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OU ou may have watched hundreds of epi¬ 

sodes of The Simpsons (and its sister show, 

Futurama) without ever realizing that clev¬ 

erly embedded in many plots are subtle 

references to mathematics, ranging from 

well-known equations to cutting-edge theo¬ 

rems and conjectures. That they exist, Simon 

Singh reveals, underscores the brilliance of 

the shows’ writers, many of whom have ad¬ 

vanced degrees in mathematics in addition to 

their unparalleled senses of humor. 

While recounting memorable episodes 

such as “Bart the Genius” and “Homer3,” 

Singh weaves in mathematical stories that ex¬ 

plore everything from TT to Mersenne primes, 

from Euler’s equation to the unsolved riddle 

of P v. NP, from perfect numbers to narcissis¬ 

tic numbers, from infinity to even bigger infin¬ 

ities—and much more. Along the way, Singh 

meets members of the brilliant writing team 

behind The Simpsons—among them David 

X. Cohen, Al Jean, Jeff Westbrook, and Mike 

Reiss—whose love of arcane mathematics 

becomes clear as they reveal the stories be¬ 

hind the episodes. 

With wit and clarity, displaying a true 

fan’s zeal, and replete with images from the 

shows, photographs of the writers, and dia¬ 

grams and proofs, The Simpsons and Their 

Mathematical Secrets offers an entirely new 

insight into the most successful show in tele¬ 

vision history. 
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CHAPTER 0 

TH6 TRUTH ABOUT 

TH& 

Wmmmm 

he Simpsons is arguably the most successful television show in 

history. Inevitably, its global appeal and enduring popularity 

have prompted academics (who tend to overanalyze everything) to 

identify the subtext of the series and to ask some profound questions. 

What are the hidden meanings of Homer’s utterances about dough¬ 

nuts and Duff beer? Do the spats between Bart and Lisa symbolize 

something beyond mere sibling bickering? Are the writers of The 

Simpsons using the residents of Springfield to explore political or so¬ 

cial controversies? 

One group of intellectuals authored a text arguing that The Simp¬ 

sons essentially provides viewers with a weekly philosophy lecture. The 

Simpsons and Philosophy claims to identify clear links between various 

episodes and the issues raised by history’s great thinkers, including 

Aristotle, Sartre, and Kant. Chapters include “Marge’s Moral Motiva¬ 

tion,” “The Moral World of the Simpson Family: A Kantian Perspec¬ 

tive,” and “Thus Spake Bart: On Nietzsche and the Virtues of Being 

Bad.” 

Alternatively, The Psychology of The Simpsons argues that Spring¬ 

field’s most famous family can help us grasp a deeper understanding 

of the human mind. This collection of essays uses examples from the 

series to explore issues such as addiction, lobotomies, and evolution¬ 

ary psychology. 

By contrast, Mark I. Pinsky’s The Gospel According to The Simpsons 

ignores philosophy and psychology, and focuses on the spiritual sig¬ 

nificance of The Simpsons. This is surprising, because many characters 

i 
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appear to be unsympathetic toward the tenets of religion. Regular 

viewers will be aware that Homer consistently resists pressure to at¬ 

tend church each Sunday, as demonstrated in “Homer the Heretic” 

(1992): “What’s the big deal about going to some building every Sun¬ 

day? I mean, isn’t God everywhere? . . . And what if we’ve picked the 

wrong religion? Every week we’re just making God madder and mad¬ 

der?” Nevertheless, Pinsky argues that the adventures of the Simpsons 

frequently illustrate the importance of many of the most cherished 

Christian values. Many vicars and priests agree, and several have 

based sermons on the moral dilemmas that face the Simpson family. 

Even President George H. W. Bush claimed to have exposed the 

real message behind The Simpsons. He believed that the series was 

designed to display the worst possible social values. This motivated 

the most memorable sound bite from his speech at the 1992 Republi¬ 

can National Convention, which was a major part of his reelection 

campaign: “We are going to keep on trying to strengthen the Ameri¬ 

can family to make American families a lot more like the Waltons and 

a lot less like the Simpsons.” 

The writers of The Simpsons responded a few days later. The next 

episode to air was a rerun of “Stark Raving Dad” (1991), except the 

opening had been edited to include an additional scene showing the 

family watching President Bush as he delivers his speech about the 

Waltons and the Simpsons. Homer is too stunned to speak, but Bart 

takes on the president: “Hey, we’re just like the Waltons. We’re pray¬ 

ing for an end to the Depression, too.” 

However, all these philosophers, psychologists, theologians, and 

politicians have missed the primary subtext of the world’s favorite TV 

series. The truth is that many of the writers of The Simpsons are deeply 

in love with numbers, and their ultimate desire is to drip-feed morsels 

of mathematics into the subconscious minds of viewers. In other 

words, for more than two decades we have been tricked into watching 

an animated introduction to everything from calculus to geometry, 

from 7t to game theory, and from infinitesimals to infinity. 

“Homer3,” the third segment in the three-part episode “Treehouse 
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of Horror VI” (1995) demonstrates the level of mathematics that ap¬ 

pears in The Simpsons. In one sequence alone, there is a tribute to 

history’s most elegant equation, a joke that only works if you know 

about Fermat’s last theorem, and a reference to a $1 million mathe¬ 

matics problem. All of this is embedded within a narrative that ex¬ 

plores the complexities of higher-dimensional geometry. 

“Homer3” was written by David S. Cohen, who has an undergrad¬ 

uate degree in physics and a master’s degree in computer science. 

These are very impressive qualifications, particularly for someone 

working in the television industry, but many of Cohen’s colleagues on 

the writing team of The Simpsons have equally remarkable back¬ 

grounds in mathematical subjects. In fact, some have PhDs and have 

even held senior research positions in academia and industry. We will 

meet Cohen and his colleagues during the course of the book. In the 

meantime, here is a list of degrees for five of the nerdiest writers: 

J. Stewart Burns BS Mathematics, Harvard University 

MS Mathematics, UC Berkeley 

David S. Cohen BS Physics, Harvard University 

MS Computer Science, UC Berkeley 

Al Jean BS Mathematics, Harvard University 

Ken Keeler BS Applied Mathematics, Harvard University 

PhD Applied Mathematics, Harvard University 

Jeff Westbrook BS Physics, Harvard University 

PhD Computer Science, Princeton University 

In 1999, some of these writers helped create a sister series titled 

Futurama, which is set one thousand years in the future. Not surpris¬ 

ingly, this science fiction scenario allowed them to explore mathemat¬ 

ical themes in even greater depth, so the latter chapters of this book 
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are dedicated to the mathematics of Futurama. This includes the first 

piece of genuinely innovative and bespoke mathematics to have been 

created solely for the purposes of a comedy storyline. 

Before reaching those heady heights, I will endeavour to prove that 

nerds and geeks* paved the way for Futurama to become the ultimate 

TV vehicle for pop culture mathematics, with mentions of theorems, 

conjectures, and equations peppered throughout the episodes. How¬ 

ever, I will not document every exhibit in the Simpsonian Museum of 

Mathematics, as this would mean including far more than one hun¬ 

dred separate examples. Instead, I will focus on a handful of ideas in 

each chapter, ranging from some of the greatest breakthroughs in his¬ 

tory to some of today’s thorniest unsolved problems. In each case, you 

will see how the writers have used the characters to explore the uni¬ 

verse of numbers. 

Homer will introduce us to the Scarecrow theorem while wearing 

Henry Kissinger’s glasses, Lisa will show us how an analysis of statis¬ 

tics can help steer baseball teams to victory, Professor Frink will ex¬ 

plain the mind-bending implications of his Frinkahedron, and the 

rest of Springfield’s residents will cover everything from Mersenne 

primes to the googolplex. 

Welcome to The Simpsons and Their Mathematical Secrets. 

Be there or be a regular quadrilateral. 

* In 1951, Newsweek reported that nerd was a derogatory term gaining popularity in 

Detroit. In the 1960s, students at Rensselaer Polytechnic Institute preferred the 

spelling knurd, which was drunk spelled backward—the implication being that 

knurds are the opposite of party animals. However, with the emergence of nerd pride 

over the past decade, the term is now embraced by mathematicians and others of 

their ilk. Similarly, geek is a label to be admired, as demonstrated by the popularity 

of geek chic and a headline in Time magazine in 2005: “The Geek Shall Inherit the 

Earth.” 
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BART THE eemus 
*•*#»•*»♦*♦•**« 

n 1985, the cult cartoonist Matt Groening was invited to a meeting 

with James L. Brooks, a legendary director, producer, and screen¬ 

writer who had been responsible for classic television shows such as 

The Mary Tyler Moore Show, Lou Grant, and Taxi. Just a couple of 

years earlier, Brooks had also won three Academy Awards as producer, 

director, and writer of Terms of Endearment. 

Brooks wanted to talk to Groening about contributing to The 

Tracey Ullman Show, which would go on to become one of the first 

big hits on the newly formed Fox network. The show consisted of a 

series of comedy sketches starring the British entertainer Tracey Ull¬ 

man, and the producers wanted some animated shorts to act as bridges 

between these sketches. Their first choice for these so-called bumpers 

was an animated version of Groening’s Life in Hell, a comic strip fea¬ 

turing a depressed rabbit named Binky. 

While sitting in reception, waiting to meet Brooks, Groening con¬ 

sidered the offer he was about to receive. It would be his big break, but 

Groening’s gut instinct was to decline the offer, because Life in Hell 

had launched his career and carried him through some tough times. 

Selling Binky to Fox seemed like a betrayal of the cartoon rabbit. On 

the other hand, how could he turn down such a huge opportunity? At 

that moment, outside Brooks’s office, Groening realized that the only 

way to resolve his dilemma would be to create some characters to offer 

in place of Binky. According to the mythology, he invented the entire 

concept of The Simpsons in a matter of minutes. 

Brooks liked the idea, so Groening created dozens of animated 

shorts starring the members of the Simpson family. These were sprin¬ 

kled through three seasons of The Tracey Ullman Show, with each 

5 
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animation lasting just one or two minutes. Those brief appearances 

might have marked the beginning and the end of The Simpsons, ex¬ 

cept that the production team began to notice something strange. 

Ullman often relied on extraordinary makeup and prosthetics to 

create her characters. This was problematic, because her performances 

were filmed in front of a live audience. To keep the audience enter¬ 

tained while Ullman prepared, someone suggested patching together 

and playing out some of the animations featuring the Simpsons. 

These animations had already been broadcast, so it was merely an op¬ 

portunistic recycling of old material. To everyone’s surprise, the audi¬ 

ences seemed to enjoy the extended animation sequences as much as 

the live sketches. 

Greening and Brooks began to wonder if the antics of Homer, 

Marge, and their offspring could possibly sustain a full-length anima¬ 

tion, and soon they teamed up with writer Sam Simon to work on a 

Christmas special. Their hunch was right. “Simpsons Roasting on an 

Open Fire” was broadcast on December 17, 1989, and was a massive 

success, both in terms of audience figures and with the critics. 

This special was followed one month later by “Bart the Genius.” 

This was the first genuine episode of The Simpsons, inasmuch as it 

premiered the famous trademark opening sequence and included the 

debut of Bart’s notorious catchphrase “Eat my shorts.” Most notewor¬ 

thy of all, “Bart the Genius” contains a serious dose of mathematics. 

In many ways, this episode set the tone for what was to follow over the 

next two decades, namely a relentless series of numerical references 

and nods to geometry that would earn The Simpsons a special place in 

the hearts of mathematicians. 

• • • 

In hindsight, the mathematical undercurrent in The Simpsons was ob¬ 

vious from the start. In the first scene of “Bart the Genius,” viewers 

catch a glimpse of the most famous mathematical equation in the 

history of science. 

The episode begins with a scene in which Maggie is building a 

tower out of her alphabet blocks. After placing a sixth block on top, 
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she stares at the stack of letters. The doomed-to-be-eternally-one- 

year-old scratches her head, sucks her pacifier, and admires her cre¬ 

ation: EMCSQU. Unable to represent an equals sign and lacking any 

numbered blocks, this was the closest that Maggie could get to repre¬ 

senting Einstein’s famous scientific equation E— me2. 

Some would argue that mathematics harnessed for the glory of sci¬ 

ence is somehow second-class mathematics, but for these purists there 

are other treats in store as the plot of “Bart the Genius” unfolds. 

While Maggie is building E = me2 with her toy blocks, we also see 

Homer, Marge, and Lisa playing Scrabble with Bart. He triumphantly 

places the letters KWYJIBO on the board. This word, kwyjibo, is not 

found in any dictionary, so Homer challenges Bart, who gets revenge 

by defining kwyjibo as “a big, dumb, balding North American ape, 

with no chin . . .” 

During this somewhat bad-tempered Scrabble game, Lisa reminds 

Bart that tomorrow he has an aptitude test at school. So, after the 

kwyjibo fiasco, the story shifts to Springfield Elementary School and 

Bart’s test. The first question that faces him is a classic (and, frankly, 

rather tedious) mathematics problem. It concerns two trains leaving 

Sante Fe and Phoenix, each one traveling at different speeds and with 

different numbers of passengers, who seem to get on and off in odd 

and confusing groups. Bart is baffled and decides to cheat by stealing 

the answer sheet belonging to Martin Prince, the class dweeb. 

Bart’s plan not only works, it works so well that he is whisked into 

Principal Skinner’s office for a meeting with Dr. Pryor, the school 

psychologist. Thanks to his skulduggery, Bart has a score that indi¬ 

cates an IQ of 216, and Dr. Pryor wonders if he has found a child 

prodigy. His suspicions are confirmed when he asks Bart if he finds 

lessons boring and frustrating. Bart gives the expected answer, but for 

all the wrong reasons. 

Dr. Pryor persuades Homer and Marge to enroll Bart at the En¬ 

riched Learning Center for Gifted Children, which inevitably turns 

into a nightmarish experience. During the first lunch break, Bart’s 

classmates show off their intellects by offering him all manner of deals 

couched in mathematical and scientific terms. One student makes the 
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following offer: “Tell you what, Bart, I’ll trade you the weight of a 

bowling ball on the eighth moon of Jupiter from my lunch for the 

weight of a feather on the second moon of Neptune from your lunch.” 

Before Bart can decipher the implications of Neptunian moons 

and Jovian bowling balls, another student makes a fresh and equally 

confusing offer: “I’ll trade you one thousand picoliters of my milk for 

four gills of yours.” It is yet another pointless puzzle, merely designed 

to belittle the newbie. 

The next day, Bart’s mood deteriorates even further when he realizes 

that the first lesson is mathematics. The teacher gives her students a 

problem, and it is at this point that we encounter the first example of 

an overt mathematical joke in The Simpsons. While at the board, the 

teacher writes up an equation and says: “So y equals r cubed over 

three, and if you determine the rate of change in this curve correctly, 

I think you will be pleasantly surprised.” 

There is a short pause before all the students—except one—work 

out the answer and begin to laugh. The teacher tries to help Bart 

amid the guffaws of his classmates by writing a couple of hints on the 

board. Eventually, she writes down the solution to the problem. Bart 

is still perplexed, so the teacher turns to him and says: “Don’t you get 

it, Bart? Derivative dy equals three rsquared drawer: three, or rsquared 

dr, or r dr r.” 

The teacher’s explanation is displayed in the sketch opposite. How¬ 

ever, even with this visual aid, I suspect that you may be as bewildered 

as Bart, in which case it might help to focus on the final line on the 

board. This line (r dr r) is not only the answer to the problem, but also 

the supposed punch line. This prompts two questions; why is r dr r 

funny and why is it the answer to the mathematics problem? 

The class laughs because r dr r sounds like har-de-har-har, an ex¬ 

pression that has been used to indicate sarcastic laughter in reaction 

to a bad joke. The har-de-har-har phrase was popularized by Jackie 

Gleason, who played Ralph Kramden in the classic 1950s TV sitcom 

The Honeymooners. Then, in the 1960s, the phrase became even more 

popular when the Hanna-Barbera animation studio created a cartoon 

character named Hardy Har Har. This pessimistic hyena with a pork- 
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When the teacher poses a calculus problem in "Bart the Genius," she unhelpfully 

uses an unconventional layout and inconsistent notation, and she also makes an 

error. Nevertheless, she still obtains the correct answer. This sketch reproduces the 

content of the teacher's board, except that here the calculus problem is laid out 

more clearly. The important equations are the six lines below the circle. 

pie hat starred alongside Lippy the Lion in dozens of animations. 

So, the punch line involves a pun based on r dr r, but why is this 

the answer to the mathematics question? The teacher has posed a 

problem that relates to a notoriously nasty area of mathematics known 

as calculus. This is a topic that strikes terror into the hearts of many 

teenagers and triggers nightmarish flashbacks in some older people. 

As the teacher explains when she sets out the problem, the goal of 

calculus is to “determine the rate of change” of one quantity, in this 

case y, with respect to another quantity, r. 

If you have some recollection of the rules of calculus,* then you will 

be able to follow the logic of the joke fairly easily and arrive at the 

* Readers with a rusty knowledge of calculus may need to be reminded of the 

following general rule: The derivative ofy= r" is dyldr = n X rn~l. Readers with no 

knowledge of calculus can be reassured that their blind spot will not hinder their 

understanding of the rest of the chapter. 
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correct answer of r dr r. If you are one of those who is terrified of cal¬ 

culus or who suffers flashbacks, don’t worry, for now is not the time 

to embark on a long-winded lecture on the nitty-gritty of calculus. 

Instead, the more pressing issue is why were the writers of The Simp¬ 

sons putting complicated mathematics in their sitcom? 

The core team behind the first season of The Simpsons consisted of 

eight of Los Angeles’s smartest comedy writers. They were keen to cre¬ 

ate scripts that included references to sophisticated concepts from all 

areas of human knowledge, and calculus was particularly high on the 

agenda because two of the writers were devotees of mathematics. These 

two nerds were responsible for the r dr r joke in particular and deserve 

credit more generally for making The Simpsons a vehicle for mathemat¬ 

ical tomfoolery. 

The first nerd was Mike Reiss, whom I met when I spent a few days 

with the writers of The Simpsons. Just like Maggie, he displayed his 

mathematical talents while playing with building blocks as a toddler. 

He distinctly recalls a moment when he observed that the blocks 

obeyed a binary law, inasmuch as two of the smallest blocks were the 

same size as one medium block, while two of the medium blocks were 

the same size as one large block, and two of the large blocks equaled 

one very large block. 

As soon as he could read, Reiss’s mathematical interest matured 

into a love of puzzles. In particular, he was captivated by the books of 

Martin Gardner, the twentieth century’s greatest recreational mathe¬ 

matician. Gardner’s playful approach to puzzles appealed to both 

young and old, or as one of his friends once put it: “Martin Gardner 

has turned thousands of children into mathematicians, and thou¬ 

sands of mathematicians into children.” 

Reiss began with The Unexpected Hanging and Other Mathematical 

Diversions and then spent all his pocket money on other puzzle books 

by Gardner. At the age of eight, he wrote to Gardner explaining that 

he was a fan and pointing out a neat observation concerning palin¬ 

dromic square numbers, namely that they tend to have an odd number 

of digits. Palindromic square numbers are simply square numbers that 

are the same when written back to front, such as 121 (112) or 5,221,225 
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(2,2852). The eight-year-old was absolutely correct, because there are 

thirty-five such numbers less than 100 billion, and only one of 

them—698,896 (8362)—has an even number of digits. 

Reiss reluctantly admitted to me that his letter to Gardner also 

contained a question. He asked if there was a finite or infinite supply 

of prime numbers. He now looks back on the question with some em¬ 

barrassment: “I can visualize the letter so perfectly, and that’s a real 

stupid, naive question.” 

Most people would consider that Reiss is being rather harsh on his 

eight-year-old self, because the answer is not at all obvious. The ques¬ 

tion is based on the fact that each whole number has divisors, which 

are those numbers that will divide into it without any remainder. A 

prime number is notable because it has no divisors other than 1 and 

the number itself (so-called trivial divisors). Thus, 13 is a prime num¬ 

ber because it has no non-trivial divisors, but 14 is not, because it can 

be divided by 2 and 7. All numbers are either prime (e.g., 101) or can 

be broken down into prime divisors (e.g., 102 — 2x 3 X 17). Between 

0 and 100 there are 25 prifiie numbers, but between 100 and 200 

there are only 21 primes, and between 200 and 300 there are only 16 

primes, so they certainly seem to become rarer. However, do we even¬ 

tually run out of primes, or is the list of primes endless? 

Gardner was happy to point Reiss toward a proof by the ancient 

Greek scholar Euclid.* Working in Alexandria around 300 b.c., Eu¬ 

clid was the first mathematician to prove that there existed an infinity 

of primes. Perversely, he achieved this result by assuming the exact 

opposite and employing a technique known as proof by contradiction 

or reductio ad absurdum. One way to interpret Euclid’s approach to 

the problem is to begin with the following bold assertion: 

Assume that the number of primes is finite 

and all these primes have been compiled into a list: 

Pv Pi' Pv •••>Pn- 

* Incidentally, and coincidentally, Gardner was living on Euclid Avenue when he 

replied that Euclid had the answer to Reiss’s question. 
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We can explore the consequences of this statement by multiplying 

all the primes on the list and then adding 1, which creates a new num¬ 

ber: TV = px X p2 X p3 X ••• X pn + 1. This new number TV is either a 

prime number or not a prime number, but either way it contradicts 

Euclid’s initial assertion: 

(a) If TV is a prime number, then it is missing from the original 

list. Therefore, the claim to have a complete list is clearly false. 

(b) If TV is not a prime number, then it must have prime divisors. 

These divisors must be new primes, because the primes on the 

original list will leave a remainder of 1 when divided into TV. 

Therefore, again, the claim to have a complete list is clearly 

false. 

In short, Euclid’s original assertion is false—his finite list does not 

contain all the prime numbers. Moreover, any attempt to repair the 

claim by adding some new prime numbers to the list is doomed to 

failure, because the entire argument can be repeated to show that the 

enhanced list of primes is still incomplete. This argument proves that 

any list of prime numbers is incomplete, which implies that there 

must be an infinity of primes. 

As the years passed, Reiss developed into a very accomplished 

young mathematician and earned a place on the state of Connecticut 

mathematics team. At the same time, he was developing a flair for 

comedy writing and was even receiving some recognition for his tal¬ 

ent. For example, when his dentist boasted to him about how he al¬ 

ways submitted witty, but unsuccessful, entries for New York 

magazine’s weekly humor competition, young Michael trumped him 

by announcing that he had also entered and been rewarded for his 

efforts. “I would win it a lot as a kid,” said Reiss. “I didn’t realize I was 

competing against professional comedy writers. I found out later all 

the Tonight Show writers would be entering the contest and here I was, 

aged ten, and I would win it, too.” 
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Mike Reiss (second in the back row) on the 1975 Bristol Eastern High School 

Mathematics Team. As well as Mr. Kozikowski, who coached the team and 

appears in the photograph, Reiss had many other mathematical mentors. 

For example, Reiss's geometry teacher was Mr. Bergstromm. In an episode 

titled "Lisa's Substitute" (1991), Reiss showed his gratitude by naming Lisa's 

inspirational substitute teacher Mr. Bergstromm. 

When Reiss was offered a place at Harvard University, he had to 

decide between majoring in mathematics or English. In the end, his 

desire to be a writer eclipsed his passion for numbers. Nevertheless, 

his mathematical mind always remained active and he never forgot 

his first love. 

The other gifted mathematician who helped give birth to The 

Simpsons went through a similar set of childhood experiences. Al Jean 

was born in Detroit in 1961, a year after Mike Reiss. He shared Reiss’s 

love of Martin Gardner’s puzzles and was also a mathlete. In 1977, in 

a Michigan mathematics competition, he tied for third place out of 

twenty thousand students from across the state. He even attended 

hothousing summer camps at Lawrence Technological University and 

the University of Chicago. These camps had been established during 

the cold war in an effort to create mathematical minds that could 



14 ■ S'AIOrt 6'M6H 

rival those emerging from the Soviet network of elite mathematics 

training programs. As a result of this intense training, Jean was ac¬ 

cepted to study mathematics at Harvard when he was only sixteen 

years old. 

Once at Harvard, Jean was torn between his mathematical stud¬ 

ies and a newly discovered interest in comedy writing. He was even¬ 

tually accepted as a member of the Harvard Lampoon., the world’s 

longest-running humor magazine, which meant he spent less time 

thinking about mathematical proofs and more time thinking up 

jokes. 

Reiss was also a writer for the Harvard Lampoon, which had be¬ 

come famous across America after it published Bored of the Rings in 

1969, a parody of Tolkien’s classic. This was followed in the 1970s 

by a live theater show called Lemmings, and then a radio show titled 

The National Lampoon Radio Hour. Reiss and Jean forged a friend¬ 

ship and writing partnership at the Harvard Lampoon, and it was 

this college experience that gave them the confidence to start ap¬ 

plying for jobs as TV comedy writers when they eventually gradu¬ 

ated. 

Their big break came when they were hired as writers on The To¬ 

night Show, where their innate nerdiness was much appreciated. As 

well as being an amateur astronomer, host Johnny Carson was a part- 

time debunker of pseudoscience, who from time to time donated 

$100,000 to the James Randi Educational Foundation, an organiza¬ 

tion dedicated to rational thinking. Similarly, when Reiss and Jean 

left The Tonight Show and joined the writing team for Lt’s Garry Shan- 

dlings Show, they discovered that Shandling himself had majored in 

electrical engineering at the University of Arizona before dropping 

out to pursue a career in comedy. 

Then, when Reiss and Jean joined the writing team for the first 

season of The Simpsons, they felt that this was the ideal opportunity 

to express their love of mathematics. The Simpsons was not just an 

entirely new show, but also an entirely new format, namely a prime¬ 

time animated sitcom aimed at all ages. The usual rules did not apply, 
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A photograph of the mathematics team from the 1977 Roeper School yearbook. 

The caption identifies Al Jean as the third student in the back row and notes 

that he won gold and third place in the Michigan state competition. Jean's most 

influential teacher was the late Professor Arnold Ross, who ran the University of 

Chicago Summer program. 

which perhaps explains why Reiss and Jean were allowed—and in¬ 

deed encouraged—to nerdify episodes whenever possible. 

In the first and second seasons of The Simpsons, Reiss and Jean were 

key members of the writing team, which enabled them to include 

several significant mathematical references. However, the mathemati¬ 

cal heart of The Simpsons beat even stronger in the third season and 

beyond, because the two Harvard Lampoon graduates were promoted 

to the roles of executive producers. 

This was a crucial turning point in the mathematical history of 

The Simpsons. From this point onward, not only could Jean and Reiss 

continue to parachute their own mathematical jokes into the episodes, 

but they could also begin to recruit other comedy writers with strong 
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mathematical credentials. Over the coming years, The Simpsons script¬ 

editing sessions would occasionally take on an atmosphere reminis¬ 

cent of a geometry tutorial or a seminar on number theory, and the 

resulting shows would contain more mathematical references than 

any other series in the history of television. 



CHAPTER 2 

APS YOU 7l-Cl4R'OU6? 
*•«*•*•*••»•**« 

Sometimes the mathematical references inserted in The Simpsons 

are highly obscure, and indeed we will encounter some of them in 

the next chapter. On other occasions, the jokes inserted by Reiss, Jean, 

and their colleagues incorporate mathematical concepts that will be 

familiar to many viewers. A classic example is the number n, which has 

made several guest appearances in the series over the past two decades. 

Just in case you have forgotten, n is simply the ratio of the circum¬ 

ference of a circle to its diameter. Anyone can obtain a rough sense of 

n’s value by drawing a circle, and then cutting a piece of string so that 

it is as long as the circle’s diameter. That string will run around the 

edge of the circle a bit more than three times, or 3.14 times to be 

slightly more precise. That is the approximate value of n. This rela¬ 

tionship between n and a circle’s circumference and diameter is sum¬ 

marized in the following equation: 

circumference = n X diameter 

CS — n^f 

Since the diameter of a circle is double the length of the radius, the 

equation can also be expressed in the following way: 

circumference = 2 X n X radius 

C - 2tc r 

This is perhaps the first small step that we take as children from 

simple arithmetic to more complex ideas. I can still remember my 

17 
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own first encounter with k, because it left me flabbergasted. Mathe¬ 

matics was no longer just about long multiplication and vulgar frac¬ 

tions, but was now also about something esoteric, elegant, and 

universal; every circle in the world obeyed the n equation, from Ferris 

wheels to Frisbees, from chapatis to the Earth’s equator. 

And, as well as predicting the circumference of a circle, 7t can also 

be used to calculate the area within the circumference: 

Area = 7t X radius2 

A = K r2 

There is a pun-based joke referring to this particular equation in 

the episode “Simple Simpson” (2004). In this episode, Flomer dis¬ 

guises himself as a superhero named Simple Simon, Your Friendly 

Neighborhood Pie Man, and punishes evildoers by flinging pies in 

their faces. The Pie Man’s first act of superheroism is to deliver retri¬ 

bution to someone who bullies Lisa. This is witnessed by a character 

named Drederick Tatum, Springfield’s famous ex-boxer, who pro¬ 

claims: “We all know l7tr2’, but today ‘pie are justice’. I welcome it.” 

Although Al Jean introduced this joke into the script, he is reluc¬ 

tant to take all the credit (or perhaps all the blame): “Oh, that’s an old 

joke. That was definitely a joke I’d heard years ago. The guy who 

should get credit is somebody from 1820.” 

Jean is exaggerating when he says 1820, but Tatum’s words do in¬ 

deed offer a fresh twist on a traditional joke that has been handed 

down from one generation of mathematicians to the next. The most 

famous version of the joke appeared in 1951 on the American comedy 

series The George Burns and Grade Allen Show. During an episode 

titled “Teenage Girl Spends the Weekend,” Grade comes to the aid of 

young Emily, who is complaining about her homework: 

Emily: I wish geometry were as easy as Spanish. 

Gracie: Well maybe I can help you. Say something to me in 

geometry. 
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Emily: 

Gracie: 

Emily: 

Gracie: 

Emily: 

Gracie: 

Say something in geometry? 

Yeah, go ahead. 

Well, alright. Errr . . . nr2. 

Is that what they teach you in school these days? 7tr2? 

Yeah. 

Emily. Pie are round. Cookies are round. Crackers are 

square. 

These jokes rely on the fact that “pie” and “n” are homophones, 

which lends itself to punnery. Hence, comedians owe a debt of 

gratitude to William Jones, who was responsible for popularizing 

the symbol n. This eighteenth-century mathematician, along with 

many others, earned his living by offering tutorials in London’s cof¬ 

fee houses in exchange for a penny. While he was plying his trade at 

these so-called Penny Universities, Jones was also working on a ma¬ 

jor treatise titled A New Introduction to the Mathematics, and this 

was the first book to employ the Greek letter n in the context of 

discussing the geometry of circles. Thus the potential for new math¬ 

ematical punning was born. Jones chose n because it is the initial 

letter of the Greek word 7tept(j)£p£ia (periphereia), meaning circum¬ 

ference. 

Three years before the appearance of the n gag in “Simple Simpson,” 

the writers of The Simpsons had included another reference to n in the 

episode “Bye, Bye, Nerdie” (2001). This time, instead of resurrecting 

an old joke, the writers created some genuinely new n humor, albeit 

based on a curious incident from 7t’s history. To appreciate this joke, 

it is first necessary to remind ourselves of the value of n and how it has 

been measured over the centuries. 

I stated earlier that n = 3.14 is only an approximation. This is be¬ 

cause n is known as an irrational number, which means that it is im¬ 

possible to specify its value with perfect accuracy because its decimal 

places continue to infinity without any pattern. Nevertheless, the 

challenge for early mathematicians was to go beyond the rough and 
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ready estimate of 3.14, and to pin down this elusive number by mea¬ 

suring it as accurately as possible. 

The first serious attempt at a more precise measurement of 7t was 

made by Archimedes in the third century b.c. He could see that an 

accurate measurement of n depended on an accurate measurement of 

the circumference of a circle. This is inevitably tricky, because circles 

are built from sweeping curves, not straight lines. Archimedes’s great 

breakthrough was to sidestep the problem of measuring curves by ap¬ 

proximating the shape of a circle with straight lines. 

Consider a circle with diameter (d) equal to 1 unit. We know that 

C — ad, which means it has a circumference (C) equal to 7t. Next 

draw two squares, one around the outside of the circle and one tucked 

inside the circle. 

The actual circumference of the circle must, of course, be smaller 

than the perimeter of the large square and larger than the perimeter 

of the small square. So, if we measure the perimeters of the squares, 

we can obtain upper and lower bounds on the circumference. 

The perimeter of the large square is easy to measure, because each 

side is the same length as the circle’s diameter, which we know to be 

equal to 1 unit. Therefore the perimeter of the large square measures 

4x1 units = 4 units. 

The perimeter of the small square is a little trickier to fathom, but 

we can pin down the length of each side by using the Pythagorean 

theorem. Conveniently, the diagonal of the square and two of its sides 
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form a right-angled triangle. The hypotenuse (H) is not only equal in 

length to the diagonal of the squarte, but it is also as long as the circle’s 

diameter, namely 1 unit. The Pythagorean theorem states that the 

square of the hypotenuse is equal to the sum of the squares of the other 

two sides. If we label the sides of the square S, then this means that 

H2 = S2 + S2. If H = 1, then the other two sides must each have a 

length of 1/V2 units. Therefore the perimeter of the small square mea¬ 

sures 4 x 1/V2 units = 2.83 units. 

As the circumference of the circle must be less than the perimeter 

of the large square, yet greater than the perimeter of the small square, 

we can now declare with confidence that the circumference must be 

between 2.83 and 4.00. 

Remember, we stated earlier that a circle with a diameter of 1 unit 

has a circumference equal to 7t, therefore the value of 7t must lie be¬ 

tween 2.83 and 4.00. 

This was Archimedes’s great discovery. 

You might not be impressed, because we already know that n is 

roughly 3.14, so a lower bound of 2.83 and an upper bound of 4.00 

are not very useful. However, the power of Archimedes’s breakthrough 

was that it could be refined. For, instead of trapping the circle be¬ 

tween a small and a large square, he then trapped the circle between 

a small and a large hexagon. If you have ten minutes to spare and 

some confidence with numbers, then you can prove for yourself that 

measuring the perimeters of the two hexagons implies that n must be 

more than 3.00 and less than 3.464. 
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A hexagon has more sides than a square, which makes it a better 

approximation to a circle. This explains why it delivers tighter limits 

for the value of n. Nonetheless, there is still a large margin of error 

here. So, Archimedes persisted, repeating his method with increas¬ 

ingly multisided polygons, using shapes that approximated ever closer 

to a circle. 

Indeed, Archimedes persevered to the extent that he eventually 

trapped a circle between two 96-sided polygons, and he calculated the 

perimeters of both shapes. This was an impressive feat, particularly 

bearing in mind that Archimedes did not have modern algebraic no¬ 

tation, he had no knowledge of decimals, and he had to do all his 

lengthy calculations by hand. But it was worth the effort, because he 

was able to trap the true value of n between 3.141 and 3.143. 

Fast-forwarding eight centuries to the 5th century a.d., the Chi¬ 

nese mathematician Zu Chongzhi took the Archimedean approach 

another step—or another 12,192 steps to be exact—and used two 

12,288-sided polygons to prove that the value of n lay between 

3.1415926 and 3.1415927. 

The polygonal approach reached its zenith in the seventeenth cen¬ 

tury with mathematicians such as the Dutchman Ludolph van Ceu- 

len, who employed polygons with more than 4 billion billion sides to 

measure 7t to 35 decimal places. After he died in 1610, the engraving 

on his tombstone explained that n was more than 3.14159265358979 

323846264338327950288 and less than 3.141592653589793238462 

64338327950289. 

As you may have deduced by this point, measuring k is a tough 

job, and one that would carry on for eternity. This is because n is an 

irrational number. So, is there any point in calculating k to any 

greater accuracy? We will return to this question later, but for the 

time being we have covered enough essential 7t information to pro¬ 

vide the context for the mathematical joke in the episode “Bye, Bye, 

Nerdie.” 

The plot of the episode centers on the bullying of nerds, which 

continues to be a global problem despite the wise words of the Amer- 
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ican educationalist Charles J. Sykes, who wrote in 1995: “Be nice to 

nerds. Chances are you’ll end up working for one.” When Lisa en¬ 

deavors to explain why bullies cannot resist picking on nerds, she 

suspects that nerds are emitting a scent that marks them out as vic¬ 

tims. She persuades some of her nerdiest school friends to work up a 

sweat, which she collects and analyzes. After a great deal of research, 

she finally isolates a pheromone emitted by every “geek, dork, and 

four-eyes” that could be responsible for attracting bullies. She names 

this pheromone poindextrose, in honor of Poindexter, the boy genius 

character created for the 1959 cartoon series Felix the Cat. 

In order to test her hypothesis, she rubs some poindextrose on the 

jacket of the formidable ex-boxer Drederick Tatum, who is visiting 

her school. Sure enough, the pheromone attracts Nelson Muntz, the 

school bully. Even though Nelson knows it is preposterous and inap¬ 

propriate for a schoolyard bully to attack an ex-boxer, he cannot resist 

the allure of poindextrose and even gives Tatum a wedgie. Lisa has the 

proof she needs. 

Excited by her discovery, Lisa decides to deliver a paper (“Airborne 

Pheromones and Aggression in Bullies”) at the 12th Annual Big Sci¬ 

ence Thing. The conference is hosted by John Nerdelbaum Frink Jr., 

Springfield’s favorite absentminded professor. It is Frink’s responsibil¬ 

ity to introduce Lisa, but the atmosphere is so intense and the audience 

so excitable that he struggles to bring the conference to order. Frus¬ 

trated and desperate, Frink eventually calls out: “Scientists . . . Scien¬ 

tists, please! I’m looking for some order. Some order, please, with the 

eyes forward . . . and the hands neatly folded . . . and the paying of 

attention ... Pi is exactly three!” 

Suddenly, the noise stops. Professor Frink’s idea worked, because 

he correctly realized that declaring an exact value for n would stun an 

audience of geeks into silence. After thousands of years of struggling 

to measure 7t to incredible accuracy, how dare anybody replace 3.1415 

9265358979323846264338327950288419716939937510582097494 

4592307816406286208998628034825342117067982148086513... 

with 3! 
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The scene echoes a limerick written by Professor Harvey L. Carter 

(1904-94), a historian at Colorado College: 

’Tis a favorite project of mine, 

A new value of pi to assign. 

I would fix it at 3 

For it’s simpler, you see, 

Than 3 point 14159. 

However, Frink’s outrageous statement was not based on Carter’s 

whimsical limerick. Instead, A1 Jean explained that he had suggested 

the “Pi is exactly three!” line because he had recently read about an 

incident that took place in Indiana in 1897, when politicians at¬ 

tempted to legislate an official (and wildly incorrect) value for n. 

The Indiana Pi Bill, officially known as House Bill No. 246, of the 

1897 sitting of the Indiana General Assembly was the brainchild of 

Edwin J. Goodwin, a physician from the town of Solitude in the 

southwest corner of the state. He had approached the assembly and 

proposed a bill that focused on his solution to a problem known as 

“squaring the circle,” an ancient problem that had already been proven 

impossible in 1882. Goodwin’s complicated and contradictory expla¬ 

nation contained the following line relating to the diameter of a circle: 

“. . . the fourth important fact, that the ratio of the diameter and 

circumference is as five-fourths to four.” 

The ratio of the diameter to the circumference is equal to k, so 

Goodwin was effectively dictating a value for n according to the fol¬ 

lowing recipe: 

circumference 4 
n =-:-= — = 3.2 

diameter 5A 

Goodwin said that Indiana schools could use his discovery without 

charge, but that the state and he would share the profits from royalties 
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charged to other schools who wished to adopt a value of 3.2 for n. 

Initially, the technical nature of the bill meant that it baffled the pol¬ 

iticians, who bounced it from the House of Representatives to the 

Finance Committee to the Committee on Swamplands and finally to 

the Committee on Education, where an atmosphere of confusion led 

to it being passed without any objection. 

It was then up to the state senate to ratify the bill. Fortunately, a 

certain Professor C. A. Waldo, who was then head of the Mathemat¬ 

ics Department at Purdue University in West Lafayette, Indiana, hap¬ 

pened to be visiting the statehouse during this period to discuss 

funding for the Indiana Academy of Science. By chance, someone on 

the funding committee showed him the bill and offered to introduce 

him to Dr. Goodwin, but Waldo replied that this would not be neces¬ 

sary, as he already knew enough crazy people. 

Instead, Professor Waldo worked hard to raise concerns with the 

senators, who began to ridicule Goodwin and his bill. The Indianapo¬ 

lis Journal quoted Senator Orrin Hubbell: “The Senate might as well 

try to legislate water to run up hill as to establish mathematical truth 

by law.” Consequently, when the bill was debated a second time, there 

was a successful motion to postpone it indefinitely. 

Professor Frink’s absurd declaration that n equals 3 is a neat re¬ 

minder that Goodwin’s postponed bill still exists in a filing cabinet in 

the basement of the Indiana statehouse, waiting for a gullible politi¬ 

cian to resuscitate it. 



CHAPTER 3 

HOME'S l*ST 

i 

-«■m very so often, Homer Simpson explores his inventing talents. In 

“Pokey Mom” (2001), for instance, he creates Dr. Homer’s Mir¬ 

acle Spine-O-Cylinder, which is essentially a battered trash can with 

random dents that “perfectly match the contours of the human verti- 

brains.” He promotes his invention as a treatment for back pain, even 

though there is not a jot of evidence to support his claim. Springfield’s 

chiropractors, who are outraged that Homer might steal their pa¬ 

tients, threaten to destroy Homer’s invention. This would allow them 

once again to corner the market in back problems and happily pro¬ 

mote their own bogus treatments. 

Homer’s inventing exploits reach a peak in “The Wizard of Ever¬ 

green Terrace” (1998). The title is a play on the Wizard of Menlo 

Park, the nickname given to Thomas Edison by a newspaper reporter 

after he established his main laboratory in Menlo Park, New Jersey. 

By the time he died in 1931, Edison had 1,093 U.S. patents in his 

name and had become an inventing legend. 

The episode focuses on Homer’s determination to follow in Edi¬ 

son’s footsteps. He constructs various gadgets, ranging from an alarm 

that beeps every three seconds just to let you know that everything is 

all right to a shotgun that applies makeup by shooting it directly onto 

the face. It is during this intense research and development phase that 

we glimpse Homer standing at a blackboard and scribbling down sev¬ 

eral mathematical equations. This should not be a surprise, because 

many amateur inventors have been keen mathematicians, and vice 

versa. 

Consider Sir Isaac Newton, who incidentally made a cameo ap¬ 

pearance on The Simpsons in an episode titled “The Last Temptation 

26 
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of Homer” (1993). Newton is one of the fathers of modern mathe¬ 

matics, but he was also a part-time inventor. Some have credited him 

with installing the first rudimentary flapless cat flap—a hole in the 

base of his door to allow his cat to wander in and out at will. Bizarrely, 

there was a second smaller hole made for kittens! Could Newton re¬ 

ally have been so eccentric and absentminded? There is debate about 

the veracity of this story, but according to an account by J. M. F. 

Wright in 1827: “Whether this account be true or false, indisputably 

true is it that there are in the door to this day two plugged holes of the 

proper dimensions for the respective egresses of cat and kitten.” 

The bits of mathematical scribbling on Homer’s blackboard in 

“The Wizard of Evergreen Terrace” were introduced into the script by 

David S. Cohen, who was part of a new generation of mathematically 

minded writers who joined The Simpsons in the mid-1990s. Like A1 

Jean and Mike Reiss, Cohen had exhibited a genuine talent for math¬ 

ematics at a young age. At home, he regularly read his father’s copy of 

Scientific American and toyed with the mathematical puzzles in Mar¬ 

tin Gardner’s monthly column. Moreover, at Dwight Morrow High 

School in Englewood, New Jersey, he was co-captain of the mathe¬ 

matics team that became state champions in 1984. 
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David S. Cohen pictured in the 

Dwight Morrow High School 

yearbook of 1984. The running joke 

was that everyone on the Math 

Team was co-captain, so that they 

all could put it on their college 

applications. 

Along with high school friends David Schiminovich and David 

Borden, he formed a teenage gang of computer programmers called 

the Glitchmasters, and together they created FLEET, their very own 

computer language, designed for high speed graphics and gaming on 

the Apple II Plus. At the same time, Cohen maintained an interest in 

comedy writing and comic books. Fie pinpoints the start of his pro¬ 

fessional career to cartoons he drew while in high school that he sold 

to his sister for a penny. 

Even when he went on to study physics at Harvard University, he 

maintained his interest in writing and joined the Harvard Lampoon, 

eventually becoming president. Over time, like Al Jean, Cohen’s pas¬ 

sion for comedy and writing overtook his love of mathematics and 

physics, and he rejected a career in academia in favor of becoming a 

writer for The Simpsons. Every so often, however, Cohen returns to his 

roots by smuggling mathematics into the TV series. The symbols and 

diagrams on Homer’s blackboard provide a good example of this. 

Cohen was keen in this instance to include scientific equations 

alongside the mathematics, so he contacted one of his high school 

friends, David Schiminovich, who had stayed on the academic path 

to become an astronomer at Columbia University. 

The first equation on the board is largely Schiminovich’s work, and 
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it predicts the mass of the Higgs boson, Af(H°), an elementary parti¬ 

cle that that was first proposed in 1964. The equation is a playful 

combination of various fundamental parameters, namely the Planck 

constant, the gravitational constant, and the speed of light. If you 

look up these numbers and plug them into the equation,* it predicts a 

mass of 775 giga-electron-volts (GeV), which is substantially higher 

than the 125 GeV estimate that emerged when the Higgs boson was 

discovered in 2012. Nevertheless, 775 GeV was not a bad guess, par¬ 

ticularly bearing in mind that Homer is an amateur inventor and he 

performed this calculation fourteen years before the physicists at 

CERN, the European Organization for Nuclear Research, tracked 

down the elusive particle. 

The second equation is . . . going to be set aside for a moment. It is 

the most mathematically intriguing line on the board and worth the 

wait. 

The third equation concerns the density of the universe, which has 

implications for the fate of the universe. If Q(?0) is bigger than 1, as 

initially written by Homer, then this implies that the universe will 

eventually implode under its own weight. In an effort to reflect this 

cosmic consequence at a local level, there appears to be a minor im¬ 

plosion in Homer’s basement soon after viewers see this equation. 

Homer then alters the inequality sign, so the equation changes 

from Q(r0) > 1 to E2(r0) < 1. Cosmologically, the new equation sug¬ 

gests a universe that expands forever, resulting in something akin to 

an eternal cosmic explosion. The storyline mirrors this new equation, 

because there is a major explosion in the basement as soon as Homer 

reverses the inequality sign. 

The fourth line on the blackboard is a series of four mathematical 

diagrams that show a doughnut transforming into a sphere. This line 

relates to an area of mathematics called topology. In order to under¬ 

stand these diagrams, it is necessary to know that a square and a circle 

are identical to each other according to the rules of topology. They are 

* Hints for those brave enough to do the calculation: Do not forget that E= me2 and 

remember to convert the result to GeV energy units. 
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considered to be homeomorphic, or topological twins, because a square 

drawn on a rubber sheet can be transformed into a circle by careful 

stretching. Indeed, topology is sometimes referred to as “rubber sheet 

geometry.” 

Topologists are not concerned with angles and lengths, which are 

clearly altered by stretching the rubber sheet, but they do care about 

more fundamental properties. For example, the fundamental prop¬ 

erty of a letter A is that it is essentially a loop with two legs. The letter 

R is also just a loop with two legs. Hence, the letters A and R are ho¬ 

meomorphic, because an A drawn on a rubber sheet can be trans¬ 

formed into an R by careful stretching. 

However, no amount of stretching can transform a letter A into a 

letter H, because these letters are fundamentally different from each 

other by virtue of A consisting of one loop and two legs and H con¬ 

sisting of zero loops. The only way to turn an A into an H is to cut the 

rubber sheet at the peak of the A, which destroys the loop. However, 

cutting is forbidden in topology. 

The principles of rubber sheet geometry can be extended into three 

dimensions, which explains the quip that a topologist is someone who 

cannot tell the difference between a doughnut and a coffee cup. In 

other words, a coffee cup has just one hole, created by the handle, and 

a doughnut has just one hole, in its middle. Hence, a coffee cup made 

of a rubbery clay could be stretched and twisted into the shape of a 

doughnut. This makes them homeomorphic. 

By contrast, a doughnut cannot be transformed into a sphere, be¬ 

cause a sphere lacks any holes, and no amount of stretching, squeez¬ 

ing, and twisting can remove the hole that is integral to a doughnut. 

Indeed, it is a proven mathematical theorem that a doughnut is topo¬ 

logically distinct from a sphere. Nevertheless, Homer’s blackboard 

scribbling seems to achieve the impossible, because the diagrams show 

the successful transformation of a doughnut into a sphere. How? 

Although cutting is forbidden in topology, Homer has decided that 

nibbling and biting are acceptable. After all, the initial object is a 

doughnut, so who could resist nibbling? Taking enough nibbles out 

of the doughnut turns it into a banana shape, which can then be re- 
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shaped into a sphere by standard stretching, squeezing, and twisting. 

Mainstream topologists might not be thrilled to see one of their cher¬ 

ished theorems going up in smoke, but a doughnut and a sphere are 

identical according to Homer’s personal rules of topology. Perhaps the 

correct term is not homeomorphic, but rather Homermorphic. 

The second line on Homer’s blackboard is perhaps the most interest¬ 

ing, as it contains the following equation: 

3,98712 + 4,36512 = 4,47212 

The equation appears to be innocuous at first sight, unless you 

know something about the history of mathematics, in which case you 

are about to smash up your slide rule in disgust. For Homer seems to 

have achieved the impossible and found a solution to the notorious 

mystery of Fermat’s last theorem! 

Pierre de Fermat first proposed this theorem in about 1637. Despite 

being an amateur who only solved problems in his spare time, Fermat 

was one of the greatest mathematicians in history. Working in isola¬ 

tion at his home in southern France, his only mathematical compan¬ 

ion was a book called Arithmetical written by Diophantus of Alexandria 

in the third century a.d. While reading this ancient Greek text, Fer¬ 

mat spotted a section on the following equation: 

This equation is closely related to the Pythagorean theorem, but 

Diophantus was not interested in triangles and the lengths of their 

sides. Instead, he challenged his readers to find whole number solu¬ 

tions to the equation. Fermat was already familiar with the techniques 

required to find such solutions, and he also knew that the equation 

has an infinite number of solutions. These so-called Pythagorean tri¬ 

ple solutions include 
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32 + 42 = 52 

52 + 122= 132 

1332 + 1362= 2032 

So, bored with Diophantus’ puzzle, Fermat decided to look at a 

variant. He wanted to find whole number solutions to this equation: 

X3 + JJ/3 = Z3 

Despite his best efforts, Fermat could only find trivial solutions 

involving a zero, such as 03 + 73 = 73. When he tried to find more 

meaningful solutions, the best he could offer was an equation that 

was out of kilter by just one, such as 63 + 83 = 93 — 1. 

Moreover, when Fermat further increased the power to which x, y, 

and z are raised, his efforts to find a set of solutions were thwarted 

again and again. He began to think that it was impossible to find 

whole number solutions to any of the following equations: 

x3 + y3 = ,z3 

x4+y4 = zA 

x5 +y5 = z5 

xn+yn — zn, where n > 2 

Eventually, however, he made a breakthrough. He did not find a set 

of numbers that fitted one of these equations, but rather he developed 

an argument that proved that no such solutions existed. He scribbled 

a pair of tantalizing sentences in Latin in the margin of his copy of 

Diophantus’s Arithmetica. He began by stating that there are no whole 

number solutions for any of the infinite number of equations above, 
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and then he confidently added this second sentence: “Cuius rei dem- 

onstrationem mirabilem sane detexi, hanc marginis exiguitas non ca- 

peretd (I have discovered a truly marvelous proof of this, which this 

margin is too narrow to contain.) 

Pierre de Fermat had found a proof, but he did not bother to write 

it down. This is perhaps the most frustrating note in the history of 

mathematics, particularly as Fermat took his secret to the grave. 

Fermat’s son Clement-Samuel later found his father’s copy oiArith- 

metica and noticed this intriguing marginal note. Fie also spotted 

many similar marginal jottings, because Fermat had a habit of stating 

that he could prove something remarkable, but rarely wrote down the 

proof. Clement-Samuel decided to preserve these notes by publishing 

a new edition of Arithmetica in 1670, which included all his father’s 

marginal notes next to the original text. This galvanized the mathe¬ 

matical community into finding the missing proofs associated with 

each claim, and one by one they were able to confirm that Fermat’s 

claims were correct. Except, nobody could prove that there were no 

solutions to the equation xn + yn — zn {n > 2). Hence, this equation 

became known as Fermat’s last theorem, because it was the only one 

of Fermat’s claims that remained unproven. 

As each decade passed without a proof, Fermat’s last theorem be¬ 

came even more infamous, and the desire for a proof increased. In¬ 

deed, by the end of the nineteenth century, the problem had caught 

the imaginations of many people outside of the mathematical com¬ 

munity. For example, when the German industrialist Paul Wolfskehl 

died in 1908, he bequeathed 100,000 marks (equivalent to $1 million 

today) as a reward for anyone who could prove Fermat’s last theorem. 

According to some accounts, Wolfskehl despised his wife and the rest 

of his family, so his will was designed to snub them and reward math¬ 

ematics, a subject that he had always loved. Others argue that the 

Wolfskehl Prize was his way of thanking Fermat, because it is said his 

fascination with the problem had given him a reason to live when he 

was on the verge of suicide. 

Whatever the motives, the Wolfskehl Prize catapulted Fermat’s last 

theorem into public notoriety, and in time it even became part of 
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popular culture. In “The Devil and Simon Flagg,” a short story writ¬ 

ten by Arthur Porges in 1954, the titular hero makes a Faustian pact 

with the Devil. Flagg’s only hope of saving his soul is to pose a ques¬ 

tion that the Devil cannot answer, so he asks for a proof of Fermat’s 

last theorem. After accepting defeat, the Devil said: “Do you know, 

not even the best mathematicians on other planets—all far ahead of 

yours—have solved it? Why, there’s a chap on Saturn—he looks 

something like a mushroom on stilts—who solves partial differential 

equations mentally; and even he’s given up.” 

Fermat’s last theorem has also appeared in novels {The Girl Who 

Played with Fire by Stieg Larsson), in films (Bedazzled with Brendan 

Fraser and Elizabeth Hurley), and plays (Arcadia by Tom Stoppard). 

Perhaps the theorem’s most famous cameo is in a 1989 episode of Star 

Trek: The Next Generation titled “The Royale,” in which Captain Jean- 

Luc Picard describes Fermat’s last theorem as “a puzzle we may never 

solve.” However, Captain Picard was wrong and out of date, because 

the episode was set in the twenty-fourth century and the theorem was 

actually proven in 1995 by Andrew Wiles at Princeton University.* 

Wiles had dreamed about tackling Fermat’s challenge ever since he 

was ten years old. The problem then obsessed him for three decades, 

which culminated in seven years of working in complete secrecy. 

Eventually, he delivered a proof that the equation xn +yn = zn {n > 2) 

has no solutions. When his proof was published, it ran to 130 dense 

pages of mathematics. This is interesting partly because it indicates 

the mammoth scale of Wiles’s achievement, and partly because his 

chain of logic is far too sophisticated to have been discovered in the 

seventeenth century. Indeed, Wiles had used so many modern tools 

and techniques that his proof of Fermat’s last theorem cannot be the 

approach that Fermat had in mind. 

This point was alluded to in a 2010 episode of the BBC TV series 

Doctor Who. In “The Eleventh Hour,” the actor Matt Smith debuts as 

* I should point out that this is a story that is close to my heart, as I have written a 

book and directed a BBC documentary about Fermat’s last theorem and Andrew 

Wiles’s proof. Coincidentally, during a brief stint at Harvard University, Wiles 

lectured A1 Jean, who went on to write for The Simpsons. 



HOMER'S LAST THEOREM • jj 

the regenerated Eleventh Doctor, who must prove his credentials to a 

group of geniuses in order to persuade them to take his advice and 

save the world. Just as they are about to reject him, the Doctor says: 

“But before you do, watch this. Fermat’s theorem. The proof. And I 

mean the real one. Never been seen before.” In other words, the Doc¬ 

tor is tacitly acknowledging that Wiles’s proof exists, but he rightly 

does not accept that it is Fermat’s proof, which he considers to be the 

“real one.” Perhaps the Doctor went back to the seventeenth century 

and obtained the proof directly from Fermat. 

So, to summarize, in the seventeenth century, Pierre de Fermat 

states that he can prove that the equation x” + yn — zn (n > 2) has no 

whole number solutions. In 1995, Andrew Wiles discovers a new proof 

that verifies Fermat’s statement. In 2010, the Doctor reveals Fermat’s 

original proof. Everyone agrees that the equation has no solutions. 

Thus, in “The Wizard of Evergreen Terrace,” Flomer appears to 

have defied the greatest minds across almost four centuries. Fermat, 

Wiles, and even the Doctor state that Fermat’s equation has no solu¬ 

tions, yet Homer’s blackboard jottings present us with a solution: 

3,98712 + 4,36512 = 4,47212 

You can check it yourself with a calculator. Raise 3,987 to the 

twelfth power. Add it to 4,365 to the twelfth power. Take the twelfth 

root of the result and you get 4,472. 

Or at least that is what you get on any calculator that can squeeze 

only ten digits onto its display. However, if you have a more accurate 

calculator, something capable of displaying a dozen or more digits, 

then you will find a different answer. The actual value for the third 

term in the equation is closer to 

3,98712 + 4,36512 = 4,472.000000007057617187512 

So what is going on? Homer’s equation is a so-called near-miss 

solution to Fermat’s equation, which means that the numbers 3,987, 

4,365, and 4,472 very nearly make the equation balance—so much so 
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that the discrepancy is hardly discernible. However, in mathematics 

you either have a solution or you do not. A near-miss solution is ulti¬ 

mately no solution at all, which means that Fermat’s last theorem 

remains intact. 

David S. Cohen had merely played a mathematical prank on those 

viewers who were quick enough to spot the equation and clued-up 

enough to recognize its link with Fermat’s last theorem. By the time 

this episode aired in 1998, Wiles’s proof had been published for three 

years, so Cohen was well aware that Fermat’s last theorem had been 

conquered. He even had a personal link to the proof, because he had 

attended some lectures by Ken Ribet while he was a graduate student 

at the University of California, Berkeley, and Ribet had provided Wiles 

with a pivotal stepping-stone in his proof of Fermat’s last theorem. 

Cohen obviously knew that Fermat’s equation had no solutions, 

but he wanted to pay homage to Pierre de Fermat and Andrew Wiles 

by creating a solution that was so close to being correct that it would 

apparently pass the test if checked with only a simple calculator. In 

order to find his pseudosolution, he wrote a computer program that 

would scan through values of x, y, z, and n until it found numbers 

that almost balanced. Cohen finally settled on 3,98712 + 4,36512 = 

4,47212 because the resulting margin of error is minuscule—the left 

side of the equation is only 0.000000002 percent larger than the right 

side. 

As soon as the episode aired, Cohen patrolled the online message 

boards to see if anybody had noticed his prank. He eventually spotted 

a posting that read: “I know this would seem to disprove Fermat’s last 

theorem, but I typed it in my calculator and it worked. What in the 

world is going on here?” 

He was delighted that budding mathematicians around the world 

might be intrigued by his mathematical paradox: “I was so happy, 

because my goal was to get enough accuracy so that people’s calcula¬ 

tors would tell them the equation worked.” 

Cohen is very proud of his blackboard in “The Wizard of Ever¬ 

green Terrace.” In fact, he derives immense satisfaction from all the 

mathematical tidbits he has introduced into The Simpsons over the 
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years: “I feel great about it. It’s very easy working in television to not 

feel good about what you do on the grounds that you’re causing the 

collapse of society. So, when we get the opportunity to raise the level 

of discussion—particularly to glorify mathematics—it cancels out 

those days when I’ve been writing those bodily function jokes.” 



CHAPTER 4 

THe pazzie OF 
MATHEMATICAL HuMOP 

••••••••••••••• 

As might be expected, many of the mathematical writers of The 

Simpsons have a passion for puzzles. Naturally, this love of puz¬ 

zles has found its way into various episodes. 

For example, the world’s most famous puzzle, the Rubik’s Cube, 

crops up in “Homer Defined” (1991). The episode features a flash¬ 

back to 1980, the year the cube was first exported from Hungary, 

when a younger Homer attends a nuclear safety training session. In¬ 

stead of paying attention to the instructor’s advice on what to do in 

the event of a meltdown, he is focused on his brand-new cube and 

cycling through some of the 43,252,003,274,489,856,000 permuta¬ 

tions in order to find the solution. 

Rubik’s Cubes have also appeared in the episodes “Hurricane 

Neddy” (1996) and “HOM3I” (2001), and the Rubik’s Cube was in¬ 

voked as a threat by Moe Szyslak in “Donnie Fatso” (2010). As pro¬ 

prietor and bartender of Moe’s Tavern, Moe regularly receives prank 

calls from Bart asking to speak with particular people with fictitious 

and embarrassing names. This prompts Moe to call out to everyone 

in the bar with lines such as “Has anyone seen Maya Normousbutt?” 

and “Amanda Hugginkiss? Hey, I’m looking for Amanda Hug- 

ginkiss.” The “Donnie Fatso” episode is notable because Moe receives 

a phone call that is not a prank and not from Bart. Instead, Marion 

Anthony D’Amico, head of Springfield’s notorious D’Amico crime 

family, is calling. Fat Tony, as he is known to his friends (and ene¬ 

mies), simply wants Moe to find out if his Russian friend Yuri Nator 

is in the bar. Assuming that this is another prank by Bart, Moe makes 

3$ 
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the mistake of threatening the caller: “I’m gonna chop you into little 

pieces and make you into a Rubik’s Cube which I will never solve!” 

A more ancient puzzle appears in “Gone Maggie Gone” (2009), an 

episode that is partly a parody of Dan Brown’s novel The Da Vinci 

Code. The storyline begins with a total solar eclipse, ends with the 

discovery of the jewel of St. Teresa of Avila, and revolves around the 

false belief that Maggie is the new messiah. From a puzzle lover’s 

point of view, the episode’s most interesting scene concerns Homer, 

who finds himself trapped on one side of a river with his baby (Mag¬ 

gie), his dog (Santa’s Little Helper), and a large bottle of poison cap¬ 

sules. 

Homer is desperate to cross the river. There is a boat, but it is flimsy 

and can only carry Homer and one other item at a time. Of course, he 

cannot leave Maggie with the poison because the baby might swallow 

a capsule, and he cannot leave Santa’s Little Helper with Maggie in 

case the dog bites the baby. Hence, Homer’s challenge is to work out 

a sequence of crossings that will allow him to ferry everybody and 

everything safely to the other side. 

As Homer begins to think about this predicament, the animation 

style changes and the problem is summarized in the style of a medi¬ 

eval illuminated manuscript, accompanied by the words: “How does 

the fool cross the river with his burdens three?” This is a reference to 

a medieval Latin manuscript titled Propositiones ad Acuendos Juvenes 

(Problems to Sharpen the Young), which contains the earliest refer¬ 

ence to this sort of river-crossing problem. The manuscript is a mar¬ 

velous compilation of more than fifty mathematical puzzles written 

by Alcuin of York, regarded by many as the most learned man in 

eighth-century Europe. 

Alcuin poses an identical problem to Homer’s dilemma, except 

that he frames it in terms of a man transporting a wolf, a goat, and a 

cabbage, and he has to avoid the wolf eating the goat, and the goat 

eating the cabbage. The wolf is essentially equivalent to Santa’s Little 

Helper, the goat has the same role as Maggie, and the cabbage is in 

place of the poison. 

The solution to Homer’s problem, which he works out for himself, 



40 • S'/VIOM SiMGH 

is to start by taking Maggie across the river from the original bank to 

the destination bank. Then he would return to the original bank to 

collect the poison, and row back to the destination bank and deposit 

the poison. He cannot leave the poison with Maggie, so he would 

bring Maggie back to the original bank and leave her there, while he 

takes Santa’s Little Helper across to the destination bank to join the 

poison. He would then row back to the original bank to collect Mag¬ 

gie. Finally, he would row to the destination bank to complete the 

challenge with everyone and everything having safely crossed the 

river. 

Unfortunately, he is unable to fully implement his plan. For when 

Homer leaves Maggie on the destination bank, at the end of the first 

stage, she is promptly kidnapped by nuns. This is something that 

Alcuin failed to factor into his original framework for the problem. 

In an earlier episode, “Lisa the Simpson” (1998), a puzzle plays an 

even more important role by triggering the entire plotline. The story 

starts in the school cafeteria, where Lisa sits opposite Martin Prince, 

who is perhaps Springfield’s most gifted young mathematician. In¬ 

deed, Martin experiences life from an entirely mathematical perspec¬ 

tive, as demonstrated in “Bart Gets an F” (1990), in which Bart 

temporarily befriends Martin and offers him some advice: “From now 

on, you sit in the back row. And that’s not just on the bus. It goes for 

school and church, too ... So no one can see what you’re doing.” 

Martin then reframes Bart’s advice in terms of mathematics: “The 

potential for mischief varies inversely to one’s proximity to the au¬ 

thority figure!” He even jots down the equation that encapsulates 

Bart’s wisdom, in which M represents the potential for mischief and 

PA is proximity to an authority figure: 
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In the cafeteria, Martin becomes interested in Lisa’s lunch, which 

is not the usual cafeteria food, but rather a vacuum-packed space- 

themed meal. When Lisa holds up the lunch and explains that it is 

“what John Glenn eats when he’s not in space,” Martin spots a puzzle 

on the back of the packet. The challenge is to find the next symbol in 

this sequence: 

MQ8M5 
Martin solves the puzzle in the blink of an eye, but Lisa remains 

perplexed. She gradually becomes more and more frustrated as stu¬ 

dents sitting nearby, including Bart, say that they can identify the 

next symbol in the sequence. It seems that everyone can work out the 

answer . . . except Lisa. Consequently, she spends the rest of the epi¬ 

sode questioning her intellectual ability and academic destiny. Fortu¬ 

nately, you will not have to suffer such emotional turmoil. I suggest 

you spend a minute thinking about the puzzle, and then take a look 

at the answer provided in the caption on the next page. 

The lunch puzzle is noteworthy because it helped to shore up the 

mathematical foundations of The Simpsons by playing a part in at¬ 

tracting a new mathematician to the writing team. J. Stewart Burns 

had studied mathematics at Harvard before embarking on a PhD at 

the University of California, Berkeley. His doctoral thesis would have 

involved algebraic number theory or topology, but he abandoned his 

research before making much progress, and he received a master’s 

degree instead of a PhD. The reason for his premature departure from 

Berkeley was a job offer from the producers of the sitcom Unhappily 

Ever After. Burns had always harbored ambitions to become a televi¬ 

sion comedy writer, and this was his big break. Soon he became 

friends with David S. Cohen, who invited Burns to the offices of The 

Simpsons in order to attend a table reading of an episode, which hap¬ 

pened to be “Lisa the Simpson.” As the storyline unfolded, including 

the number-based puzzle, Burns gradually felt that this was where he 

belonged, working alongside Cohen and the other mathematical writ¬ 

ers. While working on Unhappily Ever After, Burns was labeled as the 
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Although David S. Cohen cannot remember if he suggested the puzzle that 

appears in "Lisa the Simpson," he certainly drew the initial sketches. The puzzle, 

almost as it appeared in the episode, is in the lower line of this page of doodles. 

Solving the problem relies on noticing that the left and right halves of each symbol 

are mirror images of each other. The right half of the first symbol is 1, and the left 

half is its reflection. The right half of the second symbol is 2, and the left half is its 

reflection. The pattern continues with 3, 4, and 5, so the sixth symbol would be 6 

joined to its own reflection. 

The upper line suggests Cohen was thinking of using the sequence (3, 6, 9), but 

this idea was abandoned, probably because the fourth element, 12, would have 

required two digits. The middle line, which shows the sequence (1,4, 2, 7), was 

also abandoned. It is unclear what the fifth element of the sequence would have 

been, and Cohen can no longer remember what he had in mind. 

geeky mathematician with a master’s degree. By contrast, when he 

joined The Simpsons, a master’s degree in mathematics was no longer 

exceptional. Instead of being labeled a geek, he became known as the 

go-to guy for toilet humor. 

After telling me the story about how he was recruited to join The 

Simpsons, Burns drew some parallels between puzzles and jokes, and 

suggested that they have a great deal in common. Both have carefully 

constructed setups, both rely on a surprise twist, and both effectively 
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have punch lines. Indeed, the best puzzles and jokes make you think 

and smile at the moment of realization. And perhaps that is part of 

the reason why mathematicians have proved to be such valuable addi¬ 

tions to the writing team of The Simpsons. 

As well as bringing their love of puzzles to the series, the mathema¬ 

ticians have also brought a new way of working. Burns has observed 

that his nonmathematical colleagues will generally offer fully formed 

gags created in a moment of inspiration, whereas the mathematicians 

on the writing team have a tendency to offer raw ideas for jokes. These 

incomplete jokes are then bounced around the writers’ room until 

they have been resolved. 

As well as using this group approach in order to invent jokes, the 

mathematicians also rely on it to develop storylines. According to Jeff 

Westbrook, Burns’s writing colleague on The Simpsons and another 

ex-mathematician, this enthusiasm for collaboration harks back to 

their previous careers: “I was a theoretician in computer science, 

which meant I was sitting around with other guys proving lots of 

mathematical theorems. When I came here, I was surprised to dis¬ 

cover that it is the same kind of thing in the writers’ room, because 

we’re also just sitting around throwing out ideas. There’s this com¬ 

mon creative thread, which is that you’re trying to solve problems. In 

one case, it’s a mathematical theorem that’s a problem. In the other 

case, it’s a story issue. We want to break the story down and analyze 

it. What is this story all about?” 

With this in mind, I began to ask other writers why they thought 

so many mathematically inclined writers had found a home at The 

Simpsons. As far as Cohen is concerned, mathematically trained 

comedy writers are more confident and comfortable exploring the 

unknown armed only with their intuition: “The process of proving 

something has some similarity with the process of comedy writing, 

inasmuch as there’s no guarantee you’re going to get to your ending. 

When you’re trying to think of a joke out of thin air (that also is on 

a certain subject or tells a certain story), there’s no guarantee that 

there exists a joke that accomplishes all the things you’re trying to 

do . . . and is funny. Similarly, if you’re trying to prove something 
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mathematically, it’s possible that no proof exists. And it’s certainly 

very possible that no proof exists that a person can wrap their mind 

around. In both cases—finding a joke or proving a theorem—intu¬ 

ition tells you if your time is being invested in a profitable area.” 

Cohen added that training in mathematics helps give you the intel¬ 

lectual stamina required to write an episode of The Simpsons: “It 

sounds fun and easy, but there’s a lot of pounding your brain against 

the wall. We’re trying to tell a complicated story in a short amount of 

time and there are a lot of logical problems that need to be overcome. 

It’s a big puzzle. It’s hard to convince somebody of the pain and suf¬ 

fering that goes into making these shows, because the final product is 

fast moving and lighthearted. Any given moment in the writing pro¬ 

cess can be fun, but it’s also draining.” 

For a contrasting perspective, I then spoke to Matt Selman, who 

had studied English and history before joining the writing team. He 

identifies himself as the “guy who knows least about mathematics.” 

When asked why The Simpsons has become a magnet for people with 

a penchant for polynomials, Selman agreed with Cohen that the 

scripts are essentially a puzzle and that complicated episodes are “a 

real brain burner.” Also, according to Selman, the mathematical writ¬ 

ers do have a particular trait: “Comedy writers all like to think that 

we’re great observers of the human condition and that we understand 

pathos, bathos, and all the -athoses. If you wanted to disparage the 

mathematicians, then you could say that they are cold and heartless, 

and that they don’t have great jokes about what it’s like to love or to 

lose, but I disagree. However, there is a difference. I think the math¬ 

ematical mind lends itself best to writing very silly jokes, because logic 

is at the heart of mathematics. The more you think about logic, the 

more you have fun twisting it and morphing it. I think the logical 

mind finds great humor in illogic.” 

Mike Reiss, who worked on the very first episode of The Simpsons, 

agrees: “There are so many wrong theories about humor. Have you 

ever heard Freud on humor? He’s just wrong, wrong, wrong. How¬ 

ever, I realized an awful lot of jokes work on false logic. I’ll give you 
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an example. A duck walks into a drugstore and says, ‘I’d like some 

ChapStick, please,’ and the druggist says, ‘Will you be paying cash for 

that?’ and the duck says, ‘No, put the ChapStick on my bill.’ Now if 

incongruity was what made comedy, then it would be funny that a 

duck walks into a drugstore. It’s not incongruity, but it’s the fact that 

there’s a false logic to it, which brings all the disparate elements of this 

story together.” 

Although the writers have offered various explanations of why 

mathematical minds lend themselves to writing comedy, one impor¬ 

tant question remains: Why have all these mathematicians ended up 

working on The Simpsons rather than 30 Rock or Modern Family ? 

A1 Jean has one possible explanation, which emerged as he recalled 

his teenage years and his relationship with laboratories: “I hated ex¬ 

perimental science because I was terrible in the lab and I could never 

get the results correct. Doing mathematics was very different.” In 

other words, scientists have to cope with reality and all its imperfec¬ 

tions and demands, whereas mathematicians practice their craft in an 

ideal abstract world. To a large extent, mathematicians, like Jean, 

have a deep desire to be in control, whereas scientists enjoy battling 

against reality. 

According to Jean, the difference between mathematics and sci¬ 

ence is paralleled by the difference between writing for a live-action 

sitcom versus writing for an animated series: “I think live-action TV 

is like experimental science, because actors do it the way they want to 

do it and you have to stick within those takes. By contrast, animation 

is more like pure mathematics, because you have real control over 

exactly the nuance of the line, how the lines are delivered, and so on. 

We can really control everything. Animation is a mathematician’s 

universe.” 

• I • 

Some of Mike Reiss’s favorite jokes rely on mathematics: “I like 

these jokes. I savor them. I’m just thinking of this other great joke I 

heard when I was a kid. It’s about these guys who buy a truckload of 
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watermelons at a dollar apiece and then they go across town and sell 

them for a dollar apiece. At the end of the day, they have no money 

and the one guy says, ‘We should have bought a bigger truck.”’* 

Reiss’s vignette is part of a long tradition of mathematical jokes, 

ranging from trivial one-liners to intricate narratives. Such jokes 

might seem bizarre to most people, and indeed they are not the sort 

of material that you might typically hear in a stand-up comedian’s 

usual repertoire, but they are very much part of the culture of math¬ 

ematics. 

The first time I encountered a sophisticated mathematical joke was 

as a teenager, while reading Concepts of Modern Mathematics by Ian 

Stewart: 

An astronomer, a physicist, and a mathematician (it is said) were 

holidaying in Scotland. Glancing from a train window, they 

observed a black sheep in the middle of a field. “How interesting,” 

observed the astronomer, “all Scottish sheep are black! ” To which 

the physicist responded, “No, no! Some Scottish sheep are black!” 

The mathematician gazed heavenward in supplication, and then 

intoned, “In Scotland there exists at least one field, containing at 

least one sheep, at least one side of which is black? 

I stored that joke in the back of my head for the next seventeen 

years and then included it in my first book, which discussed the his¬ 

tory and proof of Fermat’s last theorem. The joke was a perfect illus¬ 

tration of the rigorous nature of mathematics. Indeed, I was so fond 

of the joke, I would often recount the tale of the black sheep while 

lecturing, and afterward members of the audience would sometimes 

approach me and tell me their own jokes about n, infinity, abelian 

groups, and Zorn’s lemma. 

Curious about what else was making my fellow geeks chortle, I 

* We can recast this joke in a more mathematical framework by defining Pr as the 

retail price, Pw as the wholesale price, and N as the number of watermelons that the 

truck can carry. The profit ($) formula is $ = NX (Pr - PJ. Hence, if Pw = P, then 

buying a bigger truck and increasing N clearly makes no difference to the profit. 
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asked people to e-mail me their favorite mathematical jokes, and for 

the past decade I have received a steady flow of comedic offerings of a 

nerdy nature, ranging from dismal puns to rich anecdotes. One of my 

favorites is a story that was originally told by the historian of mathe¬ 

matics Howard Eves (1911—2004). The tale concerns the mathemati¬ 

cian Norbert Wiener, who pioneered cybernetics: 

When [Wiener] and his family moved to a new house a few 

blocks away, his wife gave him written directions on how to reach 

it, since she knew he was absentminded. But when he was leaving 

his office at the end of the day, he couldn’t remember where he 

put her note, and he couldn’t remember where the new house was. 

So he drove to his old neighborhood instead. He saw a young 

child and asked her, “Little girl, can you tell me where the 

Wieners moved?” “Yes, Daddy,” came the reply, “Mommy said 

you’d probably be here, so she sent me to show you the way 

home.” 

However, anecdotes about famous mathematicians and jokes that 

rely on the stereotypical characteristics of mathematicians offer only 

limited insights into the nature of mathematics. They can also be¬ 

come repetitive, as highlighted by this well-known parody: 

An engineer, a physicist, and a mathematician find themselves in 

an anecdote, indeed an anecdote quite similar to many that you 

have no doubt already heard. After some observations and rough 

calculations the engineer realizes the situation and starts laugh¬ 

ing. A few minutes later the physicist understands too and 

chuckles to himself happily as he now has enough experimental 

evidence to publish a paper. This leaves the mathematician 

somewhat perplexed, as he had observed right away that he was 

the subject of an anecdote, and deduced quite rapidly the presence 

of humor from similar anecdotes, but considers this anecdote to 

be too trivial a corollary to be significant, let alone funny. 
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By contrast, there are many jokes in which the humor relies on the 

actual language and tools of mathematics. For example, there is one 

well-known joke that was apparently created during an exam by a 

mischievous student named Peter White from Norwich, England. 

The question asked students for an expansion of the bracket (a + b)n. 

If you have not come across this type of question previously, then all 

you need to know is that it concerns the binomial t heorem and the 

correct answer ought to have explained that the rth term of the ex¬ 

pansion has the coefficient n\!\{r — 1 )\{n — r + 1)!]. This is quite a 

technical answer, but Peter had a radically different interpretation of 

the question and an inspired solution: 

Peter’s imaginative answer got me thinking. Creating a mathemat¬ 

ical joke requires an understanding of mathematics, and appreciating 

the joke requires a similar level of understanding. Hence, mathemati¬ 

cal jokes test your mathematical knowledge. 

With this in mind, I have gathered the world’s best mathematical 

jokes, classified them according to their degree of difficulty, and di¬ 

vided them into five examination papers distributed through the 

course of this book. As you continue exploring the mathematical hu- 
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mor that appears in The Simpsons, you will encounter these increas¬ 

ingly difficult test papers. Your task is to read through the jokes and 

see how many make you laugh (or groan), which will help you assess 

how your mathematical knowledge and sense of humor are develop¬ 

ing. 

You may turn over your first exam paper . . . now! 

Good luck. 





APiTHMe-pCKie aMd 6eoMereBneBneB 
BxAMAMiHAVOti 

A FIVE-PART TEST OF HUMOR AND MATHEMATICS 

The examination is divided into five separate sections. 

The first section is an elementary examination, 

consisting of eight simple jokes.* 

Subsequent sections are increasingly difficult. 

Score yourself according to the number 

of laughs/groans you experience. 

If you laugh/groan enough to score more than 

50 percent, then you will have passed that particular 

section of the exam. 

* These puns, gags, and shaggy-dog stories have been handed down from one 

generation of geeks to the next, which means that the names of the writers have sadly 

been lost in the mists of time (or the writers have understandably sought anonymity). 



Joke 1 

Joke 2 

Joke 3 

Joke 4 

Joke 5 

examination I 
ELEMENTARY PAPER 

Q: What did the number 0 say to the number 8? 

A: Nice belt! 

Q: Why did 5 eat 6? 

A: Because 7 8 9. 

Knock, knock. 

Who's there? 

Convex. 

Convex who? 

Convex go to prison! 

Knock, knock. 

Who's there? 

Prism. 

Prism who? 

Prism is where convex go! 

Teacher: "What is seven Q plus three Q?" 

Student: "Ten Q." 

Teacher: "You're welcome." 

2 points 

2 points 

3 points 

3 points 

2 points 



Joke 6 A Cherokee chief had three wives, each of whom 4 points 

was pregnant. The first squaw gave birth to a 

boy, and the chief was so elated that he built her 

a teepee made of buffalo hide. A few days later, 

the second squaw gave birth, and also had a boy. 

The chief was extremely happy; he built her a 

teepee made of antelope hide. The third squaw 

gave birth a few days later, but the chief kept the 

birth details a secret. 

He built the third wife a teepee out of hippo¬ 

potamus hide and challenged the people in the 

tribe to guess the details of the birth. Whoever in 

the tribe could guess correctly would receive a 

fine prize. Several people tried, but they were 

unsuccessful in their guesses. Finally, a young 

brave came forth and declared that the third wife 

had delivered twin boys. "Correct!" cried the 

chief. "But how did you know?” 

"It's simple," replied the warrior. "The value of 

the squaw of the hippopotamus is equal to the 

sons of the squaws of the other two hides." 

Other versions of joke 6 have different punch 

lines. There are bonus points if either of these 

punch lines make you smile: 

Joke 7 "The share of the hypertense muse equals the 2 points 

sum of the shares of the other two brides." 

Joke 8 "The squire of the high pot and noose is equal to 2 points 

the sum of the squires of the other two sides." 

TOTAL - 20 POINTS 
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While visiting Los Angeles in October 2012, I was lucky 

enough to attend a table-read of an upcoming episode of 

The Simpsons titled “Four Regrettings and a Funeral.” This involved 

the cast reading through the entire episode in order to iron out any 

problems before the script was finalized in preparation for animation. 

It was bizarre to see and hear a fully grown Yeardley Smith delivering 

lines with little Lisa’s voice. Similarly, I experienced extreme cognitive 

dissonance when I heard the voices of Homer, Marge, and Moe Szys- 

lak, whose tones and diction are so familiar from years of watching 

The Simpsons, emerge from the all-too-human forms of Dan Castel- 

laneta, Julie Kavner, and Hank Azaria. 

Although there is much else to appreciate in “Four Regrettings and 

a Funeral,” it is sadly lacking in mathematical references. However, 

that same day I was given a preliminary script for another upcoming 

episode, “The Saga of Carl,” which contained an entire scene dedi¬ 

cated to the mathematics of probability. 

“The Saga of Carl” opens with Marge dragging her family away 

from the television and taking them on an educational trip to the 

Hall of Probability at Springfield’s Science Museum. There, they 

watch a video introduced by an actor playing the role of Blaise Pascal 

(1623—62), the father of probability theory, and they also see an ex¬ 

perimental demonstration of probability theory known as the Galton 

board. This involves marbles rolling down a slope and ricocheting off 

a series of pins. At each pin, the marbles bounce randomly to the left 

or right, only to hit the next row of pins and be met by the same ran¬ 

dom opportunity. The marbles are finally collected in a series of slots 

and form a humped distribution. 

54 
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The Galton board was named after its English inventor, the polymath Francis 

Galton (1822-1911). The balls enter at the top, bounce off the pins, and fall to the 

bottom, where they form a so-called binomial distribution. A version of this classic 

probability experiment appears in "The Saga of Carl." 

Having only read the script, it was impossible for me to know how 

the Galton board would appear on screen. The only thing I could be 

sure of was that the humped distribution would be mathematically 

accurate, because one of the writers explained that the exact nature of 

the marble distribution had dominated one of the script redrafting 

sessions. According to Jeff Westbrook, he and a couple of other math¬ 

ematicians on the writing team argued about which probability equa¬ 

tion correctly describes the marble distribution, while the other 

writers stared in silence. “We were arguing about whether it should be 

Gaussian or Poisson,” recalled Westbrook. “In the end, I decided it all 

depends on how you model it, but essentially it’s the binomial distri¬ 

bution. Everyone else was kind of looking bored and rolling their 

eyes.” 

Westbrook majored in physics at Harvard, and then completed a 

highly mathematical PhD in computet science at Princeton University. 

His supervisor was Robert Tarjan, a world-famous computer scientist, 
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who in 1986 won the Turing Award, known as the Nobel Prize of 

computing. After finishing his PhD, Westbrook spent five years as an 

associate professor at Yale University and then joined AT&T Bell Lab¬ 

oratories. However, Westbrook loved slapstick and punnery as much as 

statistics and geometry, so he eventually left research and headed west 

to Los Angeles. 

His mother, who had always supported his ambition to become a 

researcher, initially labeled his move into comedy writing an “absolute 

crime.” Westbrook thinks his father, a mathematician, had similar 

reservations, but was too polite to voice them. His research colleagues 

were equally unsupportive. Westbrook still remembers his boss’s final 

words to him when he left AT&T Bell Labs: “Well, I understand why 

you’re doing it. I hope you fail because I would like you to come back 

here and work.” 

After hearing about his academic background, I wondered if West¬ 

brook was the most mathematically qualified of all the writers on The 

Simpsons. He had certainly climbed highest up the academic ladder, 

but perhaps others had written more research papers or collaborated 

with a wider range of mathematicians. In search of a metric for math¬ 

ematical magnificence, it struck me that one way to obtain a rating 

would be to apply a technique based on the notion of six degrees of 

separation. 

This is the idea that everyone in the world is connected to everyone 

else by a maximum of just six relationships. For example, I probably 

know someone, who knows someone, who knows someone, who 

knows someone, who knows someone, who knows you. This is the 

most general and best-known version of six degrees of separation, but 

the technique can be adapted to specific communities, such as math¬ 

ematicians. Hence, six degrees of separation can be used to identify 

who is well connected in the world of mathematics, and who, there¬ 

fore, might have the best mathematical credentials. It is not a perfect 

measurement, but it can offer some interesting insights. 

The mathematical version of six degrees of separation is called six 

degrees of Paul Erdos, named after the mathematician Paul Erdo's 

(1913-96). The goal is to find a connection between any given math- 
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ematician and Erdos, and mathematicians with closer connections are 

then ranked higher than those with more tenuous connections. But 

why is Erdos considered to be at the center of the mathematical uni¬ 

verse? 

Erdos holds this position because he was the most prolific mathe¬ 

matician of the twentieth century. He published 1,525 research pa¬ 

pers, which he wrote with 511 co-authors. This incredible achievement 

was made possible by Erdos’s eccentric lifestyle, which involved trav¬ 

eling from one campus to another, setting up shop with a different 

mathematician every few weeks, and writing research papers with 

each of them. Throughout his life, he was able to fit all his belongings 

into a single suitcase, which was very convenient for a nomadic math¬ 

ematician constantly on the road in search of the most interesting 

problems and the most fruitful collaborations. He fueled his brain 

with coffee and amphetamines in order to maximize his mathemati¬ 

cal output, and he often repeated a notion first posited by his col¬ 

league Alfred Renyi: “A mathematician is a machine for turning 

coffee into theorems.” 

In six degrees of Paul Erdos, connections are made via co-authored 

articles, typically mathematical research papers. Anybody who has 

co-authored a paper directly with Erdos is said to have an Erdos num¬ 

ber of 1. Similarly, mathematicians who have co-authored a paper 

with someone who has co-authored a paper with Erdos are said to 

have an Erdos number of 2, and so on. Via one chain or another, 

Erdos can be connected to almost any mathematician in the world, 

regardless of their field of research. 

Take Grace Hopper (1906-92) for example. She built the first com¬ 

piler for a computer programming language, inspired the develop¬ 

ment of the programming language COBOL, and popularized the 

term bug to describe a defect in a computer after finding a moth 

trapped in the Mark II computer at Harvard University. Hopper did 

much of her mathematics in industry or as a member of the United 

States Navy. Indeed, “Amazing” Grace Hopper was eventually pro¬ 

moted to rear admiral, and there is now a destroyer named the USS 

Hopper. In short, Hopper’s hardheaded, applied, technology-driven, 
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industrial, military mode of mathematics was utterly different from 

Erdos’s purist devotion to numbers, yet Hopper has an Erdos number 

of just 4. This is because she published papers with her doctoral su¬ 

pervisor 0ystein Ore, whose other students included the eminent 

group theorist Marshall Hall, who co-authored a paper with the dis¬ 

tinguished British mathematician Harold R. Davenport, who had 

published with Erdos. 

So, how does Jeff Westbrook rank in terms of his Erdos number? 

He started publishing research papers while working on his PhD in 

computer science at Princeton University. As well as writing his 1989 

thesis, titled “Algorithms and Data Structures for Dynamic Graph 

Algorithms,” he co-authored papers with his supervisor Robert Tar- 

jan. In turn, Tarjan has published with Maria Klawe, who collabo¬ 

rated with Paul Erdos. This gives Westbrook a very respectable Erdos 

number of just 3. 

However, this does not make him a clear winner among the writers 

on The Simpsons. David S. Cohen has published a paper with Manuel 

Blum, another Turing Award winner, who in turn has published a 

paper with Noga Alon at Tel Aviv University, who in turn published 

several papers with Erdos. Hence, Cohen can also claim an Erdos 

number of 3. 

In order to break the tie between Cohen and Westbrook, I decided 

to explore another facet of being a successful writer on The Simpsons, 

namely being well connected to the heart of the Hollywood enter¬ 

tainment industry. One approach to measuring where a person sits in 

the Hollywood hierarchy is to employ another version of six degrees 

of separation, which is known as six degrees of Kevin Bacon. The chal¬ 

lenge is to find an individual’s so-called Bacon number by linking him 

or her to Kevin Bacon through films. For example, Sylvester Stallone 

has a Bacon number of 2, because he appeared in Your Studio and You 

(1993) with Demi Moore, and she was in A Few Good Men (1992) 

with Kevin Bacon. 

So, which member of The Simpsons writing team has the lowest 

Bacon number, and therefore the best Hollywood credentials? That 
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honor belongs to the remarkable Jeff Westbrook. He got his break as 

an actor in the naval adventure Master and Commander: The Far Side 

of the World (2003). While the film was in production, the director 

advertised for experienced seamen of Anglo-Irish extraction to man 

the ships, and Westbrook volunteered because he was a keen sailor 

who fit the ethnic bill. As a result, he was given a minor role in the 

film alongside leading actor Russell Crowe. Crowe is important, be¬ 

cause he was in The Quick and the Dead (1993) with Gary Sinise, who 

co-starred with Bacon in Apollo 13 (1995). Hence, Westbrook has a 

Bacon number of 3, which puts him just behind Stallone. In short, he 

has impressive Hollywood credentials. 

Thus, Westbrook has both a Bacon number of 3 and an Erdos 

number of 3. It is possible to combine these numbers into a so-called 

Erdos-Bacon number of 6, which gives an indication of Westbrook’s 

overall connectivity in the worlds of both Hollywood and mathemat¬ 

ics. Although we have not yet discussed the Erdos-Bacon numbers for 

the rest of the writing team behind The Simpsons, I can confirm that 

none of them can beat Westbrook’s score. In other words, out of the 

entire gang of Tinseltown nerds, Westbrook is overall the tinseliest 

and the nerdiest.* 

• • • 

I first became aware of Erdos-Bacon numbers thanks to Dave Bayer, 

a mathematician at Colombia University. He was a consultant on the 

film A Beautiful Mind, based on Sylvia Nasar’s acclaimed biography 

of the mathematician John Nash, who had won the Nobel Prize in 

Economic Sciences in 1994. Bayer’s responsibilities included checking 

* I have, of course, looked at my own credentials. My Erdos number is 4 and my 

Bacon number is 2, which puts me on a par with Jeff Westbrook. Moreover, I also 

appear to have a Sabbath number, which is generated as a result of musical 

collaborations linking me to a member of the rock band Black Sabbath. Indeed, 

according to the Erdos Bacon Sabbath Project (http://ebs.rosschurchley.com), I have 

an Erdos-Bacon-Sabbath number of 10, giving me the world’s eighth-lowest Erdos- 

Bacon-Sabbath number, on a par with Richard Feynman, among others! 
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the equations that appeared on screen and acting as Russell Crowe’s 

hand double in the blackboard scenes. Bayer was also given a minor 

role toward the end of the film, when the Princeton mathematics 

professors offer their pens to Nash to acknowledge his great discover¬ 

ies. Bayer proudly explained: “In my scene, known as the Pen Cere¬ 

mony, I say, A privilege, professor.’ I’m the third professor to lay 

down a pen before Russell Crowe.” So, Bayer was in a Beautiful 

Mind, acting alongside Ranee Howard. In turn, Ranee Howard was 

in Apollo 13 with Kevin Bacon, which means that Bayer has a Bacon 

number of 2. 

As a highly respected mathematician, it is no surprise that Bayer 

has an Erdos number of 2, which gives him a combined Erdos-Bacon 

number of just 4. When A Beautiful Mind was released in 2001, Bayer 

claimed to have the world’s lowest Erdos-Bacon number. 

More recently, Bruce Reznick, a mathematician at the University 

of Illinois, has claimed an even lower Erdos-Bacon number. He co¬ 

authored a paper with Erdos, titled “The Asymptotic Behavior of a 

Family of Sequences,” which gives him an Erdos number of 1. Equally 

impressive is the fact that he had a very minor role in Pretty Maids All 

in a Row, a 1971 film written and produced by Gene Roddenberry, 

legendary creator of Star Trek. This teen slasher movie, which tells the 

story of a serial killer who hunts down his victims at Oceanfront High 

School, has a cast that includes Roddy McDowall, who was in The 

Big Picture (1989) with Kevin Bacon. This gives Reznick a Bacon 

number of 2, which means that he has an incredibly low Erdos-Bacon 

number of 3. 

So far, the record low Erdos-Bacon numbers have been posted by 

mathematicians venturing into acting, but some actors have dabbled 

in research and have thereby achieved respectable Erdos-Bacon num¬ 

bers. One of the most famous examples is Colin Firth, whose path to 

Erdos began when he was guest editor for BBC Radio 4’s Today pro¬ 

gram. For an item on the program, Firth asked neuroscientists Ger¬ 

aint Rees and Ryota Kanai to conduct an experiment to look at 

correlations between brain structure and political views. This led to 
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further research, and in due course the neuroscientists invited Firth 

to join them as co-author on a paper titled “Political Orientations 

Are Correlated with Brain Structure in Young Adults.” Although 

Rees is a neuroscientist, he has an Erdos number of 5, because of 

convoluted collaborations that ultimately link him to the world of 

mathematics. Having published with Rees, Firth can claim an Erdos 

number of 6. He also has a Bacon number of just 1, because he 

worked with Bacon on Where the Truth Lies (2005). This gives Firth 

an Erdos-Bacon number of 7—impressive, but a long way from 

Reznick’s record. 

Similarly, Natalie Portman is notable for having an Erdos-Bacon 

number. She conducted research while she was a student at Harvard 

University, which led to her becoming a co-author on a paper titled 

“Frontal Lobe Activation During Object Permanence: Data from 

Near-Infrared Spectroscopy.” However, she is not identified as Nata¬ 

lie Portman on any research databases, as she published under her 

birth name, Natalie Hershlag. One of the other co-authors was Abi¬ 

gail A. Baird, who has a link into mathematical research, which re¬ 

sults in her having an Erdos number of 4. This means Portman has 

an Erdos number of 5. Her Bacon number relies on a directorial 

credit for one of the segments in the anthology film New York, I Love 

You (2009). Some versions of the film contain a segment starring 

Kevin Bacon, so technically Portman has a Bacon number of 1. This 

gives Portman an Erdos-Bacon number of 6, which is low enough to 

beat Firth, but too high to offer any hope of a serious challenge to 

Reznick’s record. 

What about Paul Erdos? Surprisingly, he has a Bacon number of 

4, because he appeared in N Is a Number (1993), a documentary 

about his life, which also featured Tomasz Luczak, who was in The 

Mill and the Cross (2011) with Rutger Hauer, who was in Wedlock 

(1991) with Preston Maybank, who was in Novocaine (2001) with 

Kevin Bacon. His Erdos number, for obvious reasons, is 0, so Erdos 

has a combined Erdos-Bacon number of 4—not quite enough to 

match Reznick. 
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And, finally, what about Kevin Bacon’s Erdos-Bacon number? Ba¬ 

con, being Bacon, has a Bacon number of 0. As yet, he does not have 

an Erdos number. In theory, he might develop a passion for number 

theory and collaborate on a research paper with someone who already 

has an Erdos number of 1. This would give him an unbeatably low 

Erdos-Bacon number of 2. 
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When the Simpsons made their television debut as part of 

The Tracey Ullman Show, their individual personalities 

were not quite as developed as they are today. Indeed, when Nancy 

Cartwright, the voice of Bart Simpson, wrote a memoir titled My Life 

as a Ten-Year-Old Boy, she highlighted a major character flaw in Lisa: 

“She was just an animated eight-year-old kid who had no personality.” 

The description is harsh but fair. If Lisa had any personality in 

those early appearances, then it was merely as a watered-down female 

version of Bart; slightly less mischievous and just as bored with books. 

Nerdvana was the last thing on Lisa’s mind. 

However, as the launch of The Simpsons stand-alone series ap¬ 

proached, Matt Groening and his team of writers made a concerted 

effort to give Lisa a distinct identity. Her brain was reconfigured and 

she was reincarnated as an intellectual powerhouse, blessed with ad¬ 

ditional reserves of compassion and social responsibility. Cartwright 

neatly summarized the personality of her revamped fictional sister: 

“Lisa Simpson is the kind of child we not only want our children to 

be, but also the kind of child we want all children to be.” 

Although Lisa is a multitalented renaissance student, Principal 

Skinner acknowledges her special talent for mathematics in “Tree- 

house of Horror X” (1999). After a large of stack of bench seats falls 

on Lisa, he cries out: “She’s been crushed! . . . And so have the hopes 

of our mathletics team.” 

We see this gift for mathematics in action in “Dead Putting Society” 

(1990), an episode that revolves around Homer and Bart challenging 

0 
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Ned and Todd Flanders, their holier-than-thou neighbors, to a minia¬ 

ture golf tournament. In the buildup to the big match, Bart is strug¬ 

gling to develop his putting technique, so he turns to Lisa for advice. 

She should have suggested that Bart change his grip, because he is natu¬ 

rally left-handed, and throughout this episode he adopts a right-hand¬ 

er’s putting stance. Instead, Lisa focuses on geometry as the key to 

putting, because she can use this area of mathematics to calculate the 

ball’s ideal trajectory and guarantee Bart a hole in one every time. In a 

practice session, she successfully teaches Bart how to bounce the golf 

ball off five walls and into the hole, prompting Bart to say: “I can’t be¬ 

lieve it. You’ve actually found a practical use for geometry! ” 

It is a neat stunt, but the writers use Lisa’s character to explore 

deeper mathematical ideas “MoneyBART” (2010). In the opening 

scene of this episode, the glamorous Dahlia Brinkley is welcomed 

back to Springfield Elementary as the only student to have gone on to 

attend an Ivy League college. Not surprisingly, Principal Skinner and 

Superintendent Chalmers try to ingratiate themselves with Ms. Brin¬ 

kley, as do some of the students. This includes the usually philistine 

Nelson Muntz, who tries to impress Springfield’s most successful 

alumna by pretending to be Lisa’s friend. Feigning interest in Lisa’s 

mathematical aptitude, he encourages her to demonstrate her ability 

to Ms. Brinkley: 

Nelson: She can do the kind of math that has letters. Watch! 

What’s x, Lisa? 

Lisa: Well, that depends. 

Nelson : Sorry. She did it yesterday. 

During this encounter, Dahlia explains to Lisa that exam results 

will not be enough to get into the best universities, and that her own 

success was partly built on a wide range of extracurricular activities 

while at Springfield Elementary. Lisa mentions that she is treasurer of 

the jazz club and started the school’s recycling society, but Dahlia is 

not impressed: “Two clubs. Well, that’s a bridge bid, not an Ivy League 

application.” 



USA SIMPSON Queeti OF STATS A(sjp 3ATS ■ dy 

Meanwhile, Bart’s Little League baseball team, the Isotots, has lost 

its coach, so Lisa seizes the opportunity to improve her Ivy League 

credentials by taking charge. Although she has gained a new extracur¬ 

ricular activity, she realizes that she does not know the first thing 

about baseball, so she heads to Moe’s Tavern to ask Homer for advice. 

Rather than pass on his own expertise, Homer’s response is to point 

his daughter toward an unlikely quartet of geeks sitting in the corner. 

To Lisa’s surprise, Benjamin, Doug, and Gary from Springfield Uni¬ 

versity are having an intense discussion about the finer points of base¬ 

ball with Professor Frink. When Lisa asks why they are discussing 

sport, Frink explains that “baseball is a game played by the dexterous, 

but only understood by the Poindexterous. ”* 

In other words, Frink is stating that the only way to understand 

baseball is through deep mathematical analysis. He hands Lisa a stack 

of books to take away and study. As Lisa departs, Moe approaches the 

geeks and bemoans the fact that they are not drinking any beer: “Oh, 

why did I advertise my drink specials in Scientific American?” 

Lisa follows Frink’s advice. Indeed, a reporter spots her poring over 

piles of technical books immediately prior to her first game in charge 

of the Isotots. This extraordinary sight prompts him to remark: “I 

haven’t seen this many books in a dugout since Albert Einstein went 

canoeing.” 

Lisa’s books have titles such as elK + 1 = 0, F= MA, and Schroding- 

er’s Bat. Although these titles are fictional, the book tucked below 

Lisa’s laptop is The Bill James Historical Baseball Abstract, which is a 

real catalog of the most important statistics in baseball, compiled by 

one of baseball’s deepest thinkers. 

Bill James has come to be revered in the worlds of both baseball 

and statistics, but his research in these areas did not begin within the 

sports establishment or in the ivory towers of academia. Instead, his 

initial and greatest insights came to him during long and lonely nights 

* Remember, Poindexter was the boy genius from Felix the Cat who inspired the 

name poindextrose, given to the pheromone discovered by Lisa in the episode “Bye, 

Bye, Nerdie” (2010). 
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Lisa surrounded by books, including The Bill James Historical Baseball Abstract. 

as a night watchman at a pork and beans factory owned by Stokely— 

Van Camp, one of America’s venerable canning companies. 

While protecting the nation’s supply of pork and beans, James 

sought out truths that had eluded previous generations of baseball 

aficionados. Gradually, he came to the conclusion that the statistics 

being used to assess the strength of individual baseball players were 

sometimes inappropriate, occasionally poorly understood, and, worst 

of all, often misleading. For example, the headline statistic for assess¬ 

ing the performance of a fielder was the number of errors made: the 

fewer the errors, the better the fielder. This seems obviously sensible, 

but James had doubts about the validity of the error statistic. 

To appreciate James’s concerns, imagine that a batter has hit a ball into 

the air far from any fielders. A speedy fielder dashes fifty yards, gets to the 

ball just in time, but fumbles the catch. This is marked down as an error. 

Later in the game, a sluggish fielder is faced with the same scenario, but he 

is unable to reach halfway to where the ball lands and has no hope of even 

attempting a catch. Crucially, this is not marked down as an error, because 

the fielder did not fumble or drop the ball. 
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Based on this information alone, which player would you prefer to 

have on your team? The obvious answer is the faster player, because 

next time he might make the catch, whereas the slower player will 

always be too slow to have any chance of doing something useful in 

this scenario. 

However, according to the error statistics, the faster player made an 

error, while the slower player did not. So, if we were to pick a player 

based on the error statistics alone, then we would pick the wrong 

player. This was the sort of statistic that kept James awake at night. It 

had the potential to give a false impression of a player’s performance. 

Of course, James was not the first person to be concerned about the 

abuse and misuse of statistics. Mark Twain famously popularized the 

statement: “There are three kinds of lies: lies, damned lies, and statis¬ 

tics.” In a similar vein, the chemist Fred Menger wrote: “If you tor¬ 

ture data sufficiently, it will confess to almost anything.” However, 

James was convinced that statistics could be a great force for good. If 

only he could identify the right set of statistics and interpret them 

correctly, he believed he would gain a profound insight into the true 

nature of baseball. 

Each night he would stare at the data, jot down some equations, 

and test various hypotheses. Eventually, he began to develop a useful 

statistical framework and he organized his theories into a slim pam¬ 

phlet titled 1977 Baseball Abstract: Featuring 18 Categories of Statisti¬ 

cal Information That You Just Can’t Find Anywhere Else. He advertised 

it in the Sporting News and was able to sell seventy-five copies. 

The sequel, 1978 Baseball Abstract, contained forty thousand statis¬ 

tics and was more successful, selling 250 copies. In his 1979 Baseball 

Abstract, James explained his motivation for publishing all these sta¬ 

tistics: “I am a mechanic with numbers, tinkering with the records of 

baseball games to see how the machinery of baseball offense works. I 

do not start with the numbers any more than a mechanic starts with 

a monkey wrench. I start with the game, with the things that I see 

there and the things that people say there. And I ask: Is it true? Can 

you validate it? Can you measure it?” 

Year after year, James witnessed a growing readership for his 



FURTHER OBSERVATIONS ABOUT THE MURRV 
WORlP OF STATISTICS 

"He uses statistics as a drunken man uses a lamppost—for support rather than 

illumination." —Andrew lang 

"42.7 percent of all statistics are made up on the spot." —STEVEN WRIGHT 

"Giving a school man only a little, or very superficial, knowledge of statistics is 

like putting a razor in the hands of a baby." —CARTER ALEXANDER 

"Then there is the man who drowned crossing a stream with an average depth 

of six inches." —W. I. E. gates 

“I always find that statistics are hard to swallow and impossible to digest. The 

only one I can ever remember is that if all the people who go to sleep in 

church were laid end to end they would be a lot more comfortable." 

— MRS. MARTHA TAFT 

"The average human has one breast and one testicle." —des machale 

While heading to a conference on board a train, three statisticians meet three 

biologists. The biologists complain about the cost of the train fare, but the 

statisticians reveal a cost-saving trick. As soon as they hear the inspector's 

voice, the statisticians squeeze into the toilet. The inspector knocks on the toilet 

door and shouts: "Tickets, please!" The statisticians pass a single ticket under 

the door, and the inspector stamps it and returns it. The biologists are im¬ 

pressed. Two days later, on the return train, the biologists showed the statisti¬ 

cians that they have bought only one ticket, but the statisticians reply: “Well, 

we have no ticket at all." Before they can ask any questions, the inspector's 

voice is heard in the distance. This time the biologists bundle into the toilet. 

One of the statisticians secretly follows them, knocks on the toilet door and 

asks: "Tickets please!" The biologists slip the ticket under the door. The statisti¬ 

cian takes the ticket, dashes into another toilet with his colleagues, and waits 

for the real inspector. The moral of the story is simple: "Don’t use a statistical 

technique that you don't understand." —anonymous 
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Baseball Abstract, as like-minded number crunchers realized that they 

had discovered a guru. The novelist and journalist Norman Mailer 

became a fan, as did the baseball fanatic and actor David Lander, who 

played Squiggy on the TV show Laverne and Shirley. One of James’s 

youngest fans was Tim Long, who would go on to join the writing 

team of The Simpsons, write the script for “MoneyBART,” and feature 

a copy of one of James’s books alongside Lisa Simpson. 

According to Long, James was his hero as a teenager: “I loved cal¬ 

culus in high school and I was a baseball fan. My dad and I bonded 

over baseball. However, baseball was nothing but folk wisdom in 

terms of how it was managed, so I liked the idea of a guy who came 

along with numbers to disprove a lot of folk wisdom. I was a huge fan 

of Bill James when I was fourteen.” 

Among James’s most avid followers were mathematicians and com¬ 

puter programmers, who were not only absorbing his discoveries but 

also developing their own insights. Pete Palmer, for example, was a 

computer programmer and systems engineer at a radar base in the 

Aleutian Islands, keeping an eye on the Russians. This was the high- 

tech equivalent of being the night watchman at a pork and beans 

factory, and just like James, he would think about baseball stats while 

he was working late into the night. In fact, he had been fascinated by 

the subject since childhood, when he had obsessively compiled base¬ 

ball records on his mother’s typewriter. One of his most important 

contributions was to develop a new statistic known as the on-base plus 

slugging percentage (OPS), which encapsulated two of the most desir¬ 

able qualities in a batter, namely the ability to smash a ball out of the 

park and the less glamorous knack of being able to get on base. 

To give you a sense of how Palmer used mathematics to assess bat¬ 

ters, the full-blooded formula for OPS is shown on the next page. The 

first component of OPS is slugging percentage (SLG), which is simply 

a player’s total number of bases divided by the number of at-bats. The 

second component is on-base percentage (OBP), which we will discuss 

later when we return to “MoneyBART,” because Lisa Simpson refers 

to OBP when picking her team. 
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The formula for OPS, which was first popularized in the book The Hidden 

Game of Baseball, which Palmer co-wrote with baseball historian John Thorn. 

Please do not feel guilty if you want to skip over this minefield of mathematics 

OPS = SLG + OBP 

H + BB + HBP 
OBP =- 

AB + BB + SF + HBP 

Therefore, 

AB x (H + BB + HBP) + TB x (AB + BB + SF + HBP) 
OPS =- 

ABx (AB + BB + SF + HBP) 

OPS = on-base plus slugging H = hits AB =at-bats 

OBP = on-base percentage BB = base on balls SF = sacrifice flies 

SLG = slugging percentage HBP = times hit by pitch TB = total bases 

and baseball jargon. 

TB 
SLG = — 

AB 

Like Palmer and James, Richard Cramer was another part-time 

amateur statistician who would use mathematics to explore baseball. 

As a researcher with the pharmaceutical company SmithKline, Cra¬ 

mer had access to considerable computing power, which was supposed 

to be used to help develop new drugs. Instead, Cramer left the com¬ 

puters running overnight in order to tackle questions in baseball, such 

as whether or not clutch hitters are a real phenomenon. A clutch hitter 

is a player who has the special ability of excelling when his team is 

under the most pressure. Typically, the clutch hitter delivers a big hit 

when his team is on the verge of losing, particularly in a big game 

situation. Commentators and pundits have sworn for decades that 

such players exist, but Cramer decided to check: Do clutch hitters re¬ 

ally exist, or are they merely the result of selective recall? 

Cramer’s approach was simple, elegant, and entirely mathematical. 

He would measure players’ performances in ordinary games and in 

high-pressure situations during a particular season—Cramer chose 
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the 1969 season. A few players did seem to excel at key moments, but 

was that due to some innate superpower that kicked in when they 

were under pressure, or was it simply a fluke? The next stage of Cra¬ 

mer’s analysis was to perform the same calculations for the 1970 sea¬ 

son; if clutch hitting was a genuine skill possessed by special players, 

then the clutch hitters in 1969 would surely also be clutch hitters in 

1970. On the other hand, if clutch hitting was a fluke, then the sup¬ 

posed clutch hitters of 1969 would be replaced by a new bunch of 

lucky clutch hitters in 1970. Cramer’s calculations demonstrated that 

there was no significant relationship between the two sets of clutch 

hitters across the two seasons. In other words, supposed clutch hitters 

in one season could not maintain their performance. They were not 

particularly clutchy, just lucky. 

In his 1984 Baseball Abstract, James explained that he was not sur¬ 

prised: “How is it that a player who possesses the reflexes and the 

batting stroke and the knowledge and the experience to be a .262 

hitter in other circumstances magically becomes a .300 hitter when 

the game is on the line? How does that happen? What is the process? 

What are the effects? Until we can answer those questions, I see little 

point in talking about clutch ability.” 

Derek Jeter, who is nicknamed “Captain Clutch” thanks to his 

batting performances with the New York Yankees, vehemently dis¬ 

agreed with the statisticians. In an interview with Sports Illustrated, he 

said: “You can take those stats guys and throw them out the window.” 

Unfortunately, Jeter’s own figures supported James’s conclusion. Aver¬ 

aged across thirteen seasons, Jeter’s batting average/on-base percent¬ 

age/slugging percentage stats were .317/.388/.462 in regular season 

games, and .309/.377/.469 (marginally worse) in crucial playoff 

games. 

Of course, all new mathematical disciplines need names, and in due 

course this empirical, objective, and analytical approach to under¬ 

standing baseball became known as sabermetrics. The term, coined by 

James, has it root in SABR, the acronym for the Society for American 

Baseball Research, an organization set up to foster research into all 

areas of baseball, such as the history of the game, baseball in relation 
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to the arts, and women in baseball. For two decades, the baseball es¬ 

tablishment largely ignored and sometimes even mocked James and 

his growing band of sabermetric colleagues. However, sabermetrics 

was eventually vindicated, when one team was brave enough to apply 

it in the most ruthless manner possible and prove that it held the secret 

to baseball success. 

In 1995, the Oakland Athletics baseball team was purchased by 

Steve Schott and Ken Hofmann, two property developers who made 

it clear from the outset that the team’s budget had to be slashed. 

When Billy Beane became general manager in 1997, the Athletics 

were notorious for having the lowest payroll in Major League Base¬ 

ball. Without money, it dawned on Beane that his only hope of win¬ 

ning a decent number of games was to rely on statistics. In other 

words, he would use mathematics to outsmart his wealthier rivals. 

A devotee of Bill James, Beane showed his faith in statistics by hir¬ 

ing a stats-obsessed Harvard economics graduate, Paul DePodesta, as 

his assistant. In turn, DePodesta hired more statistical obsessives, 

such as Ken Mauriello and Jack Armbruster, a pair of financial ana¬ 

lysts who left Wall Street and set up a baseball stats company called 

Advanced Value Matrix Systems. They analyzed the data from each 

individual play across hundreds of past games in order to judge the 

exact contribution of each pitcher, fielder, and hitter. Their algorithms 

minimized the haphazard influence of luck and effectively placed a 

dollar figure on every player on every team. This gave Beane the in¬ 

formation he needed to acquire undervalued players. 

He soon realized that the best bargains appeared on the market at 

midseason, when teams that were no longer capable of winning their 

league would cut their losses by selling off players. The law of supply 

and demand dictated a drop in prices, and Beane was able to use 

statistics to pinpoint excellent players who had gone unnoticed 

within struggling teams. Sometimes DePodesta recommended trades 

or acquisitions that seemed crazy to the traditionalists, but Beane 

rarely doubted his advice. Indeed, the crazier the deal, the bigger the 

opportunity to acquire an undervalued player. The power of DePod- 

esta’s mathematics and the resulting midseason deals was already 
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clear by 2001. The Oakland As won only 50 percent of their 81 

games in the first half of that season; that increased to 77 percent in 

the second half of the season, and they finished second in the Amer¬ 

ican League West. 

This dramatic stats-based improvement was later documented in 

Moneyball, a book by the journalist Michael Lewis, who followed 

Beane’s adventures with sabermetrics over the course of several sea¬ 

sons. Of course, the title of the episode of The Simpsons in which Lisa 

becomes a baseball coach, “MoneyBART,” is based on the title of 

Lewis’s book. Moreover, in the picture on page 66, the third book 

below Lisa’s computer is Moneyball. Hence, we can be sure that Lisa 

is fully aware of Billy Beane and his commitment to implementing 

sabermetrics in its purest form. 

Unfortunately, Beane lost three of his key players to the New York 

Yankees at the end of the 2001 season. The Yankees could simply af¬ 

ford to sabotage their rivals by buying up the talent; the Yankees’ 

payroll was $125 million, whereas bargain basement teams like the 

Oakland A’s were forced to survive on $40 million. Lewis described 

the situation thus: “Goliath, dissatisfied with his size advantage, has 

bought David’s sling.” 

Hence, the 2002 season got off to a bad start for the Athletics, yet 

again. However, DePodesta’s computer highlighted some cheap mid¬ 

season deals that more than compensated for those players lost to the 

Yankees. In fact, sabermetrics resulted in the Oakland A’s finishing 

on top of the American League West after completing a remarkable 

late-season winning streak of twenty games in a row, which broke the 

American League record. This was the ultimate victory of logic over 

dogma. Sabermetrics had resulted in arguably the greatest achieve¬ 

ment in baseball in modern times. 

When Lewis published Moneyball the following year, he admitted 

that he had occasionally doubted Beane’s reliance on mathematics: 

“My problem can be simply put: every player is different. Every player 

must be viewed as a special case. The sample size is always one. 

[Beane’s] answer is equally simple: baseball players follow similar pat¬ 

terns, and these patterns are etched in the record books. Of course, 
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every so often some player may fail to embrace his statistical destiny, 

but on a team of twenty-five players the statistical aberrations will 

tend to cancel each other out.” 

Moneyball brought Beane to public attention as the maverick hero 

who had enough confidence in sabermetrics to challenge baseball’s 

orthodoxy. He also gained admirers in other sports, such as soccer, as 

discussed in appendix 1. Even those who were not sports fans became 

aware of Beane’s success when Hollywood released Moneyball, an 

Oscar-nominated film based on Lewis’s book, starring Brad Pitt as 

Billy Beane. 

Naturally, Beane’s success persuaded rival teams to adopt Oak¬ 

land’s approach and hire sabermetricians. The Boston Red Sox hired 

Bill James prior to the 2003 season, and a year later the father of sa¬ 

bermetrics helped the team win the World Series for the first time in 

eighty-six years, breaking the so-called Curse of the Bambino. Even¬ 

tually, full-time sabermetricians were also hired by the Los Angeles 

Dodgers, New York Yankees, New York Mets, San Diego Padres, St. 

Louis Cardinals, Washington Nationals, Arizona Diamondbacks, 

and Cleveland Indians. However, one baseball team has surpassed all 

these in terms of proving the power of mathematics, namely the 

Springfield Isotots led by Lisa Simpson. 

In “MoneyBART,” when Lisa leaves Moe’s Tavern* armed with 

books about mathematics, she is determined to employ statistics to 

help the Isotots win. Sure enough, she successfully uses spreadsheets, 

computer simulations, and detailed analysis to transform the Isotots 

from “cellar dwellers” into the second-best team in the league behind 

Capital City. However, when Lisa tells Bart not to swing at anything 

in a game against Shelbyville, he disobeys her instructions . . . and 

wins the game. According to Lisa, however, Bart’s home run was just 

a fluke. Indeed, she feels that such insubordination could potentially 

undermine her statistical strategy and destroy the team’s future hopes. 

* Incidentally, when Lisa is in Moe’s Tavern talking to Professor Frink, he uses his 

laptop to show her an online video of Bill James, voiced by the real Bill James. 
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Hence, she throws Bart off the team, because “he thought he was bet¬ 

ter than the laws of probability.” 

Having noted that Nelson Muntz has the highest on-base percent¬ 

age, Lisa follows the tenets of sabermetrics and makes him the new 

lead-off hitter, whose most important task is to get on base. Lisa 

clearly agrees with her fellow sabermetrician Eric Walker, who views 

the significance of on-base percentage as follows: “Simply yet exactly 

put, it is the probability that the batter will not make an out. When 

we state it that way, it becomes, or should become, crystal clear that 

the most important isolated (one-dimensional) offensive statistic is 

the on-base percentage. It measures the probability that the batter will 

not be another step toward the end of the inning.” 

Sure enough, thanks to Lisa’s knowledge of on-base percentage, the 

Isotots continue their winning streak. One commentator declares her 

success as “a triumph of number crunching over the human spirit.” 

The Isotots duly make it to the Little League State Championship, 

where they play Capital City. Unfortunately, one of her players, Ralph 

Wiggum, is incapacitated by a juice overdose, so Lisa is forced to ask 

Bart to return to the team. He accepts the invitation with reluctance, 

because he knows that he will be faced with a dilemma: Does he fol¬ 

low his instinct or follow Lisa’s mathematically based tactics? With 

Capital City leading the Isotots 11—10 in the ninth and final inning, 

Bart again decides to disobey Lisa. This time he makes the final out 

and the Isotots lose, all because of Bart’s failure to follow the saber- 

metric gospel. 

Although the episode ends with Lisa and Bart reconciled, the sib¬ 

lings clearly have two entirely different philosophies. According to 

Lisa, baseball demands to be analyzed and understood, whereas Bart 

believes the sport is all about instinct and emotion. These views mir¬ 

ror a bigger argument about the role of mathematics and science. 

Does analysis destroy the intrinsic beauty of the world around us, one 

might ask, or does it make the world even more beautiful? In many 

ways, Bart’s attitude encapsulates the views expressed by the English 

Romantic poet John Keats: 
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Do not all charms fly 

At the mere touch of cold philosophy? 

There was an awful rainbow once in heaven: 

We know her woof her texture; she is given 

In the dull catalogue of common things. 

Philosophy will clip an Angel’s wings, 

Conquer all mysteries by rule and line. 

Empty the haunted air, and gnomed mine— 

Unweave a rainbow, as it erewhile made 

The tender-person’d Lamia melt into a shade. 

These lines are from a poem titled “Lamia,” the name of a child¬ 

eating demon from Greek mythology. In the context of the nineteenth 

century, Keats’s use of the word philosophy included the concepts of 

mathematics and science. He is arguing that mathematics and science 

dissect and unpick the elegance of the natural world. Keats believes 

that rational analysis will “unweave a rainbow,” thereby destroying its 

inherent beauty. 

By contrast, Lisa Simpson would argue that such analysis turns the 

sight of a rainbow into an even more exhilarating experience. Perhaps 

Lisa’s worldview was best articulated by the physicist and Nobel laure¬ 

ate Richard Feynman: 

I have a friend who’s an artist and he’s sometimes taken a view 

which I don’t agree with very well. He’ll hold up a flower and say, 

“Look how beautiful it is,” and I’ll agree, I think. And he says— 

“you see, I as an artist can see how beautiful this is, but you as a 

scientist, oh, take this all apart and it becomes a dull thing.” And 

I think that he’s kind of nutty. First of all, the beauty that he sees 

is available to other people and to me, too, I believe, although 

I may not be quite as refined aesthetically as he is . . . I can 

appreciate the beauty of a flower. At the same time I see much 

more about the flower than he sees. I could imagine the cells in 

there, the complicated actions inside which also have a beauty. I 

mean it’s not just beauty at this dimension of one centimeter; 
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there is also beauty at a smaller dimension, the inner structure. 

Also the processes, the fact that the colors in the flower evolved in 

order to attract insects to pollinate it is interesting—it means that 

insects can see the color. It adds a question: Does this aesthetic 

sense also exist in the lower forms? Why is it aesthetic? All kinds 

of interesting questions, which shows that a science knowledge 

only adds to the excitement and mystery and the awe of a flower. 

It only adds; I don’t understand how it subtracts. 



CHAPTER 7 
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n “They Saved Lisa’s Brain” (1999), Lisa’s mathematical talents and 

general brilliance earn her an invitation to join the local chapter of 

Mensa, the society for people with high IQ. Her membership coin¬ 

cides with Mensa members taking control of Springfield after Mayor 

Quimby flees to avoid accusations of corruption. It seems like a great 

opportunity for Springfield to grow and prosper under the guidance 

of the community’s smartest men, women, and child. 

Unfortunately, a high IQ does not automatically equate to wise 

leadership. For example, one of the more absurd decisions of Spring¬ 

field’s new leaders is to adopt a metric time system, something akin to 

the French model that was tried in 1793. The French thought it was 

mathematically appealing to have a day with ten hours, each hour 

containing one hundred minutes, and each minute containing one 

hundred seconds. Although the French abandoned the system in 

1805, Principal Skinner proudly boasts in this episode: “Not only are 

the trains now running on time, they’re running on metric time. Re¬ 

member this moment, people: 80 past 2 on April 47th.” 

Comic Book Guy, a fan of Star Trek, makes the proposal to limit 

sex to only once every seven years. It is an attempt to mimic Ponfarr, 

a phenomenon whereby Vulcans go into heat every seven years. Sub¬ 

sequent decrees, such as a broccoli juice program and a plan to build 

a shadow-puppet theater (both Balinese and Thai), eventually cause 

the decent citizens of Springfield to rebel against the intellectual elite. 

Indeed, as the episode reaches its finale, the revolting masses focus 

their anger on Lisa, who is only saved when none other than Professor 

Stephen Hawking arrives in the nick of time to rescue her. Although 

we associate Hawking with cosmology, he spent thirty years as the 

7* 
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Lucasian Professor of Mathematics at the University of Cambridge, 

which makes him the most famous mathematician to have appeared 

on The Simpsons. However, not everyone recognizes Hawking when 

he arrives in his wheelchair. When Hawking points out that the 

Mensa members have been corrupted by power, Homer says: “Larry 

Flynt is right! You guys stink!”* 

The writers had been anxious to persuade Professor Hawking to 

make a guest appearance in this particular episode, because the plot 

required a character who was even smarter than all Springfield’s 

Mensa members put together. The professor, who had been a fan of 

the series for many years, was already planning to visit America, so 

immediately his schedule was rejigged to allow him to visit the studios 

and attend a voice-recording session. Everything seemed in place for 

Hawking to make his guest appearance on The Simpsons, until his 

wheelchair had a bout of stage fright and suffered a major breakdown 

forty-eight hours before he was supposed to fly from Monterey to Los 

Angeles. Hawking’s graduate assistant, Chris Burgoyne, fixed the 

glitch, but only after working for 36 hours through the night and into 

the next day. 

Once Hawking arrived at the recording studio, the writers waited 

patiently as every script line was keyed into his computer. The only 

remaining problem occurred when the voice synthesizer struggled to 

deliver the line that describes Hawking’s disappointment at the way 

Springfield was being governed: “I wanted to see your utopia, but now 

I see it is more of a Fruitopia.” The computer’s dictionary did not 

contain this American fruit-flavored drink, so Hawking and the team 

had to figure out how to construct Fruitopia phonetically. Comment¬ 

ing later on the episode, writer Matt Selman recalled: “It’s good to 

know that we were taking the most brilliant man in the world and 

using his time to record Fruitopia in individual syllables.” 

The most memorable aspect of Hawking’s appearance in “They 

Saved Lisa’s Brain” concerns the manner in which he rescues Lisa 

* Larry Flynt is an American publisher of pornography. An assassination attempt in 

1978 left him paralyzed from the waist down and wheelchair-bound. 
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from the mob. His wheelchair deploys a helicopter rotor, and he 

whisks Lisa off to safety. Presumably he realizes that Lisa is capable of 

achieving great things in the future and he wants her to fulfill her 

academic potential. Indeed, we can be sure that Lisa will be successful 

at university, because we catch a glimpse of Lisa’s destiny in “Future- 

Drama” (2005). The storyline relies on a gadget invented by Professor 

Frink, which allows people to look into the future. Lisa sees that she 

will graduate two years early and win a scholarship to Yale. Frink’s 

gadget also reveals that women will dominate science and mathemat¬ 

ics in the decades ahead, so much so that some subjects are given more 

appropriate names. We see Lisa deciding whether to study galgebra or 

femistry. 

The overt support for women in mathematics and science in “Fu¬ 

ture-Drama” was largely prompted by a news story that had broken 

while the script was being written. In January 2005, Lawrence Sum¬ 

mers, president of Harvard University, made some controversial com¬ 

ments at a conference titled Diversifying the Science & Engineering 

Workforce. In particular, Summers theorized about why women were 

underrepresented in academia, stating that “in the special case of sci¬ 

ence and engineering, there are issues of intrinsic aptitude, and par¬ 

ticularly of the variability of aptitude, and that those considerations 

are reinforced by what are in fact lesser factors involving socialization 

and continuing discrimination.” 

Summers was speculating that the spread of ability was broader 

among men compared to women, which would result in more men 

and fewer women being spectacularly high achievers in science and 

engineering. Not surprisingly, his theory provoked an enormous 

backlash, partly because many felt that such comments from a high- 

profile figure in academia would discourage young women from pur¬ 

suing careers in mathematics and science. The controversy contributed 

to Summers’s resignation the following year. 

The writers of The Simpsons were pleased that they could make a 

passing topical reference to the Summers incident in “Future-Drama,” 

but they were keen to more fully explore the question of women in 

mathematics and science, so they returned to the subject the following 
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year and tackled it in an episode titled “Girls Just Want to Have Sums” 

(2006). 

The episode starts with a performance of Stab-A-Lot: The Itchy & 

Scratchy Musical* After a series of inevitably macabre songs, there is a 

standing ovation and the director, Juliana Krellner, appears on stage 

to take a bow. Next to her is Principal Skinner, who proudly reveals 

that Krellner used to be a student of Springfield Elementary School: 

Skinner: 

Juliana: 

Skinner: 

Skinner: 

Juliana: 

Skinner: 

You know, Juliana, it’s no surprise you became such a 

success. You always got straight As in school. 

Well, I remember getting a B or two in math. 

Well, of course you did. You are a girl. 

[Audience gasps.] 

All I meant was, from what I’ve seen, boys are better 

at math, science, the real subjects. 

[To audience] Calm down, calm down. I’m sure 

Principal Skinner didn’t mean girls are inherently 

inferior. 

No, of course not. I don’t know why girls are worse. 

Principal Skinner then becomes the subject of a hate campaign 

and, despite his best efforts to make amends, he only stirs up further 

controversy. Eventually, Skinner is replaced by a radically progressive 

educationalist, Melanie Upfoot, who decides to protect Springfield’s 

girls against prejudice by placing them in a separate school. At first, 

Lisa relishes the idea of an educational system that will allow girls to 

flourish, but the reality is that Ms. Upfoot wants to indoctrinate her 

girls with a form of mathematics that is supposedly both feminine 

and feminist. 

According to Ms. Upfoot, girls should be taught mathematics in a 

* The musical is a spin-off from The Itchy and Scratchy Show, a cartoon watched by 

Bart and Lisa. The origins of Itchy and Scratchy can be traced back to a young Matt 

Groening watching Disney’s 101 Dalmatians, in which there is a scene showing the 

puppies watching television. Decades later, Groening wanted to recreate the idea of a 

cartoon within a cartoon. 
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much more emotional manner: “How do numbers make you feel? 

What does a plus sign smell like? Is the number 7 odd, or just differ¬ 

ent?” After becoming frustrated by her new teachers approach to nu¬ 

meracy, Lisa asks if the girls’ class is ever going to tackle any real 

mathematical problems. Ms. Upfoot replies: “Problems? That’s how 

men see math, something to be attacked—something to be figured 

out.” 

This division between feminine and masculine mathematics is 

only fictional, but it echoes a real trend in recent decades toward 

touchy-feely mathematics for both boys and girls. Many members of 

the older generation are concerned that today’s students are not being 

stretched in terms of tackling traditional problems, but instead are 

being spoon-fed a more trivial curriculum. This concern has given 

rise to a spoof history of mathematics education known as “The Evo¬ 

lution of a Mathematical Problem”: 

i960: 

A lumberjack sells a truckload of lumber for $100. His cost of 

production is 4/5 of this price. What is his profit? 

1970: 

A lumberjack sells a truckload of lumber for $100. His cost of 

production is 4/5 of this price, or in other words $80. What is his 

profit? 

1980: 

A lumberjack sells a truckload of wood for $100. His cost of 

production is $80, and his profit is $20. Your assignment: Under¬ 

line the number 20. 

1990: 

By cutting down beautiful forest trees, a lumberperson makes 

$20. What do you think of his or her way of making a living? In 

your group, discuss how the forest birds and squirrels feel, and 

write an essay about it. 
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Desperate for some real mathematics, Lisa sneaks out of her class 

and peers in through the window of the boys’ school, where she 

glimpses a traditional geometry problem on the blackboard. It is not 

long before she is caught spying and escorted back to the girls’ school, 

and once again she is fed a diet of diluted arithmetic gruel. 

It is the final straw. When she returns home that afternoon, Lisa 

asks her mother to help her disguise herself as a boy so that she can 

attend the boys’ school and participate in their lessons under the iden¬ 

tity of Jake Boyman. The storyline mirrors the plot of Yentl, in which 

a young orthodox Jewish girl cuts her hair and dresses as a man in 

order to study the Talmud. 

Unfortunately, dressing as a boy is not enough. Lisa soon finds out 

that, in order to be accepted by her new classmates, she has to start 

behaving like a stereotypical boy. This flies in the face of everything 

she values. Ultimately, she is even willing to bully Ralph Wiggum, 

one of the most innocent pupils in her class, just to earn the approval 

of the notorious bully Nelson Muntz. 

Lisa resents having to behave like a boy to get a decent education, 

but continues with her plan in order to study mathematics and prove 

that girls are just as good as boys. Her determination pays off: Lisa 

not only excels academically, she also receives the award for Out¬ 

standing Achievement in the Field of Mathematics. The award is pre¬ 

sented to her at a joint assembly for boys and girls, and Lisa uses this 

opportunity to reveal her true identity, and proclaims: “That’s right, 

everyone! The best math student in the whole school is a girl!” 

Dolph Starbeam, who usually hangs out with fellow school bullies 

Kearney Zzyzwicz, Jimbo Jones, and Nelson Muntz, shouts: “We’ve 

been Yentled!” 

Bart also stands up and declares: “The only reason Lisa won is 

because she learned to think like a boy; I turned her into a burping, 

farting, bullying math machine.” 

As the episode reaches its climax, Lisa continues with her speech: 

“And I did get better at math, but it was only by abandoning every¬ 

thing I believed in. I guess the real reason we don’t see many women 

in math and science is . . .” 
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And at that very moment, the school’s music teacher cuts her off 

midsentence in order to introduce Martin Prince playing the flute. In 

this way, the writers sneakily sidestepped having to confront this con¬ 

troversial issue. 

When I met writers Matt Selman and Jeff Westbrook, they both 

recalled that it was almost impossible to find a satisfactory ending to 

the episode, because there is no easy way to explain why women con¬ 

tinue to be underrepresented in many areas of mathematics and sci¬ 

ence. They did not want to deliver a simplistic or glib conclusion. 

Neither did they want to find themselves in, as Selman described it, 

“Skinner-like trouble.” 

The storyline of “Girls Just Want to Have Sums” mirrors not only the 

plot of Yentl, but also the life of the famous French mathematician 

Sophie Germain. Incredibly, the facts of Germain’s battle against sex¬ 

ism are even stranger than the fictional narratives of Lisa and Yentl. 

Born in Paris in 1776, Germain’s obsession with mathematics be¬ 

gan when she chanced upon Jean-Etienne Montucla’s Histoire des 

Mathematiques (History of Mathematics). In particular, she was struck 

by his essay on the extraordinary life and tragic death of Archimedes. 

Legend has it that Archimedes was busy drawing geometric figures in 

the sand when the Roman army invaded Syracuse in 212 b.c. Indeed, 

he was so obsessed with analyzing the mathematical properties of his 

shapes in the sand that he ignored an approaching Roman soldier 

who was demanding his attention. Offended by the apparent rude¬ 

ness, the soldier raised his spear and stabbed Archimedes to death. 

Germain found the story inspiring; mathematics had to be the most 

fascinating subject if it could spellbind someone to such an extent that 

he might ignore threats to his own life. 

As a result, Germain began to study mathematics all day and even 

through the night. According to a family friend, her father confis¬ 

cated her candles to discourage her from studying when she should 

have been sleeping. In due course, Sophie’s parents relented. Indeed, 

when they accepted that she would not marry, but instead would de- 
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vote her life to mathematics and science, they introduced her to tutors 

and supported her financially. 

At the age of twenty-eight, Germain decided that she wanted to 

attend the newly opened Ecole Polytechnique in Paris. The stumbling 

block was that this prestigious institution would only admit male stu¬ 

dents. However, Germain found a way around this problem when she 

learned that the college made its lecture notes publicly available and 

even encouraged outsiders to submit observations on these notes. 

This generous gesture was intended for gentlemen, so Germain sim¬ 

ply adopted a male pseudonym, Monsieur LeBlanc. In this way, she 

obtained the notes and began submitting insightful observations to 

one of the tutors. 

Just like Lisa Simpson, Germain had adopted a male identity in 

order to study mathematics. So when Dolph Starbeam shouts out, 

“We’ve been Yentled!” it would have been more germane had he ex¬ 

claimed, “We’ve been Germained!” 

Germain was sending her observations to Joseph-Louis Lagrange, 

not only a member of the Ecole Polytechnique but also one of the 

world’s most respected mathematicians. He was so astonished by the 

brilliance of Monsieur LeBlanc that he demanded to meet this ex¬ 

traordinary new student, which forced Germain to own up to her 

deception. Although she feared he would be angry with her, Lagrange 

was actually pleasantly surprised to discover that Monsieur LeBlanc 

was a mademoiselle, and he gave Germain his blessing to continue 

with her studies. 

She could now build a reputation in Paris as a female mathemati¬ 

cian. Nonetheless, she occasionally relied on her male alter ego when 

writing to mathematicians whom she had not met and who might 

not otherwise take her seriously. Most notably, she became Monsieur 

LeBlanc in her correspondence with the brilliant German mathema¬ 

tician Carl Lriedrich Gauss, author of Disquisitiones Arithmeticae 

(Arithmetical Investigations), arguably the most important and wide- 

ranging treatise on mathematics for more than one thousand years. 

Gauss acknowledged the talents of his new pen friend—“I am de¬ 

lighted that arithmetic has found in you so able a friend”—but he had 
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no idea that Monsieur LeBlanc was actually a woman. 

Her true identity only became clear to Gauss when Napoleon’s 

French army invaded Prussia in 1806. Germain was anxious that 

Gauss, like Archimedes, might become the victim of a military inva¬ 

sion, so she sent a message to General Joseph-Marie Pernety, a family 

friend who was commanding the advancing forces. He duly guaran¬ 

teed Gauss’s safety, and explained to the mathematician that he owed 

his life to Mademoiselle Germain. When Gauss realized that Ger¬ 

main and LeBlanc were the same person, he wrote: 

But how to describe to you my admiration and astonishment at 

seeing my esteemed correspondent Monsieur LeBlanc metamor¬ 

phose himself into this illustrious personage who gives such a bril¬ 

liant example of what I would find it difficult to believe. A taste 

for the abstract sciences in general and above all the mysteries of 

numbers is excessively rare: one is not astonished at it: the en¬ 

chanting charms of this sublime science reveal themselves only to 

those who have the courage to go deeply into it. But when a 

person of the sex which, according to our customs and prejudices, 

must encounter infinitely more difficulties than men to familiar¬ 

ize herself with these thorny researches, succeeds nevertheless in 

surmounting these obstacles and penetrating the most obscure 

parts of them, then without doubt she must have the noblest 

courage, quite extraordinary talents, and superior genius. 

In terms of pure mathematics, Germain’s most famous contribu¬ 

tion was in relation to Fermat’s last theorem. Although she could not 

formulate a complete proof, Germain made more progress than any¬ 

one else of her generation, which prompted the Institut de France to 

award her a medal for her achievements. 

She also had an interest in prime numbers, those numbers that 

cannot be divided by any other number except 1 and the number it¬ 

self. Prime numbers can be put into different categories, and one par¬ 

ticular set is named in honor of Germain. A prime number p is labeled 

a Germain prime if 2p + 1 is also prime. So, 7 is not a Germain prime, 
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because 2 X 7 + 1 = 15, and 15 is not prime. By contrast, 11 is a Ger¬ 

main prime, because 2x11 + 1= 23, and 23 is a prime. 

Research into prime numbers is nearly always considered impor¬ 

tant, because these numbers are essentially the building blocks of 

mathematics. In the same way that all molecules are composed of at¬ 

oms, all the counting numbers are either primes or the products of 

primes multiplied together. Given that they are central to all things 

numerical, it will not come as a surprise that a prime number makes 

a guest appearance in a 2006 episode of The Simpsons, as we will dis¬ 

cover in the next chapter. 



Joke 1 

Joke 2 

Joke 3 

Joke 4 

&x*/vhmaT'om II 
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Q: What are the 10 kinds of people in the i point 

world? 

A: Those who understand binary, and those 

who don't. 

Q: Which trigonometric functions do ■] point 

farmers like? 

A: Swine and cowswine. 

Q: Prove that every horse has an infinite 2 points 

number of legs. 

A: Proof by intimidation: Horses have an 

even number of legs. Behind they have 

two legs and in front they have forelegs. 

This makes a total of six legs, but this is 

an odd number of legs for a horse. The 

only number that is both odd and even is 

infinity. Therefore horses have an infinite 

number of legs. 

Q: How did the mathematician reply when 2 points 

he was asked how his pet parrot died? 

A: Polynomial. Polygon. 



Joke 5 

Joke 6 

Joke 7 

Joke 8 

Joke 9 

Q: What do you get when you cross an 

elephant and a banana? 

A: I elephant I x I banana I x sin 0 

Q: What do you get if you cross a mosquito 

with a mountain climber? 

A: You can't cross a vector with a scalar. 

One day, Jesus said to his disciples: "The 

Kingdom of Heaven is like 2x2 + 5x - 6." 

Thomas looked confused and asked Peter: 

"What does the teacher mean?" 

Peter replied: "Don't worry— it's just 

another one of his parabolas." 

Q: What is the volume of a pizza of thick¬ 

ness a and radius z? 

A: pi.z.z.a 

During a security briefing at the White 

House, Defense Secretary Donald Rumsfeld 

breaks some tragic news: "Mr President, 

three Brazilian soldiers were killed yesterday 

while supporting U.S. troops." 

"My God!" shrieks President George W. 

Bush, and he buries his head in his hands. 

He remains stunned and silent for a full 

minute. Eventually, he looks up, takes a deep 

breath, and asks Rumsfeld: "How many is a 

brazillion?" 

3 points 

3 points 

2 points 

3 points 

3 points 

TOTAL - 20 POINTS 
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he storyline of “Marge and Homer Turn a Couple Play” (2006) 

centers around a baseball star named Buck “Home Run King” 

Mitchell, who plays for the Springfield Isotopes. When he and his 

wife, Tabitha Vixx, experience marital problems, Mitchell’s perfor¬ 

mance on the field begins to suffer, so they turn to Homer and Marge 

for relationship advice. After various twists and turns, the episode 

culminates at Springfield Stadium, where Tabitha hijacks the Jumbo- 

Vision screen and publicly declares her love for Buck to the entire 

crowd. 

The episode features the voice of singer and actress Mandy Moore, 

a reference to J. D. Salinger, and a nod to Michelangelo’s Pieta, but 

mathematical viewers would have been most excited by an appear¬ 

ance by a very special prime number. Before revealing the details of 

the prime number and how it is incorporated into the episode, let us 

step back and meet the two mathematicians who provided the inspi¬ 

ration for this prime number reference, namely Professor Sarah Gre- 

enwald of Appalachian State University and Professor Andrew Nestler 

of Santa Monica College. 

Greenwald and Nestler’s interest in The Simpsons dates back to 

1991, when they first met and became friends at the Mathematics 

Department at the University of Pennsylvania. They were both start¬ 

ing work on their PhDs, and once a week they would gather with 

other graduate students to watch The Simpsons and share a meal. Nes¬ 

tler remains clear about why the series appealed to them: “The writers 

created two recurring nerds: Professor Frink, a scientist, and Martin 

Prince, a gifted elementary school student. And they were alongside a 

90 
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main character, Lisa Simpson, who was also highly intelligent and 

inquisitive. The inclusion of these characters made the show some¬ 

thing that intellectuals would want to watch in order to, in a sense, 

laugh at themselves.” 

It was not long before Greenwald and Nestler began to pick up on 

the various mathematical references in The Simpsons. As well as enjoy¬ 

ing the jokes about higher mathematics, they were tickled by those 

scenes involving mathematics in the context of education. Nestler re¬ 

calls that he was particularly fond of a line by Edna Krabappel, in 

“This Little Wiggy” (1998), when Springfield’s bitterest teacher turns 

to her class and asks: “Now, whose calculator can tell me what seven 

times eight is?” 

After a while, they encountered so many mathematical jokes that 

Nestler decided to create a database of scenes that might interest math¬ 

ematicians. According to Nestler, it was the obvious thing to do: “I am 

by nature a collector, and enjoy cataloging things. When I was young 

I collected business cards. My main hobby is collecting Madonna re¬ 

cords; I have over 2,300 physical records in my Madonna collection.” 

A few years later, after they had received their doctorates and 

started teaching, both Greenwald and Nestler began incorporating 

scenes from The Simpsons into their lectures. Nestler, whose doc¬ 

toral thesis was on algebraic number theory, used material from the 

animated sitcom in his courses covering calculus, precalculus, linear 

algebra, and finite mathematics. 

By contrast, Greenwald’s research interest has always been or bi¬ 

folds, a specialty within geometry, so she tended to include geometri¬ 

cal jokes from The Simpsons in her course titled Math 1010 (Liberal 

Arts Math). For example, she has discussed the opening couch gag 

from “Homer the Great” (1995). The opening sequence of each epi¬ 

sode ends with the Simpson family converging on their couch in or¬ 

der to watch television, which always leads to a piece of visual humor. 

In this case, the couch gag involves Homer and his family exploring a 

paradoxical network of staircases under the influence of three gravita¬ 

tional forces, each one acting perpendicular to the others. This scene 
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is a tribute to Relativity, a famous lithograph print by the twentieth- 

century Dutch artist M. C. Escher, who was obsessed with mathe¬ 

matics in general and geometry in particular. 

After a few years of incorporating The Simpsons into their mathe¬ 

matics courses, Greenwald and Nestler’s quirky approach to teaching 

attracted some local media attention, which then led to an interview 

on National Public Radio’s Science Friday. When some of the Simp¬ 

sons writers heard the show, they were astonished to learn that their 

nerdy inside jokes were now the basis of college mathematics courses. 

They were keen to meet the professors and thank them for their ded¬ 

ication to both mathematics and The Simpsons, so the writers invited 

Greenwald and Nestler to attend a table-read of an upcoming epi¬ 

sode, which turned out to be “Marge and Homer Turn a Couple 

Play.” 

On August 25, 2005, Greenwald and Nestler listened to the table- 

read that described the topsy-turvy relationship between Buck 

Mitchell and Tabitha Vixx. While the professors sat back and en¬ 

joyed the story, the writers paid close attention to every line, listening 

for good gags that could be made better and bad gags that ought to 

be dropped. Later that day, after the professors had returned home, 

the writers compared notes and began to offer tweaks to the script. 

Everyone around the table agreed that this was a strong episode, but 

there was one glaring omission—the entire episode was devoid of 

mathematics! 

It seemed rude to have invited Greenwald and Nestler to a table- 

read because of their interest in the mathematics of The Simpsons, yet 

show the professors an episode that would not provide them with any 

new material for their classes. The writers started re-examining the 

script, scene by scene, looking for an appropriate place to insert some 

mathematics. Eventually, one of them spotted that the climax of the 

episode provided the perfect opportunity to bring in some interesting 

numbers. 

Just before Tabitha makes her declaration of love on the Jumbo- 

Vision screen, a question is displayed on the same screen that asks the 
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crowd to guess the attendance at the game. It is presented as a multi¬ 

ple-choice question. In the table-read script, the numbers on offer on 

the screen were just plucked out of the air, but now the writers set 

about replacing them with numbers that possessed particularly inter¬ 

esting properties. Once the writers had completed their mission, Jeff 

Westbrook e-mailed Sarah Greenwald: “It’s great you guys came by, 

because it really did light a little fire under us to some degree and to¬ 

day we put in some slightly more interesting mathematical numbers 

in honor of your visit.” 

The layout of the Jumbo-Vision screen from "Marge and Homer Turn a 

Couple Play." 

The three interesting numbers, as they appeared on the Jumbo- 

Vision screen, would have seemed arbitrary and innocuous to casual 

viewers, but those with mathematical minds would immediately have 

seen that each one is remarkable in its own way. 

The first number, 8,191, is a prime number. Indeed, it belongs to a 

special class of prime numbers known as Mersenne primes. These are 
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named after Marin Mersenne, who joined the Minim friars in Paris 

in 1611, thereafter dividing his time between praying to God and 

worshipping mathematics. He became particularly interested in a set 

of numbers of the form 2^-1, where p is any prime number. The 

table below shows what happens if you plug all the prime numbers 

less than 20 into the formula 2P - 1. 

Prime {p) 2P - 1 Prime? 

2 22 - 1 = 3 / 

3 23 - 1 = 7 / 

3 25 - 1 = 31 / 

7 22 - 1 = 127 / 

11 2U - 1 = 2,047 X 

13 2b_ 1 = 8,191 / 

17 217 - 1 = 131,071 / 

19 219_ 1 = 524,287 / 

The striking feature in the table is that 2^—1 seems to generate 

prime suspects, by which I mean numbers that might be prime. In¬ 

deed, all the numbers in the right-hand column are primes, except 

2,047, because 2,047 = 23 X 89. In other words, 2P — 1 is a recipe 

that uses prime numbers as its ingredients in an attempt to make 

new prime numbers; these resulting primes are dubbed Mersenne 

primes. For example, when p = 13, then 213 — 1 = 8,191, which is the 

Mersenne prime that appears in “Marge and Homer Turn a Couple 

Play.” 

Mersenne primes are considered celebrities within the world of 

numbers, because they can be very large. Some are titanic primes 

(more than one thousand digits), some are gigantic primes (more than 

ten thousand digits), and the very largest are labeled megaprimes 

(more than one million digits). The ten largest known Mersenne 

primes are the biggest primes ever identified. The largest Mersenne 
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prime (257,885,161 — 1), which was discovered in January 2013, is more 

than seventeen million digits long.* 

The second number on the stadium screen is 8,128, which is 

known as a perfect number. Perfection in the context of a number de¬ 

pends on its divisors, namely those numbers that will divide into it 

without any remainder. For example, the divisors of 10 are 1, 2, 5, and 

10. A number is considered perfect if its divisors (except the number 

itself) add up to the number in question. The smallest perfect number 

is 6, because 1, 2, and 3 are divisors of 6, and 1 +2 + 3 = 6. The sec¬ 

ond perfect number is 28, because 1, 2, 4, 7, and 14 are divisors of 28, 

and 1+2 + 4 + 7+14 = 28. The third perfect number is 496, and 

the fourth perfect number is 8,128, which is the one that crops up in 

“Marge and Homer Turn a Couple Play.” 

These four perfect numbers were all known to the ancient Greeks, 

but mathematicians would have to wait more than a millennium be¬ 

fore the next three perfect numbers were discovered. 33,530,336 was 

discovered in roughly 1460, then 8,589,869,056 and 137,438,691,328 

were both announced in 1588. As Rene Descartes, the seventeenth- 

century French mathematician, pointed out, “Perfect numbers, like 

perfect men, are very rare.” 

Because they are few and far between, it is easy to jump to the 

conclusion that there are only a finite number of perfect numbers. 

However, as yet, mathematicians cannot prove that the supply of per¬ 

fect numbers is limited. Also, all the perfect numbers discovered so 

far are even, so perhaps all future perfect numbers will be even. Again, 

as yet, nobody has proved that this is indeed the case. 

Despite these holes in our knowledge, we do know a few things 

about perfect numbers. For example, it has been proved that perfect 

* There is a mass public participation project to find even larger Mersenne primes. 

The Great Internet Mersenne Prime Search (GIMPS) allows participants to 

download free software and then run it on their home computers while idling. Each 

machine then sifts through its batch of allotted numbers searching for a record- 

breaking prime. If you take part, then you might be lucky enough to discover the 

next record-breaking Mersenne prime. 
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numbers that are even (which might be all of them) are also triangular 

numbers'. 

6 = 1 + 2 + 3 28=1+2 + 3 + 4 + 5 + 6 + 7 

• • 
• • • • 

• • • • • • 

• • • • 

Moreover, we know that even perfect numbers (except 6) are al¬ 

ways the sum of a series of consecutive odd cubes: 

28 = l3 + 33 

496 = l3 + 33 + 53 + T 

8,128 = l3 + 33 + 53 + 73 + 93 + ll3 + 133 + 153 

Last, but certainly not least, we know that there is a close relation¬ 

ship between even perfect numbers and Mersenne primes. In fact, 

mathematicians have proved that there is the same number of each, 

and it has been shown that every Mersenne prime can be used to gen¬ 

erate a perfect number. Hence, we know of only forty-eight perfect 

numbers, because we know of only forty-eight Mersenne primes. 

The third number that appears on the stadium screen, 8,208, is 

special because it is a so-called narcissistic number. This means that 

the number is equal to the sum of each of its digits raised to the power 

of the number of digits: 

8,208 = 84 + 24 + 04 + 84 = 4,096 + 16 + 0 + 4,096 

■- v ‘ 

The reason why this number is labeled narcissistic is that the digits 

within it are being used to generate the number itself. The number 

appears to be self-obsessed, almost in love with itself. 

There are many other examples of narcissistic numbers, such as 
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153, which equals l3 + 53 + 33, but it has been shown that there is only 

a finite supply of narcissistic numbers. In fact, mathematicians know 

that there are only eighty-eight narcissistic numbers, and the largest 

one is 115,132,219,018,763,992,565,095,597,973,971,522,401. 

However, if we relax the constraints, then it is possible to generate 

so-called pretty wild narcissistic numbers; these numbers can be gener¬ 

ated using their own digits in any way that works. Here are some ex¬ 

amples of pretty wild narcissistic numbers: 

6,859 = (6 + 8 + 5)V9 

24,739 = 24 + 7! + 39 

23,328 = 2 x 33! x 2 x 8 

So, thanks to the visit of Greenwald and Nestler, “Marge and 

Homer Turn a Couple Play” featured guest appearances by a Mer- 

senne prime, a perfect number, and a narcissistic number. For years, 

The Simpsons had influenced the way that the professors had given 

their classes, and now the situation had been reversed, with the pro¬ 

fessors influencing The Simpsons. 

But why had the writers chosen these particular types of number for 

the Jumbo-Vision screen? After all, there are hundreds of types of inter¬ 

esting number, and any of them could have played a cameo role. There 

are, for example, vampire numbers: These numbers have digits that can 

be divided and rearranged into two new numbers, known as fangs, 

which in turn can be multiplied together to re-create the original num¬ 

ber. 136,948 is a vampire number, because 136,948 = 146 X 938. An 

even better example is 16,758,243,290,880, which is particularly batty 

and vampiric, because its fangs can be formed in four different ways: 

16,758,243,290,880 = 1,982,736 x 8,452,080 

= 2,123,856x7,890,480 

= 2,751,840 x 6,089,832 

= 2,817,360 x 5,948,208 
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Alternatively, if the writers wanted an incredibly special number, 

they could have chosen a sublime number. There are only two sublime 

numbers, because they have to satisfy two severe constraints that both 

relate to perfection. First, the total number of divisors must be a per¬ 

fect number and, second, the divisors must add up to a perfect num¬ 

ber. The first sublime number is 12, because its divisors are 1, 2, 3, 4, 

6, and 12. The number of divisors is 6 and they add up to 28, and 

both 6 and 28 are perfect numbers. The only other sublime number 

is 6,086,333,670,238,378,989,670,371,734,243,169,622,657,830,773, 

351,885,970,528,324,860,512,791,691,264. 

According to the writers, the Mersenne, perfect, and narcissistic 

numbers were chosen to appear in “Marge and Homer Turn a Couple 

Play” merely because they all offered quantities that were close to a 

realistic crowd size. Also, they were the first types of number that 

came to mind. They were introduced as a last-minute change to the 

script, so there was not much time to put a great deal of thought into 

the numbers chosen. 

However, in hindsight, I would argue that the writers picked just 

the right numbers, because the digits are still visible on the Jumbo- 

Vision screen when Tabitha Vixx appears, and each number seems to 

offer an apt description of Ms. Vixx. As one of the most glamorous 

characters to have appeared on The Simpsons, Tabitha considers her¬ 

self to be perfect and in her prime, and not surprisingly, she is also a 

narcissist. Indeed, at the start of the episode, she is skimpily dressed 

and dancing provocatively in front of her husband’s adoring baseball 

fans, so including a pretty wild narcissistic number on the stadium 

screen would have been even more appropriate. 

Although Greenwald and Nestler might seem exceptional, they are 

not the only professors who discuss The Simpsons in their mathemat¬ 

ics lectures. Joel Sokol at the Georgia Institute of Technology gives a 

lecture titled “Making Decisions Against an Opponent: An Applica¬ 

tion of Mathematical Optimization,” which includes slides describing 

games of rock-paper-scissors played by characters in The Simpsons. 
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The lecture focuses on game theory, an area of mathematics concerned 

with modeling how participants behave in situations of conflict and 

cooperation. Game theory can offer insights into everything from 

dominoes to warfare, from animal altruism to trade union negotia¬ 

tions. Similarly, Dirk Mateer, an economist at Pennsylvania State 

University with a strong interest in mathematics, also makes use of 

The Simpsons and scenes involving rock-paper-scissors when he teaches 

game theory to his students. 

Rock-paper-scissors (RPS) seems like a trivial game, so you might 

be surprised that it is of any mathematical interest. However, in the 

hands of a game theorist, RPS becomes a complex battle between two 

competitors trying to outwit each other. Indeed, RPS has many hid¬ 

den layers of mathematical subtlety. 

Before revealing these mathematical layers, let me begin with a 

brief review of the rules. The game is played between two players, and 

the rules are simple. Both players count “1 ... 2 ... 3 .. . Go!” and 

then offer up their hand in one of three ways: rock (clenched fist), 

paper (open, flat hand), or scissors (forefinger and middle finger form 

a V). The winner is decided according to the “circular hierarchy” that 

rock blunts scissors (rock wins), scissors cut paper (scissors win), and 

paper covers rock (paper wins). If the weapons are the same, then that 

round is a tie. 

Over the centuries, different cultures have developed their own 

variations of RPS, ranging from the Indonesians, who play elephant- 

human-earwig, to sci-fi fans, who play UFO-microbe-cow. The latter 

version involves a UFO dissecting a cow, a cow eating microbes, and 

microbes contaminating a UFO. 

Although each culture has its own weapons, the rules of the game 

remain essentially the same. Within these rules, it is possible to use 

the logic of mathematical game theory to identify which playing 

strategies are superior. This was demonstrated in “The Front” (1993), 

when Bart and Lisa play RPS to decide whose name should go first on 

their co-authored script for The Itchy and Scratchy Show. Looking at 

the RPS game from Lisa’s point of view, her best strategy depends on 

a range of factors. For example, does Lisa know if her opponent is a 
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rookie or a pro, what does Lisa’s opponent know about her, and is the 

goal to win or to avoid losing? 

If Lisa was playing a world champion, then she might adopt a strat¬ 

egy of making a random throw, because not even a world champion 

would be able to predict whether she was going to throw rock, paper, 

or scissors. This would give Lisa an equal chance of winning, losing, 

or drawing. However, Lisa is playing her brother, who is not a world 

champion. Hence, she adopts a different strategy based on her own 

experience, which is that Bart is a particularly big fan of throwing 

rock. So, she decides to throw paper to beat his potential rock. Sure 

enough, her plan works and she wins. Bart’s bad habit is consistent 

with research carried out by the World RPS Society, which suggests 

that rock is the most popular throw in general and is a particular fa¬ 

vorite with boys. 

This sort of game theoretic approach was important when the Jap¬ 

anese-based electronics corporation Maspro Denkoh was auctioning 

its art collection in 2005. In order to decide whether the multimil- 

lion-dollar contract should go to Sotheby’s or Christie’s, Maspro Den¬ 

koh ordered an RPS battle between the two auction houses. Nicholas 

Maclean, international director of Christie’s Impressionist and Mod¬ 

ern Art Department, took the matter so seriously that he asked his 

twin eleven-year-old daughters for advice. Their experience backed up 

the World RPS Society survey, inasmuch as the twins also felt that 

rock was the most common throw. Moreover, they pointed out that 

sophisticated players would be aware of this and would therefore 

throw paper. Maclean’s hunch was that Sotheby’s would adopt this 

sophisticated strategy, so he advised his bosses at Christie’s to adopt a 

super-sophisticated strategy by throwing scissors. Sotheby’s did in¬ 

deed throw paper and Christie’s won. 

Another layer of mathematics emerges when we turbocharge the 

game of RPS by adding more options. First, it is important to stress 

that any new version of RPS must have an odd number of options 

(A/). This is the only way of balancing the game, such that each op¬ 

tion wins against and loses to an equal number (N- l)/2 of other 

options. Hence, there is no four-option version of RPS, but there is a 
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five-option version called rock-paper-scissors-lizard-Spock (RPSLSp). 

Invented by computer programmer Sam Kass, this version became 

famous after it was featured in “The Lizard-Spock Expansion” 

(2008), an episode of the nerd-friendly sitcom The Big Bang Theory. 

Here are the circular hierarchy and hand gestures for rock-paper- 

scissors-lizard-Spock. 

As the number of options increases, the chance of a tie decreases as 

Vn. Therefore, the chance of a tie is V3 in RPS and Vs in RPSLSp. If 

one wants to minimize the risk of a tie, then the biggest and best 

available version of RPS is RPS-101. Created by the animator David 

Lovelace, it has 101 defined hand gestures and 5,050 outcomes that 

result in a clear win. Lor example, quicksand swallows vulture, vul¬ 

ture eats princess, princess subdues dragon, dragon torches robot, and 

so on. The chance of a tie is Vioi, which is less than 1 percent. 

The most intriguing piece of mathematics that has emerged from 
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studying RPS is the invention of so-called nontransitive dice. These 

dice immediately arouse curiosity, because each one has a different 

combination of numbers on its faces: 

Die A 

3, 3, 5, 3, 7, 7 

Die B Die C 

You and I can play a game with these dice that involves us picking 

one die each and then pitting them against each other. The winning 

player is the one whose die shows the higher number. So, which is the 

best die? 

The grids on the page opposite show what happens with the three 

possible die pairings: (A v. B), (B v. C), (C v. A). The first grid tells us 

that die A is better than die B, because die A wins in 20 of the 36 

possible outcomes. In other words, die A wins on average 56 percent 

of the time. 

What about die B v. die C? The second grid shows that die B is 

better, because it wins 56 percent of the time. 

In life, we are used to transitive relationships, which means that if 

A is better than B, and B is better than C, then A must be better than 

C. However, when we roll die A against die C, we find that die C is 

better, because it wins 56 percent of the time, as shown in the third 

grid. That is why these die are labeled nontransitive—they defy the 

normal convention of transitivity, just like the weapons in RPS. As 

mentioned earlier, the rules of RPS dictate an unconventional circular 

hierarchy, not a simple top-down hierarchy. 

Nontransitive relationships are absurd and defy common sense, 

which is probably why they fascinate mathematicians, whether they 

are the writers of The Simpsons, university professors ... or even the 

world’s most successful investor, namely Warren Buffett, who has a 
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DIE A 

3 3 5 5 7 7 

2 A A A A A A 

2 A A A A A A 

4 B B A A A A 

4 B B A A A A 

9 B B B B B B 

9 B B B B B IB 

DIE B 

2 2 4 4 9 9 
1 B B B B B B 

l B B B B B B 

6 c C C c B B 

6 C C c C B B 

8 c C c C B B 

8 c c C c B B 

DIE C 

1 1 6 6 8 8 

3 A A c C C c 
3 A A c C c c 
5 A A c C c c 
5 A A c C c c 
7 A A A A c c 
7 A A A A c c 

Each grid shows all the possible outcomes when two dice are rolled against each 

other. In the first grid, die A v. die B, you can see that the top left square is marked 

A and shaded light grey, because die A wins if it rolls a 3 and die B rolls a 2. 

However, the bottom right square is marked B and shaded dark grey, because die B 

wins if it rolls a 9 and die A rolls a 7. Taking all the combinations into account, die 

A wins 56 percent of time on average against die B. 

net worth of approximately $50 billion. Buffett’s picture in the 1947 

Woodrow Wilson High School senior yearbook has the astute cap¬ 

tion “Likes math; future stockbroker.” 

Buffett is known to be a fan of nontransitive phenomena and some¬ 

times challenges people to a game of dice. Without giving any expla¬ 

nation, he hands his opponent three nontransitive dice and asks him 

or her to choose first. The opponent feels that this confers an advan¬ 

tage, because this appears to be an opportunity to select the “best” 

die. Of course, there is no best die, and Buffett deliberately chooses 

second to allow himself the privilege of selecting the particular die 

that is stronger than whichever one was chosen by his opponent. Buf¬ 

fett is not guaranteed to win, but the odds are heavily stacked in his 

favor. 

When Buffett tried this trick on Bill Gates, the founder of Micro¬ 

soft was immediately suspicious. He spent a while examining the dice 

and then politely suggested that Buffet should choose his die first. 
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n Dead Putting Society” (1990) tells the story of a miniature golf 

match, in which Bart Simpson is playing Todd Flanders, the 

son of neighbor Ned Flanders. It is a very high-stakes confrontation, 

because the father of the loser faces a terrible fate. He will have to 

mow the winner’s lawn in his wife’s dress. 

During a tense exchange between the two fathers, Homer and Ned 

invoke infinity to reinforce their positions: 

Homer: 

Ned: 

Homer: 

Ned: 

Homer: 

Ned: 

Homer: 

Ned: 

Homer: 

This time tomorrow, you’ll be wearing high heels! 

Nope, you will. 

’Fraid not. 

’Fraid so! 

’Fraid not. 

’Fraid so! 

’Fraid not infinity! 

’Fraid so infinity plus one! 

D’oh! 

I asked which of the writers had suggested this piece of dialogue, 

but nobody was able to remember. This is not surprising, as the script 

was written more than two decades ago. However, there was general 

agreement that Homer and Ned’s petty argument would have de¬ 

railed the scriptwriting process, as it would have triggered a debate 

over the nature of infinity. So, is infinity plus one more than infinity? 

Is it a meaningful statement or just gobbledygook? Can it be proved? 

In their efforts to answer these questions, the mathematicians around 

the scripting table would doubtless have mentioned the name of Georg 

104 
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Cantor, who was born in St. Petersburg, Russia, in 1845. Cantor was 

the first mathematician to really grapple with the meaning of infinity. 

However, his explanations were always deeply technical, so it was left to 

the eminent German mathematician David Hilbert (1862-1943) to 

convey Cantor’s research. He had a knack for finding analogies that 

made Cantor’s ideas about infinity more palatable and digestible. 

One of Hilbert’s most celebrated explanations of infinity involved 

an imaginary building known as Hilbert’s Hotel—a rather grand ho¬ 

tel with an infinite number of rooms and each door marked 1, 2, 3, 

and so on. One particularly busy evening, when all the rooms are 

occupied, a new guest turns up without a reservation. Fortunately, 

Dr. Hilbert, who owns the hotel, has a solution. He asks all his guests 

to move from their current rooms to the next one in the hotel. So the 

guest in room 1 moves to room 2, the guest in room 2 moves to room 

3, and so on. Everyone still has a room, but room 1 is now empty and 

available for the new guest. This scenario suggests (and it can be 

proven more rigorously) that infinity plus one is equal to infinity; a 

paradoxical conclusion, perhaps, but one that is undeniable. 

This means that Ned Flanders is wrong when he thinks he can 

trump Homer’s infinity with infinity plus one. In fact, Flanders would 

have been wrong even if he tried to win the argument with “infinity 

plus infinity,” as proved by another vignette about Hilbert’s Hotel. 

The hotel is full again when an infinitely large coach arrives. The 

coach driver asks Dr. Hilbert if the hotel can accommodate his infi¬ 

nite number of passengers. Hilbert is unfazed. He asks all his current 

guests to move to a room number that is double their current room 

number, so the guest in room 1 moves to room 2, the guest in room 

2 moves to room 4, and so on. The existing infinity of guests now 

occupy only the even-numbered rooms, and an equally infinite num¬ 

ber of odd-numbered rooms are now vacant. In this way, the hotel is 

able to provide rooms for the infinite number of coach passengers. 

Once more, this appears to be paradoxical. You might even sus¬ 

pect that it is nonsense, perhaps nothing more than the result of 

ivory tower philosophizing. Nevertheless, these conclusions about 

infinity are more than mere sophistry. Mathematicians reach these 
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conclusions about infinity, or any other concept, by building rigor¬ 

ously, step-by-step, upon solid foundations. 

This point is well made by an anecdote in which a university vice 

chancellor complains to the head of his physics department: Why do 

physicists always need so much money for laboratories and equip¬ 

ment? Why can’t you be like the mathematics department? Mathe¬ 

maticians only need money for pencils, paper, and wastepaper baskets. 

Or even better, why can’t you be like the philosophy department? All 

they need is pencils and paper.” 

The anecdote is a dig at philosophers, who lack the rigor of math¬ 

ematicians. Mathematics is a meticulous search for the truth, because 

each new proposal can be ruthlessly tested and then either accepted 

into the framework of knowledge or discarded into the wastepaper 

basket. Although mathematical concepts might sometimes be ab¬ 

stract and arcane, they must still pass a process of intense scrutiny. 

Thus, Hilbert’s Hotel has clearly demonstrated that 

infinity = infinity + 1 

infinity = infinity + infinity 

Although Hilbert’s explanation avoids technical mathematics, 

Cantor was forced to delve deep into the mathematical architecture of 

numbers in order to reach his paradoxical conclusions about infinity, 

and his intellectual struggles took their toll on him. He suffered se¬ 

vere bouts of depression, spent extended periods in a sanatorium, and 

grew to believe that he was in direct communication with God. In¬ 

deed, he credited God for helping him to develop his ideas and be¬ 

lieved that infinity was synonymous with God: “It is realized in the 

most complete form, in a fully independent otherworldly being, in 

Deo, where I call it the Absolute Infinite or simply Absolute.” Cantor’s 

mental state was partly the result of being criticized and mocked by 

more conservative mathematicians who could not come to terms with 

his radical conclusions about infinity. Tragically, Cantor died mal¬ 

nourished and impoverished in 1918. 
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After Cantor’s death, Hilbert commended his colleague’s attempt 

to address the mathematics of infinity, stating: “The infinite! No 

other question has ever moved so profoundly the spirit of man; no 

other idea has so fruitfully stimulated his intellect; yet no other con¬ 

cept stands in greater need of clarification than that of the infinite.” 

He made it very clear that he sat in Cantor’s corner in the battle to 

comprehend infinity: “No one shall drive us from the paradise Cantor 

has created for us.” 

In addition to the ex-mathematicians working on The Simpsons, the 

writing team has also included scientists with an interest in mathe¬ 

matics, such as Joel H. Cohen (no relation to David S. Cohen), who 

studied science at the University of Alberta in Canada. Similarly, Eric 

Kaplan’s studies at Columbia and Berkeley included an emphasis on 

the philosophy of science. Meanwhile, David Mirkin, who had 

planned to become an electrical engineer, spent time at Philadelphia’s 

Drexel University and the National Aviation Facilities Experimental 

Center before joining The Simpsons. George Meyer had graduated 

with a degree in biochemistry, and then focused his attention on 

mathematics in a failed attempt to invent a foolproof betting system 

for the dog track. This was a blessing for the world of comedy, push¬ 

ing Meyer away from the dog track and toward a career as one of the 

most respected comedy writers in Los Angeles. 

Therefore, there have always been plenty of people willing to discuss 

mathematics during script meetings. Yet, despite their fondness for 

arcane diversions, the writers of The Simpsons realized that a seminar 

about infinity, Cantor, and Hilbert’s Hotel could be a distraction when 

it took place in the middle of a scriptwriting session. Fortunately, a 

solution was found, something that would encourage more mathemat¬ 

ical discussion without disrupting the scripting process: Math Club. 

The idea for the club was the result of a conversation in a Los Ange¬ 

les bar between Matt Warburton and Roni Brunn. Warburton, who 

had studied cognitive neuroscience at Harvard University, had become 

a writer for The Simpsons soon after the series began and stayed on the 
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team for more than a decade. Brunn had been part of the comedy 

scene while at Harvard and had been a Harvard Lampoon editor, but 

her career had focused on fashion and music after graduation. 

“Math Club started with my sad realization that I was getting less 

sharp after graduating college,” recalls Brunn. “I was envious of book 

clubs. I don’t really like reading novels, but wanted a social setting for 

intellectual discussions. One night at a bar, I was telling Matt Warbur- 

ton that it’s not fair there are only book clubs, and that there should be a 

math club. He gave a noncommittal ‘yeah’ and went on with his beer. 

We talked about the numerous Simpsons writers who have backgrounds 

in mathematics, and it was enough encouragement for me to get started.” 

Contrary to what Brad Pitt might have advised, the first rule of 

Math Club was that you do talk about Math Club. In fact, evangeliz¬ 

ing was encouraged. The core members were those who wrote for The 

Simpsons, but Math Club was open to teachers, researchers, and any¬ 

one else in Los Angeles who was interested in mathematics. 

The first Math Club meeting took place at Brunn’s apartment in 

September 2002. The inaugural lecture was titled “Surreal Numbers” 

and was delivered by J. Stewart Burns, who had started work on a 

PhD in mathematics before joining The Simpsons. One by one, Burns’s 

colleagues gave their own Math Club lectures, with titles such as “An 

Introduction to Graph Theory” and “A Random Selection of Prob¬ 

lems in Probability.” 

Although Math Club was an informal gathering of friends and col¬ 

leagues with a common interest, the lecturers often had impeccable aca¬ 

demic credentials. Ken Keeler, whose lecture was titled “Subdivision of a 

Square,” is one of the most mathematically gifted writers on The Simp¬ 

sons. He graduated summa cum laude from Harvard University, recog¬ 

nition that he was one of the most brilliant applied mathematicians to 

complete a bachelor’s degree in the class of 1983. He then moved to 

Stanford University and studied for a master’s degree in electrical engi¬ 

neering before returning to Harvard, where he received a PhD in applied 

mathematics with the snappily titled doctoral thesis “Map Representa¬ 

tions and Optimal Encoding for Image Segmentation.” Keeler then 

joined AT&T Bell Laboratories in New Jersey, whose researchers have 
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won seven Nobel Prizes. During this period, Keeler crossed paths with 

Jeff Westbrook. They were both active in the same area of research and 

co-authored a paper titled “Short Encodings of Planar Graphs and 

Maps.” * They also co-authored a script for the sci-fi TV series Star Trek: 

Deep Space Nine, which involved two stand-up comedians starting a war 

after insulting every alien in the audience during their routines. 

Math Club gradually grew in size. Sometimes, in order to accom¬ 

modate all the members, it was necessary to hold sessions outside and 

use a suspended bedsheet as a makeshift projector screen. The biggest 

audiences, roughly one hundred people, turned up to hear the big- 

name mathematicians, such as Dr. Ronald Graham, the chief scientist 

at the California Institute for Telecommunications and Information 

Technology (Cal(IT)2). Incidentally, Graham was well known as hav¬ 

ing co-authored more than two dozen papers with Paul Erdos, and he 

was the foremost figure in popularizing the notion of Erdos numbers. 

One of Graham’s other claims to fame is Grahams number, which set 

a record in 1977 for the largest number ever used in a mathematical 

paper. To get a sense of its size, consider the Planck volume, which is 

the smallest unit of volume in physics. It is possible to squeeze 1073 

such volumes inside a single hydrogen atom. If the digits of Graham’s 

number were to be inscribed into the fabric of the cosmos so that each 

digit occupied just one Planck volume, then the entire visible universe 

would still not be large enough to contain it. It might be comforting 

to know that its last ten digits are ...2464195387. 

One of the most memorable Math Club lectures was given by David 

S. Cohen, creator of Homer’s last theorem. Cohen’s talk was special 

because it was dedicated to explaining the research he had conducted 

prior to becoming a comedy writer. Having graduated with a degree 

from Harvard University, Cohen then spent a year at the Harvard Ro¬ 

botics Laboratory, later going on to complete a master’s degree in com¬ 

puter science at the University of California, Berkeley. While at Berkeley, 

Cohen conducted research into the so-called pancake sorting problem, 

and this topic formed the basis of his Math Club lecture. 

* Discrete Applied Mathematics 58, no. 3 (1995): 239-52. 
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The pancake sorting problem had first been posed in 1975 by Jacob 

E. Goodman, a geometer at the City College of New York, who used 

the pseudonym Harry Dweighter (harried waiter). He wrote: 

The chef in our place is sloppy, and when he prepares a stack of 

pancakes they come out all different sizes. Therefore, when I 

deliver them to a customer, on the way to the table I rearrange 

them (so that the smallest winds up on top, and so on, down to 

the largest at the bottom) by grabbing several from the top and 

flipping them over, repeating this (varying the number I flip) as 

many times as necessary. If there are n pancakes, what is the 

maximum number of flips (as a function of n) that I will ever 

have to use to rearrange them? 

In other words, if Homer visits Springfield’s Municipal House of 

Pancakes, as featured in “The Twisted World of Marge Simpson” 

(1997), and the waiter delivers him n pancakes in a random size order, 

how many flips will be required to put them into the correct size order 

in the worst-case scenario? This number of flips is known as the pan¬ 

cake number, Pn. The challenge is to find a formula that predicts Pn. 

The pancake sorting problem immediately captured the interest of 

mathematicians for two reasons. First, it seemed to offer potential 

insights into solving computer science problems, because rearranging 

pancakes has parallels with rearranging data. Second, it was a decep¬ 

tively difficult puzzle, and mathematicians adore problems that are 

borderline impossible. 

Some simple cases illuminate the problem. First, what is the pan¬ 

cake number for just one pancake? The answer is zero, because the 

pancake cannot arrive in the wrong order. So, Px — 0. 

Next, what is the pancake number for two pancakes? Either the 

pancakes arrive in the correct order, or the reverse order. The worst 

case is easy to identify, and it requires only one flip to overturn both 

pancakes at once to transform them into the correct arrangement of 

pancakes. So, P2 — 1. 

Next, what is the pancake number for three pancakes? This is 
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trickier, because there are six possible starting arrangements. Depend¬ 

ing on the starting arrangement, the number of flips required to reach 

the correct arrangement varies from zero to a worst-case scenario of 

three, so P3 — 3. 

0 FLIPS 2 FLIPS 

1 FLIP 1 FLIP 

3 FLIPS 
jgrr~ 

2 FLIPS 

In most cases, you can work out for yourself how to obtain the cor¬ 

rect order in the appropriate number of flips. However, for the worst- 

case scenario, the reordering process is not obvious, so this series of 

three flips is shown below. Each row indicates the action of one flip, 

namely where the spatula is inserted and the pancake order after the 

flip. 

Before iff Hip 

Before 2- FL IP 
T mmm5Tr\\ 

BEFORE 353 Flip 

As the pile of pancakes grows, the problem becomes increasingly 

difficult as there are more and more possible starting arrangements, 
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and an increasing number of possible flipping procedures. Worse still, 

there 

Here 

seems to be no pattern in the series of pancake 

are the first nineteen pancake numbers: 

numbers «• 

n 1 2 3 4 5 6 7 8 9 10 

P 0 1 3 4 5 6 8 9 10 11 

n 11 12 13 14 15 16 17 18 19 20 

P 13 14 13 16 17 18 19 20 22 ? 

The sheer difficulty in running through all the pancake permuta¬ 

tions and possible flipping strategies means that even very powerful 

computers have not yet been able to calculate the twentieth pancake 

number. And, after more than three decades, nobody has been able to 

sidestep the brute force computational approach by finding a clever 

equation that predicts pancake numbers. So far, the only break¬ 

throughs have been in finding equations that set limits on the pancake 

number. In 1979, the upper limit for the pancake number was shown 

to be less than (5n + 5)/3 flips. This means that we can take a foolishly 

large number of pancakes, such as a thousand, and know for a fact that 

the pancake number (i.e., the number of flips required to rearrange the 

pancakes into size order in the worst-case scenario) will be less than 

(3 X 1,000 + 5) 

3 
l,668fc 

Thus, given that you cannot perform a third of a flip, Pl 000 is less 

than or equal to 1,668. This result is famous, because it was published 

in a paper that was co-authored by William H. Gates and Christos H. 

Papadimitriou. William H. Gates is better known as Bill Gates, co¬ 

founder of Microsoft, and this is thought to be the only research pa¬ 

per that he has ever published. 

The Gates paper, based on work he did as an undergraduate at 

Harvard, also mentions a devious variation of the problem. The burnt 
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pancake problem involves pancakes that are burnt on one side, so the 

challenge is to flip them into the right orientation (burnt side down), 

as well as flipping them into the correct size order. This is the problem 

that was addressed by David S. Cohen while at Berkeley. 

Cohen authored a paper* on the burnt pancake problem in 1995, 

which set the lower and upper bounds for burnt pancake flipping 

between Snl2 and 2n — 2. If we again use the example of 1,000 pan¬ 

cakes, but this time burnt, then we know that the number of flips 

required to orient and order them in the worst-case scenario is be¬ 

tween 1,500 and 1,998. 

This is what makes the writers of The Simpsons unique. They not 

only attend Math Club, but they also deliver rigorous lectures and 

even author serious mathematical research papers. 

David S. Cohen recounted an anecdote that shows how the writers 

sometimes even astonish themselves when they realize the sheer level 

of mathematical prowess within the team: “I had written this paper 

on pancake numbers with help from my adviser, Manuel Blum, who’s 

a well-known computer scientist, and we submitted it to a journal 

called Discrete Applied Mathematics. I subsequently left graduate 

school to come and write for The Simpsons. After the paper was ac¬ 

cepted, there was an extremely long lag between it being submitted, 

revised, and published. So, by the time the paper was published, I had 

been working at The Simpsons for a while, and Ken Keeler had also 

been hired at that point. So, finally the research article appeared, and 

I came in with the reprints of this article and I said, ‘Hey, I’ve got an 

article in Discrete Applied Mathematics.’ Everyone was quite impressed, 

except Ken Keeler, who said, ‘Oh yeah, I had a paper in that journal 

a couple of months ago.’” 

With a wry smile on his face, Cohen bemoaned: “What does it mean 

that I come to write for The Simpsons and I cannot even be the only 

writer on this show with a paper in Discrete Applied Mathematics'*.” 

* “On the Problem of Sorting Burnt Pancakes,” Discrete Applied Mathematics 61, 

no. 2 (1995): 105-20. 
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Homer Simpson is not usually considered an intellectual power¬ 

house, instead enjoying a reputation as one of Springfield’s 

more down-to-earth citizens. In “Homer vs. the Eighteenth Amend¬ 

ment” (1997), he offers a toast that explains his simple philosophy of 

life: “To alcohol! The cause of, and solution to, all of life’s problems.” 

Nevertheless, the writers do occasionally allow Homer off the leash 

in order to explore the nerdier side of his character. We have already 

seen this in the 1998 episode “The Wizard of Evergreen Terrace,” and 

there are several other episodes in which Homer shows that he can be 

a poster boy for geek pride. For example, the world’s most prestigious 

scientific journal, Nature, praised him for a comment he makes in the 

episode “The PTA Disbands” (1995). After catching his daughter try¬ 

ing to build a perpetual motion machine, he puts her firmly in her 

place: “Lisa, in this house we obey the laws of thermodynamics!” 

As well as parroting some of science’s most fundamental laws, 

Homer also occasionally sets the scientific agenda. In “E-I-E-I-D’oh” 

(1999), he turns his hand to farming and sprinkles plutonium on his 

fields to boost his yield. Not surprisingly, the resulting plants are mu¬ 

tants. Homer calls his new crop tomacco, because the plants have the 

outward appearance of tomatoes and yet contain tobacco inside. 

Rob Bauer, a Simpsons fan from Oregon, saw the episode and was 

inspired to replicate Homer’s achievement. Instead of using radioac¬ 

tive material, he grafted tobacco roots onto a tomato plant and waited 

to see what would happen. It was not a completely crazy idea, because 

tomatoes and tobacco both belong to the nightshade family of plants, 

so grafting such plant relatives might enable the properties of one 

plant to transfer to the other. Indeed, the leaves of Bauer’s tomato 
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plant did contain nicotine, proving that science fact can be almost as 

strange as science fiction. 

The writers also encouraged Homer’s intellectual side to flourish in 

“They Saved Lisa’s Brain,” an episode that has already been discussed 

in Chapter 7. After Stephen Hawking saves Lisa from a baying mob, 

the story ends with Professor Hawking chatting to Lisa’s father in 

Moe’s Tavern, where he is impressed with Homer’s ideas about cos¬ 

mology: “Your theory of a doughnut-shaped universe is intriguing . . . 

I may have to steal it.” 

This sounds ridiculous, but mathematically minded cosmologists 

claim that the universe might actually be structured like a doughnut. 

In order to explain how this geometry is possible, let us simplify the 

universe by imagining that the entire cosmos is flattened from three 

dimensions into two dimensions, so that everything exists on a sheet. 

Common sense might suggest that this universal sheet would be flat 

and extend to infinity in all directions. But cosmology is rarely a mat¬ 

ter of common sense. Einstein taught us that space can bend, which 

leads to all sorts of other potential scenarios. For example, imagine 

that the universal sheet is not infinite, but instead has four edges, so 

that it looks rather like a large rectangular sheet of rubber. Next, 

imagine joining the two long edges of the sheet so it forms a cylinder, 

then connecting the two ends of the cylinder so that the whole sheet 

has been transformed into a hollow doughnut. This is exactly the sort 

of universe that Hawking and Homer were discussing. 

If you lived on the surface of this doughnut universe, you could 

follow the grey arrow and eventually return to your original position. 
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Alternatively, you could follow the black arrow and, again, you would 

end up back where you started. The doughnut universe behaves rather 

like the spacescape of Asteroids, Atari’s best selling video game of all 

time. If the player’s ship flies eastward, then it leaves the screen on the 

right and returns on the left, eventually returning to its original posi¬ 

tion. Similarly, if the ship heads northward, then it leaves the top of 

the screen and reenters at the bottom, eventually returning once again 

to where it started. 

Of course, we have discussed the theory only in terms of two di¬ 

mensions, but within the laws of physics it is permissible for a three- 

dimensional universe to be rolled into a cylinder and formed into a 

doughnut. For nonmathematicians, it is almost impossible to visual¬ 

ize manipulating three-dimensional space in this manner, but Hawk¬ 

ing and Homer understand that the doughnut is a perfectly viable 

reality for the shape of our universe. As the British scientist J. B. S. 

Haldane (1892-1964) once said: “My suspicion is that the Universe 

is not only queerer than we suppose, but queerer than we can sup¬ 

pose.” 

In other episodes, the writers create a trigger event that galvanizes 

Homer’s brain, which in turn allows him to excel in mathematics. In 

“HOMFI” (2001), Homer removes a crayon that has been lodged in 

his brain and suddenly realizes that he can use calculus to prove that 

God does not exist. He shows the proof to Ned Flanders, his God¬ 

fearing neighbor, who is initially suspicious of Homer’s claim to have 

made God vanish in a puff of logic. Flanders examines the proof and 

mutters: “We’ll just see about that . . .uh-oh. Well, maybe he made a 

mistake . . .Nope. It’s airtight. Can’t let this little doozy get out.” Un¬ 

able to find any flaw that will undermine Homer’s logic, Flanders sets 

fire to the proof. 

This scene pays homage to one of the most famous episodes in the 

history of mathematics, when the greatest mathematician of the eigh¬ 

teenth century, Leonhard Euler, pretended to prove the opposite of 

Homer’s conclusion, namely that God does exist. The incident took 

place while he was at the court of Catherine the Great in St. Peters¬ 

burg. Catherine and her courtiers were becoming increasingly con- 
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cerned about the influence of the visiting French philosopher Denis 

Diderot, who was an outspoken atheist. He was also supposedly terri¬ 

fied of mathematics. Hence, Euler was asked to construct a fake equa¬ 

tion that would apparently prove the existence of God and put an end 

to Diderot’s heresies. When he was publicly confronted with Euler’s 

complicated equation, Diderot was left speechless. Diderot became 

the laughingstock of St. Petersburg after this humiliating encounter, 

and he soon asked for permission to return to Paris. 

Homer’s mathematical brain receives another temporary boost in 

“Springfield (Or, How I Learned to Stop Worrying and Love Legal¬ 

ized Gambling)” (1993). At the start of that episode, Henry Kissinger 

is (somewhat inexplicably) touring Homer’s workplace, the Spring- 

field Nuclear Power Plant. Unfortunately, the former U.S. secretary of 

state drops his trademark spectacles into the toilet while visiting one 

of the power plant’s washrooms. Too timid to fish them out, and too 

embarrassed to tell anyone about his missing glasses, Kissinger then 

mutters to himself: “No one must know I dropped them in the toilet. 

Not I, the man who drafted the Paris Peace Accords.” 

A short while later, Homer visits the same washroom and discovers 

the glasses in the toilet bowl. Of course, he cannot resist putting them 

on, whereupon the glasses seem to endow him with the powers of 

Kissinger’s brain. While still in the washroom, Homer even starts re¬ 

gurgitating a mathematical formula: 

“The sum of the square roots of any two sides of 

an isosceles triangle is equal to the square root of 

the remaining side.” 

At first, this sounds like a straightforward proclamation of the Py¬ 

thagorean theorem, but in fact it is wrong in several ways. The actual 

theorem states: 

“The square of the hypotenuse of a right triangle 

is equal to the sum of the squares of the two 

adjacent sides.” 
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The most obvious difference is that Homer’s statement concerns 

isosceles triangles, whereas the Pythagorean theorem relates to right 

triangles. You may remember from school that an isosceles triangle 

has two equal sides, whereas a right triangle has no restriction on the 

lengths of its sides, as long as one corner is a right angle. 

There are two more problems in Homer’s statement. First, he talks 

about the “square roots” of lengths, whereas the Pythagorean theorem 

relies on the “squares” of lengths. Second, the Pythagorean theorem 

relates the hypotenuse (the longest side) of the right triangle to the 

other two sides, whereas Homer relates “any two sides” of the isosceles 

triangle to “the remaining side.” “Any two sides” could be the two 

equal sides or just one of the equal sides and the unequal side. 

The diagrams and equations below summarize and highlight the 

differences between Homer’s statement and the Pythagorean theo¬ 

rem. Homer has taken a standard piece of mathematics and given it a 

twist, thereby creating a modification of the Pythagorean theorem, 

namely Simpson’s conjecture. The difference between a theorem and 

a conjecture is that the former has been proven to be true, whereas the 

latter is neither proven nor disproven . . . yet. 

CffHjecTwt A 
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Simpson’s conjecture concerns ^//isosceles triangles, so if we try to 

prove it then we should need to show that it holds true for an infinity 

of triangles. However, if instead we try to disprove Simpson’s conjec¬ 

ture, then we would need to find just one triangle that defies the 
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conjecture. As disproving seems easier than proving, let us see if we 

can find a one counterexample that destroys the conjecture. 

Let us consider an isosceles triangle with two sides of length 9 and 

a base of length 4. Does the sum of the square roots of any two sides 

of this isosceles triangle equal the square root of the remaining side? 

V9 + V9 = V4 implies that 3 + 3 = 2, which is wrong 

V9 + V4 = V9 implies that 3 + 2 = 3, which is also wrong 

In both cases, the square roots simply do not add up, so the conjec¬ 

ture is clearly false. 

This is not Homer’s finest hour, obviously, yet perhaps we should 

not judge him too harshly, particularly as he was under the influence 

of Kissinger’s spectacles. Indeed, if anybody is to blame, it must be the 

writers. 

Josh Weinstein, who shared lead writer credit with Bill Oakley on 

the episode, told me how the scene had developed and why it con¬ 

tained such a nonsensical conjecture: “That joke developed backward, 

because we needed Mr. Burns, Homer’s boss, to think that Homer is 

smart. We thought, ‘So how is he going to think that Homer is smart? 

Oh, it would be funny if he found a pair of glasses in the toilet. Who 

would the glasses belong to? Oh, Henry Kissinger!’ We like Henry 

Kissinger (and Nixon-era stuff) and he seemed like somebody who 

would be friends with Mr. Burns.” 

The script then needed a line in order for Homer to demonstrate 

his newly acquired confidence in his own intelligence. At this point, 

the writing team got to work, and one of the more mathematical writ¬ 

ers realized that Homer’s situation had strong parallels with one of the 

final scenes in The Wizard of Oz (1939).* As Dorothy follows the yel¬ 

low brick road to Oz, she is accompanied by the Cowardly Lion, who 

* The culprit was probably David Mirkin, an ex-engineer with an interest in 

mathematics. He was executive producer on this episode and two others in 1993 

(“The Last Temptation of Homer” and “Rosebud”), which all contain references to 

The Wizard of Oz. 
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is searching for courage, the Tin Man, who is searching for a heart, 

and the Scarecrow, who is searching for a brain. It is said that the 

Scarecrow represents a typical down-to-earth decent Kansas farmer, 

who would probably have had tremendous common sense, but would 

have lacked any formal education. When they eventually find the 

Wizard, he is unable to give the Scarecrow a brain, but he does reward 

him with a diploma, at which point the Scarecrow blurts out: “The 

sum of the square roots of any two sides of an isosceles triangle is 

equal to the square root of the remaining side.” 

Thus, Homer was quoting a line originally delivered by the Scare¬ 

crow in The Wizard of Oz. The Simpson conjecture is really the 

Scarecrow conjecture. The writers of The Simpsons were using the 

same mathematical pseudo-conjecture, because Homer’s discovery of 

Kissinger’s glasses and the Scarecrow receiving his diploma had the 

same effect on the characters involved, inasmuch as afterward both 

Homer and the Scarecrow were much more confident about their in¬ 

tellectual ability. 

Only a tiny fraction of viewers would have noticed that Homer was 

recycling the Scarecrow conjecture. These viewers could best be de¬ 

scribed as occupying the overlap in the Venn diagram that has obses¬ 

sive fans of The Wizard of Oz in one set and mathematicians in the 

other set. This overlap includes James Yick, Anahita Rafiee, and 

Charles Beasley, students in the Department of Mathematics and 

Computer Science at Augusta State University in Georgia, who have 

scrutinized the original scene from The Wizard of Oz. In particular, 

they have challenged the theory that the Scarecrow was supposed to 

quote the Pythagorean theorem, and that the actor playing the Scare¬ 

crow, Ray Bolger, accidentally made an error that was not spotted 

until it was too late. Instead, these mathematicians have argued that 

the scriptwriters of The Wizard of Oz deliberately distorted the Py¬ 

thagorean theorem. They state: “We feel it was an act of deliberate 

sabotage because of the speed at which the actor states his lines, sug¬ 

gesting a lot of practice, and the three obvious errors in the wording 

of the lines . . . Were [the writers] trying to make a point about their 

view of the real value of diplomas? Were they trying to make a state- 
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ment about the lack of real knowledge in the population of viewers at 

large, implying that we are all ‘scarecrows’ as their little inside joke?” 

Regardless of its origins and the motivations behind it, the Scare¬ 

crow conjecture is undoubtedly false, but it did inspire the trio of 

mathematicians at Augusta State to investigate the opposite of the 

Scarecrow conjecture, known as the crow conjecture, which states: 

“The sum of the square roots of any two sides of 

an isosceles triangle is never equal to the square 

root of the remaining side.” 

So, is Yick, Rafiee, and Beasley’s crow conjecture true? We can test 

it by checking the two equations. Starting with equation (1), we can 

restate it and then rearrange it slightly: 

^la + ^la^ 'lb 

2^la a/b 

Aa^ b 

a ^ xAb 

This final equation states that it can never be true that the lengths 

a are only one-quarter of the base b. Indeed, this must be the case, 

because a must be bigger than xhb, otherwise the three sides of the 

triangle will not touch each other. A quick look at the triangle above 

should make this obvious. 
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Having demonstrated that equation (1) is valid, let’s check equa¬ 

tion (2): 

''la + 'lb^ Aa 

'Jb 0 

b ^ 0 

In other words, equation (2) states that the base of an isosceles 

triangle cannot have zero length. This is indeed true, otherwise we 

would have a triangle with only two sides! These sides would overlap, 

so arguably we would have a triangle with only one side! 

Therefore, we can be sure that it is never possible for the sum of 

the square roots of any two sides of an isosceles triangle to be equal 

to the square root of the remaining side. It is not a deeply profound 

discovery, but the crow conjecture can now be elevated to the status 

of the crow theorem. 

Simpson’s conjecture turned out to be nothing more than a restate¬ 

ment of the Scarecrow conjecture, which in any case turned out to be 

false. There is, however, some consolation for the Simpson family, as 

several important—and valid—concepts in mathematics bear their 

name. 

For example, Simpsons paradox is arguably one of the most baffling 

paradoxes in mathematics. It was popularized and investigated by 

Edward H. Simpson, who developed an interest in statistics while 

working at Bletchley Park, the secret British code-breaking headquar¬ 

ters during the Second World War. 

One of the best illustrations of Simpson’s paradox concerns the 

American Civil Rights Act of 1964, a historic piece of legislation aimed 

at tackling discrimination. In particular, the paradox emerges if we 

scrutinize in detail the voting records of the Democrats and Republi¬ 

cans when the act came before the U.S. House of Representatives. 

In the northern states, 94 percent of Democrats voted for the act, 
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compared with only 85 percent of Republicans. Hence, in the north, 

a higher percentage of Democrats than Republicans voted for the act. 

In the southern states, 7 percent of Democrats voted for the act, 

compared with 0 percent of Republicans. So, also in the south, a 

higher percentage of Democrats than Republicans voted for the act. 

The obvious conclusion is that Democrats showed more support 

for the Civil Rights Act than Republicans. However, if the numbers 

are combined for both southern and northern states, then 80 percent 

of Republicans voted for the act compared with only 61 percent of 

Democrats. 

In other words, I am stating that Democrats outvoted Republicans 

in the north and south separately in support of the act, but Republi¬ 

cans outvoted Democrats in the north and south combined! This 

sounds ludicrous, yet these facts are undeniable. This is Simpson’s 

paradox. 

In order to make sense of the paradox, instead of dealing in per¬ 

centages it will help to look at the actual voting numbers. From the 

northern states, those voting for the act consisted of 145 out of 154 

Democrats (94 percent), alongside 138 out of 162 Republicans (85 

percent). From the southern states, those for voting for the act con¬ 

sisted of 7 out of 94 Democrats (7 percent), alongside zero out of 10 

Republicans (0 percent). As stated already, Democratic support for 

the act seems to be stronger than Republican support in both the 

northern and southern states. However, the trend reverses nationally, 

because 152 out of 248 Democrats (61 percent) voted for the Act, 

compared with 138 out of 172 Republicans (80 percent). 

Northern Southern National 

Voting Record Voting Record Voting Record 

Democrats 145/154 94% 7/94 7% 152/248 61% 

Republicans 138/162 85% 0/10 0% 138/172 80% 

So, how do we resolve this example of Simpson’s paradox? There 

are four points about the data that shed light on the mystery. First, if 
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we are comparing Republican and Democratic voting records, then 

we have to look at the overall data—the combined national totals— 

which leads to the conclusion that Republicans were more supportive 

of the Civil Rights Act than Democrats. That has to be the bottom 

line. 

Second, although we might want to look for a difference in the 

Republican and Democrat voting records, the really striking differ¬ 

ence is between the northern and southern representatives, regardless 

of political party. Support in the north is at roughly 90 percent, 

whereas support in the south plummets to just 7 percent. If we focus 

on one variable (e.g., Democrat v. Republican), while paying less at¬ 

tention to a more important variable (e.g., north v. south), then the 

latter is often referred to as a lurking variable. 

Third, percentages can be helpful for making comparisons in some 

situations, but when we started off looking at only percentages we 

failed to take into account the actual numbers of votes, and therefore 

we failed to see the significance of particular results. For example, the 

0 percent result for southern Republicans sounds damning, but there 

were only 10 Republican representatives from the south; if just one 

southern Republican had voted for the act, then Republican support 

in the south would have increased from 0 percent to 10 percent and 

overtaken Democratic support, which was only 7 percent. 

Finally, the most important part of the data is the voting record of 

the southern Democrats. The key point is that there was much less 

support for the act in the southern states than in the northern states, 

and the southern states elected predominantly Democrats. This large 

level of weak support from southern Democrats dragged down the 

Democratic average, and this was ultimately responsible for reversing 

the trend when we look at the totality of the data. 

Importantly, the voting records for the 1964 Civil Rights Act are 

not a rare statistical quirk. This sort of reversal in interpreting data, 

Simpson’s paradox, causes confusion in many other situations, rang¬ 

ing from sporting statistics to medical data. 

Before finishing this chapter, I should point out that there are 

further Simpsons in the world of mathematics. For example, the name 
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Simpson is also mathematically immortalized in Simpsons rule, a 

technique in calculus that can be used to estimate the area under any 

curve. It was named after the British mathematician Thomas Simp¬ 

son (1710—61), who at the age of fifteen became a mathematics 

teacher in Nuneaton, England. Eight years later, according to the 

historian Niccolo Guicciardini, he made one of those mistakes that 

could happen to any of us when he “had to flee to Derby in 1733 after 

he or his assistant had frightened a girl by dressing up as a devil dur¬ 

ing an astrology session.” 

And, of course, there is the Carlson-Simpson theorem, which needs 

no explanation, except to state that it implies the coloring Hales- 

Jewett theorem and is used in the Furstenberg-Katznelson argument. 

But I am sure that you do not need me to tell you that. 

And finally, there is the unforgettable Bart’s theorem.* 

* In case you have forgotten it, you can look up Bart’s theorem in a paper titled 

“Periodic Strongly Continuous Semigroups,” by Professor Harm Bart, published in 

Annali di Matematica Pura ed Applicata 115, no. 1 (1977): 311—18. 



Joke 1 

Joke 2 

Joke 3 

Joke 4 

ex/wMA-port III 
UNIVERSITY SENIOR PAPER 

Q: Why do computer scientists get Halloween 

and Christmas mixed up? 

A: Because Oct. 31 = Dec. 25. 

If the Teletubbies are a product of time and 

money, then: 

Teletubbies = Time x Money 

But, Time = Money 

=$ Teletubbies = Money x Money 

=> Teletubbies = Money2 

Money is the root of all evil 

Money = VfV/7 

Money2 = Evil 

=> Teletubbies = Evil 

Q: How hard is counting in binary? 

A: It is as easy as 01 10 11. 

Q: Why should you not mix alcohol and 

calculus? 

A: Because you should not drink and derive. 

2 points 

4 points 

2 points 

2 points 



Joke 5 Student: "What's your favorite thing about 2 points 

mathematics?'' 

Professor: "Knot theory.” 

Student: "Yeah, me neither.” 

Joke 6 When the Ark eventually lands after the Flood, 4 points 

Noah releases all the animals and makes a 

proclamation: "Go forth and multiply." 

Several months later, Noah is delighted to see 

that all the creatures are breeding, except a pair 

of snakes, who remain childless. Noah asks: 

"What's the problem?" The snakes have a 

simple request of Noah: "Please cut down some 

trees and let us live there.” 

Noah obliges, leaves them alone for a few 

weeks and then returns. Sure enough, there are 

lots of baby snakes. Noah asks why it was 

important to cut down the trees, and the snakes 

reply: “We're adders, and we need logs to 

multiply.” 

Joke? q. |f |jm _=oo 4 points 

x->8 x - 8 

then solve the following: 

x-^5 x - 5 

A: in 

TOTAL - 20 POINTS 



CHAPTER 11 

PReKe-PRA/vte math^MaT'cs 

he Flintstones, first broadcast in I960, was a major prime-time 

success for the ABC network, with 166 episodes aired across six 

seasons. However, there would not be another major prime-time ani¬ 

mated sitcom until 1989, when The Simpsons started its run of over 

five hundred episodes. By proving that an animated sitcom could ap¬ 

peal to both young and old, The Simpsons inspired other shows, such 

as Family Guy and South Park. Matt Groening and his team of writers 

also proved that comedies did not necessarily require a laugh track, 

which paved the way for shows such as Ricky Gervais’s The Office. 

Another pioneering aspect of The Simpsons, according to writer 

Patric Verrone, has been the development of the freeze-frame gag: “If 

it wasn’t invented at The Simpsons, it’s been perfected here. It’s a joke 

that just goes by unnoticed in the normal course of viewing, so you 

have to freeze the frame to see it. A lot of them are typically book titles 

or signs. It’s harder to put that sort of thing in a live-action show.” 

Freeze-frame gags—which can last literally for just a single frame, 

or sometimes for a little longer—were included in The Simpsons from 

the beginning. In “Bart the Genius,” the first proper episode of The 

Simpsons, we see a library that contains both The Iliad and The Odys¬ 

sey. Blink and you would have missed them. The joke, of course, is 

that these ancient Greek texts were written by Homer. 

Freeze-frame gags were an opportunity to increase the comedic 

density of the show, but they also enabled the writers to introduce 

obscure references that rewarded viewers with niche knowledge. In 

that same episode, one of the students momentarily flashes his Ana¬ 

toly Karpov lunchbox. Karpov was world chess champion from 1975 

to 1985. His other claim to fame is that he holds the record for being 
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the seller of the most valuable stamp from the Belgian Congo, auc¬ 

tioned off at $80,000 in 2011. If a viewer did not see the gag, then 

nothing was lost. However, if just one viewer noticed and appreciated 

the reference, then the writers considered it to be worth the effort. 

To a large extent, the freeze-frame gag was a product of techno¬ 

logical developments. Roughly 65 percent of American households 

owned a video cassette recorder by 1989, when The Simpsons was 

launched. This meant that fans could watch episodes several times 

and pause a scene when they had spotted something curious. At the 

same time, more than 10 percent of households had a home computer 

and a few people even had access to the Internet. The following year 

saw the birth of alt.tv.simpsons, a Usenet newsgroup that allowed fans 

to share, among other things, their freeze-frame discoveries. 

According to Chris Turner, author of Planet Simpson, the most ex¬ 

treme version of freeze-frame humor appears in “Homer Badman” 

(1994), an episode in which a sensationalist investigative show called 

Rock Bottom falsely accuses Homer of lecherous behavior. The host, 

Godfrey Jones, is forced to make an apology on air and issue a correc¬ 

tion, which takes the form of text rapidly scrolling down the screen. 

The average viewer sees nothing more than a blur, but there were 

thirty-four freeze-frame gags in four seconds, all perfectly legible for 

anybody willing to pause the episode and step through the correc¬ 

tions frame by frame. 

Crucially, freeze-frame gags provided opportunities for the mathe¬ 

matical writers on The Simpsons to throw in some references that would 

appeal to hard-core number nerds. For example, “Colonel Homer” 

(1992) features the first appearance of the local movie theater, and eagle- 

eyed viewers would have noticed that it is called the Springfield Googol- 

plex. In order to appreciate this reference it is necessary to go back to 

1938, when the American mathematician Edward Kasner was in con¬ 

versation with his nephew Milton Sirotta. Kasner casually mentioned 

that it would be useful to have a label to describe the number 10100 (or 

10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000, 

000,000,000,000,000,000,000,000,000,000,000,000,000,000,000, 

000,000,000). The nine-year-old Milton suggested the word googol. 
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"HOMER BADMAN" (1994) 

Lines on Rock Bottom correction list 

If you are reading this, you have no life. 

Our viewers are not pathetic sexless food tubes. 

Quayle is familiar with common bathroom procedures. 

The people who are writing this have no life. 

"DUMBBELL INDEMNITY" (1998) 

Sign outside Stu's Disco 

You Must Be at Least This Swarthy to Enter 

"LARD OF THE DANCE" (1998) 

Name of shop offering "Winter Madness Sale" 

Donner's Party Supplies 

“BART VS. LISA VS. THE THIRD GRADE" (2002) 

Title of Lisa's book 

Love in the Time of Coloring Books 

“CO-DEPENDENT'S DAY" (2004) 

Sign outside First Church of Springfield 

We Welcome Other Faiths (Just Kidding) 

“BART HAS TWO MOMMIES" (2006) 

Sign at Left-Handers Convention 

Today's Seminar—Ambidextrous: Lefties in Denial? 
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In his book Mathematics and the Imagination, Kasner recalled how 

the conversation with his nephew continued: “At the same time that he 

suggested ‘googol’ he gave a name for a still larger number: ‘Googol- 

plex.’ A googolplex is much larger than a googol, but is still finite, as the 

inventor of the name was quick to point out. It was first suggested that 

a googolplex should be 1, followed by writing zeros until you get tired.” 

The uncle rightly felt that the googolplex would then be a somewhat 

arbitrary and subjective number, so he suggested that the googolplex 

should be redefined as 10googo1. That is 1 followed by a googol zeroes, 

which is far more zeroes that you could fit on a piece of paper the size of 

the observable universe, even if you used the smallest font imaginable. 

These terms—googol and googolplex—have become moderately well 

known today, even among members of the general public, because the 

term googol was adopted by Larry Page and Sergey Brin as the name 

of their search engine. However, they preferred a common misspelling, 

so the company is called Google, not Googol. The name implies that 

the search engine provides access to vast amounts of information. 

Google headquarters is, not surprisingly, called the Googleplex. 

Simpsons writer A1 Jean recalls that the Springfield Googolplex 

freeze-frame gag was not in the original draft of the script for “Colo¬ 

nel Homer.” Instead, he is confident that it was inserted in one of the 

collaborative rewrites, when the mathematical members of the team 

tend to exert their influence: “Yeah, I was definitely in the room for 

that. My recollection is that I didn’t pitch Googolplex, but I definitely 

laughed at it. It was based on theaters that are called octoplexes and 

multiplexes. I remember when I was in elementary school, the smart¬ 

ass kids were always talking about googols. That was definitely a joke 

by the rewrite room on that episode.” 

Mike Reiss, who had worked with Jean on The Simpsons since the 

first season, thinks that the Springfield Googolplex was possibly his 

freeze-frame gag. When a fellow writer raised a concern that the joke 

was too obscure, Reiss remembers being very protective: “Someone 

made some remark about me giving him a joke that nobody was ever 

going to get, but it stayed in ... It was harmless; how funny can the 

name of a multiplex theater be?” 
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Another mathematical freeze-frame appears in “MoneyBART.” In 

fact, you may already have glimpsed it in the frame presented in 

Chapter 6. Here is a close-up in order to help identify the freeze-frame 

reference. 

When Lisa is studying to become a first-rate baseball coach, we 

see her surrounded by books, and one of the spines displays the title 

V* + 1 = 0If you have studied mathematics beyond high school, 

then you may recognize this as Euler’s equation, sometimes referred to 

as Euler’s identity. An explanation of Euler’s equation would involve a 

degree of complexity that is beyond the scope of this chapter, but 

there is a partial and moderately technical explanation in appendix 2. 

In the meantime, we will focus on the initial component of the equa¬ 

tion, which is a peculiar little number known as e. 

The number e was discovered when mathematicians began to study 

a fascinating question about the usually tedious subject of bank inter¬ 

est. Imagine a simple investment scenario, in which one invests $1.00 

in an extraordinarily convenient and generous bank account that of¬ 

fers 100 percent interest per year. At the end of the year, that $1.00 

would have accrued $1.00 interest, giving a total of $2.00. 

Now, instead of 100 percent interest after one year, consider a sce¬ 

nario in which the interest is halved, but calculated twice. In other 

words, the investor receives 50 percent interest after both six and 

twelve months. Thus, after the first six months, the $1.00 would have 

accrued $0.50 interest, giving a total of $1.50. During the second six 

months, interest is gathered on both the $1.00 and the additional 

$0.50 interest that has already accrued. Therefore the additional in- 
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terest added after twelve months is 50 percent of $1.50, which equals 

$0.75, resulting in an overall total of $2.25 at the end of the year. 

This is known as compound interest. 

As you can see, the good news is that this half-year compound in¬ 

terest is more profitable than simple annual interest. The bank bal¬ 

ance could have been even higher if the compound interest had been 

calculated more frequently. For instance, if it had been calculated 

quarterly (25 percent every three months), then the total would have 

been $1.25 at the end of March, $1.56 at the end of June, $1.95 at the 

end of September, and $2.44 at the end of the year. 

Al Jean (who is holding an iron) was in the room when Mike Reiss (seated, left) 

suggested Googolplex as the name of Springfield's movie theater. This 1981 

photograph shows them while at Harvard in the "Lampoon Castle." Patric 

Verrone, who is seen here juggling pool balls, is also a successful TV comedy 

writer, with a list of credits that includes a 2005 episode of The Simpsons entitled 

“Milhouse of Sand and Fog." The fourth member of the group is Ted Phillips, 

who passed away in 2005. Although he had a talent for writing, he went on to 

pursue a career in law in South Carolina and was a respected local historian. He is 

name-checked in the episode "Radio Bart” (1992) and also has a character (Duke 

Phillips) named after him in The Critic, an animated series created by Jean and 

Reiss. 
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If n is the number of increments (i.e., the number of times per year 

that interest is calculated and added), then the following formula can 

be used to calculate the final sum (F) when the compound interest is 

also calculated at monthly, weekly, daily, and even hourly intervals: 

T=$(l + Vn)n 

Initial Annual Time Number of Incremental Final sum 

sum interest increment increments (n) interest (F) 

$1.00 100% 1 year 1 100.00% $2.00 

$1.00 100% Vi year 2 50.00% $2.25 

$1.00 100% lA year 4 25.00% $2.4414... 

$1.00 100% 1 month 12 8.33% $2.6130... 

$1.00 100% 1 week 52 1.92% $2.6925... 

$1.00 100% 1 day 365 0.27% $2.7145... 

$1.00 100% 1 hour 8,760 0.01% $2.7181... 

By the time compound interest is calculated on a weekly basis, we 

are almost $0.70 better off than if we had been earning only simple 

annual interest. However, after this point, calculating the compound 

interest even more frequently achieves only one or two more pennies. 

This leads us to the fascinating question that began to obsess mathe¬ 

maticians: If the compound interest could be calculated not just every 

hour, not just every second, not just every microsecond, but at every 

moment, what would be the final sum at the end of the year? 

The answer turns out to be $2.71828182845904523536028747135 

2662497757247093699959574966967627724076630353547594571 

382178525166427.... As you can probably guess, the decimal places 

continue to infinity, so this is an irrational number, and it is the num¬ 

ber that we call e. 

2.718... was named e because it relates to exponential growth, which 

describes the surprising rate of growth experienced when money gath¬ 

ers interest year after year, or when anything repeatedly grows by a 

fixed rate again and again. For example, if the investment did increase 
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in value by a factor of 2.718... year after year, then $1.00 becomes 

$2.72 after year one, then $7.39 after year two, then $20.09, then 

$54.60, then $148.41, then $403.43, then $1,096.63, then $2,980.96, 

then $8,102.08, and finally $22,026.47, in just ten years. 

Such staggering rates of sustained exponential growth are rare 

within the world of financial investment, but there are concrete ex¬ 

amples elsewhere. The most famous illustration of exponential 

growth has taken place in the world of technology and is known as 

Moore’s law, named after Gordon Moore, co-founder of Intel. In 

1965, he observed that the number of transistors on a microproces¬ 

sor chip doubles approximately every two years, and he predicted 

that this trend would continue. Sure enough, Moores law has held 

true decade after decade. The forty years between 1971 and 2011 

have resulted in twenty doublings in the number of transistors. In 

other words, there has been an improvement by a factor of 220, or 

roughly one million, in the number of transistors on a chip over four 

decades. This is why we now have microprocessors with vastly im¬ 

proved performance at hugely reduced costs compared with the 

1970s. 

By way of analogy, it is sometimes said that if cars had achieved the 

same rapid improvement as computers, then a Ferrari would cost just 

$100 today and would manage a million miles per gallon . . . but it 

would also crash once a week. 

Being linked to compound interest and exponential growth is in¬ 

teresting, but e has much more to offer the world. Just like n, the 

number e crops up in all sorts of unexpected situations. 

For example, e is at the heart of the so-called problem of derange¬ 

ments, more commonly known as the hat check problem. Imagine that 

you are running the cloakroom at a restaurant, collecting hats from 

customers and putting them in hat boxes. Unfortunately, you do not 

make a note of which hat belongs to which person. As the diners re¬ 

turn later in the evening, you hand back the hat boxes at random and 

wave good-bye to the customers before they have a chance to open the 

boxes. What is the probability that none of the boxes contains the 
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right hat for the right person? The answer depends on the number of 

customers (n), and the probability for zero matches, labeled P(n), can 

be found according to the following formula*: 

\ I 1,1 l , l , ... | HI" 
P(») = 1 ~ Ti + ~2\ ~V. + T\+ + n\ 

So for one guest the probability of zero matches is 0, because the 

one hat will inevitably reach the right person: 

P(l) = 1 - = 0 = 0% 

For two guests, the probability of zero matches is 0.5: 

P(2) = 1 - y +y = 0.5 = 50% 

For three customers, the probability of zero matches is 0.333: 

P(3) = 1 - y +y + y = 0.333 = 33% 

For four customers, the probability is roughly 0.375, and for ten 

customers it is approximately 0.369. As the number of customers 

tends to infinity, the probability settles down to 0.367879..., which is 

1/2.718..., or He. 

You can test this for yourself by taking two decks of cards and 

shuffling each of them separately, so that the two decks are random¬ 

ized. One deck represents the random way that hats were put in boxes, 

while the other deck represents the random order in which customers 

will return to collect their hats. Place the two decks side by side and 

turn over cards one at a time from the top of each deck. If both cards 

have the same suit and rank, then this counts as a match. The prob¬ 

ability of zero matches after going through both decks will be close to 

He, which is roughly 0.37, or 37 percent. In other words, if you repeat 

* The formula contains the ! symbol, which represents the factorial operation. This is 

best explained by example: 1! = 1, 2! = 2 X 1, 3! = 3 X 2 X 1, and so on. 
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this entire process one hundred times, then you can expect a very 

poor social life and roughly thirty-seven pairs of decks with zero 

matches. The hat check problem might seem trivial, but it is a funda¬ 

mental question in an area known as combinatorial mathematics. 

The number e also crops up in the study of a type of curve known 

as a catenary, which is the shape formed by a chain hammocked be¬ 

tween two points. The term was coined by Thomas Jefferson and is 

based on the Latin word catena, meaning “chain.” The shape of a 

catenary curve is described by the following equation, which has e at 

its heart, twice: 

y {ex^a -I- e x^a) 

The silk in a spider’s web forms a series of catenaries between the 

spokes, which prompted French entomologist Jean-Henri Fabre to 

write in La Vie des Araignees (The Life of the Spider): “Here we have 

the abracadabric number e reappearing, inscribed on a spider’s thread. 

Let us examine, on a misty morning, the meshwork that has been 

constructed during the night. Owing to their hygrometrical nature, 

the sticky threads are laden with tiny drops, and, bending under the 

burden, have become so many catenaries, so many chaplets of limpid 

gems, graceful chaplets arranged in exquisite order and following the 

curve of a swing. If the sun pierce the mist, the whole lights up with 

iridescent fires and becomes a resplendent cluster of diamonds. The 

number e is in its glory.” 

We can also find e popping up in a completely different area of 

mathematics. Imagine using the randomization button on a calcula¬ 

tor to generate random numbers between 0 and 1, and then continu¬ 

ing to add them together until the total exceeds 1. Sometimes it will 

require two random numbers, usually three, and occasionally four or 

more numbers to reach a total bigger than 1. However, on average, the 

number of random numbers required to exceed 1 is 2.71828..., which, 

of course, is e. 

There are numerous other examples demonstrating that e plays a 

diverse and fundamental role in several areas of mathematics. This 
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explains why so many number lovers have a particularly emotional 

attachment to it. 

For example, Donald Knuth, professor emeritus at Stanford Univer¬ 

sity and a godlike figure in the world of computing, is an e enthusiast. 

After authoring Metafont, his font-creation software, he decided to re¬ 

lease updates with version numbers that relate to e. This means that the 

first version was Metafont 2, then Metafont 2.7, then Metafont 2.71, 

and so on up to the current Metafont 2.718281. Each new version num¬ 

ber is a closer approximation to the true value of e. This is only one of 

several ways in which Knuth has expressed his quirky approach to his 

work. Another example is the index of his seminal work The Art of 

Computer Programming, volume 1, in which the entry for “Circular 

definition” points to “Definition, circular,” and vice versa. 

Similarly, Google’s ubergeek bosses are huge fans of e. When they 

sold stock in 2004, they announced that they planned to raise 

$2,718,281,828, which is $1 billion multiplied by e. That same year 

the company erected the following billboard advertisement: 

{first 10-digit prime found 1 

in consecutive digits of e 

The only way to find the name of this website was to search through 

all the digits of e to discover a sequence of ten digits that represented 

a prime. Anyone with sufficient mathematical ingenuity would have 

discovered that the first ten-digit prime, which starts at the ninety- 

ninth digit ofc, is 7427466391. Visiting the website www.7427466391. 

com revealed a virtual signpost that pointed toward another website 

that was a portal for those who wanted to apply for positions at Google 

Labs* 

Another way to express admiration for e is to memorize its digits. 

* Google is also fascinated by another number. In 2011, its opening bid for a batch of 

patents was $1,902,160,540, which is $1 billion multiplied by Brun’s constant {B2). 

This number is the sum of the reciprocals of all the twin primes, i.e., primes that are 

separated by just one even number. 

Therefore, B2 = (V3 + V5) + (V5 + Vf) + (Vn+ V13) + ■■■ = 1.902160540.... 
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In 2004, Andreas Lietzow from Germany memorized and then re¬ 

cited 316 digits while juggling five balls. However, Lietzow was spec¬ 

tacularly trumped on November 23, 2007, when Bhaskar Karmakar 

from India, unencumbered by balls, set a new world record by recit¬ 

ing 5,002 digits of e in 1 hour 29 minutes and 52 seconds. That same 

day he also accurately recited 5,002 digits of e backward. These are 

incredible feats of memory, but we can all memorize ten digits of e by 

learning this mnemonic: “I’m forming a mnemonic to remember a 

function in analysis.” The numbers of letters in each word represent 

the digits of e. 

And, finally, the writers of The Simpsons are passionate about e. Not 

only does it appear as part of a book title in “MoneyBART,” it also 

receives a special mention in “The Fight Before Christmas” (2010). 

The final segment of the episode is in the style of Sesame Street, so it 

ends with the traditional sponsorship announcement. However, in¬ 

stead of something along the lines of “Today’s episode of Sesame 

Street has been brought to you by the letter c and number 9,” viewers 

were treated to “Tonight’s Simpsons episode was brought to you by the 

symbol umlaut, and the number e; not the letter e, but the number 

whose exponential function is the derivative of itself.” 



CHAPTER 12 

AMOTHeP $l»ce OF K 
***»*»*»**•#•»* 

In “Marge in Chains” (1993), Marge is arrested for shoplifting after 

she walks out of the Kwik-E-Mart having forgotten to pay for a 

bottle of bourbon. She is put on trial and is represented by the attor¬ 

ney Lionel Hutz, a man with a dubious reputation. Before Marge’s 

trial begins, Hutz admits that it is likely to be an uphill battle because 

of his poor relationship with the judge: “Well, he’s had it in for me 

ever since I kinda ran over his dog . . . Well, replace the word kinda 

with the word repeatedly, and the word dog with son.” 

Hutz’s strategy for defending Marge is to discredit Apu Nahas- 

apeemapetilon, proprietor of the Kwik-E-Mart, who witnessed the 

alleged theft. However, when he calls Apu to the witness box and 

suggests that his memory might be flawed, Apu’s response is to point 

out that he has a perfect memory: “In fact I can recite pi to forty thou¬ 

sand places. The last digit is 1.” 

Homer is not impressed, and merely thinks to himself: “Mmm . . . 

pi (e) 
Apu’s extraordinary claim that he has memorized 7t to forty thou¬ 

sand decimal places only makes sense if mathematicians had deter¬ 

mined 7t to at least that degree of accuracy. So, when the episode was 

broadcast in 1993, what was the state of play with respect to calculat¬ 

ing 7t? 

We saw in chapter 2 how mathematicians, from the ancient Greeks 

onward, used the polygon approach to establish increasingly precise 

values for n, which eventually gave them a result accurate to thirty- 

four decimal places. By 1630, the Austrian astronomer Christoph 

Grienberger was using polygons to measure 7t to thirty-eight decimal 

places. From a scientific perspective, there is literally no point in iden- 

140 
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tifying any more digits, because this is sufficient for completing the 

most titanic astronomical calculation conceivable with the most re¬ 

fined accuracy imaginable. This statement is not hyperbole. If astron¬ 

omers had established the exact diameter of the known universe, then 

knowing n to thirty-eight decimal places would be sufficient to calcu¬ 

late the universe’s circumference accurate to within the width of a 

hydrogen atom. 

Nevertheless, the struggle to measure n to more and more decimal 

places continued. The challenge took on an Everest quality. The 

number it was an infinite peak in the mathematical landscape, and 

mathematicians tried to scale it. There was, however, a change in 

strategy. Instead of using the slow polygon approach, mathematicians 

discovered several formulas for determining the value of n more 

quickly. For example, in the eighteenth century Leonhard Euler dis¬ 

covered this elegant formula: 

7t4 1 1 1 1 1 1 
— —-1-1-1--I—■—I-- + • • • 

90 l4 24 34 44 54 64 

It is remarkable that 7t can be deduced from such a straightforward 

pattern of numbers. This equation is known as an infinite series, be¬ 

cause it consists of an infinite number of terms, and the more terms 

included in a calculation, the more accurate the result. Below are the 

results of calculating 7t using one, two, three, four, and five terms of 

Euler’s series: 

7t4 1 
— = — = 1.0000, 
90 l4 

7t4 1 1 
—=—+—= 1.0625, 
90 l4 24 

7t4 1 1 1 
— —-1-1— 

90 l4 24 34 
1.0748, 

71=3.080 

7t=3.080 

7t=3.136 
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7U4 1 1 1 1 
— + + — H- = 1.0788, 7t = 3.139 

90 ” l4 24 34 44 

TU4 1 1 1 1 1 
— + +— H- + — = 1.0804, tu = 3.140 

90 ~ l4 24 34 44 54 

The approximations approach from below the true value of it, with 

each result becoming slightly more accurate as each extra term is in¬ 

troduced. After five terms, the estimate is 3.140, which is already ac¬ 

curate to two decimal places. Then, after one hundred terms, 7t can be 

determined accurately to six decimal places: 3.141592. 

Euler’s infinite formula is a reasonably efficient method for calcu¬ 

lating 7t, but subsequent generations of mathematicians invented other 

infinite series that approached the true value of n even more rapidly. 

John Machin, who was professor of astronomy at London’s Gresham 

College in the early eighteenth century, developed one of the fastest, 

albeit less elegant, infinite series.* He shattered all previous records by 

measuring tu to one hundred decimal places. 

Others exploited Machin’s infinite series with even greater verve, 

including an English amateur mathematician named William Shanks, 

who devoted most of his life to calculating it. In 1874, he claimed to 

have calculated 707 digits of tu. 

In honor of his heroic achievement, the science museum in Paris 

known as the Palais de la Decouverte decorated its Pi Room with an 

inscription of all 707 digits. Unfortunately, in the 1940s it was discov¬ 

ered that Shanks had made an error while calculating the 527th deci¬ 

mal place, which impacted on every subsequent digit. The Palais de la 

Decouverte called in the decorators and Shanks’s reputation took a 

knock. Nevertheless, 526 decimal places was still a world record at the 

time. 

* Machin’s formula for evaluating the value of n relied on the following observations: 

Va k = 4 cot-1 (5) - cot _l (239). Here, cot represents the cotangent function. This is 

not an infinite series, but it can be converted into a very efficient one via a so-called 

Taylor series expansion. 
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After the Second World War, mechanized and electronic calcula¬ 

tors took over from the pencil and paper used by Shanks and previous 

generations of mathematicians. The power of technology is illustrated 

by the fact that Shanks spent a lifetime calculating 707 digits of n, 

181 of which were wrong, while in 1958 the Paris Data Processing 

Center performed the same calculation without error on an IBM 704 

in forty seconds. Although ns digits were now set to tumble at an ac¬ 

celerating rate, the level of excitement among mathematicians was 

tempered by the realization that even computers could not tackle an 

infinite task. 

This fact was a plot point in the 1967 Star Trek episode “Wolf in 

the Fold.” In order to exorcise an evil energy force that has occupied 

the USS Enterprise's computer, Spock issues the following command: 

“Computer—this is a Class A compulsory directive. Compute to the 

last digit the value of 7t.” The computer is so distraught by this request 

that it cries out “No” over and over again. Despite its distress, the 

computer must obey the directive, and the resulting computational 

impossibility somehow purges the circuits of the evil force. 

Spock’s genius in “Wolf in the Fold” more than makes up for some 

appalling innumeracy displayed by Captain James T. Kirk in another 

episode earlier that same year. In “Court Martial,” one of Kirk’s crew¬ 

men has gone missing on board the Enterprise, and nobody is sure if 

he is alive or dead. Kirk, who would be held responsible for the crew¬ 

man’s fate, decides to use the computer to search for the missing man’s 

heartbeat. He explains his plan: “Gentlemen, this computer has an 

auditory sensor. It can, in effect, hear sounds. By installing a booster, 

we can increase that capability on the order of one to the fourth power'.' 

Of course, l4 is still 1. 

Shortly after the French computer scientists calculated 707 digits 

in less than a minute, the same team used a Ferranti Pegasus to calcu¬ 

late 10,021 digits of 7t. Then, in 1961, the IBM Data Processing Cen¬ 

ter in New York computed 7t to 100,265 digits. Inevitably, bigger 

computers led to more digits, and the Japanese mathematician Yasu- 

masa Kanada calculated n to two million decimal places in 1981. The 

eccentric Chudnovsky brothers (Gregory and David) built their own 
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DIY supercomputer in their Manhattan apartment and broke the 

billion-digit barrier in 1989, but they were overtaken by Kanada, who 

cracked fifty billion digits in 1997 and then one trillion digits in 

2002. At present, Shigeru Kondo and Alexander Yee are top of the 7t 

chart. 

This duo reached five trillion digits in 2010, and then doubled the 

record to ten trillion digits in 2011. 

Thus, returning to the courtroom, Apu could easily have had access 

to the first forty thousand decimal places of n, because mathemati¬ 

cians had calculated beyond this level of accuracy by the early 1960s. 

However, is it also possible that he could have memorized forty thou¬ 

sand decimal places? 

As mentioned previously, in the context of e, the best approach for 

remembering a handful of digits is to rely on a phrase such that each 

word contains the relevant number of letters. For example, “May I 

have a large container of coffee” gives 3.1415926. “How I wish I could 

recollect pi easily today!” gives one more digit. The great British sci¬ 

entist Sir James Jeans, in between pondering deep questions about 

astrophysics and cosmology, invented a phrase that offers seventeen 

digits of 7i: “How I need a drink, alcoholic of course, after all those 

lectures involving quantum mechanics.” 

Several memory experts have extended this technique. They can 

recount n by telling themselves long, elaborate stories, with the num¬ 

ber of letters in each word reminding them of the next digit of 7t. This 

technique enabled Canadian Fred Graham to break the 1,000-digit 

barrier in 1973. By 1978, American David Sanker cracked 10,000 

digits, and in 1980, an Indian-born British mnemonist named Creigh¬ 

ton Carvello recited n to 20,013 digits. 

A few years later, British taxi driver Tom Morton also tried to 

memorize 20,000 digits, but he stumbled at 12,000 digits, because 

there was a printing error on one of the cue cards that he was relying 

on during his preparation. In 1981, the Indian memory expert Rajan 

Mahadevan broke the 30,000-digit barrier (31,811 digits to be pre- 
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cise), and Japanese mnemonist Hideaki Tomoyori set a new world 

record of exactly 40,000 digits in 1987. Today, the record holder is 

Chao Lu from China, who memorized 67,890 digits in 2005. 

However, it was Tomoyori’s 40,000-digit record that was in place 

when the script for “Marge in Chains” was being finalized in 1993. 

Hence, Apus claim to have memorized n to 40,000 digits was a direct 

reference and tribute to Tomoyori, who was the world’s most famous 

and successful k memory expert at the time. 

This episode was written by Bill Oakley and Josh Weinstein. Ac¬ 

cording to Weinstein, the overall plot of “Marge in Chains” had al¬ 

ready been outlined by the time it was assigned to Oakley and himself: 

“We were the junior writers, so we were assigned scripts that other 

people didn’t want to do. Scripts revolving around Marge are very 

hard to write. By contrast, Homer is instantly funny, and so is Krusty. 

But Marge is really hard work, so her storylines were often pawned off 

on the new guys, like us.” 

Weinstein and Oakley took the basic storyline for “Marge in 

Chains,” developed the plot details, wrote the core jokes, and handed 

in their draft script. Importantly, when we met, Weinstein was anx¬ 

ious to point out that this version of the script contained absolutely no 

mention of n. 

He explained that the scene with Apu in the witness box began 

with the attorney Lionel Hutz asking the same question that still ap¬ 

pears in the transmitted episode: “So, Mr. Nahasapeemapetilan, if 

that is your real name, have you ever forgotten anything?” 

However, instead of claiming that he could recite n to forty thou¬ 

sand places, Apu revealed that he had been famous across India for his 

incredible memory. In fact, in the original script, Apu stated on oath 

that he had been known as Mr Memory and had appeared in over 

four hundred documentary films about his mental ability. 

It is perhaps not surprising that the original script for “Marge in 

Chains” had no mention of 7t or forty thousand digits, as neither 

Oakley nor Weinstein have mathematical backgrounds. So, when did 

the mathematical references appear in the script? 

As usual, the first draft script was dissected and discussed by the 
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rest of the writing team in order to refine the story and inject addi¬ 

tional humor wherever possible. At this point, Weinstein and Oak¬ 

ley’s colleague Al Jean saw an opportunity to add some mathematics 

to the episode. Thanks to his lifelong interest in mathematics, Jean 

was aware that the world record for memorizing n was forty thousand 

decimal places, so he suggested altering the script so that Apu makes 

a claim that matches the memorization record. And, to give the claim 

some credibility, Jean suggested that Apu should cite the forty-thou¬ 

sandth decimal place. 

Everyone agreed that this was a good idea, but nobody happened 

to know the forty-thousandth decimal place of 7t. Worse still, it was 

1993, so the World Wide Web was only sparsely populated, Google 

did not exist, and searching Wikipedia was not yet an option. The 

writers decided they needed some expert advice, so they contacted a 

brilliant mathematician named David Bailey, who at the time was 

working at the NASA Ames Research Center.* Bailey responded by 

printing out all forty thousand decimal places of n and mailing them 

to the studio. Here are the digits from the 39,990th through to the 

40,000th decimal place, and you can see that Apu is correct when he 

says that the last digit in his memorized sequence is 1: 

J, 40,000th decimal place 

...32473837651... 

The fact that Bailey made his contribution as a mathematician 

based at NASA was referenced three years later in “22 Short Films 

About Springfield” (1996). When Barney Gumble, Springfield’s fa¬ 

vorite drunk, stumbles into Moe’s Tavern, he finds that Moe has some 

* Bailey helped to invent the spigot algorithm for finding the digits of n. A spigot is a 

type of tap, and a spigot algorithm generates answers in a taplike fashion, which 

means that 7t is calculated drip by drip, digit by digit. The spigot algorithm can be 

tuned to generate any particular digit with perfect accuracy, so you might then think 

that it would be easy for Bailey to tune his algorithm to deliver the forty-thousandth 

digit. Unfortunately, Bailey’s algorithm only works in hexadecimal (base 16), not 

decimal (base 10). 
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bad news for him: “Remember when I said I’d have to send away to 

NASA to calculate your bar tab?... The results came back today. You 

owe me seventy billion dollars.” 

Apu’s line about tu in “Marge in Chains” also influenced another 

episode, namely “Much Apu About Nothing” (1996). In this episode, 

Apu reveals some of his backstory, and his past has to be compatible 

with someone who would be interested in memorizing k to 40,000 

decimal places. Hence, when he recalls his journey from India to 

America, Apu tells Marge: “I came here shortly after my graduation 

from Caltech. Calcutta Technical Institute. As the top student in my 

graduating class of seven million.” 

Although the Calcutta Technical Institute is fictional, there is a 

technical institute near Calcutta named the Bengal Institute of Tech¬ 

nology, which perhaps could claim to be the inspiration for Apu’s 

alma mater. It has the acronym BIT, which is highly appropriate for a 

college that specializes in computer science and information technol- 

ogy. We also learn that Apu went to America to study at the Spring- 

field Heights Institute of Technology, which has a rather less fortunate 

acronym. Under the supervision of Professor Frink, Apu spent nine 

years completing his PhD in computer science by supposedly develop¬ 

ing the world’s first tic-tac-toe program, which could only be beaten 

by the best human players. 

David S. Cohen, who wrote “Much Apu About Nothing,” decided 

that Apu should be a computer scientist rather than a mathematician, 

because Cohen himself had been a graduate student in computer sci¬ 

ence at the University of California, Berkeley, and had shared classes 

with several Indian students. In particular, Apu’s backstory is based 

on the life of one of Cohen’s closest friends at Berkeley, Ashu Rege, 

who went on to work for NVIDIA, a pioneering computer graphics 

company. 

Pi has made one more notable appearance on The Simpsons. In the 

concluding scenes of “Lisa’s Sax” (1997), we learn that Homer bought 

Lisa a saxophone in order to nurture her nascent genius. However, 
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before investing in a musical instrument, Homer and Marge consid¬ 

ered sending Lisa to Miss Tillingham’s School for Snotty Girls and 

Mama’s Boys. In a flashback, we see Homer and Marge visiting the 

school, where they encounter two child prodigies in the playground, 

who have invented their own lyrics to a hand-clapping song: 

Cross my heart and hope to die, 

Here’s the digits that make n, 

3.14159265358979323846.... 

Al Jean was the writer responsible for deftly crowbarring this math¬ 

ematical reference into the episode. At first hearing, it seems like an 

uncontroversial recitation of the world’s most famous irrational num¬ 

ber, but on further consideration I began to wonder why 7t was being 

expressed in a base-10 decimal form. 

Base 10 is our standard number system, with the first decimal place 

representing tenths (1/101), then each subsequent decimal place repre¬ 

senting hundredths (1/102), thousandths (1/103), and so on. Our 

number system developed in this manner because the human hands 

between them have ten digits. 

However, if you take a close look at the hands of the characters in 

The Simpsons, you will notice that they have only three fingers and a 

thumb on each hand, so eight digits in total. Therefore, counting in 

Springfield should rely on the number 8, which should lead to an 

entirely different system of counting (known as base 8), which in turn 

should result in a different way of expressing n (3.1103755242...). 

The mathematics of base 8 are not important, particularly as The 

Simpsons, like us, rely on base 10. Nevertheless, there are two out¬ 

standing questions that must be addressed. First, why do the residents 

of Springfield only have eight digits on their hands? And, second, why 

does the universe of The Simpsons rely on base 10, when the characters 

have only eight digits? 

The mutation that results in only eight digits in The Simpsons dates 

back to the early days of animation on the big screen. Felix the Cat, 

who debuted in 1919, had only four digits on each hand, and Mickey 
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Mouse shared this trait when he made his first appearance in 1928. 

When asked why his anthropomorphized rodent had missing digits, 

Walt Disney replied: “Artistically five digits are too many for a mouse. 

His hand would look like a bunch of bananas.” Disney also added 

that simplified hands meant less work for the animators: “Financially, 

not having an extra finger in each of 45,000 drawings that make up a 

six-and-one-half-minute short has saved the Studio millions.” 

For these reasons, eight digits became standard around the world 

for both animal and human animated characters. The only exception 

is in Japan, where only four digits on a hand can have sinister con¬ 

notations; the number 4 is associated with death, and the Yakuza, the 

infamous Japanese Mafia, sometimes remove the little finger either as 

a punishment or a test of loyalty. This meant that the British cartoon 

Bob the Builder, when it was sold to Japan in 2000, had to be altered 

in order to give the characters the required number of fingers. 

While the Japanese are uncomfortable with the idea of four digits 

per hand, this is accepted as a perfectly natural state of affairs by all 

the characters in The Simpsons. Indeed, anything else is considered 

abnormal. This becomes apparent in “I Married Marge” (1991), an 

episode which includes a scene that takes place on the day Bart is 

born. We hear Marge asking Homer if he thinks their new son is 

beautiful, and Homer replies: “Hey, as long as he’s got eight fingers 

and eight toes, he’s fine by me.” 

Also, in “Lady Bouvier’s Lover” (1994), Marge’s mother and Hom¬ 

er’s father start dating, much to the consternation of Homer: “If he 

marries your mother, Marge, we’ll be brother and sister! And then our 

kids, they’ll be horrible freaks with pink skin, no overbites, and five 

fingers on each hand.” 

However, despite their finger deficit, we know that the residents of 

Springfield count in base 10, not base 8, because they express k as 

3.141.... So, how and why did a community with only eight digits per 

person end up counting in base 10? 

One possibility is that Homer and Marge’s ancient yellow ancestors 

counted on more than just their digits. They could have counted on 

their eight fingers and two nostrils. This might sound odd, but several 
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societies have developed counting systems based on more than just 

fingers. For example, the men of the Yupno tribe in Papua New 

Guinea assign the numbers 1 to 33 to various parts of the body, start¬ 

ing with fingers, then moving on to nostrils and nipples. The count¬ 

ing concludes with 31 for the left testicle, 32 for the right one, and 33 

for “the man thing.” European scholars, such as the Venerable Bede, 

have also experimented with counting systems based on parts of the 

body. This eighth-century English theologian developed a system 

that enabled him to count up to 9,999 by using gestures and every bit 

of the human anatomy. According to Alex Bellos, author of Alex’s 

Adventures in Numberland, Bede’s system was “one part arithmetic, 

one part jazz hands.” 

Although counting on fingers, thumbs, and nostrils could explain 

the decimalization of The Simpsons, there is another theory to con¬ 

sider. Is it conceivable that numbers in the cartoon universe were not 

invented by humans but instead by a higher power? As a rationalist, I 

tend to spurn supernatural explanations, but we cannot ignore the 

fact that God appears in several episodes of The Simpsons, and in each 

case He has ten digits. Indeed, He is the only character in The Simpsons 

possessing ten digits. 
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he first “Treehouse of Horror” episode appeared in the second 

season of The Simpsons, and since then they have become an an¬ 

nual Halloween tradition. These special episodes usually consist of 

three short stories that are allowed to break the conventions of life in 

Springfield, with storylines that can include anything from aliens to 

zombies. 

David S. Cohen, one of the writers most dedicated to getting math¬ 

ematics into The Simpsons, wrote the final part of “Treehouse of Hor¬ 

ror VI” (1995), a segment titled “Homer3.” This is, without doubt, 

the most intense and elegant integration of mathematics into The 

Simpsons since the series began a quarter of a century ago. 

The storyline begins quite innocently with Patty and Selma, Hom¬ 

er’s sisters-in-law, paying a surprise visit to the Simpsons. Keen to 

avoid them, Homer hides behind a bookcase, where he encounters a 

mysterious portal that seems to lead into another universe. As the 

dulcet tones of Patty and Selma get louder, Homer hears that they 

want everyone to help clean and organize their collection of seashells. 

In desperation, he dives through the portal, leaving behind his two- 

dimensional Springfield environment and entering an incredible 

three-dimensional world. Homer is utterly perplexed by his new extra 

dimensionality and notices something shocking: “What’s going on 

here? I’m so bulgy. My stomach sticks way out in front.” 

Instead of being drawn in the classic flat-animation style of The 

Simpsons, scenes set in this higher dimension have a sophisticated 

three-dimensional appearance. In fact, these scenes were generated 

using cutting-edge computer animation techniques, and the cost of 

generating them, even though they lasted less than five minutes, was 
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far beyond the budget of an entire normal episode. Fortunately, a 

company named Pacific Data Images (PDI) volunteered its services, 

because it realized that The Simpsons would provide a global platform 

for showcasing its technology. Indeed, PDI signed a deal with Dream¬ 

Works later that year which led directly to the production ofAntz and 

Shrek, thereby kick-starting a revolution in film animation. 

When Homer approaches a signpost indicating the x, y, and 2: axes 

in his new three-dimensional universe, he alludes to the fact that he is 

standing within the most sophisticated animated scene ever to have 

appeared on television: “Man, this place looks expensive. I feel like I’m 

wasting a fortune just standing here. Well, better make the most of it.” 

Homer makes another pertinent comment when he first encoun¬ 

ters his new environment: “That’s weird. It’s like something out of 

that twilighty show about that zone.” This is a nod to the fact that 

“Homer3” is a tribute to a 1962 episode of The Twilight Zone titled 

“Little Girl Lost.” 

A three-dimensional Homer Simpson after traveling through the portal in 

"Homer3." Two mathematical equations are floating behind him in the distance. 
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In “Little Girl Lost,” the parents of a young girl named Tina be¬ 

come distraught when they enter her bedroom and cannot find her. 

Even more terrifying, they can still hear her voice echoing around 

them. Tina is invisible yet still audible. She is no longer in the room, 

but she seems just a breath away. Desperate for help, the parents call 

upon a family friend named Bill, who is a physicist. Having pinned 

down the location of a portal by chalking some coordinates on the 

bedroom wall, Bill declares that Tina has slipped into the fourth di¬ 

mension. The parents struggle to understand the concept of a fourth 

dimension, because they (like all humans) have trained their brains to 

cope with our familiar three-dimensional world. 

Although Homer leaps from two to three dimensions, not from 

three to four dimensions, exactly the same sequence of events takes 

place in “Homer3.” Marge cannot fathom what has happened to 

Homer, because she can hear him but not see him, and she also re¬ 

ceives advice from a scientist, Professor John Nerdelbaum Frink, Jr. 

Despite his comically eccentric personality, it is important to not 

underestimate Professor’s Frink’s genius. Indeed, his scientific creden¬ 

tials are made clear in “Frinkenstein,” a story from “Treehouse of 

Horror XIV” (2003), when he receives a Nobel Prize from none other 

than Dudley R. Herschbach, who won his own Nobel Prize in 1986 

and who voices his own character.* 

Just like the physicist in The Twilight Zone, Frink draws a chalk 

outline around the portal, watched by Ned Flanders, Chief Wiggum, 

Reverend Lovejoy, and Dr. Hibbert, who have all come to offer sup¬ 

port. Frink then begins to explain the mystery: “Well, it should be 

obvious to even the most dimwitted individual, who holds an ad¬ 

vanced degree in hyperbolic topology, that Homer Simpson has 

stumbled into . . . the third dimension.” 

Frink’s statement suggests that the characters in The Simpsons are 

trapped in a two-dimensional world, and therefore they struggle to 

* The awarding of the Nobel Prize is witnessed by Frink’s resurrected father, who is 

voiced by the legendary comic actor Jerry Lewis. This resulted in a voice circle. Lewis 

based his voice for Frink Sr. on Hank Azaria’s voice for Frink Jr., which in turn was 

based on Lewis’s lead character in The Nutty Professor. 
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imagine the third dimension. The animated reality of Springfield is 

slightly more complicated than this, because we regularly see Homer 

and his family crossing behind and in front of each other, which 

ought to be impossible in a strictly two-dimensional universe. Never¬ 

theless, for the purposes of this “Treehouse of Horror” segment, let us 

assume that Frink is correct in implying the existence of only two 

dimensions in The Simpsons, and let us see how he explains the con¬ 

cept of higher dimensions as he draws a diagram on the blackboard: 

Professor Frink: 

Chief Wiggum: 

Professor Frink: 

Everyone: 

Professor Frink: 

Here is an ordinary square. 

Whoa, whoa! Slow down, egghead! 

But suppose we extend the square beyond 

the two dimensions of our universe along 

the hypothetical .z-axis . . . There. 

[gasps] 

This forms a three-dimensional object 

known as a cube, or a Frinkahedron in honor 

of its discoverer. 

Frink’s explanation illustrates the relationship between two and 

three dimensions. In fact, his approach can be used to explain the 

relationship between all dimensions. 

If we start with zero dimensions, we have a zero-dimensional point. 

This point can be pulled in, say, the x direction to trace a path that 

forms a one-dimensional line. Next, the one-dimensional line can be 

pulled in the perpendicular y direction to form a two-dimensional 

square. This is where Professor Frink’s explanation picks up, because 
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the two-dimensional square can be pulled in the z direction, which is 

perpendicular to its face, to form a three-dimensional cube (or Frinka- 

hedron). Finally, it is mathematically, if not physically, possible to go 

one step further by dragging the cube into another perpendicular di¬ 

rection (labeled the w dimension) to form a four-dimensional cube. 

Cubes in four (or more) dimensions are known as hypercubes. 

The diagram of a four-dimensional hypercube is a mere sketch, 

the equivalent of a stick figure drawing being used to capture the es¬ 

sence of Michelangelo’s statue of David. Nevertheless, the stick-fig¬ 

ure hypercube suggests an emerging pattern that helps explain the 

geometry of shapes in four and even higher dimensions. Let us con¬ 

sider the number of endpoints or corners (known as vertices) that 

each object possesses as we move from dimension to dimension. The 

number of vertices follows a simple pattern: 1, 2, 4, 8, 16,.... In other 

words, if d is the number of dimensions, then the number of vertices 

equals 2d. Flence, a ten-dimensional hypercube would have 210 or 

1,024 vertices. 

Despite Professor Frink’s deep understanding of higher dimen¬ 

sions, the bad news is that he is unable to save Homer, who is left to 

wander across his new universe. This leads to a bizarre series of events 

that ends with a visit to an erotic cake store. During this adventure, 

Homer encounters several fragments of mathematics which material¬ 

ize in the three-dimensional landscape. 

For example, soon after Homer travels through the portal, an ap¬ 

parently random series of numbers and letters floats in the far dis¬ 

tance: 46 72 69 6E 6B 20 72 75 6C 65 73 21. The letters, in fact, are 

actually hexadecimal (or base 16) digits. Hexadecimal numbers are 

expressed using the usual digits 0 to 9, plus six others, namely A = 10, 

B = 11, C = 12, D = 13, E = 14, and F = 15. Together, each pair of 

hexadecimal digits represents a character in ASCII (American Stan¬ 

dard Code for Information Interchange), which is a protocol for con¬ 

verting letters and punctuation into numbers, largely for the benefit 

of computers. According to the ASCII protocol, 46 represents “F,” 72 

represents “r,” and so on. Translated, the entire sequence reads as a 

bold proclamation in praise of geeks: “Frink rules!” 
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A few moments later, a second mathematical tidbit appears in the 

three-dimensional landscape, courtesy of writer David S. Cohen: 

1,78212 + l,84l12 = 1,92212 

This is yet another false solution to Fermat’s last theorem, just like 

the one created by Cohen for “The Wizard of Evergreen Terrace,” 

which was discussed in chapter 3. The numbers have been carefully 

chosen so that the two sides of the equation are almost equal. If we 

match the sum of the first two squares to the sum of the third square, 

then the results are accurate for the first nine digits, as shown in bold: 

1,025,397,835,622,633,634,807,550,462,948,226,174,976 (1,78212) 

+ 1,515,812,422,991,955,541,481,119,495,194,202,351,681 (1,84112) 

= 2,541,210,258,614,589,176,288,669,958,142,428,526,657 

2,541,210,259,314,801,410,819,278,649,643,651,567,616 (1,92212) 

This means that the discrepancy in the equation is just 0.00000003 

percent, but that is more than enough to make it a false solution. In¬ 

deed, there is a quick way to spot that 1,78212 -I- l,84l12 = 1,92212 is a 

false solution, without having to do any lengthy calculations. The 

trick is to notice that we have an even number (1,782) raised to the 

twelfth power added to an odd number (1,841) raised to the twelfth 

power supposedly equaling an even number (1,922) raised to the 

twelfth power. The oddness and evenness are important because an 

odd number raised to any power will always give an odd result, 

whereas an even number raised to any power will always give an even 

result. Since an odd number added to an even number always gives an 

odd result, the left side of the equation is doomed to be odd, whereas 

the right side of the equation must be even. Therefore, it should be 

obvious that this is a false solution: 

even12 + odd12 ^ even12 
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Blink and you will miss five other nods to nerdiness that flash past 

Homer in his three-dimensional universe. The first is a rather ordi¬ 

nary looking teapot. Why is this nerdy? When pioneering graphics 

researcher Martin Newell at the University of Utah wanted to render 

a computer-generated object in 1975, he chose this household item; it 

was relatively simple, yet also offered challenges, such as a handle and 

curves. Ever since, the so-called Utah teapot has become an industry 

standard for demonstrating computer-graphic software. This particu¬ 

lar style of teapot has also made cameo appearances in a tea party 

scene in Toy Story, in Boo’s bedroom in Monsters, Inc., and in several 

other films. 

The second nod is a flyby by the numbers 7, 3, and 4, a coded refer¬ 

ence to Pacific Data Images, who produced the computer graphics. 

These digits on a telephone dialing pad are associated with the letters 

P, D, and /. 

Third, we glimpse a cosmological equation (pm0 > 3//02/87tG’) that 

describes the density of Homer’s universe. Provided by one of Cohen’s 

oldest friends, the astronomer David Schiminovich, the equation im¬ 

plies a high density, which means that the resulting gravitational at¬ 

traction will ultimately force Homer’s universe to collapse. Indeed, 

this is exactly what happens toward the end of the segment. 

Just before Homer’s universe disappears, Cohen dangles a particu¬ 

larly intriguing mathematical morsel for the discerning viewer. In the 

scene shown on page 152, a slightly unusual arrangement of Euler’s 

equation is visible over Homer’s left shoulder. This equation also ap¬ 

pears in “MoneyBART.” 

Finally, in the same image, the relationship P = NP can be seen 

over Homer’s right shoulder. Although the majority of viewers would 

not have noticed these three letters, let alone given them a second 

thought, P = NP represents a statement about one of the most impor¬ 

tant unsolved problems in theoretical computer science. 

P = NP is a statement concerning two types of mathematical prob¬ 

lems. P stands for polynomial and NP for nondeterministicpolynomial. 

In crude terms, P-type problems are easy to solve, while NP-type 

problems are difficult to solve, but easy to check. 
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For example, multiplication is easy and so is classified as a P-type 

problem. Even as the numbers being multiplied get bigger, the time 

required to calculate the result grows in a relatively modest fashion. 

By contrast, factoring is an NP-type problem. Factoring a number 

simply means identifying its divisors, which is trivial for small num¬ 

bers, but rapidly becomes impractical for large numbers. For example, 

if asked to factor 21, you would immediately respond 21 = 3 X 7. 

Fiowever, factoring 428,783 is much harder. Indeed, you might need 

an hour or so with your calculator to discover that 428,783 = 

521 X 823. Crucially, though, if someone handed you the numbers 

521 and 823 on a slip of paper, you could check within a few seconds 

that these are the correct divisors. Factoring is thus a classic NP-type 

problem: hard to solve for large numbers, yet easy to check. 

Or ... is it possible that factoring is not as difficult as we currently 

think? 

The fundamental question for mathematicians and computer sci¬ 

entists is whether factoring is genuinely hard to accomplish, or 

whether we are missing a trick that would make it simple. The same 

applies to a host of other supposedly NP-type problems—are they all 

genuinely hard, or are they merely hard because we are not smart 

enough to figure out the way to solve them easily? 

This question is of more than mere academic interest, because 

some important technologies rely on NP-type problems being intrac¬ 

table. For example, there are widely used encryption algorithms that 

depend on the assumption that it is hard to factor big numbers. Fiow- 

ever, if factoring is not inherently difficult, and someone discovers the 

trick that makes factoring simple, then it would undermine these en¬ 

cryption systems. In turn, this would jeopardize the security of every¬ 

thing from personal online purchases to high-level international 

political and military communications. 

The problem is often summarized as “P = NP or P ^ NP?”, which 

asks the question: Will apparently difficult problems (NP) one day be 

shown to be just as easy as simple problems (P), or not? 

Finding the solution to the mystery of P = NP or P ^ NP? is on the 

mathematicians’ most wanted list, and there is even a prize on its 
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head. The Clay Mathematics Institute, established in Cambridge, 

Massachusetts, by the philanthropist Landon Clay, listed this puzzle 

as one of its seven Millennium Prize Problems in 2000, offering a $1 

million reward for a definitive answer to the question P = NP or 

P*NP? 

David S. Cohen, who explored P-type and NP-type problems while 

studying for his master’s degree in computer science at the University 

of California, Berkeley, has a hunch that NP-type problems are in¬ 

deed much easier than we currently think, which is why P = NP ap¬ 

pears behind Homer in his 3-D universe. 

However, Cohen holds a minority view. When William Gasarch, a 

computer scientist at the University of Maryland, polled one hundred 

researchers in 2002, only 9 percent thought that P = NP, while 61 

percent favored P ^ NP. He repeated the poll in 2010, and this time 

81 percent favored P ^ NP. 

Of course, truth in mathematics is not decided by a popularity 

contest, but if the majority turn out to be right, then Cohen’s posi¬ 

tioning of P = NP in the landscape of “Homer3” will look somewhat 

incongruous. This, however, should not prove to be an issue in the 

short term, as half of the mathematicians polled did not think that 

the problem would be resolved during this century. 

Finally, there is one more mathematical reference in “Homer3” that 

deserves a mention. More accurately, the reference does not actually 

appear in the “Homer3” segment, but rather in the credit sequence for 

the whole “Treehouse of Horror VI” episode. By tradition, the credits 

in the Halloween episodes of The Simpsons have always been quirky. 

For example, Matt Groening is credited variously as Bat Greening, 

Rat Groening, Matt “Mr. Spooky” Groening, and Morbid Matt 

Groening. 

This tradition was inspired by a comic book titled Tales from the 

Crypt, which regularly contained mutant credits for its writers and 

artists. Its publisher, EC Comics, became notorious after the Senate 

Subcommittee on Juvenile Delinquency ran comic book hearings in 

1954 that concluded that Tales from the Crypt and its other titles were 

partly responsible for corrupting the nation’s youth. This resulted in 
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the removal of zombies, werewolves, and their ilk from all comics, 

and in turn these constraints forced the discontinuation of Tales from 

the Crypt in 1955. Nevertheless, Tales from the Crypt still has many 

fans, most of whom were not even born when it went to an early 

grave. Al Jean is one these fans, and it was his suggestion to pay hom¬ 

age to the comic by mimicking the idea of mutant credits in “Tree- 

house of Horror” episodes. 

All of which explains why the credits for “Treehouse of Horror VI” 

include Brad “the Impaler” Bird, Lycanthropic Lee Harting, and 

Wotsa Matta U. Groening. And, if you look very carefully, you will 

spot a charming reference to the Pythagorean theorem and the writer 

of “Homer3”: 

DAVID2 + 5.2 = COHEN2 
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Joke 1 

Joke 2 

Joke 3 

Joke 4 

Joke 5 

Joke 6 

iv 
MASTERS DEGREE 

Q: What's a polar bear? 

A: A rectangular bear after a coordinate 

transformation. 

Q: What goes "Pieces of seven! Pieces of 

seven!”? 

A: A parroty error. 

Russell to Whitehead: "My Godel is killing me!” 

Q: What's brown, furry, runs to the sea, and is 

equivalent to the axiom of choice? 

A: Zorn's lemming. 

Q: What's yellow and equivalent to the axiom 

of choice? 

A: Zorn's lemon. 

Q: Why is it that the more accuracy you 

demand from an interpolation function, 

the more expensive it becomes to compute? 

A: That's the law of spline demand. 

2 points 

2 points 

3 points 

2 points 

2 points 

3 points 



Joke 7 Two mathematicians, Isaac and Gottfried, are in 6 points 

a pub. Isaac bemoans the lack of mathematical 

knowledge among the general public, but 

Gottfried is more optimistic. To prove his point, 

Gottfried waits until Isaac goes to the bathroom 

and calls over the barmaid. He explains that he 

is going to ask her a question when Isaac 

returns, and the barmaid simply has to reply: 

"One third x cubed." 

She replies: "Won thud ex-what?" 

Gottfried repeats the statement, but more 

slowly this time: "One . . . third . . . x . . . 

cubed." 

The barmaid seems to get it, more or less, 

and walks away muttering over and over again: 

"Won thud ex-cubed." 

Isaac returns, he downs another drink with 

Gottfried, the argument continues and eventu¬ 

ally Gottfried asks over the barmaid to prove his 

point: "Isaac, let's try an experiment. Miss, do 

you mind if I ask you a simple calculus question? 

What is the integral of x2?" 

The barmaid stops, scratches her head, and 

hesitantly regurgitates: "Won . . . thud . . . 

ex-cubed." Gottfried smiles smugly, but just 

before the barmaid walks away she stares at 

the two mathematicians and says: . . plus a 

constant!" 

TOTAL - 20 POINTS 



From left to right, the cast of Futurama includes Zapp Brannigan (a twenty-five- 

star general and captain of the starship Nimbus), Mom (the Machiavellian owner 

of MomCorp), Professor Hubert J. Farnsworth (the 160-year-old founder of Planet 

Express), Leela (captain of the Planet Express ship), Bender (a debauched robot), 



Philip J. Fry (a twentieth- and thirty-first-century delivery boy), Zoidberg (the 

Planet Express staff doctor, hailing from Decapod 10), Kif Kroker (a member of the 

Nimbus crew, who is in love with Amy), and Amy Wong (a member of the Planet 

Express crew, who is in love with Kif). 



CHAPTER 14 

THS BIRTH OF futuzama 

While The Simpsons was reaching new mathematical heights 

with the transmission of “Homer 3” in October 1995, Matt 

Groening was beginning to focus his mind on another project. His 

first animated TV sitcom had become such a massive global success 

that the Fox network asked him to pitch a sister series. 

So, in 1996, Groening teamed up with David S. Cohen to develop 

an animated sci-fi series. Cohen was Groening’s natural ally, because 

he had a lifelong fascination and love for science fiction which dated 

back to watching repeats of the original Star Trek series. Cohen had 

also developed a great respect for the eminent figures in science-fiction 

literature, such as Arthur C. Clarke and Stanislaw Lem. Hence, for 

Cohen, taking science fiction seriously was an important starting 

point for the sitcom: “The decision Matt Groening and I made early 

on was not to go too silly. We didn’t necessarily want to make fun of 

science fiction, so much as to make funny science fiction.” 

Cohen also had the necessary nerdy knowledge required to deal with 

the inevitable technological issues that arise in sci-fi adventures, such as 

how to travel intergalactic distances in a reasonable time. This is a pe¬ 

rennial problem in science fiction, because neither spaceships nor indeed 

anything can travel faster than the speed of light, and light takes more 

than two million years to travel to the nearest spiral galaxy. Cohen came 

up with two solutions that would enable characters to travel intergalac¬ 

tic distances in a reasonable amount of time. One of his solutions was to 

introduce a plot point stating that scientists had succeeded in increasing 

the speed of light in 2208. His other, even cheekier, solution was to 

propose an engine that achieved superluminal velocities by accelerating 

the universe around it, not the spaceship to which it was attached. 

166 



me B'PTH OF FUTURAMA . rfy 

Together, Groening and Cohen began working on a series of story¬ 

lines based around the adventures of a character named Philip J. Fry, 

a New York City pizza delivery boy who was cryogenically frozen in 

the first few hours of 2000. Revived one thousand years later in New 

New York, Fry eagerly looks forward to embarking on a new life in 

the thirty-first century, optimistic that his new career will be more 

rewarding than his old one. Alas, he is frustrated to learn that he is to 

receive a career implant chip that will condemn him to his same old 

job as a delivery boy. The only difference is that, instead of delivering 

pizzas around New York, he will be an interplanetary delivery boy 

with a company called Planet Express. 

Groening and Cohen then began to invent the other members of 

the Planet Express team. Most notably, Fry’s colleagues would include 

Leela, a one-eyed mutant who would repeatedly break Fry’s heart, 

and Bender, a robot whose hobbies included stealing, gambling, 

cheating, drinking, and worse. Other characters on the drawing 

board were Professor Ffubert J. Farnsworth (the 160-year-old founder 

of Planet Express Inc.), Dr. John A. Zoidberg (the company’s lobster¬ 

like alien doctor), Hermes Conrad (ex-Olympic limbo champion and 

the company’s accountant), and Amy Wong (intern). 

In many ways, the plan was for this animated series to be just like 

any classic workplace-based sitcom, such as the American series Taxi 

or the British series The IT Crowd. The only difference was that al¬ 

most any storyline was possible, because the Planet Express crew 

could encounter all manner of strange aliens on weird planets with 

peculiar problems while gallivanting around the universe delivering 

packages. 

Despite initial interest from Fox, Groening soon realized that net¬ 

work executives were not impressed with his quirky cast of misfit 

characters and their cosmic adventures. When Fox then tried to inter¬ 

fere, Groening resisted. The pressure increased, and Groening dug in 

his heels even further. Eventually, after what Groening described as 

“by far the worst experience of my grown-up life,” he prevailed and 

the new series was commissioned on the same terms as The Simpsons, 

with the writers in control. 
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After being officially green-lit, the series was given the title Futur¬ 

ama, after the name of an exhibition at the 1939 New York World’s 

Fair that took visitors on a journey into “the world of tomorrow.” 

Next, Groening and Cohen began recruiting a new team of writers, 

because it had been tacitly agreed that Futurama would not poach 

staff from The Simpsons. Not surprisingly, several of the Futurama 

recruits had backgrounds in subjects such as computing, mathemat¬ 

ics, and science. One of the new writers, Bill Odenkirk, had com¬ 

pleted a PhD in organic chemistry at the University of Chicago. 

Indeed, he was a co-inventor of 2,2'-Bis(2-indenyl) biphenyl, which 

can be used as a catalyst to make plastics. 

During this recruitment phase, writers of animated shows became 

eligible to join a union. Since there was already a union member 

named David S. Cohen, and unionized writers are not allowed to 

share the same name, the Futurama writer changed his name to Da¬ 

vid X. Cohen. The X is not an abbreviation, but instead it neatly en¬ 

capsulates some of Cohen’s main interests, such as science fiction and 

mathematics—Cohen is both an A-Phile (lover of TheX-Files) and an 

.v-phile (lover of algebra). 

The first episode of Futurama was broadcast on March 28, 1999. 

Although everyone expected that this new science fiction series would 

contain plenty of science fact, the more erudite viewers were soon im¬ 

pressed by the sheer quantity and a quality of nerdy references. 

For example, the third episode, “I, Roommate” (1999), reveals how 

Fry decides to move in with Bender, the foul-mouthed, bad-tempered 

robot. Hanging on the wall of their new apartment is a framed cross- 

stitch message: 

10 HOME 
•"Vi « memmmm 

r H oUttT 
30 GO TO 10 
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This is a reference to a computer programming language known as 

BASIC (Beginner’s All-purpose Symbolic Instruction Code), in 

which each instruction is given a number, and the instructions are 

followed in numerical order. The GOTO instruction is commonplace 

in BASIC, and in this case the instruction 30 GOTO 10 means go 

back to line 10. Hence, the cross-stitch conveys the idiom “Home 

sweet home.” If we take the cross-stitch to its logical extreme, then it 

actually reads, “Home sweet home sweet home sweet home . . .” 

Because it is merely part of the background to the scene, this joke 

about BASIC obeys the first rule of the Futurama writing room: Ob¬ 

scure references are fine as long as they do not get in the way of the 

plot. A similarly obscure joke appears in “Mars University” (1999), 

when we briefly see a blackboard covered in esoteric equations relating 

to a branch of particle physics known as supersymmetric string theory, 

except in Futurama it is called superdupersymmetric string theory. The 

main joke involves a diagram labeled Witten’s Dog, which is a sly refer¬ 

ence to both Ed Witten and Schrodinger’s cat. 

Ed Witten, one of the fathers of superstring theory, is generally 

considered the world’s greatest living theoretical physicist and argu¬ 

ably the smartest scientist never to have won a Nobel Prize. By way 

of compensation, Witten can at least claim the accolade of being 

immortalized in Futurama. Schrodinger’s cat is a famous thought ex¬ 

periment, one that is conducted in our imaginations rather than in 

the laboratory. Erwin Schrodinger, who won the Nobel Prize in 

Physics in 1933, asked what would happen inside a wooden box con¬ 

taining a cat, some radioactive material, and a poisoning mechanism 

that can be triggered by an unpredictable radioactive decay. After 

one minute, is the cat dead or alive? Has there been a radioactive 

decay that has triggered the poisoning mechanism? Back in the nine¬ 

teenth century, physicists would have said that the cat is either dead 

or alive, but we do not know which. However, in the early decades of 

the twentieth century, the newly developed quantum view of the 

universe offered different interpretations. In particular, the Copen¬ 

hagen interpretation suggested the bizarre notion that the cat was in 
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a so-called superposition of states, which means it is both dead and 

alive . . . until the box is opened, at which point the situation is re¬ 

solved. 

Schrodinger and his cat make a guest appearance in another epi¬ 

sode, which is titled “Law and Oracle” (2011). Traffic cops chase after 

a speeding Schrodinger, who eventually crashes. When he emerges 

from the wreckage, he is questioned about the box in his car. The 

cops are URL (pronounced Earl) and Fry, who has temporarily left 

his job at Planet Express. 

URL: What’s in the box, Schrodinger? 

Schrodinger: Um ... A cat, some poison, und a cesium atom. 

Fry: The cat! Is it alive or dead? Alive or dead?! 

URL: Answer him, fool. 

Schrodinger: It’s a superposition of both states until you open 

it and collapse the wave function. 

Fry: Says you. 

[Fry opens the box and a cat jumps out of it, 

attacking him. URL takes a close look at the 

box.] 

URL: There’s also a lotta drugs in there. 

Of course, this is a book about mathematics, not physics, so it is 

time to focus on the dozens of scenes in Futurama involving every¬ 

thing from convoluted geometry to incredible infinities. One such 

scene appears in “The Honking” (2000), which tells the story of 

Bender returning to his late uncle Vladimir’s haunted castle in order 

to attend the reading of Vladimir’s will. As the robot sits with his 

friends in the library, the digits 0101100101 appear on the wall, writ¬ 

ten in blood. Bender is more confused than spooked, but when he 

sees the digits reflected in the mirror—1010011010—he is immedi¬ 

ately terrified. 

Although no explanation is given in the dialogue, binary-savvy 

viewers would have appreciated the horrific significance of this scene. 
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The number that appears on the wall, 0101100101, when translated 

from binary into decimal is equivalent to 357. This number has no 

unpleasant connotations, but its reflection is spine-chilling. We can 

convert the reflection, 1010011010, from binary to decimal as fol¬ 

lows: 

Binary number 1 0 1 0 0 1 1 0 1 0 

X X X X X X X X X X 

Place value 29 28 27 26 25 24 23 22 21 2° 

Total = 512 + 0 + 128 + 0 + 0 + 16 + 8 + 0 + 2 + 0 

= 666 

666, of course, will forever be associated with the Devil, because it 

is the Number of the Beast. Therefore, perhaps 1010011010 should be 

considered the Number of the Binary Beast. 

Mathematicians, who generally do not have a reputation for dia¬ 

bolical numerology and demonic worship, have a surprising fondness 

for 666. They have even singled out a particular prime number that 

includes this series of digits: 1,000,000,000,000,066,600,000,000, 

000,001. It is labeled Belphegor’s prime, in honor of one of the seven 

princes of hell. As well as containing 666 at its heart, this infamous 

prime also has thirteen unlucky zeroes on either side of the Number 

of the Beast. 

The reversed hidden message in “The Honking” is a nod to The 

Shining, a classic horror film from 1980. In one of the film’s most fa¬ 

mous scenes, a child named Danny enters his mother’s bedroom and 

scrawls REQLflUM on the door in lipstick. She awakes to find him 

standing next to her bed with a knife in his hand, and then glimpses 

the writing reflected in her dressing table mirror, which now reads 

MURD3R. 

666 written in reversed binary is a neat mathematical code, one of 

many coded messages that appear in Futurama. All these messages 

demonstrate various principles of cryptography, the formal name for 
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the branch of applied mathematics that deals with code making and 

code breaking. 

For example, several episodes contain billboards, notes, or graffiti 

that display messages written in alien scripts. The simplest alien 

script appears in “Lethal Inspection” (2010), when we see a note that 

reads: 

XLVa xq+q 

Cryptographers call this a substitution cipher, because every letter of 

the English alphabet has been replaced by a different character, in this 

case an alien symbol. This type of cipher was first cracked by the 

ninth-century Arab mathematician Abu al-Kindi, who realized that 

every letter has a personality. Moreover, the personality of a particular 

letter is adopted by whichever symbol replaces that letter in the coded 

message. By spotting these traits, it is possible to decipher the mes¬ 

sage. 

For example, frequency is an important part of a letter’s personal¬ 

ity. e, t, and a are the three most frequent letters in English, while the 

most common symbols in the alien message are T and which both 

appear six times. Hence, T and -f probably represent e, t, or a, but 

which is which? A helpful clue appears in the first word, ©■flA, 

which has a repeated 41- There are few words that fit the pattern *aa* 

or *tt*, but there are lots of words of the form *ee*, such as been, seen, 

teen, deer, feed, and fees. Hence, it is fair to assume that $ = e. With a 
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bit more detective work, it would be possible to unravel this particular 

message: Need extra cash? Melt down your old unwanted humans. We 

pay top dollar. And with one or two more messages the entire alien 

script could be deciphered from A (T) to Z (<6>). 

ft B c p E F G H 1 j K L M N 0 F Q R £ r u 1/ w X Y 2 

X n 4- E i T Q X n o £ * 5 X 
1 3 3 & f <6 

Not surprisingly, mathematically adept Futurama fans found this 

alien code trivial to crack, so Jeff Westbrook (who has written for both 

Futurama and The Simpsons) developed a more complex alien code. 

Westbrook’s efforts resulted in reinventing the text autokey cipher, 

which is akin to a cipher first devised by Girolamo Cardano (1501—76), 

one of the greatest Italian Renaissance mathematicians. The cipher op¬ 

erates by first assigning numbers to the letters of the alphabet: A = 0, 

B = 1, C = 2, D = 3, E = 4, ..., Z = 25. After this preliminary step, 

encryption requires just two more steps. First, each letter is replaced 

with the numerical total of all the letters in all the words up to and in¬ 

cluding the letter itself. Hence, BENDER OK is transformed as follows: 

Letter B E N D E R O K 

Number 1 4 13 3 4 17 14 10 

Total 1 5 18 21 25 42 56 66 

The second and final encryption step involves replacing each total 

number with the corresponding symbol from this list: 

^ 5 lJ_j|— \Zv^y- Dn\ II FJ7U 
0 I 2 3 ft S 6 -r 8 3 10 II le 13 

v\/T/n^T-) 7 
tft 15 |6 17 IB 19 20 2| 22 23 2A 25 

There are only 26 symbols, which are associated with the numbers 

0 to 25, so what symbol represents R, O, and K, which have just been 
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assigned totals of 42, 56, and 66, respectively? The rule* is that num¬ 

bers bigger than 25 are reduced by 26 again and again until they are 

in the range 0 to 25. Hence, to find the symbol for R, we subtract 26 

from 42, which leaves us with 16, which is associated with /C. By ap¬ 

plying the same rule to the remaining two letters, BENDER OK is 

encrypted as $ //'T~(AIZ\/. 

However, if it was preceded by some other words, then BENDER 

OK would be encrypted differently, as the running total would be 

affected. This made Westbrook’s autokey cipher fiendishly difficult to 

crack. He used it to encode various messages across several episodes, 

and they proved to be a serious challenge to those Futurama fans who 

made a hobby out of cracking the codes that appeared in the series. 

Indeed, it took a year before anybody cracked the exact details of the 

autokey cipher and decoded the various messages. 

Although one might expect some challenging codes to appear in the 

Futurama episode “The Duh-Vinci Code” (2010), its most interest¬ 

ing mathematical aspect relates to a completely different area of math¬ 

ematics. The plot involves the Planet Express team analyzing the fine 

detail of Leonardo da Vinci’s painting The Last Supper, whereupon 

they notice something odd about James the Lesser, one of the apostles 

sitting at the left end of the table. A high-powered X-ray reveals that 

da Vinci originally painted James as a wooden robot. In order to find 

out whether or not James was an early automaton, the crew heads to 

Future-Roma, where they discover St. James’s tomb. Importantly, 

they also stumble upon a crypt with an appropriately cryptic engrav¬ 

ing that reads: 

IIXI - (XXIII • LXXXIX) 

* This rule belongs to a branch of mathematics known as modular arithmetic. As 

well as being very useful in the context of cryptography, modular arithmetic also 

plays a vital role in several other areas of mathematical research, including the proof 
of Fermat’s last theorem. 
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At first sight, the Roman numerals look rather like a date. On 

closer inspection, however, we can see that the engraving includes 

parentheses, a subtraction sign, and a dot that represents a multiplica¬ 

tion sign. We even have the highly unusual arrangement of one Ro¬ 

man numeral raised to the power of another Roman numeral (IIXI). If 

we convert all these Roman numerals to more familiar digits, we can 

begin to make sense of the inscription: 

IIXI-(XXIII‘LXXXIX) 

211 - (23 x 89) 

Now, 211 = 2,048 and 23 X 89 = 2,047, so the result of this subtrac¬ 

tion is simply 1. This is not particularly noteworthy, but if we com¬ 

plete the equation and rearrange it slightly, then it might begin to 

look familiar: 

2n - (23 x 89) = 1 

211 - 1 = (23 x 89) 

2U — 1 = 2,047 

We can now see that the number 2,047 fits the general form 2^—1. 

p is 11 in this particular case, but p can be any prime number. The 

number recipe 2P — 1 was discussed in chapter 8, where it was pointed 

out that it uses one prime number as an ingredient in order to some¬ 

times generate a second prime number, in which case the resulting 

prime is dubbed a Mersenne prime. However, 211 — 1 is interesting, 

because the result, 2,047, is clearly not prime, but rather it is the prod¬ 

uct of 23 and 89. Indeed, 2,047 is notable as the smallest number of 

the type 2p— 1 that is not prime. 

This reference fulfills two of the key criteria required to qualify as a 

classic freeze-frame gag. First, the cryptic inscription has no bearing 

whatsoever on the plot, but is merely an instance of the writers having 

fun with numbers. And, second, it is impossible to jot down the Roman 
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numerals, translate them into decimals, and then recognize their sig¬ 

nificance within the few moments that the inscription is in view. 

Another freeze-frame gag appears in “Put Your Head on My Shoul¬ 

ders” (2000). When Bender sets up a computer dating agency, we see 

a sign pointing out that his service is both “discreet and discrete.” 

Discreet implies that Bender will respect his clients’ privacy, as we 

might expect from such agencies. Discrete is a more surprising adjec¬ 

tive for a dating agency, because it is used in mathematical circles to 

describe an area of research that deals with data that does not vary 

smoothly or continuously. Pancake flipping is one area of discrete 

mathematics, because it is possible to consider one flip or two flips, 

but not one and a half or any other type of fractional flip. This freeze- 

frame gag was possibly inspired by an old joke about discrete mathe¬ 

matics: 

Q: What do you call a mathematician who has lots of romantic 

liaisons, but who doesn’t like to talk about it? 

A: A discrete data. 

Other Futurama freeze-frame gags relate to signs, such as the one 

at Studio 122133 in “Rebirth” (2010). If we work out the result, then 

122J33 = 1 X 2 X 27 = 54, so this is a reference to Studio 54, the fa¬ 

mous 1970s New York nightclub. Similarly, we glimpse a sign that 

reads “Historic V66” (instead of “Historic Route 66”) in “Parasites 

Lost” (2001), and there is the irrationally named 7tth Avenue in “Fu¬ 

ture Stock” (2002). 

Although it is tempting to look at all these mathematical quips 

and consider them superficial, in many instances the writers have 

thought long and hard about the underlying ideas. Madison Cube 

Garden, which appears in several episodes of Futurama, is a case in 

point. When David X. Cohen invented the concept of a thirtieth- 

century incarnation of New York’s Madison Square Garden, the next 

step was to think about how it would be drawn in the Futurama 

landscape. The obvious design would have been a cubic stadium, 



THE B'PTH OF FuTuFAMA ■ iyy 

with a base, four walls, and a flat glass roof. However, Ken Keeler 

and his fellow writer J. Stewart Burns decided to investigate the ge¬ 

ometry of cubes to see if there was a more interesting option for the 

orientation and design of Madison Cube Garden. In the end, they 

took this question so seriously that they spent a couple of hours 

studying the geometry of cubes while the rest of the writing team 

took a break. 

Without much thought as to where it would lead, Burns and Keeler 

began to wonder what cross sections might be possible if they could 

take a slice through a cube. For example, a horizontal slice, which 

splits the cube into two equal parts, results in a square cross section. 

By contrast, a slice that starts at a top edge and runs to the diagonally 

opposite edge forms a rectangular cross section. Alternatively, lopping 

off a corner creates a triangular cross section. Depending on the angle 

of the slice, the cross section might be an equilateral, isosceles, or 

scalene triangle. 

Still driven by mere curiosity, Burns and Keeler wondered if a more 

exotic cross-sectional shape might be possible. The duo set aside their 

sketchpads and set to work building paper cubes, only to chop them 

up again. After much debate and crumpled paper, Burns and Keeler 

had a revelation. They eventually realized that it was possible to create 

a hexagonal cross section by taking a single slice through a cube at a 

particular angle. It sounds implausible, but imagine drawing a line 

between the midpoints of two adjacent edges, as shown by a dashed 

line on the cube below. Next, draw a dotted line across the opposite 

corner of the opposite face. Finally, take a slice from the dashed line 

through to the dotted line and the result will be a regular hexagonal 
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cross section. The cross section has six sides, because the slice passes 

through all six faces of the cube. 

There is another way to obtain this cross section. Imagine suspend¬ 

ing a cube from a piece of cotton attached to one of its corners. Then 

make a slice horizontally, exactly halfway down the dangling polyhe¬ 

dron. If the cube could somehow remain intact after the slice . . . and 

if it could be gently lowered onto a surface . . . and if its lowest corner 

could be embedded in that surface, then you would have an almost 

perfect model of Madison Cube Garden. To complete your model, the 

region above the cross section becomes a transparent roof, while the 

region below provides an appropriate arrangement for raked seating. 

In the years since Cohen named the stadium and the Burns-Keeler 

partnership created its unique geometric architecture, Madison Cube 

Garden has been home to Ultimate Robot Fighting League matches, 
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giant ape fights, and the 3004 Olympic Games. In fact, Madison 

Cube Garden has appeared in ten episodes, making it probably the 

best known piece of mathematics in Futurama, but not the most in¬ 

triguing. 

That prize goes to the number 1,729. 



CHAPTER 15 

1,?29 A 

gOM^MT'C iMC'petOT 

uturamds Zapp Brannigan is a twenty-five-star general and cap¬ 

tain of the starship Nimbus. Although he has many adoring fans, 

who view him as a courageous military hero, the reality is that most 

of his victories are against lesser opponents, such as the pacifists of the 

Gandhi Nebula and the Retiree People of the Assisted Living Nebula. 

Brannigan is essentially a buffoon whose vanity and arrogance annoy 

his crew. Indeed, his long-suffering assistant Lieutenant Kif Kroker 

struggles to hide his disdain for his incompetent leader. 

Kif is an alien from the planet Amphibios 9, and his appearances 

in Futurama often revolve around his dysfunctional relationship with 

Brannigan or his ongoing romantic relationship with Planet Express’s 

intern, Amy Wong. Whenever Kif and Amy are in the same space 

neighborhood, they make the most of being able to spend time to¬ 

gether. In “Kif Gets Knocked Up a Notch” (2003), Amy visits Kif on 

board the Nimbus, where he takes her to the holo-shed, which is used 

to simulate realities by projecting three-dimensional holographic ob¬ 

jects and creatures. She squeals with delight when a familiar animal 

appears in the holo-shed. 

Amy: Spirit! Kif, that’s the pony I always wanted, but my 

parents said I had too many ponies already. 

Kif: Yes, I programmed it in for you. Four million lines of 

BASIC! 

180 
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We have already encountered a joke that relies on a knowledge of 

the BASIC computer programming language, in the episode titled “I, 

Roommate.” Although references to computer science are a tradition 

within Futurama, there was one non-nerdy writer who did not appre¬ 

ciate this particular line of dialogue. During a script meeting, he ar¬ 

gued that the reference to “four million lines of BASIC!” was too 

obscure and should be removed. As soon as this criticism was raised, 

it was robustly quashed by Eric Kaplan, a writer who had studied the 

philosophy of science. As Patric Verrone, who was at the meeting, 

recalls: “There was a very famous remark made by Eric Kaplan. 

Somebody said ‘Four million lines of BASIC, who’s going to get that?’ 

And Kaplan just said, ‘Fuck ’em,’ to coin a phrase. And so that be¬ 

came the mantra. If viewers don’t get it, they’ll get the next joke.” 

In the same episode, there is an even more obscure mathematical 

reference, which can be seen on the side of the Nimbus. Keen-eyed, 

obsessive fans will have spotted that the Nimbus displays the registry 

number BP-1729. It would be easy to dismiss this as an arbitrary 

number, but the Futurama writers never miss an opportunity to cel¬ 

ebrate mathematics, so it is safer to assume every number that appears 

on screen is significant. 

Indeed, 1,729 must be significant because it crops up in different 

situations in various episodes. For example, in “Xmas Story” (1999), 

there is an appearance by Mom, the Machiavellian owner of Mom- 

Corp and Mom’s Friendly Robot Company. As Mom owns the fac¬ 

tory that built Bender, she considers herself to be Bender’s mother, so 

she sends him a card that reveals his serial number: 

MERRY XMAS 

SON #1729 

Moreover, in “The Farnsworth Parabox” (2003), the Planet Ex¬ 

press crew becomes embroiled in an adventure involving parallel uni¬ 

verses, with each universe conveniently contained in a box and labeled 
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with a number. While checking several boxes in order to find his own 

universe, Fry jumps into a box and finds himself in Universe 1,729. 

So, what makes 1,729 so special? Perhaps it keeps cropping up in 

Futurama because it points to a special part of the number e. If we 

pinpoint the 1,729th decimal place of e, then we discover that it marks 

the start of the first consecutive occurrence of all ten digits in this 

famously irrational number: 

1,729th decimal place 

i 

e = 2.71828.. .588970719425863987727547109... 

Some might consider this a trivial observation, so perhaps 1,729 

features in Futurama because it is a harshad number, a category of 

number invented by the respected Indian recreational mathematician 

and schoolteacher D. R. Kaprekar (1905-86). Harshad means “giver 

of joy” in the ancient Indian language Sanskrit, and the reason these 

numbers generate a sense of bliss is that they are multiples of the sum 

of their digits. So, by adding up the digits of 1,729, we get 1+7 + 2 

+ 9 = 19, and indeed 19 divides into 1,729 with no remainder. 

Moreover, 1,729 is a particularly special type of harshad number, 

because it is the product of the sum of its digits and the reverse of this 

sum: 19 x 91 = 1,729. This makes it a remarkable number, but not 

unique, because there are three other numbers that share this prop¬ 

erty: 1, 81, and 1,458. Since the writing team is not obsessed with 1 

or 81 or 1,458, there must be another reason why the series repeatedly 

features 1,729 in its scripts. 

In fact, the writers chose 1,729 as Nimbus’s registry number, Bend¬ 

er’s serial number, and the label for a parallel universe because it was 

mentioned in one of the most famous conversations in the history of 

mathematics. It took place in late 1918 or early 1919 between two of 

the greatest mathematicians of the twentieth century, Godfrey Har¬ 

old Hardy and Srinivasa Ramanujan. It is hard to imagine two men 

from such different backgrounds with so much in common. 

G. H. Hardy (1877-1947), whose parents were both teachers, grew 
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up in a middle-class home in Surrey, England. At the age of two he 

was writing numbers that reached into the millions, and a little later 

he calculated the divisors of hymn numbers in order to amuse himself 

during church services. He won a scholarship to the prestigious Win¬ 

chester College and then attended Trinity College, Cambridge, where 

he joined an elite secret society known as the Cambridge Apostles. By 

the time he was thirty, he was one of the few British mathematicians 

considered world class. Indeed, at the start of the twentieth century, it 

was felt that the French and Germans, among others, had leapfrogged 

the British in terms of their mathematical rigor and ambition, but 

Hardy’s research and leadership was credited with revitalizing his na¬ 

tion’s reputation. All of this would have been sufficient to earn him a 

place in the pantheon of great mathematicians, but he made an even 

greater contribution by recognizing and nurturing the talent of a bril¬ 

liant youngster named Srinivasa Ramanujan, whom he believed to be 

the most naturally gifted mathematician of the modern era. 

Ramanujan was born in 1887 in the South Indian state of Tamil 

Nadu. At the age of two he survived a bout of smallpox, but his three 

younger siblings were less fortunate, each one dying in infancy. His 

impoverished parents devoted themselves to their only child and en¬ 

rolled him in the local school. As each year passed, his teachers in¬ 

creasingly noticed that Ramanujan was developing a tremendous 

aptitude for mathematics, so much so that they were unable to keep 

up with him. Much of his inspiration and education came as a result 

of stumbling upon a library book, A Synopsis of Elementary Results in 

Pure Mathematics, by G. S. Carr, which contained thousands of theo¬ 

rems and their proofs. He investigated these theorems and the tech¬ 

niques used to prove them, but he had to perform the bulk of his 

calculations with a chalk and slate, using his roughened elbows as 

erasers, as he was unable to afford paper. 

The only downside to his obsession with mathematics was that it 

led him to neglect the rest of his schooling. Hence, when it came to 

examinations, he performed poorly in these other subjects, which 

meant that Indian colleges refused to offer him the scholarship he 

needed to be able to afford to continue with his studies. Instead, he 
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found a job as a clerk and supplemented his meager income by tutor¬ 

ing mathematics students. The additional money was desperately 

needed after he got married in 1909. Ramanujan was twenty-one and 

his new bride, Janakiammal, was just ten years old. 

During this period, Ramanujan began to develop new mathemati¬ 

cal ideas in his spare time. He felt that they were innovative and im¬ 

portant, but he had nobody to whom he could turn for advice and 

support. Desperate to explore mathematics in more depth and to have 

his work recognized, Ramanujan began to write to mathematicians in 

England in the hope that someone would mentor him or at least give 

him feedback on his newly discovered theorems. 

One batch of letters eventually reached M. J. M. Hill at University 

College, London. He was mildly impressed, but admonished the 

young Indian for using outdated methods and making trivial mis¬ 

takes. He wrote, in a schoolmasterly tone, that Ramanujan’s work 

needed to be “very clearly written, and should be free from errors; and 

he should not use symbols which he does not explain.” It was an un¬ 

forgiving report card, but at least Hill responded. By contrast, both 

H. F. Baker and E. W. Hobson at the University of Cambridge re¬ 

turned Ramanujan’s papers without comments. 

Then, in 1913, Ramanujan wrote to G. H. Hardy: “I have had no 

university education but I have undergone the ordinary school course. 

After leaving school I have been employing the spare time at my dis¬ 

posal to work at mathematics. I have not trodden through the con¬ 

ventional regular course which is followed in a university course, but 

I am striking out a new path for myself.” 

When a second letter followed, Hardy found that Ramanujan had 

sent him a total of 120 theorems to consider. The young Indian sa¬ 

vant would later say that many of these theorems were whispered to 

him in his sleep by Namagiri, an avatar of the Hindu goddess Lak- 

shmi: “While asleep, I had an unusual experience.. There was a red 

screen formed by flowing blood, as it were. I was observing it. Sud¬ 

denly a hand began to write on the screen. I became all attention. 

That hand wrote a number of elliptic integrals. They stuck to my 

mind. As soon as I woke up, I committed them to writing.” 
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Upon receiving Ramanujan’s papers, Hardy’s reaction veered be¬ 

tween “fraud” and so brilliant that it was “scarcely possible to believe.” 

In the end, he concluded that the theorems “must be true, because, if 

they were not true, no one would have the imagination to invent 

them.” Hardy dubbed Ramanujan “a mathematician of the highest 

quality, a man of altogether exceptional originality and power,” and 

he began to make arrangements for the young Indian, still only 

twenty-six, to visit Cambridge. Hardy took great pride in being the 

man who had rescued such raw talent, and would later call it “the one 

romantic incident in my life.” 

The two mathematicians finally met in April 1914, and their re¬ 

sulting partnership gave rise to discoveries in several areas of mathe¬ 

matics. For example, they made major contributions toward 

understanding a mathematical operation known as partition. As the 

name implies, partitioning concerns dividing up a number of objects 

into separate groups The key question is, for a given number of ob¬ 

jects, how many different ways can they be partitioned? The boxes 

below show that there is one way to partition one object, but there are 

five ways to partition four objects: 

Objects Partitions 

2 

3 

m “a 
.A 

m m 
m m. ^ 
# S 

It is easy to find the number of partitions for a small quantity of 

objects, but it becomes trickier and trickier with more and more ob¬ 

jects. This is because the number of possible partitions balloons in a 

rapid and erratic fashion. 10 objects can be partitioned in just 42 

ways, but 100 objects can be partitioned in 190,569,292 ways. And 
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1,000 objects can be partitioned in an astonishing 24,061,467,864, 

032,622,473,692,149,727,991 ways. 

One of Hardy and Ramanujan’s breakthroughs was to invent a 

formula that can be used to predict the number of partitions for very 

large numbers. The formula requires a great deal of effort to compute, 

so they also invented a rough-and-ready formula that gave a good es¬ 

timate of the number of partitions for any given number of objects. 

Ramanujan also made an interesting observation that continues to 

provide food for thought today: If the number of objects ends with 4 

or 9, then the number of partitions is always divisible by 5. To illus¬ 

trate Ramanujan’s claim, 4, 9, 14, 19, 24, and 29 objects generate 5, 

30, 135, 490, 1,575, and 4,565 partitions, respectively. 

Ramanujan’s achievements were numerous, complex, and brilliant, 

and his genius was recognized in 1918 when he was elected the young- 

est-ever fellow of the Royal Society. Sadly, while his move to Cam¬ 

bridge enabled his mind to embark on incredible adventures, the 

harsh English winters and the change in diet took their toll on Ra¬ 

manujan’s health. Toward the end of 1918, he left Cambridge and was 

admitted to a private nursing home, Colinette House in Putney, Lon¬ 

don. It was against this background that the conversation linking Ra¬ 

manujan to Futurama took place. 

According to Hardy: “I remember once going to see him when he 

was lying ill at Putney. I had ridden in taxi cab number 1729 and re¬ 

marked that the number seemed to me rather a dull one, and that I 

hoped it was not an unfavorable omen. ‘No,’ he replied, ‘it is a very 

interesting number; it is the smallest number expressible as the sum of 

two cubes in two different ways.’” 

The two men were clearly not comfortable engaging in small talk 

or gossip. As usual, their exchange revolved around numbers, and it 

can be unpacked and expressed as follows: 

1,729= 13+ 123 

= 93 + 103 



1,?Z9 AMp a ROMAMTiC UOCPeMT . i8y 

In other words, if we had 1,729 small cubelets, we could arrange 

them as two cubes with dimensions lxlxl and 12 X 12 X 12, or 

we could arrange them as two cubes with dimensions 9x9x9 and 

10 X 10 X 10. It is rare that numbers can be split into two cubes, and 

even rarer that they can be split into two cubes in two different 

ways. . . and 1,729 is the smallest number that exhibits this property. 

In honor of Ramanujan’s comment about Hardy’s taxicab, 1,729 is 

known in mathematical circles as a taxicab number. 

Prompted by Ramanujan’s off-the-cuff remark, mathematicians 

have asked a related question: What is the smallest number that is the 

sum of two cubes in three different ways? The answer is 87,539,319, 

because 

87,539,319 = 1673 + 4363 

= 2283 + 4233 

= 2553 + 4l43 

This number, which is also labeled a taxicab number, crops up in a 

special extended Futurama episode titled “Bender’s Big Score” (2007). 

When Fry hails a cab, the number on the roof is 87,539,319. It is, of 

course, very appropriate that the taxicab number (in the normal 

sense) is a taxicab number (in the mathematical sense). 

Thus, by repeatedly referencing 1,729 and including 87,539,319, 

the Futurama writers are paying tribute to Ramanujan, whose story is 

largely unknown outside the world of mathematics. It is an inspiring 

story of a natural genius plucked from obscurity by a Cambridge don, 

yet it ends tragically. While suffering from various ailments, includ¬ 

ing vitamin deficiencies and tuberculosis, Ramanujan returned to In¬ 

dia in 1919 in the hope that a warmer climate and a more familiar 

vegetarian diet might restore his health. After barely a year in India, 

he died on April 26, 1920, at the age of thirty-two. 

Nevertheless, Ramanujan’s ideas remain at the heart of modern 

mathematics, and always will. This is partly because the language of 

mathematics is universal and partly because mathematical proofs are 
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absolute. Unlike ideas in the arts and humanities, mathematical theo¬ 

rems do not go in and out of fashion. As Hardy himself pointed out: 

“Archimedes will be remembered when Aeschylus is forgotten, be¬ 

cause languages die and mathematical ideas do not. ‘Immortality’ 

may be a silly word, but probably a mathematician has the best chance 

of whatever it may mean.” 

These Futurama references to taxicab numbers can all be traced back 

to one writer, Ken Keeler, who ranks as one of the most mathemati¬ 

cally gifted writers on either The Simpsons or Futurama. According to 

Keeler, his fascination with mathematics was largely inspired by his 

father, Martin Keeler, a medical doctor whose favorite hobby was 

playing games with numbers. Whenever the family went to a restau¬ 

rant and received the bill at the end of the meal, he would check it for 

prime numbers, and his children were expected to join in. On one 

particular occasion, Ken recalls asking his father if there was a quick 

way to add up square numbers. For example, what is the sum of the 

first five square numbers, or the first ten square numbers, or the first 

n square numbers? Dr. Keeler thought about it for a short while and 

then correctly responded with the correct formula: «3/3 + rFi'l + n/G. 

Keeler’s formula can be checked with an example, such as n — 5: 

Sum of the first five square numbers: 1 + 4 + 9 + 16 + 25 = 55 

Dr. Keeler’s formula: 
53 52 5 —+A+2- = 55 
3 2 6 

This is not a seriously challenging problem for a mathematician, 

but Dr. Keeler was not a mathematician. Moreover, he solved the 

problem using a radical and highly intuitive approach. A brief and 

moderately technical explanation in Ken Keeler’s own words appears 

in appendix 3. 

His father’s playful approach to mathematics was partly responsi¬ 

ble for Ken Keeler’s decision to study applied mathematics at college 

and then pursue a doctorate in the subject. However, after completing 
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his PhD, he was torn between a career in research and trying his hand 

at comedy writing, his other great passion. Although he landed a job 

as a researcher at AT&T Bell Labs in New Jersey, he had already sent 

his resume to the producers of Late Night with David Letterman. That 

proved to be the turning point. He was invited to join the writing 

team, left his research job, and never looked back. Keeler then had 

stints writing for Wings and The Critic, before becoming part of the 

Futurama team, working alongside half a dozen other mathematically 

inclined writers. Nowhere else in Hollywood would Keeler’s love of 

the number 1,729 have been so fully appreciated. 

One of Keeler’s other mathematical contributions to Futurama is 

the Loews N0-Plex, which first appeared in “Raging Bender” (2000). 

Loews built a reputation in the twentieth century for operating some 

of the world’s biggest multiplex movie theaters, but the N0 prefix im¬ 

plies a major scaling up of their operations in the thirty-first century. 

X0 (pronounced aleph-null) is a mathematical symbol that represents 

infinity, so the name of the movie theater implies that it has an infi¬ 

nite number of screens. According to Keeler, when the Loews 0-Plex 

made its debut on Futurama, the draft script included a comment 

that this movie theater with infinitely many screens “still wouldn’t be 

big enough to show Rocky and all its sequels at once.” 

Although the symbol N0 will be unfamiliar to most readers, there 

is another symbol for infinity, oo, that we come across in high school. 

Hence, you might ask what is the difference between oo and X0. In 

short, oo is a broad-brush symbol for the concept of infinity, whereas 

N0 applies to a particular type of infinity! 

The concept of a “particular type of infinity” might sound impos¬ 

sible, particularly as the earlier story of Hilbert’s Hotel demonstrated 

two clear conclusions: 

(1) infinity + 1 = infinity 

(2) infinity + infinity = infinity 

It would be easy to jump to the conclusion that there is nothing 

bigger than infinity, and that all infinities have the same bigness, so to 
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speak. However, there are actually different sizes of infinity, and this 

can be demonstrated using a fairly simple argument. 

We begin by focusing on the set of decimal numbers that sits be¬ 

tween 0 and 1. This includes simple decimals such as 0.5 and also 

numbers that have many more decimal places, such as 

0.736829474638.... There are clearly an infinite number of these 

decimals, because for any given decimal (e.g., 0.9), there is a bigger 

one (0.99), and then a bigger one (0.999), and so on. Next, we can 

consider how the infinity of decimals between 0 and 1 compares with 

the infinity of counting numbers, 1, 2, 3,.... Is one type of infinity 

bigger than the other, or are they the same size? 

To find out which, if either, infinity is larger, let us imagine what 

would happen if we tried to match all the counting numbers against 

all the decimal numbers between 0 and 1. The first step would be to 

somehow make a list of all the counting numbers and a separate list 

of all the decimal numbers between 0 and 1. For this particular argu¬ 

ment, the list of counting numbers should be in numerical order, 

while the list of decimals numbers can be in any order. The lists are 

then written down side by side, with a one-to-one matching. 

Counting numbers Decimal numbers 

1 0.70052... 

2 0.15432... 

3 0.51348... 

4 0.82845... 

5 0.15221... 

Hypothetically, if we can match the counting numbers and the 

decimal numbers in this way, then there must be the same number of 

each, and the two infinities would therefore be equal. However, estab¬ 

lishing a one-to-one correspondence turns out to be impossible. 

This becomes clear in the final stage of our infinity investigation, 

which involves creating a number by taking the first digit of the first 
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decimal number (7), the second digit of the second decimal number 

(5), and so on. This generates the sequence 7-5-3—4-1.... Then, by 

adding 1 to every digit (0 -» 1, 1 —> 2, ..9 —> 0), we generate a new 

sequence, 8—6—4—5—2— Finally, this sequence can be used to con¬ 

struct a decimal number, 0.86452.... 

This number, 0.86452..., is interesting because it cannot possibly 

exist in the supposedly complete list of decimal numbers between 0 

and 1. That seems like a bold claim, but it can be verified. The new 

number cannot be the first number on the list, because we know that 

the first digit won’t match. Similarly, it cannot be the second number, 

because we know that the second digit won’t match, and so on. More 

generally, it cannot be the nth. number, because the nth digit won’t 

match. 

Slight variations of this argument can be repeated to show that 

there are lots of other numbers that are missing from the list of deci¬ 

mals. In other words, when we try to match up the two infinities, the 

list of decimals between 0 and 1 is doomed to be incomplete, presum¬ 

ably because the infinity of decimal numbers is greater than the infin¬ 

ity of counting numbers. 

This argument is a simplified version of Cantors diagonal argu¬ 

ment, a watertight proof published in 1892 by Georg Cantor. Having 

confirmed that some infinites are bigger than others, Cantor was con¬ 

fident that the infinity that describes counting numbers was the 

smallest type of infinity, so he labeled it N0, with K (aleph) being the 

first letter of the Hebrew alphabet. He suspected that the set of deci¬ 

mals between 0 and 1 illustrated the next and bigger type of infinity, 

so he labeled it (aleph-one). Larger types of infinity, for they also 

exist, are logically named N2, X3, K4, .... 

Thus, although Futuramas, Loews X0-Plex movie theater has an 

infinite number of screens, we now know that it is only the smallest 

type of infinity. Had it been an K^Plex movie theater, it would have 

had even more screens. 

Futurama does make one more reference to Cantor’s categorization 

of infinities. Mathematicians describe X0 as countably infinite, be¬ 

cause it describes the scale of infinity associated with the counting 
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numbers, whereas larger infinities are dubbed uncountably infinite. As 

noted by David X. Cohen, the latter term receives a casual mention in 

an episode titled “Mobius Dick” (2011): “We go briefly into this weird 

four-dimensional universe and there are many, many copies of Bender 

floating around all doing a conga line and then he comes back to real¬ 

ity and says, ‘That was the greatest uncountably infinite bunch of 

guys I ever met.”’ 



CHAPTER 16 

A otfe-$ipep $TOPV 

In “Mobius Dick”, the Planet Express ship is traveling through the 

galaxy and inadvertently enters the Bermuda Tetrahedron, a space¬ 

ship graveyard containing dozens of famous lost vessels. The Planet 

Express crew decide to investigate the region, whereupon they are at¬ 

tacked by a fearsome four-dimensional space whale, which Leela 

nicknames Mobius Dick. 

The space whale’s name is both a play on Herman Melville’s novel 

Moby-Dick and a reference to a bizarre mathematical object known as 

a Mobius strip or Mobius band. The Mobius strip was discovered inde¬ 

pendently by the nineteenth-century German mathematicians Au¬ 

gust Mobius and Johann Listing. Using their simple recipe, you can 

build one for yourself. You will require: 

(a) a strip of paper, 

(b) sticky tape. 

First, take the strip and twist one end through half a turn, as shown 

below. Then tape the two ends together to create the Mobius strip. 

That is all. A Mobius strip is essentially just a loop with a twist. 

m 
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So far, the Mobius strip does not seem very special, but a simple 

experiment reveals its remarkable property. Take a felt-tip pen and 

draw a line around the strip without taking the pen off the paper, 

without crossing any edges, and continuing until you get back to 

where you started. You will notice two things: It takes two circuits to 

get back to where you started, and you will have drawn along every 

section of the strip. This is very surprising, because we assume that a 

piece of paper has two sides and you can only draw on both of them 

if your pen is allowed to leave the paper or go around an edge. So 

what happened in the case of the Mobius strip? 

Sheets of paper have two sides (a top side and a bottom side), and 

loops of paper also typically have two sides (an inner side and an outer 

side), but the Mobius strip has the unusual property of only having 

one side. The two sides on the initial strip of paper were transformed 

into one side when the half twist was introduced prior to joining the 

ends together. This unusual property of a Mobius strip has provided 

the basis for my third all-time favorite mathematical joke: 

Q: Why did the chicken cross the Mobius strip? 

A: To get to the other . . . er . . . ! 

Although we do not actually see a Mobius strip in the episode “Mo¬ 

bius Dick,” the good news is that there are plans to feature one of these 

odd bits of mathematical tomfoolery in an upcoming Futurama plot. 

When I visited David X. Cohen at the Futurama offices in the fall of 

2012, he told me about an episode in the upcoming season titled “2-D 

Blacktop,” * which will star Professor Farnsworth. Cohen explained 

that the storyline involves the elderly proprietor of Planet Express turn¬ 

ing into a speed freak who soups up his spaceship in order to race it on 

a Mobius drag strip. The interesting feature of such a track—as dem¬ 

onstrated by the felt-tip experiment—is that Farnsworth will need to 

complete two laps in order to get back to where he started. 

* The episode’s title is a twist on Two-Lane Blacktop, a cult 1971 movie about two 

street racers. 
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Cohen revealed a few plot details: “Leela gets mad at the Professor 

and they end up racing on the Mobius drag strip. Leela is leading, but 

the Professor has this big racing move called the dimensional drift. 

He spins the wheel while pulling the emergency brake, which causes 

him to drift through one dimension higher than where he is. So, he 

skids out of the third dimension, then passes briefly through the 

fourth dimension, so he can reappear back in the third dimension 

further along the track.” 

Unfortunately, shifting up and down through dimensions also 

leaves Professor Farnsworth traveling in the opposite direction to 

Leela. Their vehicles collide head-on, thereby crushing them both 

down into the second dimension! The next scene then takes place 

against a dimensionally challenged landscape. 

In many ways, “2-D Blacktop” is the antidote to “Homer3.” That 

episode from The Simpsons explored the consequences of being lifted 

into a higher dimension, drawing upon a Twilight Zone episode for its 

inspiration. By contrast, “2-D Blacktop” explores what it means to be 

squashed down to a lower dimension, and it too is inspired by a classic 

piece of science fiction. 

“2-D Blacktop” is an homage to a Victorian sci-fi novella titled 

Flatland, by Edwin A. Abbott. Subtitled A Romance of Many Dimen¬ 

sions, the story begins in a two-dimensional world known as Flatland. 

This universe is composed of a single surface populated with various 

shapes, such as line segments (women), triangles (working-class men), 

and squares (middle-class men). Essentially, the greater the number of 

sides, the higher the status, so women have the lowest status, polygons 

make up the upper echelons of society, and circles are high priests. As 

a theologian who had studied mathematics at the University of Cam¬ 

bridge, Abbott was keen that readers appreciated his Flatland as both 

a social satire and an adventure in geometry. 

The central character and narrator is a Square, who has a dream in 

which he visits Lineland, a one-dimensional universe, where a popula¬ 

tion of points are confined to traveling along a single line. The Square 

talks to the points and tries to explain the concept of a second dimen¬ 

sion and the resulting variety of shapes that occupy Flatland, but the 
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points remain confused. They cannot even appreciate the true nature 

of the Square, because his shape is inconceivable from their one-di¬ 

mensional point of view. They see the Square as a line, because that is 

the cross section that a square makes as it passes through Lineland. 

After waking up and realizing that he is back in his Flatland, the 

Square’s adventures continue when he is visited by a Sphere, an object 

from the exotic third dimension. Of course, this time it is the Square 

who is baffled, because he can only perceive the Sphere as a Circle, 

which is the cross section that the Sphere makes as it passes through 

Flatland. Ffowever, everything begins to make sense when the Sphere 

drags the Square up into Spaceland. As the Square looks down upon 

his fellow Flatlanders from the third dimension, he can even speculate 

about the possibilities of a fourth, a fifth, and even higher dimensions. 

When he returns to Flatland, the Square tries to spread the gospel 

of the third dimension, but nobody wants to listen. Worse still, the 

authorities clamp down on such blasphemy. In fact, the leaders of Flat- 

land already know of the existence of the Sphere, so they arrest the 

Square in order to keep the third dimension a secret. The story ends 

tragically with the Square locked up in prison for telling the truth. 

So how does the forthcoming Futurama episode pay tribute to 

Flatland? When Professor Farnsworth and Leela collide in “2-D 

Blacktop,” the head-on impact transforms them into flat versions of 

themselves, sliding around in a flat landscape, which is populated by 

flat animals, flat plants, and flat clouds. 

The animation adheres strictly to the rules of a two-dimensional 

world, which means that no object can pass over another object, only 

around it. However, while I watched a rough cut two-dimensional 

sequence from “2-D Blacktop” with editor Paul Calder, he spotted the 

fluffy edges of one cloud overlapping slightly with the fluffy edges of 

another cloud. Overlaps are forbidden in a two-dimensional world, so 

this will require fixing before the episode is aired. 

As they attempt to understand the implications of their new world, 

Leela and the Professor gradually realize that their digestive canals 

vanished when they were squashed from three dimensions down to 

two. This is a necessary part of the transformation process, because a 
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digestive canal in two dimensions is a recipe for disaster. To appreci¬ 

ate the problem, imagine the Professor as a flat cut-out figure facing 

to the right. Then draw a line from his mouth to his posterior, repre¬ 

senting his gastrointestinal canal. Finally cut along this line and 

slightly separate the two parts of the Professor’s body; the canal is a 

tunnel in three dimensions, but is simply a gap in two dimensions. 

Now you can see the problem. With a digestive system in place, the 

Professor’s body would drift apart in two dimensions. Obviously the 

same would be true for Leela. 

However, without digestive tracts, the Professor and Leela are un¬ 

able to eat. The other creatures in this two-dimensional world survive 

by somehow absorbing nutrients, as opposed to eating and excreting 

food, but the Professor and Leela have not mastered this trick. 

In short, for the Professor and Leela, digestive tracts are a case of 

“can’t live with them, can’t live without them.” Hence, they have to 

escape their two-dimensional world before they starve to death, and 

fortunately the writers come to their rescue. Cohen explained: “The 

Professor and Leela have this realization. They can use the dimen¬ 

sional drift to get out of the second dimension and into the third di¬ 

mension. We actually have this amazing sequence, because they fly 

through this huge fractal landscape that represents the area between 

two dimensions and three dimensions. The scene contains some 

pretty amazing computer graphics.” 

The fractal landscape is particularly appropriate, because fractals 

actually exhibit a fractional dimensionality. The fractal landscape ap¬ 

pears on the journey between the two-dimensional and three-dimen¬ 

sional worlds, which is exactly where one might expect to find a 

fractional dimension. 

If you want to know more about fractals, please refer to appendix 

4, where there is a very brief overview of this topic, focusing particu¬ 

larly on how an object can possibly be fractionally dimensional. 

The Mobius strip in “2-D Blacktop” resonates with a mathematical 

concept that appears in “The Route of All Evil” (2002). This episode 
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has a subplot that involves Bender turning himself into a home brew¬ 

ery. He gets the idea after he and his Planet Express colleagues visit a 

7" convenience store to buy some alcohol. The store stocks Bender’s 

usual tipple, Olde Fortran malt liquor, named in honor of FOR¬ 

TRAN (FORmula TRANslation), a computer-programming lan¬ 

guage developed in the 1950s. The shelves are also stacked with St. 

Pauli’s Exclusion Principle Girl beer, which combines the name of an 

existing beer (St. Pauli Girl) with one of the foundations of quantum 

physics (the Pauli exclusion principle). Most interesting of all is a 

third brew called Klein’s, which comes in a strange flask. Aficionados 

of weird geometry will recognize that this is a Klein bottle, which is 

closely related to the Mobius strip. 

The beer is called Klein’s in honor of Felix Klein, one of the great¬ 

est German mathematicians of the nineteenth century. His destiny 

may have been dictated the moment he was born, because each ele¬ 

ment of his date of birth, April 25, 1849, is the square of a prime 

number: 

April 25 1849 

4 25 1,849 

22 52 432 
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Klein’s research ranged across several areas, but he is most famous 

for the so-called Klein bottle. As with the Mobius strip, it will be 

easier to understand the shape and structure of a Klein bottle if you 

construct your own. You will require: 

(a) a sheet of rubber, 

(b) some sticky tape, 

(c) a fourth dimension. 

If, like me, you do not have access to a fourth dimension, then you 

can imagine how we might theoretically build a pseudo—Klein bottle 

in three dimensions. First, imagine rolling the rubber sheet into a 

cylinder and taping it along its length as shown on the next page in 

the first diagram. Then mark the two ends of the cylinder with ar¬ 

rows going in opposite directions. Next, and this is the tricky step, 

you must introduce a twist in the cylinder so that you can connect the 

two ends with both arrows heading in the same direction. 

This is where the fourth dimension would come in very useful, but 

instead you will have to make do with a minor fudge. As shown in the 

middle two diagrams, bend the cylinder back on itself, and then 

imagine pushing one end of the cylinder through the wall of the self¬ 

same cylinder and up the inside. Finally, after this self-intersection 

step, roll the penetrating end of the cylinder downward, as in the 

fourth diagram, in order to connect the two ends of the cylinder. 

Crucially, when this connection is made, the arrows on each end of 

the cylinder will be pointing in the same direction. 
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Both this Klein bottle and the Klein beer bottle in Futurama are 

self-intersecting, because they both exist in three dimensions. By con¬ 

trast, a Klein bottle in four dimensions would avoid the necessity for 

self-intersection. In order to explain how an extra dimension can help 

avoid self-intersection, let us consider a similar situation involving 

fewer dimensions. 

Imagine a figure eight shape made with a pen on a piece of paper. 

Inevitably, the ink line intersects itself at the center of the eight, in the 

same way that that the cylinder intersects itself at the center of the 

Klein bottle. The inky intersection occurs because the line is trapped 

within a two-dimensional surface. The problem does not arise, how¬ 

ever, if a third dimension is added and the figure eight is created with 

a piece of rope. One section of the rope can rise up into this third 

dimension as it overlays another section, so there is no need for the 

rope to intersect itself. Similarly, if the rubber sheet cylinder could rise 

up into the fourth dimension, then it would be possible to create a 

Klein bottle without a self-intersection. 

Another way to think about why the Klein bottle intersects itself in 

three dimensions, but not in four, is to consider how we might view a 

windmill in three dimensions compared with two dimensions. In 

three dimensions, we can see that the blades sweep around in front of 

the vertical tower. However, the situation is different if we look at a 

shadow of the windmill projected onto the grass. In this two-dimen¬ 

sional representation, the blades appear to sweep through the tower 

over and over again. The blades intersect the tower in the two-dimen¬ 

sional projection, but not in the three-dimensional world. 

The architecture of a Klein bottle is obviously different from that 

of an ordinary bottle, which in turn leads to a remarkable property. 

This becomes apparent if we imagine traveling over the surface of the 

Klein bottle on the opposite page. In particular, imagine following 

the path of the black arrow, which is positioned on the outer surface 

of the Klein bottle. 

The arrow moves upward, then loops around the outside of the 

neck and dives down to the intersection point, where the arrow’s head 

becomes grey. This indicates that the arrow is now entering the inside 
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of the bottle. As the arrow moves forward, it soon passes its starting 

position, except that now it is inside the bottle. If the arrow continues 

its journey up toward the neck and down again to the base, it then 

returns to the outer surface and eventually arrives back at its original 

position. Because the arrow is able to journey smoothly between the 

inner and outer surfaces of the Klein bottle, this indicates that the 

two surfaces are actually both part of the same surface. 

Of course, without a well-defined inside and outside, the Klein 

bottle fails one of the main criteria required for a fully functioning 

bottle. After all, how can you put beer in a Klein bottle, when in is the 

same as outi 

In fact, Klein never called his creation a bottle. It was originally 

called a Kleinsche Flache, meaning a “Klein surface,” which is appro¬ 

priate as it consists of a single surface. However, English-speaking 

mathematicians probably misheard this as Kleinsche Flasche, which 

translates into English as “Klein bottle,” and the name stuck. 

Finally, returning to a point raised earlier, the Klein bottle and the 

Mobius strip are closely related to each other. The most obvious con¬ 

nection is that both the strip and the bottle share the curious property 

of having only one surface. A second, and less obvious, connection is 

that a Klein bottle sliced into two halves creates a pair of Mobius 

strips. 
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Unfortunately, you cannot perform this party trick, because it is 

only possible to slice a Klein bottle if you have access to a fourth di¬ 

mension. However, you can slice a Mobius strip. Indeed, I would en¬ 

courage you to cut a Mobius strip along its length in order to find out 

what happens. 

Finally, if you have become hooked on slicing strips, here is one 

more suggestion for your new hobby of geometry surgery. First, create 

a strip with a full 360-degree twist (as opposed to the half twist in a 

Mobius strip). What happens when this strip is cut along its length? 

It takes a twisted mind to predict the outcome of this twisted dissec¬ 

tion. 



CHAPTER 17 

TH£ PuTuRama th^oRe/vt 

Due to his sometimes geriatric-delinquent antics, it is easy to 

forget that Futuramas Professor Hubert J. Farnsworth is a 

mathematical genius. In fact, in the feature-length The Beast with a 

Billion Backs (2008), we learn that Farnsworth has been awarded a 

Fields Medal, the highest accolade in mathematics. It is sometimes 

dubbed the Nobel Prize of Mathematics, but the title of Fields Medal¬ 

list is arguably even more prestigious than Nobel laureate, because the 

medals are only awarded every four years. 

The Professor regularly discusses his mathematical ideas in a lec¬ 

ture course “The Mathematics of Quantum Neutrino Fields,” which 

takes place at Mars University, where he is a tenured professor. A 

tenured position is essentially a job for life, which means that the 

Professor has to avoid the hazard of tenure-induced mental stagna¬ 

tion. This is a well-known phenomenon in academic circles, and the 

problem was highlighted by the American philosopher Daniel C. 

Dennett in his book Consciousness Explained“The juvenile sea squirt 

wanders through the sea searching for a suitable rock or hunk of coral 

to cling to and make its home for life. For this task, it has a rudimen¬ 

tary nervous system. When it finds its spot and takes root, it doesn’t 

need its brain anymore so it eats it! (It’s rather like getting tenure.)” 

Rather than stagnating, Farnsworth has used his tenured position 

to dabble in other areas of research. So, as well as being a mathemati¬ 

cian, he is also an inventor. Indeed, it is no coincidence that Groening 

and Cohen named the Professor after Philo T. Farnsworth (1906-71), 

a prolific American inventor who held over one hundred U.S. patents 

ranging from TV technology to a mini nuclear fusion device. 

One of the Professor’s oddest inventions is the Cool-O-Meter, which 

203 
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accurately assesses the level of cool possessed by a person, with the 

measurement given in units of megafonzies. One fonzie is the quantity 

of cool associated with Arthur Fonzarelli, the lead character in the 

1970s sitcom Happy Days. By choosing a nomenclature based on an 

iconic figure, Farnsworth was echoing the millihelen, which is a 

tongue-in-cheek unit of beauty based on the famous reference to 

Helen of Troy in Christopher Marlowe’s Doctor Faustus: “Was this 

the face that launch’d a thousand ships / And burnt the topless towers 

of Ilium?” Therefore the millihelen is technically defined as “a unit of 

measure of pulchritude, corresponding to the amount of beauty re¬ 

quired to launch one ship.” 

From a mathematical point of view, the Professor’s most interesting 

invention is the Mind-switcher, which appears in “The Prisoner of 

Benda” (2010). As the name suggests, the machine takes two sentient 

beings and swaps their minds, allowing them to inhabit each other’s 

bodies. The mathematics is not in the mind-switching per se, but 

rather is required to help unravel the mess caused by such mental jug¬ 

gling. Before discussing the nature of this mental arithmetic, let us 

explore the episode in detail and understand exactly how the Mind- 

switcher works. 

“The Prisoner of Benda” begins with an opening caption that 

reads, “What happens in Cygnus X-l stays in Cygnus X-l,” echoing 

the well-known maxim “What happens in Vegas stays in Vegas.” In 

the case of Cygnus X-l, this is literally true, because it is the name of 

a black hole in the constellation Cygnus, and whatever happens in a 

black hole is forever condemned to remain in the black hole. The 

writers probably picked Cygnus X-l because it is considered a glamor¬ 

ous black hole, thanks to being the subject of a famous wager. The 

mathematician and cosmologist Stephen Hawking had initially 

doubted that the object in question was indeed a black hole, so he 

placed a bet with his colleague Kip Thorne. When careful observa¬ 

tions proved that he was wrong, Hawking had to buy Thorne a one- 

year subscription to Penthouse magazine. 

The episode’s title is a pun based on the Victorian novel The Pris¬ 

oner ofZenda, by Anthony Hope, in which King Rudolf of Ruritania 
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(a fictional country) is drugged and kidnapped by his evil brother 

prior to his coronation. In order to save the crown from falling into 

the wrong hands, Rudolf’s English cousin exploits his resemblance to 

the king and adopts his identity. In short, the plot of The Prisoner of 

Zenda revolves around someone taking on a new identity, which is 

also the central theme of “The Prisoner of Benda.” 

The identity swapping starts when Professor Farnsworth uses his 

Mind-switcher to switch minds with Amy, so that he can experience 

the joy of being young again from within Amy’s body. Amy is also 

eager to switch, because she can now gorge herself with food, know¬ 

ing that the Professor’s skinny body can easily afford to gain some 

weight. 

The plot becomes more complicated when Bender and Amy switch 

minds. Of course, prior to this switch, Amy’s body has the Professor’s 

mind, so the result of the switch is that Bender’s body contains the 

Professor’s mind and Amy’s body contains Bender’s mind. This en¬ 

ables Bender to commit a robbery by seducing the guards, with the 

bonus that he cannot be correctly identified. Meanwhile, the Profes¬ 

sor runs off to join the Circus Roboticus. The situation gets even 

messier after an orgy of further mind-switching. Here is a complete 

sequence of switches that occur during the episode. Each pair of 

names refers to the bodies involved in the mind-switch, not necessar¬ 

ily the minds inside those particular bodies at the time of the switch. 

1 Professor Farnsworth <-> Amy 

2 Amy <-> Bender 

3 Professor Farnsworth <-> Leela 

4 Amy <-> Wash Bucket* 

5 Fry Zoidberg 

6 Leela <-> Hermes 

7 Wash Bucket <-> Emperor Nikolaf 

* Wash Bucket is a robotic mop bucket who has appeared in four episodes, 

t Emperor Nikolai is the robot emperor of Robo-Hungary. 



2o6 • SiMOrt 5IM6H 

Although there are only seven switches in total, the consequences 

of this mental juggling are very confusing. One way to keep track of 

what is happening is by drawing a Seeley diagram, invented by Dr. 

Alex Seeley, a Futurama fan living in London. A quick glance at this 

diagram reveals that the seven mind-switches eventually result in the 

Professor’s body containing Leela’s mind, Leela’s body containing 

Hermes’s mind, and so on. 

As the episode draws to a close, everyone grows bored with the 

novelty and wants to return to his, her, or its original body. Alas, there 

is a major problem caused by a glitch in the Mind-switcher: Once two 

SWITCHES 

PROFESSOR 
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This Seeley diagram tracks the various mind-switches. Circles represent minds, 

squares represent bodies, and the letters inside them represent the various 

individuals. Initially, the nine mind-body pairings match, because every body 

begins with the correct mind. The minds then move to different bodies after each 

switch. For example, after the first switch, the Professor's body rj is matched 

with Amy’s mind and vice versa. The bodies always remain on the same 

horizontal line, while the minds move up and down as they are switched. 
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bodies have swapped minds, the Mind-switcher cannot perform a 

second swap between this pair of bodies. Hence, it is not at all clear 

that the various minds can return to their own bodies. 

This Mind-switcher glitch was introduced by the writers to make 

the plot more interesting. However, someone then had to find a way to 

overcome this barrier to reach a happy ending, and the responsibility 

fell to Ken Keeler, the lead writer for this episode. He realized that one 

way to break the deadlock would be to introduce fresh people into the 

scenario, characters who could provide indirect paths by which the 

minds of the Professor and everyone else could return to their correct 

bodies. However, rather than tackling the particular scenario from 

“The Prisoner of Benda,” Keeler tried to address the more general 

problem: How many fresh people need to be introduced into a group 

of any size to unravel any conceivable mind-switching muddle? 

When he began to explore the problem, Keeler had no real hunch 

as to what the answer might be. Would the number of fresh people 

depend on the size of the group being untangled? If so, perhaps the 

number of fresh people would be directly proportional to the size of 

the group, or perhaps the number of fresh people would grow expo¬ 

nentially in relation to the group size. Or maybe there was a magic 

number of fresh people that could fix any muddled group? 

Finding the answer turned out to be a significant challenge, even 

for someone with a PhD in applied mathematics. It reminded Keeler 

of some of the tougher problems that he had encountered at univer¬ 

sity. After an extended period of concentration and head-scratching, 

Keeler completed a cast-iron proof that delivered an undeniable re¬ 

sult. The answer turned out to be surprisingly neat. Keeler concluded 

that introducing just two fresh people would be enough to untangle 

mind-switching chaos of any magnitude, as long as those two people 

were deployed in the correct manner. Keeler’s proof, which is some¬ 

what technical, has come to be known as the Futurama theorem or 

Keeler’s theorem. 

This proof is presented in “The Prisoner of Benda” by “Sweet” 

Clyde Dixon and Ethan “Bubblegum” Tate, two basketball players 

from the Globetrotter Homeworld, who are also famous for their 
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This grainy picture 

was taken by 

Patric Verrone 

on December 9, 

2009, on the day 

of the table-read 

for "The Prisoner 

of Benda." Ken 

Keeler is sketching 

out his proof of the 

Futurama theorem 

while standing 

on a couch in the 

Futurama office. 

mathematical and scientific talents. Indeed, Bubblegum Tate is Senior 

Lecturer in Physics at Globetrotter University and the Downtown Pro¬ 

fessor of Applied Physics at Mars University. These characters appear 

in several episodes of Futurama, and they regularly demonstrate their 

mathematical knowledge. For instance, in “Bender’s Big Score,” Bub¬ 

blegum Tate gives Sweet Clyde some advice about solving a time-travel 

equation: “Use variation of parameter and expand the Wronskian.”* 

As “The Prisoner of Benda” reaches its climax, Sweet Clyde de¬ 

clares: “Qto the E to the D! . . . Basically, no matter how permuted- 

up your minds are, they can be restored using, at most, two extra 

players.” Sweet Clyde scribbles down an outline of the proof on a fluo¬ 

rescent green chalkboard. 

The best way to understand the proof, which is couched in techni¬ 

cal notation, is to focus on how it is applied in order to help the char¬ 

acters in “The Prisoner of Benda” sort out their predicament. The 

proof essentially describes a clever unmuddling strategy, which begins 

* The Wronskian is used in the study of differential equations and is named after the 

nineteenth-century French-Polish mathematician Jozef Maria Hoene-Wronski. 
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The Futurama theorem, as written down by Sweet Clyde at the conclusion of "The 

Prisoner of Benda." Bubblegum Tate looks at the details of the proof, while Bender 

(containing the Professor's mind) watches in admiration. A transcription of the 

proof as it appears on the board is available in appendix 5. 

with the realization that individuals with switched minds can be 

placed into well-defined sets; in the case of “The Prisoner of Benda,” 

there are two sets. Careful examination of the mind-switching Seeley 

diagram on page 206 reveals that the first set consists of Fry and 

Zoidberg. This is apparent from the lowest two lines of the diagram, 

which reveal that Fry’s mind ends up in Zoidberg’s body, while Zoid- 

berg’s mind ends up in Fry’s body. This is considered a set because we 

can see that there is a mind for every body, and the only problem is 

that the minds and bodies are jumbled. 

The other set consists of all the other characters. The Seeley dia¬ 

gram shows that the Professor’s mind is in Bender’s body, Bender’s 

mind is in the Emperor’s body, the Emperor’s mind is in Wash Buck¬ 

et’s body, Wash Bucket’s mind is in Amy’s body, Amy’s mind is in 

Hermes’s body, Hermes’s mind is in Leela’s body, and, finally, Leela’s 

mind is in the Professor’s body, which closes the set. Again, this is 
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considered a set because there is a mind for every body, but the minds 

and bodies are jumbled. 

Having identified the sets, Keeler added two fresh people to the 

mix, Bubblegum Tate and Sweet Clyde, who then unmuddle the two 

sets one at a time. To see this in action, let us start with the smaller set 

and unmuddle it. 

The Seeley diagram below tracks exactly what happens in the epi¬ 

sode. We can see that the unmuddling phase begins with Sweet Clyde 

mind-switching with Fry (who has Zoidberg’s mind), then Bubble¬ 

gum Tate mind-switches with Zoidberg (who has Fry’s mind). With 

two more mind-switches, Fry’s mind is returned to his own body and 

Zoidberg’s mind is returned to his own body. 

SWITCHES 

Sweet Clyde and Bubblegum Tate are still mixed up, and the obvi¬ 

ous next step would be to put their minds back in their correct bodies 

by performing one more mind-switch—this would be allowed, be¬ 

cause they have not yet switched with each other. However, that 

would be a premature switch. The mathketball geniuses were intro¬ 

duced as fresh people to unmuddle sets, and their work is not yet 

complete. So they must remain mixed up until they have dealt with 

the second set. 
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The Seeley diagram below tracks the nine mind-switches that oc¬ 

cur as the second set is unmuddled. There is no need to go through 

the Seeley diagram switch by switch, but the overall pattern shows 

how the addition of Sweet Clyde and Bubblegum Tate creates the 

wiggle room required to resolve the situation. They are involved in 

every single mind-switch, which explains why the lowest quarter of 

the diagram looks so much busier than the region above it. Sweet 

Clyde and Bubblegum Tate act as temporary vessels for minds look¬ 

ing for the right home. As soon as they receive a mind, they switch it 

so that the mind ends up in the appropriate body. Whichever mind 

they then receive, they immediately pass it on to the appropriate body 

in the next switch, and so on. 

Although Keeler did an excellent job of solving the mind-switch¬ 

ing riddle and developing the Futurama theorem, it is important to 

point out that he either missed a trick, or ignored it in order to make 

SWITCHES 
STAtrr F/a/ish 
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the finale of “The Prisoner of Benda” more interesting. The trick in 

question is a potential shortcut. Remember, to unmuddle any situa¬ 

tion, it is necessary to introduce two new characters. However, in the 

scenario that we have been examining, one of the sets being un¬ 

muddled consists of just two characters (Fry’s mind in Zoidberg’s 

body and Zoidberg’s mind in Fry’s body). Hence, they could have 

acted as two fresh people in relation to the larger set. This is possible 

because Fry and Zoidberg had not previously switched with anyone 

in the larger set. 

The two-stage unmuddling process that appeared in the episode 

required four switches followed by nine switches, giving thirteen 

switches in total. By contrast, if the shortcut had been used, then ev¬ 

ery mind could have been returned to every body in a total of only 

nine switches. 

The use of an existing set to provide the two fresh people required 

to unmuddle another set was first explored by James Grime, a math¬ 

ematician based in Cambridge, England. Hence, some people refer to 

this trick as Grime’s corollary, a mathematical statement that emerges 

from the Futurama theorem. 

Keeler’s work has also inspired a research paper on the topic of 

mind-switching to be published in the American Mathematical 

Monthly. Authored by Ron Evans, Lihua Huang, and Tuan Nguyen 

from the University of California, San Diego, the paper is titled “Kee¬ 

ler’s Theorem and Products of Distinct Transpositions,” and looks at 

how to unmuddle any mind-switching situation in the most efficient 

manner. 

By contrast, Keeler has decided not to publish his own research on 

mind-switching. He modestly describes it as a fairly standard piece of 

mathematics, and is generally reluctant to discuss the proof. He told 

me that his most detailed description of the Futurama theorem ap¬ 

peared in a fake script that he distributed to his colleagues: “When a 

writer hands in his draft of a script, the first step of the rewrite process 

is that the writers get copies and take a half hour or so to read it. As a 

practical joke, I started the script with a wholly facetious three-page 
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scene of Sweet Clyde explaining his theorem to the Professor in tech¬ 

nical detail. Several of the writers waded through the whole thing, 

eyes doubtless glazing, before discovering the real script started on 

page four.” 

Keeler’s mischievous hoax script reinforces the point that the ac¬ 

tual script for “The Prisoner of Benda” is based on some genuinely 

interesting and innovative mathematics. In many ways, this episode 

is the pinnacle of all the mathematical references that have ever ap¬ 

peared in both The Simpsons and Futurama. Mike Reiss and A1 Jean 

began by introducing mathematical freeze-frame gags into the first 

season of The Simpsons, and two decades later Ken Keeler created an 

entirely new theorem in order to help the Planet Express crew. In¬ 

deed, Keeler can claim the honor of being the first writer in the his¬ 

tory of television to have created a new mathematical theorem purely 

for the benefit of a sitcom. 



Joke 1 

Joke 2 

Joke 3 

Joke 4 

Joke 5 

Joke 6 

Joke 7 

Joke 8 

PHD 

Q: What's purple and commutes? 

A: An abelian grape. 

Q: What's lavender and commutes? 

A: An abelian semigrape. 

Q: What's nutritious and commutes? 

A: An abelian soup. 

Q: What's purple, commutes, and is worshipped 

by a limited number of people? 

A: A finitely venerated abelian grape. 

Q: What's purple, dangerous, and commutes? 

A: An abelian grape with a machine gun. 

Q: What's big, grey, and proves the uncountabil¬ 

ity of the decimal numbers? 

A: Cantor's diagonal elephant. 

Q: What’s the world's longest song? 

A: " X0 Bottles of Beer on the Wall.'' 

Q: What does the "B." in Benoit B. Mandelbrot 

stand for? 

A: Benoit B. Mandelbrot. 

1 point 

1 point 

1 point 

1 point 

1 point 

2 points 

2 points 

4 points 



Joke 9 

Joke 10 

Joke 11 

Q: What do you call a young eigensheep? 

A: A lamb, duh! 

One day, ye director of ye royal chain mail factory 

was asked to submit a sample in order to try to 

win a very large order for chain mail tunics and 

leggings. 

Though the tunic sample was accepted, he was 

told that the leggings were too long. He submitted 

a new sample, and this time the leggings were 

better, but too short. He submitted yet another 

sample, and this time the leggings were better 

still, but too long again. 

Ye director called ye mathematician and asked 

for her advice. He tailored another pair of chain 

mail leggings according to her instructions, and 

this time the samples were deemed to be perfect. 

Ye director asked ye mathematician how she 

calculated the measurements, and she replied: "I 

just used the wire-trousers hem test of uniform 

convergence." 

An infinite number of mathematicians walk into a 

bar. The bartender says, "What can I get you?" 

The first mathematician says, "I'll have one-half of 

a beer." The second mathematician says, "I'll have 

one-quarter of a beer." The third mathematician 

says, "I'll have one eighth of a beer." The fourth 

mathematician says, "I'll have one-sixteenth . . ." 

The bartender interrupts them, pours out a single 

beer and replies, "Know your limits." 

TOTAL - 20 POINTS 

1 point 

4 points 

2 points 
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«*» uturama has garnered many honors over the years, including six 

Emmy Awards. That partly explains why the Guinness Book of 

World Records has recognized it as the Current Most Critically Ac¬ 

claimed Animated Series. 

Similarly, The Simpsons is the winner of more than two dozen Em- 

mys and has become the longest-running scripted television series in 

history. According to Time magazine’s review of the twentieth cen¬ 

tury, The Simpsons was rated as the best TV series and Bart Simpson 

was considered to be one of the world’s hundred most important peo¬ 

ple. He was the only fictional character to appear on the list. Bart and 

his family also made history in 2009, when they became the first TV 

characters to have their own U.S. Postal Service stamps while still on- 

air. Matt Groening proudly proclaimed: “This is the biggest and most 

adhesive honor The Simpsons has ever received.” 

However, alongside this public and much deserved recognition, 

there has also been a quiet appreciation and respect from the nerd 

community. For us, the greatest achievements of The Simpsons and 

Futurama have been their celebrations of and flirtations with mathe¬ 

matics. Both series have enriched the geekosystem. 

It would be easy for non-nerds to dismiss the mathematical she¬ 

nanigans that appear on The Simpsons and Futurama as superficial 

and frivolous, but that would be an insult to the wit and dedication of 

the two most mathematically gifted writing teams in the history of 

television. They have never shied away from championing everything 

from Fermat’s last theorem to their very own Futurama theorem. 

As a society, we rightly adore our great musicians and novelists, yet 
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we seldom hear any mention of the humble mathematician. It is clear 

that mathematics is not considered part of our culture. Instead, math¬ 

ematics is generally feared and mathematicians are often mocked. 

Despite this, the writers of The Simpsons and Futurama have been 

smuggling complex mathematical ideas onto prime-time television 

for almost a quarter of a century. 

As my final day with the writers in Los Angeles approached, I had 

come to the conclusion that they were proud of their mathematical 

legacy. At the same time, among some of them, there was a sense of 

sadness that they had not been able to continue with their mathemat¬ 

ical careers. Opportunities in Hollywood had obliged them to set 

aside any dreams of proving great theorems. 

When I raised the possibility of regrets, David X. Cohen expressed 

reservations about this move away from research and towards televi¬ 

sion: “This dredges up painful self-doubts that we writers are racked 

with, especially we writers who bailed out on our science and mathe¬ 

matics careers. For me, the ultimate use of an education is to discover 

something new. In my mind, the most noble way to leave your mark 

on the world is to expand man’s understanding of the world. Was I 

going to achieve that? Quite possibly not, so it may be the case that I 

made a wise decision.” 

Although he has neither invented a radical new computing tech¬ 

nology nor cracked the mystery of whether P = NP or P ^ NP, Cohen 

still feels that he might have made an indirect contribution to re¬ 

search: “I really would have preferred to live my whole life as a re¬ 

searcher, but I do think that The Simpsons and Futurama make 

mathematics and science fun, and perhaps that could influence a new 

generation of people; so, somebody else down the line might achieve 

what I didn’t achieve. I can certainly console myself and sleep at night 

with thoughts like that.” 

As for Ken Keeler, he looks back at his time spent as a mathemati¬ 

cian as part of his progression toward becoming a comedy writer: 

“Everything that happens to us has some effect on us, and I do sup¬ 

pose that the time I spent in grad school made me a better writer. I 
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certainly don’t regret it. For example, I chose Bender’s serial number 

to be 1,729, a historically significant number in mathematics, and I 

think that reference alone completely justifies my doctorate. 

“I don’t know if my thesis advisor sees it that way though.” 
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Billy Beane began to think about a sabermetric approach for soc¬ 

cer soon after the Oakland As owners showed an interest in 

buying a Major League Soccer team. Since then, Beane has been 

linked with English soccer teams including Liverpool, Arsenal, and 

Tottenham Hotspur. 

However, prior to Beane’s involvement, others were already taking 

a mathematical look at soccer. In particular, there has been rigorous 

research into the impact of players being red-carded. This is a ques¬ 

tion that would interest Lisa Simpson, who was shown a red card by 

her own father while playing soccer in “Marge Gamer” (2007). 

Three Dutch professors, G. Ridder, J. S. Cramer, and P. Hop- 

staken, authored a paper titled “Down to Ten: Estimating the Effect 

of a Red Card in Soccer,” which was published in the Journal of the 

American Statistical Association in 1994. In the paper, the authors 

“propose a model for the effect of the red card that allows for initial 

differences in the strengths of the teams and for variation in the scor¬ 

ing intensity during the match. More specifically, we propose a time- 

inhomogeneous Poisson model with a match-specific effect for the 

score of either side. We estimate the differential effect of the red card 

by a conditional maximum likelihood (CML) estimator that is inde¬ 

pendent of the match-specific effects.” 

The authors argued that a defender who commits a deliberate foul 

on a goal-bound attacker outside the penalty box will make a positive 

contribution to his team by not conceding a goal, but he will also 

make a negative contribution as he will be sent off and unable to play 
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in the rest of the game. If the incident takes place in the last minute 

of a game, then the positive contribution outweighs the negative, as 

the player is sent off just as the game is about to end. On the other 

hand, if the incident takes place in the first minute, then the negative 

contribution outweighs the positive contribution, because the team is 

down to ten men for nearly the entire game. The overall impacts in 

extreme situations are common sense, but what about when an op¬ 

portunity to prevent a goal with a deliberate foul presents itself in the 

middle of the game? Is it worth it? 

Professor Ridder and his colleagues used a mathematical approach 

to determine the crossover time, which is the point in the game when 

being sent off begins to be worthwhile if it means not conceding a 

goal. 

If we assume that the teams are well matched, and if the attacker is 

almost certain to score, then it is worth committing the foul any time 

after the sixteenth minute of a ninety-minute game. If there is a 60 

percent chance of scoring, then a defender should wait until the forty- 

eighth minute before demolishing the attacker. And, if there is only a 

30 percent chance of scoring, then the defender should wait until the 

seventy-first minute before doing the dirty deed. It is not exactly the 

most honorable way to apply mathematics to sport, but it is a useful 

result. 



APPENDIX 2 

making SeNse of 
Baiez's equation 

**••«»«**••*»*• 

ein +1=0 

Euler’s equation is remarkable because it unifies five of the funda¬ 

mental ingredients of mathematics, namely 0, 1, n, e, and i. This 

brief explanation attempts to shed light on what it means to raise e to an 

imaginary power, thereby helping to show why the equation holds true. 

It assumes a working knowledge of some moderately advanced topics, 

such as trigonometric functions, radians, and imaginary numbers. 

Let us start with the Taylor series, which allows us to represent any 

function as an infinite sum of terms. If you want to know more about 

how a Taylor series is constructed, then you will need to do some home¬ 

work, but for our purposes the function ex can be represented as follows: 

2 3 4 5 

_ 1 + T + *_iL + iL+iL + 
c 1 ' 1!~ 2! 3\ ' 4\ ' c)\~ 

Here x can represent any value, so we can substitute x with ix, 

where i2 = —1. Hence, we get the following series: 

ix x2 zx3 . x" ixJ 
-1-1-— _ —_|- _ -I- 

v 1 ' I; 2! 3! 4! 5! 

Next, we group terms according to whether or not they contain i: 

x2 . x4 
e’X 2! + 4! ”’/ + Z\ 1! 3! + 5! 
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Taking an apparently irrelevant detour, it is also possible to find a 

pair of Taylor series to represent the sine and cosine functions, which 

leads to the following results: 

x 
sin x= -p — 

3! 

Xg _ X 

+ 5! 7! 
+ 

COS X = 1 — 
X2 

2! 
+ 

x_4 
4! 

jxr 
6! + 

Hence, we can write e,x in terms of sin x and cos x: 

etx — cos x+ i sin x 

Euler’s identity involves the term e‘n, and we are now ready to cal¬ 

culate this by substituting x for 7t: 

ein = cos n + i sin n 

In this context, n is an angular measurement in radians, such that 

360° = 2k radians. Hence, cos n = — 1 and sin k — 0. This means that 

ein = -1 

Therefore, 

e,K +1=0 

According to Professor Keith Devlin, a British mathematician at 

Stanford University and author of the blog Devlin’s Angle-. “Like a 

Shakespearean sonnet that captures the very essence of love, or a 

painting that brings out the beauty of the human form that is far 

more than just skin deep, Euler’s equation reaches down into the very 

depths of existence.” 



APPENDIX 3 

PR. Ke&ieR's pec'Pe FOP 

the m of Squares 
**«*«**•»*»*»•• 

In an interview with Dr. Sarah Greenwald of Appalachian State 

University, Ken Keeler recounted the following episode concerning 

his father, Martin Keeler, who had an intuitive approach to mathe¬ 

matics: 

The main influence was my father, who was a doctor . . . He only 

got through first-year calculus, but I remember I once asked him 

what the sum of the first n squares was and he was able to derive 

the formula in a few minutes: «3/3 + n 2/2 + nIG. 

What still surprises me is that he didn’t do it by a geometrical 

argument (like the way you usually derive the sum of the first n 

integers) or an inductive argument. He assumed the formula 

was a cubic polynomial with unknown coefficients, then found 

the coefficients by solving the system of four linear equations 

generated by computing the first four sums of squares. (And he 

solved them by hand, without determinants.) When I asked him 

how he knew the formula would be a cubic polynomial, he said: 

“What else would it be?” 
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APPENDIX 4 

FRACTALS AMp FRACTION 

PW6NSIOMS 

e normally think of fractals as patterns that consist of self- 

similar patterns at every scale. In other words, the overall 

pattern associated with an object persists as we zoom in and out. As 

the father of fractals Benoit Mandelbrot pointed out, these self-similar 

patterns are found in nature: “A cauliflower shows how an object can 

be made of many parts, each of which is like a whole, but smaller. 

Many plants are like that. A cloud is made of billows upon billows 

upon billows that look like clouds. As you come closer to a cloud you 

don’t get something smooth but irregularities at a smaller scale.” 

Fractals are also recognizable because they exhibit fractional di¬ 

mensions. To get a sense of what it means to have fractional dimen¬ 

sionality, we will examine a particular fractal object, namely the 

Sierpinski triangle, which is constructed according to the following 

recipe. 

First, take a normal triangle and cut out a central triangle, which 

results in the first of the four triangle shapes shown on the next page 

in the first diagram. This shape has three subtriangles, and each one 

of these then has a central triangle removed, which results in the sec¬ 

ond of the four triangle shapes. Central triangles are removed again, 

resulting in the third skeletal triangle shape. If this process is repeated 

an infinite number of times, the ultimate result is the fourth triangle 

shape, which is a Sierpinski triangle. 

One way to think about dimensionality is to consider how objects 

change in area when their lengths change. For example, doubling the 

lengths of the sides on a normal two-dimensional triangle leads to a 
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quadrupling of its area. Indeed, doubling the lengths of any normal 

two-dimensional shape leads to a quadrupling of its area. However, if 

we double the lengths of the Sierpinski triangle above to create the 

larger Sierpinski triangle below, it does not lead to a quadrupling of its 

area. 

Increasing its lengths by a factor of 2 causes the Sierpinski triangle 

area to increase by a factor of only 3 (not 4), because the larger tri¬ 

angle can be built from only three versions of the original small grey 

triangle. This surprisingly low growth rate in area is a clue that the 

Sierpinski triangle is not quite two-dimensional. Without going into 

the mathematical detail, the Sierpinski triangle has 1.585 dimensions 

(or log 3/log 2 dimensions, to be exact). 

A dimensionality of 1.585 sounds like nonsense, but it makes sense 

in relation to the construction process that creates a Sierpinski trian¬ 

gle. The process starts with a solid two-dimensional triangle with lots 

of obvious area, but removing central triangles over and over again— 

an infinite number of times—means that the final Sierpinski triangle 

has something in common with a network of one-dimensional fibers, 

or even a collection of zero-dimensional points. 



APPENDIX 5 

Ke£ieR'$ THeofceM 

**•*••*•«••*••* 

II Sweet” Clyde Dixon’s proof of Keeler’s theorem (also known as the 

Futurama theorem) appears on the fluorescent green chalkboard 

in “The Prisoner of Benda,” as shown on page 209. Here is a tran¬ 

scription of that proof: 

First, let 7t be some £-cycle on [n\ = {1, ..., n}\ WLOG write: 

/ 1 2 ••• k k+ 1 ••• n \ 

K = { 2 3 ••• 1 k+ 1 ••• n ) 

Let (a, b) represent the transposition that switches the contents of a 

and b. 

By hypothesis, n is generated by DISTINCT switches on [n\. 

Introduce two “new bodies” {x,y} and write: 

/I 2 ••• k k+ \ ••• n x y 

71 ~ (2 3 ••• 1 k+ 1 ••• n x y 

For any /= 1, let a be the (L-to-R) series of switches 

o-((x, 1) (x,2) ••• (x,i)) ((y,i + 1} {y,i + 2) • • • {y,k)) ((x,i + 1» {{y, 1» 

Note that each switch exchanges an element of [n\ with one of {x,y}, 

so they are all distinct from the switches within \n\ that generated n, 

and also from (x, y). By routine verification, 

/ 1 2 ••• n x y 
n = 

V 2 3 ••• n x y 
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i.e., o reverts the k-cyc\e and leaves x and y switched (without per¬ 

forming (x, y)). 

NOW let n be an ARBITRARY permutation on [n] \ it consists of 

disjoint (nontrivial) cycles, and each can be inverted as above in se¬ 

quence, after which x and y can be switched if necessary via (x, y), as 

was desired. 
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The Simpsons and Mathematics 

www.simpsonsmath.com 

http://homepage.smc.edu/nestler_andrew/SimpsonsMath.htm 

The Simpsons Activity Sheets 

http://mathsci2.appstate.eduAsjg/simpsonsmath/worksheets.html 
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The Simpsons 

http://www.thesimpsons.com/ 

http://simpsons.wikia.com/wiki/Simpsons_Wiki 

http://www.snpp.com/ 

Futurama 

http: / / theinfosphere.org/Main_Page 

http://futurama.wikia.com/wiki/Futurama_Wiki 

http: //www.gotfuturama.com/ 
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