Mil<ltv' S*v-h»»a^

^3u^eA "Tff^

12 May: ^ TtTX, .Uy«(f // +^,#AJ >4 /V,^

The draft report I wrote during the first third of May was entitled
TEXDR.AFT, because the computer I was using did not allow a file to be
named TEX.DRAFT. Here is what I typed on the night of May 12 and 13,
mostly as a memo to myself:

Preliminary preliminary description of TEX

D Knuth, Hay 13, 1977

In this memo I will try to explain the TEX system for preparing publishable

documents and how it is proposed to implement the system. Even though I don’t

understand TEX very well myself yet, I think the best way for me to get

started is by trying to explain it to somebody else.

TEX is for technical text. Insiders pronounce the X as a Greek Chi (cf. the

Scottish ‘ch’ sound in ‘Loch Ness’) since the word ‘technical’ stems from a

Greek root meaning art as well as technology. I am preparing the system

primarily for use in publishing my series The Art of Computer Programming—

the initial system will be tuned for my books, but it will not be difficult to

extend it for other purposes if anybody wants to do so.

The input to TEX is a file in say TVeditor format at the Stanford AI lab.

The output is a sequence of pages, produced in "one pass," suitable for

printing on various devices. This report tries to explain how to get from

input to output. The main idea is to consider the process as an operation on

two-dimensional "boxes"; roughly speaking, the input is a long string of

characters culled from a variety of fonts, where each character may be

thought of as occupying a small rectangular box, and the output is obtained

by gluing these boxes together either horizontally or vertically with

various conventions about centering and justification, finally arriving at

big rectangular boxes which are the desired pages. While LISP works with

one-dimensional character strings, TEX works with two-dimensional box patterns;

TEX has both horizontal and vertical ‘cons’ operations. Furthermore, TEX has

another important basic concept of elastic glue between boxes, a type of

mortar that stretches and shrinks at different specified rates so that box

patterns will fit together in flexible ways.

484 Digital Typography

In order to explain TEX more fully, I will alternate between very low-level
descriptions of exactly how the processing takes place and very high-level
descriptions of what you type to get complex effects.

First, at the very lowest level, we must realize that the input to TEX is not
really a string of boxes, it is a file of 7-bit characters. This file is called
an "external input file". The first thing TEX does is convert it to an
"internal input file" by essentially obeying the following rules:

1. Delete the first TVeditor directory page, if it exists.
2. Delete the first line (title line) of every remaining page, and

replace the end-of-page marks (’14) by carriage-returns (’15). Delete all
line-feed symbols (’12). Delete all '/, marks and the sequences of characters
following them up to (but not including) the next carriage-return.

3. Delete all blank spaces following carriage-returns.
4.If two or more carriage returns occur in sequence, replace all

but the first by vertical-tab characters (’13). These are used to specify
end of paragraphs in TEX; in other words, the user specifies end of paragraph
by hitting two carriage returns in a row, or by a page break following a
carriage return.

5.Replace all remaining carriage-returns by blank spaces.
6.If two or more blank spaces occur in a row, replace them by a

single blank space.
7.Add infinitely many } symbols at the right.

The reason for rule 7 is that TEX uses { and } for grouping, and the trailing
}’s will match up with any {’s the user erroneously forgot to match in the
external input file. By following the above rules, TEX obtains an internal
input file containing no carriage-returns, line-feeds. Vs, or form-feeds
(page marks), and with no two blank spaces in a row. Spacing in the
output document is controlled by other features of TEX. (Actually TEX changes
{ and } internally to ’14 and ’15, but this does not affect the user so I
will continue to write this report as if they were { and }.)

Now let’s shift to a high level and show how the user can specify complex
typesetting requirements to TEX. The following example is rather long and
it deserves to be skimmed rather than studied in detail; I devised it
mainly to serve as test data during initial development of the system. It is
taken from the opening pages of my book Seminumerical Algorithms, skipping
over the copy when the typesetting presents no essentially new challenges to
the system. The reader might find it most useful to have the book in hand for
comparison purposes. The line numbers at the left are not part of the TEX
input, they are included only for purposes of cross reference so that I can
refer to line so-and-so later on in this document.

1 ‘/.Example TEX input related to Seminumerical Algorithms using ACPdefs
2 ACPpages starting at page 1{

3 titlepage '/.This tells the page format routine not to put page number at top
4 sectionnumber 3
5 runninglefthead{RANDOM NUMBERS}

TEXDR.AFT 485

6 hexpand 11 pt {fnt cmgll CHAPTER hskip 10 pt THREE}
7 vskip 1 cm plus 30 pt minus 10 pt
8 rjustline {fnt cmgb20 RANDOM NUMBERS}
9 vskip .5 cm plus 1 pc minus 5 pt

10 quoteformat {Anyone who considers arithmetical \cr
11 methods of producing random digits \cr is, of course,
12 in a state of sin. \cr} author {JOHN VON NEUMANN (1951)}
13 quoteformat {Round numbers are always false.}
14 author{SAMUEL JOHNSON (c. 1750)}
15 vskip 1 cm plus 1 pc minus 5 pt
16 sectionnumber 3.1
17 sectionbegin {3.1. INTRODUCTION}
18 runningrighthead {INTRODUCTION}
19 Numbers which are “chosen at random’’ are useful in a wide variety of
20 applications. For example:
21 '/.This blank line specifies end of paragraph
22 yskip '/.This means an extra space between paragraphs
23 textindent{a)}{\sl Simulation.}xskip When a computer is used to simulate natural
24 phenomena, random numbers are required to make things realistic. Simulation
25 covers many fields, from the study of nuclear physics (where particles are
26 subject to random collisions) to systems engineering (where people come into,
27 say, a bank at random intervals). \par
28 yskip textindent{b)}{\sl Sampling.} xskip It is often impractical to examine
29 all cases, but a random sample will provide insight into what constitutes
30 “typical’’ behavior.
31
32 yskip It is not easy to invent a foolproof random-number generator. This fact
33 was convincingly impressed upon the author several years ago, when he attempted
34 to create a fantastically good random-number generator using the following
35 peculiar method:
36
37 yskip yskip noindent {\bf Algorithm K} xskip({\sl “Super-random’’ number
38 generator}), xskip Given a 10-digit decimal number X, this algorithm may be
39 used to change X to the number which should come next in a supposedly random
40 sequence. \par
41 algstep Kl. [Choose number of iterations.]Set SYi-lfloor X/10 sup 9 rfloorS, i.e.,
42 the most significant digit of X. (He will execute steps K2 through K13 $Y+1$
43 times; that is, we will randomize the digits a {\sl random} number of times.)
44
45 algstep KIO. [99999 modify.] If $X<10 sup 5$, set $X<-X sup 2 + 99999$;
46 otherwise set $X •- X - 99999$. xskip blackslug
47
48 boxinsert{ctrline{fnt cmgblO Table 10}
49 ctrline{fnt cm9 A COLOSSAL COINCIDENCE: THE NUMBER 6065038420}
50 ctrline{fnt cm9 IS TRANSFORMED INTO ITSELF BY ALGORITHM K.}
51 blankline 3 pt vskip ruled
52 hjust to 12 pc{blankline vskip 6 pt
53 tabalign{#*quad#®quad$#$\cr
54 Step*ctr{X (after)}\cr

486 Digital Typography

55 vskip 10 pt plus 10 pt minus 5 pt
56 Kl*6065038420\cr K12*1905867781*Y=5\cr
57 vskip 10 pt plus 10 pt minus 5 pt blankline}
58 hskip 3 pc ruled align top
59 hjust to 12 pc{blankline vskip 6 pt
60 tabalign{#*quad #*quad $#$\cr
61 Step®ctr{X (after)}\cr
62 vskip 10 pt plus 10 pt minus 5 pt
63 K10*1620063735\cr Kll*1620063735\cr K12»6065038420»Y=0\cr
64 vskip 10 pt plus 10 pt minus 5 pt blankline}
65 vskip ruled blankline} '/.end of the boxinsert
66 yskip yskip The moral to this story is that {\sl random numbers should not be
67 generated uith a method chosen at random}. Some theory should be used.
68
69 exbegin
70 exno tr 1. [20] Suppose that you wish to obtain a decimal digit at random, not
71 using a computer. Shifting to exercise 16, let $f(x,y)$ be a function such that
72 if $0<x,y<m$, then $0<f(x,y)<m$. The sequence is constructed by selecting
73 $X sub 0$ and $X sub 1$ arbitrarily, and then letting$$
74 X sub{n+l} = f(X sub n, X sub {n-1}) quad for quad n>0.$$
75 What is the maximum period conceivably attainable in this case?
76
77 exno 17. [10] Generalize the situation in the previous exercise so that
78 $X sub {n+l}$ depends on the preceding k values of the sequence.
79 \ff
80 sectionnumber 3.2 sectionbegin{3.2. GENERATING UNIFORM RANDOM NUMBERS}
81 runningrighthead {GENERATING UNIFORM RANDOM NUMBERS}
82 In this section we shall consider methods for generating a sequence of random
83 fractions, i.e., random {\sl real numbers $U sub n$, uniformly distributed
84 between zero and one}. Since a computer can represent a real number with only
85 finite accuracy, we shall actually be generating integers $X sub n$ between
86 zero and some number m; the fraction$$U sub n=X sub n/m eqno 1$$ will
87 then lie between zero and one.
88
89 vskip .4 in plus .2 in minus .2 in

90 sectionnumber 3.2.1 sectionbegin{3.2.1. The Linear Congruential Method}
91 runningrighthead{THE LINEAR CONGRUENTIAL METHOD}
92 By far the most successful random number generators known today are special
93 cases of the following scheme, introduced by D. H. Lehmer in 1948. [See
94 {\sl Annals Harvard Comp. Lab.} {\bf 26} (1951), 141-146.] We choose four
95 “magic numbers ”;$$

96 tabalign{rjust#*quad mathoff # quad*rjust #*ljust #\cr
97 X sub 0,®the starting value;*X sub 0®>0. \cr
98 m,®the modulus;®m®>X sub 0, quad m>a, quad m>c. \cr} eqno 1$$
99 The desired sequence of random numbers $langle X sub n rangle$ is then obtained

100 by setting $$X sub{n+l}=(aX sub n+c)mod m,quad nlO.eqno 2$$This is called
101 a {\sl linear congruential sequence}.
102
103 Let w be the computer’s word size. The following program computes $(aX+c)

TEXDR.AFT 487

104 mod(B+l)$ efficieiitly:$$tabaligii{\it#quad*hjust to 50 pt{\tt#}\cr
105 01*LDAN*X\cr
106 02®HUL*A\cr
107 05*JANN®*+3\cr
108 07®ADD®=H-1= quad blackslug\cr} eqno 2$$
109 {\sl Proof.} xskip He have $x=l+qp sup e$ for some integer q which is not a
110 multiple of p. By the binomial formula$$
111 eqalign{x sup p®=l+{p choose l}qp sup e + cdots +{p choose P'l}q sup
112 {p-l}p sup{(p-l)e}+q sup p p sup {pe}\cr
113 ®=l+qp sup{e+l} big(){l + 1 over p {p choose 2} q p sup e + 1 over p
114 {p choose 3} q sup 2 p sup {2e} + cdots + 1 over p {p choose p} q sup {p-1}
115 p sup {(p-l)e}.\cr$$ By repeated application of Lemma P, we find that$$
116 eqalign{(a sup p sup g - l)/(a-l)®equiv 0'(modulo p sup g), \cr
117 (a sup p sup g - l)/(a-l)®inequiv 0‘(modulo p sup {g+1}). \cr}eqno 6$$
118 If $l<k<p$, $p choose k$ is divisible by p. {biglpren}{\sl Note:} xskip A
119 generalization of this result appears in exercise 3.2.2-ll(a).{bigrpren} By
120 Euler’s theorem (exercise 1.2.4-48), $a sup{varphi(p sup{e-f})} equiv 1'
121 (modulo p sup{e-f}); hence $lambda$ is a divisor of$$
122 lambda(p sub 1 sup e sub 1 Mots p sub t sup e sub t)=lcm paren{lambda(p sub 1
123 sup e sub 1), Mots, lambda(p sub t sup e sub t)}. eqno 9$$
124
125 This algorithm in MIX is simply$$
126 tabalign{hjust to 50 pt{\tt#}®{\tt#}} quad® \cr
127 J6NN®*+2®underline{\it Al.]<0?}\cr
128 STA®Z®quad quad $-'Z$.\cr} eqno 7$$
129 That was on page 26. If we skip to page 49, $Y sub 1 + cdots + Y sub k$ will
130 equal n with probability$$
131 sum over{y sub 1 + cdots + y sub k = n}atop{y sub 1, Mots, y sub k > 0}
132 prod over {l<s<k}
133 {e sup{-np sub s}(np sub s)sup y sub s}over y sub s!
134 ={e sup -n n sup nlover n!.$$
135 This is not hard to express in terms of n-dimensional integrals$$
136 textsize{int from alpha sub n to n dY sub n int from alpha sub{n-l} to
137 Y sub n dY sub{n-l} Mots int from alpha sub 1 to Y sub 2 dY sub 1} over
138 textsize{int from 0 to n dY sub n int from 0 to Y sub n dY sub{n-l} Mots
139 int from 0 to Y sub 2 dY sub 1}, quad {\rm where} quad alpha sub j =
140 max(]-t,0). eqno 24$$
141 This together with (25) implies that$$ def rtn{sqrt n}
142 lim over {n-*inf} s over rtn
143 sum over{rtn s<k<n}{n choose k} big(){k over n - s over rtn} sup k
144 big(){s over rtn + 1 - k over n} sup{n-k-l} = e sup {-2s} sup 2, quad s>0,
145 eqno 27$$ a limiting relationship which appears to be quite difficult to
146 prove directly.
147
148 exbegin exno 17. [HH26] Let t be a fixed real number. For $0<kM$, let$$
149 P sub nk(x)=int from{n-t}to x dx sub n int from{n-l-t} to x sub n dx sub
150 {n-l}Mots int from {k+l-t} to x sub{k+2} dx sub{k+l} int from 0 to
151 X sub {k+1} dx sub k Mots int from 0 to x sub 2 dx sub 1;$$
152 Eq. (24) is equal to$$def sumk{sum over{l<kM}}

488 Digital Typography

153 sumk X prime sub k Y prime sub k big/{sqrt{sumk X prime sub k sup 2}
154 sqrt{sumk Y prime sub k sup 2}}.$$
155 sectioimumber 3.3.3.3 subsectionbegin{3.3.3.3. This subsection doesn’t exist}
156 ruimingrighthead{A BIG MATRIX DISPLAY} Finally, look at page 91.$$
157 del diagdots{raise . by 10 pt hskip 4 pt raise . by 5 pt hskip 4 pt .}
158 eqalign{U®=big(){tabalign{ctr#*ctr#«ctr#*ctr#*ctr#*ctr#»ctr#\cr
159 l\cr*diagdots\cr*«l\cr
160 c sub l®ldots*c sub{k-l}®l®c sub{k+l}®c sub n\cr
161 ®®®»l\cr»®®*®diagdots\cr®®®®®®l\cr}},\cr
162 U sup{-l}®=big(){tabalign{ctr#®ctr#®ctr#®ctr#»ctr#®ctr#®ctr#\cr
163 l\cr®diagdots\cr®*l\cr
164 -c sub l®ldots®-c sub{k-l}®l*-c sub{k+l}®-c sub n\cr
165 ®®®®l\cr®®®®®diagdots\cr®®®*®®l\cr}}$$
166 This ends the test data, fortunately TEX is working fine.}

The first thing that must be emphasized about this example is that it is written
in an extension of TEX, not in the basic language itself. For example, "ACPpages"
in line 2 is a special routine that calls TEX’s basic page-building routine but uses
it to prepare pages in the format of The Art of Computer Programming. The words
titlepage, sectionnumber, runninglefthead, quoteformat, author, sectionbegin,
runningrighthead, xskip, yskip, textindent, algstep, exbegin, exno, and
subsectionbegin are specific to my books and they have been defined in terms of
lower-level TEX primitives as we shall see below. Furthermore most of the fonts
used are embedded in these hidden definitions; for example, "sectionbegin" defines
the 10 point fonts used in the text of a section, while "exbegin" defines the
9 point fonts used in the exercises. Such keywords are chosen so that they do not
match English words, since they can appear intermixed with normal text. For
example, another definition is that the word MIX always is to be set in the
"typewriter type" font; the hidden definition

def MIX|{{\tt \{MIX}}}
causes this to happen automatically in line 125. We shall study TEX’s macro
definition mechanism later; three simple examples appear in lines 141, 152,
and 157 of the sample program, where a common idiom was given a short
definition just to save space. The construction \{string} is used to transmit
a string without interpreting its words according to existing definitions;
this device is used in the above definition of the keyword MIX. For curious
people who want to see a more complex definition, here is the definition of
quoteformat:

def quoteformat #1 author #2 {lineskip 3 pt plus .5 pt minus 1 pt
vskip 6 pt plus 5 pt minus 2 pt
def \rm {fnt cmg8} def \sl {fnt cmgi8}
{\sl tabalign{rjust##\cr #1}}
vskip 6 pt plus 5 pt minus 2 pt \rm rjustline #2
vskip 11 pt plus 5 pt minus 2 pt}

Please don’t expect to understand this mess now, TEX is really very simple;
trust me. The word “author” which appears in this definition is given specicil
interpretation only in the context of quoteformat, otherwise it is treated as
usual; that is why I didn’t use a non-^glish word like “quoteauthor” in
lines 12 and 14 of the example.

TEXDR.AFT 489

The specifications of sectionnumber and runninglefthead in lines 4 and 5 are to
be used in the top lines of pages in the book. Line 6 contains the first actual
text to appear on the page; but look first at line 8, which is simpler:
Line 8 says to use font cmgb20 (namely, "Computer Modern Gothic Bold 20 point",
which I plan to design shortly) for the words RANDOM NUMBERS, and to right-justify
them on the line (rjustline). Line 6 is similar but it uses the 11-point font
cmgll; “hskip 10 pt” stands for 10 points of horizontal space, and
“hexpand 11 pt” means to take the line and stretch it 11 points wider than
it would ordinarily be. Note that font definitions within {...} disappear
outside the braces. So do all other definitions.

It is time to explain TEX’s mechanism for stretching and shrinking

Sizes in TEX can be specified in terms of points, picas, inches, centimeters,
or millimeters, using the abbreviations pt, pc, in, cm, mm respectively;
these abbreviations are meaningful only in contexts where physical lengths
are used, and one of these units must always be supplied in such contexts
even when the length is 0. (One inch equals 6 picas equals 72 points equals
2.54 centimeters equals 25.4 millimeters.) The glue between boxes has three
components:

the fixed component, x
the plus component, y
the minus component, z

The X part is "normal" spacing; when expanding a sequence of boxes to more
than their normal length, as on line 6, each x part in the glue is increased
by some multiple of the y part. When shrinking, each x part is decreased by
some multiple of the corresponding z part.

For example, given four boxes bound together by glue of specifications
(xl,yl,zl), (x2,y2,z2), (x3,y3,z3),

expansion of the line by an amount w is achieved by using the spacing
xl + yl w’, x2 + y2 w’, x3 + y3 w’,

where w’ = w/(yl+y2+y3). The expansion is impossible if w>0 and yl+y2+y3=0.
The system tries hard to minimize bad-looking expansions, by having a
reasonably intelligent justification routine (described below). When
shrinking a line, the maximum amount of contraction is the sum of the z’s, no
tighter fit will be attempted; thus, one should define the z width so that
x-z is the minimum space tolerated. The proper setting of y is such that x+y
is a reasonable spacing but x+3y is about at the threshold of intolerability.
Parameters y and z must be nonnegative, but x may be negative (for backspacing
and overlap) if care is used.

The notation “hskip 10 pt” in line 6 means that x = 10 pt, y = 0, and z = 0
in the horizontal glue between CHAPTER and THREE. If this hskip hadn’t been
used, the normal conventions would have applied. Namely, the glue between
CHAPTER and THREE would have had x equal to the normal spacing for the font,
and y = X, z = x/2. The glue between letters has (say) x = 0, y = 1/10 of the
normal spacing for the font, z = 0; thus the expansion without using hskip
would have gone mostly into the space between CHAPTER and THREE, but by using
hskip as shown the expansion spreads out the individual letters. Fonts to

490 Digital Typography

be used with TEX will have such letter spacing indicated as an additional feature;
TEX will also recognize things like the end of sentences, giving slightly more
white space after punctuation marks where appropriate. Symbols like + and =
conventionally are surrounded by spaces, while spbol pairs like ” and := are
moved closer together; the symbols + and = are not surrounded by spaces when
they appear in subscripts. Such things are taken care of in the same way that
ligatures are handled, by making the fonts a little smarter under TEX’s control,

as described in more detail later.

Much of TEX is symmetrical between horizontal and vertical, although the basic
idea of building lines first rather than columns first is asymmetrically built
in to the standard routines (because of the way we normally write). The
specification “vskip” on line 7 specifies vertical glue analogous to
horizontal glue. When the page justification routine tries to fill the first
page of the example text (by breaking between pages ideally at the end of a
paragraph, or in a place where at least two lines of a paragraph appear on
both pages), this glue will expand or shrink in the vertical dimension using
X = 1 centimeter, y = 30 points, z = 10 points. Further variable glue is
specified in the definition of quoteformat: lineskip is the inter-line spacing,
and the vskips give special additional spacing between quotation and author
lines. In the main text, the printer would refer to the type as "10 on 12",
meaning 10 point type with 12 points between corresponding parts of adjacent
lines; TEX will use a 10 point font with

lineskip 2 pt plus .5 pt minus .25 pt
so that its line spacing is somewhat more flexible. Additional spacing between
paragraphs is given by

parskip 0 pt plus 1 pt minus 0 pt
and there is other spacing between exercises, steps in algorithms, etc. The
definition

def yskip {vskip 3 pt plus 2 pt minus 2 pt}
is used for special vertical spacing, for example in lines 22 and 37. A horizontal
skip

def xskip {hskip 6 pt plus 10 pt minus 3.5 pt}
is used in lines 23, 35, etc. in contexts where a larger than normal space is
psychologically acceptable; for such purposes, flexible glue is especially
useful. A larger horizontal space called "quad” is used for example in line
74; this is "two ems" of space, a unit frequently used in mathematical typesetting.

Another nice feature of flexible glue occurs when you consider the case
def hfill {hskip 0 cm plus 1000 cm minus 0 cm}.

In other words, y is essentially infinite (10 meters long). When this symbol
appears as an hskip at the beginning of a line, it right justifies that line; when
it appears at both the beginning and end, it centers the line; when it appears
in the middle it neatly partitions the line; and so on. These features of
TEX’s variable glue seem to make it superior to existing justification
systems, because it provides new features in a rather simple way and at the
same time reduces the old features to a common pattern.

Once a list of boxes has been justified, all the glue is permanently set and the
overall box becomes rigid. Justification is either horizontal or vertical.

TEXDR.AFT 491

Horizontal justification of long lines includes some automatic hyphenation;
further details about justification appear later in this memo.

No¥ let’s look at more of the example. Lines 21 and 32, etc., are blank lines
indicating the end of a paragraph; another way to specify this is "\par” in
line 27. Line 124 is the end of a paragraph that ends with a displayed formula.
Paragraphs are normally indented; one of the TEX commands subsumed under
"sectionbegin" in line 17 is

parindent 20 pt
which affects the first line of every paragraph unless “noindent” appears
as on line 37. The "sectionbegin" routine also specifies “noindent” on the
very first paragraph of the section, since this is the standard format in
my books. On line 23 we have “textindent{a)}’, which creates a box of
width parindent containing the characters a) followed by a blank space, right
justified in this box.

In line 23 the "\sl" means "use slanted font." I have tentatively decided to
replace italics by a slanted version of the normal "Roman" typeface, for
empahsized words in the text, while variable symbols in math formulas will
still be in italics as usual. I will have to experiment with this, but my
guess is that it will look a lot better, since typical italic fonts do not
tie together into words very beautifully. At any rate I will be distinguishing
slanted from italic, in case it becomes desirable to use two different fonts
for these different purposes. The "\bf" in line 35 stands for boldface. All
these fonts are defined in sectionbegin, whose definition is hidden to you.

Mathematical formulas all appear between $...$ pairs, cf. lines 38 and 41,
or between $$...$$ pairs (displayed equations). A special syntax is used in
formulas, modeled on that of Kernighan and Cherry, Comm. ACM 18 (March 1975),
151-157. For example, “sup 9” in line 41 specifies a superscript 9, “sub
{n+1}” in line 74 specifies a subscript n+1. Keywords like sup and sub are
active only within $’s; the same applies to greek letter names like lambda
(line 122) and varphi ("variant phi", the rounded version of this letter,
which appears in a superscript in line 120), as well as to words like
lim (line 142), max (line 140), 1cm (line 122). All letters in formulas
are set in italics unless they form part of a recognized word or are
surrounded by "mathoff{...}" or "{\rm ...}".

All spacing within formulas is chosen by TEX, independent of spaces actually
typed; the symbol ‘ (cf. line 117) denotes an inserted space, for cases when
TEX’s rules are unsatisfactory. In line 117, for example, extra space is
wanted before "(modulo...)" since space before parentheses is usually omitted
but not here. The later parts of the example text are largely concerned with
complicated formulas, which will appear as shown in the corresponding parts
of volume 2. The code "eqno 24" (cf. line 140) will insert "(24)" at the right
margin, vertically centered on the corresponding displayed formula, if there
is room, otherwise the "(24)" is stuck on a new line at the bottom right.

The algorithm-step-format keyword "algstep" used on lines 41 and 45 is defined

as follows:

492 Digital Typography

def algstep #1. [#2] {vskip 3 pt plus 1 pt minus 1 pt
noindent rjust in 20 pt{#l.} [#2] xskip hangindent 20 pt}

This sets vertical spacing glue before the text for the algorithm step, and it
also set up an appropriate "textindent", etc. The new feature here is the
hanging indent, which affects all but the first line of the following
paragraph.

The keyword "exno" used on lines 70, 77, etc. has a definition somewhat
similar to algstep; such definitions of format that are needed frequently in
my books will help to ensure consistency. The “tr” in line 70 will insert
a triangle in the left margin, using negative glue spacing so that the
character actually appears to the left of the box it is in.

Line 46 begins a "boxinsert", one of the important features needed in page layout.
The box defined within the {...} after boxinsert is set aside and placed on top
of either the present page or the following page (followed by vertical glue
specified by

boxskip 20 pt plus 10 pt minus 5 pt,
this being another thing subsumed by "sectionbegin")■ This is used for figures and
tables, in this case a table. The table caption appears in lines 48-50;
the table itself (cf. page 6 of the book) is rather complicated, so we will
defer explanation of lines 52-65 until after we have studied the simpler example
of tabalign in lines 96-98.

In general, a tabalign command takes the form
tabalign{ ul#vl «... * un#vn \cr

xll ® ... ® xln \cr

xml ® ... ® xmn \cr}
Here the ®’s represent <TAB>’s on the keyboard and in the input file, but they
are shown here explicitly as printed characters to make their appearance plain.
The "\cr" is not a carriage-return, however, it is the sequence of three
characters \, c, r. The meaning is to form the mn boxes

ul{xll}vl ... un{xln}vn

ul{xml}vl ... un{xmn}vn
and, for each k, to determine the maximum width of box uk{xik}vk for i = l,...,m.
Then each uk{xik}vk is hjustified to the size of this maximum width, and each
line xil®...®xin\cr is replaced by the horizontal concatenation of the resulting
boxes, separated by

tabskip 0 pt plus 1 pt minus 0 pt.
If less than n entries appear on any line before the \cr, the remaining entries
are left blank.

In the example of tabalign on lines 96-98 we have n=4; the first column is to be
right justified, the second is to be treated as "mathoff" and surrounded by quad
spaces, the third again is right justified, the fourth is simply left-justified.
The result is shown on page 9 of the book, although with TEX the formula number
"(1)" will be centered. Note: Eventually 1 will put in an "omittab" feature which
will allow portions of a line to span several columns when desired.

TEXDR.AFT 493

Now let’s look at lines 52-65 and compare with Table 1 on page 6 of the book.
A box of width 12 picas is built up using tabalign, and placed beside another
such box. The words "ruled" modifying vskip or hskip mean that the glue between
boxes also appears with a horizontal or vertical ruled line in its center.

The “eqali^” feature (cf. lines 111, 116) is used to line up operators in
different displayed formulas. Actually this is simply a special case of
tabalign:

def eqalign #1 {tabalign{rjust##*ljust##\cr #1}}.
Note that line 113 begins with <TAB>.

The “big(){...}” in lines 113, 143, etc. and the “big/{...}” in line 152
is used to choose suitably large versions of parentheses and slashes, forming
“(...)” and respectively; the size of the symbols is determined
by the height of the enclosed formula box. This type of operation is available
for [], <>, II, and left and right braces signified by \[and \]. TEX will
provide the best size available in its repertoire. Parentheses, brackets,
braces, and vertical lines will be made in arbitrarily large sizes, but slashes
will not, at least not in this year’s TEX. Some very large parentheses will be
generated for the big matrices in lines 158ff.

The “biglpren” and "bigrpren” on lines 118-119 are not really so big,
they are simply 12-point parentheses instead of 10-point ones, used to set
off the enclosed normal-size parentheses in the text’s "(a)".

The summation signs produced by “sum over...’’ in lines 131, 143, will be
large, since these summations occur in displayed formulas; but between $...$
a smaller sign will be used and the quantity summed over will be attached
as a subscript. Similarly, the size of an integral sign will change, and
fractions “...over...’’ do too, as does the binomial coefficient
(cf. "$p choose k$" in line 118). The keyword “textsize’’ in lines 136 and
138 says to use smaller integral signs in this formula even though it is
displayed.

The \ff in line 79 means to eject a page (top justified) before continuing.
This again is part of the format of my books, a major section always should
begin on a new page.

I think the above comments on the example give the flavor of TEX. The example
was intended to show a variety of changing constructions of unusual complexity;
in general, most of a book will be comparatively routine, and it is only the
occasional formula or table which proves intricate. Such intricacies were
purposely emphasized in the example.

The next step in understanding TEX is to go back to the low level and see
what happens to an internal input file as it is being read in. What happens is
that it is massaged once again, converted to a sequence of "tokens", which are
either single characters or words. In general, adjacent letters and digits are
grouped together to form words; also periods and commas immediately followed
by digits are treated as letters, as are \ signs that are not preceded by

494 Digital Typography-

letters or digits. More precisely, the following finite-state machine
defines the token-building process.

State 0. Let X be the next character of the internal input file.
If X is \ or one of the 52 letters or 10 digits, set w-x and go to state 1.
If X is period or comma, set y-x, set w-null, go to state 2.
Otherwise output x as the next token.

State 1. Let X be the next character of the internal input file.
If X is a letter or digit, set w-w&x (w followed by x).
If X is period or comma, set y-x and go to state 2.
If X is \, output w as the next token, set w»-x.
Otherwise output w as the next token, then output x as the next token,

and go to state 0.
State 2. Let X be the next character of the internal input file.
If X is a digit, set w-w&y&x, go to state 1.
Otherwise if w is nonempty, output w as the next token; then output y
as the next token; then go to state 0 but without resetting x at the
beginning of the instructions for that state.

For example, the sequence
Abc\de 5,000 plus-or-minus “2.5 \per cent” are ... here,

would be transformed into a sequence of 28 tokens:
Abe \de <space> 5,000 <space> plus - or -

minus <space> ‘ ‘ 2.5 \per <space> cent ’ ’
<space> are <space> . . . <space> here

TEX works on sequences of tokens. If a token has been defined (using “def”), a
<space> before this token is removed. The remaining portion of the definition is
plugged in; the same process is repeated on the resulting sequence of tokens.
Definitions disappear after the } or $ or $$ which closes the group they are in;
they also are inoperative between \{ and its matching }. If the keyword MIX
had been defined as

def HIX{{\tt MIX}}
instead of

def MIX{{\tt\{MIX}}},
TEX would have looped endlessly while emitting {\tt {\tt {\tt {\tt

By now the reader will probably understand everything or nothing about the
definition process; but anyway I will try to spell out its rules more carefully.
One writes in general

def token stringO #1 stringl #2 string2 ... #k stringk {right-hand side}
where "token" is any token except { or }, and where stringO ... stringk are
strings of zero or more tokens not including { or } or # or |; spaces are
ignored in these strings. I am describing the general case; the above definition
of MIX is the simplest case of the general form, where k is zero and stringO is
empty.

When the defined token is recognized, a matching process ensues until the
left-hand side is completely matched: tokens in stringO...stringk must match
exactly with corresponding tokens of the input text (removing all spaces),
with error messages if a failure to match occurs. The #]’s are matched to
tokens or to {...} groups. No expansion is done on the {...} groups, they are

TEXDR.AFT 495

merely treated as an uninterrupted sequence of tokens. There is at most one
definition active per token at any time. Once the matching process is
complete, TEX will have found the ingredients to be substituted for #1 through
#k in the right-hand side. These are simply copied into the positions
occupied by #1 ... #k in the right-hand sequence. And one further change is
made: the first # is removed from any sequence of two or more #’s. This is
done so that definitions can be made in the right-hand side without causing
confusion with the current definition.

For example, consider what happens when the following definition is active:
def A #1 B C {def E ##!{##! #1 #1}}.

If the internal input file contains
A {X-y} BCD

the resulting sequence after expanding the definition will be
def E #1{#1{X-Y}{X-Y}} D

(note the spacing).

If the character I appears just before the { which introduces the right-hand
side of a definition, the space if any after the last token matched will
be preserved. Thus, in the above example if we had written

def A #1 B CKdef E ##!{##! #1 #1}}
the result would have been

def E #1{#1{X-Y}{X-Y}}D.
This feature was used in our definition of MIX on a previous page, because
it will preserve the space that comes after MIX in mid-sentence; on the
other hand, most definitions (for example, xskip) would not use this feature.

The above is not the most general sort of macro definition facility, but I
have applied Occam’s razor. A much more general capability is available via
TEX "routines" which are explained later; routines are for the more
expreienced users. The reader should now be able to look back at the
definitions given above for quoteformat, algstep, and eqalign, discovering
that they are really quite simple after all.

Some tokens are not defined as macros but stand for actions to be carried out.
For example, "fnt" means means the following non-space token is to be the name
of the current font of type, and "def" means that TEX is supposed to absorb
a new definition. Thus we have four mutually exclusive sorts of tokens:

defined tokens
action tokens
{ and }
other tokens.

The { and } denote grouping and separate levels of context; definitions and
assignment actions made inside {...} do not have any effect outside.

Assignment actions affect TEX's transformation of the input. They are:
fnt token to change the current font
hsize length normal width of generated lines of text
vsize length normal height of generated pages of text
hmargin length distance from left edge of paper to generated lines

496 Digital Typography

vmargin length

lineskip glue

parskip glue

dispskip glue

boxskip glue

noteskip glue

tabskip glue

parindent length

distance from top edge of paper to generated pages

spacing between generated lines

additional spacing between paragraphs (added to lineskip)

additional spacing above and below displayed formulas

additional spacing below an inserted box

additional spacing above footnotes

horizontal spacing between tabaligned columns

indentation on first line of paragraphs

hangindent length indentation on all but first line of paragraph

(hangindent reset to zero after every paragraph)

All of these quantities will have default values, which I will choose after

TEX is up and running; the default values will apply whenever a quantity has

not been respecified. In the above, "length” is of the form

token unit or - token unit

where the token is a digit string or a digit string containing a period (decimal

point), and where "unit” is either pt, pc, in, cm, or mm. Furthermore "glue”

is of the form

length plus length minus length

where the plus and minus parts cannot be negative; any of the three lengths

can be omitted if zero.

For example, standard XGP conventions at the moment are to produce 8 1/2 by 11

inch pages with one-inch margins and interline spacing of 4 pixels; this would

be specified by

hsize 6.5 in vsize 9 in hmargin 1 in vmargin 1 in lineskip .02 in

At the outermost level, TEX has implicitly preceded the input by "TEXpublish{",

where TEXpublish is a routine that repeatedly calls on the page-builder, the

page-builder is a routine that repeatedly calls on the paragraph-builder,

and the paragraph-builder is a routine that reads the input and emits strings

of justified lines of text. TEXpublish simply prints each page that it gets;

our example text input substitutes the more sophisticated routine ACPpages for

TEXpublish.

In the first implementation of TEX, routines like ACPpages will be written in

SAIL code and loaded with TEX. I have had some notion of adding an interpretive

system to TEX and a mini-programming language so that such extensions are

easier to make without penetrating into TEX’s innards, but on second thought

it seems much better to assume that TEX’s code will be sufficiently clean

that it will best be extended using SAIL code. This will save the implementors

considerable time and make the system run faster.

Let’s continue the outside-in approach by sketching the SAIL code for ACPpages.

Remember that this is not basic TEX, but the code resembles the internal program

of TEX. It is at the moment only an initial approximation to the real SAIL

code, since I will have to think more about how TEX will look inside before I
can be more specific.

if scanC'starting") then

begin scanreqdC'at"); scanreqdC'page"); spage<-nextnonspacetoken;
end else spage<-"l";

TEXDR.AFT 497

{Here "scan" is a TEX routine which looks at the next nonspace token from the

input; if it equals the specified token, scan returns true and discards the

token, otherwise the current input token is not passed over and false is

returned. The routine "scanreqd" is similar, but instead of returning false

it will produce an error message like "Syntax error, I will insert missing #".

The net result of the above code is to set spage to the string representing the

specified starting page, or by default to set it to "1".}

if spage = "r" then

begin rnumeral'-true; lop (spage);

end;

pagenot-intscanCspage, brchar);

{Roman numeral page numbers are indicated by rl, r2, etc. Now pageno is the integer

number of the desired first page and rnumeral is true if and only if roman numeral

page numbers are desired.}

scanreqd(leftbrace);

put_on_stack_something_to_make_matching_right_brace_end_the_input;

while true do

begin cpage^-nextpage;

if not cpage then done;

{Here cpage is a pointer to a box or the null record pointer when the input has

terminated.}

if rnumeral then spage'-cvrom{pageno) else spage<-cvs(pageno);

if omithead then {this would be set by "titlepage" routine}

begin omithead'-false;

output_cpage_with_blanks_for_top.headline_and_with_spage_in_

9_point_type.centered_as_a_new_line_at_the_bottom;

end

else begin if pageno land 1 then {right-hand page}

begin texta<-the_running_right_head;

textb'-attr(sectno,cpage);

{texta and textb are record pointers to sequences of tokens; "attr" gets the

sectno attribute of box cpage, as explained below}
line'-pointer_to_box_which_TEX_would_make_from_the.input

"{textb} hfill {texta} rjust to .375 in {spage}"

end else

begin texta*-the_mnning_left_head;

textbi-attr (sectno, first (cpage));

line«-pointer_to_box_which_TEX_would_make.from_the_input

"ljust to .375 in {spage} texta hfill textb"

end;
place.line_above_cpage_with,14_pt_glue_and_output_the_result;

end;

pagenot-pageno+l;

end;
{In other words, odd-numbered pages get the sectionnumber attribute of cpage

and the running right headline followed by a right-justified page number, as

the title line; even-number pages get a left-justified page number followed by

the running left headline followed by the sectionnumber attribute of the first

component of cpage. Note that the section number is supposed to represent the

top of a left-hand page but the bottom of a right-hand page.}

498 Digital Typography

The above example indicates that we need to discuss another basic feature of TEX,

namely the "attributes" which can be attached to its boxes. One such attribute is

the section number; another is the height, another is the width; still others,

used in math formulas, are the amounts of space available inside the box, if any,

that may be used to attach subscripts and superscripts. For each attribute, two

routines are supplied, explaining how to produce the attribute of a box formed

from two boxes placed together horizontally or vertically. For example, the

height attribute is replaced by max(hl,h2) when two boxes are joined horizontally

but by hl+h2 when they are joined vertically. The section-number attribute is

si if s2 is null, otherwise it is s2; and so on.

Now let’s consider the page-building routine "nextpage"; this gives us a chance

to study the process TEX uses for vertical justification, which introduces some of

the concepts we will need in the more complicated routine used for horizontal

justification.

The first idea is the concept of "badness." This is a number computed on the

basis of the amount of stretching or shrinking necessary when setting the glue.

Suppose we have a list of n boxes (either a horizontal list or a vertical list),

separated by n-1 specifications of glue. Let w be the desired total length

of the list (i.e., the desired width or height, depending on which dimension we

are justifying); let x be the actual total length of boxes and glue; and let

y,z be the total amount of glue parameters for expansion and contraction. The

badness of this situation is defined to be

infinite, ifx>w-z + e, where 6 is a small tolerance to compensate

for floating-point rounding;

100((x-w)/z)‘3, ifw-z+6>x>w;

0, if X = w;

100((w-x)/3y)‘3, if w > x;

plus penalties charged for breaking lines in comparatively undesirable places.

According to these formulas, stretching by y has a badness rating of 100/27,

or about 3.7; stretching by 2y is rated about 30; stretching by 3y is rated

100 units of badness, and so is shrinking by the maximum amount z. 1 plan to

charge a penalty of something like 80 units for breaking a paragraph or

displayed formula in such a way that only one line comes by itself on a page;

thus, for instance, a five-line paragraph gets a penalty of 80 if we break

after the first or fourth line, but no penalty if we break after two or three

lines. 1 will of course be tuning these formulas to make them correspond as

well as I can to my aesthetic perceptions of bad layout. The user will be

able to specify his own additional penalty points for undesirable breaking

between specific lines (e.g. in a MIX program to break before an instruction

that refers to *-l). A penalty is also made for break at "ruled" vertical glue.

The nextpage routine forms a list of lines (and the connecting vertical glue)

which it receives from the nextparagraph routine; the nextparagraph routine

returns a sequence gl hi ... gk hk alternating between vertical glue and boxes

representing horizontally justified lines of text. The individual h’s are

not broken up or examined by nextpage, except to look at their attributes.

Also \ff and end-of-input codes will be transmitted by nextparagraph to the
nextpage routine.

TEXDR.AFT 499

The nextpage routine accumulates lines until its previous accumulation plus
the new paragraph is greater than or equal to the specified page height, vsize.
Then it breaks the ne« paragraph just after the jth line, for 0<j<k, whichever
value of j has the minimum badness; if this minimum occurs for more than one
j, the largest such j is used. Then the glue g(j+l) is discarded, and the
remaining k-j lines are carried over to the next page. (They are immediately
checked to ensure that they don’t already overfill the new page, and they are
broken in the same way if necessary.)

A boxinsert interrupts this otherwise straightforward procedure. The box to
be inserted is computed, off to the side, and then an attempt is made to place
it over the current accumulated page. If it fits, well and good, we leave it
there. If not, it is carried over to the next page, and placed in front of any
carryover from the present page. Additional box-inserts are inserted below
the first one, in a natural but hard-to-explain manner.

Footnotes:! have used footnotes only three times in over 2000 pages of The Art of
Computer Programming, and personally I believe they should usually be avoided, so
I am not planning an elaborate footnoting mechanism (e.g. to break long footnotes
between pages or to mark the first footnote per page with an asterisk and the
second with a dagger, etc.). They can otherwise be satisfactorily handled by
attaching a footnote attribute to any line referring to a footnote, and by
requiring the nextpage routine to put the footnote on the page containing that
line. This, together with the badness ratings, will solve the problem about
footnote references on the bottom line preempting the space needed for the
footnote itself, etc. A user will be able to get fancier footnotes if he doesn’t
mind rewriting a few of TEX’s routines.

On \ff or end-of-input, the nextpage routine simulates "vfill blankline" and
clears its page buffers, unless they were already empty. After end-of-input it
returns a null page, to signal the end of its activity; after \ff it asks
nextparagraph for more.

The nextparagraph routine assembles lines of width hsize, pausing to
transmit them

a) at end of paragraph (’13);
b) at beginning of display formula ($$);
c) at end of display formula ($$);
d) just before vskip operation;
e) just before and after blankline, ctrline, ljustline, rjustline, hjustline;
f) at \ff or end-of-input.

The operations in (e) produce independent lines of width hsize that are not
part of a paragraph, and such lines are merely transmitted without change.
Display formulas are also passed without change, except that appropriate glue
is attached above and below them. (The glue above a displayed equation is
reduced from dispskip to lineskip if the text on the preceding line does not
overhang the displayed formula after centering.)

The text of a paragraph, or of the portion of a paragraph beginning and/or ending
at $$, is indented (if appropriate) and passed to the hjust routine. The hjust

500 Digital Typography

routine attempts to break the text into lines of length hsize in the least bad
way, taking proper account of hangindent. The "least bad" way is a way which
minimizes the maximum badness of any of the breaks made. At this point in the
process, the text consists of a possibly long sequence of boxes, separated by
glue, and these boxes will not be changed by the hjust routine. The hjust
routine has a new feature which makes it superior to existing justification
systems, besides the idea of variable-weight glue, namely it effectively "looks
ahead" so that the situation in the later lines of a paragraph can influence
the breaks in the earlier lines. 1 have noticed quite a few places where such
a justification routine will provide substantially better output. This
lookahead is accomplished by applying the principles of "dynamic programming,"
as I will try to explain below.

First let’s understand what the boxes processed by hjust usually look like. They
might be large complicated boxes, which are to be treated as black boxes
essentially as the nextpage routine treats its lines; but mostly the individual
boxes at this point will be individual letters from one or more fonts. When
a text token comes along, the current font indicator is attached to it (so that
the 7-bit code becomes a 12-bit code), and the token is broken into its
individual characters. Pairs of adjacent characters are examined, from left
to right, using tables associated with the font; this is used to compute
changes in the glue between characters, and to produce ligatures if they are
present, etc. For example, on most fonts the sequence “ will want to have
specially narrow glue between the two characters. He get ligatures by
replacing

f f by <ff>
f i by <fi>
f 1 by <fl>

<ff> i by <ffi>
<ff> 1 by <ffl>.

Such ligature formation and glue adjustment takes place when the character boxes
are being appended to the current line, before hyphenation etc.; this means that
we lose the chance to break "shuffling" into "shuff-ling", but so what.

The <space> token is changed into glue between boxes, with y=x and z=x/2 as
explained earlier. The hskip and quad actions also produce variable glue. Whenever
this glue has x or y greater than or equal to the spacing width of the current
font, it is an acceptable place to bre^ the line with no penalty. Another
acceptable place is after an explicit hyphen. (Some hskips, used for backspacing,
have negative x; they are, of course, unacceptable breaks.) TEX will give double
y glue to the first space that follows a period, exclamation point, question mark,
or colon, unless letters or digits intervene before this space. A semicolon and
comma are treated similarly, but with 1.5 and 1.25 as the relative amounts of
y glue.

The math formula routine which processes $...$ will yield a sequence of boxes in
format compatible with the text strings outside of formulas; acceptable places
to break in formulas will be marked just after binary operators and relations.
A penalty is attached to such breaks; I will have to tune the parameters, but the
following idea appears to be best: Relations like =, f, =, etc. have only a small

TEXDR.AFT 501

penalty, operations like +, x, / have a larger penalty, with - larger than
the others. Superscripts and subscripts and function arguments and the like will
be attached unbreakably to their boxes.

There are three "discretionary" symbols used to provide or inhibit breaks:
\- OK to hyphenate this word here;
\+ do not hyphenate here;
* OK to break here, but insert a times sign not a hyphen.

The last of these would be used in a long product like $(n+l)*(n+2)\^^(n+3)*(n+4)$.

Besides using the permissible breaks, TEX will try to hyphenate words.
It will do this only in a sequence of lower-case letters that is preceded and
followed by anything other than a letter, digit, -, \-, or \+. Note that,
for example, already-hyphenated compound words will not be broken. If a
permissible hyphenation break is discovered, a penalty of say 30 units of badness
will be paid, but this may be better than not hyphenating at all. An additional
20 units of badness is charged for breaking a word or formula in the last
line of a paragraph.

There is no point in finding all possible places to hyphenate. For one thing,
the problem is extremely difficult, since e.g. the word "record" is supposed to
be broken as "rec-ord" when it is a noun but "re-cord" when it is a verb.
Consider the word "hyphenation" itself, which is rather an exception:

hy-phen-a-tion vs. co-or-di-na-tion
i(hy does the n go with the a in one case and not the other? Starting at letter
a in the dictionary and trying to find rigorous rules for hyphenation without
much knowledge, we come up against a-part vs. ap-er-ture, aph-o-rism vs. a-pha-sia,
etc. It becomes clear that what we want is not an accurate but ponderously slow
routine that consumes a lot of memory space and processing time, instead we want
a set of hyphenation rules that are

a) simple;
b) almost always safe;
c) powerful enough to find say 80'/, of the words already hyphenated in

The Art of Computer Programming.
To justify point (c), I find that there are about 2 hyphenated words per page
in the books, and the places where the rules I shall propose do not find the
identical hyphenation only very rarely would cause a really bad break. The
time needed to handle the remaining exceptions is therefore insignificant by
comparison with what I already do when proof-reading.

So here are the rules I came up with.
1. Consider only breaks in which both parts contain a vowel other than final e.
(Vowels are a,e,i,o,u,y.)
2. Subject to 1, break before the following "safe" suffixes:
-cious -gion -ly -ment -mial -nary -ness -nomial -sion -tion -ture -vious
and also -tive preceded by a vowel, -ed preceded by d or t.
Break before -ing except in -bling -pling or when preceded by a double letter
other than 11 or ss or zz; for other double letters, break between them.
If the word ends in s or ly, strip off this ending and apply these rules again.
Suffixes recognized by this rule must not be further broken except vi-ous.

502 Digital Typography

3. Subject to 1 and 2, break after the following "safe" prefixes:
algo- equi- ex- hyper- ini- intro- lex- lexi- math- mathe- max- maxi- mini- multi-
out- over- pseudo- semi- some- sub- super- there- under-
Also be- followed by c,h,s,w; dis- followed by anything but h,y; trans- followed
by a,f,g,l,m; tri- followed by a,f,p,u.
4. Subject to 1 and 2, combine an h with the previous letter if it is a consonant,
treating the combination as a consonant; then it’s OK to break between the two
consonants in the pattern vc-cv except when the pair of consonants is

bl ck cl cr dr ght gl gr Ik 11 nd ng pi rch rd rm rt sch sp ss st thr zz
(I may have to revise this list.)

There will be rare exceptions (e.g., equivocate, minister, somersault, triphammer),
but these will be so infrequent as to be unimportant. Looking through quite a few
pages of volume 3, 1 found 48 hyphenations, and the above rules were satisfactory
except in the three cases

de-gree hap-hazard re-placement.
Of course, these rules are biased toward my vocabulary and subject matter, but a
few extensions should make it work well enough for nearly everybody.

Now for the dynamic programming algorithm which minimizes the maximum badness of
breaks. The badness formula is the same as before; thus for each break after a given
point we can compute the resulting badness. In this way, for each permissible
break position, we will minimize the maximum badness that can occur counting this
and previous breaks. The running time will be approximately linear in the
number of possible breaks.

However, this will be rather slow since it tries breaking all words when in practice
only a few candidate words really need to be considered. Thus the following
approximate method should run about ten times faster: Given the best three ways to
break the kth line, use these to find the best three ways to break the (k+l)st
line. The breaks found will almost certainly be optimum unless the situation
is very bad anyway.

To conclude this memo, I should explain how TEX is going to work on
math formulas. However, 1 will have to sketch out the code in more detail
and it is only fuzzy in my mind at the moment. Hy plan is to use the
top-down precedence parsing approach introduced by Vaughan Pratt in his
1973 POPL paper, and used so successfully by him in CGOL (for example).
Further details will be forthcoming; I hope to do the box pasting in
one pass, but it may be necessary to build the parse tree first as
Kernighan and Cherry do.

(end of the file TEXDR.AFT)

TEXDR.AFT 503

15 May. i{ ,

16 May. yUt»*y

f^flh |-u/et/^ <^ent/U. aUvJt-

^1^0 on ' B fi'dJllikj "

Wt«4i«> Itcht/t. X IPf^ of' -f/W^

ft^looL J^lflvs Vy

18 May: / •gO v»lf (fer

■9ct.k.-LeJ jf) to^vTMKi ■fi/w'f (y^^tO^srJrW

(),'nw.r ^ ShL'd. hJ

19 May:
bin

1

sfi'oi^Sj cM^ /caaAV Ca.pe. _ (3^ ''^(^L

Vd loi*('/^(•Cwfj

^ MtVC \>iM(i/i\^ ^ cV S' a..v« (u/ rzvyA of jf. c, n.c,

21 May: _ . t J

f^cki c*\ sTP^tUt^ jtryfa^
,__ . /> */.• * /

22

^m^vumo ■fiw' j^(^ih'<^

S^V/^ fty^ **I<«</)C. /IKAm Ail^/^

^ 6U»f*l/t/. l/v/t yo fo ^9ijut(Jc ((h cdnyuC.

Q^ -^IjL t^i^t^tuih'cS

(aa1“ o'f^ (sf^'^L of ro^/ '

lA/^cf io ^vus ^ W^-Kjo/^ ^ Uly^'^'L)

14 Jun: r « /
J^v*^< cfe U«n)n^

r(»*N (t«fo Snaj

504 Digital Typography

15 Jun:

16 Jun;

17 Jun:

18 Jun:

19 Jun:

20 Jun:

21 Jun;

^l(■fc o/eW ^

folw^iW ((Saji' UoM'h'f^ ,

M /<r

(r.t"u(d'’ .f kih^ ^

Sii. I

it) U/ «t '{

Mm(s 6fvu/('<>^ «fW*«<A^fs ifo

ytUlf/C /ZlOH,

' (vvf'f" fi^^ra

>A<i^ wJifHni 4'nvt»v»tvi/> Cfln'Wo, C^J. lop

;^kHW ch^Y^ aA sf>hi Mfo ^o^ilr

4 P»-/^

[pvA^ {>ilcL {^1/ ■^i/T ei^ Q^o^ly. yA hks.

P/t>iy«Jl 1y7‘'»jjfe ' ToU^ a«^ TJ&***y

G>v*Uf»Ai^(s. <uA<L^ Jlfi/y. ~C4lA- "h Cyl<L »L^ yli/iLi

ituyt/{jCt ify Co/vIsS 4»t/4p/

"TAao^ VAAv/boiy ^ Ya-v'.

s»««Alltv y\^A^p<. y^jo/v/ftW* ttA/tA.

"li^xjifi * ffy.

S«Jh ‘*|> CA«*»M*a. |K l»(i IviAf

Chapter 25

TEX.ONE

When we left our hero at the end of Chapter 24, he was wrestling in¬

tensely with the problem of font generation by computational methods,

having more-or-less disposed of the typesetting problem with his memo

TEXDR. AFT. He had circulated that memo to several colleagues in May;

now July was approaching, and so was a month-long trip to Southeast

Asia. It was time to revise the draft of 13 May so that research assistants

Michael Plass and Frank Liang could prepare a prototype implementation

while he was away.

30 Jufi:

1 Jul:

^ ^7 fUuUtk

/ucctsi <V1 ess H. krs.cAoMl^^^s (^\'lO 0^

M £»<» wOt. fej U.'ter.

(5tff iWs W

^ XII twovials

"fo ^ l/Jir'H'
VA/«4-C^i(Jl a-t w'A.UKh^

A ch^ oX rujJiJ tfSt ^

^ sin^ ItsM, tAo^ 9iU«^ JaU -fi*/

505

506 Digital Typography

6 Jul:
•Gvw*il®i ff/f

p/'y rft' lAlra^ tK^rsioi^j ^••'hnihiy

cT J S J^'ht sV>vc^^$ spitJ^^',

t^Snsi^v^ Cv«^ Itty>^»ffi<. y<f c/' Jtropf'

^ vJU si0ffi^ 'f^ll

vi^'hv^

Fioolui v*a^4»^ wj> ^ '^'f ^ lol’ ^

fl^i/js i^- Isfilf Lstf^ til 5^ ^A*vui^ If'h

CiW'

rw«/ oyvfiift'tJimfs— ncT tjf, ach^lly, t>M> *»<'♦t.tu

iJ^su^ ti> i**)'k. tfW«*^ IklftW" 'fo »i£4<‘-'7Je^

12 Jul: Mi'bL«*t/ +o JUsCM!s filkusf -fi^ 'TlT^ /t»^/»«»n'ti9'h«n.

(r<jt/'M T^.O^Jc Jrt^

Here then is the file TEX. ONE:

Preliminary description of TEX D Knuth, July 12, 1977

In this memo I will try to explain the proposed TEX system for preparing
publishable documents. Some of its rules are still undergoing change, but
for the most part this memo defines the system being implemented, for the
benefit of the implementors. [Note: If you already have read the preliminary
version of this preliminary description, please forget everything that was
in that document and try to forget that it ever existed. Major changes have
occurred, based on the valuable feedback received after circulating that
document, so now let’s move on to the real thing.]

TEX is for technical text. Insiders pronounce the X as a Greek Chi (cf. the
Scottish ‘ch’ sound in ‘Loch Ness’) since the word ‘technical’ stems from a
Greek root meaning art as well as technology. I am preparing the system
primarily for use in publishing my series The Art of Computer Programming—
the initial system will be tuned for my books, but it will not be difficult to
extend it for other purposes if anybody wants to do so.

TEX.ONE 507

The input to TEX is a file in say TVeditor format at the Stanford AI lab.

The output is a sequence of pages, produced in "one pass," suitable for

printing on various devices. This report tries to explain how to get from

input to output. The main idea is to consider the process as an operation on

two-dimensional "boxes"; roughly speaking, the input is a long string of

characters culled from a variety of fonts, where each character may be

thought of as occupying a small rectangular box, and the output is obtained

by gluing these boxes together either horizontally or vertically with

various conventions about centering and justification, finally arriving at

big rectangular boxes which are the desired pages. While LISP works with

one-dimensional character strings, TEX works with two-dimensional box patterns;

TEX has both horizontal and vertical ‘cons’ operations. Furthermore, TEX has

another important basic concept of elastic glue between boxes, a type of

mortar that stretches and shrinks at different specified rates so that box

patterns will fit together in flexible ways. (I should really use the word

"mortar" instead of "glue" throughout this document; the only trouble is,

the extra syllable makes mortar harder to pronounce, and it takes longer

to type the word besides. Maybe the user’s manual will say "mortar" consistently;

the present document is emphatically NOT a user’s manual.)

In order to explain TEX more fully, I will alternate between very low-level

descriptions of exactly how the processing takes place and very high-level

descriptions of what you type to get complex effects.

First, at the very lowest level, we must realize that the input to TEX is not

really a string of boxes, it is a file of 7-bit characters. This file is called

an "external input file". Seven of the visible printing characters will have

special uses in such files; throughout this memo I will use the symbols

for them, but there will be a way to dedicate other symbols to these

purposes if desired. The seven basic delimiters are

\ the escape character used to indicate control mode rather than text mode

{ beginning of a group

} ending of a group

$ beginning and ending of math formulas

« alignment tab

'/, beginning of comment

macro parameter

The first thing TEX does is convert an external input file to an "internal

input file" by essentially obeying the following rules:

1. Delete the first TVeditor directory page, if it exists.

2. Replace the end-of-page marks (’14) on every remaining page by

carriage retums(’15). Delete all line-feed symbols (’12), null symbols (’00),

deletion codes (’177), and vertical tabs (’13). Replace all horizontal tabs (’ll)

by spaces (’40). Delete all '/, marks and the sequences of characters following

them up to (but not including) the next carriage return.

3. Delete all blank spaces (’40) following carriage-returns.

4. If two or more carriage returns occur in sequence, replace all

of them by vertical-tab characters (’13). These are used to specify

508 Digital Typography-

end of paragraphs in TEX; in other words, the user specifies end of paragraph by
hitting two carriage returns in a row, or by end of page following a

carriage return.
5. Replace all remaining carriage-returns by blank spaces.
6. If two or more blank spaces occur in a row, replace them by a

single blank space.
7. Replace \ by ’00, * by ’ll, $ by ’12, { by ’14, } by ’15, # by ’177

(assuming that these are the basic delimiters mentioned above).
8. Add infinitely many ’15 symbols at the right.

The reason for rule 8 is that TEX uses { and } for grouping, and the trailing
’15’s (which are equivalents of }’s) will match up with any {’s the user
erroneously forgot to match in the external input file. By following the
above rules, TEX obtains an internal input file containing no appearances
of the seven basic delimiters, and with no two blank spaces in a row. Spacing
in the output document is controlled by other features of TEX, and the seven
basic delimiters can be snuck in if necessary by using e.g. \ascii’173 for
the symbol {.

[Actually there are nine basic delimiters; the other two are t and 1, for
superscripts and subscripts respectively, but only within math formulas.
Due to the discrepancies between various vintages of ASCII codes, Stanford
codes are not universal; in particular, code ’13 at HIT is the character t.
There is a way to specify t as one of the nine basic delimiters, even at MIT,
and TEX will treat it properly — not deleting it in rule 2 and not confusing it
with the character inserted in rule 4. TEX doesn’t really apply rules 1-8 as
stated, it uses an efficient algorithm which has the net effect of these rules.]

Now let’s shift to a high level and show how the user can specify complex
typesetting requirements to TEX. The following example is rather long and
it deserves to be skimmed rather than studied in detail; I devised it
mainly to serve as test data during initial development of the system. Don’t
study it now, just glance at it and move to the next part of the memo.
(Note: I based the example on the opening pages of my book Seminumerical
Algorithms, but I skipped over lots of copy when the typesetting presented no
essentially new challenges to the system. Thus, the example concentrates on
difficult constructions, and it is by no means typical. The reader who
eventually does dig into its fine points might find it useful to have the
book in hand for comparison purposes.)

\require ACPhdr i
'/.Example TEX input related to Seminumerical Algorithms '/, 2
\ACPpages starting at page 1: '/, 3
\titlepage '/.This tells the page format routine not to put a page number on top '/. 4
\runninglefthead{RANDOH NUMBERS} '/, 5
\ljustline{\hexpand 11 pt {\:p CHAPTER \hskip 10 pt THREE}} '/, 6
\vskip 1 cm plus 30 pt minus 10 pt '/, 7
\rjustline{\:q RANDOM NUMBERS} ’/, 8
\vskip .5 cm plus 1 pc minus 5 pt '/, 9
\quoteformat{Anyone who considers arithmetical \cr '/, 10

TEX.ONE 509

methods of producing random digits \cr is, of course, 7, 11
in a state of sin. \cr} author{JOHN VON NEUMANN (1951)} 7. 12
\quoteformat{Round numbers are always false.\cr} 7. 13
author {SAMUEL JOHNSON (c. 1750)} 7. 14
\vskip 1 cm plus 1 pc minus 5 pt 7 15
\runningrighthead{INTR0DUCT10N} section{3.1} % 16
\sectionbegin{3.1. 7. 17
INTRODUCTION} 7. 18
Numbers which are “chosen at random’’ are useful in a wide variety of % 19
applications. For example: 7. 20

7i This blank line specifies end of paragraph 21
\yskip 7. This means a bit of extra space between paragraphs 22
\textindent{a)}{\sl Simulation.}\xskip When a computer is used to simulate 7. 23
natural phenomena, random numbers are required to make things realistic. 7. 24
Simulation covers many fields, from the study of nuclear physics (where 7. 25
particles are subject to random collisions) to systems engineering (where 1 26
people come into, say, a bank at random intervals) .\par 7. 27
\yskip\textindent{b)}{\sl Sampling.}\xskip It is often impractical to examine 7. 28
all cases, but a random sample will provide insight into what constitutes 7 29
“typical’’ behavior. 7.30

7 31
\yskip It is not easy to invent a foolproof random-number generator. This fact 7 32
was convincingly impressed upon the author several years ago, when he attempted 7 33
to create a fantastically good random-number generator using the following 7 34
peculiar method: 7 35

7 36
\yskip\yskip\noindent{\bf Algorithm K}\xskip(\sl“Super-random’’ number 7 37
generator.}).\xskip Given a 10-digit decimal number X, this algorithm may be 7. 38
used to change X to the number which should come next in a supposedly random 7 39
sequence.\par 7 40
\algstep Kl. [Choose number of iterations.] Set $Y<-\lfloor X/10t9 \rfloor$, 7 41
i.e., the most significant digit of X. (We will execute steps K2 through K13 7 42
$Y+1$ times; that is, we will randomize the digits a {\sl random} number of 7 43
times.\par 7 44
\algstep KIO. [99999 modify.] If $X<10t5$, set $X'-Xt2 + 99999$; 7 45
otherwise set $X'-X-99999$.\xskip\blackslug 7 46

7 47
\topinsert{\ctrline{\:r Table 1} 7 48
\ctrline{\:d A COLOSSAL COINCIDENCE: THE NUMBER 6065038420} 7 49
\ctrline{\:d IS TRANSFORMED INTO ITSELF BY ALGORITHM K.} 7 50
\vskip 3 pt \hrule 7. 51
\ctrline{\valign{\vskip 6pt\top{#}*\vskip 6pt\top{#}\cr 7 52
\halign{\left{#}\quad*\ctr{#}*\left{#}\cr 7 53

Step*\X (after)\cr J. 54
\vskip 10 pt plus 10 pt minus 5 pt 7 55
Kl*6065038420\cr K12«190586778*Y=5\cr} 7.end of \halign on line 53 7 56
\vskip 10 pt plus 10 pt minus 5pt \cr 7end of first column to be \valigned 7 57
\vrule 7vertical rule between columns 7 58
\halign{\left{#}\quad*\ctr{#}*\left{#}\cr 7 59

510 Digital Typography

Step*X (after)\cr '/• 60
\vskip 10 pt plus 10 pt minus 5 pt '/. 61
K10*1620063735\cr 7. 62
Kll»1620063735\cr K12*6065038420*Y=0\cr}y.end of \lialign on line 59 7, 63
\vskip 10 pt plus 10 pt minus 5pt \cr}} 7.end of 2nd \valigned column,\ctrline 7. 64
\hrule} 7.end of the \topinsert on line 48 I 65
\yskip\yskip The moral to this story is that {\sl random numbers should not be 7. 66
generated with a method chosen at random.} Some theory should be used. 7i 67

7. 68
\exbegin t 69
\tr\exno 1. [20] Suppose that you wish to obtain a decimal digit at random, not 7, 70
using a computer. Shifting to exercise 16, let $f(x,y)$ be a function such that '/, 71
if $0<x,y<m$, then $0<f(x,y)<m$. The sequence is constructed by selecting 'I, 72
$Xi0$ and $X11$ arbitrarily, and then letting $$ '/, 73
Xl{n+1} = f(Xin,Xi{n-l}) \qquad {\rm for} \qquad n>0.$$ 7. 74
What is the maximum period conceivably attainable in this case? 7i 75

7. 76
\exno 17. [10] Generalize the situation in the previous exercise so that 7i 77
$Xi{n+l}$ depends on the preceding k values of the sequence. 7, 78
\par\vskip plus 100 cm\eject 7. 79
\runningrighthead{GENERATING UNIFORM RANDOM NUMBERS} section{3.2} 7, 80
\sectionbegin{3.2. GENERATING UNIFORM RANDOM NUMBERS} 7. 81
In this section we shall consider methods for generating a sequence of random ‘I, 82
fractions, i.e., random {\sl real numbers Uln, uniforily distributed 7, 83
between zero and one.} Since a computer can represent a real number with only 7. 84
finite accuracy, we shall actually be generating integers Xln between 7, 85
zero and some number m; the fraction$$Uin = Xin/m \eqno(l)$$ will '/, 86
then lie between zero and one. 7, 87

7. 88
\vskip.4in plus.2in minus.2in '/, 89
\runningrighthead{THE LINEAR CONGRUENTIAL METHOD} section{3.2.1} 7, 90
\sectionbegin{3.2.1. The Linear Congruential Method} 7, 91
By far the most successful random number generators known today are special % 92
cases of the following scheme, introduced by D. H. Lehmer in 1948. [See I 93
{\sl Annals Harvard Comp. Lab.} {\bf 26}(1951), 141-146.] We choose four 7, 94
“magic numbers”:$$ '/, 95
\halign{\right{#}®\left{\quad\rm{#}\qquad}®\right{#}®\left{#}\cr 7, 96
X10,®the starting value;*X10®>0.\cr '/, 97
m,®the modulus;®m®>Xi,\quad m>a,\quad m>c.\cr}\eqno(l)$$ 7, 98
The desired sequence of random numbers $\langle Xln \rangle$ is then 7. 99
obtained by setting$$Xl{n+l}=(aXln+c)\mod m,\qquad n>0.\eqno(2)$$This is 7.100
called a {\sl linear congruential sequence.} '/,101

7.102
Let w be the computer’s word size. The following program computes $(aX+c) 7.103
\mod(w+l)$ efficiently:$$\halign{{\it#}\qquad®\hjust to 25pt{\left{#}}® 7,104
\left{\tt#}\cr '/,105
01®LDAN®X\cr '/,106
02®MUL®A\cr 05®JANN®*+3\cr '/,107

07®ADD®=W-l=\qquad\blackslug\cr}\eqno(2)$$ '/,108

TEX.ONE 511

{\sl Proof.}\xskip He have $x=l+qpte$ for some integer q which is not a '/.109
multiple of p. By the binomial formula$$ '/,110
\eqalign{xtp*=l+{p\choose l}qpte+\cdots+{p\choose{p-l}}qt{p-l} '/.111
pt{(p-l)e}+qtp pt{pe}\cr '/,112

*=l+qpt{e+l}\group(){l+l\over p{p\choose 2}qpte + l\over p '/,113
{p\choose 3}qt2 pt{2e}+\cdots+l\over p{p\choose p}qt{p-l} '/,114
pt{(p-l)e}.\cr}$$ By repeated application of Lemma P, we find that '/,115
\def\inlo#l{\ ({\rm modulo}\ #l)}$$\eqalign{(atptg - l)/(a-l)*s 0 \mlo '/.116
{pTg},\cr(atptg-l)/(a-l)*\neqv 0 \mlo{pt{g+l}}.\cr}\eqno(6)$$ '/,117
If $l<k<p$, $p\choose k$ is divisible by p. \biglpren{\sl Note: }\xskip A '/.118
generalization of this result appears in exercise 3.2.2-ll(a) .\bigrpren\ By '/,119
Euler’s theorem (exercise 1.2.4-48), $at{\varphi(pt{e-f})}= 1 \mlo /;i20
{pt{e-f}}; hence A is a divisor of$$ '/,121
A(pllt{eil} \ldots pitt{elt} = {\rm lcm}\group() '/,122
{A(pilt{ell},\ldots,A(pitt{elt})}.\eqno(9)$$ '/123

;U24
This algorithm in \MIX\ is simply$$)'125
\halign{\hjust to 25pt{\left{\tt#}}»\left{\tt#\qquad}*\left{#}\cr ’/,126
J6NN**+2»\underline{\it Al. }j<0?}\cr '/,127
STA*Z*\qquad\qquad-'Z. \cr}\eqno (7) $$ '/,128
That was on page 26. If we skip to page 49, $Yil +\cdots+ Yik$ will a129
equal n with probability$$ '/,i30
\suml{{yil+\cdots+yik=n}\atop{yil,\ldots,yik>0}} '/.IBl
\prodi{l<s<k} '/,132
{et{-npis}\group(){npis}t{yis}}\over{yls!} '/,133
={et{-n}ntn}\over{n!}.$$ '/,134
This is not hard to express in terms of n-dimensional integrals,$$ '/,135
{\intl{ain}tn dYln \intl{oi{n-l}}t{Yln} '/,136
dYl{n-l}\ldots\intl{all}t{Yi2}dYll} \over '/.IBY
{\intiOTn dYin \intlOT{Yln} dYi{n-l}\ldots '/,138
\intl0t{Y12}dYil},\qquad{\rm where}\qquad alj= '/,139
\max(j-t,0).\eqnob4)$$ '/,140
This together with (25) implies that $$\def\rtn{\sqrt n} '/,141
\mathop{lim}l{n-*ffl} s \over \rtn y.l42
\suml{\rtn s<k<n}{n\choose k}\group(){k\over n - s\over rtn}tk '/,143
\group(){s\over\rtn + 1 - k \over n}t{n-k-l} = et{-2s}t2,\qquad s>0, '/,144
\eqno(27)$$ a limiting relationship which appears to be quite difficult to '/,145
prove directly. '/,146

'/.147
\exbegin\exno 17. [HM26] Let t be a fixed real number. For $0<k<n$, let$$ '/,148
Pi{nk}(x)=\inttxi{n-t}dxin\intl{n-l-t}t{xin}dxi{n-l} '/,149
\ldots\inti{k+l-t}t{xl{k+2}}dxl{k+l}\inti0t{xl{k+l}} ’/,150
dxik\ldots\inti0t{xi2}dxil; $$ '/,151
Eq. (24) is equal to$$\def\sumk{\sumi{l<k<n}} '/,152
\sumk X\primeik Y\prifflelk \group/.{\sqrt{sumk{X\primelk}t2} 7,153
\sqrt{\sumk{Y\primelk}t2}}. $$\par '/,154
\runningrighthead{A BIG MATRIX DISPLAY} section{3.3.3.3} '/,155
\subsectionbegin{3.3.3.3. This subsection doesn’t exist}Finally, look at page '/,156
91.$$\def\diagdots{\raise lOpt .\hskip 4pt \raise 5pt .\hskip 4pt .} */,157

512 Digital Typography

\eqaligii{U®=\group(){\halign{\ctr{#}*\ctr{#}«\ctr{#}«\ctr{#}*\ctr{#}*\ctr{#}* '/,158

\ctr{#}\cr l\cr »\diagdots\cr **l\cr '/.159
cll«\ldots«cl{k-l}»l*ci{k+l}«cln\cr 7.160
*®®8l\cr**»**\diagdots\cr******l\cr}},\cr 7.161
Ut{-l}*=\group(){\halign{\ctr{#}*\ctr{#}*\ctr{#}*\ctr{#}®\ctr{#}*\ctr{#}* 7.162

\ctr{#}\cr l\cr *\diagdots\cr ®®l\cr 7.163
-cll®\ldots®-cl{k-l}®l®-cl{k+l}®-ciii\cr 7.164
®®®®l\cr®®*®*\diagdots\cr®®®*®*l\cr}}}$$ 7.165
This ends the test data, fortunately TEX is working fine. 7.166

The first thing that must be emphasized about this example is that it is much more
complicated than ordinary TEX input, for reasons stated above. The second thing
that should be emphasized is that it is written in an extension of TEX,
not in the basic language itself. For example, "\ACPpages" in line 3 is a
special routine that prepares pages in the format of The Art of Computer
Programming. The codewords \ACPpages, \titlepage, \runninglefthead,
\ruimingrighthead, \quoteformat, \sectionbegin, \xskip, \yskip,
\textindent, \algstep, \exbegin, \exno, and \subsectionbegin are specific to
my books and they have been defined in terms of lower-lever TEX primitives
as we shall see below. Furthermore most of the fonts used are embedded in these
hidden definitions; for example, "\sectionbegin" defines the 10 point fonts used
in the text of a section, while "\exbegin" sets up for 9 point type which is used
in the exercises. Another definition is that the word MIX is usually to be set
in the “typewriter type” font; the hidden definition

\def\MIX{{\tt MIX}}
causes this to happen automatically in line 125. We shall study TEX's macro
definition mechanism later; three simple examples appear in lines 141, 152,
and 157 of the sample program, where a common idiom was given a short
definition just to save space. For curious people who want to see a more
complicated definition, here is the way \quoteformat is defined:

\def\quoteformat#l author#2{\lineskip 11 pt plus .5 pt minus 1 pt
\vskip 6 pt plus 2 pt minus 2 pt
\def\rm{\:s} \def\sl{\;t}
{\sl \halign{\right{##}\cr#l}}
\vskip 6 pt plus 2 pt minus 2 pt
\rm \rjustline{#2}
\vskip 11 pt plus 4 pt minus 2 pt}

The word "author" which appears in this definition is not preceded by the
escape character \ since it is scanned as part of the \quoteformat macro.
Please don’t expect to understand this mess now, TEX is really very simple;
trust me.

In fact, let’s forget all the complications for a moment and try to imagine
TEX at its simplest. Consider the following alternative to the above examples:
A file containing no occurrences of the symbol "\" is preceded by the code

"\deffnt a METS".

Then TEX will output this file in the NETS font, with all paragraphs justified.

The very first nonblank character in the external input file is taken by TEX

TEX.ONE 513

to be the user’s escape character. The user thinks of this character pretty
much as he or she thinks of the "control" key in the editor, since it precedes
system instructions. Normally the file will start with

\require FILENAME
where FILENAME sets up the user’s favorite default values; this has been done
in line 1 of our big example. File ACPhdr begins with the sequence

\chcode’173<-2. \chcode’176t-3. \chcode’44*-4.
\chcode’26'-5. \chcode’45‘-6. \chcode’43»-7.
\chcode’136*-8. \chcode’l*-9.

which, at Stanford, defines the characters {}$*'/,# to be the basic delimiters
2,3,4,5,6,7,8, and 9, respectively; but most users won’t ever deal with such
low-level trivia since they will be using somebody else’s \require file. The
\ACPhdr file also defines codewords like \quoteformat and other standard
Art of Computer Programming conventions.

Now let’s penetrate past line 1 of the example and see if we can figure out
any more. The beginning of a chapter is generally complex from a typographic
standpoint, and lines 3-18 of the example are devoted to getting through these
initial complications; the chapter really starts at line 19. Let us now
muster up enough courage to tackle lines 3-18.

The specification of \runninglefthead in line 5 gives the copy that is to appear
in the top line of left-hand pages in the book. Line 6 contains the first actual
text to appear on the page; but look first at line 8, which is simpler:
Line 8 says to use font q (which ACPhdr has defined to be "Computer Modern
Gothic Bold 20 point", a font that I am currently designing) for the words
RANDOM NUMBERS, and to right-justify them on the line (\rjustline).
Line 6 is similar but it uses a different font, font p (which turns out to
be Computer Modem Gothic 11 point type); a TEX user can have up to 32 fonts,
named @, A or a, B or b, ..., Z or z, [, | or <,], t, and •- respectively (cf. ascii
code, any character can be used and its low five bits are relevant).
Font @ is special, it is the only font whose characters are allowed to have
different heights and baselines; the other fonts will define constant baseline
and box height for each of their characters. Furthermore, TEX assumes that some
of its math symbols are on font @.

Continuing in line 6, "\hskip 10 pt" stands for 10 points of horizontal space, and
"\hexpand 11 pt" means to take the line and stretch it 11 points wider than
it would ordinarily be. Note that font definitions within {...} disappear
outside the braces. So do all other definitions.

It is time to explain TEX’s mechanism for stretching and shrinking.
Sizes in TEX can be specified in terms of points, picas, inches, centimeters,
or millimeters, using the abbreviations pt, pc, in, cm, mm respectively;
these abbreviations are meaningful only in contexts where physical lengths
are used, and one of these units must always be supplied in such contexts
even when the length is 0. (One inch equals 6 picas equals 72 points equals
2.54 centimeters equals 25.4 millimeters.) The glue between boxes has three

components:
the fixed component, x

514 Digital Typography

the plus component, y
the minus component, z

The X part is "normal" spacing which is used when boxes are strung together
without modification. When expanding a sequence of boxes to more
than their normal length, as on line 6, each x part in the glue is increased
by some multiple of the y part. When shrinking, each x part is decreased by
some multiple of the corresponding z part.

For example, given four boxes bound together by glue of specifications
(xl,yl,zl), (x2,y2,z2), (x3,y3,z3),

expansion of the line by an amount w is achieved by using the spacing
xl + yl w’, x2 + y2 w’, x3 + y3 w’,

where w’ = w/(yl+y2+y3). The expansion is impossible if w>0 and yl+y2+y3=0.
The system tries hard to minimize bad-looking expansions, by having a
reasonably intelligent justification routine (described below). When
shrinking a line, the maximum amount of contraction is the sum of the z’s, no
tighter fit will be attempted; thus, one should define the z width so that
x-z is the minimum space tolerated. The proper setting of y is such that x+y
is a reasonable spacing but x+3y is about at the threshold of intolerability.
Parameters y and z must be nonnegative, but x may be negative (for backspacing
and overlap) if care is used.

The notation "\hskip 10 pt" in line 6 means that x = 10 pt, y = 0, and z = 0
in the horizontal glue between CHAPTER and THREE. If this \hskip hadn’t been
used, the normal conventions would have applied. Namely, the glue between
CHAPTER and THREE would have had x=w (the normal interword spacing for the font),
and y = w/8, z = w/2. The glue between letters has (say) x = 0, y = w/18,
and z = w/6; thus the expansion without using \hskip would have
gone mostly into the space between CHAPTER and THREE, but by using
\hskip as shown the expansion spreads out the individual letters. Fonts to
be used with TEX will have such letter spacing indicated as an additional feature;
TEX will also recognize things like the end of sentences, giving slightly more
white space after punctuation marks where appropriate. Symbols like + and =
conventionally are surrounded by spaces, while symbol pairs like ” and ;= are
moved closer together; the symbols + and = are not surrounded by spaces when
they appear in subscripts. Such things are taken care of in the same way that
ligatures are handled, by making the fonts a little smarter under TEX’s control,
as described in more detail later.

Much of TEX is symmetrical between horizontal and vertical, although the basic
idea of building lines first rather than columns first is asymmetrically built
in to the standard routines (because of the way we normally write). The
specification "\vskip" on line 7 specifies vertical glue analogous to
horizontal glue. When the page justification routine tries to fill the first
page of the example text (by breaking between pages ideally at the end of a
paragraph, or in a place where at least two lines of a paragraph appear on
both pages), this glue will expand or shrink in the vertical dimension using
X = 1 centimeter, y = 30 points, z = 10 points. Further variable glue is
specified in the definition of \quoteformat: \lineskip is the inter-line spacing,
and the \vskips give special additional spacing between quotation and author

TEX.ONE 515

lines. In the main text, the printer would refer to the type as "10 on 12",
meaning 10 point type with 12 points between corresponding parts of adjacent
lines; TEX will use a 10 point font with

\lineskip 12 pt plus .25 pt minus .25 pt
so that its line spacing is somewhat more flexible. Additional spacing between
paragraphs is given by

\parskip 0 pt plus 1 pt minus 0 pt
and there is other spacing between exercises, steps in algorithms, etc. The
definition

\def\yskip {\vskip 3 pt plus 2 pt minus 2 pt}
is used for special vertical spacing, for example in lines 22 and 37. A horizontal
skip

\def\xskip {\hskip 6 pt plus 3.5 pt minus 3.5 pt}
is used in lines 23, 35, etc. in contexts where a larger than normal space is
psychologically acceptable; for such purposes, flexible glue is especially
useful. Larger horizontal spaces called \quad and \qquad are used for example in
line 96; these are "one em" and "two ems" of space, respectively, units frequently
used in mathematical typesetting.

The generality of flexible glue can be appreciated when you consider the
hypothetical definition

\def\hfill {\hskip 0 cm plus 1000 cm minus 0 cm}.
In this case, y is essentially infinite (10 meters long). When such an \hfill code
appears at the beginning of a line, it right justifies that line; when
it appears at both the beginning and end, it centers the line; when it appears
in the middle it neatly partitions the line; and so on. These aspects of
TEX’S variable glue seem to make it superior to existing justification
systems, because it provides new features in a rather simple way and at the
same time reduces the old features to a common pattern.

Once a list of boxes has been justified, all the glue is permanently set and the
overall box becomes rigid. Justification is either horizontal or vertical.
Horizontal justification of long lines includes some automatic hyphenation;
further details about justification appear later in this memo.

Now let’s look at more of the example. Lines 21 and 31, etc., are blank lines
indicating the end of a paragraph; another way to specify this is “\par” in
line 27. Line 124 is an end of a paragraph that ends with a displayed formula.
Paragraphs are normally indented; one of the TEX commands subsumed under
"\sectionbegin" in line 17 is

\parindent 20 pt
which affects the first line of every paragraph unless "\noindent" appears
as on line 37. The "\sectionbegin" routine also specifies "\noindent" on the
very first paragraph of the section, since this is the standard format in
my books. On line 23 we have "\textindent{a)}", which creates a box of
width \parindent containing the characters "a)" followed by a blank space, right
justified in this box.

In line 23 the "\sr' means "use slanted font." I have tentatively decided to
replace italics by a slanted version of the normal "Roman" typeface, for

516 Digital Typography

emphasized words in the text, while variable symbols in math formulas will
still be in italics as usual. I will have to experiment with this, but my
guess is that it will look a lot better, since typical italic fonts do not
tie together into words very beautifully. At any rate I will be distinguishing
slanted from italic, in case it becomes desirable to use two different fonts
for these different purposes. The "\bf" in line 35 stands for boldface. All
these fonts are defined in \sectionbegin, whose definition is hidden to you.
The periods in lines 84 and 101 are “slanted”; this places them properly
close to the preceding letter, since a little space usually will intervene
when slant mode goes off.

Mathematical formulas all appear between $...$ pairs, cf. lines 38 and 41,
or between $$...$$ pairs (displayed equations). A special syntax is used in
formulas, modeled on that of Kernighan and Cherry, Comm. ACM 18 (March 1975),
151-157. For example, "t9" in line 41 specifies a superscript 9, "i{n+l}"
in line 74 specifies a subscript n+1. Math-structure operators like
t and 1 take action only within $’s. All letters in formulas
are set in italics unless they form part of a recognized word or are
surrounded by "{\rm ...}" or "\hjust...", etc. Digits and
punctuation marks like semicolons or parentheses, etc., come out in roman
type in math mode unless specified {\it...} as in line 127. The "1" on that
line will be italic, as will the "j", but the "0" and "?" will be roman.

Spacing within formulas is chosen by TEX, independent of spaces actually
typed, although it is possible to insert space in cases when
TEX’S rules are unsatisfactory. In line 116, for example, extra space
has been specified before and after "(modulo" using the code "\
space before parentheses is usually omitted, but it should not be omitted
here. The later parts of the example text are largely concerned with
complicated formulas, which will appear as shown in the corresponding parts
of volume 2. The code "\eqno(24)" (cf. line 140) will insert "(24)" at the right
margin, vertically centered on the corresponding displayed formula, if there
is room, otherwise an attempt is made to move the formula left off-center to
insert "(24)", otherwise the "(24)" is stuck on a new line at the bottom right.

The algorithm-step-format keyword "\algstep" used on lines 41 and 45 is defined
as follows:

\def\algstep #1. [#2] {\vskip 3 pt plus 1 pt minus 1 pt
\noindent \hjust to 20 pt{\right{#l.}} [#2]\xskip
\hangindent 20 pt}

This sets vertical spacing glue before the text for the algorithm step, and it
also sets up an appropriate "textindent", etc. The new feature here is the
hanging indent, which affects all but the first line of the following
paragraph.

The keyword "\exno" used on lines 70, 77, etc. has a definition somewhat
similar to \algstep; such definitions of formats that are needed frequently in
my books will help to ensure consistency. The "\tr" in line 70 will insert
a triangle in the left margin, using negative glue spacing so that the
character actually appears to the left of the box it is in.

TEX.ONE 517

Line 48 begins a "\topinsert", one of the important features needed in page layout.
The box defined within the {...} after \topinsert is set aside and placed on top
of either the present page or the following page (followed by vertical glue
specified by

\topskip 20 pt plus 10 pt minus 5 pt,

this being another thing subsumed by "\sectionbegin")■ Box inserts are used for
figures and tables, in this case a table. The table caption appears in lines 48-50;
the table itself (cf. page 6 of the book) is rather complicated, so we will
defer explanation of lines 52-65 until after we have studied the simpler example
of \halign in lines 96-98.

In general, an \halign command takes the form
\halign{ ul#vl * ... * un#vn \cr

xll * ... * xln \cr

xml * ... * xmn \cr}
(In addition, \vskip’s, \hrule’s, and displayed-equation-mode \eqno’s are allowed
after the \cr’s.) The "\cr" is not a carriage-return, it is the sequence of three
characters \, c, r. The u’s and v’s are any sequences of characters not including
#, *, or \cr. The meaning is to form the mn horizontal lists ("hlists")
of boxes

ul{xll}vl ... un{xln}vn

ul{xml}vl ... un{xmn}vn
and, for each k, to determine the maximum width of hlist uk{xik}vk for i = l,...,m.
Then each uk{xik}vk is hjustified to the size of this maximum width, and each
line xil*...®xin\cr is replaced by the horizontal concatenation of the resulting
boxes, separated by horizontal glue specified by

\htabskip 0 pt plus 1 pt minus 0 pt.
If less than n entries appear on any line before the \cr, the remaining entries
are left blank. When the \halign appears inside $'s, each of the individual
uk{xik}vk hlists is considered to be a separate independent formula.

In the example of \halign on lines 96-98 we have n=4; the first column is to
be right justified, the second is to be treated as "\rm" and surrounded by
quad spaces, then placed flush left in its column,
the third again is right justified, the fourth is simply left-justified.
The result is shown on page 9 of the book, although with TEX the formula number
"(1)" will be centered. Note; Eventually I will put in an "\omittab" feature which
will allow portions of a line to span several columns when desired.

Now let’s look at lines 52-65 and compare with Table 1 on page 6 of the book.
Two boxes are built up using \halign and its vertical dual \valign.

The "\eqalign" feature (cf. lines 111, 116) is used to line up operators in
different displayed formulas. Actually this is simply a special case of

\halign:
\def\eqalign #l{\halign{right{##}*left{##}\cr#l}}.

Note that line 113 begins with *.

518 Digital Typography

The "\group(){..in lines 113, 143, etc. and the "\group/.{..in line 152
are used to choose suitably large versions of parentheses and slashes, forming

and "/•••", respectively; the size of the symbols is determined
by the height of the enclosed formula box. This type of operation is available
for [], <>, II, left and right braces or floor/ceiling brackets. TEX will
provide the best size available in its repertoire. Parenthesis, brackets,
braces, and vertical lines will be made in arbitrarily large sizes, but slashes
will not, at least not in this year’s TEX. Some very large parentheses will be
generated for the big matrices in lines 158ff.

The "\biglpren" and "\bigrpren" on lines 118-119 are not really so big,
but they are larger than the normal ones. The \group() operation will use
these in lines 122-123.

The summation signs produced by "\sum ..." in lines 131, 143, will be
large, since these summations occur in displayed formulas; but between $...$
a smaller sign will be used and the quantity summed over will be attached
as a subscript. Similarly, the size of an integral sign will change, and
fractions "...\over..." do too, as does the binomial coefficient
(cf. "$p \choose k$" in line 118). More about this later.

The \eject in line 79 means to eject a page before continuing.
This again is part of the format of my books, a major section always should
begin on a new page.

I think the above comments on the example give the flavor of TEX. The example
was intended to show a variety of challenging constructions of unusual complexity;
in general, most of a book will be comparatively routine, and it is only the
occasional formula or table which proves intricate. Such intricacies were
purposely emphasized in the example.

The next step in understanding TEX is to go back to the low level and see
what happens to an internal input file as it is being read in. What happens is
that it is massaged once again, converted to a sequence of "tokens", which are
either single characters or "control sequences" which stimulate TEX to do some
work. A control sequence is either \ followed by a single nonletter nondelimiter,
or \ followed by one or more letters (and terminated by the first nonletter).
For example, "\vsize" and "\]" are control sequences; the font-change action
"\:a" is two tokens, the control sequence \: followed by the character a;
the string "\ascii’147" is five tokens, the control sequence \ascii followed
by ’,1,4,7. If the character following \ is a letter, and if the control sequence
is terminated by a blank space, this blank space is ignored, effectively removed
from the input file — its purpose was simply to mark the end of the control
sequence. Thus, for example, "\yskip \yskip" and "\yskip\yskip" are equivalent.
I had to write "\HIX\ " instead of simply "\MIX " on line 125, in order to
obtain the two tokens \MIX and "\ ", the latter space now counting as a real one.
For appearance’s sake, TEX also ignores a space following a font-identification
character; e.g. "\:aNow is the time" is equivalent to "\:a Now is the time".

When the control sequence consists of \ and a single character, all printing

TEX.ONE 519

characters are distinguished, but when the control sequence consists of \ and a

letter string no distinction is made between upper and lower case letters,

except on the very first letter of the sequence; thus, "\GAMHA" and "\Gamma" are

considered identical, but they are not the same as "\gamma". Furthermore,

letter sequences are considered different only if they differ in the

first seven characters (six if TEX is implemented on a 32-bit machine) or if

they have different lengths mod 8. For example, "\qUotefOmmmm" and

"\quOTEfoxxxxxxxxxxxx" are both equivalent to "\quoteformat". The total number of

different control sequences is therefore approximately

128-14 + 2*(26‘2 + 26*3 + 26*4 + 26*5 + 26*6 + 8^26*7)

and this should be enough.

A control sequence is, of course, invalid unless TEX knows its meaning.

TEX knows certain primitive control sequences like "\vsize" and "\ " and "\def",

and the macro facility provided by \def enables it to learn (and forget) other

control sequences like "\HIX" and "\quoteformat".

Here are the precise rules by which TEX reduces the internal input file

to “pure input” consisting of tokens in which every control sequence is primitive

and distinct from "\def" and "\require". He already mentioned that \require simply

inserts another batch of input from a file. In the case of \def, one writes in

general

\def<ctrl-seq><stringO>#l<stringl> ... #k<stringk>{<right-hand side>}

where <stringO> ... <stringk> are sequences of zero or more characters not

including { or } or #; spaces are significant in these strings, except the

first.character after the defined control sequence is ignored if it is a delimiting

space following a letter string. The <right-hand side> is any sequence of

characters with matching { and }’s, again with significant spaces. I am

describing the general case; in simple situations such as the definition of

\rtn in line 141, k is zero and <stringO> is empty. The value of k must be <9.

When the defined <ctrl-seq> is recognized, later in the input, a matching

process ensues until the left-hand side is completely matched:

characters in stringO...stringk must match exactly with corresponding characters

of the input text, with error messages if a failure to match occurs. Once the

matching process is complete, TEX will have found the ingredients to be

substituted for parameters #1 thru #k in the right-hand side, in the following

way: If <stringj> is empty, #j is the next single character of the input, or

(if this character is "{"), the next group of characters up to the matching

If <stringj> is not empty, #j is 0 or more characters or {...} groups until the

next character of the input equals the first character of <stringj>. No macro

expansion is done during this matching process, and no backing up is done

if a failure occurs; the succeeding characters of the input string must

match the remaining characters of <stringj>. If the parameter #j turns out to be

a single {...} group, the exterior { and } are removed from the group. Note

that the matching process operates on characters of the internal input file,

not on tokens; it is possible, for example, that #j might turn out to be a

single delimiter character like "\"-

Once #1 ... #k have been discovered by these rules, they are simply

copied into the positions occupied by #1 ... #k in the right-hand sequence.

And one further change is made to the right-hand side:

the first # is removed from any sequence of two or more It’s. This is

520 Digital Typography

done so that definitions can be made in the right-hand side without causing

confusion with the current definition.

For example, consider what happens when the following definition is active:

\def\A#l BC {\def\E #1}}.

If the internal input file contains

\A {X-y} BC D

the resulting sequence after expanding the definition will be

\def\E #l{#lX-y X-y}D

(note the spacing).

The above is not the most general sort of macro definition facility, but I

have applied Occam’s razor. The reader should now be able to look back at the

definitions given above for \quoteformat, \algstep, and \eqalign, discovering

that they are really quite simple after all.

Assignment actions: I mentioned that the “pure input’’ contains codes for

primitive actions that can be carried out, as well as the characters

being transmitted to the final document. Some of these actions are simple

assignment actions which set parameters informing TEX how to transform the

subsequent input. Like macro definitions, assignment actions have an effect

only until leaving the current {...} or $...$ or $$...$$ group, or until a

reassignment occurs.

Here is a list of TEX’s assignment actions:

\chcode’<octal><-<number> defines basic delimiter

\deffnt <char><filename> the real font name corr. to its nickname

\:<char> the current font to be used

\mathrm the font to be used for math functions like log

\mathit the font to be used for math variables like x

\mathsy the font to be used for math symbols like \mu

\ragged or \justified appearance of right margins

\hsize <length> normal width of generated lines of text

\vsize <length> normal height of generated pages of text

\parindent <glue> indentation on first line of paragraphs

\hangindent <glue> indentation on all but first line of paragraph

(hangindent reset to zero after every paragraph)

\lineskip <glue> vertical spacing between generated baselines

\parskip <glue> additional spacing between paragraphs (added to lineskip)

\dispskip <glue>additional spacing above and below displayed formulas

\topskip <glue> additional spacing below an inserted box at top

\botskip <glue> additional spacing above an inserted box at bottom

\htabskip <glue>horizontal spacing between \haligned columns

\vtabskip <glue> vertical spacing between \valigned rows

\output <routine> what to do with filled pages

All of these quantities will have default values, which I will choose after

TEX is up and running; the default values will apply whenever a quantity has

not been respecified. In the above, <length> is of the form

<number><unit> or -<number><unit>

where the <number> is a digit string or a digit string containing a period (decimal

TEX.ONE 521

point), and where <unit> is either pt, pc, in, cm, or mm. Furthermore <glue>
is of the form

<length> plus <length> minus <length>
where the plus and minus parts cannot be negative; any of the three lengths
can be omitted if zero, as long as at least one of the three is present.
A blank space after <number> or <unit> is removed from the input.

For example, standard XGP conventions at the moment are to produce 8 1/2 by 11
inch pages with one-inch margins and interline spacing of 4 pixels; in a font 30
pixels high, this would be specified by

\hsize 6.5 in \vsize 9 in \lineskip .17 in
and you could also say

\def\hmargin{l in} \def\vmargin{l in}
for the benefit of TEX’s default \output routine. (I will explain \output later.)

In a future extension I will include the additional assignment action
\tempmeas <length> next <number> lines

so that TEX can set narrow measure for small illustrations (cf. vol. 1 page 52).

In order to keep from confusing TEX’s page-builder and paragraph-builder,
changes made to \hsize and \vsize will take effect only when TEX puts the
first line onto a fresh page or the first item into a fresh paragraph.

The assignment actions \chcode and \deffnt do not follow scope rules; they have
“global” effect.

Control structure: It is now high time to consider TEX’s paragraph-building
and page-building mechanisms, and the other aspects of its control structure.
In fact I probably should have started with this explanation long ago, it might
have saved both you and me a lot of confusion.

Internally TEX deals with boxes and “hlists” (which are horizontal lists
of boxes separated by horizontal glue) and “vlists” (which are vertical lists
of boxes separated by vertical glue). The two kinds of lists are not allowed
to mingle, and TEX must know at any time whether it is building an hlist or
a vlist.

We say that TEX is in “horizontal mode” when it is working on an hlist —
intuitively, when it is in the middle of a line — otherwise it is in
“vertical mode.” More formally, let us write "h..." for legal TEX input
beginning in horizontal mode, and "v..." for legal TEX input beginning in
vertical mode. Assignment actions don’t affect the mode, so they are ignored
in the present discussion.

When in vertical mode, the next token of the (pure) input, not counting
assignment actions, should be one of the following:
V... =

\vskip <glue> V...

(vertical glue, appended to current vlist)
\ljustline{h...}v...,\ctrline{h...}v..., or \rjustline{h...}v...

(append box of width \hsize to current vlist)

522 Digital Typography

\hrule [height <length>] [width <length>]
(append a horizontal rnle to current vlist, this is like a
solid black box, default height is .5 pt and default width
is the eventual width of this vlist, namely from the left of
its leftmost box to the right of its rightmost box)

\moveleft <length> v... or \moveright <length> v...
(the next box in the current vlist is to be shifted
wrt the normal left edge, this applies to one box only)

\topinsert{v...}v... or \botinsert{v...}v...
(insert vlist into current page, or onto the next page if
it doesn’t fit on the current one)

\halign{...}v...
(returns a vlist of m boxes formed from mn hlists as described
above; the vlist is appended to the current one)

\top{v...}v..., \mid{v...}v..., or \bot{v...}v...
(used mostly in \valign, returns a vlist that \vjust will
top justify, center vertically, or bottom justify)

* \mark{...}v...
(associates titles, etc., with the following lines of text)

* \penalty <number>v...
(additional units of badness if a page break comes here)

<blank space>v... or \ v... or \par v...
(ignored)

* \noindent h...
(initiates a nonindented paragraph)

* <box> h...
(initiates an indented paragraph beginning with this box)

* \eject V...

(ejects the current page unless it is empty)
** \eqno(<number>)v...

(attaches equation number at right of displayed equation)
Here * designates options which are legal only if the current vlist is
being maintained by the page builder, and ** designates an option legal only
in displayed formula mode. The page builder is active at the beginning of
the program but not within other routines (e.g. \topinsert) that construct
vlists.

A box specification is one of the following:
<box> =

<nonblank character>

(the box consisting of that character, in the current font)
\ascii’<octal>

(equivalent to the character, which may be hard to enter otherwise)
\hjust to <length>{h...}

(the hlist converted to box of specified length, if necessary
by breaking it into several lines as in the paragraph routine)

\hjust{h...} or \hexpand <length>{h...}
(the hlist converted to box of its natural line length plus the
specified length... here \hjust is like \hexpand 0 pt)

\vjust to <length>{v...}

TEX.ONE 523

(the vlist converted to a box of the specified length,
in this case without the ability to break it apart, sorry)

\vjust{v...} or \vexpand <length>{v..
(the vlist converted to box of its natural height plus the
specified amount... here \vjust is like \vexpand 0 pt)

\page
(the page just completed, should be used only in \output routine)

\boxO, \boxl, ... \box9
(the “global” box most recently stored by \saveO,... ,\save9)

In the cases of \page and \boxk, the box is destructively read, not copied,
the next attempt to read it will be an error. Box construction routines and
\output routines may use the designation \savek (0<k<9) to store a box into
one of the ten global save areas; again, this box is not copied, it is
manufactured from the current hlist or vlist and the current hlist or vlist
is emptied.

When in horizontal mode, the next token of the (pure) input, not counting
assignment actions, should be one of the following;
h... =

\hskip <glue> h...
(horizontal glue, appended to hlist)

\tjustcol{v.. .}h... ,Wdcol{v.. .}h..., or \bjustcol{v.. .}h...
(append box of height \vsize to current hlist)

\vrule [height <length>] [width <length>]
(append vertical rule to current hlist, this is analogous to
\lmile but the defaults are .5 pt width and hlist height;
if the height is specified, the rule goes up by this much
starting at the baseline)

\raise <length> h... or Mower <length> h...
(the next box or rule in the current hlist is to be shifted
wrt the normal base line, this applies to one box only)

* \topinsert{v...}h... or \botinsert{v...}h...
(insert vlist into precisely the page that contains the previous
box in the current hlist, e.g. a footnote)

\valign{...}h...
(returns an hlist of m boxes formed from mn vlists as described
above; the hlist is appended to the current one)

\left{h...}h..., \ctr{h...}h..., or \right{h...}h...
(used mostly in \halign, returns an hlist that \hjust will
left justify, center horizontally, or right justify)

\penalty <number>h...
(additional units of badness if a line break comes here)

<blank space>h...
(variable spacing-between-words glue in the current font, but
ignored in math mode)

\ h...
(same as blank space but not ignored in math mode)

<box> h...
(in particular, a nonblank character... the box is appended
to the current hlist)

524 Digital Typography

$...$ h...

(hlist determined in math mode is appended to current hlist)

* $$...$$ h...
(interrupts the current paragraph, which is set to the page
builder, but \hangindent is not cleared... the paragraph resumes
after the closing $$... within the $$’s is a single math
formula or a bunch of them specified by \eqalign or \halign,
they will be centered and appended to the vlist of the page
builder according to the conventions for displayed equations...
appropriate vertical glue is also passed to the page builder...
the additional glue above a displayed equation (\dispskip)
is not added if the text on the preceding line of the paragraph
does not overhang the first displayed equation after centering)

* \par V... or <two consecutive carriage-returns in external input> v...
(end of paragraph, the current hlist is broken into lines
as explained later; the lines are appended to the vlist of
the page-builder)

* \eject h...
(terminates the current "paragraph” and the current page, but
the final line of the current "paragraph” is justified as
if in mid-paragraph; the text resumes with a new "paragraph”
which is not indented, nor is \hangindent cleared)

Here * designates options which are legal only if the current hlist is
being maintained by the paragraph builder, which is called into action by the
page builder as explained above.

Boxes have a reference point on their left edge, and this reference point is
used when gluing two boxes together. If the box is a simple character from a
font, the reference point is at the left of the character at the baseline
(i.e., at the bottom of letters like x but not like y; the box extends below
the baseline to accomodate the descending parts of letters). When boxes are
concatenated horizontally, their baselines are lined up (unless otherwise
specified by \raise or \lower). The maximum height above the baseline and the
maximum depth below the baseline are also remembered, in order to determine
the height of the resulting box. When boxes are concatenated vertically, their
left edges are lined up (unless otherwise specified by \moveright or \moveleft).
The distance between consecutive baselines is taken to be \lineskip plus any
additional vertical glue specified by \vskip or \parskip, etc., unless this is too
small to prevent overlap of boxes; in the latter case the boxes are butted
together with zero glue. The baseline of the result is taken to be the baseline
of the bottom line. The maximum distance to the right of the reference edge
is taken to be the width of the resulting box.

The quantity \lineskip is ignored before and after \hrule’s. Thus, one may
write for example

\vskip 3pt \hrule \vskip 2pt \hrule \vskip 3pt
to get a double horizontal rule with 2 points of space in between and with
3 points of space separating the double rule from the adjacent lines, regardless
of the current value of \lineskip.

TEX.ONE 525

When t¥0 consecutive elements of an hlist are simply characters from the same
font, TEX looks at a table associated with that font to see whether or not
special symbols should be specified for this pair of characters. For example,
some of my standard fonts will make the following substitutions:

ff <ff>
fi 4 <fi>
fl 4 <fl>
<ff>i 4 <ffi>
<ff>l 4 <ffl>
((

4 <“>
)) 4 <”>
— 4 <en-dash>
<eii-dash>- 4 <em-dash>

1 will use the codes ’ll, ’12, ’13, ’14, ’15, ’175, ’177 for the first seven
combinations, since TEX will not confuse them with basic delimiters at
this stage. (Other suggestions for combinations are ;= -• <:=> and, for
fancy coffee-table books that are to be set in an expensive-looking oldstyle type,
ligatures for ct and st.)

Note the en-dash and em-dash here; there are actually four different characters
involved in methematical publishing,

the hyphen (for hyphenating words),
the en-dash (for contexts like "13—20"),
the minus sign (for subtraction),

and the em-dash (for punctuation dashes).
These are specified in TEX as -, —, - within $’s, and —, respectively.

The above rules for v... and h... summarize most TEX commands, except for the
assignment actions already summarized and for the operations of interest in
page output or math mode.

Here now is the code for \ACPpages which shows complex page layout. The code
uses “variables” \tpage and \rhead which are not part of TEX, 1 am making
use of TEX’S macro capability to “assign” values to these symbols. Readers
who are not familiar with such a trick may find it amusing, and 1 guess it
won’t be terribly inefficient since pages come along comparatively rarely.

\def \titlepage {\def \tpage{T}} '/, causes \tpage to be set to T for “true”
\def \runninglefthead#l {\def \rhead{{\:m#l}}}
\def \runningrighthead#l section#2 {\mark

{\ifeven{\hjust to .375 in {\left{\cpage}}\left{\rhead}#2}
\else{#2\right{\:m#l}\hjust to .375 in {\right{\cpage}}}}

\def \ACPpages starting at page #1:
{\setcpage #1 '/, sets current page number for next page
\output{\lineskip 12 pt '/. beginning of output routine, resets \lineskip
\vskip \vmargin '/, skips top margin (\vmargin is defined by user)
\ifT \tpage 7, the next is used when \tpage is T

{\def \tpage{F} 7. resets \tpage
\topline 7. user’s special line for top of title pages
\moveright \hmargin 7. adjust for left margin

526 Digital Typography

\ljustline{\page}
\vskip 3 pt
\moveright \hinargin
\ljustline{\hjust to 29 pc{\:c \ctr{\cpage}}}} '/. center page no. at bottom

\else {\moveright \limargin */, this format used when \tpage f T
\ljustline{\hjust to 29 pc{\:a \ifeven{\topmark}\else{\botmark}}}

\vskip 12 pt
\moveright \hmargin \ljustline{\page}}

\advcpage} 7, increase current page number by 1

The \output code is activated whenever the page builder has completed a page.
TEX is then in vertical mode, and the settings of \hsize, \lineskip, etc. are
unpredictable so such things should be reset if they are used. The box defined
by the vlist constructed by the \output routine is output, unless it is
empty (e.g. if it were \save’d).

\advcpage

\cpage

\ifeven{a}\else{^}

The TEX actions used in the above code and not explained already are:
\setcpage <number> Sets the current page to a given integer;

if negative, denotes roman numerals.
Increases the absolute value of current page
number by one.
A character string showing the value of the
current page is inserted into the input, as
a decimal number with leading zeroes suppressed
or as a roman numeral (lower case).

Uses a if current page is even otherwise uses p
(TEX’s scanner skips over the other one
one character at a time).

\ifT <char> {a}\else-{/} Uses a if <char> is T otherwise uses p.
\topmark, \botmark The \mark operation associates an uninterpreted

string of characters with the set of subsequent
lines received by the page builder, until the
next mark; "\topmark" inserts into TEX’s input
the mark associated with the first line on the
current \page, and "\botmark" the mark
associated with the last line, not counting
any \topinserted or \botinserted lines.

I propose to use the following as the default output routine for TEX. It uses
five more actions, namely \day, \month, \year, \time, and \file, corresponding
to the environment which called TEX.

\def \hfill{\hskip plus 100 cm}
\lineskip 0 pt
\:\font
\vskip \vmargin
\ifT \notitle {} \else{

\ljustline{\hjust to 7.5 in{
\hskip\hmargin
\day\ \month\ \year\hfill
\time\hfill

V ‘ infinite” stretchability
7ireset space between lines
7,resets to default font character
7.skips over top margin
7iOptionally skips title
7.title line has pageno 1 inch from right
7.skip left margin
7.date
7iStarting time

TEX.ONE 527

\file\hfill
\cpage}}
\vskip 12 pt}

\moveright \hmargin \ljustline{\cpage}
\advcpage

'/.principal input file name
‘/.page number
'/.one pica skip after title line
'/.insert body of page, skipping left margin
'/.increase page number

\hmargin, \vmargin, \font, \notitle are settable by the user (or SNAIL), and
they in turn have default values.

Now let’s consider the page-building routine more closely; this gives us a chance
to study the process TEX uses for vertical justification, which introduces some of
the concepts we will need in the more complicated routine used for horizontal
justification.

The first idea is the concept of “badness.” This is a number computed on the
basis of the amount of stretching or shrinking necessary when setting the glue.
Suppose we have a list of n boxes (either a horizontal list or a vertical list),
separated by n-1 specifications of glue. Let w be the desired total length
of the list (i.e., the desired width or height, depending on which dimension we
are justifying); let x be the actual total length of boxes and glue; and let
y,z be the total amount of glue parameters for expansion and contraction. The
badness of this situation is defined to be

infinite, ifx-z>w + 6, where € is a small tolerance to compensate
for floating-point rounding;

100((x-w)/z)‘3, ifw + z + e>x>w;
0, if X = w;

100((w-x)/3y)*3, if w > x;
plus penalties charged for breaking lines in comparatively undesirable places.

According to these formulas, stretching by y has a badness rating of 100/27,
or about 3.7; stretching by 2y is rated about 30; stretching by % is rated
100 units of badness, and so is shrinking by the maximum amount z. I plan to
charge a penalty of something like 80 units for breaking a paragraph or sequence of
displayed formulas in such a way that only one line comes by itself on a page;
thus, for instance, a five-line paragraph gets a penalty of 80 if we break
after the first or fourth line, but no penalty if we break after two or three
lines. I will of course be tuning these formulas to make them correspond as
well as I can to my aesthetic perceptions of bad layout. The user will be
able to specify his own additional \penalty points for undesirable breaking
between specific lines (e.g. in a MIX program to break before an instruction
that refers to *-l).

Breaks are not allowed before or after line rules.

The page-building routine forms a vlist as explained above, accumulating lines of
text and vertical glue until the natural height of its previous accumulation, plus
the k new lines,is greater than or equal to the specified page height, \vsize.
Then it breaks the new paragraph just after the jth line, for some 0<j<k, whichever
value of j has the minimum badness; if this minimum occurs for more than one
j, the largest such j is used. Then the glue between lines j and j+1 is discarded.

528 Digital Typography

and the remaining k-j lines are carried over to the next page. (They are immediately

checked to ensure that they don’t already overfill the new page, and they are

broken in the same way if necessary.) The \output routine is invoked whenever a

full page has been generated.

A \topinsert or \botinsert interrupts this otherwise straightforward procedure.

The box to be inserted is computed, off to the side, and then an attempt is made

to place it in the current accumulated page. If it fits, well and good, we leave it

there. If not, it is carried over to the next page, in a natural but hard-to-

explain maimer, unless the requirement about coming on the same page as a specific

line has to be met (i.e., box insertion in horizontal mode). Then the least bad

legitimate solution will be used.

Footnotes:! have used footnotes only three times in over 2000 pages of The Art of

Computer Programming, and personally 1 believe they should usually be avoided, so

1 am not planning an elaborate footnoting mechanism (e.g. to break long footnotes

between pages or to mark the first footnote per page with an asterisk and the

second with a dagger, etc.). They can otherwise be satisfactorily handled by

\botinsert as defined here. A user will be able to get fancier footnotes if he

or she doesn’t mind rewriting a few of TEX’s subroutines.

The paragraph-building routine assembles an hlist as described above, and must

break it into lines of width \hsize for transmission to the page-builder.

(Note: There is only one page-builder, in spite of TEX’s largely recursive

nature, and there is only one paragraph-builder. However, there can be

arbitrarily many \hjust to <length> routines active at once, and these are

analogous to the paragraph builder in most ways, since they have to break

their hlists into lines too. The discussion about line-breaking applies to

such routines too, but for convenience 1 will write this as if only the

paragraph-builder has to worry about breaking lines.)

The elements of the paragraph-builder’s hlist are usually sequences of text

characters or fragments of math formulas, but they also may be indivisible

boxes constructed by TEX’s higher level box operators. In my fonts there is

a small amount of variable glue between the individual text characters

(between the letters a and b, for instance, we would use the glue obtained as

a sum of right-glue for a and left-glue for b, as specified in font tables);

furthermore the spaces between words have more elastic glue as explained earlier.

TEX will give double y glue (but won’t change the x glue) to the first space

that follows a period, exclamation point, question mark, or colon, unless

letters or digits or commas or semicolons or boxes intervene before this

space. A semicolon and a comma are treated similarly, but with 1.5 and 1.25 as

the relative amounts of y glue.

The main problem of the paragraph builder is to decide where to break a long

hlist. Again TEX uses the concept of “badness” discussed under the page

building routine, but this time it improves on what was done by providing a

“lookahead” feature by which the situation in the later lines of a

paragraph can influence the breaks in the earlier lines; in practice this

often provides substantially better output.

TEX.ONE 529

Before discussing the lookahead feature, we need to define the location of

all permissible breaks. Every \hskip whose x or y glue exceeds the

spacing width of the current font is an acceptable place to break (and to

omit the horizontal glue) with no penalty. Adjacent \hskips are merged

together, incidentally, by adding the three glue components. Another acceptable

place to break without penalty is after an explicit hyphen or dash.

(Some \hskips, used for backspacing, have negative x; they are, of course,

unacceptable breaks.) The math formula routine which processes $...$ will allow

breaks just after binary operators and relations at the top level; relations

like =, <, 2, etc. have only a small penalty, say 10; operators like +,-,x,/,

mod have a larger penalty, with - and mod larger than the others (say 30, 70, 30,

40, 80, respectively). Superscripts and subscripts are attached unbreakably to

their boxes.

There are four "discretionary" spbols used to provide or inhibit breaks.

First is the \penalty <number> command, which specifies that a break is

admissible if the stated penalty is considered, then there are three more:

\- DK to hyphenate this word here (penalty 30);

\+ do not break here;

* OK to break here (penalty 30), but insert

a times sign, not a hyphen.

The last of these would be used in a long product like $(n+l)\«^(n+2)*(n+3)*(n+4)$.

In a minute 1 will discuss TEX’s way of doing automatic hyphenation, but for

the moment let’s suppose we know all the candidate places to break lines; now

what is the best way to break up an entire paragraph? I think it is best to define

“best” as the way that minimizes the sum of the squares of the badnesses of all

the individual breaks. This will tend to minimize the maximum badness as well

as to handle second-order and third-order badnesses, etc. As before, badness

is based on the amount of stretching or shrinking, plus penalty points.

To find the best breaks by this criterion, we don’t have an exponentially hard

problem; a dynamic programming algorithm will find the absolutely best way to

break in time 0(n"2), where n is the number of permissible places to break.

Namely, let f(m) be the minimum sum of badness-squareds for the paragraph up

to break position m, then f(m) is the minimum over k<m of f(k) plus the square of

the badness of breaking the text (k,m].

Actually a near-linear approximation to this quadratic algorithm will be

satisfactory: Given the best three places to break the k-th line, we use these

to find the best three places to break the (k+l)st line, tfhen the end of

the paragraph is reached, or if the paragraph is so long that we don’t have

enough buffer space (say more than 15 lines long), we clear out our buffers

by backtracking through the f(m) calculation to find the best-known breaking

sequence. In \ragged mode, the lines are not expanded or shrunk to \hsize, but

in \justified mode they are.

Built-in hyphenation:

Besides using the permissible breaks, TEX will try to hyphenate words.

It will do this only in a sequence of lower-case letters that is preceded and

530 Digital Typography

followed by anything other than a letter, digit, -, or discretionary symbol. Note

that, for example, already-hyphenated compound words will not be broken. If a

permissible hyphenation break is discovered, a penalty of say 30 units of badness

will be paid, but this may be better than not hyphenating at all. An additional

20 units of badness is charged for breaking a word or formula in the last

line of a paragraph (more precisely, one which is followed by less text than

half of \hsize).

There is no point in finding all possible places to hyphenate. For one thing,

the problem is extremely difficult, since e.g. the word "record" is supposed to

be broken as "rec-ord" when it is a noun but "re-cord" when it is a verb.

Consider the word "hyphenation" itself, which is rather an exception:

hy-phen-a-tion vs. con-cat-e-na-tion

Why does the n go with the a in one case and not the other? Starting at letter

a in the dictionary and trying to find rigorous rules for hyphenation without

much knowledge, we come up against a-part vs. ap-er-ture, aph-o-rism vs. a-pha-sia,

etc. It becomes clear that what we want is not an accurate but ponderously slow

routine that consumes a lot of memory space and processing time, instead we want

a set of hyphenation rules that are

a) simple;

b) almost always safe;

c) powerful enough to find a close enough approximation to, say,

80'/, of the words already hyphenated in The Art of Computer Programming.

To justify point (c), I find that there are about 2 hyphenated words per page

in the books, and the places where the rules I shall propose do not find the

identical hyphenation only very rarely would cause a really bad break. The

time needed to handle the remaining exceptions is therefore insignificant by

comparison with what I already do when proof-reading.

(Five pages of detailed rules for English hyphenation followed in this place; they
are omitted here because they are of little interest and they can be found in the
1979 user manuals for TgX. Frank Liang subsequently found a significantly
better procedure, which applies to many more languages.)

To conclude this memo, I should explain how TEX is going to work on

math formulas. I can at least sketch this.

The main operators that need to be discussed are i, t, \over,

\groupxy, and \sqrt; others are reduced to minor variations on these

themes (e.g., \int and \sum are converted to something similar to i

and t, \atop is an unruled \over, \underline is like \group, and \vinc

(overline) is like \sqrt). Each math formula is first parsed into a tree,

actually a modified hlist which I shall call a tlist. A tlist is a list of

trees possibly separated by horizontal glue, and a tree is one of the

following:

a box (if not a character box then it was constructed with mathmode off);

the node \sub with a tree as left son and a tlist as right son;

the node \sup with a tree as left son and a tlist as right son;

the node \subsup with a tree as left son, tlists as middle and right sons;

the node \over with tlists as left and right sons;

TEX.ONE 531

the node \sqrt with tlist as son;

the node \group with bracket characters as left and middle sons and

with a tlist as right son.

Best results will be obtained when using a family of three fonts of varying

sizes. The definition

\fntfam <char><char><char>

defines such a family in decreasing order of size. For example, TEX will be

initially tuned to work with the following set of font definitions:

\deffnt

\deffnt

\deffnt

\deffnt

\deffnt

\deffnt

cmlO

cm9

cm8

cm7

cm6

cm5

\fntfam adf \fntfam bef

\deffnt g cmilO

\deffnt h cmi9

\deffnt i cmi8

\deffnt j cmi7

\deffnt k cmi6

\deffnt 1 cmi5

\fntfam gjl \fntfam hkl

\deffnt u cmathlO

\deffnt V cmath9

\deffnt w cmath8

\deffnt X cmath7

\deffnt y cmath6

\deffnt z cmathS

\fntfam uxz \fntfam vyz

\mathrm a \mathit g \mathsy u (in the text)

\mathrm b \mathit h \mathsy v (in the exercises)

These are 10 pt thru 5 pt fonts of "Computer Modern" and "Computer Modern Italic"

8 pt type actually doesn’t get used in formulas, only at the bottom of title

pages and in the index.

Characters within math formulas will be adjusted to use the appropriate font

from a family if the current font appears as the first (largest) of some

declared family; otherwise the single font by itself will be treated as

a “family” of three identical fonts (i.e., using the same size in

subscripts as elsewhere).

After a math formula has been completely parsed into a tlist, TEX goes from

top to bottom assigning one of five modes to the individual trees:

A display mode

B text mode

C text mode with lower superscripts

D script mode

E scriptscript mode

Later on, modes ABC will use the size of the first of a font family, while

D and E will use the sizes of the second and third, respectively. The following

table shows how TEX determines the modes of the sons of a tree node, given the

mode of the father:

father \sub \sup \subsup \over \sqrt \group

A AD AD ADD BC C A

B BD BD BDD DD C B

C CD CD CDD DD C C

D DE DE DEE EE D D

E EE EE EEE EE E E

Large summation and integral signs, etc., are used only in mode A.

Once the modes are assigned, TEX goes through bottom up, converting all trees

to boxes by setting the glue everywhere except at the highest level tlist,

which becomes an hlist (passed to the paragraph-builder or whatever). Incidentally,

if you want to understand why TEX does a top-down pass and then a bottom-up

532 Digital Typography

pass, note that for exaiple the numerator of \over isn’t known to be a

numerator at first; consider "1 \over 1", where the "1" is supposed to be

mode D. Furthermore the \subsup nodes can originate either from

...i.. .t... or from ...t...i...

since I found that some typists like to do subscripts first and others like

to do superscripts first. Incidentally, when TEX parses a formula, i and

f have highest precedence, then \sqrt, then \over;

xiyiz and xtyTz

are treated as

X i{y i z} and x t{y t z},

while constructions such as

X i y t z 1 w

are illegal.

The first font of a family should possess tables that tell TEX how much to

raise the baseline of superscripts, lower the baseline of subscripts, and

position the various baselines of the \over construct, as a function of the mode

and the node. For example, in the fonts I am designing, the 7-point superscript

of an unsubscripted 10-point box will have its baseline raise 11/3 pt in B mode,

26/9 pt in C mode; the subscript of an unsuperscripted box will have baseline

lowered 3/2 pt in both B and C modes; and when both sub- and super-scripts are

present the subscript will be lowered 11/4 pt and the superscript raised

11/3 pt or 26/pt (or more if necessary to appear above a complex subscript).

Subscripts and superscripts on more complex boxes (e.g. groups) are positioned

based on the lower and upper edges of the box.

Displayed formulas are never broken between lines by lEX; the user is supposed

to figure out the psychologically best place to break them. Since TEX has

negative glue components, it will be possible to squeeze longish formulas onto

a line. Multiple displayed formulas should be separated by the \cr’s of

\halign or \eqalign.

(end of the file TEX. ONE)

And they all lived happily ever after.

Chapter 26

TeX Incunabula

[Originally published in TUGboat 5 (1984), 4-11.]

Several people have asked me for a list of the “first” books ever typeset

by TgX. Bibliophiles might some day enjoy tracing the early history

of this particular method of book production; I have therefore tried

to record the publications known to me, before my memory of those

exciting moments fades away. The following list is confined to works that

were actually published, although my files also include dozens of concert

programs, church programs, newsletters, and such things that my wife

and I have been putting together ever since began to be operational.

The first edition of the T^X manual is already quite rare, although

I believe several hundred copies were printed. It was called “Tau Epsilon

Chi, a system for technical text,” Stanford Computer Science Report

STAN-CS-78-675 = Artificial Intelligence Laboratory Memo AIM-317

(September 1978), 198 pp. The American Mathematical Society pub¬

lished a corrected version of this manual in June 1979; my wife Jill

designed the cover of this edition, of which I believe approximately 1000

copies were sold. If you have a “clean” copy you will be able to distin¬

guish a subtle TgXture on the cover (quite similar to the example on

page 225 of The T^book).

Most people learned about the prototype version of TJ]X by reading

the third edition of the manual, which appeared as part 2 of and

METRFONT, co-published by AMS and Digital Press in the latter part

of 1979. Approximately 15,000 copies of this book were printed.

The type for all three editions was produced on experimental low-

resolution equipment that was not available commercially. The first

edition used a Xerox Graphics Printer (XGP) that had been donated to

Stanford’s Artificial Intelligence Laboratory; the second used a one-of-a-

kind “Golorado” printer at Xerox Electro-Optical Systems in Pasadena,

Galifornia; and the third used a “Penguin” printer at Xerox’s Ad¬

vanced Systems Development group in Palo Alto. These machines had

533

534 Digital Typography

LENA BERNICE

Her Christmas in Wood County, 1895

«

Lena Bernice was our grandmother.

She told us about her first Christmas

tree. She told us many things while

the snow fell.

Elizabeth Ann and Jill

Christmas 1978

Figure 1. The title page of TeX’s first book.

variable resolution, which was set to 200 pixels/inch on the XGP and

384 pixels/inch on the others. Dale Green and Leo Guibas were instru¬

mental in getting the latter two editions printed.

The METRFONT manual had a similar printing history: It first came

out on the XGP as “METRFONT, a system for alphabet design,” Stan¬

ford Gomputer Science Report STAN-GS-79-762 = Artificial Intelligence

T^i]X Incunabula 535

3i

Elizabeth Ann wrote the

story for this book, and Jill

designed the pages and drew

the pictures. The book was

typeset by Don Knuth using

the system, and printed

by Homer Weathers at THE

RAINSHINE PRESS.

28

Figure 2. The colophon at the end of Te^’s first book.

Laboratory Memo AIM-332 (September 1979), 105 pp.; then it was

reprinted on a Penguin, with minor corrections, in the Digital Press

book mentioned earlier.

Of course, user manuals don’t count as significant milestones in

publishing. I like to think that the first real book to be printed with

T^]X was a 28-page keepsake that was made for my wife’s relatives at

536 Digital Typography

“See the snow softly fall

over barns and churches tall."

«

Gussie was trying to teach Horace at home, so she

copied it down. She wanted Horace to be a member of

the state legislature, like Ben James who was her uncle

and the greatest orator in Wood County.

Lena Bernice thought about little Jimmy Reed in

the lesson book and how he wondered if the snow tasted

of sugar. She thought about the brave dog, Caesar, who

had protected his mistress during the blizzard in Old

Kentucky. She thought about the layer of ice on Rock

Pond.

Aunt Sally took up the Illustrated Geography and

showed The Entire Class a picture of the Alps and of

the dear Saint Bernards who saved many a folk from

certain death.

2

Figure 3. The opening pages of Lena Bernice.

Christmastime, 1978. This book included eighteen original linoleum

block illustrations, into which we pasted XGP-produced text set in a

special 14-point extended variant of the prototype Computer Modern

font. In order to compensate for the XGP’s limited resolution, we pre¬

pared magnified copy and the printer reduced it to 70%; the effective

resolution was therefore about 286 pixels/inch. The title, opening pages,

TeX Incunabula 537

3

and colophon are illustrated here (reduced another 61% from the pub¬

lished size). About 100 copies were printed, of which roughly 25 were

sold and the remaining 75 were given as gifts. A complete library cita¬

tion for this book would read as follows: “Lena Bernice: Her Christmas

in Wood County, 1895. By Elizabeth Ann James, with illustrations by

Jill Carter Knuth. Columbus, Ohio: Rainshine Press, 1978.”

538 Digital Typography

David W. Wall made an unusual application of TgX and METRFONT
in his Ph.D. thesis, “Mechanisms for broadcast and selective broad¬

cast,” Stanford Computer Science Report STAN-CS-82-919 = Stanford

Computer Systems Laboratory Technical Report No. 190 (June 1980),

120 pp. He considered each illustration to be a “character” in a new

“typeface,” and he drew these large characters with METRFONT; then

he superimposed textual labels using T^X. This approach would defeat

our current METRFONT software if the figures were to be drawn at high

resolution, but he got away with it because he was using the XGP. (See

the samples attached, which have been reduced to 65% of their original

size.) In David’s words, “I fear I’ve opened a Pandora’s box; this isn’t

exactly what METRFONT was designed for. But ain’t it purty?”

On the other hand, if w looks at its own frag¬
ment state and finds a better edge than the one
V selected, then w must know about a vertex in
the fragment of i; and w that v did not know was
present. Thus as soon as w merged its fragment
state with that of v it had a larger fragment state
than V. Its fragment state may even have been
larger than v’s beforehand. Endpoint Disagrees with v

We observe that x precedes t/ on this path p.
For if z = j/ then this single vertex is on both
path Qi and path <72, which are represented by
edges without a common endpoint. This violates
Lemma 4. Similarly, if z follows y then y is on the
portion of path p from m. to z and so by Lemma
2 it must also be on the portion of path qi from
m to z. Thus y is on both qi and q2, which again
contradicts Lemma 4. So z precedes j/. Replacing {m,n) with p

Figure 4. Excerpts from David Wall’s thesis.

All during this time we were without any access to a high-resolution

phototypesetter, but after several months of work David Fuchs and I suc¬

cessfully built an interface to an Alphatype CRS machine in the winter

and spring of 1980. (Most of our effort was directed to making a com¬

plete revision of the microcode inside the CRS, because of the machine’s

Incunabula 539

limited font storage.) My notes show that we produced the first decent

sample pages on 1 April 1980; and the first page of output that was

eventually published was my one-page poem entitled “Disappearances,”

which appeared on page 264 of The Mathematical Gardner, edited by

David Klarner (Belmont, California: Wadsworth, 1981). In May I sent

off a longer paper, “The Letter S,” which was published in The Mathe¬

matical Intelligencer 2 (1980), 114-122 [reprinted as Chapter 13 of the
present volume].

Most of my time during April, May, June, and July of 1980 was

spent making the final revisions to the big book that was T^X’s raison

d’etre, the book that had been the original impetus for all of my work on

TeX and METFIFONT. The text of that volume had already been typeset

during 1976 at The Universities Press, Belfast, using Monophoto systems

called Cora and Maths; but the results were not satisfactory. I received

the paper tapes from Belfast and converted them to pseudo-T^X so that

the re-keyboarding would be easier. (It isn’t clear that I actually saved

any time by this maneuver!) All 700 pages of the book finally fell into

place; and the camera-ready copy for Seminumerical Algorithms, Vol¬

ume 2 of The Art of Computer Programming, second edition (Reading,

Massachusetts: Addison-Wesley, 1981) was completed at 2 am on Tues¬

day morning, 29 July 1980. On the 22nd of October I had to remake

page iv (so that it contained Library of Congress information). A bound

copy of the book actually appeared in my hands on 4 January 1981. It

seems most appropriate to regard the emergence of this book as the ac¬

tual birth of TeX in the world of publishing. My publishers prepared a

limited edition of 256 copies, hand bound in leather, to commemorate

the occasion. (I believe that only a few people ever purchased these spe¬

cial copies, because computer scientists didn’t want to pay for leather

binding, while lovers of fine printing didn’t cherish the invasion of com¬

puters. However, about 11,000 copies of Seminumerical Algorithms were

sold in its regular binding during 1981.)

Meanwhile other people at Stanford had been getting books ready

for publication, using T^)X and the Alphatype in our lab. The first of

these to be finished was KAREL the ROBOT: A Gentle Introduction to

the Art of Programming by Richard E. Pattis (New York: Wiley, 1981),

120 pp. Many of the illustrations in this book were typeset using spe¬

cial symbols METflFONTed for the occasion with David Wall’s help.

The next book of this kind was Practical Optimization by Philip E.

Gill, Walter Murray, and Margaret H. Wright (New York: Academic

Press, 1981), 417 pp. Speaking of optimization, a paper by Bengt Aspvall

and Yossi Shiloach, “A polynomial time algorithm for solving systems

540 Digital Typography

of linear inequalities with two variables per inequality,” SIAM Journal

of Computing 9 (1980), 827-845, was also produced on the Alphatype

in our lab that year.

Scott Kim was the first to use our Alphatype together with to

produce copy with non-METRFONT typefaces, in his Inversions: A Cat¬

alog of Calligraphic Cartwheels (Peterborough, New Hampshire: Byte

Books, 1981), 124 pp. He later METflFONTed some special symbols that

are featured in Arthur Keller’s A First Course in Computer Program¬

ming using PASCAL (New York; McGraw-Hill, 1982), 319 pp. (It’s

interesting to note that the Italian translation of this text. Program-

mare in PASCAL (Bologna: Zanichelli, 1983), 303 pp., was one of the

first books to be published from T^]X output in Italy. The Italian trans¬

lators [G. Canzii, A. Pilenga, A. Consolandi] worked independently of

the American author, and produced camera-ready copy on a Versatec

machine in Milano — unfortunately without Scott’s symbols.)

Terry Winograd was one of the first T^X users and (therefore) one of

the first to complain about its original limitations; for example, I added

\xdef at his request on 28 November 1978. He had begun writing a

book with a system called PUB [Larry Tesler, “PUB, The Document

Compiler,” Stanford Artificial Intelligence Project Operating Note 70

(March 1973), 84 pp.], then had converted all the files to BRAVO [But¬

ler W. Lampson, “Bravo Manual,” in Alto User’s Handbook, Xerox Palo

Alto Research Center (1978), 32-62], before converting again to T^jX.

Winograd contributed macros for indexing to the first issue of TUGboat,

and his struggles with the early T^]X finally led to the completed book

Language as a Cognitive Process, Volume 1: Syntax (Reading, Mas¬

sachusetts: Addison-Wesley, 1983), 654 pp. He used Computer Modern

fonts, but substituted Optima for the (awful) sans-serifs that I had been
using at the time.

Gio Wiederhold modified ACME files that he had used to prepare the

first edition of his database book so that he could typeset the second

edition with TfejX. He says that it took about six months to do the final

formatting (e.g., writing extra copy so that page breaks would occur in

desirable places). The resulting volume holds the current record for the

longest book to be produced in our lab: Database Design, second edition

(New York: McGraw-Hill, 1983), 767 pp.

Another faculty colleague, Jeffrey D. Ullman, converted first-edition

troff files to TeX files for his book Principles of Database Systems,

second edition (Rockville, Maryland: Computer Science Press, 1982),

491 pp. Then he used TgX directly to write Computational Aspects

of VLSI (Rockville, Maryland: Computer Science Press, 1984), 505 pp.

TeX Incunabula 541

Jeff’s 13-year-old son, Peter, helped by using METRFONT to create spe¬

cial fonts for the typesetting of VLSI stipple patterns.

My co-author Daniel H. Greene TpXed our book Mathematics for

the Analysis of Algorithms (Boston: Birkhauser, 1981), 107 pp. It’s

interesting to compare the first edition to the second (1982, 123 pp.),

because the fonts were significantly tuned up during the year that i:i-

tervened between editions. [The third and “idtimate” edition (1990,

132 pp.) was destined to exhibit further typographical progress.]

The books and articles mentioned so far were all typeset by their

authors; this is to be expected in a computer science department. But a

few experiments were also undertaken in a more traditional way, where

the TgX composition was done by people who were skilled at keyboard

entry but not intimately familiar with the subject matter. I think

the first such books to be done in our lab were the Handbook of Ar¬

tificial Intelligence, Volume 2, edited by Avron Barr and Edward A.

Feigenbaum (Los Altos, California: William Kaufman, 1982), 441 pp.;

Handbook of Artificial Intelligence, Volume 3, edited by Paul R. Cohen

and Edward A. Feigenbaum (Los Altos, California: William Kaufman,

1982), 652 pp.; Introduction to Arithmetic for Digital Systems Design¬

ers by Shlomo Waser and Michael J. Flynn (New York: Holt, Rinehart

and Winston, 1982), 326 pp.; Introduction to Stochastic Integration

by Kai Lai Chung and Ruth J. Williams (Boston: Birkhauser, 1983),

204 pp.; Hands-on Basic: For the IBM Personal Computer, by Herbert

Peckham (New York: McGraw-Hill, 1983), 320 pp.; Hands-on Basic: For

the Apple H, by Herbert Peckham with Wade Ellis, Jr., and Ed Lodi

(New York: McGraw-Hill, 1983), 332 pp.; Hands-on Basic: For the TRS-

80 Color Computer, by Herbert Peckham with Wade Ellis, Jr., and Ed

Lodi (New York: McGraw-Hill, 1983), 354 pp.; Hands-on Basic: For the

Atari 400/800/1200XL, by Herbert Peckham with Wade Ellis, Jr., and

Ed Lodi (New York: McGraw-Hill, 1983), 319 pp.; and Probability in

Social Science by Samuel Goldberg (Boston: Birkhauser, 1983), 131 pp.

Incidentally, the typesetting of this last book was done by my son John

during the summer of 1982, before he had learned anything about com¬

puters. I helped him with a few \halign constructions, but otherwise

he worked essentially without supervision. At that time he was about

to be a senior in high school; I know of at least three other children in

his high school who were typesetting books with TeX. [Introduction to

Commutative Algebra and Algebraic Geometry by Ernst Kunz (Boston:

Birkhauser, 1985), 237 pp., typeset by Amy and Michael Wang; Social

Dynamics by Nancy Brandon Tuma and Michael T. Hannan (Orlando,

Elorida: Academic Press, 1984), 578 pp., typeset by Katie Tuma.]

542 Digital Typography

It may be of interest to note that the first volume of the Handbook

of Artificial Intelligence (1981) was done with early Computer Modern

fonts on our Alphatype, but the typesetting was by PUB rather than

T^X. In particnlar, all hyphenation in that book was done by hand.

Members of Stanford’s Space, Telecommunications and Radioscience

Laboratory began to use TgX for articles that were typeset on our Alpha-

type and published in journals and conference proceedings. I believe the

first of these were “Photographic observations of earth’s airglow from

space,” by S. B. Mende, P. M. Banks, R. Nobles, O. K. Garriott, and

J. Hoffman, Geophysical Research Letters 10 (1983), 1108-1111; “Solar

wind control of the low-latitude asymmetric magnetic disturbance field,”

by C. Robert Clauer, Robert L. McPherron, and Craig Searls, Journal

of Geophysical Research 88 (1983), 2123-2130; “VLF wave injections

from the ground,” by Robert A. Helliwell, in Active Experiments in

Space (Paris: European Space Agency, 1983), 3-9; “Electron beam ex¬

periments aboard the space shuttle,” by P. M. Banks, P. R. Williamson,

W. J. Raitt, S. D. Shawhan, and G. Murphy, ibid., 171-175. Dozens

more are currently (1983) in press.

Students who knew what they were doing were allowed to use our

Alphatype at their own discretion and without my knowledge. For ex¬

ample, I remember being surprised one evening to see the Computer

Modern fonts used in an advertisement for “Earth Shoes,” in the pro¬

gram of a musical comedy put on by Stanford undergraduates. Surely

the most surprising thing to come out of our laboratory, and by far the

most significant in financial terms, was the hardware for the first Sun

workstation (or at least a key part of it): Andreas von Bechtolsheim

“typeset” the printed circuit board for Sun Microsystems’ first product

on our Alphatype in 1981, using special-purpose fonts that he created
with METflFONT.

The software we used to interface between and the Alpha-

type CRS was used at three other sites: The American Mathematical

Society (Providence, Rhode Island), the Royal Institute of Technology

(Stockholm, Sweden), and Bell Northern Research (Mountain View,

California). I have only sketchy information about what books were pro¬

duced with at other installations, but I’ll give a partial list so that

people at those sites might be moved to provide a more correct history.

The first AMS use of and the Alphatype in my collection is

an article entitled “1980 Wiener & Steele Prizes Awarded,” Notices of

the American Mathematical Society 27 (1980), 528-533. (Since then an

ever-growing percentage of the Notices has been TeXed.) The SIAM-

AMS-MAA Combined Membership List for 1981-1982 was another

TeX Incunabula 543

early production, as was the AMS Catalog of Publications for 1981-

1982. The Society first put TgX’s mathematical abilities to the test

in the pre-preliminary edition of Michael Spivak’s The Joy of T^K,

134 pp., which was distributed at the AMS meeting in San Francisco

(January 1981). There are many instances of TgX usage in the sub¬

sequent Proceedings [Volume 85 (1982), pp. 141-488, 567-595, 643-

665, 673-674; Volume 86 (1982), pp. 12-14, 19-86, 103-125, 133-

142, 148-150, 153-183, 186-188, 253-274, 305-306, 321-327, 363-374,

391, 459-490, 511-524, 574-598, 609-624, 632-637, 641-648, 679-684].

David J. Eck’s thesis, “Gauge-natural bundles and generalized gauge

theories,” was published in Memoirs of the American Mathematical

Society 33, number 247 (September 1981), 54 pp.; this memoir in¬

cludes an interesting preface by Richard Palais, pointing out that David

was pleased to be the first guinea pig for MAd‘5-TEX when he typeset

the thesis.

Before the AMS publishing team began using the Alphatype, they

produced several things from photo-reduced Varian output. The indexes

to individual issues of Mathematical Reviews have been done with TgX

since November 1979 (Volume 58, #5); the Combined Membership List

for 1980-1981 also came off the Varian.

Several books composed elsewhere were also typeset with the facil¬

ities at AMS, notably Oregon Software’s PASCAL-2: Version 2.0 for

RSX-11 (1981), 186 pp.; Turtle Geometry by Harold Abelson and An¬

drea diSessa (Cambridge, Massachusetts: M.I.T. Press, 1981), 497 pp.;

and History of Ophthalmology by George Gorin (Wilmington, Delaware:

Publish or Perish, 1982), 646 pp.

At Bell Northern, I think TgX was used mostly (or entirely?) for

company-confidential reports. But I have seen several excellent pub¬

lications from the Swedish Royal Institute of Technology — notably a

46-page monograph on Non-linear Inverse Problems by Gerd Eriksson,

Report TR17A-NA-8209 (1983) — and I would like to know more about

their independent experiences with TgX.

The University of Wisconsin Press sent me a copy of their 1981 Fall

Catalogs which they told me was typeset by I don’t know if TeX

actually helped to produce any of the books listed in the catalog.

When Computer Modern fonts are not used, it isn’t so easy to tell

that TeX was behind the formatting. But I have been assured that

the book Guide to International Commerce Law by Paul H. Vishny

(Colorado Springs, Colorado: Shepard’s/McGraw-Hill, 1981), 782 pp.,

was entirely typeset by T^)X, using an IBM 370/3081 coupled to an

APS 5 phototypesetter.

544 Digital Typography

Some books have been published directly from Xerox Dover output

(384 dots/inch resolution) that was printed at Stanford. In particular,

the original hardcover edition of Joseph Deken’s The Electronic Cottage

(New York: William Morrow, 1982), 334 pp., was produced in this way,

because of tight publication deadlines, and so were the books Arithmetic

and Geometry: Papers Dedicated to I. R. Shafarevich on the Occasion of

His Sixtieth Birthday, edited by Michael Artin and John Tate (Boston:

Birkhauser, 1983); Volume 1, 359 pp., Volume 2, 481 pp.

Max Diaz was instrumental in setting up a T^X installation at the

Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas of

the Universidad Nacional Autonoma de Mexico (i.e., at IIMAS-UNAM).

The first Tj^X-produced book to be done entirely in Mexico was Non¬

linear Phenomena, edited by Kurt Bernardo Wolf, Lecture Notes in

Physics 189 (1983), 464 pp. Max’s Facil TRpf macros [TUGboat 2,2

(July 1981), A-l-A-91] were, of course, the basis of this production,

which was photoreduced from low-resolution output.

I began to work on T^)X shortly after seeing galley proofs of Pat Win¬

ston’s book Artificial Intelligence (Reading, Massachusetts: Addison-

Wesley, 1977), 444 pp.], which was the first technical book to be typeset

with high-resolution phototypesetting equipment. Now I’ve just learned

that the new edition of his book is being typeset with so a circle

is being closed. [Patrick Henry Winston, Artificial Intelligence, second

edition (Reading, Massachusetts: Addison-Wesley, 1984), 527 pp.]

The AI Magazine (an official publication of the American Asso¬

ciation for Artificial Intelligence) has been typeset with T^X in our

laboratory since volume 3, number 2 (Spring 1982). Actually nobody

told me anything about this until 16 June 1983, when I received the fol¬

lowing unsolicited letter from the managing editor, Claudia C. Mazzetti:

“The production time of the magazine has decreased almost in half be¬

cause of TeX. We just want to express our thanks for creating such a
marvelous system!”

Well, by 1983 I was unable to understand why anybody would

think the old version of T^jX was easy to use, since I had just spent

two years removing hundreds of deficiencies. (All of the work reported

above was produced by the old proto-system.) Furthermore I’m

still not entirely happy with the Computer Modern fonts, although the

“Almost Computer Modern” version of July 1983 is much better than

the fonts that we were using in 1980. I expect to make further im¬

provements during the next two years, as I complete my research on

typography. My goal is to have a new METRFONT in 1984 and a new

Computer Modern in 1985. Meanwhile, we do have a new, permanent

TgX Incunabula 545

in 1983, and I’ll conclude this list by mentioning the first three

publications that have flowed from the new TJ^X together with our new

APS IVIicro-5 phototypesetter: The Tf^book (Reading, Massachusetts:

Addison-Wesley, 1983), 496 pp., was the first; it was sent to the pub¬

lisher on October 12. Coordinated Computing: Tools and Techniques

for Distributed Software by Robert E. Fihnan and Daniel P. Friedman

(New York: McGraw-Hill, 1984), 390 pp., was the second. And my paper

“Literate Programming” (15 pp.) was the third; this paper — which dis¬

cusses WEB —combines Times Roman and Univers type with Computer

Modern, and it will be published in volume 27 of The Computer Journal.

I like to think that the use of TpX has not only produced books

that are well formatted; also seems to have helped produce books

whose content is significantly better than books that were written in the

old way. Part of this change is due simply to the advantages of word

processing and computer editing, since changes are so much easier; but

part of it is due to the fact that authors are able to choose the notations

and formatting that they want, once they are free from the worries of

communicating through several levels of other people to whom such no¬

tations might be unfamiliar. I believe that a large number of the books

listed above show such improvements in scientific exposition. In partic¬

ular, my own books have been greatly improved because I’ve been able

to control the typesetting. I still rely heavily on the advice of profes¬

sional editors and book designers, but I can be much more sure of the

final quality than ever before, because there now is comparatively little

chance that misunderstandings will introduce any errors. This, to me,

is the “bottom line” that has made all of my work on T^X worth while.

Addendum

Additional information on early TrX use at the Royal Institute of Tech¬

nology was subsequently published by Hans Riesel, “Report on experi¬

ence with TeX80,” TUGboat 6 (1985), 76-79.

f I

I

• ♦ ■■ •*#« *' > V.'".'. ii*: i'

•■* '* • iii^;-'!-!!ifc.-5t W‘4<»’'Sp#

• ♦ •

I *%

f 4 ■«

f

»

i

t *.

I I <

V

I ^

1

♦1^ »

• f ;

Chapter 27

Icons for T^X and METRFONT

[Originally published in TUGboat 14 (1993), 387-389.]

Macintosh users have long been accustomed to seeing their files displayed

graphically in “iconic” form. I recently acquired a workstation with a

window system and file management software that gave me a similar

opportunity to visualize my own UNIX files; so naturally I wanted my

T^iX-related material to be represented by suitable icons. The purpose

of this note is to present the icons I came up with, in hopes that other

users might enjoy working with them and/or enhancing them.

The file manager on my new machine, a Sun SPARCstation, invokes

a “classing engine,” which looks at each file’s name and/or contents to

decide what kind of file it is. Every file type is then represented by a

32 X 32 bitmap called its icon, together with another 32 x 32 bitmap

called its icon mask. In bit positions where the icon mask is 1, the

file manager displays one of two pixel colors, called the foreground and

background colors, depending on whether the icon has 1 or 0 in that

position. (The foreground and background colors may be different for

each file type.) In other positions of the bitmap, where the icon mask

is 0, the file manager displays its own background color.

For example, each file whose name ends with .tex or .mf is now

iconified with the bitmaps

or

xxxxxxxxxxxxxxxxxxxxxxxx

* *

XX XXX XX xil^xx
XX XX X X
X X X X

xix

H^xxxxxxxxxxxxxxxxxxxxxxil^ll^
xxxxxxxxxxxxxxxxxxxxxxxx

5

547

548 Digital Typography

respectively on my machine; these are compatible with the existing

scheme in which C program source and header files, identified by suffixes

. c and . h, have

XXXXXXXX

XXXXXXXXX

ll
KJKXXXXXXX XXX

and

XXXXXKXXXXXKXXXXXX
X XX
X XX
|K XXXKXXXXXXXX ||(X^

X XXKXXXXXXXXX X X
X xxxxxxxx
^ XXXXXXX

xxxx H^x
XX
XX

XX

2
xxxxxx

xxxx XXX
XXX XX

xxxxxx XXX XX
XXXXXXX XX

xxxxxx xxxxxxxx XX
xxxx xxxx XX

XXXXXXXXX XXX XXX XX
XXX XXX XX

XXXXXXXXX XXX X XXX XX

XXX XX iii ixi li
XX XXX XXX XX
XX XXX XXX XX

as icons. Similarly, a file named *. Itx will get the icon

xx]l^

X X
X X
xxxsnKxxx

XXX XXX ^

All I had to do was tell the classing engine how to identify TeX and

METRFONT files, and to provide the bitmaps for icons and masks. In

each case mentioned so far, the corresponding icon mask is one that

the file manager already has built in as the Generic_Doc_glyph_mask,
namely

iiliiiiliillliiiilllllxx
XXXXXXXXXXXXXKxil^il^XXX)^
xxxxxxxxxxxxxxxxxxxxxxxxx
l^XXXXXXXXXXXXXXXXX^ ----"-^XX

xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXX'^-----

xxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx

The transcript files output by TfyK and METRFONT provided me

with a more interesting design problem. They’re both named *. log on

my system, so they can’t be distinguished by file name. I decided that

any file whose first 12 bytes are the ASCII characters ‘ThisuiSyTeX,’

Icons for TgX and METRFONT 549

should be considered a T[;];X transcript, and any file that begins with

‘ThisuiSuMETAFONT,’ should be considered a METRFONT transcript.

The corresponding icons were fun to make; I based them on the il¬

lustrations Duane Bibby had drawn for the user manuals:

5 S8 8*.
X XXK XX XK

•8, • *• 8»*

X X XX XX

8 8» ****

xxxxxxxxx

XKXXXXX X

XX X

*8® 8

* 8
X

X X
X K

X X

X X
X X

X X

and
X *(XXX

XXXX XX
X X

^XX^XXJj^XX

Sx X* X* 51 X****1{1
XX X XX X X
X XXXX XX XX

XXX XX X

X X XXX
$ ^ §

:51x51^5(x5151x51^ XX
XX

X X

X *xxx51x X

xxx^xx

XX XX
I xxxxxxx^

K X X
X XXX

XX XX
xxxxxx

XXX
X X

X XX

The icon masks for transcript files are then

XX XX
XXXX XXX XX K XXXX
Xxxxxxxxxxxxxxx xxxxxx
XXXXJ»XXXXXXXXXXXXXXXXX
xxxxxxxxxxxxxxxxxxxxxx

XXXXXXXXXXXXxxxxxxxxx

XXXSOKXXXXXXXXXXXXXXX
xxxxxxxxxxxxxxxxxxxxx
XXXXXj«KXKXXXXXXXXXXX

XXXX x5gk six x5pkx5150I1xx^
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxx

xxxxxsOlol^xxsells^
xxxxxxxxxxxxxxxxxxxxxxxxxx

XXXXXXXXSeKXXXXXXXXXXXXXXXXX

KXX XSGKXX xxxxx xxxxxxxxxxxxxx
xxxx XX seeKxx xxxxx XX xxxxxx
Kxxxxxxsexxx>^^'(^'(^>^^^^^xx

xxxxx xxxxsexxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx
xxxxxxxxxxxxx

XXX

and

xslslx xxslxx51xx5(xx xxxxx

* ^xslxslixillx 8|88i888il*
xxxxxxxxs^ xxxxxxx

xxxxxxxxxxx
xx^xxxxx

respectively.

T^X’s main output is, of course, a device-independent (DVI) file, and

METRFONT produces generic font (GF) files. I decided to represent such

files by

xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxXXXX
xxxxxxxxxxxxxxxxxx X
XX XXXX XXXX XXX X
KXK xxxxx X
K XXK «X X » XX X
XX XX XX XXXX X
XX XX XXXX X X xxxxxxxx
XXX srxxxxxxxx xx xxx x
XXXX XX XX xxxxxxx XX
XXXX X SOIOK XX xxxxx XX XX
xxx XX xseitxxx xxxxxx xx x
xxx K K XX XXS^XS^X X X
xxx XX XX xxxxxxxxx X
xxx XX XX XX XXXXXXXXXX X
xxx XX sox xxxxxxxx XX X
xxx xxxxs^xxxxxxxxxxx xxx
xxx xxxxxxxxxxxxxxxxxx XX

88 888888888815888888*8888
X xxxxxx xxxxxx xxxxx xxx

XX K xxxxxxx xxxxxx XX
xxx xxxxxx xxxxx XXXX

X xxx xxxxxx xxxxxx xxxxx
xxxxxxxxx xxxxxx X XXXX

X jiGvxxxxxxxx51515151x’'^slslx51xxi!l
XX XXXXXXXXXX XXXXXXXXXX
xxx xxxxxxx xxxxxxxxxxxx

XXXXXXXXXXXXKXXXXXXXXXXX

xxxxxxxx^xxxxxs^

ii*xx*ixi*xs^x^^^*|ii*^
XX XX x^xxxxx51xxx X xxxsl

5151x*xx5151xxxx**^*xx5l3jlx3jl**x|

515151 515151x51^5151^51x^^^^
1 XXXX xxxxxxxxxxxxxxxxxxxx

and 888 888*8i88®8j8i8i**8
xxx XX XX X xxxxxxx

888*****y**»«**88888**8
51x xxX xxx xxxxx X

ii* 5lip51x5llil|515151|g***

xxxxx XX||<XXXj<S^XXXX^X^^XXX

iliiil 51xxxxxxx*5151*515151515151
KXXXXXXXXXXXXXXXXXXXXXXX

because they are analogous to photographic “negatives” that need to be

“developed” by other software. When a GF file has been packed into a

550 Digital Typography

PK file, its icon changes to

ffHOKM MM’ktPtdU.M

::::::: ::::: • « fc** .
XXXjKKWK
arixjKjtr)KM UtK nk* M» Mg

MM MM M iKK M,MM
MM iS X mmmmmmm

M MM MMM
Mj^^M MM

i»*Sj8******««ji88**«8
XXXX MMMMMMMMMMMMMMMMMMMM

:::
MMM MM MM M MMMMMMM
MMMM M M MMMMMMMM

8*8 88888888888888*888 “
XX XXX XXX XXXX:
MMM XXXXX XXXXXXXX
XX ixxxxxxxxxxxxxx
X X xxxxxxxxxxxxxxxxxxxxx
XXX XXX X XXXXXX -

****-»«88**8888888*
.XXXX x:

‘XXX
x X

jxxx MMM MM

xxxX

XX
XXX

MMMMMMM

*88 888888

Virtual font files are represented by an analogous

xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx X

x*^iiiiiiliixiixxxx *x
iixiliilili|iiiiiixxxxx3!«

XXXXX X9ieKX XSPK XXXXXXXX

xxxlxxx XX^XXXX -lIxX^joaK
^XXXXX X XXXX XXXXXXXX
XXXXXXX XXXXX XXXXXXXX

^is^XXX xxxii(x'^ ^XX^sHIk

These file types are identifiable by the respective names *.dvi, ♦gf,

*pk, *.vf, and they can also be identified by content: The first byte

always has the numerical value 247 (octal 367), then the next byte is

respectively 2, 131, 89, 202 (octal 002, 203, 131, 312) for dvi, gf, pk,

or vf.

The other principal output of METRFONT is a font metric file, which

can be identified by the suffix .tfm in its name. I assigned the following
icon and mask to such files:

X XXXXX X
31^ ^X XX X

XXXXXX xxxxxxxxxl *ixx^ix ixxxx xxxxxxxxxxxxxxxxxx XX X XXXXXX

and

XXX
XXX

XXX

xxxxx^xxxxxxxxxxll^xa§l(X^xlleKxxxxx

I do all my programming nowadays in the CWEB language [1, 2, 3, 4],

hence I also accumulate lots of files of two additional types. CWEB source

Icons for TgX and METAFONT 551

files are identified by the suffix .w, and CWEB change files have the suffix
. ch; the corresponding icons

IK «
K IK

KXIKIKIKIKIKIKIK

«IKIKIKIKIK«IKIK

KIK

81 mik m*
88

« Km mm
m Km mm mS
m mm mmm mm mm
m mmmmmm mmm mmm mm mm
m mm mmm mm mm
m mmmmm mm mmm mm mm
m mm mmm mm mm
m mmm mm mmm mmm mm

8 88 888 888 88
mm

and

|>Km||^mmma^mmKmmmm||^mm
mm m m m" mm

m m$m m$m m8m mm *m
i mim mim ml* **
ijm* *5^* *m* mmmmmmrnm
m ^m mmmmmm ^m ^m mm

Him* ^miKm^mlKm^m ^m jfjjjj

mm m*

Immmmmmmmmmmmmmmmmmmmmmmm
Kmmmmmmmmmmmmmmmmrnmmmmmm

are intended to blend with the system’s existing conventions for . c and
• h files, mentioned above.

What foreground colors and background colors should be assigned

to these icons? I’m not sure. At the moment I have a grayscale monitor,

not color, so I don’t have enough experience to recommend particular

choices. Setting all the foreground colors equal to basic black (RGB val¬

ues (0, 0, 0)) has worked fine; but I don’t want all the background colors

to be pure white (RGB (255, 255, 255)). I’m tentatively using pure white

for the background color of the “negative” icons (dvi, gf, pk, and vf), and

off-white (RGB (230,230,230)) for the background of transcript icons.

The TeX and METflFONT source file icons currently have background

RGB values (200, 200, 255), corresponding to light blue; font metric icons

and IATeX source icons have background RGB values (255,200,200),

light red. I should probably have given METRFONT source files an or¬

ange hue, more in keeping with the cover of The METRFONTbook. On

my grayscale monitor I had to lighten the background color assigned

by the system software to C object files and to coredump files (*.o and

core*); otherwise it was impossible for me to see the detail of the system

icons
mmmmmmmmmmm^mmmmmm
m mm
m mm
m mmmmmmmmmmmmm m m
m mmmmmmrnm m
m mmmmmmuGKmmmmm m m
m mmmmmmm mmmmmmmm
m mmmmmmmmmmmmm mm
mmmmmmmm mm
m mmmmmmmmmmmmmmmmmmm mm
m mmmmmmmmmmmm
m mmmmmmmmmmmmmmmmmmm mm
m mmmmmmmmmmmm
m mmmmmmmmmmmmmmmmmmm mm
m mmmmmmmmmmmm

8 8*8*8*8*8*8*8*8*8*8 88
m mmmmmmmmmmm mm mm
K mmmmm mmmm m mm
m mmmmmmmmm mmmmmmmm mm
m mmmm mmm mmm mm
m mmmrnmmmm mmm mmm mm

8 8><8><8»8» 888 888 88
m mmmm mmm mmm mm
m mmmmmmmmm mmm mmm mm
m mm mmmmmmmm mm
m mm mmmm mm

*888888888888888888888888

and

mmmmmmmmmmmmmmmmmm^

m mm
i m m I *m

I mmm mmm lmmmmm||
m mmm mm

m mmmmm mm
m mm mm
I m*m^S(m^mj!(mmmm mm

m **mmmmm mm

on my grayscale display. I expect other users will need to adjust fore¬

ground and background colors to go with the decor of their own desktops.

552 Digital Typography

In 1989 I had my first opportunity to work with a personal graphic

workstation, and I immediately decided to make 64 x 64-bit icons for TgX

and METRFONT — for the programs, not for the files. But I’ve always

found it more convenient to run METRFONT from UNIX shells.

so I never have used those early icons,

their proper raison d’etre:

Here they are, still waiting for

I * **W % x(

^*** *8**51*
iK mmmm n k

K
X X

Xxil(XXX

XMX
XX

xxxxx

xxxx

x$ xxS
miXM ifMm
XXX X

XXX X
$ ^

XX
xxxx

xxxx
X X

X X
XXX

XXX
XX X

iiexx

xxxi

XX X
X

XXX

X X X X X S^X XX X X

X X XX
XX X XX

XX XXX X

xxxx XXX

xxxx X 9ieK
XX XX X*X X

^xxx^*x^^xx*x*x^ *XX *

X *X * „* ** .

xxxx
XXX

^ ^ i XXX
r* I
X X

X x*x
XXX

XXX

X XXX
XX XX X ^
XX X XX X XX XXX

XXX
X XX

XX X
X X

XXXXXXXXX X I **^l**^** *
XXX*

X XX
xxxxst^^x^^^

xxxxxx ^xxxxa^

XX3KX X

Xxxxxxx
X XXX x^

XX X
X XX XX

(X X

XX *

^3«xxx**
XXX

8***
X xxxxxx xxxx

**

Xx3P1l(X
X X

XX X
X X
X X

X X X *eK

X XX XX X*X* X X
xxxx X XMOK

X XX X X XX
XX

XX X xxxx

All of the icons shown above, except for those already present in

directory /usr/openwin/share/include/images of the OpenWindows

Icons for and METRFONT 553

distribution from Sun Microsystems, can be obtained via anonymous

ftp from directory ~ftp/pub/tex/icons at labrea.stanford.edu on

the Internet. That directory also contains a file called cetex.ascii,

which can be used to install the icons into OpenWindows by saying

‘ce_db_merge system-from_ascii cetex.ascii’.

References

[1] CWEB public distribution, available by anonymous ftp from directory

~ftp/pub/cweb at labrea.Stanford.edu.

[2] Donald E. Knuth, Literate Programming, CSLI Lecture Notes 27

(Stanford, California: Center for the Study of Language and Infor¬

mation, 1992). Distributed by Cambridge University Press.

[3] Donald E. Knuth, The Stanford GraphBase: A Platform for Com¬

binatorial Computing (New York: ACM Press, 1993).

[4] Donald E. Knuth and Silvio Levy, The CWEB System of Structured

Documentation, Version 3.0 (Reading, Massachusetts: Addison-

Wesley, 1993). An up-to-date version is available online in [1].

Addendum

The icons developed for OpenWindows have now been adapted to other

window systems by several volunteers. They can be found, for example,

in directory support/icons/ of the CTAN archives.

S 'IC* ' '

***■: •■ . n ? *■■ " • '\ •■'■
■ * 4. . c-J* ■ ' . '

. • ■ ^ . 4 « ‘ -T' , If J ' w ' '• ' •

I ' ' ■ , w «>¥’ 1 < •«. - ’ .J _ ^

♦ --

./iV

}f

fr^ «* ^i|■• *-. -

fWf 4' • -^ •
4iS!^ '..‘tfMf ’ ■’ <■•

i ■■ . - w f.. • . < . ■'

’*'* H ' 4< 1. * •’ **

•»!•< i a 4. "

r ’ I ^ . I 11 ''t' >1 '

•»j-' A

^ arut'L

vii (* .—^4 4

■• - .*t#

4

f

V
■fl

Chapter 28

Computers and Typesetting

[Remarks presented at the Computer Museum, Boston, Massachusetts,

on 21 May 1986, as part of a “coming-out party” to celebrate the com¬

pletion ofTpiX. Originally published in TUGboat 7 (1986), 95-98.]

The title of the books weTe celebrating today is Computers & Type¬

setting, and since we’re meeting here in the Computer Museum I think

it’s appropriate to point out that computers have been intimately asso¬

ciated with typesetting ever since the very beginning.

Anybody who reads about the history of computers will soon learn

that many of the key ideas go back to 19th century England, where

Charles Babbage designed a so-called Difference Engine and went on

from there to plan his Analytical Engine. Babbage’s machines were never

completed, but a Swedish author and publisher named Georg Scheutz

read about them and was so fascinated that he and his son Edvard

actually built a working difference engine. Thus it was that the first so¬

phisticated computing device came to be built in Sweden. And the most

interesting thing, to me at least, was that the output of the Scheutz ma¬

chine was not punched cards or anything like that; their machine actually

produced stereotype molds from which books could be printed!^

^ Babbage had been planning all along to typeset the output of his Difference

Engine; for this purpose he had experimented with movable type, stereo¬

typing, and copper punches, but he never exhibited the results of those

experiments. His Analytical Engine, which was to be controlled by punched

cards, was supposedly going to be able to print its results as well as to punch

them on cards. See Charles Babbage, Passages From the Life of a Philoso¬

pher (London; Longman, Green, Longman, Roberts, & Green, 1864), Chap¬

ters 5 and 8; reprinted in Charles Babbage and His Calculating Engines,

edited by Philip and Emily Morrison (New York: Dover, 1961), 35-37, 61.

Even earlier, J. H. Muller had planned to add a printing apparatus to

the mechanical calculator he had invented: “If the calculator sells well. I’ll

555

556 Digital Typography

Several books were, indeed, printed from the output of the early

Swedish machine. It was demonstrated in 1856 at the Universal Expo¬

sition in Paris, and the souvenir album of that exposition contains the

following glowing tribute: “This nearly intelligent machine not only ef¬

fects in seconds calculations that would demand an hour; it prints the

residts that it obtains, adding the merit of neat calligraphy to the merit

of calculation without possible error.” ^ I have copied a small part of

a page from the first computer-produced book — printed in 1857 — so

that you can see how far we’ve come since then:^

2405
2400
2407
2408
2409

38112
38130
38148
38100
38184

As far as I know, the tables in this book represent the first extant output

of an automatic calculator.^

go on to make a machine that prints any arbitrary arithmetical progression,

either as a sequence of plain numbers or together with the argument sepa¬

rated by a line, on paper with printer’s ink, stopping itself when the page

is full.” See his letter of 9 September 1784 in Georg Christoph Lichtenberg

Briefwechsel 2, edited by Ulrich Joost and Albert Schone (Munich: C. H.

Beck, 1985), 905.

^ Leon Brisse, Album de I’Exposition Universelle (Paris, 1857), 194. (Cited in

Uta C. Merzbach, Georg Scheutz and the First Printing Calculator [Wash¬

ington: Smithsonian Institution Press, 1977].)

^ George and Edward Scheutz, Specimens of Tables, Calculated, Stereo-

moulded, and Printed by Machinery (London: Longman, Brown, Green,

Longmans, & Roberts, 1857), 50 pp. The example reproduced here comes

from the main table on pages 13-42, which contains logarithms of the in¬

tegers from 1 to 10,000. Fourteen other tables were also included to prove

the versatility of such a machine, which produced its output at the rate

of 120 numbers per hour. The Boston Public Library has two copies of

this book, originally sent by Edvard Scheutz to Benjamin A. Gould (dated

1 May 1857) and to the Nathaniel Bowditch Library (dated 11 May).

^ No; 1 learned later that Georg Scheutz had previously published a short

table that was calculated and stereotyped on the first machine that he and

his son had put together. Page 74 of his book Nytt och Enkelt Satt att Losa

Computers and Typesetting 557

I’d also like to say a few words about the history of my own work
on computers and typesetting. Last week I went back to my diary of
1977 and found an entry from Thursday, May 5, where it says “Design of
TEX started.” My diary^ says that I worked intensely on the design all
day Thursday, Friday and Saturday; then I went to see Airport 77 and
Earthquake to relax. The entry for the following Thursday says: “Wrote
draft report on TEX, stayed up till 5 am typing it into machine.” That
weekend I went with my wife on a tour of the Sacramento area with
Stanford’s Library Associates. We saw many examples of fine printing
during that trip, and this experience encouraged me to read a lot of
books about font design during the following week. My diary entry for
Saturday, 21 May 1977 — exactly nine years ago today — says that by
5 am I had completed a “rough draft of lowercase and uppercase Roman
and italics and digits 0-9.” After a few hours of sleep, I spent the rest
of that Saturday writing computer programs to plot curves on a raster.
Oh, how little I knew in those days about how difficult it would be to
complete this work, which I had sketched out in about two weeks!

Why did I start working on Tg^ in 1977? The whole thing ac¬
tually began long before, in connection with my books on The Art of
Computer Programming. I had prepared a second edition of Volume 2,
but when I received galley proofs they looked awful — because printing

Nummereqvationer af Hogre ocb Lagre Grader (Stockholm: J. L. Brudins,

1849), contains the values of — 3x^ + 90037x for 1 < x < 25, beginning

as follows:
1 90035
2 180070
3 270111
4 360164
5 450235

This first-ever example of an automatically printed table was brought to the

attention of computer science historians by Michael Lindgren, whose book

Glory and Failure (Stockholm: Royal Institute of Technology Library, 1987),

contains fascinating details about all aspects of the Scheutz machines. In

particular, page 150 of Lindgren’s book shows the actual stereotype plate

that had been used to print the demonstration table in 1849; leading zeros

had been scratched off by hand! (That was not true in 1857.) Notice that

the individual digits of Scheutz’s type were aligned much more neatly in

1849 than in 1857, presumably because a short demonstration table was

less burdensome for the machine than a long production run.

^ See Chapter 24 of the present volume.

558 Digital Typography

technology had changed drastically since the first edition had been pub¬

lished. The books were now done with phototypesetting, instead of hot

lead Monotype machines; and (alas!) they were being done with the help

of computers instead of by hand. The result was poor spacing, especially

in the math, and the fonts of type were terrible by comparison with the

originals. I was quite discouraged by this, and didn’t know what to

do. Addison-Wesley offered to reset everything by the old Monotype

method, but I knew that the old way was dying out fast; surely by the

time I had finished Volume 4 the same problem would arise again, and I

didn’t want to write a book that would come out looking like the recent

galleys I had seen.

Then a nice thing happened. I was on a committee to revise Stan¬

ford’s reading list for our department’s comprehensive exam, and one

of the things we had to do was evaluate a book that Pat Winston had

just written about Artificial Intelligence. We received galley proofs of

that book, and the story we were told was that these galleys had been

generated by a new machine in Southern California [at Information Inter¬

nation, Inc.], all based on a discrete high-resolution raster. Apparently

one of Winston’s students at M.I.T. had flown to Los Angeles with that

book on magnetic tape, and the galley proofs we saw were the result.

Well, I had had lots of experience with rasterized printing, but only at

low resolution, so I thought of bitmaps simply as amusing approxima¬

tions to “real” typography. When I saw the galleys of Winston’s book,

I was astounded, because the resolution was so good I couldn’t tell that

the type was actually digital. In fact the digital type looked a lot better

than what I had been getting in my own galley proofs.

Digital typesetting means patterns of Os and Is, and computer sci¬

ence can be thought of as the study of patterns of Os and Is. Therefore,

it dawned on me for the first time that I, as a computer scientist, would

be able to help solve the printing problem that was worrying me so much.

I didn’t need to know about metallurgy or optics or chemistry or any¬

thing scary like that; all I had to do was construct the right pattern of

Os and Is and send it to a high-resolution digital typesetter like that ma¬

chine in Southern California; then I’d have my books the way I wanted

them. In other words, the problem of quality printing had been reduced

to a problem about Os and Is. Therefore it was almost an obligation for

a computer scientist like myself to study the problem carefully.

Within a week after seeing the galleys of Winston’s book, I decided

to drop everything else and to work on digital typography. Professor

Winston unfortunately couldn’t be present here today, but I have to

say: Pat, I can’t thank you enough for having written that book!

Computers and Typesetting 559

Ever since those beginnings in 1977, the TgX research project that I

embarked on was driven by two major goals. The first goal was quality:

we wanted to produce documents that were not just nice, but actually

the best. Once upon a time, computers could deal only with numbers;

then several years passed when they had numbers and uppercase letters;

after awhile they became able to deal with both uppercase and lowercase;

then they became capable of working with letters of variable width; and

by 1977 there were several systems that could produce very attractive

documents. My goal was to take the last step and go all the way, to the

finest quality that had ever been achieved in printed documents.

It turned out that it was not hard to achieve this level of quality

with respect to the formatting of text, after about two years of work.

For example, we did experiments with Time magazine to prove that

Time would look much better if it had been done with But it

turned out that the design of typefaces was much more difficult than

I had anticipated; seven years went by before I was able to generate

letterforms that I began to like.

The second major design goal was to be archival: to create systems

that would be independent of changes in printing technology as much

as possible. When the next generations of printing devices came along,

I wanted to be able to retain the same quality already achieved, instead

of having to solve all the problems anew. I wanted to design something

that would still be usable in 100 years. In other words, my goal was to

arrange things so that, if book specifications were saved now, our de¬

scendants could produce an equivalent book in the year 2086. Although

I expect that there will be a continual development of “front ends” to

TeX and METRFONT, as well as a continual development of “back ends”

or device drivers that operate on the output of the systems, I designed

TEjX and METRFONT themselves so that they will not have to change

at all: They should be able to serve as useful fixed points in the middle,

solid enough to build on and to rely on.

Today I’d like to brag a little, and say that I think that these goals

of top quality and technology independence seem to be achieved; and

Volumes A, B, C, D, E tell everything about how it was done. Today

I’m seeing these books for the first time, and I’m happy that all of you

can be here to help me celebrate this event. These books are somewhat

unusual because they describe themselves: They describe exactly how

they were typeset. All of the formatting was done by the system

described in Volumes A and B. Also every letter and every symbol that

appears in all five volumes, as well as on the covers and book jackets,

was done by the METRFONT system described in Volumes C and D.

560 Digital Typography

Volume E tells how I dotted all the i’s and crossed all the t’s, literally.

If copies of these books were sent to Mars, the Martians would be able

to use them to recreate the patterns of Os and Is that were used in the

typesetting. Essentially everything I learned during the past nine years

is in here.

All of the methods described in these books are in the public do¬

main; thus anybody can freely use any of the ideas. The only thing

I’m retaining control of is the names, TJi;X and METRFONT: Products

that go by either name are obliged to conform to the standard. If any

changes are made, I won’t complain, as long as the changed systems are

not called TgX or METRFONT.

Volumes A and C are user manuals. I tried to write manuals that

would suit users at all levels as they grow with the systems. And I also

strove for a high standard of excellence in the choice of the quotations

from other works that are included at the end of every chapter.

Volumes B and D contain the complete program listings of T^X

and METRFONT. These books are specifically for computer scientists,

not for casual users, but I’m especially pleased with how they came out

because they represent an unexpected payoff of my research. This is

something that I had no idea would be possible when I began nine years

ago. As I wrote the programs for and METRFONT, I wanted to

produce systems that would represent the state of the art in computer

programming, and this goal led to the so-called WEB system of struc¬

tured documentation. I think that WEB might turn out to be the most

important thing about all this research — more important in the long

run than TgX and METRFONT themselves — because WEB represents a

new way to write software that I think is really better than any other

way. The use of WEB has made it possible to write programs that are so

readable, I think there already are more people who understand the inner

workings of Te^ than now understand any other system of comparable

size. Furthermore I think it’s fair to claim that WEB has made T^X and

METRFONT as portable, as maintainable, and as reliable as any other

pieces of software in existence. The programs are now running and pro¬

ducing essentially identical results on almost all large computers; there

are thousands of users, yet no bugs have been reported for more than

half a year. I think there is at most one more bug in 1^, and I’m

willing to pay $20.48 to the first person who finds it. (Next year the
reward will double, to $40.96, etc.)®

® (Editor’s note.) A listener asked, how much had it cost to pay off the finders

of bugs in the programs and errors in the books? Depending on how many

Computers and Typesetting 561

Volumes B and D also contain another innovation that improves on

the basic WEB system previously available: Every pair of facing pages has

a mini-index on the right-hand page, for quick cross reference to any¬

thing that’s referred to on either page; this saves a lot of time thumbing

through the master index at the end.

In recent years I’ve been making a pitch for programs as works of

literature. Although there still is no Pulitzer Prize for the best-written

computer programs of the year, I tried to write Volumes B and D in

such a way that I would be a candidate for such a prize if it were ac¬

tually given! More seriously, I intended these books to be useful to

computer scientists for self study as well as for study in college semi¬

nars. Volume D, in particular, should make a good text for a group of

advanced students.

The fifth volume. Volume E, is the most fun of all. I hope you

will all open a copy and riffle through the pages, so that you can see

what I mean. METRFONT is a computer language that is not very much

like any other, so my goal in this book was to provide lots of examples

of how METRFONT can be used to produce fonts of reasonably good

quality. Over 500 examples appear here; they cover nearly every letter,

digit, punctuation mark, and other symbol that was used in printing

these books.

The fonts you get from these programs have the general name “Com¬

puter Modern.” My colleague Charles Bigelow has contributed an in¬

troduction that talks about Modern fonts in general. The book explains

how you can make your own personal variations of the fonts, which are

designed with many parameters so that they can be generated in al¬

most limitless variety. At the end of the book there are sample pages

that show specimens of 75 standard Computer Modern typefaces; and

thousands of additional varieties could be generated with ease.

Even if you don’t read the METRFONT programs in this book, I

think it’s appealing just to look at the pictures of these constructed

alphabets,” and to “know” that the program on the page facing each

letter was what “drew” that letter; it’s all there. Somehow this gives a

satisfying sense of completeness and order.

checks were actually cashed, Don estimated the total to be between $2,000

and $5,000. It is doubtful that the checkbook in question is easily balanced.

^ (Editor’s note.) The pictures, it was pointed out, were generated separately

from the text of the examples, and pasted in. If both the raster images and

the text had been incorporated at the same time, it would have exceeded

the capacity of the machines used to produce the book in 1985.

562 Digital Typography

The most important thing I want to talk about this morning is

HELP. I had lots and lots of help — literally hundreds of people who vol¬

unteered to assist this project in significant ways — beginning with Hans

Wolf of Addison-Wesley, who taught me the details of the Monotype

systems that had been used to typeset The Art of Computer Program¬

ming in the 60s. I was especially fortunate in my work on font design

to have had extensive help from world leaders like Hermann Zapf and

Matthew Carter.

Another stroke of luck was to have outstanding research associates

like David Fuchs and John Hobby. Furthermore my research project at

Stanford had generous financial support, most notably from the National

Science Foundation and the System Development Foundation. With so

much help, it would have been very hard for my research to fail. And

my wife Jill gave the most help of all. (Next month we will celebrate 25

years of marriage!)

One final note: People often ask me why and METRFONT are

symbolized in these books by a lion and a lioness. When Duane Bibby

first came up with the lion idea, I instinctively felt that it was right, but

I never understood exactly why this was, until about a month ago when

I was in the Boston Public Library. I passed by the magnificent stone

lions on the library’s grand staircase, and I thought: “That’s it! T^X

and METRFONT try to be like these lions, fixtures that support a great

library.® I love books, and lions represent books!” No wonder Pm so

happy when I realize that and METRFONT have already contributed

to the making of several dozen books of fine quality: It makes me ex¬

tremely pleased to think that this research will probably contribute to

the making of many more fine books in years to come.

® (Editor’s note.) One is also reminded of the lions that grandly guard the

entrance to the New York Public Library, which celebrated its 75th anniver¬
sary during this same week.

Chapter 29

The New Versions of

TeX and METRFONT

[Originally published in TUGboat 10 (1989), 325-328; 11 (1990), 12.]

For more than five years I held firm to my conviction that a stable system

was far better than a system that continues to evolve. But during the

TUG meeting at Stanford in August, 1989, I was persuaded to make one

last set of changes, in order to bring T^X and METRFONT to a state of

completion consistent with their overall philosophy and goals.

The main reason for the changes was the fact that I had guessed

wrong about 7-bit character sets versus 8-bit character sets. I believed

that standard text input would continue indefinitely to be confined to at

most 128 characters, since I did not think a keyboard with 256 different

outputs would be especially efficient. Needless to say, I was proved

wrong, especially by developments in Europe and Asia. As soon as I

realized that a text formatting program with 7-bit input would rapidly

begin to seem as archaic as the 6-bit systems we once had, I knew that

a fundamental revision was necessary.

But the 7-bit assumption pervaded everything, so I needed to take

the programs apart and redo them thoroughly in 8-bit style. This put

TeX onto the operating table and under the knife for the first time since

1984, and I had a final opportunity to include a few new features that

had occurred to me or been suggested by users since then.

The new extensions are entirely upward compatible with previous

versions of T^X and METRFONT (with a few small exceptions mentioned

below). This means that error-free inputs to the old T^]X and METR¬

FONT will still be error-free inputs to the new systems, and they will

still produce the same outputs.

However, anybody who dares to use the new extensions will be un¬

able to get the desired results from old versions of T^)X and METRFONT.

I am therefore asking the T^]X community to update all copies of the

563

564 Digital Typography

old versions as soon as possible. Let us root out and destroy the ob¬

solete 7-bit systems, even though we were able to do many fine things

with them.

In this note I’ll discuss the changes, one by one; then I’ll describe

the exceptions to upward compatibility.

The Character Set

Up to 256 distinct characters are now allowed in input files. The codes

that were formerly limited to the range 0.. 127 are now in the range

0.. 255. All characters are alike; you are free to use any character

for any purpose in T^X, assigning appropriate values to its \catcode,

\mathcode, \lccode, \uccode, \sfcode, and \delcode. Plain T^X ini¬

tializes these code values for characters above 127 just as it initializes

the codes for ordinary punctuation characters like ‘!’.

There’s a new convention for inputting an arbitrary 8-bit character

to TeX when you can’t necessarily type it: The four consecutive charac¬

ters “~q;/3, where a and (3 are any of the “lowercase hexadecimal digits”

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, or f, are treated by TgX on input

as if they were a single character with specified code digits. For example,

""80 gives character code 128; the entire character set is available from

""00 to ""ff. The old convention discussed in Appendix C, under which

character 0 was ""(§, character 1 (control-A) was ""A, ..., and character

127 was ""?, still works for the first 128 character codes, except that

the character following "" should not be a lowercase hexadecimal digit

when the immediately following character is another such digit.

The existence of 8-bit characters has less effect in METflFONT than

in T^, because METR FONT’S character classes are built in to each in¬

stallation. The normal set of 95 printing characters described on page 51

of The METRFONTbook can be supplemented by extended characters

as discussed on page 282, but this is rarely done because it leads to

problems of portability. METRFONT’s char operator is now redefined to
operate modulo 256 instead of modulo 128.

Hyphenation Tables

Up to 256 distinct sets of rules for hyphenation are now allowed in TgX.

There’s a new integer parameter called \language, whose current value

specifies the hyphenation convention in force. If Xlanguage is negative
or greater than 255, TeX acts as if \language is zero.

When you list hyphenation exceptions with Tl^X’s \hyphenation

primitive, those exceptions apply to the current language only. Simi¬

larly, the \patterns primitive tells TeX to remember new hyphenation

The New Versions of TeX and METRFONT 565

patterns for the current language; this operation is allowed only in the

special “initialization” program called INITEX. Hyphenation exceptions

can be added at any time, but new patterns cannot be added after a

paragraph has been typeset.

When TgX reads the text of a paragraj)!!, it automatically inserts

“whatsit nodes” into the horizontal list for that paragraph whenever a

character comes from a different \language than its predecessor. In

that way TgX can tell wdiat hyphenation ndes to use on each word of

the paragraph even if you switch frecpiently back and forth among many

different languages.

The special whatsit nodes ai’e inserted automatically in unrestricted

horizontal mode (that is, when you are creating a paragraph, but

not when you are specifying the contents of an hbox). You can in¬

sert a special whatsit yourself in restricted horizontal mode by saying

\setlanguage(number). This is needed only if you are doing something

tricky, like unboxing some contribution to a paragraph.

Hyphenated Fragment Control

TgX has two new parameters Mefthyphenmin and \righthyphenmin,

which specify the smallest word fragments that will appear at the begin¬

ning or end of a word that has been hyphenated. Previously the values

\lef thypheninin=2 and \righthyphenmin=3 were hard-wired into T^X

and impossible to change. Now plain format supplies the old values,

w'hich are still recommended for most American publications; but you

can get more hyphens by decreasing these parameters, and you can get

fewer hyphens by increasing them. If the sum of Mefthyphenmin and

\righthyphenmin is 63 or more, ail hyphenation is suppressed. (You

can also suppress hyphenation by using a font with \hyphenchar=-l,

or by switching to a \language that has no hyphenation patterns or

exceptions.)

Smarter Ligatures

Now here’s the most radical change. Previous versions of TLX had only

one kind of ligature, in which two characters like ‘f ’ and ‘i’ were changed

into a single character like ‘fi’ when they appeared consecutively. The

new TLX understands much more complex constructions by which, for

example, we could change a ‘j’ following ‘f’ to a dotless ‘j’ while the ‘f’

remains unchanged: ‘fj’.

As before, you get ligatures only if they have been provided in the

font you are using. Before we look at the new features of METRFONT,

566 Digital Typography

by which enhanced ligatures can be created, let’s review the old con¬

ventions. A METRFONT programmer has always been able to specify a

“ligature/kerning program” for any character of the font being created.

If, for example, the ‘fi’ combination appears in font position 12, the

replacement of ‘f’ and ‘i’ by ‘fi’ is specified by including the statement

"i" =: 12

in the ligature/kerning program for "f"; this is METRFONT’s present

convention.

The new ligatures allow you to retain one or both of the original

characters while inserting a new one. Instead of =: you can also write

I =: if you wish to retain the left character, or =: I if you wish to retain

the right character, or I =: I if you want to keep them both. For example,

if the dotless ‘j’ appears in font position 17, you can get the behavior

mentioned above by putting

HjM |=. 17

into f’s ligature/kern program.

There also are four additional operators

l = :>, =:|>, l = :l>, l = :|»,

where each > tells T^X to shift its focus one position to the right. For

example, after f and j have been replaced by f and dotless j as above, T^X

will begin again to execute f’s ligature/kern program, possibly inserting

a kern before the dotless j, or possibly changing the f to an entirely

different character, etc. But if the instruction had been

''j'' | = :> 17

instead, Tg^ would turn immediately to the ligature/kern program for

characters following character 17 (the dotless j); no further change would

be made between f and j even if the font had something specified for that
combination.

Boundary Ligatures

Every consecutive string of “characters” read by TgX in horizontal mode

(after macro expansion) can be called a “word.” (Technically we con¬

sider a “character” in this definition to be either a character whose

\catcode is a letter or otherchar, or a control sequence that has been

The New Versions of and METRFONT 567

Met equal to such a character, or a control sequence that has been de¬

fined by \chardef, or the construction \char(nuinber).) The new TgX

now imagines that there is an invisible “left boundary character” just

before every such word, and an invisible “right boundary character” just

after it. These boundary characters take effect if the font designer has

specified ligatures and/or kerning between them and the adjacent let¬

ters. Thus, the first or last character of a word can now be made to

change its shape automatically.

A ligature/kern program for the left boundary character is spec¬

ified within METRFONT by using the special label I I : in a ligtable

command. A ligature or kern with the right boundary character is spec¬

ified by assigning a value to the new internal METRFONT parameter

boundary char', and by specifying a ligature or kern with respect to this

character. The boundarychar may or may not exist as a real character

in the font.

For example, suppose we want to change the first letter of a word

from ‘F’ to ‘ff’ if we are doing some olde English. The METRFONT font

designer could then say

ligtable ||: "F" |=; 11

if character 11 is the ‘ff’. The same ligtable instruction should appear

in the programs for characters like (and ‘ and “ and - that can pre¬

cede strings of letters; then ‘Bassington-French’ will yield ‘Bassington-

ffrench’.

If the ‘s’ of our font is the pre-19th century s that looks like a

mutilated ‘f’ (namely ‘f’), and if we have a modern ‘s’ in position 128,

we can convert the final s’s as Ben Franklin did by introducing ligature

instructions such as

boundarychar := 255;

ligtable "s": 255 =:
It II — .

II II — .
y •

") " — .

It ; II — .

128,

128,

128,

128,

128,

and so on. (A true oldstyle font would also have ligatures for ss and si

and si and ssi and ssl and sh and possibly st; it would be fun to create

a Computer Modern Oldftyle, perhaps for a Chriftmas newfletter.)

The implicit left boundary character is omitted by if you say

\noboundary just before the word; the implicit right boundary is omitted

if you say \noboundary just after it.

568 Digital Typography

More Compact Ligatures

Two or more ligtables can now share common code. To do this in METfl-

FONT, you say ‘skipto (n)’ at the end of one ligtable command, then

you say ‘(n)::’ within another. Such local labels can be reused; for

example, you can say skipto 1 again after 1: : has appeared, and this

skips to the next appearance of 1: :. There are 256 local labels, num¬

bered 0 to 255. Restriction: At most 128 ligature or kern commands

can intervene between a skipto and its matching label.

The TFM file format has been extended in an upwardly compati¬

ble way to allow more than 32,500 ligature/kern commands per font.

(Previously there was an effective limit of 256.)

Better Looking Sloppiness

There is now a better way to avoid overfull boxes, for people who

don’t want to look at their documents to fix unfeasible line breaks

manually. Such people have previously tried to do this by setting

\tolerance=10000, but the result was terrible because would tend

to consolidate all the badness in one truly horrible line. (TeX considers

all badness > 10000 to be infinitely bad, and all such infinities are equal.)

A new dimension parameter called \emergencystretch provides

a better way. If \emergencystretch is positive and if TgX has been

unable to typeset a paragraph without exceeding the given tolerances,

another pass over the paragraph is made in which TgX pretends that

additional stretchability equal to \emergencystretch is present in ev¬

ery line. The effect of this is to scale down all the badnesses into a range

where previously infinite cases become finite; TgX will find an optimum

solution to the scaled-down problem, and this will be about as good

as possible in a practical sense. (The extra stretchability is not really

present; therefore underfull boxes will be reported in warning messages
unless \hbadness is increased.)

Looking at Badness

TeX has a new internal integer parameter called \badness that records

the badness of the box it has most recently constructed. If that box

was overfull, \badness will be 1000000; otherwise \badness will be be¬
tween 0 and 10000.

Looking at the Line Number

also has a new internal integer parameter called \inputlineno,

which contains the number of the line that would show on an error

The New Versions of and METfiFONT 569

message if an error occurred now. (This parameter and \badness are

“read only” in the same way as \lastpenalty: Yon can use them in the

context of a (number), e.g., by saying ‘ifnuin\inputlineno>\badness

... \fi’ or ‘\the\inputlineno’, but you cannot set them to new val¬
ues.)

Not Looking at Error Content

There’s a new integer parameter called \errorcontextlines that spec¬

ifies the maximum number of two-line pairs of context displayed with

TLN’s error messages (in addition to the top and bottom lines, which

always appear). Plain T^X now sets \errorcontextlines=5, but

higher-level format packages might prefer \errorcontextlines=l or

even \errorcontextlines=0. In the latter case, an error that pre¬

viously involved three or more pairs of context would now appear as
follows:

! Error.

<somewhere> The \top

line

1.123 \The

bottom line.

If \errorcontextlines<0 you wouldn’t even see the ‘. . .’ here.)

Output Recycling

One more new integer parameter, called \holdinginserts, completes

the set. If \holdinginserts>0 when is putting the current page

into \box255 for the \output routine, will not move anything from

insertion nodes into the corresponding boxes; all insertion nodes will

stay in place. Designers of output routines can use this when they want

to put the contents of box 255 back into the current page to be rebroken

(because they might want to change \vsize or something).

Exceptions to Upward Compatibility

The new features of and METRFONT imply that a few things work

differently than before. I will try to list all such cases here (except when

the previous behavior was erroneous due to a bug in IhiX or METR¬

FONT). I don’t know of any cases where users will actually be affected,

because all of these exceptions are pretty esoteric.

570 Digital Typography

• TeX used to convert the character strings "“0, ~~1, "~9, “"a,

“■'b, “"c, “~d, ““e, into the respective single characters p, q, ..., y,

y,, &. It will no longer do this if the following character is one

of the hexadecimal digits 0123456789abcdef.

• used to insert no character at the end of an input line if

\endlinechar>127. It will now insert a character in that place un¬

less \endlinechar>255. (As previously, \endlinechar<0 suppresses

the end-of-line character. This character is normally 13 = = ASCII

control-M = carriage return.)

• Some diagnostic messages from used to have the notation

["80] .. ["FF] when referring to characters in the range 128 .. 255 (for

example when displaying the contents of an overfull box involving fonts

that include such characters). The notation ~“80 .. ~“ff is now used

instead.

• The expressions char 128 and charO used to be equivalent in

METRFONT; now char is defined modulo 256 instead. Hence char — 1 =

char 255, etc.

• INITEX used to forget all previous hyphenation patterns each time

you specified \patterns. Now all hyphenation pattern specifications

are cumulative, and you are not permitted to use \patterns after a
paragraph has been hyphenated by INITEX.

• used to act a bit differently when you tried to typeset missing

characters of a font. A missing character is now considered to be a

word boundary, so you will get slightly more diagnostic output when
\tracingcoinmaiids>0.

• T^]X and METRFONT will report different statistics at the end of
a run because they now have a different number of primitives.

• Programs that use the string pool feature of TANGLE will no longer

run without changes, because the new TANGLE starts numbering multi¬
character strings at 256 instead of 128.

• INITEX programs must now set the values \Ief thyphenmin=2 and

\righthypheniiiin=3 in order to reproduce their previous behavior.

Chapter 30

The Future of TeX and METRFONT

[Originally published in TUGboat 11 {1990), 489.]

My work on developing T[^, METRFONT, and Computer Modern has

come to an end. I will make no further changes except to correct ex¬

tremely serious bugs.

I have put these systems into the public domain so that people

everywhere can use the ideas freely if they wish. I have also spent

thousands of hours trying to ensure that the systems produce essentially

identical results on all computers. I strongly believe that an unchanging

system has great value, in spite of the fact that any complex system

can be improved. Therefore I believe that it is unwise to make further

“improvements” to the systems called T^ and METRFONT. Let us

regard these systems as fixed points, which should give the same results

100 years from now that they produce today.

The current version number for T^X is 3.1, and for METRFONT it

is 2.7. If corrections are necessary, the next versions of will be

3.14, then 3.141, then 3.1415, ..., converging to the ratio of a circle’s

circumference to its diameter; for METRFONT the sequence will be 2.71,

2.718, ..., converging to the base of natural logarithms. I intend to

be fully responsible for all changes to these systems for the rest of my

life. I will periodically study reports of apparent bugs, and I will decide

whether changes need to be made. Rewards will be paid to the first

finders of any true bugs, at my discretion, but I can no longer afford

to double the size of the reward each year. Whenever I have created

a new version, I will put it in the official master archive, which

currently resides at Stanford University. At the time of my death, it

is my intention that the then-current versions of and METRFONT

be forever left unchanged, except that the final version numbers to be

reported in the “banner” lines of the programs should become

TeX, Version π

571

572 Digital Typography

and

METAFONT, Version e

respectively. Prom that moment on, all “bugs” will be permanent

“features.”
As stated on the copyright pages of Volumes B, D, and E, anybody

can make use of my programs in whatever way they wish, as long as

they do not use the names TgX, METRFONT, or Computer Modern.

In particular, any person or group who wants to produce a program

superior to mine is free to do so. However, nobody is allowed to call

a system or METRFONT unless that system conforms 100% to my

own programs, as I have specified in the manuals for the TRIP and TRAP

tests. And nobody is allowed to use the names of the Computer Modern

fonts in Volume E for any fonts that do not produce identical tfm files.

This prohibition applies to all people or machines, whether appointed

by TUG or by any other organization. I do not intend to delegate

the responsibility for maintenance of TJiX, METRFONT, or Computer

Modern to anybody else, ever.

Of course I do not claim to have found the best solution to every

probleiu. I simply claim that it is a great advantage to have a fixed

point as a building block. Improved macro packages can be added on

the input side; improved device drivers can be added on the output side.

I welcome continued research that will lead to alternative systems that

can typeset documents better than T^^X is able to do. But the authors

of such systems must think of another name.

That is all I ask, after devoting a substantial portion of my life to

the creation of these systems and making them available to everybody

in the world. I sincerely hope that the members of TUG will help me

to enforce these wishes, by putting severe pressnre on any person or

group who produces any incompatible system and calls it Tg^ or METR¬

FONT or Computer Modern — no matter how slight the incompatibility
might seem.

Chapter 31

Questions and Answers, I

[Q&A Session at the annua] meeting of the Users Group, on 25 July

1995 in St. Petersburg, Florida. Originally published in TUGboat 17

(1996), 7-22; edited by Christina Thiele, based on tape recordings by

Calvin Jackson and Jeremy^ Gibbons. The session was called to order

by Barbara Beeton.J

Barbara: I’ve had the pleasure of knowing Don for quite a long time.

I’d like to start off with the first question ... the obvious question, other

than what the T-shirt means; How’s Volume 4 doing? [laughter]

Don Knuth: Thank you very much, Barbara. You said that I’m

the reason most of you are here. I think that Barbara is just as much

a part of the reason, as me or anyone, about why we’re here. She’s

done wonderful work for us all these years as editor of TUGboat and

coordinator of many other activities.

573

574 Digital Typography

You know, the reason I came to this meeting is that, after the tenth

TUG conference, I promised I would come to the 16th because that was

the most important number for a computer scientist. Sixteen is not only

a power of two, it’s two to a power of two:

[laughter] It’s about as binary a number as you can get, until 65,536.

Numbers are important to me. So this is a momentous meeting for the

whole project.

I looked up what was I doing exactly 16 years ago today. And I

found out that, of all things, I was working with Barbara Beeton, who

had come to Stanford for 2 or 3 weeks on behalf of the American Math

Society. She and some colleagues were showing me the problems they

were having with making the index to Math Reviews. So on 25 July 1979,

Barbara and I were trying to figure out how to do a Math Reviews

index. Our work led to more powerful facilities for leaders and things

like that, because the index to Math Reviews occasionally presents lots

of problems where you have to run the dots in a certain way, based

on how many references there are. It was very interesting because I

found two bugs in TgX that day — they were numbers 414 and 415 in

the history of the development of T^. Something to do with an error

message in case you get to an end-of-file in the middle of something else

... I think it was that kind of error. That was sixteen years ago today.

Barbara asked, “Why do I have this T-shirt on?” The T-shirt says:

x^+y^ = z^ ...NOT!

That’s a mathematical formula which I could show you how to do in

TeiX, if you’re interested ... [laughter]

I’m wearing this T-shirt because I had a thrill a month ago. It’s

continually exciting for me to see the uses that people are making of TeX

all over the world. Very exciting. One of the most important somehow

to me was last month when I went to the library and saw Andrew Wiles’s

solution to Fermat’s Last Theorem. I think a lot of you know that it was

front-page news.^ For a while, there was some doubt whether there was

maybe still a gap in his proof, and then it was fixed up. This is the most

^ Wiles proved that the equation x" -[- y" = has no integer solutions when
n > 2 and xyz > 0.

Questions and Answers, I 575

famous by far of all results in mathematics. Just as people can remember

where they were when they heard about Kennedy being assassinated, I

know mathematicians can all remember where they were when they first

heard that Fermat’s Theorem was solved. The paper came out in the

Annals of Mathematics last month;^ it arrived in our library and I saw it

sitting there, and I looked at it and it was just wonderful for me because

it was done with T]eX and it looked gorgeous! [laughter] This to me was

the ... you know, it was so ... I mean, 1 almost felt like I had helped to

prove the Theorem myself! [juore laughter] So now, I’m also very glad

to find out that the people who were responsible are here this week. In

the back row, we have the editor of Annals of Mathematics^ and also

Geraldine Pecht, who was the typesetter. Another thrill for me. Let’s

give them a hand, [applause]

But I didn’t want to talk today about anything prepared in advance,

I wanted to answer questions.

So, Barbara asked the first question: “What about Volume 4 of The

Art of Computer Programming^ Now, I usually only answer that ques¬

tion on special occasions, [laughter] These days I’m a full-time writer

and I’m working very hard on The Art of Computer Programming. We

have, uh ... let me just see if I can find a scratch page to work on ...

[w'ent to overhead projector with live Emacs screen, running at Stanford

and transmitted to Florida via the Internet]. This is just to remind me

about what to talk about

Now, it used to be that we used “AGP” as the abbreviation for

The Art of Computer Programming. But someone else suggested that

it should be called TAOCP. So now this is the new abbreviation for it:

TAOCP. TAOCP is my life’s work; this is what I embarked on in 1962,

and I think I have about 20 years of work to go on it yet, after which

I’ll be 77 years old. So you see why I retired early — in order to be able

to work very hard on this.

Bart Childs: Should that be TAOCP7 [there was a typo on the

Emacs screen, which showed ‘TOACP’]

Don: It is. You want me to enlarge this font? I only have three or

four screen fonts ... Oh! [sees typo]

Bart: Does that mean I get a check for five dollars and twelve cents?

[laughter]

^ Andrew Wiles, “Modular elliptic curves and Fermat’s Last Theorem,” An¬

nals of Mathematics 142 (1995), 443-551.

^ Maureen Schupsky, Managing Editor, Princeton University Press.

576 Digital Typography

Don: Not for you!! [laughter] ... You know I did that on purpose just

to see if anybody was looking, [laughter] Alright ... Then there’s this

other book I’m working on, called The Art of Computer Programming

[laughter] ... OK, so ... Boy, am I nervous, [laughter]

Anyway, in order to finish this project, I have to work very hard,

because computer science people keep discovering new things. Origi¬

nally, my idea was that I was going to be able to summarize all of the

good stuff in computer science; but now I have to say that I just have

to work very hard in order to summarize all the classical good stuff in

computer science. I’m working especially to get all the history correct

and to lay the right foundation for the specialized things. But I can’t

go up to the frontiers in everything as I could have in the 60s, when I

began the project. I worked on TgX for about 10 years total, I guess,

and I’m hoping that those 10 years actually will save me about 6 or 7

years of the time I would have had to put into TAOCP, because I can

now do my other work more efficiently.

The Art of Computer Programming is sort of what I view as the

thing that I’m most uniquely able to do in my life. I’m feeling very

healthy now and happy, and I feel that what I’m accomplishing every

week is about as much as I’ve ever been able to do in my life in a week.

So, I hope I can keep it up for a while. But I know that it takes a lot of

time. That’s why I’m retired and I’m working full-time on this.

I spent last year building infrastructure for the project, which meant

making large computer files of what has accumulated in my house. So I

have thousands and thousands of items that I’ve indexed and put into

place so that I know how to find things.

Right now, my current project is to finish answering mail about The

Art of Computer Programming that came in since I was working on T^jX.

You know that if anybody found errors in The TpiKbook, I answered the

mail eventually and paid for the errors and so on. Well, people also get a

reward for finding errors in The Art of Computer Programming. But the

fact is, the last time I wrote a check for that was July of 1981. [laughter]

In August of 1981, my secretary started issuing a form letter, typeset

with TgX, saying “I will get back to you soon.” [laughter] I started

putting these letters into a little pile. Then the pile got to be a bigger

pile, and it got mixed with all the other preprints I was receiving, until

the pile grew to 260 inches high! Now, convert that to centimeters ...

well, anyways, it’s a lot! [laughter] It was about seven to eight meters of

material. I went through all that and I am now answering those letters.

Actually, the number of letters that I hadn’t answered was less than

500 — something like 450 letters — and I’m now answering those letters

Questions and Answers, I 577

von Neumann, John [=Margittai Neumann
Janos], 18, 225, 456.

Wadler, Philip Lee, 594.
Wall, Hubert Stanley, 481.
Wallis, John, product, 50, 112, 480.
Wang, Hao 382-384.
Wang, Paul Shyh-Horng 436, 631.
Watson, Dan Caldwell, 248.
Wedderburn, Joseph Henry Maclagan, 583.
Wegbreit, Eliot Ben, 603.
Weierstrass, Karl Theodor Wilhelm, 381.
Wiles, Andrew John, 465.
Will, Herbert Saul, 92, 483.
W'indley, Peter F., 518.
Wise, David Stephen, 420, 434, 595.
Wiseman, Neil Ernest, 420.
Yao, \ndrew Chi-chih 538.
Young Tanner, Rosalind Cecilia

Hildegard, 75.
Zave, Derek Alan, 90, 603.
Zeilberger, Doron, 64.

Figure 1. Excerpt from the end of the errata to Volume 1.

and hoping that the checks will reach the people at the addresses from

where they sent me their comments.

I’ll show you the errata because I’m working on it now. Here’s an

example (Figure 1), just so you can see what I’m talking about, [display

changes from Emacs to output of xdvi] This is part of the errata to

the index of Volume 1.“^ This is 8pt type being enlarged a lot. I want

to show you one of the things I’m working on right now For all the

authors that I cite in The Art of Computer Programming, when they

have a non-Western name, I’m building a big database of the names in

their native script, for example, Chinese or Japanese. (I haven’t put in

the Indian names yet, but I’m working with people in India to get that

solved.) ... Right now, I have most up-to-date stuff on the Chinese part

of it ... I have bitmap fonts for all the Unicode characters — especially

the Chinese characters — and I now have a pretty good database of these

things, hopefully. In a few years Unicode software should be ready and

available, and I’ll be able to typeset the various names properly.

I built some interesting Emacs macros that help me with the Unicode

characters even though I don’t have any software yet for Unicode. I can

^ The PostScript files for these errata can now be downloaded from the Web

page http://www-cs-faculty.stanford.edu/~knuth/taocp.html, near

the bottom. (Incidentally, I realized later that the index entry for Paul Wang

really belongs in the errata to Volume 2.)

578 Digital Typography

type in four hexadecimal digits and then say M-x unic to Emacs; magi¬

cally the hexadecimal digits are converted into the Chinese character —

the bitmap of it — which is then part of the document, [demonstrates

by typing 59daM-x unic] There’s Andy Yao’s surname in Chinese:

\Uni 1.08:24:24:-1:20'/. Unicode char "59da

<lc077018066018066018066018066019466effb66c339e78’/.

331670330660330660330660630e7066366c66e666764666'/.

6e06600c06600e0c601b0c6219986231b06360607f80803e>‘/,

I just have 24-by-24 bitmaps of all the characters, but it’s enough for

proofreading purposes. I have my workstation set up so that it’s very

easy to get these bitmaps. The unic macro tells Emacs to invoke a

little program that looks up the hex code in a file, finds the bitmap, and

inserts it into the T^X file. The stuff between angle brackets is sent by

TE?C to PostScript, using the macro

\def \Uni#l; #2: #3: #4: #5<#6>'/,

'/. \Uni ems: cols : rows:-hoff : rows+voff<hexbitmap>

{\leavevmode \hbox to#l\unicodeptsize

{\special{" 0 0 moveto currentpoint translate

\unic@deptsize \imic@deptsize scale #2 #3 true

[24 0 0 -24 #4 #5] {<#6>} imagemask}\hss}}

At the end of the year. I’m planning to announce this errata list,

which will be finished by that time. Right now I’ve accumulated about

180 pages for all three volumes, and I’m still building the list while

answering those old letters.

Then my publishers are going to issue Volume 4 in fascicles, about

128 pages at a time. The idea is to do that about twice a year for the

next 10 years. My steady state, I figure, is going to be about 256 pages

a year of output. We’re going to have three or four fascicles in hand

before we actually start this publication. The first four fascicles — one

of them will be extra large, containing the update errata to Volumes 1, 2

and 3; the other three — the second one will be the design of a computer

called MMIX which will be replacing the MIX computer. MMIX is a RISC

machine, very much like the computers that we’re all converging to these

days. It’s a 64-bit RISC computer that I might even own, some day, if

anybody likes it enough to actually build it. Several experts in the field

are helping me design it. Dick Sites, who was the architect of the Alpha

chip, was one of my students and has promised to work on all the final

steps of the design. Also John Hennessy (who designed the MIPS chip).

Questions and Answers, I 579

and some of the people from SPARC. So MMIX is going to be a nice clean

RISC computer, which will help us make experiments on algorithms, to

see how well the different cache management schemes work with different
sorting algorithms and so on.

The second fascicle will be to replace MIX by MMIX and I’m hoping

that, eventually, every time I have a MIX program in The Art of Com¬

puter Programming, it will be replaced by an MMIX program. I’m not

going to do that until I finish Volumes 4 and 5. But I’m hoping that

a lot of other people will have done that work already by the time I

get there. People have already promised me that they’re going to have

a C-compiler up for MMIX next year, and we’re trying to get operating
systems written for it.

The other two initial fascicles? One of them will be the first part

of Volume 4, which talks about bit-fiddling. This section discusses tech¬

niques that are mostly in folklore about efficient methods for computers

where you’re using bitwise logical operations of a machine — exclusive-

or, masking, and complementation, as well as addition, subtraction,

multiplication, and division — to gain great efficiency. I’ve got that ma¬

terial pretty much written already. In fact, it was what I had drafted

just, before I started working on — I wrote the first draft about

bit-fiddling in the first months of 1977.

And then I get into the study of brute force enumeration techniques.

The subject of Volume 4 is combinatorial algorithms, namely the meth¬

ods that have been developed to deal with problems where you have

zillions of cases; all kinds of ideas have been invented for speeding up,

by many orders of magnitude, the obvious methods for dealing with

cases of combinatorial importance. I begin the chapter by talking about

bit-fiddling, and the next part talks about fast methods for listing all

permutations, and listing all subsets of a set, and things like that. A

vast literature about such things exists. Surprisingly, more people have

written papers about generating permutations than about sorting. Sort¬

ing is the idea of putting into order; generating permutations is about

putting into disorder. More people have explained how to unorder things

than to order things. [laughter] Most of those papers are fairly repeti¬

tious and trivial, though, and not as interesting as the sorting papers,

so the difficulty for me is mostly to survey this literature and put it all

together. Most of the people writing on permutation generation were

unaware that lots of other people were working on the same thing.

OK. Well, that’s more than enough of an answer to your question,

I hope, on the state of Volume 4. Every day I try to finish a page or so,

and I think I’ve been going at about that rate for a while now.

580 Digital Typography

Page xi replacement for exercise 3 —^-25 Mar 1995

3. [34\ Leonhard Euler conjectured in 1772 that the equation w‘^ + x^ =

z'^ has no solution in positive integers, but Noam Elkies proved in 1987 that

infinitely many solutions exist [see Math. Comp. 51 (1988), 825-835]. Find

all integer solutions such that 0<w<x<y<z< 10®.

4. [M50] Prove that when n is an integer, n > 4, the equation u;"+a;"+y" =
2" has no solution in positive integers w, x, y, z.

Figure 2. Excerpt from the errata for the front matter of Volume 2.

While I’ve got this on the screen ... let’s try going forward a couple

of pages_I really want to look at this equation here (Figure 2). I used

to have Fermat’s Last Theorem as a research problem at the beginning

of the book. [laughter] In the errata it says now: “Prove that when n

is an integer greater than 4, the equation w'^ + x” + = z” has no

solution in positive integers.” So, now I’ve just added another variable

to the equation and we’ve got another good research problem. And it

turns out that for n = 4, there are infinitely many solutions. The proof

of Fermat’s Last Theorem caused a personal crisis for me, but I’ve now

resolved it in this way. [laughter]

Figure 3. METRP05T illustration in the errata to Volume 1.

I want to look also at page 61 of the errata as an example of new

material (Figure 3). This page shows some very nice constructions that

come out of studying trees. I put this up as an example of an illustration:

I’m doing all the illustrations for the book in METRPOET, and this page

Questions and Answers, I 581

shows one of the ones that happen to be in the errata. I love METR-

POET, and John [Hobby], in the next talk this morning, will show you

his system. It handles technical illustrations much better than anything

else. The great beauty of METRP05T from my point of view is that if

I have to modify any of my illustrations later on, maybe a year later, I

can see from the METRP05T source code exactly what I had in mind

when I made the original. METRPOET is a declarative language where

you state the characteristics that you want your illustration to have,

then it draws the diagram. The errata currently contain five or six

examples where I’ve either redrawn an old figure or, as in this case,

made a new one. Many, many other examples that I prepared when

I did the Stanford GraphBase book convinced me that METRP05T is

really ideal for technical illustrations. I don’t think anything else will

ever be able to be much better.

METRP05T is not the answer for the kind of illustrations that people

do when they’re preparing advertisements or things like that. But when

you’re writing a technical book — yesterday Sebastian [Rahtz] made the

same point with respect to PSTricks — you have to produce diagrams

that satisfy certain mathematical properties. A Super MacDraw-type

of program doesn’t very easily give you this ability, while METRP05T

does it, and very easily — all the technical things are correct, according

to the mathematics. It’s kind of scandalous that the world’s calculus

books, up until recent years, have never had a good picture of a cardioid.

Yesterday we saw a real cardioid on the screen [slide by Denis Girouj.

Nobody ever knew what a cardioid looked like, when I took calculus,

because the illustrations were done by graphic artists who were trying

to imitate drawings by previous artists, without seeing the real thing.

OK — I’ve talked too much about this. Ask another question!

Robert M^Gaffey: Do you think the RSA algorithm will ever be

broken?

Don: Do I think the RSA algorithm will ever be broken? Now, the

RSA algorithm is the Rivest-Shamir-Adleman scheme for encryption.

People have just factored the key of the original cipher that was pnt up

by R, S, and A in 1977. That was a 140-digit number, which was a very

weak version of their general idea. But Rivest et al. said: “Here’s our

secret message. Can you decode it?” By the time someone decoded it

last year, Ron [Rivest] had lost the original answer ... forgotten what

it was. But it turned out that, after decoding, the encoded message

was: “The secret word is squeamish ossifrage.” That was the solution.

In order to break this cipher, people had to factor a 140-digit number.

582 Digital Typography

and it was done with many thousands of hours of computer time last
year. Now the thing is, though, if you go from a 140-digit number to a
141-digit number, already the problem gets much larger. So if you go to
a 300-digit number, it would, as far as we know — all of the computers
running now in the universe would not be able to do it. But there might
still be advances in factoring, so Rivest himself predicts that a 300-digit
encoding would last at least for about 30 years. A 500-digit number for
a hundred years — he would rather confidently predict that’s true.

We doubt if anyone’s going to discover a magic way to factor num¬
bers. But the big problem is that it’s illegal to use the full power of
RSA. I mean, the government wants to be sure that it can read secrets
if necessary, because it doesn’t want the Mafia to have the secrets. So
we now have a peculiar situation where it’s against the law to compute
a certain mathematical equation, a mathematical formula. Well, I don’t
like confrontational issues, [laughter] I don’t live in a secret way I
mean. I’m not a secretive kind of guy. I spent a year of my life working in
cryptanalysis and I’ve met a lot of wonderful people in that community,
bnt I knew that the life wasn’t for me. I like to be a college professor and
tell what I know. So I’m not a good consultant on that kind of question.
But it is possible to send secure information assuming that nobody can
factor numbers. That’s either a blessing or a threat, depending on your
point of view. For me, I can see it from both sides.

In the back?

Michael Sofka: Is P = NP, and if not, how far do you think we are
from the proof?

Don: P = NP is the most famous unsolved problem in computer
science, analogous to Fermat’s Last Theorem, although the P = NP
problem has only been around for about 30 years, 25 maybe. In the
context of combinatorial algorithms, it says: Are we going to be able
to solve problems that would require going through 2^ cases? Can we
actually do those in or something like that, if we knew the best
method? If P = NP, the answer would be “yes,” with some polynomial:
we could reduce all these exponential problems to polynomial problems.
If not, the answer is “no,” we’ll never be able to reduce them.

I have a feeling that someone might resolve the problem in the worst
possible way, which is the following. Somebody will prove that P is
equal to NP because there are only finitely many obstructions to it not
being equal to NP. [laughter] The result would be that there is some
polynomial such that we could solve all NP problems in polynomial time.
However, we won’t know what the polynomial is; we’ll just know that it

Questions and Answers, I 583

exists. So maybe the complexity will be n to the trillionth or something

like that — but it’ll be a polynomial. In such a scenario we’ll never be

able to figure it out because it would probably take too long to find out

what the polynomial is. But it might exist. Which means that the whole

question P = NP was the wrong question! [laughter] It might go that

way. You see, even if you have a method that takes 2” steps and you

compare it to a method that takes then at least you can use the

2"- one for 7i up to 20 or 30. But the you can’t even do for n = 2.

So the degree of that polynomial is very important. There are so many

algorithms out there, the task of showing that no polynomial algorithms

exist is going to be very hard. Still, I really thought that Fermat’s

Theorem was a similar kind of thing, where it was more important to

have the problem than to solve it. Therefore, my real feeling about

Wiles’s Theorem is that he did a marvellous wonderful piece of work,

but I wish he’d solved something else! [laughter]

A lot of people think that as soon as a problem is shown to be in this

class NP, they shouldn’t work on it, because it means that there’s proba¬

bly no polynomial way to solve the problem. But before we studied NP,

we had unsolvable problems — problems for which there didn’t exist any

algorithms at all. No matter how long you worked, you could never solve

the problem. To tell whether a given Turing machine ever stops: This

problem is unsolvable by any algorithm, in general, no matter how long

you give yourself. In the days before NP became famous, people would

stop working on a problem as soon as it was proved to be unsolvable in

general. But that was a bad strategy, because almost every problem we

ever solve is a special case of some unsolvable problem.

Take calculus, for example — the problem of taking a formula, a

function of n, and saying: “Is the limit as n goes to infinity equal to zero

or not?” That’s an unsolvable problem. But its unsolvability doesn’t

imply that we shouldn’t study calculus. I mean, limits of lots of useful

functions do go to zero, and therefore people were able to develop cal¬

culus. But the general problem is unsolvable. I mean, you could define

/ of n — it only takes a few lines to make a formula that is equal to zero

if a given Turing machine is stopped at time n, and it’s equal to 1 if the

Turing machine is still going at time n. And so the limit is equal to zero

if and only if that Turing machine stops. It’s unsolvable.

A similar thing happens with NP. That is, we have lots of special

cases of problems that are NP-hard that we can solve efficiently; just

knowing that something is NP doesn’t mean that it’s a good idea to

give up on it or to stop trying to get good heuristic methods for it.

Questions about TeX?! [laughter] Yes?

584 Digital Typography

T. V. Raman: One of the nice things about TgX is that it gives

authors the flexibility to define macros that sort of encode semantics,

so if you’re writing a paper about permutations you can define a thing

called \permute and then write your contents using that. I rely heavily

on this in my system A^TIeFI. What I wanted to know —

Don: Excuse me, you’re going to be speaking later on ... ?

Raman: Yes, I’ll be talking tomorrow afternoon.

Don: So your system uses the source as part of the semantics of

the presentation of the document, while the author is thinking mostly

of the convenience of writing.

Raman: Yes. So, what happens, in fact, is that everything turns into

an object. And so, the more semantics there are in the markup, the

better it is. Now, in normal documents, there is this tension between

wanting to write things using a base level of markup where an author

just writes ‘x\over y’ whenever he wants versus an author defining,

say, \inf erence as a macro that takes two things and then puts x over y

with a horizontal bar between them. In the latter case, I win; in the

earlier case I lose. My gut feeling is that, if you look at a large book, it’s

like a large computer program, and, sort of, in order to preserve your

sanity, it seems to make more sense to read it that way.

Don: Can people hear what the question is? He’s saying that if you’re

blind or handicapped, you can study the source of a document.

If it’s properly done, it can even be better than if you had the hard¬

copy, because the document could have been written with a very logical

markup scheme. In typography we try to reveal the structure by typo¬

graphic means. But, in fact, we know even more of the structure when

we’re making our source files. So, an author with that in mind would

maybe prepare the source files to have more information than just what
you’re going to see on the page afterwards.

When you’re writing, you have an audience in mind. If you look at

any book about how to write, or any course that deals with writing, the

number one rule always is: Keep your reader in mind. If authors realize

that they’re writing something for hypertext, then they’ll be planning

their exposition to take best advantage of hypertext. When I wrote my

first paper in a foreign language^ it was published in Canada, where

they spell “color” with a “u.” [laughter] My second paper in a foreign

® “Another enumeration of trees,” Canadian Journal of Mathematics 20
(1968), 1077-1086.

Questions and Answers, I 585

language® was Norwegian, and so when I was talking about variables for

“left” and “right,” I would say ‘u’ and ‘h’ instead of and ‘r’. I mean,

you plan as you’re writing, you plan for the reader. These are very simple

examples. So, if you expect that somebody is looking at your source

or that somebody will be able to click on part of your document and

therefore it’ll highlight something that is logically related, you might

approach the whole process of exposition in a different way and you’ll

be able to reach more readers. So I try to make my ... I can show you

the macro files developing for The Art of Computer Programming in the

new style, but ...

Raman: I’d love to see that, because the other thing I’d like to do is

run the system off the ...

'/, Macros for The Art of Computer Programming

'/. (STILL UNDER CONSTRUCTION!

'/. I stcirted with manmac.tex and am letting this evolve)

\input epsf

\input rotate

\input picmac

\input Unicode

\catcode‘0=11 ‘/. borrow the private macros of PLAIN (with Ccire)

\font\ninerm=cmr9

Figure 4. The beginning of acpmac.tex.

Don: [more screen maneuvers; see Fig. 4] Let’s just take a look at that

file. It’s still under construction, OK? [laughter] I input various macro

files: The ‘epsf’ is to get METRPOST figures; ‘rotate’ allows PostScript

to do rotation; ‘picmac’ is my subset of lAT^ picture mode; ‘unicode’

is that thing that I told you about for getting Chinese names. OK, let’s

take a look at some formatting ... [more pointing out of various codes

for formatting]
These are my composition macros (Figure 5) ... you can see some

of the hyphenation exceptions I’ve put in. Equation numbers are going

® “Seking etter noe i en EDB-maskin,” Forskningsnytt 18,4 (Norges Almen-
vitenskapelige Forskningsrad, 1973), 39-42.

586 Digital Typography

'/o Composition macros

\hyphenation{logical Mac-Malion hyper-geo-metric

hyper-geo-met-rics Ber-noulli Greg-ory dis-trib-uted}-

{\obeyspaces\gdef {\ }■}

\def\hang{\hangindent\parindent}

\def\dash-{\thinspace-\hskip.16667em\relax}

\def\eq(#l){{\rm({\oldsty#l})}}

\let\EQNO=\eqno \def\eqno(#1){\EQNO\hbox{\eq(#l)}}

\def \st£ir{\llap{*}}

\def\slug{\hbox{\kernl.5pt\vrule width2.5pt

heightbpt depthl.5pt\kernl.5pt}}

\let\:=\. % preserve a way to get the dot accent

\def \ .#l{\leavevmode\hbox-(\tt#l}}

\def\ [#1]{[\hbox{$\mskiplmu\thickmuskip =

\thinmuskip#l\mskiplmu$}]} 7« Iverson brackets

\def\bigi[#1]{\bigl[\begingroup\mskiplmu

\thickmuskip=\thinmuskip #l\mskiplmu\endgroup\bigr]}

\def\AD{-C\adbcfont A.D.}}

\def\BC{{\adbcfont B.C.}}

\def\og#l{\leavevmode\vtop{\baselineskip\z@skip

\lineskip-.2ex \lineskiplimit\z@

\ialign{##\cr\relax#l\cr

\hidewidth\kern.3em\sh@ft{40}‘\hidewidth\cr}

\kern-lex}} 7, ogonek

\def\em#l:{-[Xit#!:\/}} 7o \em Hint: or \em Caution: etc

\def\euler{\atopwithdelims<>}

\def\Euler#l#2{\mathchoice{\biggl<\mskip-7mu

{#l\euler#2}\mskip-7mu\biggr>}7.

{\left<\ ! -t#l\euler#2}\ ! \right>}{>{}}

\def \Choose#l#2-[\mathchoice-[\biggl(\mskip-7mu

{#l\choose#2}\mskip-7mu\biggr)}7o

{\left (\ ! -C#l\choose#2}\ ! \right)}{}{}}

\def\smsum{\mathop-C\vcenter-(\hbox-t\tenrm\char6}}}}

7t small summation sign

\def\phihat{-t\inkern5mu\hat{\vrule widthOpt

heightl. 2ex\smash{\iiikern-5mu\phi»}>

\def\umod{\nonscript\mskip-\medmuskip\nikern5mu

\mathbin-C\underline{\rm mod}}\penalty900\mkern5mu

\nonscript\mskip-\medmuskip> 7. least remainder

Figure 5. Excerpts from acpmac.tex.

Questions and Answers, I 587

into oldstyle numerals. The control sequence \star is for a starred sec¬

tion, something that’s advanced; \slug goes at the end of a proof—I

might have to change it so it’s not so black, because people see so many

overfull boxes, they don’t like to see the black slug anymore, [laughter]

I’m redehning backslash dot- I make it \: so that I can use \. for

typewriter type in the middle of math mode. There’s an important no¬

tation due to Iverson, where you can put any formula in square brackets

and that evaluates the formula to 0 or 1 — you can put that in the mid¬

dle of equations, it’s very useful. Here are macros for saying A.D. or B.C.

And here’s something I use for special emphasis, like a hint — I’m not

using this to indicate italics, I say \it for that kind of emphasis. My

\ein#l: is a special format that I often use to say ‘Note:’ or something

like that [walking through the macros, with comments on some of the

more interesting ones] ... These are Eulerian numbers ... with angle

brackets instead of the parentheses of binomial coefficients.

Raman: Do you have a macro called \euler there?

Don: Yeah, these are Eulerian numbers here. ... Capital \Euler is

a similar notation that uses two delimiters and has the right amount of

negative space between them so that you have two angle brackets next to

each other; similarly, for binomial coefficients, the capital \Choose puts

in two parentheses. Here’s \smallsum for a small summation sign —

I don’t remember where I used that. Now \phihat — this is a special

symbol — the letter 0 has to have the hat put just right, because ‘0’ is a

common thing that arises when you’re studying Fibonacci numbers. ...

Then I have here the format for an algorithm ...; a whole bunch of

macros for typesetting assembly code; underlining text in the comments

.. .etc. [remaining examples not included here]

My files for errata show some of the structure that will be in

TAOCP itself. As I said, I’m working day-by-day just now to put in new

corrections. I have four kinds of errata: One is called an “amendment,”

which means new stuff that we didn’t have before; one is called a “bug,”

something that has to be fixed; one is called a “plan,” where I need to

work out the details later but I want to note down in the file that it’s

in my mind to make the change; and then there’s something called an

“improvement,” which is kind of trivial, but still I thought of it and I

want to use it when we go to the final book.

For example (Figure 6), here’s a quotation by Turing that I kind of

like; it comes from 1945, which is before computers were even invented,

but he’d been thinking about computing for a long time: “Up to a point,

it’s better to let the snags be there than to spend such time in design

588 Digital Typography

\amendpage 1.189 insert quotation before the exercises (95.07.13)

{\quoteformat

\vskip-3pt

Up to a point it is better to let the snags [bugs]

be there than to spend such time in design that there are none

(how many decades would this course take?).

\author A. M. TURING, Proposals for ACE (1945)

% pl8, quoted in Comp J 20(1977)273

}
\endchange

Figure 6. A recent addition to the errata.

\amendpage 2.ix replacement for exercise 3 (95.03.25)

\ex3. [34] Leonhard Euler conjectured in 1772 that the equation

$w"4+x''4+y~4=z“4$ has no solution in positive integers,

\improvepage 2.27 line 2 (81.08.13)

random, they \becomes random; they

\endchcinge

Figure 7. More examples of errata in TgX form.

that there are none. How many decades would this course take?” That

quotation is an amendment to Volume 1, made just twelve days ago.

Look, here (Figure 7) is the T^X source that generated Figure 2.

And here’s an example where I changed a comma to a semicolon. The

way I use this is that trivial improvements don’t usually get listed in the

hardcopy unless you work extra hard. There’s a special way of getting

all the Ximprovepage entries to come out, but usually they only appear
in the file.

So that’s the kind of thing Fm doing. This improvement, by the

way, is dated 1981. For 20 years, I’ve had copies of The Art of Com¬

puter Programming sitting in my office and I kept putting notes in the

margins, marking things that I want to improve. That’s now all in these
files.

Other questions?

Silvio Levy: How come you don’t use lAT^X? [laughter]

Don: How come I don’t use lAT^X? [laughter] I’m scared of large
systems! [louder laughter] Bart?

Questions and Answers, I 589

Bart Childs: Your paper, “The Errors of TeX,” was great. Have you

ever thought of one about “Mistakes of T]eX” ?

Don: “The Mistakes of TgX”?? [iaiighter]

Bart: I mean, I guess I’m kind of thinking of the changes you made

when you went to version 3. The 7-bit/8-bit and things there that

might be thought of as mistakes. Are there any other things you can

think of in that line?

Don: In the Errors-of-T^ paper,' I think I listed everything that I

would consider a mistake. I think I would have noted the mispredic¬

tion of 7-bit versus 8-bit input if I had written that paper a year later,

but of course, I wrote it before TeX3 came out. I’ve promised to put

out a sequel to that paper when everything has cooled down and you

know, when the last error in TgX has been found. [laughter] So the

present state is this [hie manipulations on screen, bringing up the hie

errorlog. tex^; see Figure S]

* 26 June 1993

R928\>668. Avoid potential future bug (Peter Breitenlohner). 0628,637

* 17 December 1993

S929\>881. Boundary character representation shouldn’t depend on font

memory size (Berthold Horn). 0549,1323

* 10 March 1994

R930. Huge font parameter number may exceed array bound (GET). 0549

* 4 September 1994

F931\>926. Math kerns are explicit (Walter Carlip). 0717

R932. Avoid overflow on huge real-to-integer conversion. 0625,634

* 19 March 1995

R933. Avoid spurious reference counts in format files (PB). 01335

\relax

\bye

Figure 8. End of the file errorlog.tex.

^ “The errors of TeX,” Software—Practice and Experience 19 (1989), 607-

685; reprinted with additions and corrections as Chapters 10 and 11 of

Literate Programming. See also “Notes on the errors of TgX,” TUGboat

10 (1989), 529-531; this was the keynote address at the 10th anniversary

TUG meeting, held at Stanford in July 1989.

® The file errorlog.tex appears under systems/knuth/errata/ in the CTAN

archives. Other files mentioned below, like tex82.bug, can also be found in

that directory.

590 Digital Typography

The last change was on March 19. Well, no, that was the date the

bug was reported. So, here’s Peter Breitenlohner — he’s here today —

“Avoid spurious reference counts in format files.” This was causing some

problems ... fie found you could break TgX if you kept saving format

files and loading them again and saving them again and loading them

again several hundred times; yon would exceed memory capacity because

the reference count could get larger than the total memory size. So that

was a bug that we fixed, and he got $327.68 for it - 2^^ pennies.

What were the other most recent changes? Number 932, “Avoid

overflow on huge real-to-integer conversion.” Number 931, “Math kerns

are explicit” —this was a bug introduced by change 926. Number 930,

“Huge font parameter number may exceed array bound,” a place where

the implementation wasn’t totally robust. Number 929, “Boundary

character representation shouldn’t depend on font memory size”—this

was a fairly serious one that was fixed by the major implementors shortly

after we put out the previous update in 1993.

These errors — the dates listed here are actually dates when the

people found them. I fixed them all in March of this year [1995]. I plan

to look again at reported bugs in TeX in 1997, and again in 2000, and

then 2004 and 2009, hoping that each time I’ll be able to do that in

about a day. A lot of volunteers are out there filtering these reported

bugs, and vetting the ones that really do seem to require my attention.

Yesterday, when we were running test programs at Stanford, somebody

noticed that Stanford was still using a very old version of TgX and it

didn’t seem to matter, [iaughter] I believe the bugs are starting to taper

off. The remaining ones are getting to be scenarios that can cause the

system to break, but only if you really try hard.

There’s one severe bug in the design that will have to remain as a

feature, and it has to do with multilingual typesetting. I don’t think

I put it in the errorlog file, but it’s noted at the end of another file

called tex82.bug (Figure 9). Let’s look there ... This file has complete

details about every change since 1982. See this one? It’s the “absolutely

final change to to be made after my death.” The version number

changes to tt. It’s like my last will and testament here, [iaughter] So

I’ll never see that change made. With version tt, TgX is declared to

have no more bugs. Anything that uses the name T^X should be fully
compatible with everything else that uses that name.

After the final change, this file lists “possibly good ideas that I

won’t implement”; ... then come two “design errors that are too late

to fix.” The most serious one is multilingual. If you’re using several

languages in the same paragraph, I forgot to save some part of the

Questions and Answers, I 591

415. The absolutely final change (to be made after my death)

Ox module 2

@d banner==’This is TeX, Version 3.14159’ {printed when \TeX\ starts}

0y

@d banner==’This is TeX, Version π’ {printed when \TeX\ starts}

®z

When this change is made, the corresponding line should be changed

in Volume B, and also on page 23 of The TeXbook. My last will and

testament for TeX is that no further changes be made under any

circumstances. Improved systems should not be called simply ‘TeX’;

that name, unqualified, should refer only to the program for which

I have taken personal responsibility. — Don Knuth

* Possibly nice ideas that will not be implemented

. classes of marks analogous to classes of insertions

* Design errors that are too late to fix

. additional parameters should be in s3rmbol fonts to govern the

space between rules and text in \over, \sqrt, etc.

. multilingual typesetting doesn’t work properly when the \lccode

changes within a paragraph

* Bad ideas that will not be implemented

. several people want to be able to remove arbitrciry elements of

lists, but that must never be done because some of those elements

(e.g. kerns for accents) depend on floating point arithmetic

. if anybody wants letter spacing desperately they should put it in

their own private version (e.g. generalize the hpack routine)

and NOT call it TeX.

Figure 9. End of the file tex82.bug.

state information — I forget exactly what it is now,^ but it was a serious

oversight and I should have thought about it. Now it’s too late; this is

one glitch that’s going to have to remain.

The only other thing I really wish I’d worked harder on was the

positioning of square root signs and fraction bars. I don’t have enough

parameters in there to control the space between the barline and the text.

I made the mistake of solving a problem that needed two parameters by

using only one parameter: I got the amount of space by calculating it

® All languages within a paragraph have to use the same \lccode table.

592 Digital Typography

as a multiple of the thickness of the barline, but I should have had the

spacing as an independent parameter. Now I find that as I’m writing

stuff and I have a square root that doesn’t look right, I have to put

a hidden strut in the exponent, to give more space there. I wish I’d

done that better; but otherwise — considering the amount of inevitable

compromise that has to go into any large system — I’m basically happy

with the way things converged.

As I read papers typeset with TfiiX, the main thing that makes me

unhappy, besides the way I typeset the square root sign, is the way that

people have not updated to the improved Computer Modern fonts that

I put out three or four years ago.^° We’re still seeing the old fonts and I

don’t know how long it’s going to take before people change. Eberhard

[Mattes] did make the switch two or three months ago [in his widely

used EMTfi^X implementation].

The font change is especially evident on lowercase Greek delta. I

found myself four or five years ago writing a paper in which I was going

out of my way to avoid using the letter 5. I tried to analyse, “Why am

I not using that letter?” and I realized that I subconsciously hated my

lowercase delta; I didn’t like the look of it at all. But in this paper I

really needed the delta, it was the natural letter to use, and so I said,

“OK ... I’m gonna take a day off and redesign that letter, making a

really beautiful delta.” And I think I now have the best S the human

race has ever seen. [laughter] That was ages ago. Now, every time I see

a paper using the old one, I cringe.

I also changed a few of the other letters, like some of the calligraphic

capitals: I fixed the spacing on the barline of the ‘ht’, and I didn’t like

the base of the ‘T’ so I changed it to ‘T’. I see that the Dutch

Users Group uses the old T in their logo ... but I’m hoping everyone

will switch over to the real cmr fonts. The TFM files have not changed.

Oh, I’ve also made all the arrows heavier became Arrows

were disappearing on xeroxes all over the place, so now the arrowheads
are larger and darker.

Cameron Smith: Is there a date or version number we should look
for to make sure ... ?

Don: Well, if the source file is dated ’93 or after, it’ll be OK.

Silvio: No! Ghange cm to dm! The update is never going to happen
unless you do that.

See http://www-cs-facuity.Stanford.edu/'knuth/cm.html.

Questions and Answers, I 593

Don: It’s happened in most places by now, but there still are pockets

of people who haven’t upgraded the old files. If you use DVIPS, all you

have to do is delete the PK files and the system will make all the new
fonts for you automatically.

Silvio: If you’ve got the new version of the source.

Don: Yeah, well, the sources are all there.

Silvio: Right, but it’s very hard for the public to ...

Don: Please, figure out a way to solve this, because it’s frustrating. Ev¬

ery time I get a letter or a preprint from someone that has the old delta,

I tell them to tell their computer operators to update, and then they

send me back an upgraded paper and say, yes it’s OK now. [laughter]

As long as people are aware of it. It’s not that much of a change. If

we get the word around to the distributors and the math journals, it

shouldn’t take too long to converge.

Robin Fairbairns: Can I just make a comment on that? Eberhard

Mattes is possibly the author of the version with the largest user base —

he has just reissued everything, and a month back he produced an en¬

tirely new set of fonts. On the mailing list there is a continual whining

about “we don’t want to go to the trouble of updating our font files.” I

keep saying “You really do need to do this.” But despite that, people

say, “It costs computer time on our PCs.”

Don: They’ll get a new PC in five years, [laughter] It’ll eventually

happen. I’m just hoping that it will happen sooner rather than later.

Silvio: Look, I posted a copy for people in Australia. I can tell you

the top priority will not be to update because of a delta. If you issue a

new version, with its own number and a new name, and if you make it

obligatory, otherwise, ...

Don: It didn’t change that much to make it obligatory.

Jeremy Gibbons: If you change the name, old DVI files won’t work

when you print them — there’ll be lots of missing fonts.

Don: Right. And it’s not tremendously important. I mean. I’m too

much of a nit-picker; I’m just telling you it does offend me, but it ap¬

parently doesn’t offend those other people, [laughter]

Silvio: It offends me, too!

Don: Oh, OK. Well, I don’t want to change the names of my fonts,

[pause] Nelson?

Nelson Beebe: Don, the world has changed a lot since 1978 —

594 Digital Typography

\vfill

■CXquotef ormat

Things have changed in the past two decades.

\author BILL GATES (1995)

y, "You, too, can start a software firm"

% International Herald Tribune 5 Jan 1995, pages 9 and 11

\bigskip

In addition to the errors listed here,

about half of the occurrences of ‘which’ in volumes one and three

should be cheinged to ‘that’.

\author DONALD E. KNUTH ({Xsl The Art of Computer Programming */.

Errata et Addenda}, 1981)

Xeject

>

Figure 10. Another excerpt from the TAOCP errata.

Don: Yes, in fact I put a wonderful quote to that effect from Bill Gates

at the beginning of my errata list this year ... (Figure 10).

Nelson: Assuming you were 25 years younger and were sitting down

to do now, with the market full of word processors and PostScript

laserprinters and so on — what would you do differently?

Don: Well, as far as I know, I would still do the same thing, pretty

much. So, anything that you don’t like. I’d probably still put in!

[laughter] It’s just the way I do things ...

Cameron: I wanted to ask you about a particular point, related to

that. You went to a lot of trouble to design a line-breaking paragraphing

algorithm that looked over a wide range of possibilities for an optimal set

of breaks. But I encountered in The T^book that computer memories

being what they were, it wasn’t practical to similarly accumulate several

pages of material and look for optimal page breaks. And sort of related

to that, there’s the difficulty of communications between a line-breaking

algorithm and a page-breaking algorithm, where, let’s say you’re doing

a letter and there’s a letterhead on the first page that forces you to

have a different page width and you might need to have line breaks

change in the middle of paragraphs. Things like that, which could have

been simplified if there were the ability to defer the cut-off of the page

and have better communications between the line-breaking and page¬

breaking algorithms. Would you redo something like that, now that we
have multi-megabyte memory?

Questions and Answers, I 595

Don: OK, certainly the memory constraints are quite different now.

Amazing how much — memory has changed more than anything else.

There are also major changes in the way we — well, we’ve got many more

years of experience. We understand these things now. At the time when

I was working on — I’m trying to put things in context many

things were experimental, so that we could learn about the territory. In

any system design, whenever you go through a new generation, it turns

out that you understand the previous generation and you clean up the

previous generation, and then you also go into your new experiments,

which have to be cleaned up by the next generation. That kind of

traditional growth of understanding is the way the world works.

Now a lot of these things about what kind of communication would

be useful and so on are becoming clearer. The idea of T^X was — and I

think will remain for as long as it survives — to find the smallest number

of primitives that would be able to handle the most important things.

So that 99% of the work would be done by these primitives, and the

other part would be done by tinkering. My attitude on these things is

that when I have a job to get done, I don’t ever expect to have a system

that’s going to do 100% of it for me, but I expect it’ll do so much of

it so that the tinkering is down to noise level. Adding spit and polish

is no more than a small percentage of the time I’ve put into the other

parts of the job. Of course, the noise level for one person is different

from another.

For example, I prepared a book about the Bible^^ where I had a

lot of illustrations. I spent 6 or 7 hours on each illustration: massaging

it, making custom color separations, doing fat-bits editing to clean up

joins and various things, retouching whatever I could improve. For me,

that work was noise level, because I had already spent 40 hours writing

the chapter that goes with the illustrations — so what’s another 6 hours,

I mean, it’s a small percentage of the job, in some ways.

But if I’m going through a commercial establishment that’s trying

to get graphics in and out the door, somebody’s paying for their work,

and if I have 60 illustrations taking 6 hours each, that’s a completely

different story. So, my view is that different users will have different

ideas as to how much really needs to be automated. Many things are

relatively easy for an author to spend a little extra time doing, because

much more time has already gone into writing the book. But people who

work with the author might want such things to be automated; they’ll

Donald E. Knuth, 3:16 Bible Texts Illuminated (Madison, Wisconsin: A-R

Editions, 1990); reviewed in TUGboat 12 (1991), 233-235.

596 Digital Typography

want such things to be part of a fancy system that the author doesn’t

want to take time to learn.

So, if I have a typographic task where I need to do something in 2

or 3 passes, well, 1 simply try it a couple of times and run it through the

machine and look through the previewer and get it right. A week or two

ago, my wife and I put out newsletters for our family. We do this every

year; each of our four grandparents has an extended family of, I don’t

know, al)out 60 or 80 names. We write to them and say, “Would you

like to send us your comments on this year?” and then we collect them

all together in little booklets and send them out to four groups. Every

year I fiddle with that for, I don’t know, 6 to 8 hours just to do neat

things; like a newsletter editor. ... You spend some time doing all kinds

of prettying up, if you have the time to put in. The tools that you have

available always change the expectations of what you try to accomplish.

So, I figure the next generation of systems will include a lot more

complicated mechanisms to handle the general cases of everything, where

I’ve considered only the cases that I thought were the 99%. Typesetting

can lead to all kinds of complexities — maybe you want to have the

reference point in the middle of a character instead of at the left edge, as

you’re going left and right, in color and rotated and in many columns,

and so on. We now have more understanding of how to design such

general mechanisms.

With respect to the memory situation ... I think the page-breaking

business is still ... it’s not so much memory-bound as maybe — you still

want to do two passes, but the machines are fast enough for two passes —

it isn’t that slow anymore. So, I would say this kind of next generation

thing is natural for other people to work on, with the understanding

that they gained from the first system.

Pierre?

Pierre MacKay: Just going back to the question of upgrading the

fonts. I was thinking about something that wouldn’t break things. You

stick a METRFONT special to identify the font version. Since people

upgrade their drivers far more often than they upgrade their fonts, just

have the driver recognize that special and say “Tut tut! You shouldn’t
be using this font!” [laughter]

Fred Bartlett: I think that everything the gentleman over here wants

to do with line-breaking and page-breaking could be done fairly simply

by writing moderately complex macros and new output routines, if there

were a way to save the items that get discarded at the end of every page.

You want to save the discardable items that get tossed out when TeX

Questions and Answers, I 597

calls the output routine. I was wondering why, when you wrote

you threw those away without making it possible to save them at all?

Don: The output routine can put it into a box — copy it into a box —

Fred: —but it can’t save the skip that is thrown out.

Don: The skip that’s thrown out, isn’t that the value of one of the

parameters that gets passed to the output routine?

Peter Breitenlohner: The penalty is passed, but the skip is thrown

out after the page has been printed. And if nothing comes back, it is
not thrown out.

Don: Somewhere in The T^book it gives a null output routine that’s

supposed to put everything back together again? And what — that
doesn’t work?

Peter: It works! Because then the skip is not at the top.

Fred: But you can’t ship out a page, you can’t save a page to a box

and then go back, accumulate a new page and then push it through

and save that to a second box, as for left and right-column setting, and

then put the two boxes together and have them join smoothly, because

then the skip in between will be missing, and you’ll have ... you won’t

have the line skip in between, and it means that if you want to do

complex 2-column setting, as for a couple of text books [I’ve done], then

you have a problem with tables and figures and a whole bunch of other

junk. It would be nice ... it’s something I’ve wrestled with for, I don’t

know, 6 or 7 years, and the best I’ve been able to do is to have Tg^

warn me when it starts balancing columns, starting on the right-hand

column, and because I probably don’t have the right skip here. Almost

everything else in is parameterized: You can get to it, you can save

it, you can inspect it, have do tests — except the discardable items,

and discardable skips. I’m just wondering why.

Don: I guess I didn’t think of it. [laughter] The output routine was

the most experimental part of Te;X. We had no models to go by at all.

We had 4 or 5 problems that we knew we had to solve, and we tried to

find the smallest number of primitives that would handle those 4 or 5

problems. We got to the point where we could clarify the solutions to

the problems. But we knew this was experimental. I’m sorry that your

problem didn’t occur before T^eX 3.0 because then I might have been

tempted... [laughter]

Fred: I heard you say you expected more people to extend T^X than

have done so.

598 Digital Typography

Don: Yeah, absolutely. I expected extensions whenever someone had

a special-purpose important project, like the Encyclopedia Britannica

or making an Arabic-Chinese dictionary, or whatever — a large project.

I never expected a single tool to be able to handle everybody’s exotic

projects. So I built a lot of hooks into the code so that it should be

fairly easy for a computer science graduate to set up a new program for

special occasions in a week or so. That was my thought. But I don’t

think people have done that very much.

It’s certainly what I would have done. If I were putting out a Bible

or something, if I were a publisher with some project that I wanted to

do especially well, then I would want a special typesetting tool for it.

Rewriting a typesetting system is fairly easy. [laughter]

I guess people haven’t done it because they’re afraid they’d break

something. I don’t think they would have. I think the caution is mis¬

placed. So I tried to show how to do it, by implementing several of

the features of TgX as if they were added on after, just to show how

to use the hooks, as a demo. But that didn’t get things going; many

more people are working with TgX at the macro level. Of course, the

big advantage is that then you can share your output with others — you

can assume your source code is going to work on everybody else’s sys¬

tems. But still, I thought special projects would lead to a lot of custom

versions of the program. That hasn’t happened.

Jeremy: A related question is ... if you can take a vertical box apart

into its components, and play with them and reassemble it, one thing

you can’t get is, if you have a box that has been moved left or moved

right, when you disassemble the box, you lose that information. [Don:

Oh really?] You can get \lastbox, and that gives you the box, but it

doesn’t tell you whether it was shifted. I thought I saw in your list of bad

ideas that weren’t going to have anything done with them, something

to do with taking lists apart. Was that there?

Don: r m not sure what that really referred to any more. There is

some problem about making sure that no user can access the results

of rounding errors, which are different on different machines. So I had

to be very careful in T^X to keep it portable — any time you do a glue

calculation. Still, I don’t think that would happen in shift-left shift-

right. One of the changes to not so many years ago was to ... I

don’t remember. Maybe somebody can ... maybe Peter [Breitenlohner]

can recall. I think it was you who suggested it: There was something in

the hlist-out and vlisLout routines where it looked at the shift amount
of the box and ... ?

Questions and Answers, I 599

Peter: It was in leaders. The leaderbox looked for the shift amount,

but the shift amount in the data structure was always zero ... took

the shift amount, and added it and subtracted it back, or something like
that.

Don: Yeah, so the thing is, I had some code in there that — it wasn’t

a bng because it could never cause any harm but I was always adding

zero to something. We took it out, so that people wouldn’t be confused

by it. The amount by which a box is shifted is stored with the box. If

it’s in a vertical list, that means so much is shifted towards the right and

in a horizontal list, it means how much it’s shifted up and down. The

shift amount could never be nonzero in a leaders box. OK, if the shift

amount is not restored properly, it might be a bug, something you could

report, and in 1997, maybe you can get big money for it. [laughter]

Jeremy: I don’t think it’s a bug, it’s just a problem, something you

can’t do — taking things apart and reassembling them It wasn’t a

design decision ... a deliberate one?

Don: Alright, well, the number of possible things like that was too

huge to anticipate, so I just am glad that there weren’t more, I guess.
I’m sorry.

Cameron: A lot of the questions have been of the form “Why did you

do X?” but I think maybe part of what the thrust really is, is: If you were

doing it again, as some people are trying to do, and as you’ve suggested

that more people should be doing, reading from T^X for special needs,

are there things that you’d recommend to those people? Not so much

why did you do it this way 20 years ago, but if someone else were doing

it again what would you tell them is most important to think about?

Don: I just recommend putting extreme care into the design and check¬

ing things out and getting a wide number of users to help you with it,

to show you the problems that they have and look at as many examples

as possible. These are the things people are of course doing already.

Dotting the i’s and crossing the t’s is the name of the game; you have

to work very hard over a long period of time. The more you open or

extend your vision as to how much you’re going to solve, the longer it’s

going to take to get the whole package to be consistent.

The hardest struggle is the struggle towards convergence, instead of

divergence. You need input from a tremendous variety of sources, but

you also have to avoid the committee syndrome ... you have to have

some small number of people who make the decisions, so that every¬

thing converges. Otherwise, you get the big problem of all committee

projects — that everybody on the committee has to be proud of one

600 Digital Typography

part of the final thing. Then yon have lots of incompatible stuff in

there, mostly for political reasons. The hard thing is to do the detailed

checking on as many things as you can for consistency and convergence.

The steering problem was the toughest aspect of d^lX’s development.

If you study the paper “The Errors of TeX,” you’ll see how the

process worked. First there was one user — and I took a lot of time to

satisfy myself. Then I had ten users, and a whole new level of difficulties

arose. Then I had a hundred users and another level of things happened.

I had a thousand users, I had ten thousand — each of those were special

phases in the development, important. I couldn’t have gone with ten

thousand until I’d done it with a thousand. But each time a new wave

of changes came along, the idea was to have get better, and not to

let it get more diverse as it needed to handle new things. So, when I

said I’d still do things pretty much the same way, what I meant is that

I still think I would have horizontal fists and vertical lists; I still would

have boxes and glue, and so on. Those basic structural principles seem

to give a lot of mileage from a small number of concepts, to handle a

tremendous variety of typesetting challenges. But I wasn’t talking about

whether I would do exactly the same with respect to a shift amount here

and there. All those fine points are extremely important, but I’d still

keep the same basic architecture.

Barbara: It’s getting on to refreshment time. So, I would like to thank

Don very much for taking time to answer everybody’s questions. I will

take the prerogative of one last question: Would you be willing to do

this again in 2011? In 16 more years?

Don: Yeah, that sounds about right. [laughter] Thirty-two isn’t quite

as thrilling, but it should be OK. Thank you very much. [wide applause]

Figure 11. Past presidents of TUG who attended the sixteenth annual meet¬

ing: Pierre MacKay (1983-1985), Bart Childs (1985-1989), Don Knuth

(1977-1980), Nelson Beebe (1989-1991), Christina Thiele (1993-1995),

Michel Goossens (1995—1997). Photo by Luzia Dietsche.

Chapter 32

Questions and Answers, II

[Q&A session at the Charles University in Prague on 9 March 1996.

Originally published in TUGboat 17 (1996), 355-367; edited by Chris¬
tina Thiele and Barbara Beeton.]

Karel Horak: [Introductory remarks in Czech, then English.]

I’m very glad to have such a happy occasion to introduce you, Pro¬

fessor Kmith, to our audience, who are mostly members of C^TUG, the

Czech/Slovak User Group, but also some academicians from Prague

because this session is organized by t^TUG and the Mathematics Fac¬

ulty of Charles University. We are very happy to have you here, and I

would be happy, on behalf of Charles University, to give you a special

medal, [wide applause]

Don Knuth: [surprised] Thank you very much.

Prof. Ivan Netuka: Professor Knuth, dear colleagues, dear friends,

ladies and gentlemen. I feel really very much honored having the op¬

portunity to greet Professor Donald Knuth, as well as most of you here

sitting in this guildhall, on behalf of the Dean of the Faculty of Mathe¬

matics and Physics of Charles University, Professor Bedfich Sedlak.

As far as I know. Professor Knuth has come to Prague for the first

time. Despite this fact, he has been known here, not only among all

mathematicians, all computer scientists, but also many physicists, and

even to people having nothing to do with our subjects. People here are

fully aware of the significance of Donald Knuth’s treatise, The Art of

Computer Programming. Many of us have had the opportunity to be

pleased by reading the charming booklet devoted to Surreal Numbers.

We know that Donald Knuth’s favorite way to describe computer science

is to say that it is the study of algorithms. We share his opinion that

the study of algorithms has opened up a fertile vein of interesting new

mathematical problems and that it provides a stimulus for many areas

of mathematics which have been suffering from a lack of new ideas.

601

602 Digital Typography

Concave side of the Memorial Medal (actual size).

My personal experience — the personal experience of a mathemati¬

cian— says that, for every mathematician, there exists a personality who

has brought an extraordinarily great service to his field. Here we have

a rare case where, in that statement, the order of the quantifiers may

be reversed, maybe: There exists a personality who has brought a great

service, an extraordinarily great service, to every mathematician. Here

is my one-line proof: Donald Knuth —

Professor Knuth, in acknowledgement of your achievements in com¬

puter science, in mathematics, as well as in computerized typography,

which has given the whole of the community an excellent tool for pre¬

senting scientific results, the Faculty of Mathematics and Physics of

Charles University has decided that you be awarded the Faculty’s Memo¬

rial Medal. I am happy to make that presentation now. [wide prolonged

applause]

Don: Well, this is quite a beautiful medal, and a wonderful surprise;
I hope you can all come and look at it.

“Universitas Carolina Pragensis”—so we all speak Latin; maybe I
should speak Latin today, [laughter]

Questions and Answers, II 603

Convex side, featuring the Charles University seal in the center.

I don’t know much about the Czech language, but I’ve tried to learn

some of it. On many doors this week I see the word “Sem.” [laughter]

And then as I came up to this lecture hall today, there were many other

signs that said [laughter] So I thought we could have an espe¬

cially powerful version of [writes “SemT^” on the blackboard];

[more laughter] but perhaps it’s dangerous;^ I don’t know

This morning I have no prepared lecture, but I want to say just what

you want to hear, so I want to answer your questions. This is a tradition

that I maintained in California: The very last session of every class that

I taught at Stanford was devoted to questions and answers. I told the

students they didn’t have to come to that class if they didn’t want to,

but if they came I would answer any question that they hoped to have

answered when they signed up for the class. I actually borrowed this

tradition from Professor [Richard] Feynman at Caltech. And I decided

^ “Sem” is the Czech word for “here, this way”; on a door it means “pull.”

“Semtex” is a powerful plastic explosive designed and manufactured in the

Czech Republic (and also the name of several computer viruses).

604 Digital Typography

I would do it in my classes, too; it’s a wonderful idea that I recommend

to all professors — to have open-ended question and answer sessions.

I’ve recently made some home pages on the World Wide Web that

you can get via http://www-cs-faculty.staiiford.edu/ knuth and

there on those pages I have the answers to all frequently asked ques¬

tions. But today, you can ask me the infrequently asked questions.

[laughter] By the way. I’ll tell you one more joke and then we’ll get

started. Do you know what the home page is of OJ — O. J. Simpson in

the United States? It’s “http colon slash slash slash backslash

slash escape.” [laughter]

Now, please ask me questions. [pause]

Well, if there are no further questions, ... [laughter]. You may ask

in Czech, and then someone will translate.

X: Maybe a question to start with. I learned T^X carefully, and I had

a problem when someone asked me to take the integral with tilde accent.

I found that maybe there isn’t one with TgjX because you can’t specify

an italic correction to boxes.

Don: The italic correction is With each character there’s a limited

amount of information that goes in the data structure for each character;

we have [drawing on blackboard] the height, the depth, the width, and

the italic correction.

width

But those are the only numbers that are allowed, and in mathematics

mode, the italic correction is used in a different way from outside of

mathematics. In mathematics mode, the italic correction is actually used

for subscripts; it’s the amount by which you would bring the subscript

to the left — without the italic correction, would typeset “P sub n”

(Pn) like this: P^.

The italic correction on the integral sign might even be another case

because the large operators use the italic correction to cover the offset

between the lower limit and the upper limit. Anyway, there’s only one

Questions and Answers, II 605

number in there. If you want a special construction that demands many

more numbers, the only way I know is to make a special macro for that.

I would carry the information somewhere up in the level, not in the

inside, not with the character. You would have to build a structure that

has this information in it. I don’t know how general a solution you need,

but certainly if you said the ... I can’t even remember the name now

• • • Illy goodness, how do you get the ... like the same mechanism by

which someone would take an equal sign and then put something over

it, like = . It’s defined in plain TeX by a macro^ ... I would build it up

out of the primitives, but if you had different integral signs, you would

probably have to allow the person who specified the font to ...

X: I have a solution but it is not a solution: I used METRFONT

to produce special characters, which have the ...

Don: Yes, using METRFONT would be the ideal way to get the correct

artistic effect, but then everyone else has to get your METRFONT code

and compile your font. Just by a combination of boxes and glue, you

should be able to position the characters that you have. You could just

make a \vbox or a \vcenter of something or other, and then you build

the \hbox of ... with a kern and then a tilde and so on. Otherwise,

I don’t know any simple way of doing exactly that balancing because

it’s complicated by the visual proportions of the spacing with integral

signs — it gets really complicated to handle all cases.

My general philosophy with TeX was to try to have a system that

covers 99% of all cases easily [laughter]-, and I knew there would always

be a residual number. But I felt that this residual would only be needed

by the people who really care about their papers, and then if they’re only

spending 1% of the time on this, they could enjoy feeling that they had

contributed something special by adding their little signature, putting

their special stamp on it. So I didn’t try to do everything automati¬

cally. I still believe that it’s worthwhile to think about how to do more

automatically, but I don’t believe you ever get all the way there.

Karel Horak: I would be very interested in your way of thinking —

when you started thinking about making TEX and the typesetting sys¬

tem— when you realized that you also needed to produce some letters,

to have not only TEX but also METRFONT. Because — I don’t know

too much about all typefaces of digital typography — but I think there

weren’t very many types which you could use with TEX» so probably

^\buildrel.

606 Digital Typography

you started thinking about METRFONT, about something like that, from

the first?

Don: Exactly.
Let’s go back to May 1977. I sat down at a computer terminal and

started writing a memorandum to myself about what I thought would be

a good language for typesetting. And two weeks later, I began working

on fonts. This was going to be my sabbatical year, where I would do no

teaching through the end of 1977, and the beginning of 1978. I thought

that I would write a typesetting system just for myself and my secretary.

[laughter] I had no idea that I would ever be seeing on, for example,

the tram signs in Brno [laughter] or on signs posted in famous churches.

TeX was just for my own purposes, and I had one year to do it. And I

thought it would be easy. So, in May of 1977, I went to Xerox PARC, the

place where the ideas of mouses and windows and interfaces and so on

were being worked on, and I knew that they were playing with splines

for letterforms. I saw Butler Lampson at a computer terminal, and he

was adjusting splines around the edges of letters that he had magnified;

so I thought, “good. I’ll make an arrangement to work at Xerox PARC

during my sabbatical year, and use their cameras and make the type.”

I knew from the beginning that I wanted the type to be captured in a

purely mathematical form; I wanted to have something that would adapt

to technology as it kept changing, so that I would have a permanent

mathematical description of the letters. Unfortunately, Xerox said, “Yes,

you’re welcome to use our equipment, but then we will own the designs,

they will be the property of Xerox.” I didn’t want any of this work to

be proprietary; I didn’t want people to have to pay to use it. ... A

mathematical formula is just numbers — why shouldn’t everybody own

those numbers?

So instead, I worked only at Stanford, at the Artificial Intelligence

Laboratory, with the very primitive equipment there. We did have tele¬

vision cameras, and my publisher, Addison-Wesley, was very helpful —

they sent me the original press-printed proofs of my book, from which

The Art of Computer Programming had been made. The process in the

60s that I wanted to emulate was interesting: They would first print

with metal type, Monotype, on to good paper, one copy. They made

one copy with the metal, then they photographed that copy and printed

from the photograph. Addison-Wesley gave me that original copy from

which they had made the original photographs. So I could try putting

the TV camera on that, and go from the TV camera to a computer

screen to copy the letters. At that time, we could connect our display

terminals to television and to movies on television; people were looking

Questions and Answers, II 607

at the titles of movies, and capturing the frames from the movies and
then making type. They would keep waiting for more episodes of Star
Trek or something so that we would have the whole alphabet; eventually
we would get a title with the letter “x” iu it. That’s how we were trying
to get type by means of television at the time.

I thought it would be easy, but immediately I noticed that if I turned
the brightness control down a very little bit, the letters would get much
thicker. There was a tremendous variation, so that what I would see on
my TV screen had absolutely no consistency between a letter that I did
on Monday and a letter that I did on Tuesday, the following day. One
letter would be fat and one letter would be thin, but it would be the
same letter because the brightness sensitivity was extremely crude. This
is still true now: If you scan a page of text and you change the threshold
between black and white, a small change in the threshold changes the
appearance of the letter drastically. So I couldn’t use TV.

For the next attempt, my wife made photographs of the pages and
then we took our projector at home and projected them down a long
hallway. On the wall I would try to copy what the letters were. But at
that point I realized that the people who had designed these typefaces
actually had ideas in their mind when they were doing the design. There
was some logic behind the letters. For example, consider the letters ‘m’,
‘n’, ‘i’, and ‘1’. I noticed that the ‘m’ was 15 units wide, the ‘n’ was 10
units, and the ‘i’ was 5 units. Aha! A pattern! The ‘1’ was 5 units, the
‘f’ was 6 units, the ‘fi’ ligature was 10 units. So, if you cut off the tops of
certain letters, you would see an exact rhythm of 5 units between stems.
Great — there were regularities in the design! That’s when it occurred
to me that maybe I shouldn’t just try to copy the letterforms, but I
should somehow try to capture the intelligence, the logic, behind those
letterforms. And then I could do my bold font with the same logic as
the regular font.

The truth therefore is that at first I didn’t know what to do about
fonts; late May 1977 is when I started to have the idea of METRFONT.

I spent the summer of 1977 in China, and I left my students in
California; I told them to implement while I was gone. [laughter]
I thought it would be very easy; I would come home and they would
have working, and then I could do the fonts. But when I got back,
I realized that I had given them an impossible task. They actually had
gotten enough of T^jX running to typeset one character on one page, and
it was a heroic achievement, because my specifications were very vague.^

^ See Chapter 25 of the present volume.

608 Digital Typography

I thought the specifications were precise, but nobody understands how

imprecise a s])ecification is until they try to explain it to a computer.

And to write the i)rogram.
When I was not in China—in June, the first part of July, and

September, October, November — I spent most of my time making fonts.

And I had to, because there was no existing way to get a font that

would be the same on different equipment. Plenty of good fonts ex¬

isted, but they were designed specifically for each manufacturer’s de¬

vice. There was no font that would go to two devices. And the people

at Xerox PARC — primarily John Warnock —were still developing their

ideas; they eventually founded Adobe Systems in 1982. Now, with the

help of many great designers, they have many beautiful fonts. But that

came later, more than five years after I had an urgent need for device¬

independent type.
My lecture to the American Math Society was scheduled for January

1978. The transcript of the lecture that I gave, the Gibbs Lecture to the

Society,"^ shows the work that I did with fonts in 1977. It was a much

longer task than I ever believed possible. I thought it would be simple to

make something that looked good — but it was maybe six years before

I had anything that really looked satisfactory.

So, the first significant idea was to get fonts that would work on

many different computers and typesetting machines, including future

devices that had not been invented, by having everything defined in

mathematics. The second idea was to try to record the intelligence of

the design. I was not simply copying a shape, I also would specify the

logic underlying that shape and its parts. My goal was to understand the

designer’s intention, not merely to copy the outcome of that intention.

Well, I didn’t have running until May of 1978; I drew the

fonts first. For the article “Mathematical Typography,” my talk to the

American Math Society in January 1978, I made individual letters about

4 cm high and I pasted each one on a big sheet of paper and took a
photograph of that.

That’s a long answer. I hope I answered the question.

Karel: I have another question about this system; it is, when you

started to learn typography, you had some knowledge before, or you

started in the process, learning more and more? Because my experience

with The T^book is that there is very much about typography. You

can learn a lot about typography, much more than some people who are

doing typesetting on the professional level, using those windows mouse

^ See Chapter 2 of the present volume.

Questions and Answers, II 609

systems. They never can learn from the books which are supplied with
those systems.

Don: Thank yon. So, what was my background before 1977? When

I was in secondary school - America’s version of a Enro])ean gymna¬

sium- I had a part-time job setting type (so-called) on what was known

as a mimeograph machine. I’m not sure what would be the equivalent

here. On a mimeograph yon had a sort of blue gelatinous material.

The typewriter typed into it and it made a hole. I would also use a

light table, and special pens, and try to make music or designs on the

mimeograph stencil. I had a summer job where I would type, and then

I would use my stylus to inscribe pictures on the gel. So I knew a little

bit about typography. This was not hue printing, of course; it was very

amateurish, but at least it gave me some idea that there was a process

of printing that I could understand. After making the stencils, I would

run the mimeograph, and cut the paper, and so on. I was doing this as

a student.

Later, my father had a printing press in the basement of our house,

and he did work for several schools of Milwaukee; this was to save money

because the schools could not afford professional printing. He would also

work for some architects that were friends of ours, to make their speci¬

fication documents. Schools would need programs for concerts, or grad¬

uation ceremonies, and tickets for football games ... my father would

do this in our basement. He started with a mimeograph machine, then

he upgraded to something called a VariTyper, which was marvelous,

because it had proportional spacing — some letters were wider than oth¬

ers. The fonts were terrible, but we had this machine, and I learned how

to use it.

Still later, I started writing books. The Art of Computer Program¬

ming. So, by 1977, I had been proofreading thousands of pages of galley

proofs. I certainly was looking at type. And you might say I was getting

ink in my blood.
But I also knew that engineers often make the mistake of not looking

at the traditions of the past. They think that they’ll start everything

over from scratch, and I knew that such attitudes were terrible. So

actually, right during May of 1977, when I was thinking about starting

my sabbatical year of typesetting, I took a trip with the Stanford Library

Associates, a group of book lovers from Stanford.^ We visited places in

Sacramento, California, where other bibliophiles lived. We stopped at

a typographic museum, which had a page from a Gutenberg Bible, and

^ See pages 502-503.

610 Digital Typography

so on. One man who lived in the mountains had his own hand press,

and I had a chance to try it. Everywhere we went on this tour, I looked

intently at all the letters that I saw, trying to imagine how a computer

could draw them. And I saw peojde’s collections of what they felt was

the finest printing.

At Stanford Library there is a wonderful collection of typographic

materials donated by Morgan and Aline Gunst, who spent a lifetime

collecting fine printing. As soon as I got back from the library trip,

I knew about the Gunst collection, so I spent May and June reading

the works of Goudy and Zapf and everything else I could find, back

through history. First of all, it was fascinating, it was wonderful, but

I also wanted to make sure that f could capture as well as possible the

knowledge of past generations in computer form.

The general idea I had at that time was the following. At the be¬

ginning, when I was young, people had computers that could deal only

with numbers. Then we had computers that knew about numbers and

capital letters, uppercase letters. So this greatly increased our ability

to express ourselves. But even in Volume 1 of The Art of Computer

Programming when I designed my MIX computer, I never expected that

computers could do lowercase letters, [laughter] The Pascal language

was developed in 1970; Pascal originally used only uppercase letters, and

parentheses, commas, digits, altogether 64 characters.

Next, in the early 1970s, we had lowercase letters as well, and com¬

puters could make documents that looked almost like a typewriter. And

then along came software like the eqn system of UNIX, which would make

documents that approached printing. You probably know that troff and

the eqn system for mathematics were developed at Bell Labs. Those sys¬

tems actually were extensions of a program that began at M.I.T. in 1961,

and it developed through a sequence of about five levels of improvement,

finally to eqn in 1975.

So I knew that it was possible, all of a sudden, to get better and

better documents from computers, looking almost like real books. When

contemplating T^X I said, “Oh! Now it’s time to go all the way. Let’s

not try to approach the best books, let’s march all the way to the end —

let’s do it!” So my goal was to have a system that would make the

best books that had ever been made, except, of course, when handmade

additions of gold leaf and such things are added, [laughter] Why not?

It was time to seek a standard solution to all the problems, to obtain

the very best, and not just to approach better and better the real thing.

That’s why I read all the other works that I could, so that I would not

miss any of the ideas. While reading every book I could find in the Gunst

Questions and Answers, II 611

collection, to see what those books could tell me about typesetting and

about letterforms, I tried to say, “Well, how does that apply today,

how could I teach that to a computer?” Of course, 1 didn’t succeed

in everything, but I tried to hud the powerful primitives that would

support most of the ideas that have grown up over hundreds of years.

Now, of course, we have many more years of experience, so we can

see how it is possible to go through many more subtle refinements that

I couldn’t possibly have foreseen in 1980. Well, my project took more

than one year, and I had more than one user at the end. The subsequent

evolution is described in my paper called “The errors of and the

complete story after 1978 is told in that paper.**

In 1980, I was fortunate to meet many of the world leaders in ty¬

pography. They could teach me, could fill in many of the gaps in my

knowledge. Artisans and craftsmen usually don’t write down what they

know. They just do it. And so yon can’t find everything in books; I had

to learn from a different kind of people. And with respect to type, the

interesting thing is that there were two levels: There was the type de¬

signer, who would draw the shapes, and then there was the punchcutter,

who would cut the actual type. And the designer would sometimes write

a book, but the punchcutter would not write a book. I learned about

optical illusions — what our eye thinks is there is not what’s really on

the page. And so the punchcutter would not actually follow the draw¬

ings perfectly, but the punchcutter would distort the drawings in such

a way that after the printing process was done and after you looked at

the letter at the right size, what you saw was what the designer drew.

The punchcutter knew the tricks of making the right distortions.

Some of these tricks are not necessary any more on our laserprinters.

Some of them were only for the old kind of type. But other tricks were

important, to avoid blots of ink on the page and things like that. Af¬

ter I had done my first work on METRFONT, I invited Richard Southall

to Stanford; he had been working at Reading University with the peo¬

ple who essentially are today’s punchcutters. He gave me the extra

knowledge that I needed to know. For example, when stems are sup¬

posed to look exactly the same, some of them are a little bit thinner, like

the inside of a P — you don’t want it to be quite as thick, you want it to

be a little thinner; then, after you have the rest of the letter there, the

lightened stem will look like it was correct. Richard taught me that kind

^Software — Practice and Experience 19 (1989), 607-681. Reprinted with

additional material in Literate Programming (1992), 243-339.

612 Digital Typography

of refinement. I learned similar things from Chuck Bigelow, Matthew

Carter, Kris Holmes, Gerard Unger, Hermann Zapf, and others.

But we had very {)rimitive eciuipment. in those days, so that the fonts

we could actually generate at low resolution did not look professional.

They were just cheaj) approximations of the fine type. Stanford could not

afford an expensive typesetting machine that would realize our designs at

the time. Now I’m so happy that we have machines like the LaserJet 4,

which make my type look the way I always wanted it to look, on an

inexpensive machine.

X: Now that PostScript is becoming so widely used, do you think it

is a good replacement for METRFQNT I mean, good enough? Right

now, we can use T^X and PostScript ...

Don: The ciuestion is, is PostScript a good enough replacement for

METRFQNT? I believe that the available PostScript fonts are quite ex¬

cellent quality, even though they don’t use all of the refinements in

METRFQNT. They capture the artwork of top-quality designs. The mul¬

tiple master fonts have only two or three parameters, while Computer

Modern has more than sixty parameters; but even with only two or

three, the Myriad and Minion fonts are excellent.

I’m working now with people at Adobe, so that we can more easily

substitute their multiple master fonts for the fonts of public-domain

documents. The goal is to make the PDF files smaller. The Acrobat

system has PDF files that are much larger — they’re ten times as big as

DVI files, but if you didn’t have to download the fonts, they would only

be three times as large as the DVI files. Acrobat formats allow us search

commands and quite good electronic documents. So I’m trying to make

it easier to substitute the multiple master fonts. They still aren’t quite

general enough, although I certainly like the quality there.

Adobe’s font artists, like Carol Twombly and Robert Slimbach, are

great; I was just an amateur. My designs as they now appear are good

enough for me to use in my own books without embarrassment, but I

wouldn’t mind using the other ones. Yes, I like very much the fonts that

other designers are doing.

Asking an artist to become enough of a mathematician to under¬

stand how to write a font with 60 parameters is too much. Computer

scientists understand parameters, the rest of the world doesn’t. Most

people didn’t even know the word “parameters” until five years ago — it’s

still a mysterious word. To a computer person, the most natural thing

when you’re automating something is to try to show how you would

change your program according to different specifications. But this is

Questions and Answers, II 613

not a natural concept to most people. Most i)eople like to work from

a given set of specifications and then answer a specific design problem.

They don’t want to give an answer to all possible design specifications

that they might be given and explain how they wonld vary their solution

to each specification. To a computer scientist, on the other hand, it’s

easy to understand the connection between variation of parameters and

variation of programs.

In the back?

LacTa Lhotka: I have a problem for you. How did you decide to write

and document the program for T^X in the structured way that you did?

Don: 1 was talking with Tony Hoare, who was editor of a series of

books for Oxford University Press. I had a discussion with him in ap¬

proximately ... 1980; I’m trying to remember the exact time, maybe

1979, yes, 1979, perhaps when I visited Newcastle? I don’t recall the

date exactly. He told me that I ought to publish my program for T^X.^

As I was writing TgX I was using for the second time in my life a

set of ideas called “structured programming,” which were revolutioniz¬

ing the way computer programming was done in the middle 70s. I was

teaching classes and I was aware that people were using structured pro¬

gramming, but I hadn’t written a large computer program since 1971.

In 1976 I wrote my first structured program; it was fairly good sized —

maybe, I don’t know, 50,000 lines of code, something like that. (That’s

another story I can tell you about sometime.) This gave me some expe¬

rience with writing a program that was fairly easy to read. Then when

I started writing TgX awhile later (I began the implementation of Tg^

in October of 1977, and finished it in May 78), it was consciously done

with structured programming ideas.

Professor Hoare was looking for examples of fairly good-sized pro¬

grams that people could read. Well, this was frightening — a very scary

thing, for a professor of computer science to show someone a large pro¬

gram. At best, a professor might publish very small routines as examples

of how to write programs. And we could polish those until ... well, ev¬

ery example in the literature about such programs had bugs in it. Tony

Hoare was a great pioneer for proving the correctness of programs. But

if you looked at the details ... I discovered from reading some of the

articles, you know, I could find three bugs in a program that was proved

^ I looked up the record later and found that my memory was gravely flawed.

Hoare had heard rumors about my work and he wrote to Stanford suggesting

that I keep publication in mind. I replied to his letter on 16 November

1977 — much earlier than I had remembered.

614 Digital Typography

correct, [iaugiiter] These were small programs. Now, he says, take my

large program and reveal it to the world, with all its compromises. Of

course, I developed T[^ so that it would try to continue a history of

hundreds of years of different ideas. There had to be compromises. So I

was frightened by the notion that I would actually be expected to show

someone my jrrogram. But then I also realized how much need there

was for examj)les of fairly large programs that could be considered as

reasonable models of good practice, not just small programs.

I had learned some important ideas from a Belgian man, who had

a system that is explained in my paper on literate programming. He

sent me a report, which was 150 pages long, about his system® it was

inspired by “The spirit in the machine.” His 150-page report was very

philosophical for the first 99 pages, then on page 100 he started with an

example. That example opened my eyes to the notion that a program

should be regarded as hypertext (as we would say today). He proposed

a way of taking a complicated program and breaking it into small parts.

Then, to understand the complicated whole, what you needed is just to

understand the small parts, and to understand the relationship between

each part and its neighbors.

In February of 1979, I developed a system called DOC and UNDOC ...

something like the WEB system that came later. DOC was like WEAVE and

UNDOC was like TANGLE, essentially. I played with DOC and UNDOC and

did a mock-up with a small part of TgX. I didn’t use DOC for a whole

implementation but I took the inner part called getnext, which is a fairly

complicated part of TgX’s input routine, and I converted it to DOC. This

gave me a little 20-page program that would show the getnext part of

T^X written in DOC. And I showed that to Tony Hoare and to several

other people, especially Luis Trabb Pardo, and got some feedback from

them on the ideas and the format.

Then we had a student at Stanford whose name was Zabala — ac¬

tually he’s from Spain and he has two surnames — we called him Inaki;

Ignacio is his given name. He took the entire Ti^ that I’d written in a

language called SAIL (Stanford Artificial Intelligence Language), and he

converted it to Pascal in this DOC format. TEX-in-Pascal was distributed

around the world by 1981. Then in 1982, when I was writing T^)X82, I

was able to use his experience and all the feedback he had from users,

and I made the system that became WEB. There was a period of two

weeks when we were trying different names for DOC and UNDOC, and the

® Pierre Arnoul de Marneffe, Holon Programming (Universite de Liege, Ser¬

vice d’Informatique: December 1973).

Questions and Answers, II 615

winners were TANGLE and WEAVE. At that time, about 25 peo])le would

meet every Friday at Stanford to discuss digital typography. And we

would play around with a whole bunch of ideas; this was the reason for

most of the success of T^X and METRFONT.

Another program I wrote at the time was called Blaise, because it

was a preprocessor to Pascal, [laughter]

Petr Olsak: I have two questions. What is yonr opinion of IAT^^X,

as an extension ol TgX at the macro level? I think that T[^ was made

for the plain T^X philosojjhy, which means that the user has read The

T[^book ... [laughter] while B^TeX is done with macros, and takes

plain as its base. And the second question: Why is T^X not widely

implemented and used in commercial places? They use only mouse and

WYSIWYG-oriented programs.

Don: The first question was, what do I think about lAl^gX? I al¬

ways wanted to have many different macro packages oriented to different

classes of users, and B^T^eX is certainly the finest example of these macro

packages. There were many others in the early days. But Beslie Barn-

port had the greatest vision as to how to do the job well. There’s also

^^iS-TgX, and many mathematicians used Max Diaz’s macros — orig¬

inally known as MaxT^X but later officially called Facil TgX — in the

early days before we had BM^eX- Mike Spivak and Beslie Bamport pro¬

vided very important feedback to me on how I could improve T^jX to

support such packages. I didn’t want to force ... I like the idea of a

macro system that can adapt to special applications. I myself don’t use

IATeX because I don’t have time to read the manual. [laughter] lATjgX

has more features than I need myself, in the way I do things. Also, of

course, I understand TgX well enough that it’s easier for me not to use

high-level constructions beyond my control.

But for many people lATgX is a simpler system, and it automates

many of the things that people feel naturally ought to be automated.

For me, the things that it automates are largely things that I consider

are a small percentage of my total work. The task of hand-tuning a

bibliography doesn’t bother me, but it bothers other people a lot. I can

nnderstand why a lot of people prefer their way of working.

Also, when you’re writing in a system like IATeX you can more

easily follow a discipline that makes it possible for other programs to

find the structure of your document. If you work in plain TeX, yon have

the freedom to be completely unstructured in your approach and you

can defeat any possible process that would try to automatically extract

bibliographic entries and such things from your document. If you restrict

616 Digital Typography

yourself to some kind of a basic structure, then other processes become

possible. So a disciplined use of TeX can be quite valuable. It allows

translation into other structures, languages and so on.

Bnt I use TgX for so many different purposes where it would be

much harder to provide canned routines. IATeX is at a higher level; it’s

not easy to bend it to brand-new applications. Very often I find that,

for the kind of things that I want to do, I wake up in the morning and

I think of a project ... or my wife comes to me and says, “Don, can

you make the following for me?” So I create ten lines of TeX macros

and all of a sudden I have a new language specifically for that kind of a

document. A lot of my electronic documents don’t look like they have

any markup whatsoever.

Now, your second question, why isn’t TeX used more in commercial

publication? In fact, I was quite pleasantly surprised to see how many

commercial publishers in the Czech Republic are using TeX- Thursday

night, I saw three or four Czech-English dictionaries that were done

with TeX, and you know it’s being used for the new Czech encyclopedia.

And Petr Sojka showed me an avant garde novel that had been typeset

with TeX with some nice tricks of its own very innovative page layout.

In America, TeX is used heavily in legal publications, and behind the

scenes in lots of large projects.

I never intended to have a system that would be universal and used

by everybody. I always wanted to write a system that would be used for

just the finest books. [laughter] Just the ones where the people had a

more difficult than ordinary task, or they wanted to go the extra mile

to have excellent typography. I never expected that it would compete

with systems that are for the masses.

I’m not a competitive person, in fact. It made me very happy to

think that I was making a system that would be primarily for mathe¬

matics. As far as I knew, there wasn’t anybody in the world who would

feel offended if I made it easier to typeset mathematics. Printers consid¬

ered mathematics to be “penalty copy,” something that they did only

grudgingly. They charged a penalty for the extra horrible work of type¬

setting mathematics. I never expected that I would be replacing systems

that are used in a newspaper office or anything like that. It turned out

that after TeX got going, we found we could make improvements to non-

mathematical typesetting; for example, in one experiment we re-typeset

a page of Time magazine, to show how much better it would be if they

had a good line-breaking algorithm.^ But I never expected when I began

® See pages 140 and 141.

Questions and Answers, II 617

that such magazines would ever nse what I was doing because, well, it

was a billion-dollar industry and I didn’t want to put anyone out of work

or anything.

So it was very disturbing to me in the early 80s when 1 fonnd there

was one man who was very unhappy that I invented T^X. He had

worked hard to develop a mathematical typesetting system that he was

selling to people, and he was losing customers. So he wrote to the

National Science Foundation in America, saying, “I’m a taxpayer and

you’re using my tax money to pnt me out of business.” This made me

very unhappy. I thonght everything I was doing was for everybody’s

good. And here was a person I’d obviously hurt. But I also thought

that I still should make available to everyone, even though it had

been developed with some help from the government. I don’t think the

government should give financial support only to things that are purely

academic and not useful.

Yes?

X: I have a question about the usage of your typographic programs in

commercial institutions like DTP stndios and so on. I’d like to ask about

using parts of the TeX source. You made clear that the programmers

were free to incorporate parts of the source into their own programs.

There are some remarkable examples of this, do you know.

Don: That question came up also last summer when I had a question

and answer session at the TUG meeting in Florida.I thought it would

be fairly common to have special versions of TEi^. I designed IJiiX so

that it has many hooks inside; you can write extensions and then have

a much more powerful TgX system readily adapted.

I guess I was thinking that every publishing house using TgX would

have an in-honse programmer who wonld develop a special version of

TgX if they wanted to do an edition of the Bible, or if they wanted to

do an Arabic-to-Chinese dictionary or some other special job. If they

were doing an encyclopedia, they could have their own version of Tf?^

that would be used for this application.

A macro language is Turing-complete — it can do anything — but

why should we try to do everything in a high-level language when some

things are so easily done at a lower level? Therefore I built hooks into

TeX and I implemented parts of TeX as demonstrations of those hooks,

so that a person who read the code conld see how to extend TeX to

other things. We anticipated certain kinds of things for chemistry or

See page 598 of the present volume.

618 Digital Typography

for making change bars that would be done in the machine language for

special applications.

Certainly, if I were in the publishing business myself, I would prob¬

ably have had ten different versions of by now for ten different

complicated projects that had come in. They would all look almost the

same as T^, but no one else would have exactly the same program —

they wouldn’t need it, since they’re not doing exactly the book that my

publishing house was doing.

I thought such special versions would proliferate. And certainly,

there was a point in the middle 80s when more than a thousand people

in the world understood the implementation of T^X. They knew the

intricacies of the program quite well; they had read it, and they would

have been able to make many kinds of extensions if they had wanted

to. But now I would say that the number of people with a working

knowledge of TeX’s innards is probably more than a hundred, but less

than a thousand. It hasn’t developed to the extent that I expected.

One of the most extensive such revisions is what I saw earlier this

week in Brno — a student whose name is Thanh, who has a system al¬

most done that outputs PDF format instead of DVI format. If you specify

a certain flag saying \PDFon, then the output comes out as a file that

an Acrobat reader can read immediately. Ten years ago I also expected

that people would go directly to PostScript; that hasn’t happened yet

as far as I know.

No one has done a special edition of the Bible using TgX in the way

I expected. Some extensions were made in Iceland; I don’t remember

if they did it at the higher level — I think they worked mostly at the

macro level, or maybe entirely.

Anyway, I made it possible to do very complicated things. When

you have a special application, I was always expecting that you would

want to have a specially tuned program there because that’s where it’s

easiest to do these powerful things.

X: I want to ask which features of TgX were in the first version —

for example, line-breaking, hyphenation, and macro processing — if all

these things were in the first version?

Don: The very first version was designed in April 1977. I did have

macros and the algorithm for line-breaking. It wasn’t as well developed;

“ Han The Thanh; see Petr Sojka, Han The Thanh, and Jiff Zlatuska, “The

Joy of TBX2PDF — Acrobatics with an alternative to DVI format,” TUG-
boat 17 (1996), 244-251.

Questions and Answers, II 619

I didn’t have all the bells and whistles like \parshape at that time,

but from the very beginning, from 1977 on, I knew I would treat the

paragraph as a whole, not just line by line. The hy])henation algorithm

I had in those days was not the one that we nse now; it was based on

removing prefixes and suffixes- it was a very peculiar method, but it

seemed to catch about 80% of the hyphens. I worked on that just by

looking at the dictionary: 1 would say, if the word starts with ‘anti’, then

pnt a hyphen after the ‘i’; similar rules applied at the end of a word.

Or if a certain combination of letters occurred in the middle, there were

natural breaks. I liked this better than the troff method, which had

been published earlier. T^^X’s old hyphenation algorithm is described in

the old TgX manual, which you can find in libraries.

Now, you asked about line-breaking, hyphenation, macros, and so

on; I developed the macro language in the following way. I took a

look at Volume 2 of The Art of Computer Programming and I chose

representative parts of it. I made a mock-up of about five pages of that

book, and said, “How would I like that to look in a computer file?” And

that was the whole source of the design.

I stayed up late one night and created TgX. I went through Vol¬

ume 2 and fantasized about natural-looking instructions— “here I’ll say

‘begin an algorithm’, and then I’ll say ‘Algorithm K’, and then I’ll say

‘algstep KT,” you know. This gave me a little file that represented the

way I wanted the input to look for The Art of Computer Programming.

The file also included some mathematical formulas. Formulas were based

on the ideas of eqn; the troff language had demonstrated a way to repre¬

sent mathematics that secretaries could learn easily. And that was the

design. Then I had to implement a macro language to support those

features.

The macro language developed during 1978, primarily with the in¬

fluence of Terry Winograd. Terry was writing a book on linguistics, a

book on English grammar.He wanted to push macros much harder

than I did, and so I added \xdef and fancier parameters for him.

The hyphenation algorithm we have now was Frank Liang’s Ph.D.

research. He worked with me on the original hyphenation method, and

his experience led him to discover a much better way, which can adapt to

TpX and METflFONT; New Directions in Typesetting (Bedford, Massachu¬

setts: Digital Press, 1979).

See pages 484-488 of the present volume.

Language as a Cognitive Process, Volume 1: Syntax (Reading, Massachu¬

setts: Addison-Wesley, 1983).

620 Digital Typography

all languages I mean, to all western languages, which are the languages

that use hyphens.

To develop rules for proper si)acing in mathematics, I chose three

standards of excellence of mathematical typesetting. One was Addison-

Wesley books, in particular The Art of Computer Programming. The

people at Addison Wesley, especially Hans Wolf (their main source for

composition), had developed a style that I had always liked best in my

textbooks as a college student. Secondly, I took Acta Mathematica, frorc'

1910 approximately; this was a journal in Sweden ... Mittag-Leffler was

the editor, and his wife was very rich, and they had the highest budget

for quality mathematics printing, so the typography was especially good

in Acta Mathematica. And the third source was a copy of Indagationes

Mathematics, the Dutch journal. There’s a long fine tradition of quality

printing in the Netherlands, and I selected an issue from 1950 or there¬

abouts, where again I thought that the mathematics was particularly

well done.

I took these three standards of excellence and looked at all of the

mathematics formulas closely. I measured them, using the TV cam¬

eras at Stanford, to find out how far they dropped the subscripts and

raised the superscripts, what styles of type they used, how they balanced

fractions, and everything. I made detailed measurements, and I asked

myself, “What is the smallest number of rules that I need to do what

they were doing?” I learned that I could boil it down into a recursive

construction that uses only seven types of objects in the formulas.

I’m glad to say that three years ago, Acta Mathematica adopted

TeX. And so the circle has closed. Addison-Wesley has certainly

adopted TeX, and I’m not sure about the Dutch yet — I’m going to

visit them next week. [laughter] But anyway, I hope to continue the

good old traditions of quality.

I have to call on people who haven’t spoken. George?

Jiff Vesely: I have a question. You are asked every time carefully

regarding all suggestions and things like that for improvements. Once I

was asked about the possibility to make a list of all hyphenated words

in the book. I was not able to find in your book a way to do this. I

would like to know something about your philosophy what to include

and what not to include. What would be in that special package, and

what would be in T^iX?

Don: The question is, what is the philosophy that I use to try to say

what should be a basic part of TeX and what should be harder to do

or special, or something like that. Of course, these decisions are all

Questions and Answers, II 621

arbitrary. I think it was important, though, that the decisions were all

made by one person, even though I’m not ... I certainly make a lot of

mistakes. I tried the best to get input from many sources, but hnally

I took central responsibility to keep some unity. Whenever yon have a

committee of people designing a system, everyone in the committee has

to feel proud that they have contributed something to the hiial language.

But then you have a much less unihed result because it reflects certain

things that were there to please each person. I wanted to please as many

people as I could but keep unity. So for many years we had a weekly

meeting for about two hours every Fi'iday noon, and we had visitors from

all over the world who would drop in. I would listen to their comments

and then I would try to incorporate the best ideas.

Now you ask specifically about why don’t we have an easy way to

list all the hyphenations that were made in the document. It sounds like

a very nice suggestion, which I don’t recall anyone raising during those

weekly meetings. The words that actually get hyphenated, the decision

to do that is made during the hpack routine, which is part of the line-

breaking algorithm. But the fact that a hyphenation is performed by

hpack doesn’t mean that it’s going to appear in the final document,

because you could discard the box in which this hyphenation was done.

It’s very easy in T^X to typeset something several times and then

choose only one of those for the actual output. So, to get a definitive

representative of the hyphenation, you’d have to catch it in the output

routine, where the discretionary had appeared. This would be easy to

do now in a module specially written for I would say that right

now, in fact, you could get almost exactly what you want by writing a

filter that says to T^^ “Turn on all of the tracing options that cause it to

list the page contents.” Then a little filter program would take the trace

information through a UNIX pipe and it would give you the hyphenated

words. It would take an afternoon to write this program; well, maybe

two afternoons ... and a morning. [laughter] You could get that now,

but it was not something that I can recall I ever debated whether or not

I should do at the time we were having those weekly discussions on T^X.

My paper on “The errors of T^X” has the complete record of all the

changes that were made since 1979, with dates, and with references to

the code, exactly where each change appears. And so you can see the

way the evolution was taking place. Often the changes would occur as

I was writing The TpiKbook and realizing that some things were very

hard for me to explain. I would change the language so it would be

easier to explain how to use it. This was when we were having our most

extensive meetings with users and other people in the group as sources

622 Digital Typography

of ideas; the part of the language I was writing about was the part that

was changing at the moment.

During 1978, I myself was typesetting Volume 2, and this led natu¬

rally to improvements as I was doing the keyboarding. In fact, improve¬

ments occurred almost at a steady rate for about 500 pages: Every four

pages I would get another idea how to make TEX a little better. But the

number of ways to improve any complicated system is endless, and it’s

axiomatic that you never have a system that cannot be improved. So

finally, I knew that the best thing I could do would be to make no more

improvements — this would be better than a system that was improving

all the time.

Let me explain. As I was first developing TeX at the Stanford

Artificial Intelligence Laboratory, we had an operating system called

WAITS, which I think is the best that the world has ever seen. Eour

system programmers were working full time making improvements to

this operating system. And every day that operating system was getting

better and better. And every day it was breaking down and impossible

to use for long periods of time.

In fact I wrote the first draft of The TpiXbook entirely during down¬

time. I would take a big tablet of paper to the Artificial Intelligence

Laboratory in the morning and I would compute as long as I could. Then

the machine would crash, and I would write another chapter. Then the

machine would come up and I could type a little bit and get a little

more done. Then, another hang-up; time to write another chapter. Our

operating system was always getting better, but I couldn’t get much

computing done.

After awhile the money ran out; three of the programmers went to

Lawrence Livermore Laboratory and worked on a new operating system

there. We had only one man left to maintain the system, not to make

any more improvements. And it was wonderful! [iaughter] That year,

I could be about as productive as anyone in the world.

So I knew that eventually I would have to get to the point where T^X

would not improve anymore. It would be steady and reliable, and people

would understand the warts it had ... the things that it couldn’t do.

I still believe it’s best to have a system that is not a moving target.

After a certain point, people need something that is stable, not changing

at all. Of course, if there’s some catastrophic scenario that we don’t want

ever to happen, I still change TEX to avoid potential disasters. But I

don’t introduce nice new ideas any more.

Other people are working on extensions to T^X that will be useful

for another generation. And they will also be well advised at a certain

Questions and Answers, II 623

point to say “Now we will stop, and not change our system any more.”

Then there will be a chance for another group later.

Karel: I’d like to ask about the idea of the italic font in mathematics.

I never saw other textbooks that use different fonts for italics in text

and in mathematics, so I’m asking if it’s your own idea or if it comes

also from these three sources?

Don: I didn’t Hnd in any of the other books the idea of having a text

italic and a math italic. I wanted the math italic to look as beautiful as

possible, and I started with that. But then I found that the text italic

was not as good; since I had METRFONT, it was easy to get text italic

that would look better. If I made the text italic good, then the math

would not position the subscripts and the superscripts as well.

It’s partly because of what I explained before — T^X has only four

numbers to go with every character. Printers, in fact, in the old days,

had only three numbers; they didn’t have the italic correction. So they

couldn’t achieve T^X’s spacing automatically; the better printers ad¬

justed mathematical spacing by hand. But italic now, the italic fonts

of today by all the font designers are much better than they used to

be. We’ve seen a great improvement in italic typography during the last

ten, fifteen years. In fact, if you read older books you’ll sometimes say,

“How could anybody read this italic?” or, “Why did they accept such

peculiar spacing?” The old fonts were based on the constraints of metal

type. The whole idea of italic correction was not in any other book, but

it was necessary for me to get the spacing that I wanted.

When I show mathematical formulas to type designers, they can

never understand why mathematicians want italic type in their equa¬

tions. It seems you’re combining a roman 2 with an italic x. And they

say, “Wouldn’t the positioning be so much simpler if you had a regular,

non-sloped font in mathematics?” The type designer Jan van Krimpen

once worked with a famous physicist in the Netherlands, in Haarlem —

what was his name?^^ I think he was the second person to receive the

Nobel Prize in physics; he died in the 20s — anyway he and van Krimpen

were going to develop a new font for mathematics in the Netherlands,

and it wasn’t going to have italics for mathematics. It was going to be

unified between the Greek letters and other symbols that mathemati¬

cians wanted. But the project stopped because the physicist died; van

Krimpen finished only the Greek, which became fairly popular.

It was H.A. Lorentz. See John Dreyfus, The Work of Jan van Krimpen

(London: Sylvan Press, Museum House, 1952), page 28.

624 Digital Typography

Several other font designers have visited Stanford. When they

looked at mathematics, they said, “Well, why don’t you use a non¬

sloping font?” Hermann Zapf made a proposal to the American Math¬

ematical Society that we would create a new typeface for mathematics

which would include the Fraktur alj)hal)et, and Greek, and script, and

special characters, as well as ordinary letters. One key idea was that it

would not have sloped characters, so that x would be somehow straight

up and down. Then it should be easier to do the positioning, the balanc¬

ing. Hermann created a series of designs, and we had a large committee

of mathematicians studying the designs and commenting on them and

tuning them.^^

This font, however, proved to be too radical a change for mathemati¬

cians. I’ve seen mathematicians actually writing their documents where

they will write an x slanted twice as much - -1 mean, they make it look

very italic; then it looks like a mathematical letter to them. So after 300

years of seeing italic math in print, it’s something that many people feel

is right. There are maybe two dozen books printed, well, maybe more,

maybe a hundred, printed with the AMS Euler font in place of italics;

but most mathematicians think it’s too different. On the other hand, I

find now that the Euler Fraktur font is used by almost everyone.

In Brno, I saw Euler Roman used as the text font for a beautiful

book, a Czech translation of Diirer’s Apocalyse.^^ I also saw Euler

Roman a few days ago in some class notes. Once, when I was in Norway,

I noticed that everyone’s workstation was labeled with the workstation’s

name in AMS Euler, because people liked it. It’s a beautiful font, but

it hasn’t been used as the typeface for mathematics in a large number

of books.

Karel: If there are no other questions, I would thank Professor Knuth

very much for this session, [wide prolonged applause]

Don: Thank you all for excellent questions.

Karel: [Closing comments in Czech.]

“AMS Euler—A new typeface for mathematics,” Scholarly Publishing 20

(1989), 131-157; reprinted as Chapter 17 of the present volume.

See page 16 of the present volume.

Chapter 33

Questions and Answers, III

[On 6 January 1996, Kees van der Laan informed the NTG, the Dutch-

language-oriented T^Y Users Group, that Donald Knuth would be in

Holland in March. Knuth was invited by the Mathematisch Centrum

(MC, nowadays called Centrum voor Wiskunde en Informatica, CWI)

to speak at CWFs 50th anniversary The NTG noticed that this was

an exceptional occasion to organize a special meeting for all Dutch

and METRFONT users who would like to meet the Grand Wizard himself

Fortunately Knuth accepted the NTG invitation and so a meeting was

organized in “De Rode Hoed” in Amsterdam on March 13th. About 35

people from all over the country and even from Belgium came to the

event. Everything was recorded on both video and audio tape by Gerard

van Nes. Christina Thiele volunteered to write this transcript, first

published in the journal of the NTG: MAPS (Minutes and APpendiceS)

16 (1996), 38-49.]

Erik Frambach: Welcome, everyone. This is a

very special meeting on the occasion that Mr. Donald

Knuth is in Holland. The NTG thought it would be

a good idea to take the opportunity and ask him if he would be willing

to answer our questions about T^K, METRFONT, and anything else con¬

nected to the things we do with T^. Luckily, he has agreed. So we are

very happy to welcome Mr. Donald Knuth here — thank you for coming.

Tonight we have time to ask him any questions that we have long

been waiting to pose to him. [laughter] Fm sure that all of you have

625

626 Digital Typography

many, many questions that you would like the Grand Wizard’s opinion

about. So, we could start now with questions.

Don Knuth: I get to ask questions too! [laughter]

Last Saturday I was in Prague and the Czech/Slovak T^X users had

a session something like this. You’ll be glad to know that I saw quite a

few copies of 4TEK CDROMs at that meeting.^

This trip is not my first time in Amsterdam: I visited Amsterdam

in 1961. Therefore it’s only been 35 years, and probably will be less

than 35 years till the next time. I guess people are tape-recording these

questions and answers to try to keep me honest, because they also did

that in Prague. So in case the same question comes up, you’ll have to

take the average of the two answers, [laughter]

Wietse Dol: Did you know that Barbara Beeton does that? She mails

you and says “Tape everything.”

Don: Yes, that’s what they said in Prague too! [laughter] I think

she’s desperate for things to publish, or maybe she just has a lot of

questions. But before I open questions, let me say that one of the most

interesting questions asked me in Prague was asked after the session,

and I wish it would get into the record. The question was: How did I

^ The popular 4TDK distribution of TpX for PC-compatible computers was

the result of collaboration by NTG members.

Questions and Answers, III 627

meet Duane Bibby, who did the illustrations for The T[^book and The

METRFONTbookl Somehow I always wanted people to know about that.

Here’s the story. I had the idea that after writing math books for

many years, I wanted to have a book that had weirder well, anyway,

different - illustrations in it. Here I was writing a book about books,

and books have illustrations, so why shouldn’t I have illustrations too?

So I wrote to an artist called Edward Gorey. Does anyone know ...

Frans Goddijn: Yup. Amphigorey. Beautiful.

Don: Yes, Edward Gorey. Amphigorey.^ He makes very morbid draw¬

ings but with a wonderful sense of humor. I had used several of his books

with my children. I thought he would be a natural person. I wrote him

two letters but he never responded. Then I wrote to a Japanese artist

called Anno, Matsumasa Anno, who is really the logical successor to

Escher. Anno does what Escher did, but in color; so I asked if he’d be

able to illustrate my book. He sent back a nice letter, saying “I’m sorry

I don’t have time because I have so many other commitments, but here

are hve of my books full of pictures and if you want to use any of those,

go ahead.” Very nice, but I wanted personalized pictures.

Then I went to a party at Stanford where I met a lady who worked

for a publisher. She’d just met a brilliant young artist who she’d begun

to work with. I invited him to come to my house, and we spent some time

together and he’s a wonderful person. Duane lives now up in northern

Galifornia, about 4 hours’ drive from my house, so I only went up there

once to see him. He sometimes comes down to the San Erancisco area

on business. First we discussed the book and then he sent me a bunch

of drawings and all kinds of sketches that he had. Originally, TgX was

going to be a Roman citizen, and Duane drew this man in a toga with

olive branches on his head — which is why the lion has olive branches

now. But all of a sudden he started doing sketches of his cat, which really

seemed to click, and pretty soon he had drafted all 37 of the drawings,

using a lion. Most of those eventually become the drawings in the book,

and we adjusted half a dozen of the others. When I went to visit up at

his house, I got to meet TRX the cat, who looks very much like the one

you see in the book. So that’s the story about Duane Bibby.

Erik: Thank you. Who would like to start with the first question?

Please identify yourself when you ask one.

^ Amphigorey: Fifteen Books by Edward Gorey (New York: G. P. Putnam,

1972). Amphigorey Too (New York: G. P. Putnam, 1975). Amphigorey

Also (New York: Gongdon & Weed, 1983).

628 Digital Typography

Piet van Oestrum: My name is Piet van Oestrum. You have this

wonderful lion on The TpjKhook, the lioness on The METRFONThook.

What about baby lions?

Don: Oh, I see ... [laughter] Duane still does illustrations for special

occasions. He’s made new illustrations for the Japanese translations

of both The Tp^hook and The METRFONThook, with and METfl

dressed up in Japanese costumes. So now, if there hapr)ens to be some

kind of an offspring that would come out of somewhere, I imagine he

would be glad to help draw it. But it would probably be a little bit of an

illegitimate child, from my point of view, [laughter] I mean, I wouldn’t

take responsibility for anything those characters do. [laughter]

Piet: So what are your ideas about the offspring of and METR-

FONT?

Don: Well, I think that no matter what system you have, there will be

a way to improve it. If somebody wants to take the time to do a good,

careful job, then as we learn more about typesetting, it will happen that

something else will come along. I personally hope that I won’t have to

take time to learn a new system, because I have enough for my own

needs. But I certainly never intended that my system would be the only

tool that anybody would ever need for typesetting. I tried to make it

as general as I could with a reasonably small program, and with what

we knew and understood about typesetting at the time. So these other

projects — I don’t consider that they’re a threat to me or anything. I

hope that there will be some compatibility so that — I mean. I’d like to

be immortal — so that the books I’ve written now could still be typeset

50 years from now without having to go through the files and edit stuff.

I like the archival and machine-independent aspects of T^X especially,

and I tried to set a model, a minimum standard of excellence for other

people to follow.

Hans Hagen: But when you look in the fu¬

ture, ... you consider today’s programming by a

lot of people as an art, well a lot of art takes hun¬

dreds of years to be recognized as art. In about a hundred years there

will be pretty different computers, the programming languages will be

changed, the media on which we put all those things will be changed.

Questions and Answers, III 629

Real programs and everything related to them, will they ever have a

chance to become immortal, as yon see it?

Don: Did yon state yonr name? [laughter]

Hans: I’m Hans Hagen.

Don: You’re saying that it’s i)retty arrogant of ns to assume that

what we do now will last at all. Technology is changing so fast that we

have absolutely no idea what people are going to think of next. One

hundred years ago, physicists were saying there was nothing more to do

in physics, except to get another decimal — a fifth decimal place for the

fnndamental constants— and then that would wrap up physics. Clearly

there is no way to know about these things. But I do believe that once

we have things in electronic form and we have mirror sites of them, there

is a fair degree of immortality — whereas paper burns.

Have you heard about a project called “The Clock,” being developed

by Stewart Brand and his colleagues? He’s the one who published the

Whole Earth Catalog. They have a bunch of people that are considering

if they could build something that would last for a thousand years ...

I don’t want to go on too much more about that. I do hope that the

stability of Tg^X will make it possible to reproduce the things we’re doing

now, later. And since it’s fairly easy to do that, I think it will happen —

unless there’s a nuclear holocaust. Some mathematicians have this de¬

bate about the Platonic view ... does everything in mathematics exist

and we’re just discovering it, or are we actually creating mathematics?

In some sense, once something gets put into bits, it’s mathematics and

therefore it exists forever, even if the human race dies out — it’s there,

but so what?

Erik: Who’s next?

Marc van Leeuw^en: If I could extend a bit on the

previous questions. The stability of itself, I could

imagine, might be a stumbling block for development of

new things exactly because it’s so stable and everybody’s already using

it. So if something comes along that is just a bit better, then people will

not tend to use that because it’s not available everywhere, and there are

all kinds of reasons to keep on using the old thing.

630 Digital Typography

Don: I guess I said in Florida that people are still trying to use old

fonts that I’m trying to stamp out from the world. Four years ago I

redesigned the Greek lowercase delta and I made the arrowheads darker.

I didn’t change anything in the way TeX operates — all the dimensions

and the characters’ heights and widths stayed exactly the same. But

I did tune up a lot of the characters. Still I see lots of math journals

are still using the old ones from four years ago, and I get letters and

preprints from people with the old-style delta. I changed it because I just

couldn’t stand the old versions. [laughter] Now I’ve got home pages —

if I ever have some errata to or other news items I put them there:

http://www-cs-faculty.stanford.edu/~knuth. This address gets to

my home page, and there’s a reference saying, “Important notice for all

users of TeX” ; and that page says “Look at the lowercase delta and if

you have the wrong one, you die!” [laughter]

I understand that people have a reluctance to change from things

they’ve become accustomed to. I know of two main successors to

One is s-TeX and the other is /Tj'S. £-TeX is going to be apparently

100% compatible with Te[X, so if somebody doesn’t switch over to in¬

compatible features, then they have a system that still works with old

things. That will allow a gradual change-over. It’ll take more space on a

computer, of course, but that’s not a big deal these days. The people who

work on e-d^jX always sent me very reliable comments about TeX when

they caught errors in my stuff, so I imagine they’re going to be doing a

careful job. So it’ll be one of these things where you walk into a random

installation of UNIX or whatever and you’ll find e-TeX there as the de¬

fault, and you’ll still have TeX. Then you also have certain other features

that might be really important to you for your special applications.

Johannes Braams: You mentioned e-TEX and M-pS. But are you

also aware of the Omega project?

Don: Of course, the fl project! Yes, I’m hoping to use that myself

for the authors’ names in The Art of Computer Programming. I’ve

been collecting the names of Chinese, Japanese, Indian, Hebrew, Greek,

Russian, Arabic authors and I want to typeset their names properly

[laughter], not just in transliteration. I have some rudimentary software

that will do this for proofing purposes, for getting my database going

and for writing to people and saying, “Is this your name?” With the

O system. I’m hoping that it’ll be accompanied by good fonts that will

make it possible for me to do this without a great deal of work. Right

now, to get the Arabic names, I have to use ArabT^; to get the Hebrew

names ... I had a terrible time trying to find Hebrew fonts on CTAN

Questions and Answers, III 631

two weeks ago — I can tell yon that whole story if yon want to know

... I kept clicking on the different things and they would refer to files

that didn’t exist and README files that were four years out of date and

inconsistent, so I conldn’t find any Hebrew fonts. Maybe yon have it on

your CD ...

Johannes: I could certainly point yon to someone who conld help you

with the Hebrew font I know someone in Israel who’s trying to do

Hebrew support within the Babel system. And they do do typesetting

in Israel with TgX.

Don: My own typesetting friend in Israel is Dan Berry, who unfortu¬

nately is fairly committed to trojf. [laughter] I’m sure that I can get

good Hebrew through Yaimis [Haralambous] and D. I sure hope Uni¬

code is going to arrive sooner rather than later; it’s much better than the

alternatives, for much the reasons that Marc [van Leeuwen] mentioned.

I haven’t found a great enthusiasm in Japan for Unicode, because

they have a system that seems to work pretty well for them, so why

change. Every time I ask Japanese people for their name in Unicode,

they say, “What’s Unicode? Here’s my JIS name.” But the JIS charac¬

ters don’t include all the Chinese codes, and in fact, my own name —

I have a Chinese name — can’t be expressed in JIS without changing it

slightly. There are two different Unicode characters, one for the Japanese

version and one for the Chinese.

In the back? Kees?

Kees van der Laan: I have a lot of questions of course. But I would

like to start with some questions about METflFONT. The first one is:

How come macro writing in T^X and METRFONT is so different?

Don: Why are macros in T^X and METflFONT so different? I didn’t

dare make Te]X as extreme as METflFONT. These languages are of

632 Digital Typography

completely different design. METRFONT is in some ways an incredible
programming language- it basically consists of object-oriented macros.
Yon have macros in the middle of record structures.

The way I designed these languages is fairly simple to describe. Let’s
take T^^X. I wrote down one night what 1 thought would be a good source
file for The Art of Computer Programming. 1 took a look at Volume 2,
which I had to typeset. I started out on the first page, and when I
got to any coi)y that looked very much like something I had already
done I skipped that. Finally I had examples of all the different kinds
of typesetting conventions that occur in Volume 2. It totalled 5 printed
pages; and you can even see these pages — exactly what my original test
program was — in a paper by David Fuchs and myself, where we talked
about optimum font caching.^ In there, we gave an example and we
show these 5 pages, which illustrate what I wanted to be able to
do. I wrote out what I thought I would like to type — how my electronic
file should look. And then, I said, OK, that’s my input, and here’s my
output — how do I get from input to output? And for this, well, it looks
like I need macros. [laughter]

Same thing for METRFONT. I went through my first draft of all the
fonts that later became Computer Modern. I wrote actually in SAIL, an
ALGOL-like compiler language; but SAIL had a macro capability, so I
developed a few primitive macros in which I could say, “pick up the wide
pen,” “draw from point 1 to point 2,” and things like that. These macros
were compiled by the SAIL compiler into machine language, which would
then draw the letters. I went though the entire alphabet, and by the end
of the year, I had some 300 little programs, each one drawing a letter.
Then I realized what kind of a language I would want to write in, to
describe the letters. So one day, on a family camping trip — I was in the
Grand Canyon with my wife and kids — I took an hour off, sat under a
tree and wrote out the program for the letter A, in a language that I
thought would be a good algebraic language, reflecting at a high level
what I had been doing with pretty primitive low-level instructions in my
SAIL programs. I did the letter B, too; Capital A and B. Then I went
back to the camping trip. These sheets of paper containing my original
programs are now in Stanford’s archives — the program for the letter B
was reproduced in a Stanford library publication last year. The woman
who’s in charge of rare books and manuscript collections at Stanford is

^ “Optimal prepaging and font caching,” ACM Transactions on Programming
Languages and Systems 7 (1985), 62-79. See also pages 484-488 of the
present volume, for the first draft of TgX source code.

Questions and Answers, III 633

quite interested in METRFONT, so she wrote a little article about what
they haveA

That program again implied that I wanted some macros to go with it.

But these needed to be much more structured than the macros of

It had to be that when I said zl ’ this would actually be equivalent to

(xl ’ ,yl ’); and I wanted to be able to write zl ’ without any delimiters.

It turned out that in order to have a high-level language that would feel

natural to me writing the program, it had to look completely different

from TgX. So TgX and METRFONT share a common format for error

messages and certain other data structures inside, but otherwise they’re

quite different systems. In order to have a good high-level language for

fonts, I didn’t want to have to waste time writing parentheses, brackets,
commas, and other delimiters.

Kees: It’s a nice introduction to my second question: [laughter] For

the future of METRPQET, which allows markup of pictures, with en¬

capsulated PostScript as the result, what is your attitude to higher¬

dimensional data for METRPOET and METRFONT? For example, adding

a triple as an analogy of the pair data structure?

Don: METRP05T already has a data structure for triples because of

color. So RGB expressions are actually triples of numbers.

Kees: Yes, but the triple as a data point in space?

Don: Ah, I see. I did write METRFONT in a way that has hooks in it

so that it can be easily extended; for example, you might want to draw

3-dimensional pictnres, for perspective and projective geometry instead

of affine geometry. The program itself for METRFONT was written so

that it could easily be changed by people who wanted to have a system

that goes beyond the basics. I always wanted the systems that I would

make widely available to be able to handle 99% of all applications that

I knew. But I always felt there were going to be special applications

where the easiest thing would be to change the program, and not write

a macro.

I tried to make the programs so that they would have logical struc¬

ture and it would be easy to throw in new features. This hasn’t happened

anywhere near as often as I thought, because people have turned out to

be more interested, I think, in interchangeability of what they do; once

you have your own program, then other people don’t have it. Still,

if I were a large publisher, and I were to get special projects — some

^ Robin E. Rider, “Back to the future: High-tech history,” Imprint 14,1 (Fall

1994), 9-18.

634 Digital Typography

encyclopaedia, some new edition of the Bible, things like that — I would

certainly think that the right thing to do would be to hire a good pro¬

grammer and make a special comjmter system just for this project. At

least, that was my idea about the way people would do it. It seems that

hasn’t happened very much, although in Brno I met a student who is

well along on producing Acrobat format directly in Tj^X, by changing

the code. And the il system that Johannes mentioned, that’s 150,000

lines of change hies. [laughter] I built in hooks so that every time Te,X

outputs a page, it could come to a whatsit node and a whatsit node could

be something that was completely different in each version of T]eX. So,

when the program sees a whatsit node, it calls a special routine saying,

“How do I typeset this whatsit node?” The special routine looks look

at the subtype, and the subtype might be another subtype put in as a

demo or it might be a brand new subtype.

Similar hooks are in the METflFONT program. If people have ex¬

tra time when they’re not browsing the Web [laughter], I recommend

as a great recreation to read the program for METRFONT. Some parts

of it are pretty rough going and I hope that nobody ever hnds a bug

there because I’d hate to have to look at them again. [laughter] But

those are the rasterization routines, the things that actually fill in the

pixels. There are many other things in that program — the linear equa¬

tion solver that it has and the data structure mechanisms ... lots of

beautiful algorithms are in there — to take square roots in fixed point,

and the intersection of two curves, and so on. METRFONT is full of little

programs that were great fun to write and that I think are useful and

interesting in their own right. I think when John Hobby wrote METR-

P05T, he enjoyed it, because he could add his own nice little programs
to the ones that are already there.

I’m a big fan of METRP05T for technical illustrations. I don’t know

anything that’s near as good, so I’m doing all the illustrations of The Art

of Computer Programming in METRPOET. Also, the technical papers

I’ve written are going to be published in a series of eight volumes by

Cambridge University Press, and all the illustrations, except the photo¬

graphs, are going to be METRPOETed. The first volume of these eight

was the book Literate Programming', the second volume is going to come

out this summer and is going to be called Selected Papers in Computer

Science. It reprints a dozen or 15 papers that I wrote for general au¬

diences, not for specialists in computer science — articles in Scientific

American or Science magazine and things like that. The third volume

will be about digital typography, and it’ll reprint all my articles in TUG-

boat and things about T^. What do you think, by the way — should

Questions and Answers, III 635

I publish in that third volume the memo that I wrote to myself the

first night, when I designed T^X? I put it in a computer hie and it’s

in the Stanford archives, but I’ve never shown it to anyone, [round of

“of course!” and “sure” and laughter from the audience] Maybe it’d
sell more books [more laugiiter],

Frans: You need to put it on yonr home i)age and we can then de¬
cide

Don: No, no. That way we’d never sell the books. [laughter] Not that

I’m a mercenary type of person, of course. It’s in a hie called tex. one —

“teks dot one,” actually. I have to admit 1 pronounced the name “teks”

for a month or two - -1 was thinking of “technical texts.” The name of

the hie was tex.one, and it would make interesting reading probably,
someday.

And your name is?

Jan Karrnan: In this company I will probably ask a very heretic

question, but a little heresy makes a lot of fun — talking about METfl-

FONT. There are probably many type foundries now that crank out lots

of good-quality fonts and kerning tables. It’s not clear whether Post¬

Script or True Type will survive. Do you think that METRFONT will

survive text fonts? Not talking about the math fonts.

Don: I don’t think the extra capabilities of METRFONT have proved to

be necessary for good-quality type fonts, although I think that you can

still make better-quality type fonts with it. Designers hnd it difficult to

think as a computer person does, in the sense that when people in the

computer business automate something, trying to make the computer

do something, it’s natural for us to have parameters and say that we’re

going to try to solve more than one problem. We try to solve a whole

variety of problems based on the parameters that people set. But it’s

much easier if people gave us only a single problem with a single param¬

eter setting, then we can make the computer do exactly the prescribed

thing. Computer scientists have become accustomed to thinking of how

we would change behavior as conditions change, but designers aren’t at

all accustomed to this. Designers are much happier if the boss says one

month, “Give me a medium roman font,” and the next month, “Give me

a bold roman font.” It’s much more difficult if the boss says, “Show me

how you would draw a roman font no matter how heavy I want the letters

to be.” METRFONT provides a way to solve that problem and to draw

characters with parameters, but it’s a rare designer who’s comfortable

with that notion. They can do multiple master fonts by making multiple

636 Digital Typography

drawings and then matching np points between the drawings and hav¬

ing the computer interpolate. The multiple master fonts in PostScript

allow up to four i)arameters, and almost all of them have only one or

two parameters. The most I know of is two; probably others have gone

all the way to four. But then they have to provide drawings for all the

extreme points of these parameters.

In spite of this limited use of parameters, what’s available commer¬

cially is quite beautiful, as far as readability is concerned, although it

doesn’t really provide the quality that you guys had in the Netherlands

in the 17th century. What’s the man’s name, the great punchcutter in

Haarlem — he made 4.5 pt, 5pt, up to 16 pt, and each letter was de¬

signed for its size, and his fonts had a nice uniform appearance. This

doesn’t happen at all with today’s Typel fonts. There were two guys

who did most of the punchcutting for Enschede and others in the 18th

century: One of them, Fleischman, was a genius for really beautiful let¬

ters; the other, Rosart, was just good at making lots and lots of letters.^

[laughter] They were fun. Rosart cut all kinds of highly decorated al¬

phabets and things like that. I have a big coffee-table book that gives

examples of all the fonts from Enschede, which was translated into En¬

glish by Matthew Carter’s father. In this book, Typefoundries in the

Netherlands, you can look at these typefaces and weep.^

Still, on a laserprinter, we get pretty good fonts now, and therefore

it looks like there won’t be that many professional type designers using

METflFONT. Pandora was a good meta-design by a genuine graphic

artist.^ METRFONT has turned out to be wonderful for making border

designs and special-purpose things for geometry. There’s now a really

neat system in Poland where they have Tf^X and METRFONT in a closed

loop IRX outputs something and then METRFONT draws a character

and if that doesn’t fit, IRX says, “go back and try it again.” Jackow-

ski and Rycko understand TgX and METRFONT, and the programs are

'^Johann Michael Fleischman, 1701-1768; Jacques-Frangois Rosart, 1714-

1777.

® Typefoundries in the Netherlands from the Fifteenth to the Nineteenth Cen¬

turies, by Charles Enschede, translated by Harry Carter (Haarlem: Stichting

Museum Enschede, 1978), 477 pp. This magnificent book was composed by

hand and printed by letterpress to commemorate the 275th anniversary of

Joh. Enschede en Zonen.

'^Neenie Billawala, Metamarks: Preliminary Studies for a Pandora’s Box of

Shapes, Stanford Computer Science report STAN-CS-89-1256 (Stanford,

California: July 1989), 132 pp.

Questions and Answers, III 637

well documented and can do these things. So METRFONT isn’t going

to disappear, for that reason; but it’s never going to be taught in high
school.

Frans: My name is Frans Goddijn and I have one ques¬

tion with some sub-questions, [laughter] I’d like to ask

the sub-questions hrst. What I’m wondering — and this

may have been asked often before — is whether you would consider, in

retrospect, what you have created [to be] an art or a tool? And the

reason I ask is — when -I hear you speak with so much passion for type

fonts and the beautiful algorithms that you put into METRFONT that

you would like to point people to and the recognition that you get from

people who understand that — but, there is a vast majority of users who

just got TgX from some server, never realized who created it, and use it

to typeset not alwuys very pretty documents, [laughter] They do that

in a very crude way and don’t care less. You froze at a certain

point, allowing other people to build around it. I was wondering how

such a thing would feel to a father — are you father of a piece of art that

other people use as a tool, or is it a child that you have frozen in its

development, that will never grow up ... there are so many questions

... if you just go back to the art versus tool idea, and your feelings

about that.

Don: Obviously, if I write something that has a lot of power to do

many different things, it’ll be possible to make it do awful things. I just

came from the Rijksmuseum, where they have an exhibit called “The

Age of Ugliness,” featuring a whole bunch of fancy silver bowls from the

late 19th century When you say an art. I’m not sure I understand

exactly what you mean. To me, art is used in two quite different senses,

most often nowadays in the sense of fine art, while art (originally Kunst)

once was anything that was not natural — so we have the word artificial,

something that is made by people instead of by nature. The Greek word

is xix^ri- [laughter] But then you refer to a tool as something that is

maybe just a device that is the fastest way to get from here to there

but maybe you don’t care about elegance ... What I think people mean

when they talk about art is the aesthetics — something about beauty

and something with a little bit of love in it. With my idea was

to make it possible to produce works that you are proud of; I assumed

638 Digital Typography

that people can enjoy actually spending a little extra time making the

results better. I didn’t expect that the whole world would be doing this.

[laughter]

Incidentally, I can’t understand the mentality of a person who writes

graffiti on a beautiful building although I can see why drawing is fun.

Why would you want to scrawl something - some kind of animal instinct

for territory might account for it, I suppose, but it’s really impossible

for me to conceive of such actions.

When it comes to matters of aesthet¬

ics, you can’t dictate taste. You can’t say

that your idea of beauty is going to match

anyone else’s idea of beauty. But I did

want to have a tool where we could reach

the highest levels of beauty according to

our own tastes. I didn’t allow people to

have letterspacing very easily, but I tried to

make everything else easy, [laughter] _

Of course, I originally designed just

for myself, for The Art of Computer Pro¬

gramming; I thought my secretary and I

were going to be the only users. And it

wasn’t until later that I was convinced that

I should make it more general and so on.

But I did want a tool for myself by which I

could produce books that would make me

feel good after spending almost all my life

writing those books.

I started writing The Art of Computer

Programming when I was 24 years old and

I still have 20 years of work to do on it.

That’s a lot of time. I don’t want to write

those books if they’re going to come out

looking awful. I wanted a way to make

it possible to produce good-looking books.

Originally, when computers started out,

they knew only numbers, digits. The 19th-

century computers could print tables. Then we had computers that

could do numbers and letters, but only on a Teletype machine; so you

had some capital letters and a 32-character set. But then, after I gradu¬

ated from college, we got ... let me see, I was probably ten years out of

college before we could do lowercase letters on a computer. You know.

Questions and Answers, III 639

the Pascal language, when it came out, it used all uppercase letters —

there was never any consideration that there would be more than 64

characters in a computer’s repertoire. Finally, we were beginning to see

in the middle 70s that computers could actually do lowercase letters,

and produce something that looked a little bit readable, a little bit like
books. Wow! [laughter]

Simultaneously there was a development of tyjmgraphic software

starting at M.I.T. in 1961 and going through 4 or 5 generations, lead¬

ing to troff and eqn, where even mathematics was being typeset. In

1977 I therefore knew an existence theorem: It was possible to typeset

something that looked almost like good mathematics. The output of

eqn was appearing in physics journals, and experience showed that sec¬

retaries could learn how to do the input. So I thought, “Why not go all

the way to the end, to convergence?” What I wanted to do with TgX

was not to provide a little refinement over troff and the other things; I

was saying now, “Let’s try to produce the best typography that has ever

been achieved by mankind.” Except for the illuminated gold-leaf type of

lettering, I wanted to — at least when it came to black and white print¬

ing — I wanted to match the best possible quality. Computer typesetting

had gone through this lengthy development, getting a little better and a

little better. It was time to say, “OK, let’s jump to the limit now.” Of

course, I didn’t think this would be an activity that everybody would

want to do. But there were enough people that would care about try¬

ing to get as much quality as possible, that they could be — well, that’s

why I finally made more available. Leaders of the American Math

Society were the first people, nearly the first people who convinced me

that I should make the system do more than I originally intended.

Andries Lenstra: Why didn’t you start from troff 1 It was completely

inappropriate?

Don: Yes, yes. You see, troff was patched on top of ... I mean,

there was a whole system, it was a fifth generation, each of which was

a patch on another one. So it was time to scrap it and start all over

again: “Here’s what the language should be, so let’s design some good

data structures for it.” Not “Let’s try to be compatible.” I had the

advantage that I was not at Bell Labs, so I wouldn’t be hurting anybody’s

feelings by saying, “Let’s throw it all away.” [laughter] It was naturally

impossible for the people at Bell Labs to do such a thing — it wouldn’t

be nice. But it occurred to me that now we had proof that a higher

goal was possible, so it was time to start over, and rethink how to get

from input to output. Thus the program could be much more unified,

640 Digital Typography

much smaller, and it would also work. I mean, troff was collapsing all

the time. A lot of the earliest users of had been frustrated by troff

breaking over and over again, as it had gotten unwieldy. But troff had

also proved that there was light at the end of the tunnel.

I also had to scrap Tl^X, yon know, and start over again; after five

years, I decided that it would be best to go back and redo the program.

But it would have been very hard to do that if my friend in the next office

had written it. [laughter] So, I just have this philosophy that there will

be always some people who are more interested in quality than others,

and I wanted to make good for them.

I don’t know any good way to make it impossible to create a bad

document, unless you have a system with only a small menu of options.

Small menus are, of course, good enough for a large class of users — to

make a system so simple that you can’t possible do anything ugly in it.

Erik: I think it’s time for a coffee break now — we’ll take five or ten
minutes.

Don; Johannes, you had a question that you had to ask, so let’s get
that over with, [laughter]

Johannes: It’s about typesetting. What is your opinion about the

skyline model of typesetting? In TgX, you talk about boxes: Each letter

is inside a box, and we glue boxes together to make a line, and each line is

viewed as a box, and the boxes are fitted together to form a paragraph.

The skyline model tries to go a little bit further than the rigid box

and line, and tries to take into account that some of the descenders in

the upper line and the high parts in the lower line don’t overlap, so that

you could actually have lines much tighter together — especially in math
typesetting, that could be an advantage.

Don: Hmmm, I guess you’re talking about general principles of com¬

puter graphics where you have arbitrary rectangles in a picture, instead

of having the rectangles strictly nested inside of other rectangles. ...

This certainly would be a major change to all the data structures of

TgX. You could go to a quadtree structure or something like that. All

the things that people use to solve hidden-line problems and do render-

ing, to find out what’s in front of something else, and all the algorithms

they use to make movies like Toy Story. It would be most valuable, I
imagine, for catching unusual cases in math formulas.

I have two feelings about such things. One is that I like to see

people extending the problems that computers can solve automatically.

People learn a lot when they try to do this. The whole field of artificial

Questions and Answers, III 641

intelligence has been one of the areas that has had greatest spin-offs

to computer science because they’ve tried to solve very hard problems.

Especially in the early days, they came up with methods that turned out

to be useful in many other parts of computer science. So, it’s my feeling

that when people are working on more ambitious goals, they develop

powerful techniques that often have very relevant spin-offs. Even so,

after they’ve solved that problem, they’re going to think of something

else which will be another refinement and so on — they’ll never have

a situation where they’re going to create the most beautiful document

automatically. There’s going to be a time when you can look at the

output and see that you can still improve it. Designers of the most

automatic systems would be well advised to at least leave users a chance

to move something up and down and fake out the automatic algorithm.

The philosophy that I had when I did TgX was that I would try to

have a system that did 99% of everything automatically; then I would

look at what remained and I would kludge the rest. But “kludging it”

is only one way to describe this approach; another way of saying it is,

“Tidy up the rest,” or “Dot the i’s and cross the t’s.” My feeling is

that the non-automatic part gives me a little extra pride, knowing that

I have put some spit and polish on the final product. If such extra work

is excessive, it’s a nuisance and I’m wasting time. But if I can really

limit this to 1% — if I’ve spent 30 hours writing a paper and it takes me

only another 15 minutes to clean up — then I’m happy to do another 15

minutes at the end. It’s a small little extra that gives me a chance to

celebrate the fact that I’ve finished the paper.

The spacing that T^X does worst right now, in my experience, is with

respect to square root signs being a little too tight, with the operand

either too close to the radical sign or too close to the bar line or both;

I most often tend to be fiddling with that. In the book Concrete Math

and also now in The Art of Computer Programming, I’ve adopted a

convention where I put an @-sign into a math formula where I want one

math unit of extra space. The @-sign is then defined to have a math

code of hexadecimal 8000, and I’ve made the definition

{\catcode'\@=\active \gdef@{\mkernlmu}};

the effect is that, in math mode, an @-sign will be regarded as a macro

that adds one math unit of space. For example. I’ll type

\sqrt{®\log n}

because otherwise the space before the letter ‘1’ is a little bit too tight.

[Jaughter] Now maybe even this skyline model wouldn’t know that ‘1’

was too tight, maybe it would. But it’s cases like this ...

642 Digital Typography

The most common case really for spacing adjustment is where I have

something like with a simple superscript and then a slash, and

then the denominator. There’s almost always too much space before the

slash. And this is true, I find, in all the books that I used to think were

typeset perfectly by hand [laughter], but now I’m sensitive to such

things. Nowadays I go through my books and papers, typically with

Emacs, and look for all occurrences of a one-character exponent followed

by a slash, and most of those look better with a negative thinspace before

the slash: $x~2\! /3 yields It would be nicer if I didn’t have to do

that. But still, it’s a small thing for me.

Would the skyline model help me much? Sometimes I run into cases

where I’ll add another word to the answer to an exercise in order to

avoid a clash between lines. The lines are actually not getting spread

apart too far, but they’re so close together that a subscript like ‘h < n’

will clash with a parenthesis in the next line. And I don’t want the

type to be quite so close together there. Now, if I had been smarter, I

would have designed my <-sign to have a diagonal stroke under the <

instead of a horizontal bar, namely ‘k ^ n\ and I wouldn’t have had

those clashes — too late for that now. [laughter]

Kees?

Kees van der Laan: May I ask you a question about

your attitude to markup in general? And let me illus¬

trate it by first telling a story. When we started with

using TjgX etc., we mean actually we start with lAT^X — I mean, that is

the effect in Holland. And then I looked at the products of the markup

and I did not like it. And then I was wondering, what is your attitude

to that? I’m sorry to say so, I paged through The TpiKbook source file

texbook.tex and I looked at all the things in there and then I thought,

“Well, I have some idea of what your ideas are of markup.” And when

you explained about METRFONT and all those things not in there, which

you have implicit — am I wrong if I summarize this, that you adhere to
something like minimal markup?

Don: Yes. For example, when I am reading Edsger Dijkstra’s books,

every time I get to a section where it says “End of Comment,” it strikes

me as redundant. And I always think, “Oh, yes, this is Edsger’s style.”

Questions and Answers, III 643

When I wrote a paper for his 60th birthday, I said at the end, “Ac¬

knowledgment, I want to thank Edsger for such-and-such,” and “End

of Acknowledgment.” [laughter]® But that’s the only time in my life

I’ll ever do that. Maybe I’m an illogical person; but api)arently half the

people using HTML now type only the <p> at the beginning of a para¬

graph, and the other half type only a </p> at the end of a paragraph,

[laughter] Hardly anybody uses both, according to what my spies tell

me. And I don’t know what the heck these systems actually do with the
unbracketed material.

When I write HTML, I’m scrupulous with my markup. If you look at

my home pages — I’ll pay you $2.56 if you find any case where I started

something and didn’t close it with the right tag. I tried to be very careful

in that, and to indent everything very well, and so on. But I found it a

terrible nuisance, because it’s not the way I think.

A high-level language, to me, is something that should reflect its

structure in some visual way but not necessarily explicitly; so that,

when I know the conventions, we can suppress some things. Paren¬

theses are one such convention and mathematics got a lot better when

people invented other notations like operator precedence that allow us

to see structure without spelling it out in too much detail. A math¬

ematician spends a lot of time choosing notations for things, and one

of the things we try to avoid in mathematics is double subscripts. I

read one Erench Ph.D. thesis where the author had five levels of sub¬

scripts [laughter]—he kept painting himself into a corner. He started

out with a set {xi,... ,Xn}, so then when he talked of a subset, it had

to be {xi^, • • •, Xi^}, and then he wanted to take a subset of this; Anally

he had a theorem that referred to ’. [laughter] I try to

choose notations that give me the economy of thought at a high level.

That’s probably why I didn’t believe in a great deal of markup in The

T^book. I would begin typewriter type and end typewriter type for

sections by saying \begintt and \endtt. I would also delimit the lines

when presenting parts of the plain T]eX macros, saying \beginlines

and \endlines — those macros are in the file, since it’s very important

to me to see the structure. But in other cases, I left things as simple as

possible, as long as I could visualize the beginning and end of stuff.

An analogous thing occurred when I was doing administrative work

at Stanford. Sometimes after solving a problem, I stopped worrying

about it, so I forgot to implement the solution! I was always a very bad

committee chairman because I’m not very good at finishing that last

® Beauty is Our Business (Springer, 1990), 242.

644 Digital Typography

ending line, I guess. Still, with HTML, the documents were short and

I decided that my home pages were going to be used by many different

kinds of browsing software so I had better be very rigorous.

While I was developing TgX, I attended one of the meetings of the

committee that designed SGML and had a very good discussion with

Charley Goldfarb and the other people on the committee — we only had

that one meeting near Stanford. Certainly I appreciate the fact that

rigorous markup makes it possible to build other kinds of programs

around what you have. The more structure you have in a document, the

easier it is to make a database that includes things about it, and knows

what’s going on. I never objected to SGML; I just always felt that in

order to maximize my efficiency, I didn’t want to mess around with full

markup unless I had to.

X: SGML allows minimizations; that’s why the end-paragraph is not

necessary. So that’s one of the reasons why it’s so difficult sometimes.

You have a formalization to minimize.

Don: But lATgX doesn’t allow it.

Johannes: We do have some books, however, permitting omitted end-

tags in lATgX3, but that’s not far enough along.

Knuth: Well, Kees should talk to Johannes, [laughter]

Incidentally, I don’t feel the need for a special editor to write HTML

code — people are hyping fancy things where you can click on a tool and

it’ll put in the start and end tag together. But when I wrote my files, I

did make up a simple Emacs keyboard macro that would take whatever

tag I just typed and create the end-tag. All this macro had to do was

search back till it found a less-than sign and then copy that string twice

and put a slash in front of it; so I used that all the time — it was easy.

Johannes: A quite different type of question now, from someone who’d

like to be here: Literally, he writes, “Why is the height of the minus sign

in the cm symbol font the same as the height of the cmr plus sign?”

Don: Ah. A lot of people are wondering about that one. Where you

have ‘a - c’ or ‘a:_’ or something similar, why is it that the height and

depth are greater than the actual shape of the minus sign? In fact,

it’s not just the + and —, the same is true also for ±, =p, ©, 0, 0,

0, X and ^-if you look at the METflFONT code for these, there is a

beginarithchar macro that begins all of the arithmetic characters in
the font, guaranteeing that they will all have the same size.

Johannes: But it doesn’t say why.

Questions and Answers, III 645

Don: That’s right — it doesn’t say why. And the reason is that early

on, I wanted certain things to line up the same. For example, in the
formula

V^ + y + Vx-y,

I wanted the square root signs to be placed in the same way. Otherwise
you would get

^/ x + y + x - y .

And there are many other cases where there’s a plus sign in one part of a

formula and a minus sign in the other part; for consistency of spacing, it

ought to look symmetrical. There are other cases, I readily admit, where

you have only a minus sign, without a similar counterpart involving a

plus sign, and you wonder why extra space has been left there. So I say
‘\smash-’ [laughter] in those cases.

Johannes: The particular application, why this question was asked —

Michael Downes from the AMS —

Don: Yes, Michael Downes, he has more experience than any of us in

this room; he’s the chief typesetter of most of the mathematics in the

world.

Johannes: He has a problem properly attaching a superscript on top

of the \rightarrowf ill ...

Don: The \rightarrowfill? OK ... The \rightarrowfill is this

thing that makes a right arrow of any desired length, and then he wants

to put a superscript on this. What’s the macro for building that up? I

haven’t used that page in a long ... [laughter]® The \rightarrowfill

is made up of minus signs and so probably if I had known Michael ...

known about Michael’s problem in the old days, I would have changed

the plain TgX macros so that it would not use the height of the minus

sign in the \rightarrowf ill operator.^® Anyway, I’ve now told you the

reason why it’s there for the other ones.

Johannes: Another question, which is about multiple languages.

There’s a problem when you have one paragraph where you have dif¬

ferent languages.

Don: Yes, the \lccode changes. This is the ...

® The macro is called \buildrel; see The T^book, page 437.

In fact, the leftarrowf ill and \rightcirrowf ill now do omit the height

and depth of the minus, in plain.tex version 3.14159 (March 1995).

646 Digital Typography

Johannes: And I’ve been told that inside one paragraph you can only

use one hyphenation table, which is the one that is active at the end

of the paragraph. So, switching hyphenation tables inside paragraphs is

a problem. Suppose, for example, you have a paragraph with English

text, with a German quote inside it, the German quote being several

lines long.

Don: No, I know that TeX will properly keep track of which hyphen¬

ation table to use. The glitch, the mistake that I didn’t anticipate,

occurs only if the two languages have different \lccode mappings — so

that each has a different idea of which characters are lowercase. When

you hyphenate, you need to hyphenate an uppercase word the same as

an lowercase word, so TjEX uses the \lccode of a character to convert

every letter into the lowercase code of that letter. I didn’t anticipate that

people might, for different languages, have a different mapping from up¬

percase to lowercase. And so it’s that mapping that, at the end of a para¬

graph, applies to all the languages in the paragraph. But otherwise, T^X

is careful to keep track of what language is current at each point inside.

By the way, there’s a file called tex82.bug. Go to the CTAN

archives, and find subdirectory systems/, and under that knuth/, and

under that errata/, and that’s where tex82.bug is. At the end of

tex82.bug this particular error about \lccode is mentioned as being
an oversight that’s too late to fix.

Marc van Leeuwen: Why is it too late to fix? It would conflict with
other things?

Don: Yes. People are already using these things in lots of documents,

and it’s very hard to change. In fact, I don’t see any way to fix it.

[laughter] I would say that when you are faced with a situation where

you’re doing multiple languages with multiple \lccodes, this is a good
reason to write your own version of T^^X.

Andries Lenstra: Gould I ask a question? Happily

enough. I’m not the first person to mention IAT]eX, so I

may mention it now. There’s a situation that often arises

when people try to write a Ph.D. thesis where they want to change

IATeX code because they think they know better about things of beauty

or typography, and unhappily enough they are not experts on IATeX,

so they don’t succeed or they succeed badly. In general, people who

Questions and Answers, III 647

know about typography can’t write beautiful lAl^ code or other forms

of code, and vice versa — people who know how to write these forms of

code are no experts on typography. What do you think of the endeavors

in the past to bring the two worlds together, for instance, as Victor

Eijkhout has tried to do with his lollipop format, a machine to create

other formats. I would have thought that it would have had a big success

but the opposite seems to be the truth. What do you think of it?

Don: r m not familiar with the details of lollipop. I suppose that it

was based on a famous quotation from Alan Perils, who said that, “If

somebody tells you he wants a programming language that will only do

the right thing, give him a lollipop.”

Andries: Yes.

Don: r in sure that the lollipop effort was instructive and worthwhile,

but I don’t know the details so I can’t answer in great detail on this.

Probably the type designers didn’t find the language easy to learn. I do

think that we’re having much more communication now, as every month

goes by, between the people that know about type and the people that

know about macros. It’s just a matter of time as we wait for these waves

to continue moving — we’re nowhere near a convergent stage, where T^X

has reached its natural boundary and the type designers have reached

their natural boundary. The boundaries are still moving toward each

other. I don’t think it’s like a hyperbolic geometry, where they never

will get together.

The main difficulty of course is that TeX is free, and so a lot of

people will say, “Well, how could it be any good, if you’re not charging

money for it?” A lot of the people in the type design community will

only work on things where there’s money behind it; money proves to

them that it’s worth talking to people. So it just takes a little while till

they see some good examples, which will make them more open for these

discussions. And that’s happening all the time in different countries.

In the Czech Republic I was quite delighted to learn that the new

encyclopaedia in Czech, which is the first one for many years, is being

done with TpX. And not only that, it’s being done with a very high

budget. The publishers made this decision because they tried all the

other systems and were disgusted with them. They had good results with

T^. Many other commercial publishers are using it too because they

talk to their friends at the big publishing houses. This will, I think, be

solved with time. And products like lollipop are very worthwhile in the

meanwhile to facilitate this. It takes time to bring different communities

together. I think the financial factor is definitive for a lot of people.

648 Digital Typography

Piet van Oostrum: I don’t know if you have ever looked into the

code inside, but if you look into that, you get the impression

that TeX is not the most appropriate programming language to design

such a large system. Did you ever think of TgX being used to program

such large systems and if not, would you think of giving it a better

programming language?

Don: In some sense I put in many of TeiX’s programming features

only after kicking and screaming; so I’ll try to explain the background.

I know how Leslie [Lamport] went about writing lAT^^X — first he would

write the algorithms out in a high-level programming language, with

while’s and if-then’s and so on; then he would pretty much mechani¬

cally convert the high-level code to TeX macros. If I had suspected that

such a style was going to be the most common use of TeiX, I probably

would have worried a lot about efficiency in those days. Now, computers

are so fast that I don’t worry so much about the running time, because

the program still seems to go zip-zip!

In the 70s, I had a negative reaction to software that tried to be

all things to all people. Every system I looked at had its own universal

Turing machine built into it somehow, and everybody’s machine was a

little different from everybody else’s. So I thought, “Well, I’m not going

to design a programming language; I want to have just a typesetting

language.” Little by little, however, I needed more features and so the

programming constructs grew. Guy Steele began lobbying for more ca¬

pabilities early on, and I put many such things into the second version

of TeX, TeX82, because of his urging. That made it possible to calcu¬

late prime numbers as well as do complicated things with page layout

and figure placements. But the reason I didn’t introduce programming

features at first was because, as a programmer, I was tired of having

to learn yet another almost-the-same programming language for every

system I looked at; I was going to try to avoid that. Later, I realized

that it was sort of inevitable, but I tried to stay as close as I could to

the paradigm of TeX as a character-by-character macro language. As I

said before, I was expecting that the really special applications would

be done by changing things in the compiled code. But people didn’t do

that; they wanted to put low-level things in at a higher level.

Piet: What do you think, for example, of something like building in

a programming language that is, from a software engineering point of
view, easier to use?

Don: It would be nice if there were a well-understood standard for an

interpretive programming language inside of an arbitrary application.

Questions and Answers, III 649

Take regular expressions — I define UNIX as “30 definitions of regular

expressions living under one roof.” [laugiiter] Every part of UNIX has a

slightly different regular expression. Now, if there were a universal sim¬

ple interpretive language that was common to other systems, naturally
I would have latched onto that right away.

Piet: The Free Software Foundation is trying to do that and Sun is
trying to do it and Microsoft is trying to ...

Don: The Free Software Foundation is trying actually to include also

the solutions of Sun and Microsoft. In other words, to make all of the

conventions work simultaneously as much as possible. And that conflicts

with my own style, where I’ve tried to have unity rather than diversity

... I haven’t provided ten ways to do one thing. C-H- is similar —

whenever members of the C-H- committee would say, “Well, we could

do it this way or this way,” they did both. I haven’t gone that route in

my systems, because it is messy. But I admit that the messy way is the

best that can presently be realized in practice.

Marc: I have a question about literate programming. I know you must

be very fond of it, if I understand your interviews —

Don: Yes, I’m so fond of it that I could ... well ... OK. [laughter]

You know. I’m really so fond of literate programming, it’s one of the

greatest joys of my life, just doing it.

Marc: My question was that obviously it’s not nearly as popular as

TfipC is, and, what’s more, there isn’t much coherence in the world of

literate programming. There are a dozen different systems being used —

some people favor one way, some people favor another — and this worries

me a bit. I too am very fond of this style of programming, but I would

like to see it being used much more.

Don: Literate programming is so much better than any other style of

programming it’s hard to imagine why the world doesn’t convert to it.

But I think .Jon Bentley put his finger on the reason and it was some¬

thing like this: There aren’t that many people in the world who are

good programmers and there aren’t that many people in the world who

are good writers, and here we are expecting them to be both. That

overstates the case but it touches the key point. I think that every¬

one who’s looked at literate programming agrees that it’s a really good

way to go, but they aren’t convinced that ordinary students can do it.

Some experiments at Texas A&M are proving otherwise, and I’ve had

similar experiences on a smaller scale at Stanford. It’s a hypertext way

of programming; and I imagine that with better hypertext systems like

we’re seeing now, and with people becoming so familiar with the Web,

650 Digital Typography

we’re going to get a variety of new incompatible systems that will sup¬

port literate programming. Hopefully somebody with time and talent,

and taste, will put together a system of literate programming that is so

charming it will captivate a lot of people. I believe that the potential is

there, and it’s just waiting for the right person to make that happen.

Marc: 1 think one problem might be that if you compare your pro¬

grams with the average program that people write, there just aren’t

nearly as many interesting algorithms in the average program, so liter¬

ate programming doesn’t add too much to a program that is very dull

by itself.

Don: Well, thank you for your comment. But maybe sometimes I make

a non-interesting algorithm interesting just by putting in a joke here or

there. I’ve taken production programs that I got from Sun Microsystems,

for example, and as an exercise, spent the afternoon converting them to

a literate form. There weren’t any exciting algorithms in there, but still,

you could look at the final program and it was better — it had better

error diagnostics, better organization, it corrected a few bugs. I don’t

have time to go over to Sun and show them this, and say, “Why don’t you

rewrite your operating system?” [laughter] But I know that it would be

much better. So all I ever published was the very simple rewrite of the

wc word count routine in UNIX. That’s not at all an exciting algorithm,

but it’s a demo of how good system prograrnming can be done in a
pleasant way.^^

My approach to literate programming isn’t the only one, of course.

In the recent book by a group at Princeton, A Retargetable C Compiler,

Chris Fraser and Dave Hanson used a variety of literate programming

to describe their C compiler. Other books are coming out now that are

using other flavors of literate programming. I was talking to someone

at Microsoft who said that he thought literate programming was on the

rise, and I said, “Does that mean the next version of Windows is going

to be all done in literate programming?” ... “Well, no, not exactly.”

[laughter] The people who’ve experienced literate programming will

never go back to the old way, and they’ll probably gain influence grad¬

ually. The companies that use it are going to sell more products than

their competitors, so pretty soon this will happen. I imagine that there

are about ten thousand users of literate programming and a million users
of so it’s a factor of a hundred.

D. E. Knuth, Literate Programming (1991), 341—348; this wc program is
based on a prototype by Klaus Guntermann and Joachim Schrod, TUGboat
7 (1986), 135-137.

Questions and Answers, III 651

Marc: Do you think it still has to develop? I get the impression that

with so many tools around, that it’s not yet mature. The idea is mature,

but the implementation still has to ...

Don: Yeah, that’s true. There’s great need for programming environ¬

ments based on this idea. It’s not at all easy to create these environments

and to have the power to promote them and maybe the support to do it

in a way that wouldn’t make it too expensive or too hard for people to

install. The most ideal thing would be if the Free Software Foundation

were to adopt it, or something like that, or some of the people they work

with. Actually, [Richard] Stallman [of the Free Software Foundation] de¬

signed a variant of literate programming for himself, and he has it well

integrated with TRX, in his own style. He hasn’t put it into too many of

his programs, but he’s getting there. It’s one of those things that needs,

as you say, to matiire.

Marc: Do you believe literate programming should go in the direction

of integrated systems, where you really have all the facilities you need

in one system? Because I think the tendency is more towards very

minimalistic systems that do not do any pretty printing because that

gets you into too much trouble when you’re switching programming

languages. So it really boils down to something which is very flexible

but not very convenient for someone to use.

Don: One programming language is good enough for me, so I’m not the

right person to ask. For my own purposes, writing The Art of Computer

Programming during the next twenty years, I’m pretty sure that CWEB

is going to be as good as anything I’ll need. I’ll write programs for

Mathematical^ and I’ll write some programs for METRPOST; I could

develop or use literate programming for those programs, but I don’t

think I will. I don’t write so many lines that I would gain a great deal

... although I would get a better program afterwards. Unless somebody

already presents me with a good system for it, I won’t go ahead with

MathWeb or MPWeb. But with CWEB, I’m going to write an average of five

programs a week for the foreseeable future, and there, my productivity

is infinitely better when I do it with literate programming.

One other thought hashed in my mind as I was talking just now ...

I wrote a paper, last year I think it was, about mini-indexes for literate

programs^^ and here I was trying to anticipate what sort of program¬

ming environment would help me. In the listings for The Program

Software Concepts and Tools 15 (1994), 2-11; reprinted as Chapter 11 of

the present volume.

652 Digital Typography

and METRFONT: The Program, and also for The Stanford GraphBase,

on the right-hand page of each two-page spread yon’ll find an index to

all the identifiers used on those two pages and where they were declared.

My paper explains the system I used to get those indexes, and this kind

of functionality would also be needed in any hypertext system. Such

minimahstic systems are attractive primarily because a good program¬

mer can write them in a couple of days, understand them and use them,

and get a lot of mileage out of them. Once somebody writes a good

hypertext system for literate programming, I think that’ll attract a lot

of people. We need a robust system that doesn’t crash, and has a fa¬

miliar user interface because it’s like other hypertext systems that we’re

already using. The time for that will be ripe in about two years.

Erik: It’s half past nine now and I think we’ll have to stop here. I want

to thank our special guest, Donald Knuth, for being with us. I think

we’ve all learned a lot now. We’re very happy that you were able to be

here. Thank you very much.

Don: I really appreciate all the work you did to arrange for this special

meeting room on rather short notice, [applause]

Erik: Also, thank you to Elsevier Science, who helped, in the person

of Simon Pepping; and our English colleague, Sebastian Rahtz, who is

not here, although I expected him. But he paid for the coffee and tea,

so thanks. There’s of course a little present that we have for you. I hope

you like it! [He presents a book about Dutch art called De Stijld^]

Don: Ah yes ... the Dutch type designer, Gerard Unger, came to

Stanford for three weeks, he and his wife Marjan, and they talked about

things like this to our type designers. They also related fashion of clothes

and furniture and architecture to type styles as well. This book is great.
Was it done with lUX?

Erik: I don’t think so ... as we are in Holland now ... [laughter]

[he also presents a pair of wooden tulips]

Don: A nice gift for my wife.

Erik: And of course a copy of the EuroT^’95 proceedings.^"^ [fie
presents the proceedings]

Carel Blotkamp et al., De Stijl: The Formative Years (M.I.T. Press, 1986);
a translation of De Beginjaren van De Stijl (Utretcht: Uitgeverij Reflex,
1982).

^^Wietse Dol, editor, Proceedings of the Ninth European TpK Conference,

September 4-8, 1995, Arnhem, The Netherlands, 441 pp.

Questions and Answers, III 653

Don: Oh!! I thought you’d never ... [laughter] Yes, I was looking at

this last week in the Czech Republic, so thank you everyone.

Erik: What is your opinion about the fonts we used?

Don: I think it’s ... oh, you introduced the Computer Modern Brights.

Yes, the only complaint I had was that the kerning in the word ‘T[^’

itself could be tuned a little bit.^^ On the whole the typography is quite

attractive — thank you very much.

“The TgX logo in various fonts,”

Chapter 6 of the present volume.

TUGhoat 7 (1986), 101; reprinted as

r

4

4

. #

' 1

IM ‘«-‘^» -jCI

«

4

\
s

:l<i-

V
^3

• » V* - *

» “ * • f

1

,?•;■

d

I

... T-.' iin-
’< ^<-. . ,'.f, _■*I „

Chapter 34

The Final Errors of TgX

[This chapter was written in August 1998.]

When I completed my article on “The errors of in September

of 1988 [2], I stated that “I plan to publish a brief note ten years from

now, bringing the list to its absolutely final form.” Here then is the brief

note that was promised.

In September 1998 the error log of ended with item number

865. Sixteen items had entered the log since May 1987, so I had no

reason to believe that T^]X would soon become completely quiescent.

But I’m sure that I expected the final total number of entries to be less

than 900.

Such hopes w'ere dashed in 1989, when I realized that changes in

technology had invalidated one of my early assumptions. I had believed

that 7-bit character input would continue to be the norm; but the rapid

rise of computer systems based on 8-bit bytes, and of workstations that

used 8-bit characters for accented letters, made it clear that a decent

system for a worldwide community would have to be retooled in

order to deal more adequately with non-English languages. Therefore,

after extensive discussions culminating at the 10th annual meeting of

the TeX Users Group, I decided to incorporate several significant new

features into Version 3 of T^X and Version 2 of METRFONT [4].

Of course the new extensions caused a flurry of activity in T^X’s

error log, which reached 900 items already in January of 1990. A sum¬

mary of all the log entries through the end of 1991 were published in [3],

totalling 916 items. And still the story hadn’t ended; my diary entry for

9 January 1992 said, “Alas, bad news from T^iXegetes: Three new bugs

in TeX, one in METRFONT.”

Today, however. I’m pleased to report that the program for TE;X has

been completely stable for the past three years, so it may have converged

at last. The remaining log entries, from 1992 to the present, are shown in

655

656 Digital Typography

881

679 t

798 t

10 January 1992

917 Also avoid producing a double kern at boundary (GET). §897 S

918 Disallow \setbox where it doesn’t work (Robert Hunt). §1241, 1270 S

919 Robustify \mskip and \mkern in presence of negative quad (WGS). §716,717 S

920 Defend against “}{’ in \read (Michael Downes). §483 S

921 Save string memory if font occurs repeatedly (Boguslaw Jackowski). §1260 E

784 i-f 922 Don’t let \newlinechar interrupt unprintable expansion (Bernd Raichle). §59,60 S

7 February 1992

881 i-> 923 Restore cur_l properly when boundary character doesn’t exist (Mattes and

Raichle). §1036 D

17 July 1992

892 i-> 924 Use current language at beginning of horizontal mode (Rainer Schopf and

GET). §1091,1200 C

17 December 1992

879 !--)■ 925 Avoid (harmless) range errors (Philip Taylor and GET). §934,960 R

25 February 1993

881 e-> 926 Protect kerns inserted by boundary characters (William Baxter). §837,866 G

917 ^ 927 Don’t let boundary kern disappear after hyphenation. §897 S

26 June 1993

668 928 Avoid potential future bug (Peter Breitenlohner). §628,637 R

17 December 1993

881 929 Boundary character representation shouldn’t depend on the font memory size

(Berthold Horn). §549,1323 S

10 March 1994

930 Huge font parameter number may exceed array bound (GET). §549 R

4 September 1994

926 931 Math kerns are explicit (Walter Garlip). §717 F

932 Avoid overflow on huge real-to-integer conversion. §625,634 R

19 March 1995

933 Avoid spurious reference counts in format files (PB). §1335 R

Figure 1. The error log of (1992-1998).

Figure 1; complete details of all changes, in the form of before-and-after

listings of the affected lines of code, appear in a file called tex82.bug,

which is part of the CTAN archives on the Internet.

The histogram in Figure 2 shows the rate at which the 68 items

after September 1988 entered the error log, peaking in the latter half of

1989 and falling off thereafter, except for occasional spurts of activity as

new kinds of users began to encounter new kinds of bugs. The shaded

boxes stand for items that were spawned by previous entries in the log;

if I had made the earlier corrections perfectly, these 34 items would not

have been necessary.

Some entries in the log represent rather drastic changes to the pro¬

gram. For example, change number 878 — which converted the routines

for 7-bit input/output to the new 8-bit conventions — replaced 195 lines

of WEB Pascal by 213 new lines of code. Change 881, which introduced

“smart ligatures,” involved the replacement of 78 lines by 856 new lines.

The Final Errors of T^X 657

Figure 2. When the changes were made.

And changes 879-880, which provided for multilingual hyphenation, re¬
placed 155 lines by 329.

But such drastic changes occurred only when the major new features
of version 3.0 were added. Most of the log entries represent relatively
small perturbations to the program. Indeed, about 57% of all changes
since 1988 required the replacement of fewer than 10 lines of Pascal code
by fewer than 10 new lines.

If we use the fifteen categories of [2] to classify the 68 log items of
the past decade, we obtain the following totals:

• Type A (algorithmic anomaly), 0.

• Type B (blunder or botch), 0.

• Type C (cleanup for consistency or clarity), 4.

• Type D (data structure debacle), 6.

• Type E (efficiency enhancement), 2.

• Type F (forgotten functionality), 3.

• Type G (generalization or growth), 11.

• Type I (interactive improvement), 2.

• Type L (language liability), 0.

• Type M (module mismatch), 1.

• Type P (promotion of portability), 2.

• Type Q (quest for quality), 1.

• Type R (reinforcement of robustness), 10.

• Type S (surprising scenario), 24.

• Type T (trivial typo), 0.

Not surprisingly, surprises dominate the list.
Were any of these changes particularly instructive or noteworthy?

Most of the lessons learned since 1988 were similar to those already
enumerated in [2], only more so. Ten more years of experience confirm

658 Digital Typography

that we must expect to expend substantial effort if we want to debug a

complex program thoroughly.

The final bug?

The most interesting of the recent errors may well be the last one, num¬

ber 933 — which indeed is what I hope will turn out to be the “historic”

last bug in T^X. This error, discovered in 1995 by Peter Breitenlohner, is

rather esoteric and it has no effect on normal use; yet I believe he amply

deserved the reward of $327.68 that I paid him on 20 March 1995.

The situation is this: avoids garbage collection by using ref¬

erence counts in key parts of its data structures. Reference counts are

assumed to take no more computer space than a pointer does, because

the number of references to a node cannot exceed the total number of

nodes when T^X’s conventions are followed.

Breitenlohner found a fallacy in that impeccable logic, by making

use of a special version of TJ^X called INITEX. System wizards install

macro packages with INITEX by invoking the \dump command, which

stores the current contents of the data structures in a so-called format

file; \dump is not permitted in ordinary incarnations of Te^- Commonly

used fonts and macros can be preloaded quickly by T^]X or by INITEX if

they have previously been dumped into a format file.

When the \dump command occurs in the midst of macro expan¬

sions and/or conditional instructions, the data structures that control

INITEX’s input state are not saved as part of the format file, because such

things are irrelevant to subsequent users. Unfortunately, however, those

data structures might refer to objects that are saved — and ay, there’s

the rub. Before change number 933 was made, INITEX could dump

reference counts that included references from nodes that would not be

loaded later. Therefore a user with malice aforethought could repeatedly

ask INITEX to load such files and dump new ones that were even worse;

the reference counts could build up until they became arbitrarily large.

Change 933 added instructions to T^X’s finaLcleanup routine to that

all references from nonrestored pointers were removed before dumping.

A similar change was, of course, made to METflFONT.

Non-bugs, but close

I reserve the right to decide whether or not any purported flaw in T^X
constitutes a bug that should be corrected.

Some people think that TgX is incorrect just because users can easily

make it loop forever. But in fact, is supposed to loop forever if you

The Final Errors of TgX 659

give it commands that specify endless activity. For example,

\def\x{\x}\x

causes infinite macro expansion. A more interesting example is

\let\par=\relax \noindent\vfill

which tells to keep performing \relax until it gets into vertical

mode — and that never happens! (See the rules on page 286 of The
TEKbook [1].)

In general terms, I would say that T[7pC should not issue the error

message “This can’t happen” unless it has previously given some other

error message. But this definition of buggy behavior has exceptions too,

because the program for T^X explicitly acknowledges that certain kinds

of run-time errors are possible yet unreasonable (because they won’t
occur in normal use).

For example, §798 of the program invokes the fatal this-can’t-happen

message when a user has tried to \span 256 or more columns of a table.

The program of §798 includes the comment

{ this can happen, but won’t }

— clearly admitting the fact that TgX’s message in this remotely possi¬

ble situation is false. You may call this an instance of my warped sense of

humor; or you may understand that I did not want to issue an “overflow”

error, because the maximum number of spans is not as easy to increase

as the other quantities that are listed on page 300 of The Tj^book and

reported by \tracingstats; but you cannot call it a bug that is worth

$327.68. Implementors who disagree are free to change T^X’s behavior

in this case, because the TRIP test does not prescribe the action on fatal

errors. For example, they could substitute a message analogous to the

one for discretionary-list-too-long in §1120, if they really believe that

an honest user will be misled by TJ]X’s present treatment of humongous

spanning. But I don’t think it’s an issue. Incidentally, David Kastrup

found a deucedly clever way to invoke this false behavior of in 1996,

with the following remarkably short program:

\def \x#l{\if #lin\spcLn\expandafter\x\f i}

\halign{&#\cr\expaiidafter\x\romannumeral256001\cr}

Another example of anomalous behavior that is explicitly known

to be possible in extreme circumstances arises when numbers get large

660 Digital Typography

enough to cause arithmetic overflow. tries to catch integer overflow

before it happens, in situations that are likely to arise in practice (see,

for example, §104, §445, and §1236); but §104 points out that I did not

take the trouble to make the program thoroughly bulletproof against

adversarial attacks.

For example, the code

\hbox{\romaimumeral\maxdimen}

creates a box that contains 1,073,741 occurrences of the letter m, fol¬

lowed by ‘dcccxxiii’. With the default font cmrlO, this box will be

exactly 586,410,016,845 scaled points wide; that’s about 1.954 miles

(3.145 kilometers). Something’s gotta give. In this case T^^’s string

pool, where roman numerals are formed, will overflow, but in smaller

examples the integer arithmetic will fail instead. Although the com¬

piler flags in §9 specify that integer overflow should be trapped by

the hardware, contemporary implementations of TgX often ignore this

recommendation; for example, a typical UNIX installation will report

that \hbox{\romamnimeral3932000} has width 32766.7666 pt, while the

width in points of \hbox{\romcinnumeral3932001} is —32766.45555!

Integer overflow can occur in many ways, if you try hard enough

to defeat the present setup. For example, one can concoct paragraphs

that have more than 2^^ demerits under certain feasible sequences of line

breaks. But I do not regard such constructions as evidence of bugs in

I]EX, unless I can be convinced that a reasonable user would encounter

such behavior. (Or unless, as with bug 933, one of the fundamental
assumptions of T^^X’s design has been disproved.)

For reasons of portability, I do not believe that the maximum num¬

ber of spanned columns in a table should be increased past 255, nor

that the maximum size of an integer constant should exceed 2^^ — 1 =

2147483647 on computers with 64-bit arithmetic. After all, TgX is a

language for typesetting. Who needs such gigantic numbers?

Design flaws

The design of TgX has been frozen since 1990; therefore nobody can

say any longer that T]eX has a bug in its specifications. At present I do

know of three things that I would have changed if I had thought of them
before deciding to finalize the design:

(1) Additional parameters in symbol fonts could govern the mini¬

mum distance between ruled lines in fractions, \sqrt, \overline, and

\underline; at present this minimum distance depends only on the
thickness of the line.

The Final Errors of TgX 661

(2) Only one setting of the internal code numbers that map upper¬

case letters to lowercase is used for hyphenation in a paragraph, even

though that paragraph might involve several languages that have differ¬

ent mappings. Extensions of Tf^X that want to overcome this problem

will probably have to introduce new kinds of whatsit nodes that record

changes to \lccode values.

The problem can be avoided without extending T[^, if you use the

following workaround: The \hyphenate macro defined by

\newbox\hyfbox \def\hyphenate#l{{\everyvbox{}\setboxO=

\vbox{\pretolerajice=-l\parfillskip=Opt\hsize=\maxdimen

\rightskip=0pt\hbadness=10000\everypar{}

\noindent\hskip-\leftskip #l\endgraf

\global\setbox\hyfbox=\lastbox}}\unhbox\hyfbox}

will hyphenate whatever you give it, using hyphenation from the current

language, returning a horizontal list that includes discretionary hyphens.

(3) Rule 12 in Appendix G of The T^book doesn’t allow us to

bring a large accent (from, say, font cmrl7) close to a small letter in math

mode, because of the formula S t— min(/i(a:), y). That formula allows

us to lower the accent by at most the height of the box underneath, so

the accent will not go lower than its original position in the font.

Problem (3) was brought to my attention by Vaughan Pratt in

March 1998; he asked me how to typeset ‘f’ (with an accent larger

than the normal ‘r’ from $\check r$), and my best solution in plain

TgX was not beautiful:

\font\bigacc=cnirl7 \textfont"F=\bigacc

\def\CHECK{\mathaccent"7F14 }

\setbox2=\hbox-[r}\setbox4=\hbox{\raise3pt\copy2}\ht4=\ht2

\def\CHECKr{\lower3pt\hbox{$\CHECK{\copy4}$}}

Pm not sure what I would have if he had asked me the same question

in 1988; at that time I would have believed it to be a bug in T^X. Now

it’s just an unfortunate feature.

Conclusion

Any complex system can be improved; therefore the goal of absolute

perfection and optimality is unattainable. Yet I think can be said to

have arrived at a reasonably satisfactory state, given that stability itself

is highly desirable. I am deeply grateful to the many volunteers all over

the world who have helped me to formulate many of the changes that

have led T^X to its present embodiment, known as “Version 3.14159.”

662 Digital Typography

References

[1] Donald E. Knuth, The T^Kbook, Volume A of Computers & Type¬

setting (Reading, Massachusetts: Addison-Wesley and American

Mathematical Society, 1984).

[2] Donald E. Knuth, “The errors of Software—Practice and

Experience 19 (1989), 607-685; reprinted with additions and cor¬

rections as Chapter 10 of Literate Programming. See also [3].

[3] Donald E. Knuth, “The error log of T^X (1978-1991),” Chapter 11

of Literate Programming (CSLI Lecture Notes 27 (Stanford, Cali¬

fornia: Center for the Study of Language and Information, 1992),

293-339.

[4] Donald E. Knuth, “The new versions of TgX and METflFONT,”

TUGboat 10 (1989), 325-328; 11 (1990), 12. Reprinted in Die

TpjKnische Komodie 2,1 (March 1990), 16-22. French translation

by Alain Cousquer, “T^iX 3.0 ou le T^X nouveau va arriver,” Cahiers

GUTenberg, N° 4 (December 1989), 39-45. Also reprinted as Chap¬

ter 29 of the present volume.

Index

^ versus <, 368, 642.
4TeX, 626.
8-bit characters, 563-564.
16-bit characters, 205-206,

217-221, see also Unicode.
99% policy, 595-596, 605, 633,

641-642.
oo, 71, 73, 78, 92, 103-104, 154.
oo sign, 374.
e-TeX, 630.
s versus e and G, 352, 354.
TT, 51, 571, 590.
Q system, 630-631, 634.

ABC book, 2.
Abelson, Harold, 543.
accents, 38, 247, 368, 412-414, 655,

661.
ACM (Association for Computing

Machinery), 60, 88-89.
ACME (Advanced Computer for

Medical rEsearch), 540.
Acrobat, 612, 618, 634.
Acta Mathematica, 620.
active characters, 190.
active nodes, 105-106, 115-116.
Adams, Ansel Easton, 461.
Addison-Wesley Publishing

Company, iv, 5, 7, 12, 35, 151,
319, 558, 562, 606, 620.

Ade, George, 414.

Adleman, Leonard Max, 581.
adjustment ratio, 76-77, 115-117.
Adobe Acrobat, 612, 618, 634.
Adobe Photoshop, 434, 440.
Adobe Systems Incorporated, iv,

248, 608, 612.
adversary, 454.
AFM (Adobe Font Metric) files, 248.
Aho, Alfred Vaino, 60.
Alamnehe, Abass Belay, 18.
Alavi, Yousef, 61.
Algie, Stephen H., 468-469.
ALGOL-like languages, 95-98, 320,

632.
algorithms, 601, 634, 650.
Alice Through the Looking-Glass

(sailA), 163-164.
Allebach, Jan Philip, 470.
alphabets for mathematics,

344-347, 367-368.
Alphatype CRS phototypesetter,

286-287, 538-540, 542-543.
Ama, Ronaldo, 214.
American Institute of Physics, 59.
American Mathematical Society

(AMS), iv, x-xii, 19, 25, 60-61,
91, 247, 339-342, 347, 352-353,
363, 367, 533, 542-543, 574,
608, 624, 639.

Transactions, 20-26, 64.

663

664 Digital Typography

American Physical Society, 61.

American Society of Civil

Engineers, 26.

American Type Founders, 290.

Amharic language, 16.

AMS, see American Mathematical

Society.

AMS Euler, 16, 339-365, 367-369,

377, 624.

sample, 361-363.

4Ad5-TEX, 543, 615.

analog versus digital, 5-6, 34.

analysis of algorithms, 465-466.

analytic geometry, 263-284.

Analytical Engine, 555.

Anastassiou, Dimitris, 469-470.

Anderson, Donald Myers, 61.

Anford, Junior Saint, 262.

angles, digitized, 473-480.

Anno, Matsumasa

627.

Antigone typeface, 342.

Apple Computer, xiii.

APS (Autologic) phototypesetter,

247-249, 370, 543, 545.

Arabic typesetting, 17, 129, 132,

157, 174-175, 630.

Aramaic language, 128-130, 132.

ArborText Inc., 247-248.

Arce, Gonzalo Ramiro, 470.

Arias Montano, Benito (= Arias

Montanus, Benedictus), 151.

ARIES, 466-469.

Aristotle of Stagira, 289.

arithmetic overflow, 207, 589, 656,

659-660.

arms of letters, 321.

ARPA network, 43, 153.

arrows, 375, 473-475, 592, 630.

art, 637-639.

art and science, 316, 339-340, 344.

artificial intelligence, 229, 291,

640-641.

Artin, Michael, 544.

ascenders of letters, 293.

ASCII (American Standard Code

for Information Interchange),

513.

Asian characters, 14-16, 47,

205-206, 369, 577-578, 585,

630-631.

Asker, Randi, 62.

Aspvall, Bengt Ingemar, 539.

Associates of the Stanford

University Libraries, 177, 502,

609-610.

Association for Computing

Machinery (ACM), 60.

Journal, 88-89.

A^TeR, 584.

astronomical symbols, 345.

ATypI (Association Typographique

Internationale), 315, 330-331,

337.

Auble, J. Woodard, 61.

author assistance, 124-127, 136.

Autologic Corporation, 247.

automation, 271, 291, 313, 612,

635, 640-641.

auxiliary files, 183-185, 231-232,

376.

auxiliary spaces, 89-91.

axioms, 40-41.

Babbage, Charles, 555.

Bach, Johann Sebastian, 504.

backspacing, 30, 114-115, 500, 529.

backtracking, 137, 139, 241-245.

Bacon, Charles R. T., 64.

bad fonts, 5, 13, 279, 322, 540.

badness, 31-32, 78, 207, 498, 527,

568.

Bafour, Georges P., 136, 151.

balancing columns, 112, 597.

Balzac, Honore de, 414.

Banks, Peter Morgan, 542.

Index 665

bar-height, 294, 298, 300.

Barnett, Michael Peter, 26, 61, 68,
136, 151.

Barnhill, Robert Ellis, 63.

baron positions, 452-454, 456, 460.

Barr, Avron, 541.

Barrett, Percy Reginald, 18, 61,

364.

Bartels, Samuel A., 136, 151.

Bartholdi, Frederic Auguste, see

Liberty.

Bartlett, Fred, 596-597.

\baselineskip, 371.

Baskerville, John, typeface, 303.

Bates, Donald William, 504.

Batey, Charles, 18, 61, 364.

Baudin, Fernand, 312.

Baxter, William Erik, 656.

Bayer, Bryce Edward, 416, 470.

beaks of letters, 298, 321.

beauty, 637-639.

Bechtolsheim, Andreas von, 542.

Becker, Joseph D., 174.

Beebe, Nelson H. F., 593-594, 600.

Beeton, Barbara Ann Neuhaus

Friend Smith, xiii, 150,

340, 352, 560-562, 573-574,

600-601, 626.

Bell, John, typeface, 49.

Bell Northern Research, 542-543.

Bell Telephone Laboratories, 27,

59, 153, 639.

Bellman, Richard Ernest, 32, 151.

Berner, Robert William, 61.

Bentley, Jon Louis, 649.

Berri, David Garden, 135, 151.

Berry, Daniel Martin, 631.

Berry, James M., 471.

best-fit algorithm, 78-83, 106,

126-127, 139, 144, 203, 215.

Bezier, Pierre Etienne, 65.

Bibby, Duane Robert, 549, 562,

627-628.

Bible, 127-132, 143-144, 595, 609,

617-618, 634.

bibliographic references, 376.

Biermann, Kurt-Reinhard, 364.

Bigelow, Charles Andrew, III,

309-310, 312, 327, 358,

379-380, 389-390, 561, 612.

Bigelow & Holmes studio, 390.

Billawala, Nazneen Noorudin (=

Neenie), 382, 383, 390, 636.

Billotet-Hoffmann, Claudia, 463,

470.

binary images, 449-471.

bitmaps, 547-553, 558, 578.

bitwise computation, 481, 502-503,

579.

Blaise preprocessor, 96-97, 153,

615.

Blanchard, Andre R., 136, 151.

Blanchard, Arthur “Artie”, 392.

Blotkamp, Carel, 652.

Boas, Ralph Philip, Jr., 352, 354.

Bodoni, Giovanni Battista (=

Giambattista), typeface, 49.

Boehm, Peter J., 61.

Bohning, Pauline Anne Marie nee

Ehlert, 179-180.

boldface type, 10-11, 23, 49-50,

262, 286-287, 295, 310, 342,

349-350, 491, 516, 635.

Bondy, John Adrian, 61.

Bonnetain, Jean-Luc, 382, 384, 390.

book design, 369-371, 374-375,

545.

Boothroyd, Ronald Herbert, 62.

border designs, 383-388.

boredom, 1.

Borre, Kai, 378.

Boston Museum of Fine Arts, 397.

Boston Public Library, 556, 562.

Bothner, Per Magnus Alfred,

388-390.

Boublfk, Vaclav, 64.

666 Digital Typography

Bourbaki, Nicolas, 91.

Bowditch, Natlianiel, Library, 556.

box/glue/penalty model, 70-72, 75,

142-143, 154.

tricks, 92-101.

boxes, 29 30, 70, 75, 483, 507.

Braams, Johannes Laurens,

630-631, 640, 644-646.

braces, 375.

bracketing, 296, 298, 300.

Brailsford, David Prank, 479.

Bratnober, James C., 382, 384.

BRAVO, 540.

breaking lines into pages, see page

breaking.

breaking paragraphs into lines, see

line breaking.

Breitenlohner, Peter, 589-590,

597-599, 630, 656, 658.

Bresenham, Jack Elton, 476, 480.

Briggs, R. Bruce, 64.

Brisse, Baron Leon, 556.

broad-edged pens, 330, 332-333,

381.

Bronsard, Henri-Paul, 312.

Brown, Malcolm Brewer, 382, M,

390.

Brown, Marcus Edward, 239.

Brown, Roy Howard, 360, 369-370,

374-375.

Bruijn, Nicolaas Govert de, 503.

Bryngdahl, Olof, 463, 470.

bugs, 143, 236, 277, 326-327, 396,

560, 571-572, 574, 587-590,

650, 655-662.

bulbs of letters, 295, 298.

Burley, William Ralph, 382, 384.

Byl Dart, Renata Maria, 382, 384,

390.

C language, 226-230.

C library, 241, 435.

C-H- language, 226, 649.

Caddes, Carolyn, 446.

calculus, 263, 284, 345, 581, 583.

calligraphy, 37, 46, 330, 342-343.

Canon LBP-CX, 415, 438.

Canzii, Giovanni, 540.

capacity exceeded, 214, 431, 660;

see also arithmetic overflow,

cardioid, 581.

Cardozo, Lida Helena Lopes, 18.

Carlip (= C3arlip), Walter Bruce,

589, 656.

Carter, Harry Graham, 153, 636.

Carter, Lena Bernice nee Rees,

534-537.

Carter, Matthew, 285, 287,

309-310, 316-317, 327, 562,

612, 636.

Carter, Wilda Ernestine nee Bates,

190, 193.

Caslon, William, typeface, 290.

Casteljau, Paul de Faget de, 65.

centered text, 94-95.

Centre for Mathematics and

Computer Science, 195-196,

625.

Centrum voor Wiskunde en

Informatica, 195-196, 625.

change bars, 618.

changes to T£iK, 597-599, 617-618,

622-623, 628-630, 633-634.

examples of, 166-173, 216-222.

Charles University, 601-603.

Chaundy, Theodore William, 18,

61, 364.

cheese crisps, 190, 193.

CHEL, 318-319.

chemistry, 617.

Cheriton, David Ross, 388-389.

Cherry, Lorinda Landgraf, 62, 491,

502, 516.

Child, Julia nee McWilliams, 177.

Childs, Selma Bart, 575, 589, 600.

Index 667

Chinese characters, 47, 205-206,

577-578, 585, 630-631.

Christmas stollen, 177-180.

Chung, Kai Lai, 541.

Cinque, Gregory M., 468, 471.

circles, 41-44, 54, 110, 264-270.

Clancy, Michael John, 142, 151.

Clauer, Calvin Robert, Jr., 542.

Cohen, Paul Raymond, 541.

cold copy, 25.

Collegiate Press, 23.

Colorado printer at Xerox, 533.

Columbia University Library, 151.

column balancing, 112, 597.

comments, 252-253, 404, 406, 484,

507.

commercial typesetting systems, 88,

139-140, 482, 506, 617, 639.

committee, design by, 352, 354,

599-600, 621.

compatibility, 173, 563-564,

569-570, 572, 630, 639.

complexity of computation, 69,

582-583, 617, 648.

Complutensian Polyglot Bible,

128-131, 135.

Comprehensive TgX Archive

Network (CTAN), 311, 378,

553, 589, 630-631, 646, 656.

Compugraphic Corporation, 247.

computer algebra, 43-44, 275, 284.

Computer Modern fonts, 181-182,

248, 292-293, 301, 309, 311,

317, 342, 367-375, 394, 536,

541-545, 561, 571-572, 592,

632.

Bright, 653.

Concrete, 360, 369-374.

computer science, 558, 601.

computer typesetting, history of,

26-27, 136-140, 555-558.

Computers & Typesetting, 555,

559-561.

Concrete Italic fonts, 360, 370.

Concrete Mathematics, 360, 363,

367-378, 641.

Concrete Roman fonts, 360-362,

370-374.

condensed type, 294, 375-376.

conic sections, 60.

conservatism, 348, 624.

Consolandi, Antonio, 540.

Cooper, P. L, 138-139, 142,

150-152.

copy editing, 28.

Cora system, 482, 506, 539.

Coray, Giovanni, 154.

Coueignoux, Philippe Jean-Marie,

61, 309-310.

Cousquer, Alain, 662.

cranberry relish, 190, 193.

Crelle, August Leopold, 364.

Cresci Milanese, Giovanni

Francesco, 38-39, 61.

Croft, William James, xiii.

Cromwell, Oliver, 132.

cross references, 228, 376-377.

CRS phototypesetter (Alphatype

Cathode Ray Setter), 286-287,

538-540, 542-543.

cryptanalysis, 582.

CTAN (Comprehensive

Archive Network), 311, 378,

553, 589, 630-631, 646, 656.

CTWILL, 226, 229-240.

cubic splines, 42-25, 56-57,

503-504.

Cumpston, Copenhaver, xiii.

Curtis, Pavel, 382, 385, 390.

curvature, 57.

CWEB system, 226-231, 434, 440,

550-551, 651.

example programs, 241-245,

434-446.

Cyrillic letters, 16, 292, 345, 347,

378, 630.

668 Digital Typography

Czech language, 603.

Czejdo, Bogdan D., 239.

Dalton, John C., 470.

Darlow, Thomas Herbert, 151.

Dart, Renata Maria nee Byl, 382,

384, 390.

dash, 73.

data structure design, 115-116.

data structures of the Stanford

GraphBase, 227-228.

data structures of TeX, 198, 208,

216, 505-506.

Davis, Herbert, 153.

de Bruijn, Nicolaas Covert, 503.

de Casteljau, Paul de Faget, 65.

de Marneffe, Pierre Arnoul, 614.

De Vinne, Theodore Low, 26, 61,

125, 142, 151, 153.

debugging, 389.

declarative versus imperative, 318,

320, 581.

Deken, Joseph Gerard, 544.

delimiters, 633, 643.

demerits, 79-80, 107, 111-112, 119,

154.

DemoTt^C, 212, 221-223.

Desarmenien, Jacques Robert Jean,

390.

Descartes, Rene, 266.

descenders of letters, 293-294, 298,

300.

design by committee, 352, 354,

599-600, 621.

design of books, 369-371, 374-375,

545.

design of languages, 481, 632-633.

design of typefaces, 379, 391,

635-636.

desktop publishing, ix.

Devanagari letters, 17, 285-287.

dialog, 186.

diary entries, 481-483, 502-506,

557, 655.

Diaz de la Pena, Maximiliano

Antonio Temistocles, 544, 615.

Dietsche, Luzia, 600.

Difference Engine, 555.

diffusion of errors, 427, 438-440,

449-450, 462-469.

Digital Press, 533, 535.

Digital Research, 27.

digital halftones, 449-471.

digital versus analog, 5-6, 34.

digitization, 52-56.

of angles, 473-480.

of paths, 475-476.

digits, see numerals.

Dijkstra, Edsger Wijbe, 642-643.

diSessa, Andrea Al-Vin, 543.

Disney, Walter Elias, 291.

DOC processor, 614.

Dol, Wietse, 626, 652.

Dolby, James Louis, 138, 151-152.

Doni, Lucida Caslon “Bo”, 262.

dot diffusion, 430, 441-446,

451-456, 459, 461-463, 465.

dot dither, 420-422, 425.

dot-and-line motif, 391, 397, 414.

dot-to-dot puzzles, 40.

Douglass, Scott Alan, 216.

Dover (Xerox) printer, 544.

Downes, Michael John, 645, 656.

Draper, William Henry, HI, 505.

Dreyfus, John, 364, 365, 623.

driver files, 397-399.

DTP (desktop publishing), 617.

dumping the data structures, 658.

Duncan, Christopher John, 69, 77,

123, 136-138, 140, 152.

duotone images, 428.

Diirer, Albrecht, 18, 37, 61, 64, 624.

Durst, Lincoln Kearny, 352.

Dutch-language-oriented TeX Users

Group (NTG), 592, 625-626.

Index 669

DVI (device-independent) files, 183,

205, 549-550, 612.

DVI-Iva, 158-160, 165-167.

DVIPS, 248.

dynamic programming, 32, 70, 109,

138-139, 142, 500, 502, 529.

e-TfeX, 630.

Earnest, Lester Donald, 59.

Eck, David John, 543.

education, 1, 197, 263, 284, 319,

341, 379-390, 415, 481, 561,

603-604.

Egyptian serifs, 370.

Eijkhout, Victor Lambert, 647.

Einstein, Albert, x, 345.

El Palo Alto, 380.

ELF, 310.

Elkies, Noam David, 580.

ellipses (...), 176.

ellipses (generalized circles), 45,

270-280, 294-295, 302.

Ellis, Wade, Jr., 541.

em, 71, 298, 300.

Emacs, 575, 577-578, 642, 644.

Emde Boas, Peter van, 89.

emergency stretch, 155, 568.

Emily editor, 238.

energy, 57.

Engelstad, Helen, 62.

Enschede, Charles, 364, 636.

Enschede en Zonen, 342, 636.

eqn, 27, 59, 482, 610, 619, 639.

equilateral triangles, 479.

erasing, 9-10, 47, 280-281,

336-337.

Erichson, Knut, 365.

Eriksson, Gerd, 543.

error diffusion, 427, 438-440,

449-450, 462-469.

errors, 17-18, see also bugs.

Erv’s Service, v.

Escher, Maurits Cornelis, 419, 627.

Eskimo language, 17.

Ethiopic letters, 16, 132.

Euclides (=Euclid), 38.

Euler, Leonhard, 344-345, 360, 364,

367, 487, 511, 580, 588.

Eulerian numbers, 587.

Eve, James, 150, 152.

examples of changes to Tt)X,

166-173, 216-222.

examples of literate programming,

114-122, 145-150, 166-173,

197-222, 241-245, 250-261,

434-446.

examples of METflFONT code,

266, 280-282, 319, 332-337,

397-414, 416-417, 421-424,

429-433.

examples of TeX code, 178,

183-193, 235-236, 416-417,

422-423, 429, 578, 641,

659-661.

extended type, 294.

extensions to TeX, 597-599,

617-618, 622-623, 628-630,

633-634.

examples of, 166-173, 216-222.

extrapolation, 335, 357.

Facil TeX, 544, 615.

factoring, 581-582.

Eairbairns, Robin, 593.

Farsi typesetting, 175.

fashion history, 391.

Fateman, Richard J, 282.

feasible breakpoints, 104-109, 114,

142-143.

Feigenbaum, Edward Albert, 541.

Feliciano Veronese, Felice, 37, 48,

62.

Fermat, Pierre de. Last

Theorem of, 574-575, 580, 583.

Fernside, Eric, 4-5.

Feynman, Richard Phillips, 603.

670 Digital Typography

ffilling station, 327.

Fierst, James A., 64.

Filman, Robert Elliot, 320, 545.

finishing glne, 73, 114, 162.

first-fit algorithm, 78-82, 106, 136,

139.

Fischer, Michael John, 59.

fish-eye view, 239.

Fisher, Ed, Jr., 312.

flagged penalties, 71-73.

Fleischer, Bruce, 382, 385, 390.

Fleischinan, Johann Michael, 636.

floating-point arithmetic, 144.

Floyd, Robert W, 446, 449-450,

470.

Floyd-Steinberg algorithm, 426,

438, 449-450, 454, 457,

460-461, 463, 465.

Flynn, Michael John, 541.

Font, Fray Pedro, 262.

Font 1, 380-383.

font samples:

AMS Euler, 361-363.

Concrete Roman, 370-371.

Font 1, 381-382.

FI)die, 392-394, 400.

fonts for halftones, 415-448.

footnotes, 499, 528.

Ford, David, 312.

format file, 658.

Forsythe, George Elmer, 291, 313.

FORTRAN, 26.

fraction bars, 29, 591-592, 660.

fractions, 177-178.

Fraenkel, Abraham Adolf, 176.

Fraktur letters, 341-342, 345,

346-347, 349-350, 354-355,

359, 361-362, 367, 624.

Frambach, Erik Hubertus Martinus,

625-627, 629, 640, 652-653.

Franklin, Benjamin, 567.

Fraser, Christopher Warwick, 650.

free software, 617, 647.

Free Software Foundation, 649, 651.

Frey, A., 91, 152.

Friedman, Daniel Paul, 545.

Prog King, 84-85.

Frost, Martin Edward, xiii, 622.

Frutiger, Adrian, 310.

Fuchs, David Raymond, 210, 247,

389-390, 538, 562, 632.

Galileo Galilei, 109-110.

galley proofs, 28.

Galliard typeface, 310, 316-317.

garbage collection, 121, 393, 658.

Gard, Robert L., 423, 446, 469,

470.

Garey, Michael Randolph, 152.

Garriott, Owen Kay, 542.

Gates, William Henry, III, 594.

Gee, Tony, xiii.

German hyphenation, 143.

GF (generic font) files, 431, 549-550.

GFtoDVI processor, 389.

GFtoQMS processor, 389.

Ghosh, Pijush Kanti (

286.

ghosts, 414, 450.

Gibbon, Edward, 123.

Gibbons, Jeremy, 573, 593,

598-599.

Gibbs, Josiah Willard, 24.

Lecture, x, 19, 24, 608.

Gill, Philip Edward, 539.

Gioconda, see Mona Lisa.

Girou, Denis, 581.

Giustiniani, Agostino, 129-130,

132, 134, 152.

glue, 29-31, 70-71, 75, 483,

489-490, 507, 513-515.

Goddijn, Franciscus Theodoras

Hendrik, 627, 635, 637.

Goldberg, Samuel, 541.

golden section, 37, 587.

Goldfarb, Charles Frederick, 644.

Index 671

Golub, Gene Howard, 504.

Good Shepherd Psalm, 299.

Goossens, Michel, 600.

Gopinath, Kanchi, 382, 385, 390.

Gore, Gary, 312.

Gorey, Edward Saint John, 627.

Gorin, George, 543.

Gosper, Ralph William, Jr., 49.

goto statements, 243.

Goudy, Frederic William, 36, 38,

62, 610.

Gould, Benjamin Apthorp, 556.

graffiti, 375-376, 638.

Graham, Ronald Lewis, 364, 367.

Grandjean, Philippe, 38.

greedy algorithm, 106, 236.

Greek letters, 17, 21, 27, 128-129,

132, 292, 309, 341-342,

344-345, 347, 367, 405,

623-624, 630.

Green, L. Dale, 534.

Greene, Daniel Hill, 541.

grid, 6, 34-35, 52-56, 307, 419, 449.

Grimm, Jakob Ludwig Karl, 73,

123, 152.

Grimm, Wilhelm Karl, 73, 123,

152.

Gu Guoan 14-15, 18,

324, 338.

Guibas, Leonidas John, 59, 534.

Guillen de Brocar, Arnao, 128-129,

152.

Gunst, Aline Dreyfus, 610.

Gunst, Morgan Arthur, 610.

Guntermann, Klaus, 650.

Gutenberg, Johannes (= Johann

Gensfleish), 7, 35, 609.

Gutman, Caspar, 392.

Hajkova, Michaela, 18.

Haddad, Ramsey Wadi, 447.

Hagen, Johannes, 628-629.

hairlines, 295, 298, 300, 308.

half-dot dithering, 423-425.

halftones, 415-471.

Hall, Basil, 152.

Hamburg Polyglot Bible, 132.

Hamiltonian circuits, 226, 241-245.

Hamlet, Prince of Denmark, 658.

Hammett, Samuel Dashiell, 414.

hand tuning, 124-127, 136,

595-596, 641-642, 645.

hanging indentation, 100.

hanging punctuation, 87.

Hannan, Michael Thomas, Jr., 541.

Hansen, Wilfred James, 238, 239.

Hanson, David Roy, 650.

Haralambous, Yannis, 249, 631.

Harary, Prank, 62.

Hardy, Godfrey Harold, x.

Harmon, Leon David, 431, 447.

Hauglid, Roar, 62.

Hauman, Doris, 18.

Hauman, George, 18.

Hawkinson, Lowell, 25.

Haydn, Franz Joseph, 312.

heart and sole, 323.

Hebrew fonts, 128, 630-631.

Hebrew typesetting, 128-129, 132,

143-144, 157, 174-176.

Hein, Piet, 17-18, 297, 302.

Hejlova, M., 64.

Held, Michael, 152.

Helliwell, Robert Arthur, 542.

Helvetica typeface, 248-249, 303.

Hennessy, John LeRoy, 578.

Henrichs, Marshall, 370.

Hershberger, John Edward, 382,

385, 390.

Hershey, Allen Vincent, 62.

Hewson, Rachel, 390.

Hickey, Thomas Butler, 318-319,

338.

high resolution, 6, 329, 481, 538,

544, 558.

672 Digital Typography

history of computer typesetting,

26-27, 136-140, 555-558.

history of computing, 555-557.

history of fashion, 391.

history of letterforms, 379-380, 391.

history of line-breaking, 127-143.

history of literate programming,

613-615.

history of mathematical type

design, 37-39, 48, 264-265.

history of METflFONT, 319-323,

358, 389, 503-505, 557-559,

606-608, 611-613, 632-633,

655, 658.

history of TfcX, 481-532, 533-545,

557-559, 609-611, 618-620,

621-622, 632, 648-649,

655-657.

Hoare, Charles Antony Richard,

613-614.

Hobby, John Douglas, 14-15, 18,

65, 323-324, 338, 358, 390,

419-420, 476, 480, 562, 581,
634.

Hoenig, Alan, 196.

Hoffman, J., 542.

Hofstadter, Douglas Richard, 309,

312.

Holladay, Thomas Melvin, 455, 470.

Holmes, Kris Ann, 327, 390, 612.

Honeywell Information Systems, 27.

booklets, 346, 349, 352.

hooks in TgX, 617-618.

Horak, Karel, 601, 605-608, 623.

Horn, Berthold Klaus Paul, 469,

589, 656.

Horstman, Helen, 183.

Houghton, Walter Edwards, Jr.,

152.

houndsteeth, 144.

HTML (HyperText Markup

Language), 643-644.

Hummel, Johann Julius, 312.

Hunt, Robert, 656.

Hunter, Dard, 314.

hypertext, 239, 584-585, 614, 649,

652.

hyphenation, 32, 68-69, 74, 83,

94, 121, 123, 143, 146, 216,

501-502, 564-565, 585-586,

618-621.

history, 130, 132, 136-139.

multilingual, 619-620, 646, 657,

661.

IBM 370/3081 computer, 543.

IBM 1620 computer, 139.

IBM Compositor, 25.

IBM (International Business

Machines) Corporation, 151,

282, 309.

icons, 547-553.

IDEAL language, 473.

HI (Information International,

Inc.), 152, 505, 558.

IKARUS system for letterforms,

310.

illustrations, 595, 627.

technical, 538, 580-581, 634.

image processing, 434-446,

449-471.

Imagen laser printer, 415.

immortality, 628-629.

Inamori, Kazuo (^^fO^),

Foundation, 1.

Indagationes Mathematicae, 620.

indentation, 95-98, 162.

index to Mathematical Reviews,

99-101, 574.

indexing, 238, 376.

Indian letters, 285-287.

Indian typesetting, 17, 577, 630.

infinite loops, 494, 658-659, see

looping forever.

infinite penalties, 71, 73, 92, 98,
154.

Index 673

infinitely stretchable glue, 30, 73,

98, 103-104, 490, 515.

Information International, Inc.

(Ill), 152, 505, 558.

INITEX,199-200, 210, 565, 570,

658.

ink squash, 426.

integer overflow, 207, 589, 656,

659-660.

integral signs, 361, 374, 604-605.

interesting versus dull, 1, 650.

Internet, 43, 153, 575, 577, 604,

630, 634-635, 656.

intersection of lines, 273.

Isner, Dale W., Jr., 64.

italic correction, 215, 254, 368, 516,

604, 623.

italic letters, 21, 23, 25-26, 297,

344-345, 390, 491, 515, 587,

623-624.

ITSYLF system, 311.

Iverson, Kenneth Eugene, 587.

Ives, George Burnham, 64.

Jackowski, Boguslaw, 636, 656.

Jackson, Calvin William, Jr., 573.

James, Elizabeth Ann (pen name

of Elizabeth Ann Shiblaq,

nee Porter), 534, 537.

Jammes, Andre, 59, 62.

Japanese characters, 14-16, 47,

205-206, 369, 577, 630-631.

Jarvis, John Frederick, 447, 455,

470.

Jaspert, W. Pincus, 312.

Jaugeon, [first name unknown], 48.

Jensen, Kathleen, 152.

Jewell, Derek, 414.

Jimenez de Cisneros, Francisco,

128, 152.

Johnson, David Stifier, 152.

Johnson, Samuel, 485, 509.

Johnson, Stephen Curtis, 60.

joke, 262.

Joost, Ulrich, 556.

Jordan, Camille, curve theorem,

476.

Judice, Charles Norris, 447, 470.

justification, 68, 83, 133, 135.

Justus, Paul E., 62, 153.

Kapr, Albert, 312.

Karagueuzian, Dikran

(= D-miimlilonkmli, Sjiqptu'u),

xiii, 382, 385, 390.

Karman, Willem Jan, 635.

Karow, Peter, 310, 312.

Karp, Richard Manning, 152.

Kastrup, David Friedrich, 659.

Kay, Alan Curtis, 62.

Keller, Arthur Michael, 540.

Kennedy, John Fitzgerald, 575.

kerf, 154.

Kernighan, Brian Wilson, 62,

473-474, 491, 502, 516.

Kew, Jonathan F., 18.

Key Index, 99-101.

keyboarding, 4, 28, 88, 91.

Kim, Scott Edward, 317, 348, 350,

352-353, 356-358, 364, 540.

Kindersley, David Guy Barnabas,

18, 62, 310.

Klarner, David Anthony, 539.

Klensch, Richard Joseph, 470.

knight’s tours, 226.

Knowlton, Kenneth Charles, 431,

447.

Knuth, Donald Ervin (t^^^F*!),

iii-iv, 2, 18, 62, 90, 126,

142-143, 151, 153, 154, 174,

179-180, 186, 189, 201-203,

215, 226, 239-240, 282,

310-313, 337, 338, 340-365,

379-382, 386, 390, 447,

471, 480, 483, 538-539, 553,

573-653, 655, 662.

674 Digital Typography

Knuth, Ervin Henry, v, xvi, 1-2,

609.

Knuth, Jennifer Sierra, 190, 504,

627, 632.

Knuth, John Martin, 190, 504, 506,

541, 627, 632.

Knuth, Kurt Edward [no relation],

471.

Knuth, Louise Marie nee Bohning,

179-180, 1-2.

Knuth, Nancy Jill nee Carter, 48,

52, 59, 177, 179-180, 185-186,

190, 192, 309, 506, 533-535,

537, 562, 596, 607, 632, 652.

Komlos, Janos, 482-483.

Korbuly, Dorothy Katherine, 62.

Korean characters, 205-206.

Krimpen, Jan van, 342, 365, 623.

Kunstbibliothek Berlin, 59.

Kunz, Ernst, 365, 541.

Kurland, Marvin, 471.

Kyoto Prize lecture, 1-18.

Laan, Cornells Gerardus (= Kees)

van der, 631, 633, 642.

Lamport, Leslie B., 615, 648.

Lampson, Butler Wright, 540, 606.

language design, 643, 648-649.

languages for mathematical

typesetting, 25-27, 88, 539.

Lantz, Kieth Allen, 388.

Lapko, Olga Georgievna, 378.

LaserJet4 (Hewlett-Packard)

laserprinter, 612.

laserprinters, 415, 418-420, 442,

461, 611-612.

Lasko-Harvill, Ann, 382, 386.

late binding, 69.

IATeX, 588, 615-616, 646-648.

Latin language, 17, 129-132, 309,

602.

Lavagnino, John David, 18.

layout, 59-60.

leaders, 99-101, 574.

leading, 371.

Leban, Bruce Philip, 382, 386, 390.

Leeuwen, Marcus Aurelius

Augustinus van, 629, 631, 646,

649-651.

left-hand pages, 185.

\leftskip, 154.

legal breakpoints, 74, 117.

Lehmer, Derrick Henry, 486, 510.

Leibniz, Gottfried Wilhelm,

Freiherr von, 48.

Lenstra, Andries Johannes, 639,

646-647.

Leonardo da Vinci, ix, 158, 456, see

also Mona Lisa.

Lesk, Michael Edward, 62.

letter ‘S\ 592-593, 630.

letter ‘A’, 8-12, 39, 332-337, 395,

401, 632.

letter ‘B’, 37-39, 319, 401, 632-633.

letter ‘h’, 301-303.

letter ‘L’, 287.

letter ‘O’, 4, 328.

letter ‘S’', 47-49, 263-284, 325, 403,

505.

oldftyle, 128, 130, 134, 567.

letterforms, history, 379-380, 391.

letterspacing, 140-142, 249,

489-490, 514, 638.

LeVeque, William Judson, 347-348,

350-352, 354.

Levy, Silvio Vieira Ferreira, 240,

553, 588, 592-593.

Lhotka, Lad’a, 613.

Liang, Franklin Mark, 59, 505-506,

619.

Liberty Enlightening the World

(La Liberte eclairant le

Monde), 418, 420, 422,

425-427, 431-433.

libraries, 1-2, 151, 562.

Lichtenberg, Georg Ghristoph, 556.

Index 675

ligature/kern programs, 253-254,

258-259.

ligatures, 25, 327, 500, 525.

smart, 254, 565-568, 656.

Limb, John Ormond, 471.

Lincoln, Abraham, 418, 420, 422,

425-427, 431-433.

Lindgren, Michael, 556.

line art, 469.

line breaking, 31-32, 67-155, 500,

618-620.

history, 127-143.

lines-and-dots motif, 391, 397, 414.

Linotype Company, 285.

Linotype machine, 135.

lions and lionesses, 549, 552, 562,

627-628.

Lippel, Bernard, 471.

Lisina, Marina Vladilenovna, 18.

LISP language, 483, 507.

literate programming, 225, 247,

545, 560-561, 649-652.

examples, 114-122, 145-150,

166-173, 197-223, 241-245,

250-261, 434-446.

history, 613-615.

lizards, 144.

Lochbaum, Carol, 63.

Lodi, Ed, 541.

Logo for TeX, 181-182, 653.

lollipop system, 647.

London Polyglot Bible, 132.

looping forever, 494, 658-659, see

infinite loops.

loose lines, 77, 108, 112, 124, 129,

133-134, 144.

looseness, 112-114, 141, 143.

Lorentz, Hendrik Antoon, 342, 623.

Louis XIV (= The Sun King),

38-39, 62.

low resolution, 6, 53, 303, 322-323,

329, 415, 504, 536, 544, 558,

612.

lowercase letters, 206, 610, 639,

646.

Luc de Bruges (= Lucas

Brugensis), Francois, 130.

Lydon, John, 393.

Lyche, Tom John Wiberg, 59.

MacDraw program, 474, 581.

machine units (1/18 em), 72, 75.

Macintosh computer, 434-435, 440.

MacKay, Pierre Anthony, 157, 174,

596, 600.

MacKenzie-Harris type foundry,

390.

macros in Emacs, 577-578, 644.

macros in METflFONT, 631-633.

macros in Tt)X, 368, 376-377,

584-587, 605, 615-619.

examples of, 178, 183-193,

416-417, 422-423, 429, 578,

641, 659-661.

history of, 488, 494-495, 512-513,

519-520, 525, 619, 631-632.

MACSYMA system, 43-44, 275,

282.

magazines, 140-141.

Malcolm, Michael Alexander, 57,

63.

Manning, J. R., 44, 63, 311.

manuscripts, medieval, 127, 132.

Mardersteig, Giovanni, 63, 282.

marginal notes, 185-189, 376.

markup, 492, 516, 584, 616,

642-644.

Marneffe, Pierre-Arnoul de, 614.

math anxiety, 316.

math mode, 368, 374.

disallowing, 187.

Mathematica, 284, 651.

Mathematical Reviews, 91-92,

99-102, 352, 543, 574.

mathematical type design,

history of, 37-39, 48, 264-265.

676 Digital Typography

mathematics, typesetting of, see

typesetting.

Mathews, Max Vernon, 63.

Maths system, 482, 506, 539.

Matrix, Irving Joshua, 89.

Mattes, Eberhard, 592-593, 656.

Mazzetti, Claudia C., 544.

McConnel, Stephen Roy, 18.

M^^Gaffey, Robert William, 581.

McMechan, William Edgar, xiii.

McPherron, Robert Lloyd, 542.

McQuillin, Richard, 25.

mediation, 272-273.

medieval manuscripts, 127, 132.

Mehlum, Even, 57, 63.

Mende, S. B., 542.

Mergenthaler, Ottmar, Linotype

Company, 285.

Mergler, Harry Winston, 283, 311.

Merzbach, Uta Caecilia, 556.

meta-, 289-290, 316.

meta-design, 271, 330-335, 357,

381, 636.

METfl-flops, 13-14, 326-327, 396.

meta-font concept, 49, 289-313,

317-319, 330-337, 349-350,

357, 361, 369-370, 397.

METRFONT, iv, x-xii, 8, 15-17,

33, 46-47, 51-56, 65, 263,

266-268, 273, 284, 285-287,

292-293, 301-302, 309, 311,

316-330, 339, 347-350, 356,

379-390, 538-540, 542, 561,

563-564, 566-568, 570-572,

612, 631-633, 635-637.

examples of input, 266, 280-282,

319, 332-337, 397-414,

416-417, 421-424, 429-433.

history, 319-323, 358, 389,

503-505, 557-559, 606-608,

611-613, 632-633, 655, 658.

METRP05T, 580-581, 633-634,

651.

Metzner, Alfred Wolfgang Kenneth,

63.

Meyer, Albert Ronald da Silva, 59.

Meyerhofer, Dietrich, 470.

mid-life crisis, 322.

Miller, Joan Elizabeth, 63.

Mills, Daniel Bradford, 358, 382,

386, 390.

Milwaukee Public Library, 1-2.

mimeograph machine, 609.

mini-indexes, 225-245, 561,

651-652.

minus sign, 644-645.

Mittag-Leffler, Magnus Costa

(= Gustaf), 620.

Mittag-Leffler, Signe nee

af Lindfors, 620.

MIX computer, 488, 512, 578-579,

610.

MMIX computer, 578-579.

modern fonts, 49-50.

Molyneux, Lindsay, 152.

Mona Lisa, 418, 420, 422, 425-427,

428-432, 446, 448, 456-459,

467-468.

money, 91, 609, 617, 622, 647.

Monophoto phototypesetter, 539.

Monotype Corporation, 247.

Monotype machine, 3-4, 7, 33, 75,

88, 135, 558, 606.

Monotype Modern Extended 8A

typeface, 292.

morphing, 299, 317, 357, 370.

Morris, William, 125.

Morrison, Emily Kramer, 555.

Morrison, Philip, 555.

Moses, Joel, 283.

Moss, Judith A., 63.

most pleasing curve, 39-42, 65, 323.

Moule, Horace Frederick, 151.

movies, 7, 482, 503, 557, 606-607,

640.

Index 677

Moxon, Joseph, 38, 63, 133-135,
153.

Mozart, Johann Chrysostom
Wolfgang Gottlieb
(= Theophilus = Amadeus),
304, 312.

Mujtaba, Mohamed Shahid, 503.
Mullender, Sape Jurrien, 195-196.
Muller, Johann Helfrich, 555-556.
multilingual features, 564-565,

590-591, 646.
multiple master fonts, 612,

635-636.
Murdock, Phoebe James, 63, 352,

365.
Murphy, Gerald B., 542.
Murray, Walter Allan, 539.
Museum of Fine Arts, Boston, 397.
music, 142, 303-306, 312, 481, 504.

N-ciphered text, 141.
National Science Foundation, 25,

60, 151, 282, 309, 336, 363,
446, 469, 479, 562, 617.

Nederlandstalige
Gebruikersgroep (NTG), 592,
625-626.

negative dots, 431.
negative stretchability, 114.
negative width, 30, 114-115, 500,

529.
Negroponte, Nicholas, 63.
Nes, Gerard van, 625.
Nesbitt, Alexander, 312.
Netherlands, 38, 342, 620, 625, 636,

652.
Netuka, Ivan, 601-602.
network, 106-107.
Neumann, John von (= Margittai

Neumann Janos), x, 485, 509,
577.

Neuwirth, Erich, 283-284.
New York Public Library, 562.

newspapers, 83, 145.
Newton, Isaac, 48, 345.
Nichol, R. T., 61.

Nicoud, Jean-Daniel, 154.
Nievergelt, Jiirg, 154.

Ninke, William Herbert, 447, 470.
Nobles, Ralph Albert, 542.

Noguni, Hiroshi A., 64.
Noland, Aaron, 152.

Norden, Hugo Svan, 312.

notation, 272-273, 643.
notching, 12, 328-329.

NP (nondeterministic
polynomial-time computable),
582-583.

NP-complete, 69.
Nroff, 136.

NTG (Nederlandstalige
Gebruikersgroep), 592,
625-626.

A^t'iS (New Typesetting System),
630.

numeral ‘O’, 4, 345-347, 350-351,
354, 364, 367.

numeral ‘2’, 320-322.
numeral ‘6’, 320-322, 325.

numerals, 46-47, 320-322, 355,
360-361, 368-369, 397,
406-407.

oldstyle, 247, 355, 360, 374, 587.

Object-oriented macros, 632.
oblique pen, 47, 50.
oblique stress, 25, 56, 295.

oblique type, see slanted type.
Occam (= Ockham), William of,

495.
Ocker, Wolfgang A., 63.

of-the-way function, 272-273.

Office of Naval Research, 60, 151,
282.

Olds, Arnold Elbert, 382, 386, 390.

678 Digital Typography

oldstyle numerals, 247, 355, 360,
374, 587.

oldftyle ‘s’, 128, 130, 134, 567.
oldstyle type, 525.
Ollendick, Gary B., 471.
Olsak, Petr, 615.
Omega (fi) system, 630-631, 634.
Oostrum, Pieter van, 628, 648.
Open Windows, 552.
operating systems, 388, 579, 622,

650.
Oppenheimer, Julius Robert, 344.
optical illusions, 295, 328-329, 380,

418, 432-433, 462, 611.
Optima typeface, 341, 540.
ordered dither, 416, 450-451, 455,

458, 460-461.
organs, 2, 34.
Origenes Admantius (= Origen),

129.
Orwell, George (= Blair, Eric

Arthur), 322.
Osborne, Stanley R., 382, 387, 390.
Osley, Arthur Sidney, 61.
Ossanna, Joseph Prank, Jr., 153.
output routines, 596-597.
overflow, 214, 431, 660; see also

arithmetic overflow,
overfull boxes, 108, 122, 214, 568,

587.
overshoot, 296, 298, 300, 302, 308.
P versus NP, 582-583.
Pacioli, Pra Luca, 37, 48, 63, 282.
Page, Ewan Stafford, 152.
page breaking, 33, 144, 594.
PAGE-1, 136.
PAGE-2, 136.

PAGE-3, 136, 152.

Painter, Charles, 343.
Palais, Richard Sheldon, 340, 348,

350, 352, 354, 543.
Palatine, Giovanbattista, 37, 48,

64, 248.

Pandora fonts, 636.
paragraph, 70, 137-138.
paragraph puzzle, 195-196.
parameter files, 397-398.
parameters, 49-51, 271, 290,

292-302, 306-308, 311, 313,
316-319, 331-337, 356-357,
372-373, 381, 612-613,
635-636.

\parfillskip, 73, 114.

Parisi, Paul A., 26, 64.
Park, Kwang-Chun, 382, 387, 390.
Parker, Michael Russell, 285, 309.
Parks, Herman D., 139, 153.
Pascal, Blaise, 110.
Pascal language, 96-97, 197,

388-389, 614, 639, 656-657.
passive nodes, 116.
Patashnik, Oren, 364, 367.
Paterson, Michael Stewart, 57, 59.
Pattis, Richard Eric, 539.
PC6 system, 136.
PDF (portable document format)

files, 612, 618.

Pecht, Geraldine, 575.
Peckham, Herbert Dean, 541.
penalty points, 31-33, 71, 75, 138.
Penguin printer at Xerox, 533, 535.
Pennington, Keith Samuel, 469,

470.
pens, simulated, 9-12, 46-47,

53-54, 65, 294-295, 300,
302-303, 316, 330, 356, 381.

Penta Systems International, 88.
Pepping, Simon, 652.
Perlis, Alan Jay, 271, 647.
Persian typesetting, 132, 175.
Pham, Tuan Ngoc, 382, 387.
Pharr, Clyde, 240.
Philip H of Spain, 130.
photocopying, 340, 359, 371, 592.
Photon machine, 34, 60.
Picasso, Pablo Ruiz y, 397, 414.

Index 679

Pierson, John, 153.
Pilenga, Anna, 540.
pimples, 54.
Piper, Watty (pseudonym for

Platt & Munk staff), 18.
Pistol, 392-393.
PK (packed font) files, 431, 550.

PL (property list) files, 248,

250-259.

plain TeX, 177-181, 368, 397,

615-616, 645.

Plantin, Christophe (= Plantijn,
Christoffel), 130-134, 151.

Plass, Michael Frederick, 59, 67,
142-143, 153-154, 505-506.

points (72.27 per inch), 72.
Polya, Gyorgy (= George), 19, 64.
polyglot Bibles, 127-132.
PostScript language, iv, 577-578,

612, 618, 635-636.
Pratt, Vaughan Ronald, 502, 661.
Pratt, William Kenneth, 471.
precedence, 532, 643.
prettyprinting, 95-98.
principle of optimality, 109.
Pringle, Alison M., 139, 153.
programming environments, 239,

651.
programming language, as,

235-236, 496, 648-649.
programming languages,

typesetting of, 95-98.
proofreading, 28.
Pryor, Roger Welton, 468, 471.
Psalm 23, 299.
Psalm 151, 174.
PSTricks, 581.
psychologically bad breaks, 88-91,

136.
PUB system, 505, 540, 542.

public domain, 560, 571-572, 606,

617, 647.

punchcutters, 316, 611.

punched cards, 555.
punctuation marks, 132-133, 395,

408-411.
hanging, 87.

Flldk, 391-414.
Pupin, Michael Idvorsky, 24.
QMS laserprinter, 389-390.
quadtree, 640.
Quick, Jonathan Horatio, 201-202.
quotation marks, 162-164, 174,

500, 525.
quotations, 381, 392-394, 560,

587-588.

Radical signs, 27-28, 591-592, 641.
ragged centered text, 95, 154.
ragged left margins, 99-101.
ragged right margins, 68, 83-85,

93-94, 99-101, 129, 154, 300,
376.

Rahtz, Sebastian Patrick Quintus,
581, 652.

Raichle, Bernd, 656.
Raitt, W. J., 542.
Raman, Thiruvilwamalai

Venkatraman, 584.
Ramanujan Iyengar, Srinivasa, 346.
Ramshaw, Lyle Harold, 59, 504.
randomization, 57-59, 286-287,

324-325, 391-396.
raster, 6, 34-35, 52-56, 307, 419,

449.
Raymond, Prangois H., 136, 151.
readability, 133, 292, 308, 371, 636.
reading a WEB, 197.
recipes, 177-180, 190-193.
recursion, 260-261, 461, 620.
Rees Carter, Lena Bernice,

534-537.
refereeing, 28.
reference counts, 658.
reflected English (rlailgnH), 158.
regular expressions, 649.

680 Digital Typography

Reiser, John Fredrick, 481.
Renz, Peter Lewis, 340, 352.
resolution, 6, 35, 53, 322-323, 426,

428, 462, 468.
Reviewer, Ann Arbor, 91.
rewards for errors, 560-561, 571,

575-577, 590, 658.
Rhyne, Theresa-Marie, 382.
Richardson, Roland George

Dwight, 24, 64.
Rider, Robin Elaine, 633.
Rieger, Georg Johann, 283-284.
Riesel, Hans Ivar, 545.
Riesenfeld, Richard Franklin, 63.
right-hand pages, 185.
right-to-left texts, 157-176.
\rightskip, 154.
rivers, 144.
Rivest, Ronald Linn, 581-582.
Roberts, Charles Sheldon, 455, 470.
Robson, Margaret Grace, 152.
Rodgers, David, 248.
Roetling, Paul Gordon, 466, 471.
Rogers, Bruce, 142, 154.
Rolleke, Heinz, 152.
roman numerals, 198, 207, 497,

659-660.
Rondthaler, Edward, 312.
Rosart, Jacques-Prangois, 347, 636.
Rotten, Johnny (stage name of

John Lydon), 393.
Roudabush, Glenn Earl, 64.
rounding, 52-56, 65, 475-476.
Royal Institute of Technology,

542-543, 545.
Roycroft, Thomas, 132-133.
RSA algorithm, 581-582.
Rubenstein, Arthur, 469, 471.
Ruggles, Lynn Elizabeth, 382, 387,

389-390.
ruler-and-compass constructions,

266.
Runoff, 136.

Rycko, Marek, 636.

Sagiya, Yoshiteru, 18.
SAIL computer, xiii, 389.
SAIL language, 320, 496, 614, 632.
Saito, Nobuo, 18.
Samet, Hanan, 139, 154.
samples of type:

AMS Euler, 361-363.
Concrete Roman, 370-371.
Font 1, 381-382.
fllOlC, 392-394, 400.

Samuel, Arthur Lee, 382, 387, 389.
Sanders, James A., 174.
sans-serif fonts, 49-50, 181-182,

249, 262, 297, 300, 322,
380-383, 540.

Sanskrit letters, 17, 285-287.
Schappler, John, 312.
Scherchen, Hermann, 312.
Scheutz, Edvard Georg Raphael,

555-557.
Scheutz, Pehr Georg, 555-557.
Schillinger, Joseph, 312.
Schone, Albert, 556.
Schopf, Rainer Maria, 656.
Schrod, Joachim, 650.
Schroeder, Manfred Robert, 450,

471.
Schupsky, Maureen, 575.
science and art, 316, 339-340, 344.
Scotch Roman typeface, 49.
script letters, 341-342, 347, 349,

354-355, 360-361, 368.
Sear Is, Craig Allen, 542.
Sedlak, Bedfich, 601.
selected pages, 183-184.
Serifo Bonifacio, San, 262.
serifs, 294, 296-297, 298, 308,

317-318, 342.
Serifu-San § /t), 262.
sERVice (Erv’s Service), v.
Sesame Street, 49.

Index 681

Sex Pistols, 393.
SGML (Standard Generalized

Markup Language), 644.
Shafarevich, Igor’ Rostislavovich,

544.

Shakespeare (= Shakspere),
William, 414.

Shamir, Adi, 581.
shaped texts, 110, 195-196, 521.
sharpening, 455.
Shaw, Alan Cary, 154.
Shaw, George Bernard, 125, 154.
Shawhan, Stanley Dean, 542.
sheared serifs, 296-297, 298, 300.
Shiblaq, Elizabeth Ann nee Porter,

534, 537.
shifted boxes, 214, 598-599.
Shiloach, Joseph {— Yossi), 539.
shortest path, 106-107.
shrinkability, 70-71, 76, 489, 514.
Shriver, A. Richard, 61.
sidebearings, 60, 310, 359.
Siefkes, Dirk, 59.
Siegel, David Rudolph (= New

Wave Dave), 358-359, 365,
382, 388, 390.

Simpson, Orenthal James (= The
Juice), 604.

simultaneous equations, 272-275,
283-284.

single-dot dithering, 421.
Sites, Richard Lee, 578.
sizes of type, 11, 51, 365.
skips, 71.
skyline model, 640-642.
slanted type, 50, 253, 297, 302,

317, 341-342, 375-376, 491,
515-516.

slide rules, 36.
Slimbach, Robert, 612.
small caps, 50, 247, 370, 397.
small lowercase, 50.
smart ligatures, 254, 565-568.

Smith, Cameron, 592, 594, 599.

Smith, John Daniel, 414.
Smith, Leland Clayton, 142.
smooth error diffusion, 463-469.
Smullyan, Raymond Merrill, 338.

Snow, Charles Percy, 316, 343.
Sofka, Michael, 582.
Sojka, Petr, 616, 618.
sorting, 237-238.

Southall, Richard Francis, 313,
327-329, 379-380, 389-390,
611.

spacing between letters, 60, 310,
359, see also letterspacing,

spacing in formulas, 620, 641-642,
644-645.

spacing near punctuation, 132-133.
Spade, Samuel, 392.
spanning columns, 659-660.
SPARCstation, 226, 284, 547.
Spivak, Michael David, 543, 615.
splines, 503.

cubic, 42-25, 56-57, 503-504.
mechanical, 57.
one-dimensional, 60.
two-dimensional, 60, 503.

Spragens, Alan, 382, 388, 390.
spreads, 227.
springs, 71.
Sproull, Robert Fletcher, 59.
square root of two, 297-298, 300,

302, 317-318.
square roots, typesetting of, 27-28,

591-592, 641, 660.

square serifs, 370.
squines, 503.
stability, 559, 563, 571-572, 606,

622, 628-630, 660-661.
Stallman, Richard Matthew, 651.
Stanford Artificial Intelligence

Laboratory, 8, 483, 504, 507,
606, 622.

682 Digital Typography

Stanford GraphBase, 226-228,
241-245, 456, 581.

Stanford University Archives, xiii,
18, 340, 632, 635.

Stanford University Library, 37,
151, 575, 610, 632-633.

Associates, 177, 502, 609-610.
Steele, Gny Lewis, Jr., 648.
Steinberg, Louis Ira, 446, 449-450,

470.
stem lines, 295, 300.
stereotype molds, 555-557.
stollen, 177-180.
Stone, Sumner Robert, 330-331,

333, 337, 338.
stonecutters, 18, 37.
stretchability, 70-71, 76, 93, 489,

514.
infinite, 30, 73, 98, 103-104, 490,

515.
structured programming, 613.
subroutines, 318, 324, 332, 381.
subscripts, 4, 21, 23, 27, 51, 365,

368, 377, 508, 530-532, 604,
620, 623, 642, 643.

subtotal-fit algorithm, 145-150.
Sullivan, Wayne Garrett, 656.
Sun Microsystems, Inc., xiii, 542,

553, 650.
SPARCstation, 226, 284, 547.
workstations, original, 388-390,

542.

superellipses, 297-298, 302, 328.
superscripts, 4, 21, 23, 27, 365, 368,

377, 508, 530-532, 620, 623.
Swanson, Ellen Esther, 64, 352.
Symbol font, 254-255.
symmetry, 55-56.

System Development Foundation,
336, 363, 446, 562.

Tables, typesetting of, 28, 33, 376,
492, 517, 556-557, 638.

Talmon, Shemaryahu, 174.
tangent directions, 41-42, 56, 266,

283-284.
TANGLE processor, 614-615.
TAOCP, 575, see The Art of

Computer Programming.
tapestry, 52.
Tarjan, Robert Endre, 481.
Tate, John, 544.
Taubert, Karl Heinz, 312.
Taylor, Jean Ellen, 59.
Taylor, Philip, 656.
teaching, 197, 263, 284, 319,

341, 379-390, 415, 481, 561,
603-604.

teardrop shapes, 14-15, 324, 347.
technical illustrations, 538,

580-581, 634.
Teletype machines, 638.
television cameras, 8, 319, 504,

606-607, 620.
Tesler, Lawrence Gordon, 540.
TeJC, iv, x-xii, 15-17, 27-33, 88,

121-122, 154-155, 339, 415,
563-572.

data structures, 198, 208, 216,
505-506.

examples of input, 178, 183-193,
235-236, 416-417, 422-423,
429, 578, 641, 659-661.

first drafts, 481-532.
history, 533-545, 557-559,

609-611, 618-620, 621-622,
632, 648-649, 655-657.

programming features, 235-236,
496, 648-649.

the logo, 181-182, 653.
the name, 173, 483, 506, 560,

572, 635.

the program, 166-173, 216-223,
225, 598-599, 617-618,
622-623, 628-630, 633-634,
655-662.

Index 683

TEX, 482-483.

TeX Users Group (TUG), xiii, 185,
563, 573, 589, 600, 655.

TeX-XoT, 164-174.

T^^hax newsgroup, 247.
TeXX, 205, 217-221.

TFM (TeX font metric) files, 550.
Thanh, Han The, 618, 634.

Thanksgiving Cranberry Relish,
190, 193.

The Art of Computer

Programming, 3, 7, 192,
483, 506, 562, 575-580, 606,
638, 641, see also Volume 1,
Volume 2, Volume 3, Volume 4.

Thiele, Christina Anna Louisa, 573,
600, 601, 625.

thinking, 291.

This can’t happen, 210, 659.
Thisted, Ronald Aaron, 363.

Thomas Didymus, Saint, 52.
Thompson, Christopher Edward,

589, 656.
ties, 89-91.

tight lines, 77, 112, 122, 129,
133-134.

tight-fit algorithm, 139.

tilde accent, 47, 129-130.
Time magazine, 139-142, 616.
Times Italic typeface, 25, 341.

Times Roman typeface, 23, 25-26,
47, 182, 248, 254-255, 341, 545.

Tobin, Georgia Kay Mase, 338.
Tokusue, Nori, 382, 388, 390.

tools, 637-638.
Torniello da Novara, Francesco,

37-38, 48, 63, 264-271,
282-283.

torture tests, 213, 572.

Tory, Geofroy, 38, 64.
total-fit algorithm, 79-83, 97,

104-122,126-127.

Trabb Pardo, Luis Isidoro, 89-90,
614.

track kerning, 249.
Ti-acy, Walter, 312.
Traetteberg, Gunvor, 62.
transfer function, 420, 438.
TRAP test, 572.
TRIP test, 213, 572.
troff, 136, 195-196, 473, 482, 540,

610, 619, 631, 639-640.
TrueType, 635.
TUG (TeiX Users Group), xiii, 185,

563, 573, 589, 600, 655.
Tuma, Kathryn, 541.
Tuma, Nancy Brandon, 541.
Turing, Alan Mathison, 587-588.

machine, 583, 617, 648.
Tuttle, Joey, 382, 390.
TVeditor, 483-484, 507.
TWILL, 226.
Twombly, Carol, 358, 612.
type specimens:

AMS Euler, 361-363.
Concrete Roman, 370-371.
Font 1, 381-382.
PllHK, 392-394, 400.

typesetting of mathematics, 20-26,
616-617, 620.

alphabets for, 344-347, 367-368.
hand tuning, 641-642.
languages for, 25-27, 88, 539.

typewriter type, 4, 11-13, 294.
typing, 4, 28, 88, 91.

Uff da, 208-209.
Ullman, Jeffrey David, 60, 540-541.
Ullman, Peter Mitchell, 541.
UNDOC processor, 614.
Unger, Gerard, 312, 391, 398, 612,

652.
Unger, Marjan, 391, 396, 398, 652.
Unicode, 577-578, 585, 631, see

also 16-bit characters.

684 Digital Typography

units (ems/18), 72, 75.
Univers typeface, 182, 249, 310,

545.
Universidad Nacional Autonoma de

Mexico, 544.
University of Wisconsin Press, 543.

UNIX, 183, 388, 610, 649, 650.

unjustified type, 68, 83-85, 93-94.

unsolvable problems, 583.

Updike, Daniel Berkeley, 381.
upright mathematics, 341-342, 350,

359, 361, 367, 374, 623-624.
user interface, 239.

V-Kernel operating system, 388.
valentine, 316-317, 323.
van Emde Boas, Peter, 89.
van Krimpen, Jan, 342, 365, 623.
van Leeuwen, Marcus Aurelius

Augustinus, 629, 631, 646,
649-651.

van Nes, Gerard, 625.
van Oostrum, Pieter, 628, 648.
Van Wyk, Christopher John,

473-474, 480.
van der Laan, Cornelis Gerardus

Kees), 631, 633, 642.
Vargo, Paul Michael, 283, 311.
Varian printer, 543.
Varityper machine, 25, 609.
Vatican Library, 37-38.
VAX computer, 389-390.

Veblen, Oswald, 24.
Velthuis, Frans Jozef, 287.
Versatec printer, 540.
version numbers, 571-572, 590-591.
Vesely, Jin (= George), 620.
VF (virtual font) files, 249-252, 550.
VFtoVP processor, 248.
Vinci, Leonardo da, ix, 158, 456,

see also Mona Lisa.
Virgil (= Publius Vergilius Maro),

240.

virtual fonts, 247-261, 550.

Vishny, Paul Harvey, 543.
Vollard, Ambroise, 414.
Volume 1, 3-4, 521, 610.
Volume 2, 3-5, 12, 35, 89, 111,

123-125, 287, 311, 321-322,
481-482, 484-488, 508-512,
539, 557-558, 619, 622.

Volume 3, 5.
Volume 4, 7, 481-482, 558, 575,

578-579.
von Neumann, John (= Margittai

Neumann Janos), x, 485, 509,
577.

VPL (virtual property list) files,
248-261.

VPtoVF processor, 248.

Waits operating system, 622.

Walker, Gordon Loftis, 59.
Wall, David Wayne, 538-539.
Wallis, John, 344, 365, 577.
Walsh, John J., 470.
Walton, Brian, 154.
Wang, Amy Ming-te, 541.
Wang, Kai Yuen, 503.
Wang, Michael Ming-kai, 541.
Wang, Paul Shyh-Horng, 577.
Wardrop, James, 64.
Warnock, John Edward, 8, 608.
Waser, Shlomo, 541.
WEAVE processor, 226, 614-615.

WEB system, 225-226, 560-561, 614,

656.

example programs, 166-173,
216-222, 250-261.

Weening, Joseph Simon, 226, 240.
Weierstrass, Karl Theodor

Wilhelm, 362, 364, 577.
weight of type, 262, 342, 371.
Weisenberg, Michael, 390.
whatsit nodes, 169-170, 565, 634.
Whidden, Samuel Blackwell, 352.

Index 685

Wick, Karel, 64.

widow lines, 33, 112, 490, 498, 527.

width of letters, 75, 604.

Wiederhold, Giovanni Corrado

Melchiore (= Gio) 505, 540.

Wiederhold, Voy Yat nee Jew, 505.

Wiener, Philip Paul, 152.

Wiles, Andrew John, 574-575, 577,

583.

Williams, Ed, 382, 383.

Williams, Ruth Jeannette, 541.

Williamson, Paul Roger, 542.

winding numbers, 476.

Winkler, Phyllis Astrid nee Benson,

xiii.

Winograd, Terry Allen, 540, 619.

Winston, Patrick Henry, 544, 558.

Wirth, Niklaus Emil, 152, 505.

Wiseman, Neil Ernest, 150, 310,

577.

Wolder, David, 154.

Wolf, Hans, 59, 562, 620.

Wolf, Kurt Bernardo, 544.

Woolf, William Blauvelt, 352.

word processing, 26, 145.

worst case of dot diffusion, 454.

worst case of smooth error

diffusion, 465-466.

Wreden, William Paul, 506.

Wright, Margaret Ann Hagen, 539.

Wright, William, 174-175.

writing (communicating), 584-585.

Wujastyk, Dominik, 18.

X-height, 253, 293, 298-300, 302.

xerography, 340, 359, 371, 592.

Xerox Advanced Systems

Development group, 533.

Xerox Dover printer, 544.

Xerox Electro-Optical Systems,

533.

Xerox font codes, 256-257.

Xerox Graphics Printer (XGP), 6,

12, 496, 521, 533-534, 536, 538.

Xerox Palo Alto Research Genter

(PARC), 8, 59, 282, 606, 608.

Ximenes (= Jimenez) de Cisneros,

Francisco, 128, 152.

Yadin, Yigael, 174.

Yao, Andrew Chi-Chih, 577-578.

Zabala Salelles, Ignacio Andres,

614.

Zapf, Hermann, xi, 36, 64, 309, 312,

328, 330, 339-365, 367-369,

374-375, 562, 610, 612, 624.

Zlatuska, Jiff, 618.

iVfilr** I iifc

DATE DUE
DATE DE RETOUR

CARR MCLEAN 38-296

NT UN I VERS TY

64 0458454 6

K

«Y<

